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ABSTRACT

A model of the demand for freight transportation is

developed. It incorporates service differentiation, multiple

modes, and multiple markets in a spatial price equilibrium

framework. Included in service differentiation are modal

characteristics such as transport rate, speed of delivery, handling

and loading costs, loss and damage, equipment availability and

variation in scheduled transit times.

The model is applied to the following problems:

- The characterization of the shipper's optimal mode-

market patterns of distribution.

- The assessment of a regulatory policy (flexible transport

rates) on long run intermodal competition.

- The examination of two econometric models for estimating

the demand for grain transportation (regression models and

qualitative choice models).

The analysis indicates the following: It is generally optimal for

shippers to ship by more than one mode to more than one market;

Service differentiation tends to ameliorate the effects of increasing

returns-to-scale on intermodal competition; The application of

choice models to freight demand estimation is a viable alternative

to standard regression models and appears to be easier to apply.



 



1. Introduction

It has long been recognized that in its simplest form the
demand for freight transportation is derived in part from a pro-

cess in which spatially separated markets engage in trade that
results in the physical movement of goods from one market to an-

other. The equilibrium concept that has evolved to explain the
behavior of the flow of trade and the goods-prices in such markets

is called spatial price equilibrium. This concept can be extended

to reflect the interdependence between spatially separated markets

and the transport sector.

The basic theory of spatially separated markets has generally

treated the transport sector as though it provides a homogeneous

service that is available at a constant transport rate. Examples

of this approach include Enke [6], Samuelson [14], Smith [16],

Takayama-Judge [18], and Silberberg [15]. This view is obviously

unrealistic. Rather, the transport sector is comprised of alternative

modes that offer differentiated transport services (e.g., speed

of delivery, reliability, damage, etc.) at different transport rates.

A notable departure from the view that transport is a

homogeneous service available at constant prices is Stucker's

econometric model of transport demand [17]. In this study he

extends the basic spatial transport model to include several

modes with differentiated service characteristics. His analysis

deals mainly with the two mode case in which service differences

are absorbed into the transport costs incurred by the shipper.
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In section 2 of this paper we present a theory of demand

for freight transportation. It incorporates service differentiation
in a multi-mode, multi-market model. Included in service differen-
tiation are modal characteristics such as supply price, speed of

delivery, handling and loading costs, loss and damage, equipment

availability and variation in scheduled transit times.

In this section we show that in general, it is optimal

for a shipper to split modes and markets in his distribution

pattern. In other words it is usually not optimal for shippers

to send shipments by only one mode to one market. This implies

that demand for transport, which is derived, is complex and embodies

not only a modal rate but characteristics of all the modes

and markets. Modal demand is derived and conditions for market

equilibrium are examined.

In section 3 the model is used to analyze a regulatory

policy: flexible transport rates. A dynamic model shows that

differences in the quality of service provide conditions under

which stability of intermodal competition may obtain in the face

of increasing returns-to-scale in a monopolized mode. Thus,
econometric studies concerned with such issues must include

degree of service differentiation along with measures of the

extent of returns-to-scale in order to actually assess market

power.

Finally, section 4 examines two econometric models for

estimating the demand for grain transportation that can be derived

from the theory in section 2. The first model, using regression,



- 3 -

embodies mode-market splitting. It is argued that this approach

faces serious data problems and that misspecification error is

highly likely. A second approach, based on qualitative choice

models (i.e. logit) is examined. The approach reduces the data

acquisition problem and avoids some of the misspecification.
issues inherent in regression analysis.
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2. Multi-modal Spatial Price Equilibrium

2.1 The Two-Market, One-Mode Case

Consider a single homogeneous commodity that is bought

and sold in either of two spatially separated markets, A and B.

Let SA(pA), DA(pA), Sg(pB) and DB(pB) be the supply and demand function,
for the two markets where pA is the price in market A and pB is the
price in market B. As shown in Figure 1, we assume that

pb > PA where SA(pA) = DA<PA) and SB(pg) = DB(pg), i.e. pA and
PB are prices that clear their respective markets. Now let
VPA' = VPA' - VPA' and W - VPB> - sB(PB>>
i.e. Qa(pa) is the quantity of the good exported by market A
at price pA while Qb(pb) is the quantity of the good imported by
market B at price pB- Given that the demand and supply functions
in both markets are continuously differentiable, monotonic and

that S/ > D/, S' > D' (i.e. Walrasian stable) then we can inverta a £> b

Qa(p^> and Qg(pB). We will label the new functions ?A(QA) and
Pb(Qb)- Clearly, PA > 0, < 0.

Figure 1 is a standard representation of the supply and

demand curves in the two markets (Samuelson [14]). We can determine

the level of exports and imports and their corresponding prices from

the excess supply price and demand price curves PA(QA)s
Finally, to avoid pathological cases we assume that there exists

some quantity Q such that PA and Pfi intersect, i.e. ?a(Q) = PB(Q)-
If only one type of homogeneous transport service exists

between the two markets then the analysis is straight-forward.
Let Q = ST(pT) be the supply function for transport service,
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Market B

PA«A>

Market A

MARKETS FOR THE COMMODITY

Figure I
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i.e. Q units will be shipped from A to B at rate p^. If pT = 0
/"N>

then from above we know that the demand will be for Q to be

shipped. On the other hand, if Pp = Pg ~ P^ there will be
no demand for transport service. In general the demand for

transport service is found by subtracting P^(Q) from Pg(Q)
(since = Q = Qg). Figure two displays the resulting transport
sector market equilibrium solution. In equilibrium the transport

rate is p^,. Thus Q units are transported from A to B. This means
that the price in A is P^(Q~) and the price in B is Pg(Q~).
Therefore we can find the quantities of goods produced and sold

in all markets. Given elasticities of the supply and demand functions

in the two markets one could calculate the elasticity of transport

demand (Kobe [ 7 ]). One could also pose the supply of transport

as monopolistic (Orr [12]). Later in the paper we will examine a

problem in partial monopoly. First, however, we will extend the

above to multiple modes. This extension is critical since transport

service is not homogeneous but is provided by many forms of technology

and is differentiated in its provision. Initially we will assume

that modes differ in speed of delivery and have different supply

functions. Later we will add other service characteristics.

2.2 The Two-Market, Multi-mode Case

2.2.1 The Goods-Producers Problem

Assume now that every shipper in A can choose to ship
goods to B by M different modes. We will assume that the modes

are differentiated in terms of their supply price function



*

TWO MARKET, ONE MODE EQUILIBRIUM

Figure 2



(Pnj(qm) for shipping qm from A to B) and speed of delivery
(Tm,ra=l,...,M). Speed of delivery is a service characteristic;
the faster the mode the more valuable the service.

In particular, since a shipment sent to B is sold Tm time units
later than it could have been sold in A, we will assume that the

return from B is discounted when comparing it to A. The nth

goods producer in A takes as given the commodity prices

the transport rates on each mode, pm,and the interest rate r.
His problem is to produce total output qn at a cost Cn(qn), sell

q^ in A and ship q^ to B by mode m. Thus the optimization
problem for the nth firm is

It can be shown (see [3 ]) that the firm's optimal distribution

MM
max Pac£ + Z PBe- Z pm<£ - Cn(,n)

m=1m= i

M
S.T. (a) qn=q£+ S q£

m=l

<b> ^m — 0

conditions are (the optimal production condition is Cn(qn) = P )
A

(1) PBe"rTmq£ - PAq° +

(2) PBe-rTm < PA + pn m=l M

(3)



- 9 -

Condition (1) states that a profit maximizing goods producer

uses the mth mode up to the point at which the discounted revenue

from B just equals the opportunity costs of not selling in A(P.qn)A ^

plus transport costs Condition (2) is a marginal condition

such that any incremental quantity shipped on mode m yields

opportunity costs plus transport costs (PA+p ) at least as

great as discounted returns, Pge m* If (2) does not
hold then profits can always be increased by shipping an

additional unit by the mth mode.

2.2.2. Market Equilibrium Conditions and the Demand

for Transport Service

In this section we show that conditions analogous to ]£l)-(3)

can be used to define an equilibrium for the whole economy. Let

q be the amount carried by mode m. Clearly the total flow

Q(=Q^=Qg) is simply Sqm^ We will say that q^,...,qM are equilibrium
m

flows if they satisfy the following conditions:

(4) S +
m=l m=l

(5) PB(Q)e"rTm < Pa(Q) + pjq^
<6> > 0

Assuming that Pm(qm) arises from profit maximization in the transport
firm and that it is monotonically increasing and continuous then

it can be shown ([ 3 ]) that (4)-(6) has a unique solution. When

this solution is found it sets prices so that each goods producer

can maximize profits. Thus all possible gains are arbitraged

away and the solution is an equilibrium.
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Let Q be any total flow between A and B and let

vq) = vQ)e"rTm~ Vq)
R (Q) is the unit differential return associated with a unit sold

m

in B versus A. We can now derive the demand for transportation

by mode m. Under perfect competition (in the goods market)
R (Q) would be the goods producer's demand price (p®) for mode

th
m transport. In response to this offer, the h transport firm

Vl "/*

offering mode m service carries q " units which is the solution toMil

D h J\, h>.
max pa - C (q )mnm mNnm

■l.

with C (•) a standard (increasing marginal cost) cost function,
m

Thus total modal supply is

S
_ y h*q — Zj qHm

^ Mm
i.e. it is the sum of optimal quantities supplied by all firms

offering mode m service. Thus, the quantity demanded of any mode

i is simply the difference between the total flow Q and the total

that would be shipped at the respective demand price (p^) by all
modes other than ±, i.e.;

M

q? = max[0,Q - S q^}
m^i
m=l

Figure 3 depicts the method of finding price-quantity pairs

(p?,q?). We will call the set of price-quantity pairs (P£>q?
have been defined above the residual demand curve for mode i.



To obtain mode one To obtain mode two

demand curve solve

(R-LCQ),R2(Q)5P2<q2) Siven):

P]^ (li+cl2 ^

demand curve (not shown) solve

(R-^Q) ,R2(Q) , P^(qi> given):
g

?1 (^2^ ®"2 fa1^2^ P2 (^2^ ^2 ^1i+cl2^

DERIVING MODE ONE'S DEMAND CURVE

Figure 3
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It should be emphasized that this demand relationship was not

derived in the standard fashion in that prices on the modes were

allowed to vary (as Q varied). The approach is valid since the
choice of mode by a goods-producer is assumed to depend only on

a profit criterion, i.e. the mode that is best (including speed
of delivery considerations) is the one that is used. In ([3 ]) it
is shown that the resulting residual demand curves are downward

sloping as one would expect. Figure 4 depicts the demand and

supply functions for a two-mode model. The starred quantities
and prices are the equilibrium solution.

2.2.3 Two-Market, Multi-mode Case Summary

Before proceeding to the multi-market case and the

inclusions of other service characteristics, it is best to pause

and summarize the last few sections. The development of a

multi-mode model required the inclusion of service characteristics.

We have used speed of delivery as a surrogate and have incorporated

it in a simple and direct manner. The result is that demand curves

are significantly more complex. They embody not only the

characteristics of the mode in question, but of the other modes.

This is a crucial point. Transport can not be approached in the

same way we estimate commodity demand. Estimation procedures

must account for alternative mode characteristics and prices as

well as commodity characteristics.
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RESIDUAL DEMAND CURVES

Figure 4
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2.3 The Multi-Market, Multi-Mode Case with Firm-Level Modal Splitting

2.3.1 The Goods-Producers Problem

In this section we will expand the model to allow for

multiple markets, other service characteristics such as physical

reliability (e.g. loss and damage) and schedule reliability (e.g.
late arrival) and to include special costs such as loading and

handling costs. The overall result is that an individual firm

will in general find modal and market splitting optimal. Thus,

in general it will be optimal to send shipments to different markets

and by different modes rather than ship all output to one market

by one mode. This result is in contrast to the standard, traditional

assumption that in perfect competition the individual goods-

producing firm will choose one market and one mode to use.

Formulation of the goods producers problem requires us to

expand the notation from before. Let be the price for the

good in market j (j=l,...,J) with i representing the home market.

Let q"jm be the amount sent from i to j by firm n at i by mode m
which services the (i,j) pair. Let T.^m be the time it takes to
go by mode m from i to j(T..m=0). In a slight change of notation,
let t£jm be the transport rate charged for sending a unit of the
good from i to j by mode m (t^nT0) • The reason for this change
will become apparent later. Let q? be the total amount of good

produced by firm n at location i; we assume that the associated

cost function C?(-) has the standard neoclassical properties.

If we were to formulate the goods producers problem at this

point it would be exactly like the formulation in section 2.2.1

save for some extra subscripts. We are in a position, however,
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to consider more service characteristics than simply the speed

of delivery. Specifically we will incorporate costs of loading

and handling and costs associated with schedule and physical

reliability.

In the case of loading and handling we take such costs to

be represented by a function of the amount shipped i.e. The

function notation will be (.). We assume that such a function
nL

is strictly convex with only positive derivatives, i.e. ' > 0>

^Hijm^ " > ® * Thi-8 function gives the cost associated with taking
a finished product and loading it on a specified mode to go to a

specified market. The strict convexity reflects the fact that as

more is loaded we typically observe congestion costs being imposed.

We emphasize that strict convexity is not required for what follows.

In the case of physical and schedule reliability a more

detailed mathematical treatment is warranted. By physical

reliability we are referring to loss and damage. By schedule

reliability we mean the effect of equipment availability and

transit time variance on the ability of a goods-producer to deliver

a shipment to a receiver on a promised date. Both types of

reliability introduce the notion of risk into the decision as to

where to ship and by what mode. One could, in fact, view the

selection of market and mode as a portfolio problem of investment

in risky assets. Extending the analogy we see that modal and

market splitting is then to be expected, since diversification

will help ameliorate the risk.
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R
To account for risk we will describe a function

of the amount sent from i to j by firm n on mode m. H.. (•)

is the risk function and reflects the cost of an insurance policy,

purchased in a perfectly competitive insurance market, that pays

all penalties for late arrivals and reimburses a recipient for

loss and damage sustained by the goods. In agricultural terms

loss and damage is sometimes referred to as shrink, i.e. a certain

fraction of a corn shipment is lost due to settling, etc. In

general, the insurance policy reflects the cost associated with

transporting the commodity between two locations by some mode.

Clearly such a cost is a function of the (i,j) pair and the mode.

positive first derivative. We will first introduce some notation

which reflects the mode-market attributes and then supress the

be a random variable reflecting the percentage loss and damage

incurred by shipping a unit of good from i to j "by mode m. For

simplicity of exposition we assume that it takes on two possible

values:

R
We shall now show that H.. (*) is strictly convex withljmv ' J

®ijm with probability 1 - d..

0 with probability

Thus if y^jm is the amount of goods received at j that were sent
by firm n at location i by mode m then

" C1 "
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Furthermore let be the per unit penalty cost for lateness of

arrival. Such lateness of arrival can come about from failure of

modal equipment (railroad cars, barges, etc.) to be available
when promised or from variance in scheduled modal transit times.
We assume simply that a shipment is either on time (with probability

fi-m) or late (with probability l-f^m) in which case the per unit
penalty K must be paid. Thus while the premium, mCqjm)
for shipping q"jm> i-s paid with certainty, there are two types of
losses that the insurance company might incur. The first is that

they might have to cover the market value of the loss and damage,

namely (q"jm-y^jm). The second potential loss is the penalty
cost K.q?. .

Insurance companies (one of which might represent the goods-

producer himself as a self-insurer) are assumed to be risk-averse.

In other words, we assume that they can be represented by a neo-

classical utility function which is increasing and concave as a

function of money. Let U(.) be such a function. Thus U'(-) > 0,

U"(•) <0. Thus the insurance company is risk-averse. We assume

that the insurance company maximizes expected utility i.e. it

solves:

max E{U(H(q) - P(q-y)-Kq)}

where subscripts have been dropped to facilitate the analysis.

If the insurance market is perfect then the company will be

indifferent between the maximum expected utility above and the
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utility of no transaction U(0). Thus we have that in equilibrium:

(7) U(0) = f•d•U(H(q)) + f(1-d)-U(H(q) - P(q-y))
+ (l-f)-d U(H(q) - Kq)
+ (1-f)(l-d)U(H(q) - P(q-y) - Kq)

If we now totally differentiate (7) and solve for H'(q) we find
that it is positive:

p"ef(l-d)U9' + (l-f)dU'.K+(l-f)(l-d)U/* (Pe+K)
H'(q) = A 2 ± > o

fdU^+f (1-d)U2'+ (1-f) dU3'+ (1-f) (1-d)U4'

where to simplify the notation we have used:

Uq = U(H(q))
U2 = U(H(q) - P(q-y)) = U(H(q) - Peq)
U3 = U(H(q) - Kq)
U4 = U(H(q) - P(q-y) - Kq) = U(H(q) - P"0q - Kq)

Thus, as the shipment size increases, the premium increases.

Totally differentiating (7) a second time yields the result that

H"(q) is also positive. Thus, in general, H.. (*) is strictly
n

convex in q. . .
u. jm

We are now finally in a position to formulate the goods -

producers problem. For firm n in location i choosing among modes

and markets, the producer will find -m) that solves (given
P.,r,T.. and t.. ):

J ' ' ijm vjnr
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(8) .ax + £ rt(P.;rIy- - - C»(,»)
(9) S.I. ,J- S 2,°, + ^ >0

J 7*1 m J

(10) ^ 0 m=l> • * •

where H?. (q?. ) = H1?^ (q". ) + H?. (q?. )ijm^ijnr rjmVMi.jm/ rjm^rjnr

Note that production for the home market q"^ is unconstrained.
Under some conditions we will choose to sell in the home market

while in others we might choose to buy (and ship). The Kuhn-

Tucker conditions are (after substituting (9) into (8))

qj(pi-c"(qj)) = 0

q°. ((P.e 1j,n - t.. - H?.' (q?. ) - P.) = 0 Vj ,mijm J ijm rjmVHrjm/ i/ J'

q? - (q". + 2 2 q?. ) = 01 11 j^i m

q". >0 Vj ,m q? > 0Mijm — J —

P.e rTljm - t.. - H?.' (q?. ) - P. < 0j ijm ijm^rjm' i —

Thus, for positive q£jm we have
-rT. .

(11) P.e ljra - t.. - H?. (q?. ) = P. = Cn (q?) vj ,tnv ' j ijm ijmVMijiir r ^ "J,UI

2 2

j¥i m
<12> "it • ■ .5, 2 <kjm
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The firm can be thought of as being involved in the following

sequence of activities. First, it decides a production level by
n' n

solving P^ = (q^)• Then it equates marginal revenues and costs
among the various mode-market pairs. Finally it decides how much

to sell or buy in the home market so as to complete its plans.

Notice that the left side of (11) is downward sloping due to the

nature of H.^. A graphical solution is shown in Figure 5. As
long as the mode-market marginal curve intersects the price axis

above P^, then flow is positive. If any marginal intersects
the axis below P^ then the associated variable will be zero
and its associated Kuhn-Tucker multiplier will be positive.

Clearly, unless one mode-market pair completely dominates

all others, mode-market splitting will occur.

2.3.2. Market Equilibrium Conditions

It is now quite simple to write down the market equilibrium

conditions. All conditions are written on the assumption that we

have a given home location, namely market i. Then q^ = (^xil'"* *'^iJM^
is an equilibrium vector of flows if it satisfies (vj,Vm)

0iWWe~rTlJln " - W' - 0

PjMj).""^" - P.CQp < tljm(qijn) +

"ljm 2 0
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INDIVIDUAL MODAL SPLITTING IN A MULTI-MARKET,

MULTI-MODE FRAMEWORK

Figure 5
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We have assumed that one can aggregate (by summing inverses)

H?. (q". ) over firms to produce H.. (q.. ). It should be notedrjmxnijm' r ijmNnijm
R

that is already at an aggregate level and it only remains

to aggregate over all firms. We note also that the above

conditions are of the same form as the previous model if we set

Pijm^ijm) s tijm(<Iijm) + ^'jm^ijm^ i'e" we associ-ata tha direct
transport costs with the indirect imposed costs, for

convenience of exposition. Finally the demand curve for using mode

m service to ship goods from i to j is found by solving:

p?. (q.. ) = R.. (Q. Q.)rijmVHijm/ rjmvxi,xjy

Pi/k^iJek5 = Riik(Qi'Qp Vk such that

where

Xvk

,m)

-rT. .

R.WW " pj(Qj)e lJ,°" W

Pijm^ijm^ Pijm^ijnP

Qi = S (qJ-qJi)
n

Q- = S q. .J i,m «■"
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3. An Application to a Policy Question

3.1 Introduction

In this section we will examine a proposal for regulatory

change using the analytical structure developed in the previous

section. We will assume that two modes exist to transport goods

between two spatially separated markets that trade in one

commodity. One of these modes will represent a single-firm

industry (e.g. a railroad) while the other will consist of perfectly

competitive firms (e.g. owner-operator trucks). For simplicity

we will assume that the service differentiation is sufficiently

summarized by speed of delivery .

Our basic policy question is whether long run intermodal

allocation of freight can be maintained when all modal prices

are flexible. While we do not provide a simple answer to this

question, our analysis does provide some insights. Specifically,
differences in the quality of service provide conditions under which

stability of intermodal competition may obtain in the face of

increasing returns-to-scale in the monopolized mode.

3.2 Short and Long Run Equilibrium

As stated above, the first mode is represented by a single
firm while the second mode consists of a large number of small

competitive firms. Let x be the number of mode two firms. In

the aggregate they haul q2« Thus we can write the system of equations
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describing the demand for mode 1 service as

pjcqq) = R1(q1+<i2^
p|(q2,x) = R2(q1+q2)

We assume that

s a?2 „

P2,q s

S
, , n

^2,x dx

Thus additional firms entering the market to provide mode two

service shift the supply curve to the right, lowering supply

price. In the short run the number of competitive firms is fixed.

Thus a short run equilibrium is conditioned on the number of mode

two firms. Formally, the short run equilibrium E(x) is the

equilibrium set of transport prices and quantities

E(x) - fp^(x),qj(x),p2(x),q2(x>]
where E(x) satisfies:

(13) pj(q^(x)) = R-j^q^Cx) + q2(x))
(14) p2(q2(x),x) = R2(q^(x) + q2(x))
(15) MR1(q^(x)) = MC1(q^(x))
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where p£(x) = p°(q^(x)) and p^(x) = pj^q^x^x). This equilibrium
is illustrated in Figure 6. Equations (13) and (14) are the demand

curve (mode 1) equations while (15) is the first order condition

for mode one profit maximization. In other words, in the short

run the market is in equilibrium when the dominant firm (mode one)

is setting price optimally such that the market for the competitive

mode is cleared and such that the goods markets are cleared.

Equations (13)-(15) embody this.

Note, however, that the short run equilibrium price in mode

two (P2) may not equal the minimum long run average cost (c ).
Here we will assume that this minimum is the same for all firms

offering mode two service. If P2 ¥ c then there is an incentive
for entry or exit, which means that the number of firms will

change. Let xt denote the number of competitive firms in period t.

We will describe a simple entry-exit process such that if p^ > c
"jV

firms enter and if P2 < c firms leave. It is:

(16) xt+1 = f(xt) = xt + h(p*(xt) - O
where h(0) = 0 and h" > 0.

Thus if we start with xQ firms then the short run equilibrium
is E(xq) with prices P1(xQ), P2(x0)- The number of firms in mode
2 now adjusts (if p^x^c ) and we get ^ = f(xQ) firms. This
determines a new short run equilibrium E(x^) and so on. A sequence
of short run equilibria {E(xt)}t=0jlj_ is generated. The natural
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SHORT RUN UNREGULATED EQUILIBRIUM

Figure 6
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question concerns whether (and when) this sequence settles down
to a long run equilibrium. A long run equilibrium is attained when

it
there is some number of firms x* that doesn't change from period

I
to period (no net entry or exit). Thus we are interested in when
x"= f(x"). This occurs only when P2(x ) = c . Since in general
we can assume that there is a value of c such that for some value

J-

of x" the equality is true, then we can generally assume that

there is at least one long run equilibrium in which both modes

are represented.

3.3 Stability of Intermodal Splitting

In this section we will explore a (sufficient) condition

for stability. This condition is derived in ( [ 4 3). It can be

shown that a sufficient condition for stability is |f '(x")|<1 ([13])
This implies that a sufficient condition for stability is

2 <I>2 cTR2> P?'
(17) ^—— < 1 < 0

h'(0)p2,x R2 ^I'-MCl
Q

In general, if h/(0)p2 x is small then we would expect the
left hand inequality to be satisfied, h '(0) is small if entry

and exit takes time and is not instantaneous. If small changes
in the number of mode two firms does not cause radical shifts in

s
supply, then |p2jX| will be small. Thus, one would expect the
left hand inequality to be met.
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The right hand inequality holds if and only if

MR^ - MC^ - p^ ' <0. This is true since second order conditions
for firm one profit maximization require MR^ - MC^ < 0. This
condition is, unfortunately, far from straight-forward. In order
to examine it for policy conclusions, we will assume that the
demand function is linear. This is not quite as restrictive as

it might first appear for at least two reasons:

1. Linearity provides the starkest of cases. Highly
non-linear functions in fact tend to increase the number

of stable solutions rather than reduce them.

2. Linearity of demand is often used in econometric studies
and our results will provide a caution concerning the

results of those studies.

D D'
If p-^ is linear then MR-^ = 2p^ , and the condition reduces

D '
to p-^ - MC^ < 0. Clearly when marginal costs are increasing,
this condition is always met, i.e. stable intermodal competition

obtains. Traditional theory however, indicates that when marginal

costs are decreasing one should not expect stability. The reason

that this is not necessarily correct is that it ignores service

differentiation. It can be shown (see [ 4 .]) that even with

decreasing marginal costs service differentiation acts as a countering*

force to what would otherwise be a destabilizing influence.

To be slightly more specific, it can be shown that if marginal

costs are only somewhat declining then in fact the competitive

mode must not provide service that is significantly superior to the
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monopolized mode if stability is to be maintained. As marginal
costs decline more rapidly the maximal separation in service is

reduced until with rapidly declining marginal costs stability is only

consistent with significantly superior service on the monopolized

mode.

3.4 Policy and Research Implications

What does all this mean with respect to transport policy

and research? A couple of implications are the following:

1) Increasing returns-to-scale, in and of themselves,

do not necessarily mean that the only way to provide

for stable multi-modal service is to regulate the

monopolized mode's price. Service differentiation can

act as a strong brake on market power. In fact, if

the monopolized rate is set so that the competitive

rate is above long run average cost for the competitive

mode, competitive mode entry will be encouraged. As

long as this situation continues the residual demand

for the monopolized mode will fall, eroding its market

share (see [4 ]). Thus regulation of the rate may,

in fact, lead to eliminating an alternative mode

(in this case the regulatee) from the shippers choice set.

2) Econometric studies of returns-to-scale are not typically
sufficient to determine whether real market power exists.



- 30 -

Studies must be extended to examine the relationships

between service parameters. The extent of returns-to-scale

and the degree of service differentiation must be

estimated together.

A caution is in order. There is nothing in the above

analysis that addresses the welfare implications of the long run

stable intermodal relationship. In the long run price will equal

marginal cost in the competitive mode but price may be above

marginal cost in the monopolized mode. The question of which

course to follow, i.e. whether or not to control rates, revolves

around the potential welfare losses arising from the inequality
of price and marginal cost versus the cost of achieving and

administering their equality.
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4. Estimation of Freight Demand: Transportation of Grain

4.1 Introduction

In this section we shall propose a model of grain elevator

shipping decisions and shall discuss alternatives ways to estimate

the model. The major premise of this work is that the demand for

transportation is derived from the needs of the firm to sell its

product in spatially separated markets. The focal point is the

individual elevator, and hence the model is disaggregate.

We find that the model allows for two types of estimation

methods; regression and choice models. The regression approach,

while conceptually preferable to the choice model approach, is

impractical because of data requirements and certain theoretical

problems concerning costs. Thus use of choice models in estimating

transport demand seems more practical in the light of data

requirements. Choice models have been justified on theoretical

grounds and are shown to be applicable in our model in certain

circums tance s.

4.2 The Model of a Grain Elevator's Shipping Decisions

The production process for a grain elevator consists of

two basic functions. The first function is to purchase grain from

various suppliers such as farmers and other elevators and make

it available for sale and distribution. This function involves

such activities as the procurement of grain on the local market,

processing, handling, storing and hedging. It is assumed that

a total cost can be associated with each level of saleable product.
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The second function is the sale and distribution of total

output to distant markets and/or to the local market (which includes

storing the grain). Two types of costs must be reckoned within

this shipping function. The first consists of the direct transport

charges that are levied by the carriers. The second type of costs

are only indirectly attributable to transportation. These indirect

costs are discussed below.

Equipment delay costs: A shipment must be placed in a holding

position ready for loading onto the transport equipment at some

planned equipment arrival date. If there is uncertainty as

to when the equipment will be supplied, this date is typically
earlier than the actual arrival date. Thus there is an expected

equipment delay time which is assumed to vary by mode. Grain

that is kept in a holding position incurs a warehouse carrying
cost over the length of the delay time.

Transport loading and unloading costs: It will be assumed

for simplicity that common costs in loading and unloading
can be allocated.

Moving inventory interest costs: During transit an interest

cost is incurred on the value of the shipment. The interest

cost per unit of shipment varies by mode and destination

because transit times vary.

Risk related transit costs: Grain in transit is subject
to loss, damage and spoilage. Thus insurance costs are incurred
on each shipment. Furthermore, variance in scheduled transit
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times increase the risk of incurring penalties due to late

arrival of goods and loss of future customers.

For a typical firm at location i (we suppress the super-

script n from before for clarity) let:

per unit loading and unloading costs from i to j by mode m.

expected equipment delay time for mode m.

warehouse carrying cost (q /bushel)-

per bushel moving inventory interest cost from i to j

by mode m.

per bushel equipment delay cost.

The general model of the elevator's decision problem is

to find total output q^ and shipments q^jm for the planning period
such that profits are maximized:

hK
ljm

dm

rT.. P.
ljm J

1 ra

max 2 2{(P.-rT.. P.-t.. -H^. -s.d -P.)q.. -H?. (q.. )]
m J ljm J ijm ljm 3. m i/qijm ijmvqijm>'<'

(18) Piqii~^(qi)

subject to: q^q^ >0, q£ > 0, q^ > 0
Here q^^ = S 2 qijm and = qj~qj| | * t'le am°unt distributed
locally.

Assuming qi > 0 (the non-trivial case), it can be shown that
the necessary conditions for profit maximization are as follows:
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Pt - C ' + x = 0

P.-rT. . P.-t.. -H^. -s.d -H?. s P. + \
j rjm j ljm ljm 1 ra rjm l

(19) with equality when q^ju, > 0

qi-qi++ > 0 and X(qi~qi+-P = 0

q . . > 0 .
ijni -

Here \ > 0 is the Lagrangian multiplier for the constraint

q^-q^ t > 0. Therefore, it is the value of an additional unit
distributed to the local market.

By solving (19) for in terms of the P^ Pj's, t.^'s,
H^. 's, T.. 's, s., d 's and r yields the optimal shipments

rjra ' ljm 5 i' m J

(20) q^jm = 7?ijm<"Pi'I>'t:'^ >TJsi'd»r)s
optimal output of saleable grain

(21) q^ — 77^(P^,P,t,H ,T,s^,d,r) ,

and optimal allocation to the local market

(22) q*. = q* - q*^ = 77. . (P. ,P, t ,HL, T, s. , d,r) .

where symbols without subscripts represent vectors of the

associated subscripted parameters.

The optimal solution is illustrated (Figure 7) for the three

market, two mode case. Here we let

V.. = P.-rT.. P.-t.. -hK -s.d .

rjm j rjm j ljm ljm 1 m

In the example shown a positive quantity is shipped to every mode-

market pair. However, since

^ JU

qii qi " q ill qil2 " qi21 ~ qi22 > 0
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qi21

OPTIMAL DISTRIBUTION PATTERN

Figure 7
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then the shadow price, \ = 0. Notice that if the local price

P.^ were too low relative to the net prices in the distant markets,
i.e. if the solution q?, q?. to the conditions

J_ J-J

Pi - C' = 0
V - - C' £ 0, q?. (V. . - H*.' - C') = 0
ijra ljm ' 4ijmv ljm ljm

q?. > 0.
ljm -

satisfied q^-q^ | < 0, then the shadow price X of the last unit
of grain allocated to the local market would be positive.

4.3 Econometric Methods of Estimating the Transport Demand

Functions for the Movement of Grain

4.3.1 Regression Models

It has been shown that the solution of the elevator's

profit maximization problem (18) yields optimal shipments

(23) ^ijm = ^7ijin(Pi>P,tJHL,T}Si,d,r).
These are the elevator's transport demand functions for the shipments

of grain from location i to market j by mode m. Analysis of

the theoretical model indicates that these demand functions can

T>

in principal be derived if the functions and C are known.
■D

As discussed in the previous section, are the supply
curves of perfectly competitive insurance industries. Thus using
a regression approach implies that I.J.M supply curves would have

to be estimated. Since the *fym's are expected to be convex,
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the form of the supply curves might be specified as quadratic.
On the other hand very little is known about the form of

the cost function for the nonshipping aspects of an elevator's

production process. Consequently, misspecification errors are

potential problems in a cost study of grain elevators. Furthermore,
since an elevator typically provides many other services besides

selling grain, there are sure to be problems in appropriately

measuring output. Finally, since there are no standard procedures

for keeping and collecting cost records, obtaining data for a

representative sample of elevators will be extremely difficult

and expensive.

An alternative regression method of obtaining shippers'

transport demand functions is to try to estimate the function (23),

directly. However, a functional form must be specified. This

form will depend on the form of the cost function C(q^) and the
T>

H.. (q.. ) functions. Thus this approach will encounter many of the

same difficulties as the first approach.

The key elements in regression based models for estimating

transport demand functions are the shipper's production-related

and shipment-related cost functions. These models will be severely

limited because cost studies are difficult to conduct. The major

obstacles appear to be a paucity of accurate cost data and

incomplete knowledge about the grain elevators' production process.

4.3.2. Choice Models

A basic premise of choice models as applied to the demand

for transportation of grain elevators is that in a typical planning
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period (covering the purchase of raw grain to the sale of the

finished product) grain is either shipped to one market by one

mode or is allocated locally. This initially appears to

invalidate the use of such models since the optimal shipping

pattern calls for splitting. However since in the case of

grain we are considering low value goods and low-to-medium

size shipments (expecially in relation to the total stock

of grain) then under these conditions one would expect

significantly less splitting then under conditions wherein

the value of the good was high or volumes were large. Thus

we assume that the importance of splitting to ameliorate risk

rises with the value of the good and the volume of transaction.

This premise can be incorporated into the general model

(18) of the grain elevator's decision problem by assuming that

the functions H?\ (q.. ) are linear. In this case H?. can bexjm^ijnr xjm
absorbed into the coefficient terms for the q.. 's in. (19). Then

xjm N
the optimality conditions can be written

PjL + \ - C' = 0

V£jm - Pi - l s 0 with equality when > 0
9j[ " Uq-L " q^-f-p) = 0
lijm > °> 1i > °-

These conditions imply that the elevator chooses the alternative

with highest price V? from among the V.^ and P^. The amount
available for distribution is then determined by C '(q*) = V*

*
and the whole amount q^ is distributed to the alternative

J-

corresponding to V^. The shadow price of grain locally distributed
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is then determined by

*
x = v. - Pr

The solution is illustrated for the three market, two-mode

problem in Figure 8.
R

Thus when the indirect transport costs H.. (q.. ) are linear1 ijmVMrjm/
in the decision problem of the elevator is sequential.

First, an alternative is chosen which yields the highest net price.

The alternatives are the market-mode pairs and the local market.

Then the quantity to be allocated to the chosen alternative is
determined in accordance with marginal cost pricing.

As in the regression models, the second step of the choice

model requires information about the elevator's cost function,

C(q^). However, in empirical applications of the choice
model, surrogates can be used in place of marginal cost pricing.

For example, if one is willing to assume that elevators approximately

price at marginal cost, then historical patterns of market-

mode shares can be used to allocate sales to the alternative

with the best price. The flexibility to substitute marginal cost

pricing with surrogates is an important advantage of the choice

models over the regression model.

Logit models are presently used in modelling urban travel

demand choice behavior [ 5, 9, 10 ]. We shall give a brief

description of this class of models and shall relate how they can

be applied to the market-mode decisions of grain elevators.

Define the choice variable y that takes the value y-rj

if the individual chooses the Tjth alternative, rj € N. Let x
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DECISION BASED ON THE CHOICE MODEL

Figure 8
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be a vector of observablej attributes of the 77th alternative.
Let z be a vector of observable characteristics of the individual and

let w be a vector of unobservable variables. We assume that the

individual's decision depends on the x^'s> z an<^ w. Thus the
probability distribution of y is determined by the vector

X = (x ) z and the unknown parameters that characterize the
77 77 0N

distribution of the unobservable w. The most general choice model

(see [ 1 ]) can be mathematically represented as

exp F (X,z,w)
Prob £y= 77} = 77 •

2 exp F (X,z,w)
776N *

McFadden [ 8] has given the following argument that

behaviorally justifies a special case of the general choice model.

Suppose that the individual's choice index (e.g. utility, profit,

net price, etc.) associated with the 77th alternative is the sura

of a nonstochastic part and zero-mean random variable, i.e.,

V + e
77 77

Here only the non-stochastic part depends on the x and z i.e.,
V

V = V (x ,z).
V V V

If we assume that the individual behaves so as to maximize

his choice index, then we have

Prob {y= 77} = Prob{Vv + + e , ^ 77).

McFadden has shown that if the e^'s are independent and with the
distribution exp [-exp(-e - a )] where is a parameter, then

77 77 77 '
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Prob{y=n) =
2 exp[V (x ,z)-a ]

V€N V V V

We now formulate the choice behavior of the elevator as

a logit model. First, we replace the market-mode combinations

(j ,m) by the index 77. The location i of the elevator is one of
its characteristics and so we can replace the location index by
a vector z of the elevator's characteristics. We might want to

include in z such characteristics as capacity, ownership structure,

as well as its location. Now define V as the inner product
V

Since the alternative^'s represent market-mode pairs, the above
model is a multivariate logit rather than multinomial.

In this choice framework the shipper selects the alternative

with the highest choice index and then uses marginal cost pricing

to decide how much to ship. Predictions of the quantity shipped on

the chosen alternative thus requires information about the firm's

marginal cost curve. However, as stated above, surrogates for marginal

cost pricing can be developed when information about costs is not

available.

of x and z with components that include Pj >rTijmPj >
Thus the logit model for the elevator choice problem is

Prob {y= 773 =
expVT1(xr),z) _ exp^x*)
SeXpVv(xv,z) S exp<pv,x*>
v v
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Let Q denote the quantity to be shipped. Then given the choice

y = 77, Q is determined by MC(Q) = Hence its conditional

distribution is

Pr[Q < q|y = 77] = Pr[V77 + *77 - MCfa)3
= (MC (q) ~y^>

where denotes the probability distribution of the error term e^.
Now let denote the quantity distributed by alternative 77.

Its probability distribution is given by

1 q] = Pr[Q < q|y = 77] Pr[y = 77]

- yMc^-y •?„ •

Therefore, the expected quantity shipped by alternative 77 is

E(Q„) - P„ Jq dp^MC^-y.
Hence

(24) E(Q??)= P?7 E(Q|y = 77).
Since p is estimated by the choice model, then an estimate of

77

E (Q | y = 77) used in (24) will yield an estimate of E(Q^). Since,
in general, most elevators seek to maximize turnover of stock then

the real limit on shipment size (besides indivisibilities present

in the system) is the quantity of grain available for distribution.

Thus one can estimate E(Q|y = 77) by estimating the quantity avail-

able for distribution.
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We intend to estimate this model using data which are being

collected in a survey of grain elevator shipping decisions.

Since the choices essentially involve simultaneous selection of

market and mode, the model calibration is more complicated than

those usually applied to urban travel studies. However, several

recent studies have suggested ways to estimate multivariate logit

models (II, 2, 11]). In future research we shall try to apply

these methods to our model. We shall also try to develop new

ways of handling simultaneous (multivariate) choice models.
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