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ABSTRACT

Rare Events in a Mode-Locked Fiber Laser

Nathan Len Sanford

Optical fibers utilize nonlinear effects to help transmit soliton or near soliton pulses in

a variety of contexts including optical communication systems and fiber lasers. Fiber

lasers produce ultra-short pulses, down to a few femtoseconds in duration, via a process

called mode-locking where modes of the optical cavity are synchronized via a variety of

physical mechanisms to produce stable solitons. Active mode-locking, where an optical

device such as a modulator facilitates the synchronization, is a scheme popular for the

level of control it gives to the mode-locking process. Even with such control, however,

pulses in an actively mode-locked laser can occasionally slip relative to the timing signal

leading to fluctuations in the pulse repetition rate.

Monte Carlo simulations can be used to capture such errors, but are ineffective when

the events are rare as the number of simulations required to determine their probabil-

ity is too computationally expensive. In modern nonlinear optical fibers, error rates

are typically below 10−10 so traditional methods are not within the realm of possibil-

ity. Importance sampling modifies Monte Carlo simulations to make them feasible by
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more efficiently sampling from regions in phase space that give rise to rare events via

the introduction of biasing distributions. The identification of important regions is usu-

ally accomplished via the solution of an optimization problem. In nonlinear optics, the

formulation of such problems is frequently guided by soliton perturbation theory. Here,

quantification of position slip error rates in a model of a soliton-based mode-locked laser

are obtained using importance-sampled Monte Carlo simulations where the physical ef-

fects of the active mode-locking are incorporated as small perturbations. Position slips

are studied in two distinct cases: an overdamped regime where they are primarily direct,

and an underdamped regime where they typically involve oscillations.

The qualitative distinction of direct versus oscillatory biasing paths between these

regimes motivates the use of different importance sampling techniques. Quantification of

the slip rate is shown to be more straightforward in the overdamped regime. Dynamic

importance sampling, where error pathways are dynamically recomputed mid-simulation

to maximize error yield, is found to be necessary to accurately and efficiently capture

error rates. Dynamic importance sampling is shown to be more difficult to implement

in the underdamped regime due to the existence of multiple routes by which position

slip errors can occur. This motivates the development of a new importance sampling

method blending dynamic importance sampling and multiple importance sampling, where

multiple biasing distributions are used simultaneously. This algorithm is first applied to

a toy model with multiple paths, a two-dimensional random walk past a transverse wall

obstacle, and then is applied to the underdamped laser model. In both cases, this dynamic

multiple importance sampling method is found to be far superior to using either dynamic

importance sampling or multiple importance sampling in isolation.
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CHAPTER 1

Introduction

The achievements in the field of optical fiber communication systems are many and

varied. From facilitating the highest precision research in astrophysics through the use of

optical clocks [13], to carrying the bulk of internet traffic between continents [10, 79],

the world would be a drastically different place without the invention of fiber-optics. A

significant insight that has accompanied these achievements has been the discovery of

optical solitons, high amplitude solitary waves generated by combining nonlinear and

dispersive effects. Maintaining a precise balance between these two effects, chromatic

dispersion and Kerr nonlinearity, allows for the stable generation and transmission of

high energy pulses. First proposed as optical carriers nearly a half-century ago, and

experimentally demonstrated soon thereafter, these pulses operate as solitary waves and

have proved effective in overcoming dispersion-related signal corruption [49, 70].

The study of nonlinear waves and solitons dates back to the early nineteenth century

when Scottish engineer John Scott Russell noted a water wave propagating down the

Union Canal in Edinburgh that did not change in character as it propagated, calling it a

“wave of translation” [28]. This translational behavior was at odds with the understand-

ing of hydrodynamics at the time, and it wasn’t until the late nineteenth century when

theories and equations such as the Korteweg-de Vries equation (KdV) were developed

that explained such solitary wave behavior [63]. The field was further revolutionized in
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the late 1960s with the discovery of the inverse scattering transform for solving KdV an-

alytically and explicitly, from which solitons were found to act akin to particles [39, 96].

This analytical solution method was soon extended to other nonlinear partial differential

equations with a similar structure, creating a class of so-called “integrable systems.” The

nonlinear Schrödinger equation was investigated in this context as it was also a nonlin-

ear PDE arising in water waves: KdV arises in the shallow-water approximation while

NLS arises in the deep-water asymptotic approximation to the problem of surface water

waves [55]. In particular, the works of Zakharov and Ablowitz et. al. were instrumental

in extending the integrability framework to NLS [2, 98, 99]. They obtained the NLS

soliton from the inverse scattering transform, establishing its integrability in a rather ro-

bust fashion. At the same time, solitons were found to develop from a sequence of waves

by means of a mechanism called “modulation instability” whereby periodic wave forms

can focus into steeper pulses. This corroborated a multitude of findings in the preceding

decade of the modulation instability occurring in a variety of physical systems [9, 97]. It

was in this context and with this firm theoretical footing that solitons were proposed as

potential carriers in optical systems [49, 50].

The primary factor limiting soliton use in practical systems was power loss from en-

ergy absorption in the propagation medium. While solitons were readily obtainable in

laboratory settings throughout the 1980s, power loss kept them from being broadly ap-

plicable and useful in real-world applications since power loss leads to pulse broadening

[5]. The development of fiber amplifiers offered a solution to this problem. In particular,

Erbium-doped fiber amplifiers (EDFAs) came to attract attention as they operate in one
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of the low-loss wavelength regimes of fused silica [23]. Fiber amplifiers, broadly speak-

ing, work by injecting energy into the propagation medium which counteracts loss. The

method of amplification can be either distributed (or acting throughout the medium) or

lumped (acting at discrete points). Lumped amplification has been used in a variety of

contexts as it requires less energy and can effectively combat loss if amplifiers are spaced

at intervals much less than the characteristic length on which losses occur. With this

technique a number of practical soliton-based schemes were developed in the 1990s, in-

cluding dissipative solitons and dispersion-managed solitons among others [6, 48]. While

lumped amplification has obvious benefits, it comes with the inherent drawback that it

injects noise into the system in addition to combating loss. This noise, called amplified

spontaneous emission (ASE) noise, is a pernicious phenomenon that can cause system

failures.

In particular, additive ASE noise causes perturbations to soliton pulses during trans-

mission that can lead to communication errors. To see how this occurs, consider a trans-

mission scheme where solitons are propagated along the fiber in a sequence of specified

bit-slots. The presence of a soliton in a bit-slot signals a “1” bit and no soliton is a “0.”

Such a transmission scheme is called “on-off keying” though other schemes are sometimes

used [5]. Repeated injection of ASE noise, which is modeled as an instantaneous addition

of Gaussian white noise at each amplifier, can perturb the pulse sufficiently so that a 1

is misdetected as a 0 or vice versa. The pulse perturbations through which this most

commonly occurs are called parameter jitter; the pulse maintains its soliton character,

but changes primarily through changes in its parameters [52]. The NLS soliton is char-

acterized by four parameters; amplitude, frequency, position, and phase; with all values
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admissible for each due to the integrable structure of the NLS equation. Amplifier noise

can then cause these values to change without resistance, leading to large pulse deforma-

tions. Therefore, a pulse can undergo drastic reductions in amplitude, for instance, which

would cause a 1-to-0 error. Such errors are typically rare in occurrence, so rare event

theory is needed to understand their dynamics.

Rare events have been studied in a variety of contexts including financial markets,

ocean waves, social systems, and climate disasters [19, 22, 42, 62, 77]. Two of the most

important questions to address when studying rare events are assessing their prevalence

or probability and understanding the dynamics that lead to their occurrence. As such,

a number of theoretical and analytical approaches have been developed to address these

questions [38]. However, computational studies play an important role in the study of

rare events as well, as the nonlinear process of pulse propagation causes the Gaussian

white noise input of the additive ASE noise to lead to distinctly non-Gaussian output

statistics of pulse behavior. However, the use of Monte Carlo simulations, one of the

most widespread techniques in the field of random simulation, is inherently limited in the

case of studying rare events [75]. By definition a rare event has a low probability, and

a large number of Monte Carlo trials and concomitant computational outlay is required

to capture its probability reliably. In the case of optical communication systems, error

rates have long been engineered to be extremely low; lower than one error per trillion bits

[73]. Nevertheless, the increased demand for ever increasing transmission bandwidths and

stable pulse repetition has motivated the computational study of errors to understand

how they occur, so that they can be reduced as much as possible. The extremely low rate
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of errors in already existing technologies provides a significant modeling and simulation

challenge in this pursuit.

Adapting Monte Carlo simulations to rare event circumstances has been an ongoing

field of study for decades. One such scheme is importance sampling where a biasing dis-

tribution is introduced that gives rise to the rare events of interest much more frequently.

Samples are drawn from the biasing distribution, and then trials are weighted so that

corrected probabilities of interest may be calculated. The selection of biasing distribu-

tions is a significant avenue of ongoing inquiry [76]. The chief criterion to keep in mind

when investigating possible biasing distributions is that the variance of the Monte Carlo

simulations should be reduced, and so importance sampling and similar techniques are

referred to as variance reduction methods. In the systems considered in this thesis, it

requires identifying the paths through state space which lead to errors most frequently.

System reductions using soliton perturbation theory make it possible to approximate the

infinite-dimensional function space of solitons in a finite-dimensional parameter space,

making this objective attainable [73, 83]. Optimization methods are then implemented

in the parameter space to find the likeliest error paths which then guide simulation of the

full NLS. This methodology has been applied to studies of errors in a multitude of soliton-

based systems, and will be taken here to study an actively mode-locked laser model which

presents novel dynamic features and challenges.

Fiber ring lasers are a nonlinear optical system that is important in a wide variety

of contexts. They have been utilized as pulse sources in optical communication systems,

but have also had significant roles in scientific inquiry such as in optical frequency metrol-

ogy and optical clocks for extremely precise and accurate measurements in spectroscopy
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and other pursuits [89]. The mechanism by which such lasers generate sufficiently short

pulses, as short as on a femtosecond time scale, is called mode-locking and has been stud-

ied for over fifty years [21, 51]. Mode-locking refers to the frequency domain process

underlying pulse generation in such lasers, where stable lines at specified modes in the

frequency domain underlie the soliton dynamics observed in the temporal domain. Such

a mechanism relies on the ring-like structure of such a laser, and requires that the pulse

be unchanged after propagating around the ring, which imposes the specified frequencies

at which lasing can occur [20]. From a dynamical perpective, the characteristic balance

of dispersion and nonlinearity present in a mode-locked soliton-system is augmented with

a number of small perturbations achieved by adding physical elements to the fiber cavity.

These perturbations help resist noise-induced parameter jitter, and thus help reduce the

frequency of errors occurring.

Physically, the perturbative elements used in a mode-locked fiber laser are typically

applied either throughout propagation or at a single point in the ring with the EDFA

amplifier being a canonical example. The perturbative elements present in a mode-locked

laser broadly fall under two regimes, active mode-locking and passive mode-locking. The

distinction between the schemes relies on the physical element causing mode-locking,

where either an added element causes the locking in active schemes, or the pulse itself

causes the mode-locking in passive schemes [20]. In both cases, intensity-dependent per-

turbations (i.e. those that depend on the modulus of the optical field), also called intensity

discrimination perturbations, are usually incorporated via the inclusion of absorbers, po-

larizers, and other gain elements [65]. Such elements help to fix the pulse amplitude at
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a specific value. Other perturbations targeting non-amplitude-based jitter are also incor-

porated, such as with a frequency-dependent filtering element to combat perturbations to

the pulse frequency. Of particular interest are active feedback mechanisms that combat

pulse walk-off from the bit-slot center, also called timing jitter. This thesis examines a

particular active mode-locking mechanism where an active phase modulator is used to

explicitly resist timing jitter [71].

This thesis examines the dynamics of this actively mode-locked fiber laser model, as it

produces dynamically interesting timing-jitter errors. The dynamical description of such

errors, as well as the modifications to existing importance sampling algorithms to account

for this novel dynamics, are the focus of this thesis. To that end, the thesis is organized

in the following order. Chapter 2 provides an introduction to the physics of nonlinear

optical systems, their numerical simulation, and soliton perturbation theory. Chapter 3

explains the basics of importance sampling using a random walk as an illustrative exam-

ple. Augmentations of importance sampling, such as multiple importance sampling and

dynamic importance sampling, are also discussed. Chapter 4 introduces an importance

sampling algorithm that blends elements of multiple and dynamic importance sampling

that will be used in the investigation of our actively mode-locked laser. We discuss why

this algorithm is only advantageous to use in very specific circumstances, e.g., when there

are multiple paths through phase space to the same rare event, and provide a toy random

walk model where there are two paths past an obstacle. Lastly, Chapter 5 discusses the

laser model, and shows how the multiple-path phenomenon arises, and how it may be

dealt with in importance sampling simulations.
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CHAPTER 2

Mathematics Governing Nonlinear Optical Systems

2.1. The Nonlinear Schrödinger Equation

The nonlinear Schrödinger equation (NLS) is a partial differential equation arising in

many areas of scientific inquiry including Bose-Einstein Condensates and nonlinear water

waves [45, 98]. However, its applications in nonlinear optics is the focus of this thesis. In

this context, the nonlinear Schrödinger equation describes the propagation of short pulses

through a fiber medium with significant dispersive and nonlinear effects.

2.1.1. Comments on its derivation

Consider the propagation of an optical field through an optical fiber medium. This process

is governed by Maxwell’s equations, which can be written as a wave equation involving

the electric field E and the medium’s response to the electric field P (called the induced

electric polarization),

(2.1) ∇2E− 1

c2

∂2E

∂τ 2
= µ0

∂2P

∂τ 2
,

where τ , c, and µ0 are time, the speed of light in a vacuum, and the vacuum’s magnetic

permeability. The derivation of NLS from Eq. (2.1) will not be done in full here, but its

details can be found in [5]. Instead, we will simply state the assumptions necessary for

deriving NLS, along with a few explanatory comments.
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Here, we assume that the main nonlinear effects present in the fiber contributing to

the polarization P are due to the third-order nonlinearity of the material, typically arising

through nonlinear refraction. Further, we assume that the polarization can be decomposed

into linear and nonlinear components so that P = PL+PNL, with PNL serving as a small

perturbation to PL. With these two assumptions in place, the polarization can be Taylor

expanded in the electric field with a linear and cubic term as the first two terms. A

quadratic term is not present as the material, typically fused silica for fiber, is assumed

to be centro-symmetric, causing its second-order susceptibility to be zero.

Another needed assumption about the fiber medium is that it is a single-mode fiber,

meaning that it admits one propagating mode at typical wavelengths. Such fibers, which

typically have a core radius below 2 µm and are single-mode for wavelengths λ > 1.2 µm,

are used widely. Additionally, we assume that the single-mode optical field maintains its

polarization along the fiber length, which is true for so-called “polarization-maintaining”

fibers and is an approximation that holds for a variety of other fibers as well. With this

approximation, we can decompose the vector dynamics of Eq. (2.1) into scalar dynamics

of propagation along a single polarization direction.

Lastly, we assume that the optical field is “quasi-monochromatic” meaning that it has

a spectrum with a single peak at a frequency ω0 and a very narrow spectral width ∆ω

around this peak with ∆ω � ω0. In practice pulses as short as 0.1 ps obey this condition;

typically communication systems use longer pulses, however. With these assumptions

in hand, we utilize a slowly-varying envelope approximation by taking an electric field

solution to Eq. (2.1) that has three parts: the fiber mode describing the transverse

form of the field, a slowly-varying envelope U that depends on propagation distance and
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either time or frequency, and a plane wave capturing the rapidly varying phase of the

field. Letting z be the fiber propagation distance variable, the slowly-varying-envelope-

approximation implies ∂2U
∂z2 � dU

dz
as U is slowly varying so the second spatial derivative

of the envelope is neglected.

This approximation results in

(2.2) i
dU

dz
− β′′

2

∂2U

∂t2
+ γ|U |2U + iαU = 0,

where β′′ is the group-velocity dispersion (GVD) coefficient, γ is the nonlinear coefficient,

α is the linear loss coefficient (with α > 0), and t = τ − z/vg is the retarded time (where

vg is the group-velocity coefficient). The dispersion of the field has been dealt with

approximately by taking a Taylor expansion of the plane wave’s wavenumber β around

the central frequency ω0:

(2.3) β(ω) ≈ β0 + β1(ω − ω0) +
1

2
β2(ω − ω0)2

with higher-order terms neglected under the quasi-monochromatic assumption. Then, we

can identify

vg =
1

β1

and

β′′ = β2

which helps motivate the name of the GVD coefficient in particular as β2 = β′′(ω0). Thus,

Eq. (2.2) is called the “lossy” nonlinear Schrödinger equation in dimensional form.



22

2.1.2. Amplifiers and noise

A few more comments on the units used to describe the system are in order before we

proceed to the nondimensional form. In dimensional form, U is normalized so that |U |2

represents the optical power (in W), the retarded time t has units of ps, and z is in km.

The dispersion constants vg and β′′ have units of km/ps and ps2/km respectively. The

GVD constant β′′ is assumed to be strictly negative, putting the system in what is known

as the anomalous dispersion regime, for reasons explained in the next section. β′′ will

be replaced by its absolute value in what follows. The loss coefficient has units of 1/km

while the nonlinear coefficient γ has units of 1/(W-km) and is given by

(2.4) γ =
2πn2

λAeff

.

In equation (2.4) n2 is the Kerr coefficient, λ is the light wavelength, and Aeff is the

effective area of the fiber mode. The linear loss term is in units of 1/km, and can cause

significant pulse attenuation

Erbium-doped fiber amplifiers (EDFAs) are placed periodically throughout the trans-

mission length to counteract the linear loss in the system. First realized experimentally

in 1989, such amplifiers are in common usage, though other types of amplification such as

Raman amplification are still sometimes used [4]. These devices instantaneously produce

an amount of power gain G as the signal passes through them that counteracts the ac-

cumulated loss between amplifiers. Unfortunately, amplified spontaneous emission (ASE)

noise is also added as part of this process. Over time this noise builds up and can distort

the signal to the point where accurate transmission is impeded.
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ASE noise is approximated by additive zero-mean Gaussian white noise. While Gauss-

ian white noise has a nonphysical infinite bandwidth, it suitably approximates ASE noise

as its bandwidth is much larger than that of the signal [44]. The variance of ASE noise

is controlled by its power spectral density,

S(ω0) = ~ω0ηsp(G− 1),

where ~ is Planck’s constant and ηsp is the spontaneous emission factor (with ~ω0 being

the energy per photon of light at ω0 the carrier frequency) [44]. Therefore, the noise

injected by an amplifier is modeled with

〈N(t)〉 = 0 and(2.5a)

〈N(t)N∗(t′)〉 = ~ω0ηsp(G− 1)δ(t− t′)(2.5b)

where half of the noise is added to each quadrature of the complex signal U .

We mentioned previously that the power gain parameter G from the EDFAs is chosen

to counterbalance the linear loss term iαU in Eq. (2.2). To see how this parameter is

tuned, we take the ansatz U(z, t) = v(z)U0(z, t) in the lossy NLS equation and require

that v(z) satisfies

dv

dz
= −αv (so v(z) = v0 exp(−αz))

so v captures the linear loss in the system. The power gain coefficient measures the ratio

of the signal power directly after to before the amplifier so a power gain of

(2.6) G =
(v(za))

2

(v(0))2
= exp(2αza)
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is needed to compensate for loss over a fiber length of za km (taken to be the distance

between amplifiers). The jump condition for v given by passing through an amplifier is

then

(2.7) v+ =
√
Gv− +N(t)

where v+ and v− signify the solution directly after and before amplification. Therefore,

the lossy NLS equation Eq. (2.2) with this ansatz and form for v(z) gives (with U0 → U)

(2.8) i
dU

dz
+
|β′′|

2

∂2U

∂t2
+ v(z)2γ|U |2U = 0

with an associated amplifier jump condition of

(2.9) v0U+ = v0U− +N(t).

Equation 2.8 can then be simplified by replacing v(z) with its average value, chosen to

be unity, in view of the fact that the attenuation length scale is typically much smaller

than the length scales on which the dispersive and nonlinear effects take place [60]. This

choice then implies

(2.10) v2
0 =

2αza
(1− exp(−2αza))

=
G lnG

G− 1
.

The preceding averaging process leads to the following equation

(2.11) i
dU

dz
+
|β′′|

2

∂2U

∂t2
+ γ|U |2U = N(t, z),
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with the periodically-added ASE noise modeled explicitly through the noise process N

which takes the form

N(t, z) =
Na∑
k=1

nk(t)δ(z − kza),(2.12a)

〈nk(t)〉 = 0,(2.12b)

〈nk(t)n∗l (t′)〉 =
(G− 1)2

G lnG
~ω0ηspδklδ(t− t′)(2.12c)

where Na is the total number of amplifiers, again za is the amplifier spacing, and the noise

added at each amplifier is delta-correlated Gaussian white noise. It should be noted that

the noise power Eq. (2.12c) differs from that given in Eq. (2.5) due to dividing through

by v0 because of Eq. (2.9).

2.1.3. Nondimensionalization

The dimensional form of Eq. (2.11) is often exchanged for a nondimensional form for the

purpose of mathematical analysis and simulation. We will follow the nondimensionaliza-

tion used in [73], though other nondimensionalizations have been used [54]. The first step

in the nondimensionalization is to introduce two characteristic length scales associated

with the dispersive (LD) and nonlinear (LNL) effects experienced by a characteristic pulse

of width T0 ps and power P0 W with

LD =
T 2

0

|β′′|
, and(2.13a)

LNL =
1

γP0

.(2.13b)
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Note that the scaling constants T0 and P0 are simply reference values and a pulse form

has not been assumed at this point. The pulse dynamics we are interested in exploring

take place in the regime where the nonlinear length and dispersion length are of the same

order of magnitude, so we equate LD = LNL and find that

(2.14) P0 =
|β′′|
γT 2

0

.

Now, we can introduce dimensionless coordinates via

(2.15) t̃ =
t

T0

, z̃ =
z

LD
=
|β′′|z
T 2

0

, and u =
U√
P0

=

√
γ T0U√
|β′′|

to nondimensionalize the equation. With these dimensionless coordinates Eq. (2.11)

becomes

(2.16) i
du

dz
+

1

2

∂2u

∂t2
+ |u|2u = N(t, z),

after dropping the tildes from z̃ and t̃. Note that the noise process is still Gaussian white

noise with zero mean, but it has been scaled by the above dimensionless coordinates as

well. The noise standard deviation is scaled by (P0T0)−1/2 due to the introduction of the

factors in Eq. (2.15), and consequently the noise process’ variance is scaled by 1/(P0T0)

so

N(t, z) =
Na∑
k=1

nk(t)δ(z − kza) with(2.17a)

〈nk(t)n∗l (t′)〉 =
(G− 1)2

G lnG

~ω0ηspγT0

|β′′|
δklδ(t− t′) ≡ σ2.(2.17b)
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The nondimensionalized noise variance, or power, shall be given by σ2 for convenience.

2.2. Solitons and the Structure of the Nonlinear Schrödinger Equation

We will now consider the dimensionless NLS equation, Eq. (2.16), without noise

(setting N = 0), as it admits a solution that will form the basis of this thesis: the soliton.

In the anomalous dispersion regime, a precise balance between nonlinearity and dispersion

has been found to give rise to a type of solitary wave that propagates without changing its

form [47]. This solitary wave, called a soliton, has been studied extensively and is related

to the remarkable mathematical structure of the NLS equation. The inverse scattering

method, an analytical solution method for nonlinear partial differential equations whose

details are outside the scope of this thesis, can been used to arrive at the soliton solution

by Ablowitz et al. and Zakharov and Shabat [2, 99]. The solvability of NLS by the inverse

scattering transform makes it what is called an integrable system. The NLS soliton has

been found to be robust to the cycle of linear loss and amplification found in fibers, and

indeed has been demonstrated experimentally [49, 70].

The single soliton solution is given by the form

us(z, t) = u0(z, t)eiΘ where(2.18a)

u0(z, t) = E sech(E(t− T (z))), and(2.18b)

Θ = Ω(t− T (z)) + Φ(z).(2.18c)

The parameters of the soliton are as follows: E is the soliton amplitude (or energy), Ω is

the frequency mismatch from the carrier frequency ω0, T (z) is the position of the center

of the pulse, and Φ(z) is the phase of the pulse at its center. For convenience, Θ is the
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shorthand for the entire argument of the complex exponential. E and Ω are constants,

and T (z) = Ωz+T0 and Φ(z) = (E2 +Ω2)z/2+φ evolve with the propagation from initial

constants T0, and φ. It is sometimes convenient to separate the hyperbolic secant from

the complex exponential, as is done with u0 in Eq. (2.18), for the purpose of analysis in

soliton perturbation theory as we will see in the next section.

Before proceeding to an explanation of soliton perturbation theory, a few comments

on the connections between the soliton form and the mathematical structure of NLS are

warranted. By Noether’s theorem, a symmetry or invariance in a PDE is always associated

with a conservation law, or conserved quantity, of the system [40, 94]. The details of this

result need not be reiterated here, except to note that conservation laws are technically

associated with invariances of a variational principle of a PDE such as a Lagrangian or

Hamiltonian.

The connections between the parameters of the soliton and conserved quantities and

their associated invariances are laid out in Table 2.1. As the table elucidates, the soliton

amplitude and frequency are readily defined by conservation laws whereas position and

phase rely on modified conservation laws. A “modified” or “generalized” conservation

law can be thought of as the analog of a generalized eigenvector. It is a conservation

law that relies on another conservation law. The absolute phase cannot be defined via a

conservation law, but changes in the phase can be defined using

(2.19)
i

2

∫ ∞
−∞

(u
∂u∗

∂z
−u∗∂u

∂z
) dt− d

dz

∫ ∞
−∞

i

2
t(u

∂u∗

∂t
−u∗∂u

∂t
) dt = −3

2

∫ ∞
−∞

(
|∂u
∂t

∣∣2−|u|4) dt
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Parameter Definition Conservation Law Associated Invariance

E E = 1
2

∫∞
−∞ |u|

2 dt
Mass Phase invariance

(Photon number) u→ eiνu

Ω Ω = 1
2E

∫∞
−∞ Im(u∗ ∂u

∂t
) dt Momentum

Time translation

t→ t− t0

T T = 1
2E

∫∞
−∞ t|u|

2 dt Modified

Galilean invariance

t→ t+ εz

u→ eiεt−iε
2t/2u

Φ N/A (Changes only) Modified
Scale invariance

u(z, t)→ au( z
a
, t
a2 )

Table 2.1. The parameters of the soliton and associations with conservation
laws and invariances of NLS. Note that only the amplitude E and frequency
Ω of the soliton are associated with true conserved quantities of NLS. The
other two quantities are associated with “modified” or “generalized” con-
servation laws, which can be seen as being related to the fact that their
evolution is coupled to other soliton parameters. Lastly, the phase cannot
be defined by a conservation law, but changes in phase are associated with
Eq. (2.19).

which was noted in [58]. Various definitions are used to track the phase quantitatively

(see [81]), but tracking the phase will not play a major role in this thesis so they will not

be included here.

The verification of conservation laws is a calculation that will play a role in soliton

perturbation theory. Such calculations also help to underline the distinction between a

true and modified conservation law. Therefore, we will verify the conservation laws for

amplitude and position. Consider the soliton amplitude, E, which is defined via

E =
1

2

∫ ∞
−∞
|u|2 dt.
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E being a conservation law means that dE
dz

= 0. Therefore, taking the derivative gives

dE

dz
=

d

dz

(1

2

∫ ∞
−∞
|u|2 dt

)
,(2.20a)

=
1

2

∫ ∞
−∞

∂

∂z

(
|u|2
)
dt,(2.20b)

=
1

2

∫ ∞
−∞

∂u

∂z
u∗ +

∂u∗

∂z
u dt,(2.20c)

=
1

2

∫ ∞
−∞

( i
2

∂2u

∂t2
+ i|u|2u

)
u∗ −

( i
2

∂2u∗

∂t2
+ i|u|2u∗

)
u dt,(2.20d)

=
1

2

∫ ∞
−∞

i

2

(∂2u

∂t2
u∗ − u∂

2u∗

∂t2
)

+ i
(
|u|4 − |u|4

)
dt,(2.20e)

=
i

4

{(∂u
∂t
u∗ − u∂u

∗

∂t

)∣∣∣∞
−∞
−
∫ ∞
−∞

(∂u
∂t

∂u∗

∂t
− ∂u

∂t

∂u∗

∂t

)
dt
}

= 0,(2.20f)

where we have used Eq. (2.16) and its conjugate in Eq. (2.20d), and integrated by parts in

Eq. (2.20f). The decay conditions on u at ±∞ then give the desired result of 0, indicating

that the pulse amplitude does not change under propagation. Now, consider the soliton

position T defined by

T =
1

2E

∫ ∞
−∞

t|u|2 dt.

Taking the derivative with respect to z then gives

dT

dz
=

d

dz

( 1

2E

∫ ∞
−∞

t|u|2 dt
)
,(2.21a)

=
1

2E

∫ ∞
−∞

t
∂

∂z

(
|u|2
)
dt,(2.21b)

=
1

2E

∫ ∞
−∞

t
[ i

2

(∂2u

∂t2
u∗ − u∂

2u∗

∂t2
)

+ i
(
|u|4 − |u|4

)]
dt,(2.21c)

=
i

4E

∫ ∞
−∞

tu∗
∂2u

∂t2
− tu∂

2u∗

∂t2
dt,(2.21d)
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=
i

4E

{(
tu∗

∂u

∂t
− tu∂u

∗

∂t

)∣∣∣∞
−∞

+

∫ ∞
−∞

(
u+ t

∂u

∂t

)∂u∗
∂t
−
(
u∗ + t

∂u∗

∂t

)∂u
∂t

dt
}
,(2.21e)

=
i

4E

∫ ∞
−∞

u
∂u∗

∂t
− u∗∂u

∂t
+ t
(∣∣∂u
∂t

∣∣2 − ∣∣∂u
∂t

∣∣2) dt,(2.21f)

=
i

4E

∫ ∞
−∞

2i Im
(
u
∂u∗

∂t

)
dt =

1

2E

∫ ∞
−∞

Im
(
u∗
∂u

∂t

)
dt = Ω,(2.21g)

which, while not 0, is another conservation law (that for Ω) which is the requirement for

a modified conservation law. Additionally, note that the boundary terms in Eq. (2.21e)

going to 0 does not simply require that u → 0 at ±∞ due to the factor of t, but that

the product of u and its derivative decay superlinearly. The boundary conditions placed

on u are typically stronger than this, so the requirement is easily satisfied [3]. Also note

that the result of Eq. (2.21) coincides with the parametrization in Eq. (2.18), but that

the conservation laws and modified conservation laws discussed here do not depend on a

particular functional form for u: it just needs to be a solution to NLS.

2.3. Soliton Perturbation Theory

Soliton perturbation theory (SPT) allows us to study effects of small perturbations

to the NLS soliton system laid out in this chapter. This theory can be approached in

a number of ways including using the inverse scattering transform or considering direct

perturbations to the soliton [47, 61]. However, here we will present the theory as arising

from a perturbative term in the NLS, which affects the soliton pulse’s dynamics under

propagation. Therefore, consider a rewritten version of Eq. (2.16) with a perturbative

term f :

(2.22)
∂u

∂z
=
i

2

∂2u

∂t2
+ i|u|2u+ f.
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We consider this perturbation to be small in magnitude, and it may or may not include

the noise process N(t, z). This section will investigate the effects of this general term on

the propagation of a soliton in two main ways. First, we will discuss what the conservation

laws can say about these effects and then we will introduce a linearized theory that will

be able to provide an extremely useful approximation for simulation purposes.

2.3.1. SPT using conservation laws

Under this perturbation, the conservation laws of the previous section provide not un-

changing quantities but rather evolution equations. The derivation of these evolution

equations is not particularly surprising: when the right-hand-side of NLS is substituted

into the integrals in Table 2.1 extra terms arise from f . For instance, if we examine the

law associated with the amplitude at Eq. (2.20d) we instead arrive at

dE

dz
=

1

2

∫ ∞
−∞

uf ∗ + fu∗ dt,

= Re

∫ ∞
−∞

u∗f dt(2.23)

as all other terms integrate out or cancel. Similarly, we can derive evolution equations for

the frequency

(2.24)
dΩ

dz
=

1

E
Re

∫ ∞
−∞

(i
∂u

∂t
− u∗)f dt

and position

(2.25)
dT

dz
= Ω +

1

E
Re

∫ ∞
−∞

(t− T )u∗f dt.
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Note that in these derivations E and Ω are functions of z and not constants. Lastly, using

Eq. (2.19) we can also derive an evolution equation for the phase

(2.26)
dΦ

dz
=

1

2
(E2 + Ω2) +

1

E

∫ ∞
−∞

[(
t− T

)
(2Ωu∗ − i∂u

∂t

)
− iu∗

]
f dt

though this will not be used in the rest of the thesis.

There is a bit of ambiguity in the precise meaning of Eqs. (2.23-2.26). These equations

involved no approximations and therefore capture the fully nonlinear behavior of Eq.

(2.22). However, we have no guarantees that the solution u will continue to be a soliton

and the parametric meanings of E,Ω, T , and Φ may quickly lose relevance. For instance,

consider when f = fn(t)δ(z − zn), a perturbation similar to the discretely added ASE

noise. We can plug this into Eqs. (2.23-2.26) and additionally integrate around zn to get

jump conditions:

∆En = Re

∫ ∞
−∞

u∗fn dt,(2.27a)

∆Ωn =
1

E
Re

∫ ∞
−∞

(i
∂u

∂t
− u∗)fn dt,(2.27b)

∆Tn =
1

E
Re

∫ ∞
−∞

(t− T )u∗fn dt,(2.27c)

∆Φn =
1

E
Re

∫ ∞
−∞

[(
t− T

)
(2Ωu∗ − i∂u

∂t

)
− iu∗

]
fn dt,(2.27d)

in the soliton parameters. These equations are very closely coupled to the soliton solution

form and it is unclear if they will continue to be useful after many rounds of repeated

amplification. Luckily though, the noise typically has a low noise power in physical

systems and the soliton pulse retains its approximate shape under amplification with
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stochastic fluctuations on top of it. Using a linear theory can help to explain what deeper

changes to the soliton can occur in these circumstances.

2.3.2. Linearized theory

Let’s consider the perturbation in Eq. (2.22) to be O(ε) (i.e. write f = εF ) where ε is

a small number. Now, we additionally consider a perturbation v to the soliton solution

that is in phase: let u(z, t) = us(z, t) + εv(z, t)eiΘ with us and Θ from Eq. (2.18). This

approach was taken in [73]. Upon substitution of this ansatz, the O(1) terms drop out

and the O(ε) terms are

(2.28)
dv

dz
+ Ω

∂v

∂t
=
i

2

∂2v

∂t2
− i

2
E2v + 2i|u0|2v + iu2

0v
∗

where, again, u0 = E sech(E(t−T (z))). We have neglected the effect of the perturbation

εF for the moment, but this term also shows up at this order and will be addressed

later. The left-hand-side ensures that the perturbation propagates with the soliton. As

Eq. (2.21) demonstrated, the frequency Ω is coupled to the position T of the pulse.

Therefore, we transform into a moving coordinate system z ≡ z + Ωt, and we define the

right hand side as the linearized NLS operator so that we have

∂v

∂z
= Lv where(2.29a)

Lv =
i

2

∂2v

∂t2
− i

2
E2v + 2i|u0|2v + iu2

0v
∗.(2.29b)
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This operator governs the linear space of infinitesimal changes to the soliton. We then

equip this space with the inner product

(2.30) 〈f, g〉 = Re

∫ ∞
−∞

f ∗g dt

whose form is suggested by the conservation laws (see Eq. (2.23) for example). The linear

operator is not self-adjoint in this normed space. The adjoint linearized operator is given

by

(2.31) Ladjv = − i
2

∂2v

∂t2
+
i

2
E2v − 2i|u0|2v + iu2

0v
∗.

In particular, note that Ladjv = iL(iv) and iLadj(iv) = Lv. Also, the adjoint of the left

hand side of Eq. (2.28) is dv
dz
− Ω∂v

∂t
since the inner product is with respect to t. This

motivates moving into a moving time frame ∂
∂z1

= ∂
∂z

+ Ω ∂
∂t

in Eq. (2.28) for the linear

space and then in the adjoint equation so that

∂v

∂z1

= Ladjv

with z1 running backwards (equivalent to taking the adjoint originally and then letting z

run backwards). For this reason, Ladj is also called the backwards linear operator.

The generalized nullspace of the linearized operator Eq. (2.29b) represents the tangent

space for small changes in the soliton parameters. A biorthonormal basis for this space

consists of eight modes, a forward and backwards mode associated with each soliton

parameter. The functional forms of these modes can be found in Table 2.2. In this basis,

there are two true modes and two generalized modes for the forward operator Eq. (2.29b)
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Mode Type Action

vE = 1
E
∂
∂t

((t− T )u0) Generalized forward LvE = EvΦ

vΩ = i(t− T )u0 Generalized forward LvΩ = vT

vT = −∂u0

∂t
Forward LvT = 0

vΦ = iu0 Forward LvΦ = 0

vE = −ivΦ = u0 Backward LadjvE = 0

vΩ = ivT/E = − i
E
∂u0

∂t
Backward LadjvΩ = 0

vT = −ivΩ/E = 1
E

(t− T )u0 Generalized backward LadjvT = vΩ

vΦ = ivE = i
E
∂
∂t

((t− T )u0) Generalized backward LadjvΦ = EvE

Table 2.2. The true and generalized modes of the forward and backwards
(adjoint) linearized NLS operator. The modes can be found by IST theory or
generated by considering invariances. The amplitude, frequency, position,
and phase modes are associated with invariances with respect to scaling,
Galilean transformations, time translation, and phase rotations respectively.

and its adjoint Eq. (2.31). A true forward mode for a soliton parameter corresponds to a

generalized backwards mode and vice versa. To be clear, the biorthonormality works as

follows

〈vk, vm〉 = 0 for k 6= m,(2.32a)

〈vk, vm〉 = 0 for k 6= m,(2.32b)

〈vk, vm〉 = 0 for k 6= m,(2.32c)

〈vk, vk〉 = 1 with k,m ∈ {E,Ω, T,Φ}.(2.32d)
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These modes correspond to the “preferred” directions for changes in the soliton parame-

ters, or the directions in function space that produce the largest parameters changes for

fixed-size perturbations, as we will see shortly. The forward modes correspond to the di-

rections of “clean” changes in soliton parameters or changes to the soliton that only affect

a particular parameter. This can be seen from the fact that the forward modes show up

in the derivatives of the soliton taken with respect to its parameters. In this procedure

we leave the other parameters constant (i.e. we don’t let T = T (Ω) when taking the

derivative with respect to Ω). These derivatives are

∂us
∂E

= vEe
iΘ,(2.33a)

∂us
∂Ω

= vΩe
iΘ,(2.33b)

∂us
∂T

= (vT − ΩvΦ)eiΘ,(2.33c)

∂us
∂Φ

= vΦe
iΘ.(2.33d)

However, the backwards modes correspond with the most likely directions for additive

noise to cause a particular soliton parameter to change [73].

The somewhat counterintuitive result that the adjoint soliton modes are associated

with more-likely soliton perturbation directions comes about by considering the pertur-

bation F as causing the constant soliton parameters to become slowly varying. Therefore,

we employ a multiscale method with two time scales, z and ζ = εz. Then ∂
∂z

= ∂
∂z

+ ε ∂
∂ζ

and we assume E,Ω, T, and Φ in us are dependent on the slow time scale ζ. Then, at
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O(ε) we get

(2.34)
∂v

∂z
+ Ω

∂v

∂t
− Lv = Fe−iΘ − e−iΘ

( ∑
Q∈{E,Ω,T,Φ}

∂us
∂Q

∂Q

∂ζ

)
.

The left hand side consists of the terms from Eq. (2.28) while the right hand side is the

effect of the perturbation to NLS. It is clear that the right-hand-side contains secular

terms to be removed by enforcing orthogonality with the linear modes (because of the

Fredholm Alternative Theorem). Via these solvability conditions and the biorthogonality

of the linear and adjoint linear modes, we are left with [73]

dE

dz
= εRe

∫ ∞
−∞

v∗Ee
−iΘF dt,(2.35a)

dΩ

dz
= εRe

∫ ∞
−∞

v∗Ωe
−iΘF dt,(2.35b)

dT

dz
= Ω + εRe

∫ ∞
−∞

v∗T e
−iΘF dt,(2.35c)

dΦ

dz
=

1

2
(E2 + Ω2) + εRe

∫ ∞
−∞

(v∗Φ + Ωv∗T )e−iΘF dt.(2.35d)

If the perturbation is in the form of additive noise, then the most likely direction for

a parameter change is that which maximizes the probability of the noise subject to the

relevant constraint in Eq. (2.35). As the noise is zero mean, a perturbation minimizing

the L2 norm of the noise is equivalent to maximizing the probability. In this sense, the

notions of the “most-likely” and “preferred” directions are linked. To see this, let the noise

perturbation be a single instantiation of white noise f0(t) discretely added in z at z = z0,

to match the noise added at a single amplifier in Eq. (2.16), so f(z, t) = f0(t)δ(z − z0).

Therefore, in order to find the most probable noise configuration that achieves a prescribed
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or desired parameter change of size ∆Y in the generic soliton parameter Y we have

min
f0

∫ ∞
−∞
|f0(t)|2 dt subject to(2.36a)

Re

∫ ∞
−∞

v∗Y e
−iΘf0 dt = ∆Y,(2.36b)

where the side constraint’s form comes from considering the solvability equations Eq.

(2.35) and integrating across z0 to get a jump condition. To be clear, the soliton mode

vY and soliton total phase Θ are computed at z0 the instant before the noise is added.

The solution to this problem is computed in Appendix A, but takes the form

(2.37) f0(t) = ∆Y
vY
||vY ||2

eiΘ.

This solution is arrived at via using standard calculus of variations methods [40]. It

confirms that the adjoint modes are the preferred directions for noise-induced parameter

perturbations.

2.3.3. Amplifier-induced changes

The pulses propagated in noisy simulations obviously do not obey the strict functional

form of solitons after the addition of noise. However, they are usually approximately

solitons, with random components added. Using the linearized theory of Section 2.3.2,

the leading order change in a soliton after amplification can be given by decomposing the

noise-induced change into the forward soliton modes (see Table 2.2). At the first amplifier

the leading-order change in the soliton is

(2.38) ∆u1(t) = vE∆E + vΩ∆Ω + vT∆T + vΦ∆Φ.
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The scalars ∆E,∆Ω,∆T, and ∆Φ are given by considering Eq. (2.35) with the discretely-

added noise f1(t). They are easy to obtain from those continuous evolution equations,

but explicitly these constants are

∆E = Re

∫ ∞
−∞

v∗Ee
−iΘf1(t) dt,(2.39a)

∆Ω = Re

∫ ∞
−∞

v∗Ωe
−iΘf1(t) dt,(2.39b)

∆T = Re

∫ ∞
−∞

v∗T e
−iΘf1(t) dt,(2.39c)

∆Φ = Re

∫ ∞
−∞

(v∗Φ + Ωv∗T )e−iΘf1(t) dt.(2.39d)

To clarify this notation, if we have a clean soliton us at z1− (right before amplification),

then right after amplification (at z1+) we have

u(z1+, t) = us(z1−, t;E,Ω, T,Φ) + ∆u1(t)eiΘ(t,z1−) +R(t, z1+),(2.40)

= us(z1+, t;E + ∆E,Ω + ∆Ω, T + ∆T,Φ + ∆Φ) +R(t, z1+)

where R is dispersive radiation also injected by the amplifier that does not change the

soliton but instead propagates on top of it. This dispersive radiation grows under repeated

amplification, but the portion injected at each amplifier is typically smaller than the

cumulative soliton changes.

2.4. Numerical Methods and Considerations

There are a variety of numerical methods that can be used to solve NLS and similar

lightwave systems. In this section we will discuss the main algorithm used to numerically
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simulate the partial differential equations in this thesis: the split-step Fourier method.

The numerical properties of the split-step method will also be discussed. Then, we will

talk about simulating the properties and effects of ASE noise on a pulse as it propagates.

We will discuss how to numerically deal with the amplifiers and also how to track soliton

parameters under noisy propagation.

2.4.1. Split-step Fourier method

The split-step Fourier method, the principal numerical method of this thesis, is based on

operator splitting [8]. This concept comes from considering a partial differential equation

of the form

(2.41)
∂u

∂z
= g1(u,

∂u

∂t
,
∂2u

∂t2
, . . .) + g2(u,

∂u

∂t
,
∂2u

∂t2
, . . .)

where g1 and g2 are two general functions of u and its temporal derivatives. Operator

splitting is applied to this equation by considering two simpler equations

∂u

∂z
= g1(u,

∂u

∂t
,
∂2u

∂t2
, . . .) and(2.42a)

∂u

∂z
= g2(u,

∂u

∂t
,
∂2u

∂t2
, . . .).(2.42b)

The principal benefit of operator splitting is that Eqs. (2.42a) and (2.42b) can be solved

by different methods. As we will see shortly, NLS admits to different treatments of its

dispersive and nonlinear terms. Once solution methods are chosen for each equation in

Eq. (2.42), the overall solution method is to evolve in z while taking alternating steps
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with the solvers for g1 and g2. However, operator splitting also comes with an associated

cost of an error that is O(∆z2) per step.

This error can be seen by replacing the functions Eq. (2.41) with differential operators

G1 and G2 so that

(2.43)
∂u

∂z
= (G1 +G2)u.

With this notation, the formally exact solution to Eq. (2.41) is

(2.44) u(z, t) = exp((G1 +G2)z)u0(t)

where u0(t) is the initial condition. However, the solution implemented with operator

splitting is

(2.45) u(z, t) = exp(G1z) exp(G2z)u0(t)

which is exact if G1 and G2 commute, but this is not true in general. Taylor expanding

the exact and implemented solutions in z gives that the leading order error term is in fact

proportional to the commutator of G1 and G2 or [G1, G2] = G1G2 − G2G1 which shows

up at second-order. That is, for small ∆z we have

e(G1+G2)∆z − eG1∆zeG2∆z =
1

2

[
(G1 +G2)2∆z2 − (G2

1 +G2
2 + 2G1G2)∆z2

]
+H.O.T.,

(2.46)

= −1

2

(
G1G2 −G2G1

)
∆z2 +H.O.T.

which demonstrates that split-step methods are only first-order accurate [5].
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Luckily, this accuracy can be improved by an order by considering a slight modifi-

cation to the sequence in which the steps are taken in the implementation of operator

splitting. This modification, called symmetrized operator splitting, is to alternate the or-

der of the steps taken, i.e. exp(G1∆z) exp(G2∆z) exp(G2∆z) exp(G1∆z) . . . exp(G1∆z)

exp(G2∆z). Practically, this is implemented by taking single steps of the form

(2.47) u(z0 + ∆z, t) = eG1
∆z
2 eG2∆zeG1

∆z
2 u0(t).

When Taylor expanded, this gives an error of

e(G1+G2)∆z − eG1
∆z
2 eG2∆zeG1

∆z
2 =

1

24

(
G2

1G2 − 2G1G2G1 − 2G1G
2
2+(2.48)

G2G
2
1 + 4G2G1G2 − 2G2

2G1

)
∆z3 +H.O.T.

Therefore, symmetrized operator splitting is second-order accurate.

To apply operator splitting to NLS, first note that the NLS operator can be written

∂u

∂z
= (D̃ + Ñ)u where(2.49)

D̃u = i
∂2u

∂t2
and Ñu = i|u|2u.

This motivates treating the dispersion and nonlinearity of NLS separately like

∂u

∂z
= D̃u, and(2.50a)

∂u

∂z
= Ñu.(2.50b)
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Note that this formalism allows for treating a more general equation than just the NLS

equation. For example, if Eq. (2.22) involves the NLS and some small continuous per-

turbations, these can be incorporated into the numerical split-step scheme by adding any

linear terms to D̃ and all other terms to Ñ . Luckily, the perturbations considered in

this thesis only include temporal derivatives of u in linear terms, otherwise the scheme

presented here becomes more complicated and it may be advantageous to use a scheme

other than operator splitting.

We solve the dispersive problem, Eq. (2.50a), using a pseudospectral method. Trans-

forming it into Fourier space gives an ordinary differential equation (ODE) for each Fourier

component

(2.51)
dû(z, w)

dz
eiwt = (iw)2û(z, w) eiwt.

That is, all temporal derivatives become scalar multiples in Fourier space, so the only

work left to be done is to solve a simple ODE. Therefore, the dispersive solve is formally

u(z + ∆z, t) = F−1
w

[ ∫ z+∆z

z

exp(Fw[D̃]z′) dz′Fw[u(z, t)]
]
,(2.52)

= F−1
w

[
exp(Fw[D̃]∆z)Fw[u(z, t)]

]
.

This takes advantage of the fact that generally D̃ is a linear differential operator so the

only work being done is the Fourier transforms. Numerically, this involves taking the Fast

Fourier Transform (FFT) with N Fourier modes, which is known to be fast and accurate.

The nonlinear problem can be treated in a number of ways. Some methods rely on

the fact that the pulse energy is constant under propagation as it is a conserved quantity.
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That is,

|u|2 = |u0|2 = E

which was discussed in Section 2.3. Therefore, one can use an integrating factor scheme

via

u(z + ∆z, t) = exp
( ∫ z+∆z

z

Ñ dz′
)
u(z, t),(2.53)

= exp(Ñ∆z)u(z, t)

where Ñ is evaluated at z and is then treated as a constant in the integration. However,

in the presence of other terms (arising via perturbations in Eq. (2.22)), the nonlinearity

operator is not a constant multiplier and this integrating factor scheme can be improved

upon. One easy improvement is to use an explicit trapezoidal method, which preserves

the second-order accuracy of the scheme [5]. This method approximates the integral in

Eq. (2.53) via

(2.54)

∫ z+∆z

z

Ñ(z′) dz′ ≈ ∆z

2

[
Ñ(z) + Ñ(z + ∆z)

]
and involves taking an initial predictor step to ascertain Ñ(z + ∆z). We take a step

of forward Euler as the predictor so in Ñ(z + ∆z) any dependence on u is given by

ũ = u(z) + ∆zÑ(z). This method is alternatively known as improved Euler or Heun’s

method and is well known in many contexts [84].

There are many other spectral methods for solving NLS, many of which have faster

convergence rates. However, the split-step method is sufficient for our purposes, as the

main simulations in this thesis will be Monte Carlo simulations where NLS is solved
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many times. The primary advantage of step splitting is its speed, and its second-order

convergence is satisfactory in this context. The symmetrized split step Fourier method

is implemented by taking half steps of the dispersive (D̃ stands in for G1 in Equation

2.47). The convergence rates of three variants of the split-step method discussed here,

along with two other methods, are shown in Fig. 2.1. The other two methods included

are the Crank-Nicholson Adams-Bashforth second-order scheme, an example of a semi-

implicit spectral method, and exponential time differencing with a fourth order Runge

Kutta stepper which uses an integrating factor spectral method [78]. Note that the most

accurate split-step scheme is the symmetrized scheme that treats the nonlinearity as a

constant, which is the exact solution of the nonlinearity in the NLS without perturbations.

We should not expect it to be more accurate than the trapezoidal method for more general

systems.

2.4.2. Implementing amplifier noise

A few practical considerations for implementing the ASE noise model from Eq. (2.17)

should be considered. In a discretized version of the noise, its values at each point in the

time domain are a complex random variable drawn from a zero-mean Gaussian distribu-

tion, that is, a Gaussian in the real and imaginary quadratures. The noise power σ2 in

Eq. (2.17b) is matched in a discrete approximation by drawing each Gaussian random

variable and then scaling the variance with

(2.55) σ2
a =

σ2

2 dt
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Figure 2.1. A comparative study of various numerical methods for solving
unperturbed NLS. Five spectral methods were used with 256 Fourier modes
to simulate a soliton with initial parameters E = 1,Ω = 0, T0 = 0, and φ = 0
in a computational window 40 units wide. The relative L2 error between the
numerical solution and the exact solution at z = 8 was reported for different
step sizes dz in the left panel, with the computation time shown in the right
panel. The split-step method is first order accurate. The symmetrized split-
step schemes treating the nonlinearity as a constant (SSS const.) and using
the trapezoidal rule (SSS trap.) along with a semi-implicit scheme called
Crank-Nicholson Adams-Bashforth second-order (CNAB2) are all second-
order accurate. Lastly, exponential time differencing with a fourth order
Runge Kutta stepper (ETDRK4) is a fourth-order accurate scheme (though
it is significantly more computationally intensive). Note that ETDRK4 hits
the “error floor,” or the point where the numerical error is dominated by the
spectral approximation, at dz ≈ 0.01 so decreasing the step size past that
point without using more Fourier modes provides no benefit. ETDRK4 is
roughly an order of magnitude slower to execute than all the other methods
for each step size.

where dt is the spatial step size in the discretization [73]. Standard Gaussian random

number generators (such as randn in MATLAB) are sufficient to generate a zero mean

Gaussian R.V. and the variance scaling is accomplished by multiplying by σa.
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Another consideration is the noise bandwidth. The noise bandwidth in Eq. (2.17) is

infinite, but this obviously cannot be replicated by a numerical discretization. Luckily,

this noise model is itself an approximation of the ASE noise produced by an EDFA,

which has a very large but finite bandwidth. This bandwidth is often on the order of

2500GHz which is much larger than typical pulse bandwidths of 50GHz [5]. Therefore,

we should chiefly be concerned that the finite bandwidth of the numerical noise is much

larger than the pulse used in simulation, as is the case in physical systems. The numerical

noise bandwidth is proportional to the number of Fourier modes used, while the pulse

bandwidth is fixed, so this condition can always be met if a fine-enough discretization

is used. In practice, a minimum of 64 or 128 Fourier modes are sufficient to meet this

requirement in most circumstances.

Now, we wish to track how the build up of noise from repeated amplification affects

pulses in simulation. Therefore, we should not choose a numerical method with dissipative

error as this would artificially dampen the noise and, potentially, lead to spurious conclu-

sions about noise effects. Luckily, the split-step spectral method’s error is not dissipative,

so it is suitable to use in noisy simulation. Additionally, we should be concerned that

our method does not succumb to aliasing errors, or the spurious transfer of energy from

high wavenumber modes to low wavenumber modes caused by the Fourier discretization.

As the white noise is infinite in noise bandwidth, such an error would be particularly

pernicious, and could even lead to instability in the simulation, such as through spectral

blocking [78]. Again, the split-step method is resilient to aliasing as it does not treat the

cubic nonlinearity in the NLS equation with a Fourier method. An example of numerical

pulse propagation with amplifier noise is provided in Fig. 2.2. In this figure, the back-
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Figure 2.2. A soliton with E0 = 1,Ω0 = T0 = Φ0 = 0 was propagated to
z = 50 with N = 256 Fourier modes and a step size of dz = 0.05 using
the symmetrized split-step Fourier method and the trapezoidal rule. The
solution’s modulus is shown every 5 units and the build up of the noise,
which has noise power σ2 = 5× 10−5, is striking. The underlying soliton is
still easy to discern, though.

ground noise builds, which is indicative of the fact that the numerical method does not

dissipate it away.

2.4.3. Tracking soliton parameters in noisy simulation

Assessing the state of the soliton, and how its parameters are affected by the ASE noise

requires separating the soliton from the noise: a process called soliton extraction. Ex-

tracting the soliton from dispersive radiation from the additive noise is not a trivial task.

There has been extensive study on discriminating soliton pulses from additive noise, and
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many have opted for pre-processing the pulse by passing it through a series of filters (both

in and outside of frequency space). Two representative methods are found in [67, 73]. In

all of these methods the moments (the first three rows of Table 2.1 and Equation 2.19) are

used to compute the parameters which then determine the soliton us. Another method

involves utilizing the inverse scattering transform [93]. This method is very accurate, but

is quite time consuming.

The method used here is to use a generic curve-fitting algorithm included in MATLAB

called lsqnonlin. This nonlinear optimization routine relies on a trust region approach

to minimize the user-supplied nonlinear objective function (for us the soliton parametriza-

tion from Equation 2.18) on the given noisy data in a least squares sense [17]. Implemen-

tation of it into our soliton extraction scenario requires giving the objective function’s

parametrization as well as initial guesses for each parameter (the parameter values at the

previous amplifier). In addition to this approach’s ease of use, it was found to be effec-

tive and efficient in implementation. Figure 2.3 shows the results of this process when

applied to the soliton propagation from Fig. 2.2. The curve-fitting routine was applied

at each amplifier in order to track the evolution of the parameters with noise. Only the

parameters were saved, but their values completely determine the soliton. The random

walk in each parameter is shown in the right panel and the comparison of the fit with the

noisy pulse is shown in the left panel, along with another fit obtained using the moments

method, which is obviously less accurate.
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Figure 2.3. This figure shows the extraction process when applied to the
soliton propagation from Fig. 2.2. The curve-fitting routine was applied
at each amplifier in order to track the evolution of the parameters; each
parameter’s random walk is shown in the right panel. The comparison of
the overall soliton fit with the noisy pulse is shown in the left panel. Another
soliton extraction performed by simply using the moments (the first three
rows of Table 2.1 and Equation 2.19) is shown for comparison. The curve-
fitting does a better job than the moments of capturing the leftward drift
in the soliton’s position.
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CHAPTER 3

Importance Sampling Methods

The goal of this thesis is to describe rare events in lightwave systems. Therefore, we

will discuss the numerical techniques used to approximate the probabilities of such events

occurring. The main technique is Monte Carlo (MC) sampling, a ubiquitous technique

for simulating random events. As the events of interest are rare, importance sampling

(ISMC or IS for brevity) is used to achieve accurate estimations of small probabilities with

remarkable efficiency. Modifications of importance sampling are then discussed: among

them multiple importance sampling (MIS) and dynamic importance sampling (DIS). This

sets up Chapter 4, where the intersection of these two types of importance sampling are

discussed at length, by means of a toy random walk problem where MIS and DIS must be

used in tandem. This theory also presages the work of Chapter 5 where these techniques

are all applied to lightwave system where mode-locking mechanisms in a laser model

complicate the use of IS. Therefore, we end this chapter with a discussion of some of the

basic aspects of performing importance-sampled Monte Carlo simulations in a soliton-

based lightwave system.

3.1. Monte Carlo Integration

In its simplest form, Monte Carlo integration allows one to numerically approximate

an integral by drawing a large number of random samples from a probability distribution.

For our purposes, consider an integral that is the expectation of some real-valued function
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f depending on a random variable (or vector of random variables)

I = E[f(X)]

where X is a vector of n real random variables with each component independently and

identically distributed (i.i.d.) by the probability density function (P.D.F.) p(x) so that

(3.1) I = E[f(X)] =

∫
Rn

f(x)p(x) dx.

Monte Carlo integration works to approximate I by randomly sampling from p. For

instance, after drawing N samples of n-dimensional real random variables distributed

according to p(x), our approximation to I is

(3.2) ÎN =
1

N

N∑
l=1

f(Xl).

Now, the law of large numbers says that ÎN approaches the true value of I as N → ∞.

However, the convergence rate is problematically slow. This is due to the fact that the

variance of the estimator is

(3.3) var[ÎN ] =
1

N
var[f ]

since the random samples are independent. The standard deviation of ÎN is thenO(N−1/2).

The slow decay in the standard deviation of the estimate makes it extremely inefficient

to achieve small errors with MC. Chebyshev’s inequality [86] allows us to get a bound on
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the likelihood of an error of particular size occurring in our estimate

(3.4) Pr
[
(Î − I)2 ≥ var[f ]

Nδ

]
≤ δ.

This, in turn, tells us that if we want to have 99% confidence (i.e. δ = 0.01) that an

estimate has an error of less than 10−5 we have to draw at least

N ≥ var[f ]

(10−5)2(0.01)
= var[f ]× 1012.

This means that we require an infeasible number of samples in order to accurately es-

timate small quantities (which require even smaller errors). An even more pernicious

problem with using MC for estimating small probabilities comes from the fact that typ-

ically var[f ] ∼ I. This implies, using Eq. (3.3), that the convergence rate of the MC

estimator for small probabilities is O
(
(NI)−1/2

)
. Therefore, one must pick N � 1/I

which is infeasible when I is small as is typically the case in this thesis. Estimating small

quantities is of interest to us because we seek to ascertain error rates in lightwave systems,

which are typically small.

Additionally, we will typically consider the function f(x) from Eq. (3.1) to be an

indicator function on another function g: it takes the value 1 if g(x) is in a particular

range and is 0 otherwise. Therefore, I gives the probability of g being in the range and Î

estimates this probability. Partitioning a relevant sample space for g up into small ranges

(called bins) then allows us to discretely estimate the probability density function over

this space. It is from this perspective that we can then see that MC simulations can do a

good job estimating P.D.F.’s in bulk but have a hard time converging in their tails (where

probabilities are low).



55

3.2. Importance Sampling

The slow convergence in Monte Carlo simulations for small probabilities can be caused

by a mismatch between the function f and the distribution p in Eq. (3.1). Obviously,

the integral I will be dominated by regions where fp is approximately maximal, and in

many cases p is not maximal in the same region. In other words, the main contributions

to the integral come from the tails of the probability distribution p. When this happens,

the “important” regions for I are undersampled and the estimate Î converges very slowly.

An augmentation to MC simulation called importance sampling (IS) corrects for this by

introducing an artificial probability distribution, called a biasing distribution, into the

simulation from which samples are drawn [14]. The goal of this technique is to replace

p with a distribution that heavily weights regions of probability space where events of

interest occur most often.

The insight which makes IS possible is that Eq. (3.1) can be rewritten as

(3.5) I =

∫
Rn

f(x)
p(x)

p∗(x)
p∗(x) dx.

The function p∗ is the biasing distribution and will be treated as given for this discussion;

the choice of biasing distribution is an application specific issue and investigating ratio-

nales for choosing biasing distributions is a rich field of inquiry in many contexts. With

a given biasing distribution we perform MC simulations by drawing samples from p∗ and

then computing

(3.6) ÎN =
1

N

N∑
l=1

f(Xl)
p(Xl)

p∗(Xl)
.
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In an ISMC simulation, the sample results are now weighted by the likelihood ratio, or

(3.7) L(Xl) =
p(Xl)

p∗(Xl)
,

which corrects for the fact that samples were drawn by the biasing distribution and gives

results equivalent to having used the original distribution in MC simulation.

The success of importance sampling is principally judged by two factors: that the

resulting integral or probability computed is accurate, and that the convergence is suitably

fast. The second criterion can be addressed by examining the variance of the IS integrand

(3.8) var∗
[
f(X)

p(X)

p∗(X)

]
=

∫
Rn

(
f(x)

p(x)

p∗(x)
− I
)2
p∗(x) dx

where it can be seen that the variance will be zero if p∗ is chosen so that p∗(x) =

(f(x)p(x))/I. However, this result assumes that the quantity of interest, I, is known

prior to simulation. Additionally, note that Eq. (3.8) can be written

var∗
[
f(X)

p(X)

p∗(X)

]
=

∫
Rn

f 2(x)
p(x)

p∗(x)
p(x) dx− I2

which allows for comparing the variances of the original integral and the importance-

sampled version. Explicitly, this comparison is

(3.9) var[f(X)]− var∗
[
f(X)

p(X)

p∗(X)

]
=

∫
Rn

f 2(x)
(

1− p(x)

p∗(x)

)
p(x) dx

which shows that the variance is reduced by choosing p∗(x) > p(x) when f 2(x)p(x) is

small and p∗(x) < p(x) when f 2(x)p(x) is large. This too is not useful as a selection

method as it requires knowledge of f(x) that is not available in many cases, such as when
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f(x) can only be evaluated implicitly or numerically as is the case in tracking soliton

parameter jitter. Additionally, potential biasing distributions may not be able to satisfy

both inequalities simultaneously. Lastly, in some instances many biasing distributions may

satisfy these criteria, so more work must be done to determine which is the best choice.

In practice the choice of biasing distribution is guided by the principle that regions of

state space that lead to events of interest should be sampled as much as possible. The

inexact nature of importance sampling has been recognized since the technique was first

introduced [56]. Luckily there are properties of the systems and noise of interest in this

thesis that help to guide the choice of biasing distribution.

3.2.1. Parametric biasing and a Gaussian example

In this thesis, the probability distributions inherent in the rare-event problems allow

parametric biasing, where biasing distributions are chosen by adjusting parameters in the

original distribution. In all cases considered here these distributions are Gaussian and so

their P.D.F.s take the form

(3.10) pG(x;µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
.

In one dimension there are two inherent parameters: µ for the mean and σ for the standard

deviation. There are then two natural options for parametric biasing: adjusting the mean

or changing the standard deviation. These methods are also known as “mean-shifting”

and “variance scaling” respectively. Mean-shifting is nearly always preferable to variance

scaling which can be seen by considering a simple example from [59].
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Figure 3.1. The standard Gaussian distribution and characteristic mean-
shifted and variance-scaled biasing distributions are shown. The mean-
shifted biasing distribution covers the region of interest (x ≥ 5) more effi-
ciently than the variance-scaled one.

Consider the case of attempting to compute P = Pr[X] ≥ 5 with X drawn from the

Gaussian distribution. The exact solution to this problem is

(3.11) P =

∫ ∞
5

pG(x; 0, 1) dx =
1

2
erfc(5/

√
2)

where erfc is the complementary error function. However, if we were trying to compute P

using MC simulations, we’d be limited by the fact that the unbiased Gaussian distribution

samples this region very rarely. Parametrically biasing the Gaussian distribution allows

us to shift probability mass from the region around 0 to this region for ISMC simulation.

Mean shifting translates the distribution whereas variance scaling broadens the distribu-

tion, as seen in Fig. 3.1. From this we can develop a graphical intuition that mean-shifting

is preferable to variance-scaling as mean-shifting allows for probability mass to be shifted

into the region of interest, whereas variance scaling shifts mass into the region but also

shifts mass away from the region (i.e. on the left side of the distribution).
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Furthermore, we can compare the efficacy of mean-shifting and variance-scaling for this

simple problem by checking the variance of the associated estimators. For mean-shifting

with σ = 1 but µ arbitrary, the variance is

(3.12) var∗
[
f(X)

p(X)

p∗(X)

]
=

1

2
eµ

2

erfc
(
(5 + µ)/

√
2
)
− P 2

with P from Eq. (3.11). This variance can then be examined for the optimal mean shift

in the following way: replace the complementary error function (erfc) with the first term

in its asymptotic expansion for a large argument

erfc(x) ∼ 1√
π x

e−x
2

,

take a logarithmic derivative of the resulting exponential factor (which dominates the

expression), and neglect a few small terms while equating the rest with zero. The resulting

optimal mean shift is then µ = 5. With this mean shift, we can then see that the variance

is O(P 2) which means that the convergence in the MC simulations will be good.

By contrast, consider variance-scaling by leaving µ = 0 and leaving σ arbitrary. In

this case the variance is

(3.13) var∗
[
f(X)

p(X)

p∗(X)

]
=

σ2

2
√

2σ2 − 1
erfc
(

5

√
1− 1

2σ2

)
− P 2.

The variance is dominated by the prefactor, so minimizing it by taking logarithmic deriva-

tives and equating with zero results in σ = 1. As the optimal variance scaling is the same

as the unbiased case, variance scaling is of no benefit. Further, the variance is O(P ) so the

convergence is quite slow. This is an illustration of what is known as the “dimensionality
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problem” of variance scaling [59]. Though this is just a one dimensional illustration, the

problem can become much worse in higher dimensional sample spaces where regions of

interest can be very localized; mean-shifting is the preferable option in such circumstances.

3.2.2. Another example: a 1D Gaussian random walk

Consider a random variable given by a sum of N i.i.d. Gaussian random variables with

mean zero and variance one. Let’s choose to interpret this as a random walk with a

Gaussian distributed step. Therefore,

(3.14) ZN =
N∑
j=1

Xj

gives the position of the walker on the real line after N steps. The probability distribution

for ZN is known a priori as it is simply a Gaussian with mean zero and variance N .

However, recreating this P.D.F. numerically using ISMC is useful as it demonstrates a few

things that will be of use later in the thesis: computing P.D.F.’s via binning, computing

likelihood ratios of processes, and optimizing biasing distributions.

Let ~X = {X1, . . . , XN}T be the series of steps that produce ZN . Then, analytically,

we can compute the probability of ZN landing in a particular range using an indicator

function I that takes the values 0 or 1 based on logical criteria such as a ≤ ZN . Then the

probability density in this range can be trivially computed using

P (a ≤ ZN) =

∫ ∞
−∞

I(z)p(z) dz =

∫
RN

I(
N∑
n=1

xn)p(~x) d~x
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where ~X is distributed by the multivariate Gaussian distribution

(3.15) p(~x;µ, σ2) =
1

(2πσ2)N/2
exp

(
− ||~x− µ||

2

2σ2

)
for i.i.d. Gaussians, so it is parametrized by a single value each for mean and variance.

The important regions for I in N -dimensional space may be hard to capture ana-

lytically, so we can approach this problem using ISMC. This means we choose instead a

biasing distribution from which to draw a biased noise sample ~Xb. We bias parametrically

via mean-shifting, but since there are multiple steps it is unclear if we need to pick dif-

ferent shifts for each step. To pick the optimal series of mean-shifts, we seek to maximize

the probability of a noise sample ~X meeting our criterion
∑N

j=1Xj = a. Equivalent to

maximizing the probability of a vector of zero-mean Gaussians is minimizing its L2 norm

(squared for smoothness). Therefore, we seek

min
~X∈RN

|| ~X||2(3.16a)

subject to
N∑
j=1

Xj = a.(3.16b)

This is a simple Lagrange multiplier problem with the solution Xj = a for all j which

gives the optimal mean-shift. Therefore, we pick the same mean-shift for all steps and

are ready to begin sampling.

In order to assemble the samples into the ensemble, we need to compute their likelihood

ratios. Luckily, since the steps are i.i.d., the probability of a particular sample ~Xb is

simply the product of the probability of each step Xb
j . Therefore, the likelihood ratio can
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be written as the likelihood ratio of each step

(3.17) L( ~Xb) =
p( ~Xb)

p∗( ~Xb)
=

N∏
j=1

p(Xb
j )

p∗(Xb
j )

which is a general result for the random walks under consideration in this thesis. In the

case of this example, the probability distributions for a single step are p(x) = pG(x; 0, 1)

and p∗(x) = pG(x; a/N, 1) respectively. Results for N = 10 comparing regular MC simu-

lations and ISMC simulations are shown in Fig. 3.2. Fifty thousand samples were used

for each simulation so the Monte Carlo simulation is only able to capture the P.D.F. of

Z10 down to probabilities of roughly 10−4 or −10 < Z < 10. The ISMC simulation, which

targets Z10 = 10 explicitly, is able to accurately capture probabilities down below 10−10

in the right tail of the distribution.

The accuracy and convergence of Monte Carlo simulations can be assessed using the

coefficient of variation. The coefficient of variation (C.V.) is defined as the sample stan-

dard deviation divided by the sample mean of the simulation, or

(3.18) C.V. =
σ̂

Î
.

In the context of simulating a P.D.F., the C.V. is defined as the intra-bin standard de-

viation divided by the mean-simulated P.D.F.. It produces a curve rather than a single

value, and can help to give a metric for the convergence of simulation throughout the

state space of interest that is independent of the magnitude of probabilities throughout

the region. As a general rule of thumb, a low C.V. shows good convergence and a high

C.V. shows poor convergence. An example of a C.V. is shown in the lower panel of Fig.
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Figure 3.2. Exact and numerical approximations of the P.D.F. of the Gauss-
ian random walk from Eq. (3.14) with N = 10 steps and 10,000 sam-
ples taken for each numerical approximation. The top panel shows three
P.D.F.’s: the exact solution (pG(x; 0, N)), one obtained by MC simulation,
and one obtained using ISMC simulation targeting the right tail of the dis-
tribution. The bottom panel shows the coefficient of variation (C.V.) of the
two MC simulations, which visually demonstrates their convergence prop-
erties. The vertical gray dashed lines indicate that the ISMC simulation
targeted Z = 10.

3.2. The C.V. for the regular MC simulation (thick-dashed) shows that the convergence is

best in the bulk of the distribution, and gets progressively worse as we get down into the

tails. This makes sense: the vast majority of samples fall around Z = 0 and relatively few

fall in the |Z| > 10 range. However, for the ISMC simulation (dotted) the C.V. is best

for Z = 10 and gets progressively worse as the distance increases from that point. This

is because the simulation was biasing toward Z = 10 so the majority of samples ended

up near there, with a progressive decline in the amount of samples realized in regions

increasingly far from that point.
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3.3. Multiple Importance Sampling

Many variants of importance sampling have been developed that use multiple biasing

distributions, for a variety of purposes and types of simulations [15, 33, 74, 75]. Here, we

will discuss multiple importance sampling (MISMC or MIS), which uses multiple biasing

distributions in the course of a single batch simulation. The use of multiple biasings can

serve a variety of purposes, but for now we will discuss its application to simulating large

regions of state space simultaneously. Figure 3.2 demonstrates that importance sampling

can easily capture the tail of a P.D.F. by shifting samples so that they fall in that region.

However, it has trouble capturing the P.D.F. over a wide range. By introducing multiple

biasing distributions that shift samples to various regions of state space, an entire P.D.F.

can be captured by a single simulation. This sort of simulation is shown in Fig. 3.3 where

multiply-importance-sampled Monte Carlo simulations (MISMC) has been performed on

the Gaussian random walk.

The mathematical basis for introducing multiple biasing distributions is through as-

sociating a weight with each distribution. If there are J biasing distributions where Mj

is the number of samples drawn for the jth biasing target then the way to compute the

probability density function is

(3.19) P̂ =
J∑
j=1

P̂j =
J∑
j=1

1

Mj

Mj∑
m=1

wj(~xj,m)I(~xj,m)Lj(~xj,m)

where I(~xj,m), wj(~xj,m), and Lj(~xj,m) are the indicator function, weight, and likelihood

ratio associated with the mth sample drawn from the jth distribution. Note that there

are J likelihood ratios computed with each sample: one for each biasing. Additionally,
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the overall estimator P̂ can be decomposed into individual estimators arising from each

biasing P̂j which can help to assess the performance of each biasing distribution in the

overall ensemble.

The choice of the weights can be sample dependent, and in order to ensure an unbiased

estimator, we need
∑J

j=1 wj(~x) = 1 for all ~x. This obviously leaves a large range of choices

for the weights, but the primary one used in this thesis is the balance heuristic

(3.20) wj(~xj,m) =
Mjp

∗
j(~xj,m)∑J

j′=1 Mj′p∗j′(~xj,m)

introduced by Veach and Guibas and refined by Veach in his thesis [91, 92]. An intuition

for the balance heuristic can be given by substituting Eq. (3.20) into Eq. (3.19) which

gives

P̂ =
J∑
j=1

1

Mj

Mj∑
m=1

( Mjp
∗
j(~xj,m)∑J

j′=1 Mj′p∗j′(~xj,m)

)
I(~xj,m)

p(~xj,m)

p∗j(~xj,m)
,

=
J∑
j=1

Mj∑
m=1

I(~xj,m)p(~xj,m)∑J
j′=1Mj′p∗j′(~xj,m)

.(3.21)

The denominator in this fraction can be thought of as the “combined sample density”

or the probability of the sample averaged across all biasing distributions [91]. Therefore,

the balance heuristic can be thought of as weighting samples by the probability of the jth

distribution divided by the probability averaged over all biasing distributions. It can be

shown that no other weighting function performs significantly better in terms of reducing

the estimator variance, in that the variance reduction achieved by all weights cannot be

more than a small amount better than the balance heuristic [91]. That is, there are
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specific cases in which different weights can be slightly better, but overall the balance

heuristic is always at least close to optimal.

The variance associated with the MIS estimator can similarly be decomposed into

contributions from each biasing distribution

σ̂2
P̂

=
J∑
j=1

1

Mj(Mj − 1)
Ŝj where(3.22a)

Ŝj =

Mj∑
m=1

(
wj(~xj,m)I(~xj,m)Lj(~xj,m)− P̂j

)2
.(3.22b)

The forms for the MIS probability and variance estimators using the balance heuristic

can be slightly simplified by noting that

(3.23) wj(~xj,m)Lj(~xj,m) =
1∑J

j′=1 Mj′
1

Lj′ (~xj,m)

.

Therefore, the inverse likelihood ratio for each biasing is often tracked with each sample,

rather than the likelihood ratios. As before, the C.V. can be computed as σ̂P̂/P̂ and

can be used to assess MIS simulation performance. Take Fig. 3.3 as an example, where

MIS has been applied to the 1D Gaussian random walk of Eq. (3.14). Three biasing

distributions were included in the simulation, one to cover each of the left tail, middle,

and right tail of the distribution. The benefits and potential drawbacks of MIS are shown

by comparing the MISMC estimate (dotted curve in the figure) against an MC simulation

(thick dashed curve) with the same number of overall samples. The MISMC estimate

accurately captures a much wider range of probability space than the MC simulation

and has good convergence for approximately |Z10| < 15 as indicated by the C.V. The

estimate has a slightly worse C.V. for |Z5| < 15 as less samples were drawn from the
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Figure 3.3. Exact and numerical approximations of the P.D.F. of the Gauss-
ian random walk from Eq. (3.14) with N = 10 steps and 10,000 sam-
ples taken for each numerical approximation. The top panel shows three
P.D.F.’s: the exact solution, one obtained by MC simulation, and one ob-
tained using MISMC simulation using the balance heuristic with three bi-
asing distributions for the left tail, bulk, and right tail of the distribution
(the targets are given with vertical dashed lines). The contributions of
each biasing distribution to the overall estimate are also depicted with thin
black lines. The bottom panel shows the C.V. of the two MC simulations,
which visually demonstrates their convergence properties. The vertical gray
dashed lines indicate the MISMC biasing targets.

middle biasing of the MISMC than for the simple MC. Lastly, note that the MISMC

C.V. undulates slightly, peaking in between the biasing targets at ±5. This is because

relatively fewer samples landed in these regions.

3.4. Dynamic Importance Sampling

Dynamic or targeted importance sampling (DISMC or DIS) is another modification

to importance sampling that has been used in a variety of contexts [12, 29, 30, 36]. In
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the context of computing a P.D.F. that results from a random process, it can be thought

of as remedying an opposite problem to MIS: where MIS seeks to resolve large regions of

phase space in a single batch simulation, DIS seeks to resolve highly localized regions of

probability space that are hard to reach by means of conventional IS. The key concept

in dynamic IS is that the biasing distribution is adjusted adaptively, mid-simulation, to

ensure that a high proportion of samples cluster tightly around the target.

In application, this requires solving a series of optimization problems that are similar

in character to Eq. (3.16), for each sample. The operative difference is that the adaptive

adjustments to the biasing distribution slightly complicate the likelihood ratio for the

sample from Eq. (3.17). Now, the biasing noise realization at each step may depend

on prior steps so the product formulation for the overall likelihood ratio of the sample

is no longer valid. However, it can be reformulated in terms of conditional probabilities

so that the joint distribution of the entire sample is still factored into a product [11].

Mathematically this only relies on using the law of conditional probabilities (namely that

p(AB) = p(A|B)p(B) ) recursively so that the joint probability of the noise in a particular

sample is written

p(z1, . . . , zN) = p(zN |zN−1, zN−2, . . . , z2, z1)(3.24)

× p(zN−1|zN−2, . . . , z2, z1) · · · p(z2|z1)p(z1).

This formalism based on conditional distributions then allows us to compute the likelihood

ratios in a manner very similar to before. Considering a concrete example of dynamic

importance sampling will make this more clear.
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Constrained to parametric mean-shift biasing of Gaussian random noise, the imple-

mentation of dynamic importance sampling is not too complicated. When the biasing

distribution is adjusted, the optimization problem is re-solved using a different set of ini-

tial conditions, to give a new set of mean-shifts to be used throughout the rest of the

simulation of that sample. The likelihood ratio is computed the same as before, using a

product of the biasings computed at each step. Practically, the only difficulties in using

dynamic IS comes from repeatedly solving the optimization problem for the biasing, and

choosing the frequency with which the biasing path will be recalculated.

Consider the 1D Gaussian random walk Eq. (3.14). This is not a problem that requires

DISMC as all regions of probability space are easy to reach by regular IS, but it is useful

for demonstration purposes. Recalculating the biasing path is trivial here. If we want to

calculate the mean-shift for the nth step when trying to reach a target c when there are

N total steps we simply compute

(3.25) µn =
c−

∑n−1
k=1 zk

N − (n− 1)
.

Now, we can choose to perform this recalculation of the mean-shift as often as we like.

Recalculating more often will lead to a sample spread more tightly clustered around the

intended target, as is illustrated in Fig. 3.4. Choosing a recalculation schedule is often a

matter of balancing achieving a desired convergence against covering a wanted region of

the probability distribution (and also factoring in the computational work of recalculation

in harder examples). In Fig. 3.4, two different recalculation schedules are employed:

recalculating the path once halfway through simulation and recalculating every step. As

stated previously, the samples more tightly cluster around the target as recalculation is
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Figure 3.4. Exact and numerical approximations of the P.D.F. of the Gauss-
ian random walk from Eq. (3.14) with N = 10 steps and 10,000 samples
taken for each numerical approximation. The top panel shows four P.D.F.’s:
the exact solution, one obtained by ISMC simulation, and two obtained us-
ing DISMC simulation with varying amounts of path recalculation. The
bottom panel shows the C.V. of the three ISMC simulations, which visually
demonstrates their convergence properties. The vertical gray dashed line
indicates the ISMC biasing target, common to all simulations.

increased. Additionally, the convergence in the C.V. improves due to this clustering,

though there is typically a saturation point beyond which additional recalculation leads

to little improved convergence. Here, the convergence improvement relative to regular IS

is small as regular IS does a reasonable job of guiding samples to the target. Additionally,

it should be noted that other types of recalculation schedules than recalculating at regular
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intervals may be employed, such as recalculating whenever the sample wanders outside of

a prescribed distance from the anticipated trajectory by the biasing.

3.5. Importance Sampling for a Soliton System

A few comments on implementing importance sampling for soliton-based models like

Eq. (2.16) are warranted in order to proceed to Chapter 5. Recall that at each amplifier

ASE noise is added which can cause parameter jitter in the soliton. Such jitter can be

unwanted in many physical contexts as it may cause a lightwave communication system to

fail to transmit a signal correctly. Simple Monte Carlo simulation to assess large deviations

in the parameters can be ineffective due to the low probability with which they occur. This

provides a perfect opportunity to use importance sampling, and there has been extensive

use of this technique in a variety of soliton systems [11, 27, 68, 72, 82, 88]. In particular,

the review paper by Moore et. al. [73] is a concise and thorough introduction to this type

of simulation. In this section, we will discuss a few of the implementation issues involved

with using importance sampling, taking the example of simulating amplitude jitter in Eq.

(2.16) with no deterministic perturbations as an introductory guiding problem.

In a discretized version of Eq. (2.16), both the soliton and the noise are characterized

by complex numbers at N temporal discretization points. Therefore, the dimension of

the complex noise vector ~x is 2N × 1. Each element in ~x here is a real-valued random

number with the first N entries of ~x taken to be the real part of the noise and the last

N the imaginary part. Due to the ASE noise process, these random numbers are i.i.d.

Gaussians with mean zero. For an overall noisepower of σ2, the variance of each Gaussian

used in the discretization must be σ2
a = σ2/(2∆t). Therefore, the probability distribution
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for such an overall noise vector is a multivariate normal distribution characterized by a

mean vector ~µ and a scalar variance

(3.26) p~x(~x; ~µ, σ2
a) =

1

(2σ2
a)
N

exp
[
− (~x− ~µ)T (~x− ~µ)

(2σ2
a)

]
(presented this way as we will mean-shift the noise for biasing and each point in the

domain is noise shifted by a different amount). Consider a generic 2N×1 biasing vector ~b

ordered with real parts before imaginary parts as for ~x. The biasing density function for

a biased noise realization ~x∗ = ~x +~b is then simply p∗~x(~x
∗) = p~x(~x

∗;~b, σ2
a) = p~x(~x; 0, σ2

a).

Recall that the likelihood ratio, Eq. (3.7), is generically given by L = p(~x∗)/p∗(~x∗) so

explicitly we have

(3.27) L(~x∗) =
p~x(~x

∗; 0, σ2
a)

p~x(~x∗;~b, σ2
a)

=
exp[−(~x∗)T (~x∗)/(2σ2

a)]

exp[−(~x∗ −~b)T (~x∗ −~b)/(2σ2
a)]
.

Everything up to this point has been slightly simplified as it has only dealt with

what happens at one amplifier, but of course in practice there are many amplifiers in a

simulation. As before, the overall likelihood ratio can be written as the likelihood ratio

at each individual amplifier. Therefore, the overall likelihood ratio for a sample with Na

amplifiers can be written compactly by assembling the noise vectors into a 2N×Na matrix

like X∗ = (~x∗1, . . . , ~x
∗
Na

), then

(3.28) L(X∗) =
Na∏
n=1

L(~x∗n).

This notation is further complicated by multiple importance sampling. To compute

Eq. (3.23) we only need to compute the likelihood ratios for each biasing distribution.
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However, the biased noise realization and the biasing distribution do not generally share

the same mean shifts. In other words, for MIS one needs to compute likelihood ratios

for biasing distributions that differ from the distribution used to create the biased noise.

Since the only difference between biasing distributions is a different set of mean-shifts,

this is not too difficult to implement. For simplicity of notation, say there are two biasing

distributions with two different biasing vectors at the nth amplifier, ~bn,1 and ~bn,2. If the

first distribution is used to bias the sample, then the biased noise is ~x∗n = ~xn +~bn,1. The

likelihood ratio for the first distribution is then unchanged from Eq. (3.27). However, the

likelihood ratio for the second biasing distribution is

(3.29) L2(~x∗n) =
p~x(~x

∗
n; 0, σ2

a)

p~x(~x∗n;~bn,2, σ2
a)

=
p~x(~xn +~bn,1; 0, σ2

a)

p~x(~xn +~bn,1 −~bn,2; 0, σ2
a)
.

3.5.1. An example: biasing amplitude changes

Consider biasing for amplitude jitter in a soliton system where there are no continuous

perturbations. The work in Section 2.3.2 and Appendix A explained that the biasing

vector for a soliton parameter is proportional to the adjoint mode for that soliton param-

eter. Therefore, to bias the amplitude we add a term that is proportional to the adjoint

amplitude mode vE at each amplifier. The full term for the biasing at the nth amplifier is

(3.30) ~bn = ∆En
vE(zn, t)

||vE(zn, t)||2
exp [iΘ(zn, t)]

which leads to an expected jump in the soliton amplitude of ∆En. Note in particular

that the biasing has to be added in phase with the soliton at z = zn, the location of
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the nth amplifier. The soliton phase Θ and adjoint linear mode are computed using the

parametrization of the soliton extracted at z = zn prior to amplification.

Suppose we want to simulate the probability that a soliton undergoes an amplitude

deviation of ∆Etot after propagation through Na total amplifiers. The most probable way

for this deviation to occur is that which minimizes the cumulative L2-norm of the noise.

We can determine this most-probable noise configuration by minimizing the norm of the

amplitude biasing function from Eq. (3.30). This significantly simplifies matters as it

re-casts the infinite-dimensional problem of minimizing the noise into a finite-dimensional

one where only the discrete amplitude changes, ∆En, need to be determined. These

amplitude changes are also known as “biasing coefficients” and the minimization problem

to determine them here takes the form

(3.31) min
∆En

Na∑
n=1

∆E2
n

2En
subject to

Na∑
n=1

∆En = ∆Etot.

This constrained optimization problem can be solved using Lagrange multipliers. Addi-

tionally, if the solution is expanded for a small total amplitude change (or ∆Etot small)

then the leading-order solution is ∆En = ∆Etot

Na
. Note that higher order corrections can

be found, but they are ignored here [73].

With the biasing coefficients found, importance sampling simulations can be per-

formed. With a desired amplitude change, the soliton is simulated and at each amplifier

the noise is biased by adding the mean-shift vector from Eq. (3.30) to the noise. Drawing

multiple samples in this fashion allows us to approximate statistics for amplitude jitter, or

the change in amplitude induced by ASE noise. Furthermore, picking multiple amplitude



75

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
10-75

10-50

10-25

100

P.D.F.

Amplitude jitter at z
L
=50

MISMC 105 samples

SPT Midpoint Approx.

MC 2 106 samples

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

E(z
L
)

10-2

10-1

C.V.

Figure 3.5. Amplitude jitter for NLS solitons simulated out to a dimension-
less distance of zL = 50 with amplifier spacing za = 1 and a dimensionless
noisepower of σ2 = 10−5. The MISMC simulations used a series of ampli-
tude targets between E = 0.7 and E = 1.3 with 105 total samples and agree
with a midpoint model of amplitude jitter from SPT (derived in appendix
D of [73]). Monte Carlo simulations with 2 × 106 samples also agree with
the theory, but only down to density levels of 10−6 whereas the MISMC
simulations with much fewer samples have good agreement down to density
levels below 10−50. The C.V. for the MISMC simulations in the bottom
panel shows that the numerical convergence properties of the simulation
throughout the region are good.

changes (multiple values of ∆Etot) enables the simulation of the entire P.D.F. of ampli-

tude jitter. Such a simulation, of a soliton with initial amplitude E0 = 1, is performed in

Fig. 3.5, which shows good agreement with the theory from [73].
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CHAPTER 4

Dynamic Multiple Importance Sampling

This thesis is particularly concerned with problems where combining dynamic im-

portance sampling and multiple importance sampling is warranted. Such a problem is

considered in the laser model discussed in Chapter 5, for instance. This may seem like

a counterintuitive proposition, as DIS and MIS have been presented thus far as solving

opposite problems in Chapter 3. DIS targets a localized region of probability space in

a probability distribution, whereas MIS allows for resolving a large region of probabil-

ity space. In fact, MIS was originally devised for light rendering in computer graphics,

where the optimal distribution varied from pixel to pixel, and very large numbers of pixels

needed to be rendered quickly [92]. However, there is another use for MIS: when there

are multiple biasing paths to a single region of probability space. It is well known that

when there are multiple paths to a rare event of interest, all must be included in an ISMC

simulation in order to get reasonable convergence. Rare events with multiple paths have

been noted in toy problems [43], nucleation models [32], and nonlinear optics [83]. This

is not to say that MIS is the only possible ISMC method that addresses this issue, as

other variants of IS such as mixture IS also involve sampling from multiple distributions,

but including information from all relevant biasing paths is needed in such methods, just

as it is in multiple importance sampling [15, 33, 75]. However, the problem of combining

DIS with MIS has been little studied, especially in an optical setting. In this chapter, we
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will motivate the use of dynamic multiple importance sampling (DMIS), or using mul-

tiple importance sampling where individual biasing components involve dynamic path

recalculation, with a simple example and discuss issues with its implementation.

4.1. A Simple Example with Multiple Paths

This section examines a problem with multiple paths. Consider a 2D discrete random

walk similar to Eq. (3.14) where the steps are drawn from Gaussian distributions:

(4.1) xN = x0 +
N∑
i=1

∆W
(1)
i ; yN = y0 +

N∑
i=1

∆W
(2)
i .

The variances of each step distribution (∆W
(1)
i and ∆W

(2)
i ) are drawn from the

standard Gaussian distribution with mean zero and variance one (pG(x, 0, 1)). We are

concerned with the probability that the walker is at a particular x-position after N

steps. Since the steps consist of uncorrelated Gaussians in the x- and y-directions, the

y-dynamics are obviously irrelevant for the x-position. However, this random walk takes

place in the presence of a reflecting barrier wall that is oriented vertically at a position

x = xB that brings the y-steps into play.

This barrier extends from y = −h to y = h and is reflecting. This means that a walker

will be unable to access x-regions beyond xB unless it passes xB with |y| > h. Therefore,

we should expect that this wall should distort the Gaussian distribution that would be

expected in the absence of the wall by shifting probability density from beyond the wall

to before the wall. This is simply due to the fact that the reflecting wall makes it more

difficult for the random walk to reach the region past the wall, so the probability there will
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Figure 4.1. Two Monte Carlo simulations (one with 2×105 and one with 107

samples) of the random walk showing the P.D.F. of final walker x-position
are shown along with a Gaussian distribution with variance 60. The right
side of the distribution shows the effect of the wall, which is at x = 10.
Samples are reflected back and excess probability density is observed for
0 < x60 < 10, whereas probability density is lower for x > 10 relative to
the Gaussian. Probabilities past the wall are much lower than probabilities
before the wall and the jaggedness for large x-values reflects that a dearth
of samples reach that region by simple chance.

be smaller. This is exactly what we see in Fig. 4.1, where we have chosen h = 10, xB = 10,

and N = 60 (which will be taken for all other simulations unless explicitly stated). The

exact Gaussian distribution in the absence of the wall pG(x; 0, 60) is shown in the black-

dashed curve, and we see that the numerical approximation obtained by MC simulation

has more probability density for locations before the wall, lower probabilities for those

past the wall, and close to a jump-discontinuity at the location of the wall.

Applying importance sampling to the wall walk model requires computing the optimal

path for a walker to reach a location past the wall xF at step N . The optimal path to the
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target xN = xF (with xF > xB) can be derived using Lagrange multipliers in a manner

similar to the 1D walk. Since the noise is i.i.d. Gaussian noise, we just have to pick

a series of mean-shifts (∆xi for ∆W
(1)
i and ∆yi for ∆W

(2)
i ) that lead the walker to its

target. As was the case in Eq. (3.16), the most probable series of mean shifts come from

minimizing the L2 norm of the total noise or

(4.2) min
∆xi,∆yi,
i=1,...,N

( N∑
i=1

(∆xi)
2 + (∆yi)

2
)

subject to xN = xF and that the walker passes around the wall. Intuitively, we expect

that there should be two paths to any x-value beyond the wall: one going above the wall

and one going under. If |y0| ≥ h, then the optimal path should be that ∆xi = (xF−x0)/N

and ∆yi = 0 for all i. However, if |y0| < h then we expect that these paths should touch

the top and bottom of the wall as this will minimize the length of the path; each sample

will be started at (0, 0) in the plane but we keep the starting location arbitrary for when

we need to solve the optimization problem in dynamic IS. In this case we need to do more

work to derive the optimal path(s).

First, we will assume that it takes N1 < N steps to reach the intermediary wall. That

is, xN1 = xB and we will split the minimization problem Eq. (4.2) up into a nested
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i ≤ N1 i > N1

∆xi
xB − x0

N1

xF − xB
N −N1

∆yi
±h− y0

N1

0

Table 4.1. The mean-shifts for the wall walk model are presented. Note
that there are two possible paths, as indicated by the plus/minus in the
y-shifts.

minimization problem. Therefore we seek to minimize

min
N1

(
min

∆xi,∆yi,
i=1,...,N

( N1∑
i=1

{(∆xi)2 + (∆yi)
2}+

N−N1∑
i=1

{(∆xN1+i)
2 + (∆yN1+i)

2}
))

(4.3)

subject to xN = x0 +
N∑
i=1

∆xi = xF ,

xN1 = x0 +

N1∑
i=1

∆xi = xB,

and |yN1 | = |y0 +

N1∑
i=1

∆yi| ≥ h.

The solution of the interior optimization problem is fairly straightforward. For simplicity,

we will replace the third constraint in Eq. (4.3) with an equality for now. A rigorous

treatment of the full inequality condition is given in Appendix C. As such we have a

minimization problem with three side-constraints. To solve it, we give a Lagrange multi-

plier to each of the three constraints and take derivatives with respect to ∆xi,∆yi, and

the three Lagrange multipliers. Equating each of these derivatives to zero leads to the

solutions shown in Table 4.1. The plus/minus in the expression for ∆yi refers to whether
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the path goes above or below the wall, and can be derived by assuming either ±h in the

third constraint.

In any case, this solution reduces the exterior problem in Eq. (4.3) to

(4.4) min
N1

(xB − x0)2 + (±h− y0)2

N1

+
(xF − xB)2

(N −N1)
.

Now, temporarily treating the integer quantity N1 as a continuous variable allows us to

differentiate and equate with zero again. Note that this is an approximation and that, in

fact, assuming that the walker goes through xB exactly at one of its discrete steps is also

an approximation. Let A = (xB − x0)2 + (±h− y0)2 and B = (xF − xB)2 so

d

dN1

(
A/N1 +B/(N −N1)

)
=

B

(N −N1)2
− A

N2
1

= 0.

Solving this equation leads to

(4.5) N1 = N

(
A±
√
AB

A−B

)
or N1 =

N

2
if A = B

from which we take the negative root in order to ensure that N1 < N . Additionally, this

value must be rounded to the nearest integer.

Visual representations of the biasing paths are shown in Fig. 4.2. Four paths are

shown; two paths that originate at (0, 0), and two paths that originate at a location

above the wall (these will be relevant for DIS). From each location, there is an optimal

path that goes over the wall, and an optimal path that goes under the wall. Due to the

symmetry of the wall, we expect that the trajectories from the origin are equally likely

to give samples hitting the target of xF = 20. However, for the other two paths, we
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Figure 4.2. Four computed biasing paths from two different starting loca-
tions (x0, y0), with two passing above the wall and two passing below the
wall that arrive at a final position of xF = 20. Discrete markers are shown
on the paths to show the size of the steps the walker is expected to take
along each path. From this, one can see that the number of steps taken
past the wall is dependent upon the distance traversed to get around the
wall. The optimal path passing over the wall (not shown) when y0 > h is
just a straight horizontal path to the target as the wall is irrelevant to the
most probable path.

expect that the over wall path is more likely than the under wall path. This notion of the

“likeliness” of a path will be developed with more rigor later, but for now the intuition

that the over wall path is better should be plain from the fact that the walker needs to

travel a much smaller distance to pass directly over the wall than to travel to the bottom

of the wall and over. Of course, intermediate steps may push the walker down below the

mid-line of the wall, and then the below-wall path would be the most probable path.

Now that we have the biasing paths we can perform importance-sampled Monte Carlo

simulations for position probabilities past the wall. First, we demonstrate that the two

equally likely paths (by symmetry) are required for the ISMC simulations to converge.
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Figure 4.3 shows the results of an ISMC simulation, an MISMC simulation, and the MC

results from Fig. 4.1 for comparison. The ISMC simulation only uses one of the two paths

(the path going over the wall) while the MISMC simulation uses both paths, with half

the samples using the over path and half using the under path with the balance heuristic

weighting the contribution of each. Note that the ISMC results are extremely poor: the

C.V. is as high as the MC simulation using the same number of samples while the P.D.F.

is very jagged. In contrast, the MISMC simulations produce a P.D.F. that visually agrees

with the MC simulations using 107 samples and achieves a similar rate of convergence

near x = 20 despite using one fiftieth of the samples as those MC simulations. Therefore,

it is clear that both paths must be included in importance sampling simulations for this

problem. This simulation demonstrates that IS can only be applied to this problem by

considering both paths. Next we will try to develop an importance sampling algorithm

that utilizes dynamic importance sampling to try to improve upon this convergence while

taking into account the requirement that both paths must be used.

4.2. The Dynamic Multiple Importance Sampling Algorithm

Dynamic multiple importance sampling is a rather straightforward combination of DIS

and MIS as presented in Sections 3.3 and 3.4. Multiple biasing distributions (or paths)

are used in a simulation where the distributions are adaptively recalculated during the

drawing of samples. The intuition for dynamic multiple importance sampling relies on

a simple rule: recalculating a biasing path should not depend on whether that path is

actively biasing the current sample.
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Figure 4.3. Importance sampling simulations of the final walker position,
with the same parameters as in Fig. 4.1. The MISMC simulation, using
both over- and under-wall paths, converges to the same probability distri-
bution as the MC simulation while the ISMC simulation, using just the
over-wall path, exhibits very poor convergence. Also note that the MISMC
simulation’s convergence is far superior to the convergence of the MC sim-
ulations with the same number of samples near the target of x60 = 20.

To make this concrete, consider the Gaussian random walk from Eq. (3.14). Say we

have two probability targets, c1 and c2, and we want to use DMIS with path recalculation

every step. In this case we must recalculate the paths to both targets for each biasing

after every step of each sample. Consider a sample being biased towards c1, at its nth

step. To be precise, before the nth step, the steps X1, . . . , Xn−1 have been drawn according

to dynamic importance sampling for the target c1. When drawing the nth step we must

calculate the mean shift for biasing towards c1, based on the state of the random walk

at step n − 1 (i.e. Zn−1 =
∑n−1

i=1 Xi). We also must do a similar calculation for c2,
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although this will have no role in the biasing of the current sample and will only be used

in calculating a likelihood ratio. If we call these mean shifts µn,1 and µn,2 for the nth step

to targets 1 and 2 respectively, they are given simply by

µn,1 =
c1 − Zn−1

N − (n− 1)
and(4.6)

µn,2 =
c2 − Zn−1

N − (n− 1)
.

The nth step is then drawn from a Gaussian with mean µn,1, and µn,2 is saved for the

calculation of the likelihood ratio for the second biasing. The likelihood ratios are then

combined according to the balance heuristic (Equation 3.20). When this is performed

appropriately, the results appear as shown in the top panel of Fig. 4.4, with each biasing

distribution’s contribution exhibiting a combination of the features present in MIS and

DIS. They balance appropriately in regions of overlap and sharply drop off away from

their targets.

The bottom panel in Fig. 4.4 shows an incorrect attempt at DMIS where samples are

treated inconsistently. Samples that are biased towards Z = 10 do not recalculate the

path towards Z = 15 and vice versa. It is elucidating to consider this incorrect method

and why it fails. Imagine that we are biasing a sample towards c1 and calculate µn,1

according to Eq. (4.6) (i.e. using the current state of the random walk), but only use the

initial state of the random walk for µn,2 (or µn,2 = c2/N as the initial state is Z0 = 0) for

all n. In this way, we are only recalculating the path that is “actively” being used in that

sample, and are not recalculating the other “inactive path.” In this scenario, all samples

biased towards c1 are treated in this manner, and all samples biased towards c2 have
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Figure 4.4. Dynamic multiple importance sampling implemented on the 1D
Gaussian random walk. Two probability targets at Z = 10 and Z = 15 were
used with all samples recalculated after each step of the random walk. In
the top panel, DMIS is implemented correctly, with the path to each target
recalculated after every step. In the bottom panel, DMIS is implemented
incorrectly, with only the path to the current target recalculated after every
step. The dip in the DMIS ensemble estimate between the two targets at
roughly Z = 12.5 is caused by the inconsistent implementation.

µn,2 recalculated with µn,1 left unrecalculated. Samples that fall in between the biasing

targets of Z = 10 and Z = 15 get down-weighted as the likelihood ratio overestimates

the likelihood that the sample was biased toward the inactive target. This helps to

underline that recalculation must be consistent across distributions. It is not surprising

that this simulation method produces incorrect results, as it sometimes treats samples as

if they were drawn from conditional distributions (i.e. using DIS: see Equation 3.24) and

sometimes not.
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Another way to illustrate this point is to consider an example where different recalcu-

lation criteria are used for each distribution. These recalculation criteria for each distri-

bution must be consistent across all samples, regardless of which distribution is actively

driving the sample. For instance, in Fig. 4.5, the Gaussian random walk is simulated

with two distributions: one distribution targets Z = 10 and recalculates the path every

five steps and the other targets Z = 15 with the path recalculated every step. Regardless

of whether a sample is being generated from the distribution targeting position 10 or 15,

the biasing path to Z = 15 is recalculated after every step, and the path to Z = 10 is

recalculated after every fifth step and the likelihood ratios computed accordingly. The

results of such a scheme are fairly predictable; the spread of samples is wider around the

Z = 10 target and the convergence is slightly better near the Z = 15 target due to tighter

clustering of samples from that biasing distribution. The consistency of recalculation

makes the overall estimate match the exact answer for the P.D.F. in the region between

the two targets.

4.3. Large Deviation Theory

Before discussing the DMIS algorithm in a multiple-path context a bit of background

in large deviation theory is needed. This theory provides a more rigorous way to consider

exit problems than those presented thus far in this thesis. I.e., instead of minimizing the

noise on the grounds that the minimum is most probable due to the noise being zero-

mean, this theory provides an asymptotic basis for considering noise-induced phenomena.

To ground the large deviation theory, consider a generic stochastic differential equation
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Figure 4.5. The 1D Gaussian random walk from Eq. (3.14) with 20 steps
is simulated with two biasing distributions: one targeting Z20 = 10 that
recalculates the path every 5 steps and one targeting Z20 = 15 with path
recalculation every step. The individual contributions of each distribution
to the DMIS estimate are shown with thinner curves. These contributions
as well as the general pattern of the C.V. in the bottom panel show that
samples are more tightly clustered, and convergence is improved, for the
distribution with more recalculations.

(SDE) of the form

(4.7) dX = b(X, t)dt+ ε dW.

The SDE describes the evolution of a random variable X that is subject to both de-

terministic and stochastic dynamics. The first term on the right-hand-side captures the

deterministic dynamics and the second term describes the stochastic dynamics where dW



89

is a noise process and ε is the small constant noise power. This noise process is continuous,

and can be taken to be a Wiener process for our purposes. In the low noise limit (ε→ 0)

the asymptotics governing the dynamics of Eq. (4.7) have been worked out in extensive

detail by Freidlin and Wentzell [38].

When considering an exit problem (i.e from a domain D), the path that dominates all

paths that exit the domain is the minimizer of the Freidlin-Wentzell (F-W) least action

functional

(4.8) SL = min
φL /∈D

1

2

∫ L

0

∣∣∣∣∣∣dφ
dt
− b(φ, t)

∣∣∣∣∣∣2 dt.
This path-based functional can be thought of as minimizing the norm of the noise process

as solving Eq. (4.7) for dW leaves dW = (dX − b(X, t)dt)/ε. In the literature, many

methods consider time-minimization as well

(4.9) S∞ = min
L
SL,

giving rise to the so-called “quasi-potential” which provides the basis for calculating exit

paths in a variety of contexts [90]. However, these methods are outside the scope of

this thesis, and do not provide information on how the optimal exit path changes as the

propagation distance varies, which will prove interesting in Chapter 5.

Now, this theory is asymptotic in that it applies in the low-noise limit. In this limit,

Wentzell and Freidlin have developed a beautiful and comprehensive theory of the least-

action functional and its properties. For instance, they have proven it to be unique and

applicable to exit problems in the infinitesimal noise limit [38]. In sampling problems,

however, the noise power is not infinitesimal, and thus the appropriateness of low-noise
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asymptotics is a matter of debate. There are finite-noise tools that have been developed

in specialized conditions, such as the Onsager-Machlup functional [31]. This method

amounts to the F-W (Freidlin-Wentzell) functional with the addition of another term

proportional to the noise power. In small noise situations, the F-W functional has proven

sufficient to capture rare-event paths when importance sampling is used to calculate the

actual probabilities [73].Therefore, the additional computational work of the extra term

is not necessary for the applications considered here.

In addition to the finite-noise question, the presence of multiple paths leads to another

issue with the F-W theory. To understand this issue, it first must be noted that the

Freidlin-Wentzell action also provides a priori exit probability estimates for an exit path

Xt computed from the theory via the asymptotic relation

(4.10) log[P{Xt}] ∼ −ε−2SL.

This logarithmic estimate provides a framework for assessing situations in which there are

multiple exit paths (i.e. local minima in the minimization problem in Equation 4.8). For

example, in the wall walk model, we know that there are two exit paths from the origin

(over and under the wall) that should be equally likely based on symmetry. Computing

the action of these two paths shows, in fact, that the paths are equally likely as they have

the same asymptotic probabilities, but large deviation theory can also assess when we

are examining exit paths from locations other than the origin (e.g., the other two paths

depicted in Fig. 4.2), which is an inherent issue in implementing dynamic importance

sampling in that problem.
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If we are perturbed from a starting point with y = 0 (i.e. the halfway point between

the ends of the wall), the equality of the actions associated with the different paths

is broken, but the action estimate from Eq. (4.8) can still be used to estimate their

relative likelihoods. For instance, Fig. 4.6 shows contours of constant relative probability,

computed using Eq. (4.10), that the walker’s exit path (path to x = 20) goes above the

wall, with the number of steps left in the random walk held constant. The perfectly flat

line from the halfway point of the wall reflects this symmetry, for instance. It is important

to note that in simulation, we should expect locations further from the starting point of

the random walk to have taken more steps to get there, and thus have less steps left to get

to their exit destination. Due to the asymptotic nature of the action estimate, however,

we cannot draw precise distinctions between locations that have relative probabilities with

the same order of magnitude, so this figure is meant purely for illustration purposes.

4.4. Dynamic Multiple Importance Sampling with Multiple Paths

Now, with the requisite large deviation theory having been discussed, we can consider

the class of problems for which dynamic multiple importance sampling is useful by return-

ing to the two dimensional Gaussian random walk past a wall obstacle (from Section 4.1).

In this problem, we naturally have to contend with two paths: over- and under-wall paths.

The results of Section 4.3 demonstrate that proper convergence in ISMC simulations is

only achievable when both paths are used. In order for convergence to be improved from

this MIS baseline, DMIS must be implemented for tighter clustering of samples around

the intended exit target of x60 = 20. In this sense, this is a more proper application of

the DMIS algorithm than its use in the 1D random walks of Section 4.2.
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Figure 4.6. Contours of constant relative probability that the walker should
go up over the wall when recalculating the path from that point. The
contours, from bottom to top, represent 1%, 10%, 20%, . . . , 80%, 90%, and
99% relative probability. The number of steps left was kept constant at
N = 60 for all recalculations.

However, the multi-path nature of this problem brings up a number of further com-

plications that must be discussed. For instance, from the geometry of the paths shown in

Fig. 4.2 it is clear that as soon as a path crosses the position of the wall, the number of

different paths to exit decreases to one path. Really, it is more proper to say that once a

path crosses the vertical ends of the wall (i.e. y = ±10) the number of paths is one, just a

rightward path to x = 20. This presages a concern that will be more relevant in Chapter

5 that paths sometimes disappear, and this will be discussed in more detail in Section
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4.4.1 where more complicated dynamics lead to paths disappearing in far less predictable

ways than those discussed here in this toy model. The opposite issue, where new paths

arise mid-simulation, will also be mentioned in passing in Section 4.4.2, though this issue

is far more complicated and is largely the provenance of future work outside the scope of

this thesis.

Before getting to such complicating factors, let us apply DMIS to our 2D random walk

in two different ways, and compare them to the methods mentioned previously: MC, MIS,

and DIS. Results of such an application are shown in Fig. 4.7. The first DMIS method

(called DMISMC in the figure and DMIS-both here) recalculates both the over-wall and

under-wall paths every three steps for all samples (half the samples are “actively” biased

over the wall and half under). In other words, it uses dynamic recalculation on both paths.

The second DMIS method (denoted DMISMC over-wall in the figure and DMIS-over here)

just recalculates the over-wall path every three steps for all samples. This second method

still biases half of the samples above and below the wall, but only the over-wall path is

recalculated for all samples in an asymmetric manner. This is similar to the simulations

from Fig. 4.5 where the biasing distributions have different recalculation criteria, but these

criteria are applied consistently across all samples. The comparison with the previous

methods shows that the two DMIS methods provide convergent results, but DMIS-over

has a slower convergence rate than DMIS-both. DMIS-over provides convergence similar

to MIS. This is unsurprising as the distribution using the below-wall path, which is not

recalculated, is exactly the same as the one used in the MIS simulations. The convergence

benefits from recalculation of the over-wall path are negated by its inclusion. The DMIS-

both method, by contrast, has a lower C.V. indicating improved convergence over MIS.
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Figure 4.7. A comparison of different varieties of dynamic importance sam-
pling for the wall walk model to the MISMC simulation from Fig. 4.3.
Three methods using dynamic recalculation are compared: using only the
above wall path (DISMC), using both paths with only the over-wall path
recalculated (DMISMC over-wall), and using both paths with both paths
recalculated (DMISMC). All recalculations occurred every 3 steps of the
random walk. The DISMC converges to half of the correct probability,
while the DMISMC over-wall simulation has convergence comparable to
the MISMC simulation with no recalculation. Only the DMISMC simu-
lation with both paths recalculated has improved convergence and correct
probability estimation.

Additionally, DIS (using only the over-wall path without MIS) produces a C.V. that is

roughly equivalent to DMIS, but it converges to the wrong probability: roughly half of

the correct probability throughout the region of targeting. This is unsurprising as the

results of Fig. 4.3 indicated that both over-wall and under-wall paths were necessary.
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Figure 4.8. A sample of the random walk past a wall with sixty steps simu-
lated with DMIS used to bias the sample over the wall. Both the over wall
path and the under wall paths are recalculated every twenty steps. By the
first recalculation, the relative probability of the walker going over the wall
according to Eq. (4.10), is 98%. At the second recalculation the walker has
passed the wall and the only path available is straight to the target of
x60 = 20.

4.4.1. Path disappearance/collapse

A salient feature of this problem is that both possible paths collapse to the same path once

the walker passes the wall’s penumbra. An illustration of this situation is depicted in Fig.

4.8 where a sample is biased to go over the wall, with each path recalculated twice (every

twenty steps in a sixty-step walk). By the second recalculation, the walker has passed the

wall and both paths are the same. It is important to note that the situations in which

the number of paths decreases is not as easily distinguished in many cases as it is in this

2D random walk. The multiple-path phenomenon can be conceptualized as multiple local
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minima in a global landscape of paths that have similarly low action. However, in more

complicated examples than this simple random walk the path landscape can be expected

to be substantially more complicated. In fact, the path landscape for the laser model

described in Section 5.2 will be found to be quite complex. It will be much more difficult

to partition state space a priori into regions based on the number of different paths, as

we can do here. This question is still poorly understood, as both the notion of similarly

low action paths and the asymptotic nature of the underlying theory are inexact.

To demonstrate the ambiguity still present in the theory for this phenomenon, sim-

ulations were performed where the relative probability of each path was tracked at each

recalculation point, and when it fell below a prescribed tolerance it was handled in two

different fashions. In one method, the unlikely path was overwritten with the dominant

path, and in the second the unlikely path was kept as in previous simulations. The first

method treats the paths as if the unlikelier path has collapsed into the dominant path. Re-

sults of these simulations are shown in Fig. 4.9, where two different tolerances were used

with recalculation performed at every step in the path. In the lower tolerance (relative

probability of 0.01) simulations, both methods perform comparably well, and are better

than the baseline convergence of MIS. However, in the higher tolerance simulations the

quasi-path-collapse method performs much more poorly than the default DMIS method,

as the spike in the C.V. in the bottom right panel near x60 = 20 indicates (even a single

spike near the target can indicate poor convergence in an IS simulation as we expect

samples landing near the target to have similar likelihoods if the biasing is determined

properly [38]). This suggests that missing an unlikely path, and assuming that it has

collapsed into the dominant path, is not problematic up to a point. Missing paths that
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Figure 4.9. A comparison of DMIS methods (with every step recalculation)
for the wall-walk problem where unlikely paths, measured using Eq. (4.10),
are handled in two different ways and are compared with MISMC (dashed)
and MC (light gray) simulations for accuracy and convergence. When the
relative probability of a path is below a certain tolerance the dominant path
overwrites that path (gray), or we continue to use that path as in Fig. 4.7
(black-dotted). Two different tolerances are presented, a tolerance of 0.01
in the top panels where both methods produce similar results that are far
better than MISMC, and a tolerance of 0.2 in the bottom panels where
overwriting produces a spike in the C.V. For the low tolerance simulations,
roughly 16 steps of the random walk are below the tolerance on average,
whereas 26 are below the higher tolerance, which gives an indication of the
different convergence properties between the two simulations.
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have a high enough likelihood can limit simulation convergence, however. These results

are simply illustrative, and it is likely that in future systems with multipath phenomena

the importance of tracking path collapses for simulation convergence will vary greatly.

4.4.2. Further considerations

In this section we will briefly mention qualitative behaviors of multi-path systems that we

have not encountered in this simple random walk, but that may pose additional problems

if they occur sufficiently frequently in future systems. In the previous section, we discussed

many qualitative issues with paths disappearing during simulation, but it may be possible

for paths to appear during simulation. One way for this to happen is illustrated in Fig.

4.10. In this hypothetical scenario, the walker rapidly moves to a location where both

paths collapse to a single path, then back into a location with multiple different paths. We

can loosely describe this as a path “reoccurring.” Such a situation did not happen in any

of the simulations of the random walk, and consideration of the large rapid displacements

necessary for such a phenomenon to occur indicates why it is quite unlikely, but this

does not mean that it is impossible for similar phenomena to occur in other systems.

Additionally, in this 2D random walk it is trivial to discover when the second path reoccurs

as it is simply a matter of the walker’s y-position, but this may not be the case in other

systems.

An even more challenging version of this phenomenon cannot be conceived of in the

random walk wall obstacle as currently constructed, but can be thought of as a path

appearing that is not possible at the outset of the dynamics. We can conceive of this in

the wall-walk setup by adjusting the starting position of the walker, however. Consider if



99

-5 0 5 10 15 20 25

x

-15

-10

-5

0

5

10

15

y

Sample experiencing path reoccurrence (recalculated every 15 steps)

Start with two equally likely paths

Down to one path

0.80 relative prob. of going over wall

Past wall - paths collapse

Biased sample

Over wall path

Below wall path

Figure 4.10. A sample of the random walk past a wall with 60 steps sim-
ulated with DMIS used to bias the sample over the wall, with the paths
recalculated every 15 steps. In this hypothetical scenario, due to rapid
vertical movement early on, the walker reaches a location at the first re-
calculation where there is only one path. However, due to rapid vertical
movement thereafter, the walker has two viable paths. This example tra-
jectory demonstrates path reoccurrence, although did not happen naturally
in previous simulations.

the initial position of the walker was moved upwards, say from y = 0 to y = 10. Then, the

path over the wall would have a far lower action than the under-wall path and it would not

make sense to include under-wall paths in an MIS simulation. However, it may be the case

that enough samples would stray downward to the point where a non-negligible number of

samples would have a viable path below the wall. In this hypothetical scenario, it may be

necessary to incorporate information about below-wall paths in the overall simulation. A

qualitatively similar scenario is encountered in the laser model and is discussed in Section

5.4. In that case it is also a largely hypothetical phenomenon, but in systems where path
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appearance happens sufficiently frequently (which may not need to be very frequently)

it could pose a significant problem. The most challenging aspect of path appearance is

that it might require acquiring a global sense of the path landscape in potentially a high

number of dimensions. The landscape of the laser model is explored in the next chapter,

for instance, at a high computational cost using continuation methods. It is also obviously

the case that the path landscape can be arbitrarily complicated in future systems adding

to the overall difficulty.

Lastly, we consider some algorithmic augmentations and alternatives that may improve

on the performance of DMIS in certain circumstances. One hypothetical augmenation

might be variable likelihood tracking. By this, I mean truncating (or potentially inserting)

likelihood ratios into samples that are shorter than the overall simulation time, based on a

path that only exists for part of the sample’s trajectory. This is potentially possible as the

likelihood ratio for a sample is the product of the likelihood ratio at each step, so multiple

paths need not have the same number of steps to be combined via the balance heuristic.

This provides a somewhat straightforward alternative for path collapse and reappearance

situations, as paths can be truncated when they disappear, and concatenated to previous

paths when they reappear. However, this does not ameliorate the issue of path appearance

as the number of relevant paths may be different across samples, and again there would

need to be a priori knowledge about the number of possible paths as they may not emerge

during simulation. There are a number of importance sampling strategies that take a more

empirical approach to path discovery by discovering paths during MC simulation and

adjusting or creating biasing distributions based on results [16, 53, 75]. The limitation

with this approach is that samples of interest (i.e. samples that both reach the target
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condition but also pass through a region of multiple paths) would likely be far too rare

to be discovered without further knowledge. The researcher might have to see paths take

qualitatively different paths, for instance, which would involve saving all trajectories in

simulations that may require billions of samples to get even two hits and involve untenably

expensive computational outlay.

An alternative to MIS that has been studied in the literature is mixture importance

sampling where multiple proposal densities are weighted and selected in a single simula-

tion, rather than in multiple batch simulations of each distribution [75]. The key is that

these distributions still must be weighted in some way, with the balance heuristic being

just one of a class of possible “deterministic weights” that are devised before simulations

begin. Similar to the discussion in the previous paragraph, there are methods that take

an emergent approach to distributional weights, and are broadly described as adaptive

schemes [18]. Both approaches would struggle to deal with the path appearance phenom-

enon, as it changes the number of distributions required, rather than just the weighting

between distributions.

We have demonstrated that mixing multiple importance sampling with dynamic im-

portance sampling has utility when applied to a problem with multiple routes to a rare

event of interest. The combination of the two methods performs better than either of

the two used in isolation. The application of dynamic multiple importance sampling also

highlights important features of the dynamics necessary for achieving a large displacement

past the wall, and foreshadows issues of path collapse and appearance that occur in the

laser model and may occur in other systems. To now see how DMIS may be useful in
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more complicated scenarios and explore the details further, we will analyze a model of an

actively mode-locked laser in the next chapter of this thesis.
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CHAPTER 5

A Mode-Locked Laser Model

The previous chapters in this thesis have provided the groundwork for the study of a

mode-locked laser model. Mode-locked lasers are a technology with a rich history of appli-

cation and study [51, 65, 66]. In recent years the breadth of applications employing such

systems has grown dramatically, and simultaneously the performance of the underlying

lasers has greatly improved. Optical communications is an oft-cited application [41], but

other uses include optical frequency metrology [21], optical clocks [13, 24, 89, 95], spec-

troscopy [87], generation of high harmonics [57], measurement of fundamental constants

[35], and optical storage rings [46].

Here, ISMC simulations using biasing distributions obtained using soliton perturba-

tion theory (see Section 2.3) are used to describe “position slip” errors and determine the

rates at which these slips occur in a mode-locked laser model involving an active feed-

back mode-locking mechanism [26, 71]. The active feedback mechanism can lead to two

fundamentally different mode-locking behaviors: a non-oscillatory overdamped regime,

and an oscillatory underdamped locking regime. Position slip errors, or errors of pulse

position slippage relative to the mode-locking, are found to occur in both cases, but with

qualitatively and quantitatively different behaviors. We will show that the importance

sampling methods needed to capture error rates in the two cases are somewhat different,

and that more sophistication is needed in the underdamped regime to deal with the more

complicated paths arising due to the oscillations. In particular, we will apply the dynamic
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multiple importance sampling method introduced in Chapter 4 to quantify error rates in

this regime when multiple oscillatory paths to errors exist. We believe that this problem

illustrates a general issue that may occur in systems where multiple routes to rare events

may be present.

5.1. Model Formulation

We model an actively mode-locked fiber laser as an optical cavity oscillator including

an amplifier, filter, polarization rotator (and polarizer), and phase modulator [26, 71].

This system is represented schematically in Fig. 5.1. Propagation through the optical fiber

is described by the dimensionless nonlinear Schrödinger equation for the single polarization

optical field envelope u [73]

(5.1)
∂u

∂z
− i

2

∂2u

∂t2
− i|u|2u = F (z, t),

with the right-hand-side representing the perturbative effects of the added physical el-

ements used to provide the active mode-locking and stabilize the optical pulses. This

governing equation is essentially the same as Eq. (2.22) with the perturbation specified

to the physical elements of the active mode-locking.

The mode-locking elements are (linear) gain from the amplifier and polarization rota-

tor, filtering, nonlinear gain (or loss) from the polarization rotator, and phase modulation

[65]. A simple version of the filtering due to frequency dependent gain (or loss) can be

described by the perturbing term a ∂2u/∂t2, where a is the filtering strength. A simplified
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Figure 5.1. A schematic of a fiber ring laser where an optical pulse passes
through an amplifier, filter, polarization rotator, and phase modulator on
each pass around the ring.

model of excess linear and nonlinear gain can be described by terms of the form [65]

c1u+ c2|u|2u+ c3|u|4u.

Typically c1 will be negative, so really this term models a small excess linear loss. In ad-

dition, a simplified model of the active phase modulation is a term of the form ib cos (ωt)u

[71], where b is the modulation strength and the external modulation frequency is ω. In

what follows we will assume ω = 2π/25, i.e., a 25 ps modulation period. It should be

noted that, in practice, all of the above effects are discrete or lumped, i.e., the perturba-

tions are each applied to the pulse once per pass through the loop. Since the net change

to the pulse per pass is small, it is permissible to replace the lumped effects with their

averaged continuous versions as above [60].

In addition, the linear gain provided by the amplifier is also accompanied by amplified

spontaneous emission noise as described in Section 2.1.2. This additional perturbation is

modeled as zero-mean, delta-correlated Gaussian white noise that is added to the pulse
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as it passes through the amplifier on every round trip through the fiber ring [73], and

takes the form

N∑
n=0

fn(t)δ(z − n), where(5.2a)

〈fi(t)〉 = 0, and(5.2b)

〈fi(t)f ∗j (t′)〉 = σ2δ(t− t′)δij .(5.2c)

For simplicity we have assumed that the noise is added once per dispersion length; if the

fiber ring is shorter than this, we can combine the noise from multiple passes into a single

larger perturbation once per dispersion length, as long as the total remains small. The

noise variance is then σ2 = [(G− 1)2ηsp~ω0T0γ]/[G lnG|β|] = 2.667×10−5 [73], where we

have used G = 40 (or, 16 dB) as the amplifier gain needed to compensate loss due to the

components in the loop, ηsp = 2.0 is the amplified spontaneous emission (excess noise)

factor, ~ is Planck’s constant, ω0 = 1.22×1015 1/s is the carrier frequency, T0 = 1 ps, and

β = 0.2 ps2/km. Thus, the full perturbative term F on the right-hand-side of Eq. (5.1) is

(5.3) F (z, t) = a
∂2u

∂t2
+ ib cos (ωt)u+ c1u+ c2|u|2u+ c3|u|4u+

N∑
n=0

fn(t)δ(z − n).

When F ≡ 0 the NLS admits the well-known soliton solution of Eq. (2.18).

5.1.1. Soliton perturbation theory and representative parameter regimes

We first consider Eq. (5.1) with the deterministic perturbations in Eq. (5.3) (i.e., without

the noise). Assuming the initial solution is a soliton and the perturbative terms are small

in magnitude, then the leading-order effect is to cause the soliton parameters to change
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slowly. Using soliton perturbation theory [3, 47], the evolution equations for the soliton

parameters are given in Eqs. (2.23-2.25) (ignoring the phase as this model is phase-

insensitive). Using Eq. (2.18) for u and to evaluate the integrals to leading order, we

obtain

dE

dz
= (2c1 − 2aΩ2)E +

(
4

3
c2 −

2

3
a

)
E3 +

16

15
c3E

5,(5.4)

dΩ

dz
= −4

3
aE2Ω− ω2bπ

2E
csch(

πω

2E
) sin (ωT ), and(5.5)

dT

dz
= Ω.(5.6)

First of all, it is seen that for c1 < 0 (excess loss), E = 0 is stable. Strictly speaking,

soliton perturbation theory is not applicable in this limit, but a linear stability analysis

of the full NLS equation shows that u = 0 is stable due to the linear excess damping (the

c1 term) and filtering. For c2 > 0 and c3 < 0 there will be a positive stable solution of

Eq. (5.4) for E when Ω = 0, which we shall denote Es. Because the filtering coefficient

a is typically small, the pulse energy will be more or less independent of Ω if it is not

too large. Since there are two stable pulse energies (E = 0 and E = Es) it is possible

for added noise to induce transitions between the two, leading to either pulse dropouts

or the spontaneous creation of new pulses. For the parameters we will use, however, the

probability of either event will be very small [26].

For E = Es, the dynamics of Ω and T can be underdamped or overdamped [26, 71].

In both cases there are stable steady states at (E,Ω, T ) = (Es, 0, 2nπ/ω) and unsta-

ble saddles at (E,Ω, T ) = (Es, 0, (2n + 1)π/ω) where n ∈ Z, but the structure of the

phase space is different in the two cases. Phase planes for Ω and T with E constant are
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Figure 5.2. The continuous dynamics of the soliton ODE system Eqs. (5.5)
and (5.6) are shown in (T,Ω) phase space. Left: The underdamped state
with a stable spiral fixed point at (0, 0) and saddles (±π/ω, 0) (at bit-slot
boundaries, depicted with dashed vertical lines, as defined by the modula-
tion frequency). For a pulse to move out of its bit-slot, it must escape the
basin of attraction of a stable spiral and cross the stable manifold of the
saddle point. Right: The overdamped state where the stable fixed point
at (0, 0) is now a nodal sink rather than a spiral. The parameters for the
filtering, modulation, nonlinear gain strengths, and steady-state amplitude
Es in each are the representative values listed in the text.

shown in Fig. 5.2. In the underdamped case, decay to the non-zero equilibrium state

is oscillatory, while in the overdamped case a soliton displaced from equilibrium will be

restored smoothly to the steady state. The relative strengths of filtering and modula-

tion determine the type of dynamics, with greater filtering leading to overdamping [71].

We will use two representative parameter sets. For the underdamped regime, we will

assume a = 0.002, b = 0.01, c1 = −0.01, c2 = 0.034, c3 = −0.02 with a stable amplitude of

Es = 1.177. For the overdamped regime we assume a = 0.015, b = 0.002, c1 = −0.01, c2 =

0.04, c3 = −0.02 with a stable amplitude of Es = 1.150.

One effect of the noise is that it adds jitter to the pulse parameters, broadening the

laser’s linewidth [1]. A more dynamically interesting event is for a noise-induced position
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slip error to occur [71]. Here the noise induces the pulse position to transition from

one stable equilibrium to another. Since the goal of mode-locking is to keep a pulse

synchronized to the active mode-locking signal, noise-induced sliding of a pulse’s position

is undesirable as it leads to a random drift of the mode-locked laser’s repetition rate.

The rate at which these position slips occur, of course, is directly related to the rate of

this random drift. Because the parameters being considered are such that pulse energy

dropouts are very improbable relative to position slips, in what follows we will assume

the amplitude to be fixed at E = Es and only concern ourselves with position slips. We

monitored the pulse energy in simulations to verify that this assumption holds.

5.2. Biasing for Position Slip Errors

When considered as the sole perturbation, the effect of the ASE noise is to cause

random walks in the soliton parameters as discussed in Section 2.4. Since any values of

these parameters produce perfectly valid solutions of the NLS equation [73], it is unable

to resist such random changes. The random walks that result in the absence of the

deterministic perturbations described in Section 5.1 eventually lead to large deviations in

the soliton parameters even if the noise added at a single amplifier is small. The purpose

of the mode-locking terms, of course, is to limit the growth of perturbations in the pulse

parameters. Even in this case, however, there is a small but non-zero probability for the

pulse to experience a large deviation.

To address the question of precisely how likely a position slip is to occur in the presence

of mode-locking, we pose a stochastic exit problem. Specifically, we wish to determine the

most likely way for a pulse starting at equilibrium (Ω = 0, T = 0) to escape the effective
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potential well imposed by the mode-locking and exit a bit-slot by undergoing a position

drift of π/ω = 12.5. (By symmetry, an exit to −π/ω = −12.5 is equally probable.) To

answer this question, we first will derive optimized exit paths using the approximating

system of ODEs for soliton parameter evolution, Eqs. (5.4)-(5.6).

We also use the soliton perturbation theory of Sections 2.3.2 and 2.3.3 to describe

the noise process’ effects that lead to position slips via its effects on the frequency and

position of the soliton. The relevant results from those sections are summarized as follows.

Taking F in Eq. (5.1) to be the Gaussian white noise terms (ignoring the deterministic

perturbations for the moment, and neglecting changes in E), we find at leading-order that

the noise-induced parameter jumps are

∆Ωn = Re

∫ ∞
−∞

v∗Ωe
−iΘfn dt and(5.7)

∆Tn = Re

∫ ∞
−∞

v∗T e
−iΘfn dt.(5.8)

with the relevant adjoint soliton modes given by

vΩ = − i

E

∂u0

∂t
and(5.9a)

vT =
1

E
(t− T )u0.(5.9b)
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When the noise fn is given by Eq. (5.2), ∆Ωn and ∆Tn are zero-mean Gaussian random

variables with variances [73]

E[∆Ω2
n] = σ2

Ω = σ2E/3 and(5.10)

E[∆T 2
n ] = σ2

T = π2σ2/(12E3) .(5.11)

5.2.1. Derivation of Optimal Exit Paths

Equations (5.5) and (5.6) with added random jumps given by Eqs. (5.7) and (5.8) form

an approximate version of the soliton dynamics in the full model, Eq. (5.1) with Eq. (5.3).

This system is, letting A = −4aE2/3 and B = −ω2bπcsch(πω/2E)/(2E), explicitly given

by

dΩ

dz
= AΩ +B sin (ωT ) +

N∑
n=0

∆Ωnδ(z − n) and(5.12a)

dT

dz
= Ω +

N∑
n=0

∆Tnδ(z − n) .(5.12b)

In particular, these equations approximately describe the dynamics of a position slip error,

and allow us to derive exit paths for such an event. The most probable series of parameter

kicks ∆Ωn and ∆Tn are those which have the lowest combined weighted L2 norm, as the

underlying noise is Gaussian. Let the functions ηΩ(z) and ηT (z) be continuous functions

that stand-in for the discrete parameter kicks (this continuum approximation is justified

as the length scale on which the deterministic dynamics work in the system is much longer

than the amplifier spacing, here ∆z = 1). Then the constrained optimization problem
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needed to be solved for an optimal exit path is to minimize [72, 73, 83]

(5.13) min
ηΩ,ηT

S = min
ηΩ,ηT

2

σ2

∫ zL

0

Cη2
Ω +Dη2

T dz

subject to

dΩ

dz
= AΩ +B sin (ωT ) + ηΩ, and(5.14a)

dT

dz
= Ω + ηT(5.14b)

where C = 1/σ2
Ω = 3/(Eσ2) and D = 1/σ2

T = 12E3/(π2σ2). We want the final soliton

position to be T (zL) = T̂ (the one that gives a position slip), so we have three boundary

conditions: T (0) = T0, Ω(0) = Ω0, and T (zL) = T̂ . Here the idea is to maximize the

probability associated with a particular set of deviations. This is equivalent to finding

the Freidlin-Wentzell least action path [38] (as elucidated in Section 5.3) and related

methods [7, 37, 80]. Following standard variational calculus methods for optimization

with differential side constraints, we construct a constrained functional using Lagrange

multipliers [40]

(5.15)∫ zL

0

{
Cη2

Ω +Dη2
T + λ1(z)

[
dΩ

dz
− AΩ−B sin (ωT )− ηΩ

]
+ λ2(z)

[
dT

dz
− Ω− ηT

]}
dz.
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Taking variations with respect to the unknown functions ηΩ, ηT ,Ω, and T , we find

δηΩ → 2CηΩ − λ1 = 0,(5.16a)

δηT → 2DηT − λ2 = 0,(5.16b)

δΩ→ −Aλ1 − λ2 −
dλ1

dz
= 0, and(5.16c)

δT → −Bωλ1 cos (ωT )− dλ2

dz
= 0 .(5.16d)

We use Eqs. (5.16a) and (5.16b) to specify the Lagrange multipliers λ1 = 2CηΩ and

λ2 = 2DηT giving

dηΩ

dz
= −AηΩ −

D

C
ηT and(5.17a)

dηT
dz

= −BωC
D

ηΩ cos (ωT ) ,(5.17b)

which along with Eqs. (5.14a) and (5.14b) form a boundary value problem with four

boundary conditions: T (0) = T0, Ω(0) = Ω0, T (zL) = T̂ , and ηΩ(zL) = 0. The last

condition is a natural boundary condition arising from the free boundary for Ω(zL) [40].

5.2.2. Exit Path Behaviors

The solution of the boundary value problem given by Eqs. (5.14) and (5.17) with T0 = 0,

Ω0 = 0, and T̂ = 12.5 gives an optimal exit path after propagation through bzLc amplifiers.

This boundary value problem is solved numerically with MATLAB’s BVP4C package.

Representative numerical solutions are shown in Fig. 5.3 and 5.4 for the overdamped and

underdamped regimes, respectively. The exit paths for the overdamped regime have
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Figure 5.3. Two representative solutions for the exit path in the over-
damped parameter regime showing four-part solutions with different prop-
agation distances, zL. The lower panels show the biasing path coefficients
and the the upper panels show the expected soliton parameter trajectories
under biasing. The solutions were computed numerically using the MAT-
LAB boundary value problem solver BVP4C.
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Figure 5.4. Two representative solutions for the exit path in the under-
damped regime showing four-part solutions with different propagation dis-
tances, zL. The lower panels show the biasing path coefficients for the
frequency and position modes and the upper panels show the expected
frequency and position trajectories under biasing. The solutions were
computed numerically using the MATLAB boundary value problem solver
BVP4C. For a long distance, such as the solution shown on the right, the
biasing path is oscillatory, but for a short distance (left) it is not.
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Figure 5.5. Computed biasing path trajectories visualized in (T,Ω) phase
space for different system lengths in the overdamped and underdamped
regimes. Left: the overdamped regime. All paths monotonically approach
exit and do not change qualitatively as the system length increases. For
longer propagation distances, less frequency driving is necessary to force an
exit. Right: the underdamped regime. As zL increases the biasing paths
undergo more and more oscillations before exiting due to the oscillatory
dynamics near the critical point.

a similar character for all system lengths as the optimal way to resist the overdamped

mode-locking is to monotonically push the pulse toward its exit. However, the exit paths

in the underdamped regime exhibit significant qualitative differences as the system length

is increased. For a sufficiently long system length, the optimal path takes advantage of

the oscillatory dynamics inherent in the mode-locking and wraps around the spiral before

exiting, with the number of oscillations (or “loops”) dependent on the overall propagation

distance. Figure 5.5 shows the qualitative behavior changes in the exit paths in both

regimes as the system length is varied.

It is best to understand the bifurcating oscillatory paths in the underdamped regime

as different modes of exit. As the system length increases, an infinite cascade of biasing

paths occur which are each local minima in the least action problem of Eqs. (5.14) and
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(5.17). Continuing the paths in the right panel of Fig. 5.5 shows that multiple paths of

exit from the fixed point with different numbers of oscillations, or loops, coexist at all

distances past zL = 206. Figure 5.6 shows a bifurcation diagram continuing these paths in

the propagation distance, zL, with the path action Eq. (5.13) as the dependent variable.

Additionally, the bifurcation diagram demonstrates that there are multiple system lengths

zL for which there are two types of paths that are roughly equal in action (e.g., see the

region 205 < zL < 220).

5.3. Numerical Simulations

To quantify the probabilities of position slips happening in this system, Monte Carlo

simulations were performed. The full NLS equation, Eq. (5.1), was integrated numerically

with different noise realizations many times, and statistics were computed based on the

final results. Each sample in the Monte Carlo simulations was solved numerically using

the split-step Fourier method [85] with 256 Fourier modes, a computational window in

time t of width 80, and a propagation stepsize of dz = 0.05. The initial condition was a

soliton with the stable amplitude for the parameter regime being simulated, as given in

Section 5.1.1.

Position slip probabilities due to the mode-locking can be quite small so the Monte

Carlo simulations were augmented with importance sampling. In these simulations, the

underlying probability distribution in the problem (Gaussian white noise) is replaced

with a biasing distribution from which samples are drawn. Then, the correct probabilities

are computed using the likelihood ratio, which is the ratio between the original and

the biased probabilities used to generate that sample [73]. Here, the Gaussian biasing
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Figure 5.6. Bifurcation diagram showing biasing paths in the underdamped
regime with different numbers of oscillations or loops numerically continued
by varying zL and measured in terms of their action according to Eq. (5.13).
The oscillatory biasing paths are conjectured to arise through a bifucation at
infinity and each has a critical propagation distance at which it disappears
(visualized here as folds in the bifurcation diagram). Each branch above its
fold is visualized with circles to show that its action closely matches that
of the branch with one less oscillation. As zL increases, the difference in
L2-norm between above-fold solutions and solutions with one less oscillation
also goes to zero, which provides the basis for conjecturing that these so-
lution families continue to infinity. The black dot-dashed lines depict such
conjectured extensions of computed solution families.

distributions utilized means obtained from solutions to the system Eqs. (5.14) and (5.17)

using coefficients, vΩ and vT respectively, as described previously [73].

Recall from Section 2.3.2 that the Freidlin-Wentzell least action minimizer for a pre-

scribed soliton change after passage through one amplifier is in the direction of the adjoint

modes of the linearized NLS equation [73]. In this case, the relevant modes that should

be biased at each amplifier are the position and frequency adjoint modes, the latter being
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included since frequency perturbations become position perturbations upon propagation.

Explicitly, the mean shift at the nth amplifier due to the biasing is

(5.18) fn(t) =
(
ηΩ(zn)

vΩ

||vΩ||2
+ ηT (zn)

vT
||vT ||2

)
eiΘ

where ηΩ and ηT are the biasing coefficients that give the magnitude of the shift in the

direction of each mode (where the modes and total phase of the soliton are computed at

the amplifier). These biasing coefficients are the same as the functions used in Eqs. (5.14a)

and (5.14b). With this formulation, the functional minimized in the optimization problem

Eq. (5.13) to maximize the probability of an exit path is the L2 norm of Eq. (5.18) (note

that there is no cross term since the modes are orthogonal with respect to the inner

product associated with the linearized NLS operator) [73]. The normalization constants

are chosen so that the mean shift at each amplifier Eq. (5.18) agrees with Eqs. (5.14a)

and (5.14b) after evaluating the jump conditions Eqs. (5.7) and (5.8). The constants C

and D in (5.13) are then seen to be related to the adjoint mode norms,

σ2

2
C = ||vΩ||−2 =

3

2E
and(5.19a)

σ2

2
D = ||vT ||−2 =

6E3

π2
(5.19b)

and are solely dependent on E(z) ≈ Es, and are therefore treated here as constants. (An

overall multiplicative factor does not affect the minimization, of course.)

Taking the biasing coefficients resulting from the solutions of Eqs. (5.14) and (5.17)

in Section 5.2.1 and incorporating them into Eq. (5.18) allows us to bias the noise to

optimally produce a desired position slip. The simulation process to create a biased
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sample is to solve the deterministic part of Eq. (5.1) until an amplifier is encountered.

The split-step solver is then stopped, the mean shift Eq. (5.18) is computed using the

precomputed biasing coefficients (extracted by fitting a soliton through the noisy pulse)

and the soliton’s current parameters (for construction of the adjoint modes and total

phase). After adding the biased noise using this mean shift, the split-step solver is then

restarted and the process is repeated until the simulation is terminated. Thousands of

samples are typically generated and the final pulse position is binned to estimate its

probability distribution. Additionally, in order to form full probability density functions

of pulse position that resolve positions throughout a bit-slot and into neighboring bit-slots,

multiple biasings were used. That is, to cover larger regions, biasing paths with different

position targets T̂ = T (zL) were included in multiply importance-sampled Monte Carlo

simulations and then combined using the balance heuristic [91]. Thus, distributions

producing low numbers of samples in specific regions are down-weighted when others

producing larger numbers of samples are available.

5.3.1. Importance Sampling in the Overdamped Regime

We performed ISMC to assess pulse position probabilities in the laser model using the

overdamped parameters given in Section 5.1.1. Probability density functions of the soli-

ton’s position after propagation through varying values of zL amplifiers are included in

Fig. 5.7. The bit-slot boundaries are indicated with dashed vertical lines, and we see that

the probability of a large position shift is greatly increased as the system length grows.

Included in these figures is the coefficient of variation, or the measure of the intra-bin

standard deviation divided by the bin’s overall probability, which provides one way of
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Figure 5.7. ISMC simulations of soliton position in the overdamped regime
for 3 system lengths. Top panel: the probability density function (P.D.F.)
of soliton position T after propagation through zL amplifiers. Eleven posi-
tion targets were included throughout the domain (evenly spaced between
T (zL) = −12.5 and T (zL) = 12.5) with 100,000 total samples. Middle
panel: the coefficient of variation (C.V.) indicates simulation convergence:
a lower and smoother the C.V. indicates better convergence. We see that
convergence is generally good for moderate propagation distances and worse
for very short or long distances. Bottom panel: the raw relative frequency
histogram (R.F.) of sample location for each simulation. Less samples reach
the bit-slot boundary for the longer-distance simulations.

assessing convergence of the simulations, even when probabilities are small. In all simu-

lations the samples converge well for regions at or near equlibrium, but not necessarily

in the tails. This is disadvantageous as the tails are precisely the regions where position

slips occur. For very short distances and very long distances, the simulations do not

converge well in the tails (as in the left and right panels of Fig. 5.7). However, for in-

termediate distances, the simulations converge well. For short distances, the probabilities
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that we are attempting to capture are extremely low, so it is natural that convergence is

slower, but for long distances the poor convergence requires additional explanation since

the probabilities are larger.

The poor convergence for long system lengths can be understood by examining the

bottom panel of Fig. 5.7. The relative frequency histogram indicates the spread of samples

in the standard ISMC simulations, which were conducted with eleven position targets

spread evenly throughout the bit-slot and at the left and right boundaries. The samples

are evenly spread throughout the interior of the bit-slot for all distances, but fewer samples

are clustered around the boundaries as the system length increases. For zL = 600 too

many simulations either get ahead of or behind the biasing, and end up either exiting

early and getting pushed to the center of the neighboring bit-slot, or get pushed back into

the current bit-slot (a situation which is shown in Fig. 5.8).

This issue can be ameliorated by using dynamic importance sampling [29]. That is,

we recompute biasing paths mid-simulation while a sample is being drawn as discussed

in Section 3.4. A demonstration of this scheme applied to laser simulations is shown in

Fig. 5.8. Eqs. (5.14) and (5.17) are re-solved during the simulation by changing the left-

hand boundary conditions to be the soliton’s current frequency and position, as shown

in the bottom left panel of Fig. 5.8. The biasing path expects the pulse to be at the

position of the dark grey pulse, but due to accumulated noise the pulse is actually that

indicated in light grey. Therefore, we correct the biasing path by solving the biasing BVP

using the frequency and position of the soliton shown with dark grey dashes, which is the

best-fit soliton to the noisy pulse, and use the resulting biasing path throughout the rest

of the simulation, or until the path is dynamically recalculated again. The criterion used
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to decide when to recalculate the pulse can be varied; one can recalculate the path after

passage through a fixed number of amplifiers or when the deviation between the expected

and computed positions is larger than some prescribed tolerance, for example. Here, we

choose to re-target periodically with a specific number of amplifiers between recalculations

in order to precisely control how many times the BVP needs to be solved, since computing

its solution is expensive relative to the computational costs of the Fourier split-step solver.

The convergence benefits of dynamic ISMC typically come from more tightly clustering

samples around a desired target [30, 36]. Here, dynamically re-calculating the optimal

path improves the number of samples that finish in the vicinity of the bit-slot boundary.

This can be seen for zL = 600 simulations in Fig. 5.9; using dynamic ISMC eliminates the

fluctuations in the C.V. near T (zL) = ±12.5.

Overall, performing ISMC in the overdamped region is mostly straightforward as the

biasing paths are typically similar in character and solving (and re-solving) the biasing

BVP is simple. Accumulated deviations from biasing paths cause poorer convergence for

exit probabilities at longer distances, but this can be counteracted by the use of dynamic

ISMC. Short simulation distances have very low exit probabilities, and require a large

number of samples to be resolved irrespective of the amount of recalculation. Dynamic

ISMC typically provides notable convergence benefits with a relatively low amount of

recalculation. Performing many path recalculations provides diminishing returns in con-

vergence, however, and greatly increases the computational cost. Performing simulations

to track the probability of exit directly as a function of system length zL confirms these

characteristics. These simulations are important as they directly address the formula-

tion of the position-slip as an exit problem, and are shown in Fig. 5.10, which go out
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Figure 5.8. A single sample trajectory with zL = 600 showing the effects
of dynamic path recalculation on pulse position. Top panels: a pulse and
its trajectory computed using ISMC without path recalculation. The pulse
lags behind the optimal sampling path (light grey in the right-top panel)
and approaches the saddle from a direction which causes it to be forced
back to the left, away from the exit target of T̂ = 12.5. Bottom panels: the
same noise realization as in the top panels is used in a sample drawn with
recalculation of the path every 200 amplifiers. Bottom left: the biasing path
recalculation at z = 400 showing the computed pulse, the pulse originally
expected by the biasing path, and the pulse used for biasing after the path
is recalculated. Bottom right: the sample trajectory in phase space again
showing the parameter random walk and the expected biasing path, which
is now piecewise-smooth due to the periodic recalculation. The pulse now
exits the specified interval and ends up much closer to the intended position
target.
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Figure 5.9. ISMC simulations for the overdamped case showing different
amounts of dynamic recalculation, and their effects on convergence, for
zL = 600 simulations. In addition to the black curve, which has no recal-
culation, curves showing simulations where the path was recalculated once
(at z = 300) or twice (at z = 200 and z = 400) are shown. Dynamic
ISMC concentrates more samples in the region of the bit-slot boundary and
improves the convergence there. The improvement in convergence between
recalculating the path twice versus once is small.

to zL = 600 with 1,000,000 total samples. The figure shows the overall exit probability,

i.e., the probability that T ≥ T̂ vs. zL. For an accurate exit probability estimate, the

P.D.F. for T (zL) must be computed accurately at and just beyond the exit point. The

non-dynamic ISMC simulations (black-solid) produce smooth estimates for intermediate

distances, and experience variance fluctuations for longer distances. Dynamic ISMC with

one path recalculation greatly improves the convergence, eliminating the fluctuations and

generally lowering the C.V. with the same number of samples. Recalculating the path

twice slightly lowers the C.V. level relative to one recalculation, but recalculating further

does not provide any noticeable additional benefit.
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Figure 5.10. ISMC simulations of soliton exit simulations in the over-
damped case, with varying amounts of dynamic recalculation. Top: the
probability density function of pulse exit probability as a function of dis-
tance. Bottom: the C.V. shows improved convergence for the dynamic sim-
ulations compared with the regular ISMC, with additional but saturating
benefit as more recalculation is used.

5.3.2. The Underdamped Regime

ISMC simulation in the underdamped regime is more difficult due to the oscillatory nature

of the biasing paths. The numerical solution of the biasing problem Eqs. (5.14) and

(5.17) involves making an initial guess, and then iterating to find a solution. While this

works well in the overdamped case, in the underdamped regime a generic initial guess

(for example, a constant or linear function) and use of the MATLAB boundary value

solver BVP4C does not always converge to a proper solution at every distance. When

optimal biasing solutions can be found, simulations for the pulse position P.D.F. can be

completed; examples are shown in Fig. 5.11. As before, the general trend is that ISMC
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Figure 5.11. ISMC simulations of soliton position in the underdamped
regime at 3 system lengths. Top panel: the probability density function
of soliton position T after propagation through zL amplifiers. Eleven posi-
tion targets were included throughout the domain (evenly spaced between
T (zL) = −12.5 and T (zL) = 12.5) with 100,000 total samples. Middle
panel: the coefficient of variation provides an estimate of simulation con-
vergence. Bottom panel: the raw relative frequency histogram of sample
location for each simulation.

simulations converge better for shorter than for longer distances. The distances with

good convergence are much shorter than before, however; by zL = 300, the C.V. near the

bit-slot boundaries exhibits significant fluctuations and we see that progressively fewer

samples fall in the proper range as system length increases, as shown in the bottom panel

of Fig. 5.11.

The reasons behind this behavior can be explored by considering Figs. 5.6 and 5.12. In

particular, the convergence of the exit probability simulations is good up until zL ≈ 200,

but past that point the convergence degrades. Furthermore, multiple locally optimal paths
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with similar actions appear soon after this, at zL ≈ 206. Multiple importance sampling

and other similar variants [75] predict that all events with similar probabilities must be

included in ISMC simulations, and omitting one or more similarly likely paths has been

shown to lead to convergence problems for the results [83]. This issue is observed here if

one performs ISMC simulations for the position P.D.F. at zL = 210, since this distance

has three distinct paths with similar action values, as shown in Fig. 5.13. Simulations

were performed to find the P.D.F. using the least action path, the two paths with the

smaller actions, and all three paths. One of the results was obtained using only the path

with the smallest action (the largest probability) and it is seen that this can substantially

mis-estimate the P.D.F. near the target. The simulation with one path converged to a

significantly lower estimate for the probabilities, while the simulations with two and three

paths converged to the same values. None of the three simulations converged quickly

(as measured by the C.V.), however, with the single path simulations having the worst

convergence.

Applying dynamic ISMC in the underdamped case is also more difficult than before,

again due to problems solving the biasing BVP. Performing dynamic simulations for the

full P.D.F. (i.e., with multiple position targets) for even intermediate distances does not

succeed as the boundary value solver fails to converge to a usable path sufficiently fre-

quently. The problem is not so severe for simulations of only the region around the exit

point (i.e., a single position target) and can be shown to be effective in some cases (e.g.,

Fig. 5.14), but the boundary value solver failure rate is an impediment for relatively long

distances (such as zL = 600) and there are many distances where dynamic ISMC appears

to not improve convergence.
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Figure 5.12. ISMC simulations of soliton exit simulations in the under-
damped regime. Top: the probability density function of pulse exit proba-
bility as a function of distance. Bottom: the coefficient of variation shows
good convergence for only the shortest system lengths.

In part, the issues with dynamic ISMC at longer distances is due to the multiple-

path phenomenon, and such considerations will be discussed in Section 5.4. However, not

all simulation distances past the onset of the oscillatory paths require the use of mul-

tiple paths in the simulation. Examination of Fig. 5.6 indicates that between roughly

250 < zL < 350 the path with one oscillation dominates the exit probability, for instance.

Dynamic ISMC is still difficult to implement at longer distances, however, and the frac-

tion of failed samples due to nonconvergence in the BVP solver is a persistent issue,

particularly for zL > 300. In a nonconvergent sample, the BVP solver, using the remain-

ing portion of the previously computed biasing path as an initial guess, fails to converge

to a prescribed tolerance. The convergence rate of the BVP solver can be considerably
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Figure 5.13. MISMC in the first region of multiple paths. Left top: a
zoomed version of the bifurcation diagram. Left bottom: the three paths
and their actions. Right: MISMC results using the three paths. The dark
grey solid curve uses only the global minimum curve, the dotted curve uses
the two paths with least action, and the light grey solid curve uses all three.
The P.D.F. of pulse position shows that using multiple paths provides a
substantial correction to the probability in the tail, though the convergence
in the C.V. is not very good regardless of how many paths are used.

improved, however, by updating the optimal path using a series of intermediate steps be-

tween the previously-computed path and the current location in (T,Ω) phase space if the

path recalculation initially fails (implementing a simple homotopy algorithm in this case).

While this approach is computationally expensive, the rate at which samples experience

a failed recalculation can be cut by an order of magnitude, as shown in Fig. 5.15. The

lowered failure rate makes dynamic ISMC effective in this longer propagation regime.
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Figure 5.14. ISMC simulations of soliton position in the underdamped
regime at zL = 160 comparing tail-only simulations using recalculation
every 40 amplifiers with simulations without recalculation. Top: the prob-
ability density function of soliton position T after propagation through zL
amplifiers. Bottom: the coefficient of variation reports simulation conver-
gence, showing that convergence is improved by very tight targeting at the
bit-slot boundary.

5.4. The Problem of Multiple Paths

As Figures 5.6 and 5.13 indicate, certain propagation distances in the underdamped

regime have multiple paths to exit. In order to resolve probabilities in such regions,

DMISMC is utilized. The goal of this simulation method is to achieve the improvements

in a narrow region of state space that come with DISMC, in a context where multiple

paths are unavoidable. We first seek to improve the results for the P.D.F. at distances

just past the point at which multiple paths appear, e.g., zL = 210. Note that combining

MISMC with dynamic recalculation requires simultaneously recalculating, using the same

intermediate position, both the path being currently being used to generate samples and
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Figure 5.15. Dynamic ISMC computed for zL = 330. Top: Regular ISMC,
dynamic ISMC, and homotopy-assisted dynamic ISMC simulations were
performed with ten path recalculations per sample for the dynamic sim-
ulations. This level of recalculation results in a very narrow spread of
samples around the intended target at the bit-slot boundary. Bottom: The
C.V. compares the three methods. Dynamic ISMC at this distance re-
sults in 50.3% of samples failing due to BVP4C nonconvergence, while the
homotopy-assisted method fails in only 3.5% of samples (failed samples were
discarded for the purposes of computing the ISMC estimates). This failure
rate limits the effectiveness of dynamic ISMC, but the much lower failure
rate of the homotopy-assisted method allows the convergence of dynamic
ISMC to be significantly improved.

all of the other paths, since dynamically updated versions of the latter are needed for

proper implementation of the balance heuristic [11, 75, 91]. The results at zL = 210

using one (technically using DISMC), two, or three paths, taken in order from highest to

lowest probability, are shown in Fig. 5.16 where each simulation method recalculates paths

every fifty-five amplifiers. The results again show that convergence is best when all paths

are included, and that using just one path is not sufficient; the one-path simulation still
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Figure 5.16. Dynamic MISMC with three paths. Dynamic MISMC is im-
plemented starting from each of the three paths from Fig. 5.13 with the
three path simulation without recalculation shown in black for comparison.
For each dynamic simulation, three path recalculations were performed for
each sample. The one-path simulation still converges to a lower proba-
bility than the two- or three-path simulations, while only the three-path
simulation shows improved convergence relative to non-dynamic MISMC.

converges to a substantially lower probability and the C.V. is markedly worse. The C.V.

for the two path simulation is also not improved relative to the non-dynamic simulation

(shown in black) while only the three path simulation shows the improved convergence

expected with path recalculation.

The multiple-path phenomenon in the laser model, when compared with the two di-

mensional random walk from Chapter 4, adds significant computational cost while re-

flecting some similar qualitative behavior. In the simple random walk, the calculation of

error paths was a trivial task, whereas here it is an expensive procedure that is subject

to failure, especially in the oscillatory underdamped regime in which the multiple-path
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phenomenon occurs. This motivates the fact that a significantly lower number of recalcu-

lations per sample were attempted in Fig. 5.16 than in Fig. 4.7, for instance. In theory,

a higher number of recalculations would increase the simulation yield near the bit-slot

boundary, and improve convergence. However, in practice, adding recalculations greatly

increases the computational effort of the problem as the boundary value solver can take

a large number of iterations to converge. It is also worth noting that in this case, once

the remaining distance shrinks sufficiently the three different paths all merge and become

identical. This path collapse phenomenon increases the difficulty of recalculation as it cre-

ates uncertainty over the number of possible paths when recalculating. In practice, these

simulations used the previously computed path as an initial guess for the boundary value

solver, and then defaulted to a found path if that failed to converge, but this methodology

becomes a bottleneck for the simulations when the number of recalculations increases be-

cause failed boundary value solves are computationally intensive. Ad hoc adjustments to

the DMISMC procedure, such as avoiding recalculations early on in simulations when it

is more likely that there are multiple paths, or using a homotopy method like the one em-

ployed in the simulations for Fig. 5.15 can improve such issues in specific circumstances,

but there does not appear to be a way to optimize recalculation performance in a general

setting without understanding the full landscape of possible paths in the biasing path

system.

5.4.1. An exploration of the path landscape

To gain an understanding of the global landscape of error paths, we created a lookup

table of solutions using the numerical continuation package AUTO (see [25]) to span the
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region of (T0,Ω0, zL) phase space where multiple paths were plausible. This region was

selected based on the results of previous ISMC simulations and a survey of locations at

which BVP4C failed to converge in those simulations. AUTO was used because even

though there are numerous other continuation software packages that are more user-

friendly, AUTO’s scripting interface allowed for exploration of a parameter space with

arbitrarily many dimensions. Other continuation packages such as XPP are best-suited

for exploration of a one- or two-dimensional parameter space [34]. Exploration of phase

space was accomplished by numerically continuing no-loop and one-loop solutions in lines

in (T0,Ω0) space at specified zL values between 100 ≤ zL ≤ 300, with the found solutions

at specified grid values saved into the lookup table. The solutions were then continued in

zL and the (T0,Ω0) continuation was repeated at zL locations divisible by 10 to complete

the table.

The path exploration yielded a number of insights about the multiple-path phenom-

enon. Locations in the lookup table where multiple paths were found to exist are shown

in Fig. 5.17. From this, we can see that multiple paths exist for starting locations other

than the origin in (T0,Ω0) phase space, and they are far more prevalent in the T0 > 0

half-plane. This is due to the onset of the one-loop path: it exists for distances shorter

than the origin onset-distance of zL = 206, but only for T0 > 0 and Ω0 < 0. Here,

Ω0 < 0 suggests that the pulse initially wants to move left, and there is a balance between

whether it is more likely for biasing to resist this and aim for a direct exit, or for biasing

to use these dynamics to sling-shot around the origin before exiting. A similar balance

is found for T0 > 0, Ω0 > 0, and longer zL where the starting point in (T0,Ω0) phase

space recommends a direct exit, but the longer propagation distance suggests oscillating
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Figure 5.17. Locations found in the lookup table where there were multi-
ple paths with at least 10% relative probability. The locations are shown
in (T0,Ω0, zL) phase space in the left panel, with the origin in (T0,Ω0)
phase space visualized as a vertical line for reference. In the right panel,
all multiple-path locations are projected into (T0,Ω0) phase space and are
overlaid on the mode-locking phase plane to give a sense of the dynamics.

around the origin once. Very few locations in the T0 < 0 half plane have multiple paths

as the mode-locking is working with the pulse here. In other words, there is no ambiguity

whether or not the pulse should pass the origin before exiting.

The qualitative dynamics ascertained by exploring the path location phase suggest

that a path appearance phenomenon may complicate dynamic ISMC simulations. For

example, Fig. 5.18 shows a possible trajectory constructed by examining solutions of the

exit problem in specific (T,Ω, zL) regions. In this situation, the starting point has a unique

exit trajectory, but as the solution evolves and is pushed away from the optimal path by

noise, a second path becomes possible (the dashed curves in the figure). Eventually,

the first path disappears and only the second path remains. Performing DISMC for

cases of this type presents a new level of difficulty, of course, as multiple importance
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Figure 5.18. A situation where the number of exit paths increases mid-
sample. A single exit path, with one oscillation (solid lighter grey), exists at
the outset of the sample with zL = 330, but the sample trajectory (lightest
grey curve) propagates into a region of (T0,Ω0, zL) phase space where a
non-oscillatory path is most likely (solid black). The point at which the two
paths are equally likely (dashed curves) is also depicted in between these
two points. This situation can be anticipated by considering numerically-
computed solutions of the exit problem.

sampling requires enumerating the different paths and keeping track of the likelihood

ratios for each of them. In the zL < 350 region in which DISMC simulations were

performed in Section 5.3.2, this problem did not manifest as the multiple-path locations

were not too numerous. However, for longer distances, we expect this problem to severely

curtail DISMC simulation. The reason for this can be seen by viewing Figs. 5.5 and

5.17 together. Multiple-path regions where the competing paths are no-loop or one-loop

paths are confined to T0 > 0 while the exit path from the origin is on the other side of

T = 0. Therefore, we hypothesize that the one-loop/two-loop competition region will be

for T0 < 0 as the two-loop path takes the pulse to the right first before oscillating twice. As
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the simulation distance increases, such competition regions will become increasingly dense

in the phase space around the origin, and it will be inevitable that some amount of samples

will deviate from the optimal path and traverse such regions. A general method capable

of tracking such situations properly would require combining a continuation/bifurcation

method with dynamic MISMC simulations. Such a combined method is beyond the

scope of the present thesis, however, and it is hoped that the preceding discussion of the

multiple-path phenomenon will provide a sufficient spring-board for future work.
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CHAPTER 6

Discussion

In this thesis we have shown that multiple importance sampling techniques based on

soliton perturbation theory can be extended to be a useful tool for the study of rare events

in mode-locked laser systems, which are of particular interest due to recent technologi-

cal developments in optical frequency metrology that depend on high-performance laser

sources. This rare-event simulation method allows fast and accurate simulation of these

rare events and their statistics which are difficult to compute with traditional Monte Carlo

methods. This method, which builds on previous work, does depend on the mathematical

structure of the equations and being able to use soliton perturbation theory to derive

appropriate approximate biasing schemes. However, many laser systems do in fact use

soliton or near-soliton pulses so this framework is a reasonable approach.

We have also shown that dynamic importance sampling is a useful addition to multi-

ple importance sampling techniques in situations where system dynamics make the tails

of probability distributions especially difficult to sample. In the laser model we consid-

ered two parameter regimes where dynamic importance sampling was used to target a

saddle point in order to determine the probability of a position slip. In the overdamped

regime, computing biasing paths was relatively simple and dynamic importance sampling

was straightforward to implement. In the underdamped regime, computing biasing paths

was considerably more difficult due to the oscillatory character of the biasing paths. In

order to sample the tails, we both had to target the saddle and escape from an oscillatory
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well, leading to biasing paths with differing numbers of oscillations coexisting at various

propagation lengths. This multiple-path phenomenon motivated the development and

implementation of methods blending dynamic importance sampling and multiple impor-

tance sampling. Such methods were verified with a toy problem where a random walk

was blocked by a wall obstacle, and the ability for the walker to go above or below the

wall was the basis for multiple paths.

These methods blending multiple and dynamic importance sampling were then applied

to the laser problem in regions where multiple paths have roughly equal probability. This

approach is computationally intensive, but it is a tractable resolution to the inherently

difficult problem of performing dynamic ISMC when multiple paths exist in phase space.

Not all distances in the underdamped regime had multiple paths, however, and at rela-

tively long distances a homotopy method was employed to recompute optimal paths when

only a single path was possible. We expect that as the propagation distance increases,

however, the increasing number of oscillations in the biasing paths will cause the multiple-

path phenomenon to become an ever-present concern, though these longer distances were

not explored in this work and such simulations should be the subject of future work. In

any case, we anticipate that the methods used here to resolve these difficulties can be a

guide to others when rare events arising from multiple paths are possible.
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APPENDIX A

Computing the Optimal Biasing Direction in General

Here, we derive the solution to the optimal biasing direction problem of Eq. (2.36).

Again, this problem is to consider the noise injected at a single amplifier as a perturbation

(called f(z, t) = f0(t)δ(z − z0)) and minimize the noise subject to a prescribed change

in the generic soliton parameter Y of ∆Y (the form of this constraint comes from the

linearized soliton parameter evolution conditions in Equation 2.35)

min
f0

∫ ∞
−∞
|f0(t)|2 dt subject to(A.1a)

Re

∫ ∞
−∞

v∗Y e
−iΘf0 dt = ∆Y.(A.1b)

Using large deviation theory, this problem can be thought of as minimizing the Wentzell-

Freidlin least action functional in modified form [38]. This problem was also addressed

in [73], but without the phase sensitivity in the constraint. The solution to this problem

is computed by formulating a functional that incorporates the side-constraint with a

Lagrange multiplier λ following [40]. Therefore, let

(A.2) M =

∫ ∞
−∞
|f0|2 dt+ λRe

∫ ∞
−∞

v∗Y e
−iΘf0 dt

be the constrained functional where we have used the identity that the real part of a

quantity is equal to half it plus its conjugate. Note that M,λ,Θ ∈ R and vY , f0 ∈ C so

let’s split vY and f0 into real and imaginary parts via vY = vr + ivi and f0 = fr + ifi.
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Now, M can be rewritten solely in terms of real quantities and we can take the real part

to get

(A.3) M =

∫ ∞
−∞

(f 2
r + f 2

i ) + λ
[
(vrfr + vifi) cos Θ + (vrfi − vifr) sin Θ

]
dt.

Then we take variations to get a system of Euler-Lagrange equations

δM

δfr
= 2fr + λ(vr cos Θ− vi sin Θ) = 0,(A.4a)

δM

δfi
= 2fi + λ(vr sin Θ + vi cos Θ) = 0(A.4b)

whose solution is simply f0 = −λ/2 vY exp(iΘ) after recombining real and imaginary

parts. The value for λ is then determined by plugging this value of f0 into Eq. (A.1b).

Doing so gives

(A.5) − λ

2
Re

∫ ∞
−∞
|vY |2 dt = −λ

2
||vY ||2 = ∆Y

or λ = −2∆Y/||vY ||2. Therefore,

(A.6) f0(t) = ∆Y
vY (z0, t)

||vY (z0, t)||2
eiΘ(z0,t)

is the optimal direction for the noise to take. In other words, the most probable noise

direction is in the direction of the adjoint soliton mode in phase with the soliton.
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APPENDIX B

Running Monte Carlo Simulations in Parallel Using MATLAB

Monte Carlo simulations are trivially parallelizable. A Monte Carlo simulation consists

of running a process many times and combining process outputs into relevant statistics at

the end. This simulation method lends itself to parallel computation as the order of the

samples does not matter, so they can be apportioned among a number of workers easily,

with each sample taking place on one worker. MATLAB provides parallel architecture

for running Monte Carlo simulations in parallel using a parfor loop [69]. The iterations

of the loop are assigned, in a nondeterministic manner, to each run on one of a number

of available workers. The iterates can be said to run in a nondeterministic order as the

ith iterate in the loop may run on the kth worker in one execution and run on a different

worker in another. The iterates also do not run in order: the last iterate in the loop may

run before the first, and so on.

When using a parfor loop, the data structures that pass into the loop and that pass

out of the loop are restricted. For example, an array that is written-on during the loop

must be “sliced” so that no two iterates in the loop can write on the same index in

the array. The trickiest consideration for running MC simulations using a parfor loop

is initializing the internal state of the random number generators that MATLAB uses.

When MATLAB creates a pool of parallel workers the internal states of the workers are

created in a predictable way. Therefore, repeatedly executing the following MATLAB

code
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mypool=parpool(4); % create parpool

parfor i=1:imax

disp(rand)

end

delete(mypool);

generates and displays the same values. This is obviously problematic for Monte Carlo

simulations as it undermines statistical independence between simulations. The samples

within each simulation (i.e. each time a parallel pool is created) will be statistically in-

dependent, but running the same simulation script twice will produce the same results

twice. Using the usual expedient of “rng(‘shuffle’)” is also ineffective. Putting the shuf-

fle command above the parfor will have no effect on the states of the random number

generators within each worker, and putting the shuffle command inside the parfor loop

will cause problems as well. The shuffle command seeds the MATLAB random number

generator with the current system time, and two workers may each start iterations at the

exact same time, making the results of those two iterates identical.

A workaround used frequently in the code for this thesis, which is not guaranteed to be

the simplest or most elegant solution to this issue, is to create a “parallel pool constant”

to pass the state of the random number generator of the client into each of the parallel

workers. Additionally, the creation of a “random number stream” in the client before

so-doing allows each worker to have its own independent state that will be independent

over samples and over simulations. MATLAB’s documentation presents the passing of

such a random number stream as a way to ensure repeatability of the simulations, but it

also allows the simulations to be seeded with the state of the random number generator

on the client. The base of this code can be executed via the following code.
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mypool=parpool(4); % create parpool

rng(’shuffle’) % shuffle the rng on the client

s=rng; % save the resulting state of the rng seed into memory

sc = parallel.pool.Constant(RandStream.create(’mrg32k3a’,’Seed’,s.Seed));

% The above creates the random stream as a parallel pool constant called sc

% ’mrg32k3a’ is the MATLAB default rng for parallel simulations

% The random stream has been seeded with the seed from the client

parfor i=1:imax

stream = sc.Value; % access the parpool constant

% grab the portion of the random stream for this iterate

stream.Substream=i;

% set the rng in this worker accordingly

RandStream.setGlobalStream(stream);

disp(rand)

end

delete(mypool);

Lastly, it should be noted that this random stream method does not impede the ability

to make simulations reproducible. A slice-able struct array may be used in the parfoor

loop to save the state of the random number generator’s state in each worker before the

sample is generated, guaranteeing that any sample can be recreated later. Therefore, the

struct array must be preallocated before the parfor loop, and the state of the rng should

be saved in each sample after the global stream is set.
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APPENDIX C

Inequality Constraint in the Wall Walk Model

The treatment of Eq. (4.2) in Section 4.1 was imprecise in that it assumed the optimal

path touched the top or bottom of the wall, rather than strictly obeying the inequality

condition. The precise way to treat this condition is to define a slack variable and then use

the Karush-Kuhn-Tucker conditions [64]. Let’s treat the positive case y0 +
∑N1

i=1 ∆yi ≥ h

(the negative case is similar). Define the the slackness variable s = y0 +
∑N1

i=1 ∆yi − h

and then replace the inequality condition in Eq. (4.2) with y0 +
∑N1

i=1 ∆yi − s = h and

s ≥ 0. Then add three Lagrange multipliers for each of the equality constraints to form

a function

Z =
N∑
i=1

{(∆xi)2 + (∆yi)
2}+ λ1

[ N1∑
i=1

(∆xi)− (xB − x0)

]

+ λ2

[N−N1∑
i=1

(∆xN1+i)− (xF − xB)

]
+ λ3

[ N1∑
i=1

(∆yi)− (h+ s− y0)

]

and take derivatives with respect to ∆xi,∆yi, and the Lagrange multipliers λi as before.

Since we’ve introduced an extra variable s and a concomitant inequality condition for s

we also have to check the “complementary-slackness” condition [64]

(C.1) s
∂Z

∂s
= 0.
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Now ∂Z
∂s

= −λ3 = −2(y0−h−s)
N1σ2 , and since Eq. (C.1) implies that either s = 0 and the

inequality constraint is binding, or ∂Z
∂s

= 0 which implies that s = y0 − h and therefore

N1∑
i=1

∆yi = 0.

Furthermore, following the equivalent steps as in Section 4.1 shows that, in fact, ∆yi = 0

for i = 1, . . . , N1. Therefore, the main effect of the inequality constraint is to introduce a

second type of biasing path in the case when |y0| > h. This biasing path is very intuitive

in construction. Since the walker is above (or below) the wall, the walker is not impeded

by the wall and only needs to take steps directly towards the target to the right of the

wall.
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