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Abstract 

“Where Do We Come From? What Are We? Where Are We Going?” is the name for one of 

French artist Paul Gauguin’s most influential paintings. Unsurprisingly, these very questions have 

occupied the minds of countless philosophers, artists, and scholars since the beginning of human 

civilization. These questions become especially salient when drastic changes occur in our environment, 

such as pandemics, wars, global economic challenges, and disruptive technological advancements. In a 

rare coincidence, humankind is faced with all these challenges at this point in time. Thus, this 

dissertation humbly contemplates these important questions, not only in the context of organizations 

and the future of work, but life in general.  

As artificial intelligence is applied increasingly in our lives, changing the way we live, work, and 

play, organizations and organizational research arrive at a juncture where their participants and 

members must ask: “Where do we come from? What are we? Where are we going?” If artificial 

intelligence is becoming as omniscient as the rational demons described in most economic research, 

where does it leave management and organizations as a field as well as existing organizations in the 

field? Perhaps a more fitting and realistic question is: “Is artificial intelligence as powerful as we 

imagined it to be?” Or, should we adopt a normative lens and paint a blueprint for future researchers, 

policy-makers, and other people in the world? Should we help navigate the relationship with machines 

in the inevitable applications of artificial intelligence in people’s lives?  

The first two chapters of this dissertation are empirical. They go deep into the technical aspects 

of existing artificial intelligence algorithms, and explore the limits and capabilities of artificial intelligence 

technology. I found that artificial intelligence tools, at the moment, are not as powerful as we imagined. 

Shortcut learning and biases, as well as misinterpretation of data and results, are just some of the issues 

I observed through my research. The last chapter attempts to answer some normative and theoretical 

questions. It draws upon works by pioneering researchers in both artificial and organizational 
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intelligence research, and provides a working lens or framework for how we can make sense of the 

currently fragmented and noisy landscape in artificial intelligence application research.  

As scientific as it strives to be, this dissertation, in my opinion, should be more fittingly viewed 

as a faith declaration and an expression of my belief that organizations and the human members therein 

are bigger than the current artificial intelligence phenomenon. In declaring my faith, I hope my research 

contributes to a more human-centered direction of where we can go as a field in the wake of artificial 

intelligence technology. The dissertation will also help the organizational field will also consider the 

organizational element of artificial intelligence application, that is, how this technological development 

can be integrated as a larger organizational phenomenon.  
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Introduction 

 

Artificial intelligence technology is making tremendous breakthroughs. According to Moore’s 

law, the number of components in semiconductors has been growing exponentially each year, and will 

continue to do so in the years to come1 (Schaller, 1997). With more components, computers can process 

information much faster and cheaper than a few decades ago. Computers can also store data more 

efficiently, reliably, and economically. Simultaneously, sophisticated software has been invented to 

capitalize on these hardware developments, such as deep neural network algorithms that mimic the 

structure of the human brain (Netzer et al., 2011). These algorithms consolidate, find patterns, and 

generate valuable insights from unstructured data, allowing humans to make sense of information, 

leading to better decisions (Choudhury et al., 2021).  

Thanks to these developments, artificial intelligence has accomplished some extraordinary feats. 

For example, artificial intelligence defeated the best-ranked humans in games such as Go (Silver et al., 

2017) and Jeopardy (Ferrucci et al., 2013). Self-driving cars, which rely on artificial intelligence, are 

becoming more autonomous and commonplace (Badue et al., 2021). Tiku (2022) even suggested that 

artificial intelligence has finally reached sentient level, based on a Google engineer's claim that Google's 

chatbot came to life and was able to comprehend emotions and understand its rights, on top of 

conversing fluently with humans. 

With these accomplishments, more organizations are starting to adopt artificial intelligence in 

their services and internal management systems. For example, in the banking industry, organizations are 

using chatbots in their customer service, significantly replacing human customer service officers 

 

1 Although experts have observed that the speed of growth has decreased in recent years, the efficiency and energy-saving 
abilities keep improving.  
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(Adamopoulou & Moussiades, 2020). Some companies, such as Charles Schwab,2 are also employing 

voice and facial recognition to verify the identity of their customers (Aravinda et al., 2022). In 

negotiation contexts, researchers believe that the use of artificial intelligence can help customers 

negotiate better deals (Dai et al., 2021). Some start-ups, such as Intellext,3 are capitalizing on this idea, 

providing negotiation platforms where artificial intelligence negotiate deals on behalf of humans. In 

employee facing functions, companies, such as Enaible4, provide productivity monitoring systems that 

track employee progress, consolidate information, and intelligently provide positive habit-building 

recommendations and well-being suggestions for employees (Pan & Zhang, 2021). Human resource 

vendors, such as HireVue5, utilize artificial intelligence algorithms to quickly interview and screen job 

candidates, saving time and resources for human resource managers (Peña et al., 2020).  

Turning to academia, there is much discourse about how artificial intelligence can be applied to 

research. Table 1 presents a non-exhaustive list of examples in behavioral research that applied artificial 

intelligence tools. In theory building, Leavitt et al. (2020) argued that artificial intelligence can be applied 

to research because it can test mid-level theories that are otherwise infeasible to test using traditional 

methods. Csaszar and Steinberger (2022) proposed that organizational theorists can borrow ideas from 

artificial intelligence research because organizations and artificial intelligence are very similar. Social 

psychological researchers argue that artificial intelligence algorithms can assist researchers in generating 

novel hypotheses (Sheetal et al., 2020; Sheetal & Savani, 2021). Researchers can employ algorithms in 

preliminary studies, find interesting and novel patterns in big data, and replicate these results using lab 

studies (Sheetal et al., 2020; Sheetal & Savani, 2021).  

 

 

2 https://www.schwab.com/ 
3 https://www.intellext.ai/ 
4 https://enaible.io/ 
5 https://www.hirevue.com/ 
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----- INSERT TABLE 1 ABOUT HERE ----- 

 

Apart from theory building, a number of research papers have been published in recent years 

utilizing artificial intelligence as a key component of their methodology. In the past, facial perception 

researchers relied on human research assistants to extract facial features (e.g., Ambady & Rosenthal, 

1993; Rule & Ambady, 2010). Researchers asked assistants to manually label variables in their database, 

such as whether or not the participant in each facial image is smiling. With artificial intelligence, Wang et 

al. (2019) passed their facial image data through an application programming interface (API), an 

interface that allows the researchers to interact with the artificial intelligence algorithm, and extracted 

facial variables, such as smiling, for their research. Wang et al. (2019) found that artificial intelligence-

based labels predicted similar results compared to human raters. In another study, instead of 

experimenting with humans in the laboratory as in traditional research, Wang (2021) conducted image 

distortions and experimented directly with the facial recognition algorithm to find possible mechanisms 

driving the relationship in his study.  

While there are many opportunities to capitalize on the developments and accomplishments of 

artificial intelligence, application of the technology in organizations and research is met with many 

challenges. More and more evidence is surfacing, demonstrating how artificial intelligence would 

become biased or easily fail. One report, for example, showed that Tesla’s self-driving systems are, in 

fact, causes of car crashes (Boudette et al., 2022). The aforementioned artificial intelligence-based hiring 

system by HireVue received a federal complaint and was later halted because the system was believed 

to be biased against minorities (Harwell, 2019). Similarly, Amazon halted its resume screening algorithm 

because it was biased against women (Dastin, 2018). The list of examples where artificial intelligence is 

either biased or harmful goes on.  
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Indeed, the problem of artificial intelligence algorithms discriminating against minorities is now 

widely established in research (Drozdowski et al., 2020). Scholars interested in algorithmic bias, which is 

the study of how algorithms would systematically discriminate against certain sub-groups, have found 

that artificial intelligence would easily pick up biases in training data, perpetuate the bias in its 

parameter optimizing process, and behave in biased ways when implemented in the field (Suresh & 

Guttag, 2021). For example, in facial recognition, because there are less photographs in the training data 

for younger people, the prediction accuracy for younger people is much lower than for adults 

(Drozdowski et al., 2020).  

Apart from algorithmic biases, researchers have found that algorithms are actually not capable 

of learning objective features in their respective tasks (Geirhos et al., 2020). In this phenomenon, called 

shortcut learning, machines rely on shallow or superficial features to make predictions (Geirhos et al., 

2020). For example, in image recognition, an algorithm would mistakenly label a photograph of greenery 

and clouds—“sheep.” This is because sheep and greenery often occur together in images, and thus 

when the algorithm was “optimizing” its parameters for sheep, it would “lazily” associate features 

representing greenery with features for sheep, instead of using the shape or texture of the sheep to 

predict sheep in images (Geirhos et al., 2020). This problem does not only exist in image recognition, but 

virtually all domains of artificial intelligence.  

Given these opportunities and challenges in artificial intelligence applications, scholars need to 

answer two pressing questions: “should and how should artificial intelligence be managed in 

organizations and organizational research?” and “how should we shape our path forward?” The first 

question is targeted at balancing the optimistic and negative view of artificial intelligence application. 

Advocates of artificial intelligence often imagine a utopian society enabled by artificial intelligence, while 

critics propose a dystopian society. My opinion, as shown in this dissertation, is that this question is both 

descriptive and prescriptive. A deeper understanding of artificial intelligence would provide us a realistic 



 
 

15 

description of the capabilities and limitations of artificial intelligence. Based on this understanding, 

scholars should then prescribe appropriate research, policy, or managerial recommendations to guide 

the management of artificial intelligence application.  

In this dissertation, I address these questions by looking at both the methodological and 

theoretical aspects of artificial intelligence application. Given the technical nature of artificial 

intelligence, an understanding of these questions must be motivated by a deep comprehension of the 

inner-workings of these systems. For example, to study the application of facial recognition systems in 

social psychological research, researchers must at least have a deep grasp of the entire system—how it 

is designed, trained, and implemented and how its results are interpreted. Going deep, I conducted a 

series of experiments, which meticulously dissected each step in the pipeline of artificial intelligence 

application. These experiments are reported in the first two chapters.  

Armed with such understanding, I went broad and theoretical, asking questions such as “how 

should we conceptualize artificial intelligence?” and “how should we integrate artificial intelligence in 

future organizational research?” These theoretical questions are discussed in the third chapter, which 

paints a theoretical framework of how organizations and organizational researchers could more 

appropriately manage the application of artificial intelligence. The chapter advocates a more human-

centered and organizational perspective.  

By going deep and wide on the topic of artificial intelligence application, I hope this dissertation 

can help us understand where we come from, what we are, and where we are going as scholars of the 

phenomenon of artificial intelligence application. Perhaps, with this better understanding, we can build 

a better future for organizations, organizational research, and what may come beyond.  
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Chapter 1 

 

Presentation in Self-Posted Facial Images Can Expose Sexual Orientation:  

Implications for Research and Privacy 

 

Introduction 

Several recent studies have found that sensitive personal attributes are becoming increasingly 

easy to detect using facial images. Advanced facial recognition algorithms can now accurately classify 

sensitive traits, such as sexual orientation (Wang & Kosinski, 2018), personality (Kachur et al., 2020; 

Wolffhechel et al., 2014), political orientation (Kosinski, 2021), and unlawful behaviors (Wu & Zhang, 

2016. For example, Wang and Kosinski (2018) found that an off-the-shelf facial recognition algorithm 

can be easily repurposed into a sexual orientation classifier that can differentiate sexual orientation with 

a classification rate6 of above 80% for men and 70% for women from a single naturalistic facial image, 

considerably more accurate than what can be achieved by human judges. In another study, a similar off-

the-shelf algorithm, using Facebook and dating profile images, was shown to classify individuals’ political 

orientation with a classification rate of over 70% (Kosinski, 2021). 

What is unclear is to what extent the classifications were driven by fixed (i.e., facial 

morphology), transient (i.e., grooming styles), and non-facial (e.g., background or lighting) image 

features. Facial recognition research posits that if faces were aligned at the same position in the facial 

images used to train the algorithm, each pixel in the image would map onto a specific facial feature 

(Parkhi et al., 2015; Taigman et al., 2015). Similarly, Taigman et al. (2015) referred to their algorithm as 

 

6 Classification rate is expressed as area under the receiver operating characteristic curve (AUC). When presented with stimulus 
X from category A and stimulus Y from category B, the AUC refers to the extent to which the model assigns Y a higher 
probability of belonging to category B than X. 
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“a well localized description of the underlying face” because they found that pixels that activated the 

algorithm were in the facial area. Building on these findings, Wu and Zhang (2016, p. 2) claimed that 

“sophisticated algorithms based on machine learning may discover very delicate and elusive nuances in 

facial characteristics and structures that correlate to innate personal traits.” Stoker et al. (2016, p. 8) 

even described machine learning as an “advanced objective method for the measurement of facial 

features.” 

On the other hand, some researchers acknowledge the contribution of both facial morphology 

and grooming features. For example, Wang and Kosinski (2018) explained that “[f]acial features 

employed by the classifier included both fixed (e.g., nose shape) and transient facial features (e.g., 

grooming style)” (p. 246), though they traced some of these differences to biological predispositions, 

citing the prenatal hormonal hypothesis (e.g., “According to the PHT [prenatal hormonal theory], same-

gender sexual orientation stems from the underexposure of male fetuses or overexposure of female 

fetuses to androgens that are responsible for sexual differentiation” (p. 247)). Kachur et al. (2020) 

claimed that “machine learning… could reveal multidimensional personality profiles based on static 

morphological facial features” but the researchers were “still unable to claim that morphological 

features of the face explain all the personality-related image variance captured by the ANNs” (p. 6). 

Agüera y Arcas et al. (2018) surveyed 8,000 Americans of different sexual orientations and asked them 

to fill out an array of “yes/no” questions about their self-presentational style. The results showed that 

gay subjects were more likely to report wearing glasses and less likely to report having face tan and 

working outdoors. 

These findings are consistent with the impression management literature, which posits that 

people intentionally or unintentionally shape how they are seen by others (Goffman, 1959; Leary & 

Allen, 2011; Leary & Kowalski, 1990; Schau & Gilly, 2003; Schlenker, 2012). For example, people choose 

to present themselves differently by constructing distinctive text-based self-descriptions on online 
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dating platforms (Schau & Gilly, 2003; Tong et al., 2020). Self-presentational studies also found that in 

unfamiliar and different-sex social interactions, people felt more nervous, thought about others’ 

impressions more, and wanted to make better impressions than they did in familiar and/or same-sex 

interactions (Leary et al., 1994). When sexual orientation comes into play, gay and heterosexual men 

have distinctive aesthetic appeals (Rudd, 1996). Gay men on average preferred innovative or trendy 

apparel, whereas heterosexual men preferred casual or laid-back styles. 

The idea that people choose different photographs depending on the context is not new in facial 

perception literature. Todorov and Porter (2014) explained that “[w]ebsite users did not randomly select 

which images of themselves to post on these sites. Hence, it is possible that the presumed accuracy 

reflects biases in the selection of the images rather than honest or inherent signals of sexual orientation 

in the face” (p. 1415). The authors asked participants to select images of different facial expressions and 

found that in scenarios such as dating, participants chose photographs that portrayed a trustworthy-

looking face compared to a mean-looking face of the same person. These findings were confirmed by 

White et al. (2017), who asked participants to upload 12 photographs of themselves to a professional 

and a dating website. Participants systematically uploaded more attractive-looking photographs to the 

dating website and more competent-looking photographs to the professional website. Hancock and 

Toma (2009) found that in online dating photographs, people engaged in self-enhancement tactics to 

make themselves appear more attractive. These tactics varied by gender; women posted photographs of 

themselves taken when they were younger, and were more likely to re-touch their photographs 

compared to men.  

Understanding how presentation in self-posted facial images influences classification of sexual 

orientation is critical to the ongoing discussion about privacy (Matz et al., 2020). If trait classifications 

were mostly driven by morphological differences, as implied in existing facial recognition research, 

privacy loss would be preventable using existing de-identification technologies. For example, consumers 
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can protect themselves using do-it-yourself data protection software that masks, blurs, or pixelates the 

facial regions of these images, or by wearing face masks (Li et al., 2017; Matzner et al., 2016; Shan et al., 

2020; Zhang et al., 2014). However, if classifications were also driven by self-presentation, the danger of 

privacy loss might be greater than previously believed. There are more dimensions on which self-

presentation may vary. Pinpointing the exact features in the facial image where private information is 

retrieved would be difficult. In this case, the burden of privacy protection must be shifted to 

governments and companies because the alternative to privacy protection would be to ask consumers 

to refrain from self-expressions (i.e., not post images online), a tradeoff that many might not want to 

make. 

To understand how self-presentation influences the ability to extract sexual orientation 

information from self-posted photographs, I collected a dataset consisting of 15,286 gay and 

heterosexual participants from an online dating website. I first obtained 12 self-presentational facial 

attributes from their facial images, tested whether there were significant differences according to sexual 

orientation (Study 1a), and examined the degree these differences contributed to classification of sexual 

orientation (Study 1b). Then, I replicated the sexual orientation classification algorithm. I tested the 

contribution of image background on the classification of sexual orientation (Study 1c). I masked the 

facial portion in each facial image so that only background information remained. If masked images, in 

which only the image background was retained, can classify sexual orientation, it means that the image 

background (a self-presentational feature) contributed to sexual orientation classification.  

Next, previous research suggests that gay men appear to have brighter skin tone compared to 

heterosexual men. I tested whether skin tone was related to the overall brightness of the face and/or 

the background (Study 2a). If skin tone was related to overall brightness (both face and background), it 

is likely that gay vs. heterosexual people presented themselves in images with varying levels of 

brightness or illumination. Finally, I tested the contribution of overall image brightness on sexual 
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orientation classification (Study 2b). I blurred each facial image so that only three numbers representing 

the brightness of each color channel remained. If a completely blurred out image can classify sexual 

orientation, then people’s choices of image brightness, or the illumination of their ambient 

environments (indoors vs. outdoors), contributed to sexual orientation classification.  

Study 1a 

Agüera y Arcas et al. (2018) found that reported self-presentational styles varied by sexual 

orientation. Some self-presentational differences were also reported by Wang and Kosinski (2018), such 

as the likelihood of wearing glasses in facial images. Study 1a aimed to extend their findings and test the 

extent these differences are observed in self-posted facial images on a dating website.  

Methods 

Preprocessing Facial Images. All data collection was conducted after the study was approved by 

the institutional review board (IRB) of my university. Following the exact procedures described in Wang 

and Kosinski (2018), I collected facial images of public profiles from a U.S. dating website. I aimed to 

collect a larger sample than the previous study to achieve higher generalizability. I gathered a total of 

76,181 profiles (412,446 images), of which 39,386 were women (224,855 facial images) and 36,795 were 

men (187,591 facial images), aged 18 to 40.  

Next, I cleaned and preprocessed all facial images with the help of the Face++ API, which is a 

facial recognition software widely used in facial research (Kosinski, 2021; Wang et al., 2019; Wang & 

Kosinski, 2018), verified to be accurate at extracting facial information from images (Jaeger et al., 2020). 

Four sets of information were extracted: the number of faces in each facial image, facial landmarks, 

facial attributes, and facial bounding boxes. Like Wang and Kosinski (2018), I dropped images that did 

not contain human faces, contained more than one face, contained partially hidden faces (i.e., if any 

occlusions were detected by the Face++ API), or had small-resolution faces (i.e., the width of the 

bounding box was less than 40 pixels). Like the previous study, I also removed images in which faces 
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were significantly turned away from the camera (i.e., head pose yaw angle greater than 15 degrees and 

pitch angle greater than 10 degrees). All these steps were taken to ensure that every face in the dataset 

would align in the same position and angle, allowing the facial recognition algorithm to accurately 

recognize the face.  

Following Wang and Kosinski (2018), I only included Caucasian individuals aged 18 to 40. 

However, instead of verifying the demographics manually, I relied on the gender and age detector of 

Face++ API, as well as a pre-trained ethnicity detector in the DeepFace algorithm (Serengil & Ozpinar, 

2020). I removed individuals whose mode-apparent gender from all facial images did not fit their 

reported gender category. This is because there were some individuals who self-identified as the 

opposite gender. Like Wang and Kosinski (2018), I removed individuals whose mode-apparent ethnicity 

was not Caucasian to retain only Caucasians in the sample. I also excluded individuals whose average-

apparent age detected from their photographs was not within the 18 to 40 age range. To ensure that 

the resulting gender and ethnicity in the dataset were accurate, I randomly drew 100 individuals from 

each gender-sexual-orientation category (a total of 400 images). All genders were perfectly classified. 

Only two persons’ ethnicities7 out of the 400 might be incorrectly classified (99.5% accuracy). 

Machine learning research recommends balancing the training data to prevent bias towards the 

majority group (Susan & Kumar, 2021). Thus, I matched the sample size, age, and number of images of 

the sub-samples using an automated process. The process, conducted separately for each gender, 

paired every person from a sexual orientation group with a person from the other group by age and 

number of images. The resulting number of gay versus heterosexual people, as well as the number of 

 

7 One heterosexual man who appeared to be multiracial and one heterosexual man who appeared to be Latino were 
considered as misclassified. Note that this accuracy rate is high because strict inclusion criteria were used, i.e., included only if 
the mode ethnicity classification from all facial images of each person was Caucasian. Note also that Latinos were not 
considered as Caucasian by the DeepFace algorithm and by my manual accuracy check even when some might have identified 
themselves as Caucasian. Latinos were not included to avoid ambiguity. 



 
 

22 

their facial images, were completely balanced. The final sample contained 10,162 facial images of 5,124 

men (50% gay and 50% heterosexual) and 21,600 facial images of 10,340 women (50% gay and 50% 

heterosexual). A breakdown of the final sample and age distributions is reported in Table 1.  

Finally, I cropped and aligned all facial images using the bounding box provided by Face++ API. 

All resulting facial images in the dataset contained facial positions that matched exactly those reported 

in Figure 4 of Wang & Kosinski (2018). All images were resized to 224 by 224 pixels as required by the 

facial recognition algorithm used to classify sexual orientation.  

 

----- INSERT TABLE 1 ABOUT HERE ----- 

 

Self-Presentational Attributes. A total of 12 self-presentational facial attributes was extracted 

from Face++ API to test whether there was a significant difference in these features according to sexual 

orientation (Study 1a), and whether this difference contributed to classification of sexual orientation 

(Study 1b). All attributes except head pose angles were measured in probabilities, i.e., how likely the 

face found in an image displayed a certain attribute. All attributes were standardized to a range of zero 

to one for easier comparisons. As participants varied on the number of facial images, a different number 

of sets of attributes was produced for each participant. The within-person reliability of these attributes 

was moderate (see Table 1 of Appendix), so within-person attribute sets were averaged so that each 

participant only had one set of facial attributes. 

All six facial expression scores, such as happy and neutral, were included. These scores 

measured the probability that the face in each image displayed a certain facial expression. Research has 

shown that head pose angles are related to different facial perceptions and emotional expressivity 

(Barrett et al., 2019; Nicholls et al., 2002; Witkower & Tracy, 2019). Thus, head pose angles consisting of 

the absolute roll, yaw, and pitch angles were included. Research found that gay individuals reported 
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being more likely to wear glasses than heterosexual individuals (Agüera y Arcas et al., 2018; Wang & 

Kosinski, 2018). Thus, the probability of wearing glasses was included. Finally, eye status, the probability 

of eyes being open, and the probability of a smile being present in the image, were included. 

Transparency and Openness. Data include sensitive personal information, thus would not be 

disclosed. The code is available at https://osf.io/q39py/. All materials are included in the main text. 

There are no additional materials to disclose. The design and analysis of this study were not pre-

registered. 

Results 

Table 2 reports the mean, confidence intervals, and statistical tests of facial attributes. Figure 1 

shows the differences in means ranked from positive to negative. All results were reported separately 

for women and men. 

 

----- INSERT TABLE 2 ABOUT HERE ----- 

 

As indicated in Table 2, out of the 12 attributes tested in this study, 10 were significantly 

different across sexual orientations for women and six were different for men (p’s < .05). As shown by 

Figure 1, a large difference was observed in the likelihood of individuals wearing glasses in facial images. 

Consistent across both women and men, gay people on average were more likely to upload photographs 

of themselves wearing glasses compared to heterosexual people in the sample. This is in line with the 

survey findings in Agüera y Arcas et al. (2018) that gay people on average preferred wearing glasses, as 

well as the aesthetics of wearing glasses, compared to using contact lenses or not wearing glasses. This 

is also consistent with the average faces reported in Figure 4 of Wang and Kosinski (2018). 

 

----- INSERT FIGURE 1 ABOUT HERE ----- 
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Discussion 

In line with previous findings in the impression management and facial perception literatures, 

these results demonstrate significant differences in how gay and heterosexual people presented 

themselves in facial images. My study employed only a few facial attributes from the Face++ API, and 

found that most attributes differed across sexual orientations. Women on average demonstrated 

greater difference across sexual orientations, as seen by the larger effect sizes compared to men. 

Heterosexual women were more likely than lesbians to display facial actions such as turning the head 

sideways and smiling toward the camera, a facial expression resembling coyness that serves 

relationship-building functions and helps displayers to connect with observers (Keltner & Haidt, 1999; 

Reddy, 2000). This display aligns with previous research in the context of online dating (Todorov & 

Porter, 2014). Note that while impression management research posits that self-presentational motifs 

are typically high in dating contexts (Hancock & Toma, 2009; Leary et al., 1994; Tong et al., 2020), it is 

difficult to tell whether the self-presentational styles observed here were intentional or unintentional, 

and this question is beyond the scope of the study. 

Study 1b 

Study 1b aimed to examine the extent to which people’s sexual orientation could be detected 

from their self-presentational facial attributes. I trained a logistic regression model using 20-fold cross-

validation. If sexual orientation could be classified at rates above random chance, self-presentation was 

likely to have contributed to sexual orientation.  

Methods 

Self-Presentational Attributes. Study 1b employed the same self-presentational facial attributes 

extracted using the Face++ API from the dataset of facial images as Study 1a. Like Study 1a, whenever I 

had multiple images for the same individual, I averaged the attributes across all images.  
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Sexual Orientation Classifier. I trained a logistic regression model using 20-fold cross-validation. 

In each fold, the participants were split into 20 equal parts; 19 parts were used to train the logistic 

regression while the remaining part was used to classify the results. This process ensured that I never 

used the same data to train and classify the outcome.  

Results 

I report the area under the receiver operating characteristic curve (AUC) as a measure of the 

classification power. AUC is defined as the likelihood that when presented with two images, one from a 

gay person and one from a heterosexual person, the model would assign the gay person a higher 

likelihood of being gay than the heterosexual person. I also report the confidence intervals estimated 

using the DeLong method, a general practice in machine learning, deep learning, and facial recognition 

(DeLong et al., 1988). I used AUC because it is an evaluation metric widely employed in machine learning 

research, and was used in previous studies on this topic (Kosinski, 2021; Wang & Kosinski, 2018). I report 

other common evaluation metrics in Table 3. All results are reported separately for women and men. 

As shown in Figure 2, classification power using all 12 self-presentational facial attributes 

extracted using Face++ equaled on average AUC = .609 (95% CI = [.598, .620]) for women and AUC = 

.551 (95% CI = [.536, .567]) for men. The two most predictive attributes were happiness expression and 

smiling. Happiness expression afforded AUC = .572 (95% CI = [.561, .583]) for women and AUC = .533 

(95% CI = [.517, .549]) for men. Smiling afforded AUC = .576 (95% CI = [.565, .587]) for women and AUC 

= .544 (95% CI = [.529, .560]) for men. These results demonstrate that self-presentational facial 

attributes extracted using Face++, to some extent, contributed to classification of sexual orientation.  

 

----- INSERT FIGURE 2 ABOUT HERE ----- 

 

----- INSERT TABLE 3 ABOUT HERE ----- 
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Study 1c 

The next step was to find out whether there are other self-presentational factors (i.e., the 

background) that revealed people’s sexual orientation, and directly test their influence on the sexual 

orientation classification algorithm. I first replicated the algorithm following the exact procedures 

reported in Wang and Kosinski (2018). Note that both my study and the previous one relied on an off-

the-shelf facial recognition algorithm. In other words, no deep neural network training was done. This 

was intentional because if an algorithm totally unrelated to sexual orientation classification could 

potentially be repurposed to classify sexual orientation, it would suggest a serious risk of privacy loss.  

I then tested whether the image background contributed to sexual orientation classification by 

blocking out the facial portions of the images. Making deliberate adjustments or modifications to an 

image is called image augmentation in computer vision (Shorten & Khoshgoftaar, 2019; Zeiler & Fergus, 

2013). In this case, I employed an augmentation technique called masking. If highly masked images, 

where only background information is retained, could classify sexual orientation at levels significantly 

higher than chance, it means that people of different sexual orientation are presenting themselves by 

choosing different image backgrounds on online dating websites. 

Another goal of this study was to evaluate the limit of privacy protection. Masks are often worn 

physically in some parts of the world, and used digitally to block people’s identities and to prevent the 

detection of certain private information (Matzner et al., 2016; Zhang et al., 2014). Thus, augmenting the 

image by masking facial portions aimed to test whether this privacy-protection strategy might prevent 

the loss of private information. If masks were effective, sexual orientation classification using masked 

images should drop to chance level. If not, it would imply a serious threat to privacy.  
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Methods 

Facial Images. Study 1c employed the same dataset of facial images as Study 1a and 1b. 

However, instead of relying on the self-presentational attributes extracted using the Face++ API, I 

directly employed the preprocessed facial images.  

Sexual Orientation Classifier. I replicated step-by-step procedures employed in Wang and 

Kosinski (2018) in extracting the deep neural network features, which were later used to identify 

individuals’ sexual orientation. Specifically, I extracted the 4,096 scores for each facial image using the 

facial recognition algorithm, VGG-Face (Parkhi et al., 2015). Next, the 4,096 scores were reduced to 500 

dimensions using the singular value decomposition, a technique like principal component analysis. 

Finally, the 500 dimension scores were passed through a logistic regression model, with L1-penalty of 1, 

to generate the binary sexual orientation classification of gay versus heterosexual. Note that no deep 

neural network was trained to classify individuals’ sexual orientation; the network was merely used to 

convert images into 4,096 scores, and then a logistic model was used to guess people’s sexual 

orientation from these scores. 

I employed 20-fold cross-validation in training the classifier, which combined the singular value 

decomposition and logistic regression model. One concern might be why the data were not split using 

more common methods in machine learning such as the hold-out validation. In hold-out validation, data 

are split into training and testing sets only once. Since the sample size here is small compared to other 

machine learning studies (e.g., n > 1 million), the hold-out or unseen set might not be representative 

enough of the underlying distribution of the dataset, and thus have small power. For example, for men, 

the unseen test set would contain only 256 individuals if a 19:1 split was applied only one time. 

Repeating the validation 20 times using different combinations of the data would theoretically maximize 

the power of the study.  



 
 

28 

Another note is that the dataset contained multiple images for most individuals (see Table 1). 

Thus, all images of the same individual were assigned to one and only one cross-validation partition. In 

other words, if an individual has multiple facial images, the images never appeared in both the training 

and testing partitions in any cross-validation folds. More details on how this is programmatically 

implemented is shown in https://osf.io/q39py/. The resulting sample size by cross-validation fold, train-

test partition, and number of images is reported in Table 2 of the Appendix.  

A related question is why the data were not split into training, validation, and testing sets.8 This 

is because, as mentioned earlier, the study employed a pre-trained algorithm (VGG-Face), and there was 

no hyper-parameter tuning or no model selection for the singular value decomposition and logistic 

regression models. Therefore, splitting the data further into training-validation sets was unnecessary 

(for a review on validation and model-selection methods, see Raschka, 2020).  

Image Augmentations. To test the influence of image background on the sexual orientation 

algorithm, I applied a rectangular mask to the center of each facial image. The entire dataset of masked 

images was then used to classify sexual orientations using the same 20-fold cross-validated model 

pipeline described above. A total of 29 augmentations using masks of increasing size was conducted. In 

the first augmentation, 3.3% (100% divided by 30 augmentations) of the image was masked in terms of 

the image area and a classification score was recorded. In the last augmentation, 96.7% of the image 

was masked. Only a very tiny border, made up of 3.3% of the entire area, remained on the image. 

Additionally, I conducted an augmentation using a mask that covered 100% of the image to produce a 

random classification. When the image was entirely masked, the algorithm generated a random 

classification power. In this case, I verified that the VGG-Face algorithm produced facial scores of 4,096 

 

8 Typically, machine learning studies split the data into training and testing (i.e., unseen) sets. The training set would be further 
split into training and validation sets. The training sets would be used to train algorithms with different hyper-parameter 
settings. The validation sets would then be used to evaluate the models. After a best model was selected, the testing set would 
be used to evaluate the generalizability. 
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zeros. These scores produced zero-only predictions, which finally resulted in AUC = 0.500 (95% CI = 

[0.50, 0.50]). The first row of Figure 1 in the Appendix provides a few examples of the image 

augmentations.  

Results 

Sexual Orientation Classification. I first report results about the extent to which people’s sexual 

orientation can be detected from their images, parallel to the main results of Wang and Kosinski (2018). 

The AUC results and their confidence intervals are reported in Figure 3. Unlike Study 1a and 1b, I report 

AUC results separately according to the number of facial images to replicate the format reported in 

Figure 2 of Wang and Kosinski (2018). I also report the average AUC score, which was calculated by 

averaging the classification scores across facial images within each participant. Corresponding confusion 

matrices that indicate the accuracy of the model’s classification are reported in Figure 4. Other common 

evaluation metrics are reported in Table 4.  

The model’s average AUC was .702 (95% CI = [.692, .712]) for women and .662 (95% CI = [.647, 

.677]) for men. AUC increased for both women and men when more facial images were used per 

person. For five facial images, the AUC increased to .732 (95% CI = [.691, .774]) for women and .797 

(95% CI = [.736, .858]) for men. This AUC was similar to those found by Wang and Kosinski (2018) for 

women, however for men, this AUC was lower than Wang and Kosinski’s AUC of around .81 when one 

image was used per person. Overall, the above results confirmed that it is possible to detect sexual 

orientation from images posted on the dating website. Next, I examined how masking the facial images 

affects the model’s classification rate to assess the likely impact of a self-presentational feature on 

sexual orientation detection. 

 

----- INSERT FIGURE 3 ABOUT HERE ----- 
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----- INSERT FIGURE 4 ABOUT HERE ----- 

 

----- INSERT TABLE 4 ABOUT HERE ----- 

 

Image Augmentations. Figure 5 shows the AUC results when different proportions of the facial 

image have been masked. For ease of interpretation and brevity in the main text, I report the AUC 

scores averaging across the predictions from the varying levels of facial images per participant. Table 3 

of the Appendix reports the AUC scores and significance tests against random classifications. For 

compatibility with previous research, I also report AUC scores generated using only one image per 

person in Table 4 of the Appendix. Tables 5 and 6 of the Appendix report other common evaluation 

metrics using averaged predictions or only one prediction respectively. All results are reported 

separately for women and men. 

Of the 29 degrees of masking, no AUC dropped to chance level (AUC = 0.50) for both women 

and men. All AUCs were significantly higher than random chance (p < .001). As seen in Figure 5, AUC 

scores started to drop when masks were applied to each facial image. Nevertheless, these scores 

remained above random chance throughout. When the face was effectively masked in each facial image 

(mask area = 50% of the entire image), the AUC scores for gay vs. heterosexual people translated to 

Cohen’s d = 2.295 for women and d = 1.631 for men, which are huge effect sizes (Sawilowsky, 2009). As I 

applied larger masks, the AUC continued to degrade but never reached random-chance level. At the 

most extreme case, when 96.7% of the image was masked, AUC scores for both women and men were 

above random-chance level and translated into Cohen’s d = 0.760 for women and d = 1.072 for men (on 

average large effect sizes). 

 

----- INSERT FIGURE 5 ABOUT HERE ----- 
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While AUC scores degraded as images were progressively masked, the degradation did not 

follow the same magnitude of degradation for image pixels. One interesting finding here relates to how 

AUC degradation differed by gender; AUC degraded more severely at the beginning for women 

compared to men. The degradation started to show signs of flattening but picked up again towards the 

end. However, the degradation pattern followed an almost curvilinear pattern for men, where 

magnitude of degradation started to drop towards the end. For women, the results suggest that the 

facial regions might have contributed more compared to background, and vice versa for men. This 

seems to be consistent with the findings in Study 1a, in which women on average displayed larger 

differences in facial attributes between sexual orientations. 

Discussion 

Study 1c demonstrated that sexual orientation classification was possible using the dataset I 

collected, replicating the results in Wang and Kosinski (2018). Study 1c also found that the image 

background or pixels at the image border contributed to sexual orientation classification. These findings 

were alarming because in the most extreme case, masked images contained only 3.3% of the original 

pixels. Yet, these pixels could generate above-random-chance classifications. When interpreted together 

with the findings in Study 1a and 1b, these findings suggest it is possible that gay vs. heterosexual 

people chose to upload photographs using different self-presentational facial attributes as well as 

different backgrounds on the online dating website. The differences in turn allowed the model to 

classify their sexual orientation using these self-presentational features. Importantly, these findings also 

warn about a privacy loss that was previously underestimated, because masking the face might not 

effectively prevent the exposure of sexual orientation in facial images, contrary to previous research in 

privacy protection (Zhang et al., 2014). 
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Study 2a 

The goal of this study was to assess whether the overall brightness of the image was yet another 

self-presentational variable that could reveal people’s sexual orientation. Previous research found that 

gay men’s average faces had brighter skin tones (Wang and Kosinski, 2018). However, it could be 

possible that skin tones were related to the overall brightness or illumination of the images. To test this, 

I separated the image into facial region (50% of the image area) and image background (50% of the 

image area). I extracted the average brightness of these regions, and examined the brightness by 

regions and sexual orientation. If the brightness of the facial regions varied according to sexual 

orientation in the same direction and magnitude with background, it would be likely that the 

appearance of skin tone was related to the overall brightness or illumination of the image. In this case, 

the difference in the general brightness of the image would suggest a possible form of self-presentation, 

in which people in the sample chose to present themselves in brighter or darker images or locations that 

were illuminated differently (e.g., indoors vs. outdoors) according to their sexual orientation. 

Methods 

Facial Images. I employed the same dataset of facial images as Studies 1a, 1b, and 1c.  

Image Regions. To separate the facial image into different regions, I designed a fixed mask using 

the average facial landmarks extracted from each facial image. Since all faces were aligned at the same 

location, a fixed mask would be reasonably effective in covering all faces (or backgrounds) in the images. 

Figure 6 shows an example of the masks used to separate the regions. The size and shape of the mask 

were optimized such that the mask only occupied 50% of the entire image, at the same time covering a 

slightly larger area of the average facial region (see average facial landmarks in Figure 6). I also ensured 

that the mask would cover all the skin area including the neck. To extract the background regions, I 

blocked the facial region using the mask (see Figure 6, left panel). To extract the facial regions, I inverted 

the mask and blocked the background regions (see Figure 6, right panel). I applied the standard and 
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inverted mask onto every facial image to produce two masked images for each original facial image. As 

the number of facial images per participant is different, I created a composite image for each person. 

 

----- INSERT FIGURE 6 ABOUT HERE ----- 

  

Image Brightness. Image brightness was measured by the average value of all pixels in the 

image for each color channel. The higher the value of the pixel, the brighter the image. Since pixels are 

valued from 0 to 255, I normalized them to a range of 0 to 1. I extracted two within-person brightness 

measures, i.e., the brightness of the background and that of the facial region for each participant.  

Results  

Figure 7 plots the image brightness by image regions and sexual orientation separately for each 

gender. Table 7 in the Appendix reports the statistical tests on the differences in brightness for each 

color channel by image regions and sexual orientations. Note that the general trend in how brightness 

varied was similar across each color channel (red, green, and blue). This meant that the difference was 

indeed due to brightness and not hue (see Table 7 in Appendix). Looking at Figure 7, the facial regions 

were across the board brighter than the background, which confirms that the masks correctly separated 

the facial regions and the background. A significant difference in image brightness was observed 

between gay and heterosexual people in the sample for both genders and facial regions.  

 

----- INSERT FIGURE 7 ABOUT HERE ----- 

 

On average, images were significantly darker for lesbian women compared to heterosexual 

women (p < .001), whereas images were significantly brighter for gay men compared to heterosexual 

men (p < .001). Comparing the regions, image background was on average darker than the facial region, 
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but the magnitude and direction of the variations were similar. In other words, if facial regions were on 

average darker for a given sexual orientation, the background region would also be darker for that 

sexual orientation compared to the other group. This supports the hypothesis that skin tone differences 

across sexual orientations was related to differences in the overall brightness of the image and not just 

the facial regions. This suggests a form of self-presentation, in which people preferred different image 

brightness or illumination according to their sexual orientations.  

I further conducted a mixed-design ANOVA separately for each gender. There was a significant 

main effect of masked regions on brightness differences for both women (F(1, 10338) = 4711.06, p = < 

.001, ηp2 = .313) and men (F(1, 5122) = 199.14, p = < .001, ηp2 = .037). There was also a significant main 

effect of sexual orientation on brightness differences for both women (F(1, 10338) = 19.32, p = < .001, 

ηp2 = .002) and men (F(1, 5122) = 42.22, p = < .001, ηp2 = .008). However, I did not observe any 

significant interaction between masked regions and sexual orientation in terms of brightness difference 

for both women (F(1, 10338) = 2.64, p = .104, ηp2 = < .001) and men (F(1, 5122) = 0.037, p = .847, ηp2 = 

< .001). 

Discussion 

Study 2a found that brightness in the facial region varied together with background region 

according to sexual orientation. For example, gay men on average uploaded facial images that are 

brighter in both the facial and background region compared to heterosexual men. The brighter skin tone 

observed in the previous study (Wang and Kosinski, 2018) for gay men might have been due to gay men 

taking and uploading generally brighter or more illuminated facial images to the dating website. In other 

words, the brighter images for gay men might have made their skin appear brighter compared to 

heterosexual men. Overall, this difference in image brightness suggests a coherent story of how gay and 

heterosexual people in the sample chose to upload different facial images according to their self-

presentational preferences. 
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The difference in illumination of facial images across sexual orientation and gender groups 

might be attributed to many reasons. One interpretation might be the use of camera flash lights. 

However, flash lights should be directed to the face and should not affect the overall brightness of the 

image. Another possible interpretation might be that people used different photo-editing processes, 

such as applying image filters (Haferkamp et al., 2012; Hancock & Toma, 2009; Ota & Nakano, 2021). A 

third interpretation might come from theory in person-environment transactions, which posits that 

people actively choose their daily environments according to their dispositions (Matz & Harari, 2021; 

Wrzus et al., 2016). It would be possible that for people with brighter images, the images were taken 

outdoors. This interpretation might also help to explain why image background in Study 1c contributed 

to sexual orientation classifications for men. That said, it might be possible that a combination of 

factors, i.e., flash lights, filters, locations, and even skin tones, contributed to the observed differences, 

and that these factors played out differently depending on the gender.  

Study 2b 

Study 2b tested whether differences in image brightness played a significant role in classification 

of sexual orientation. To do so, Study 2b employed an image augmentation technique: blurring. I blurred 

the images progressively and tested the classification power of blurred images using the sexual 

orientation classifier. When images were completely blurred, only brightness differences remained. This 

helped me measure the contribution of brightness on classification of sexual orientation. If three values 

that measured the image brightness for each color channel can classify sexual orientation, the 

classifications are likely attributed to self-presentation.  

Importantly, Study 2b was also designed to evaluate the limit of privacy protection in sexual 

orientation classification. Image blurring is a frequently used strategy to de-identify facial images and to 

protect the privacy of individuals (Li et al., 2017). Augmenting the image by blurring aims to test 

whether this privacy-protection strategy may prevent the loss of private information. If blurring were 
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effective, sexual orientation classification using blurred images should drop to chance level. If not, it 

would reveal a threat to privacy and a limit to privacy protection. 

Methods 

Facial Images. I employed the same dataset of facial images as Studies 1a, 1b, 1c, and 2a. 

Image Augmentations. The second row of Figure 1 in the Appendix provides a few examples of 

the image augmentations. I blurred each image by downsizing it to a target width and height. The 

downsizing algorithm interpolated every new pixel using the average values of its respective source 

pixels.9 As the algorithm employed in this study requires images of size 224 by 224 pixels, I enlarged 

every image back to its original size after it was downsized.  

The entire dataset of blurred images was used to classify sexual orientations following the same 

20-fold cross-validated model pipeline described in Study 1c. A total of 29 augmentations using target 

width of decreasing sizes was conducted. Figure 2 in the Appendix provides a plot of the target width by 

augmentation number. In the first augmentation, a target width of 112 pixels was used (50% of the 

original image width) and a classification score was produced. This step was repeated until, in the last 

augmentation, the image was downsized to only one pixel. In other words, it was completely blurred. 

To evaluate these classifications, I compared them to random classifications. Unlike Study 1c, 

random classifications were generated using the downsized average image of the entire dataset 

(separately for each gender). As expected, blurred average image of the entire dataset generated a 

random classification score of AUC = 0.500 (95% CI = [0.50, 0.50])10 for each gender. 

 

9 For example, if a 224 by 224 image were downsized to one pixel, the resulting image would contain the average pixel values of 
the original image. 
10 In this case, VGG-Face algorithm produced random facial scores (mostly zeros), but when they entered the 20-fold cross-
validated logistic regression, they yielded zero-only classifications like Study 1c. 
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Results 

Figure 8 shows the average AUC results with confidence intervals. Table 8 of the Appendix 

Materials reports the average AUC results and significance test against random classifications. Table 9 of 

the Appendix reports AUC scores generated using one image per person. Tables 10 and 11 of the 

Appendix report other common evaluation metrics using averaged predictions or only one prediction 

respectively. All results are reported separately for women and men. 

Of the 29 degrees of blurring, no AUC dropped to chance level (i.e., AUC = 0.50) for both women 

and men. All AUCs were significantly higher than random chance (p < .001). As seen in Figure 8, slightly 

blurring the facial images did not lead to any decrease in AUC scores for both women and men (i.e., for 

the first four augmentations). In fact, AUC scores even increased for men when facial images were 

blurred to 44 by 44 pixels. This could be due to blurring eliminating noisy pixels, thus allowing the 

algorithm to “focus” better on the useful pixels.  

As I increased the degree of blurring, the AUC scores remained high for both women and men 

but started to decrease until the midpoint of the augmentations. At this point, the facial features started 

to become too blurred to be recognized, as every facial image was downsized to only 16 by 16 pixels. 

Despite this, the AUC scores remained high at AUC = .62 for women and AUC = .59 for men. These scores 

translated to Cohen’s d = 2.36 for women and d = 1.50 for men, which are on average huge effect sizes. 

As the blurring went along further, AUC started to degrade more for women but remained almost 

constant for men. Finally, at the most extreme case, i.e., when images were downsized to one pixel, AUC 

scores for both women and men were above chance level and translated into Cohen’s d = 0.55 for 

women and d = 1.00 for men (i.e., large effect sizes).  

 

----- INSERT FIGURE 8 ABOUT HERE ----- 
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Looking at the overall AUC degradation pattern, some obvious differences across genders were 

observed, as in Study 1c. AUC scores degraded as pixels were progressively blurred, but the decrease in 

scores did not follow the same magnitude of degradation in image quality. AUC degradation seemed to 

follow a linear pattern for women but a slightly curvilinear or even somewhat random pattern for men. 

Intriguingly, for men, the degradation started to show signs of increase beyond the point where facial 

features became unrecognizable (when downsized to 6 by 6 pixels) compared to earlier augmentations. 

It is interesting that this general trend for both genders was somewhat consistent with Study 1c, in 

which the AUC degradation was slightly more severe for women but not so for men.  

Discussion 

These results, when interpreted together with those in Study 1c, might provide a consistent 

story about how men chose photographs with different backgrounds and image lighting (possibly due to 

different locations or ambient environments). Finally, like Study 1c, these results demonstrated a serious 

threat to privacy. This is reflected in the most extreme case, in which the only information necessary for 

classifications could be as few as three numbers representing the brightness values of each color 

channel. 

General Discussion 

This research examined whether gay and heterosexual people presented themselves differently 

in facial images that were uploaded to a dating website, and whether these differences contributed to 

classification of sexual orientation. Study 1a showed that self-presentational facial attributes extracted 

from photographs differed significantly across sexual orientations. Study 1b showed that these 

differences contributed to classification of sexual orientation. Study 1c replicated the sexual orientation 

classifier in Wang and Kosinski (2018) and examined the contribution of image background on sexual 

orientation classification. The results showed that the classifier was influenced by the image background 

and that even a 97% masked facial image could classify sexual orientation at rates higher than random 
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chance. Several robustness checks revealed that this pattern was not due to artefacts in the algorithm. 

Study 2a examined another self-presentational feature: image brightness. Results showed that the 

difference in skin tone across sexual orientation was due to overall brightness or illumination of the 

image. Given that brightness varied across sexual orientation, Study 2b tested whether highly blurred 

images, where only brightness information remained, would classify sexual orientation. As expected, 

results showed that image brightness contributed to classification of sexual orientation, particularly for 

men. These results demonstrate that people presented themselves differently in facial images, 

classification of sexual orientation was influenced by these differences, and the risk of privacy loss might 

be higher because de-identification strategies were ineffective. 

Theoretical Contribution. If self-presentation mattered for classification of sexual orientation, 

what about facial morphology? Wang and Kosinski (2018) acknowledged the contribution of both 

morphology and self-presentation but framed their study using the Prenatal Hormonal Theory. For 

example, they wrote, “Some of the differences between gay and heterosexual individuals, such as the 

shape of the nose or jaw, are most likely driven by developmental factors” (p. 254). My study aimed to 

provide an alternate narrative by showing that self-presentation makes a significant contribution to 

sexual orientation classification. For example, 12 self-presentational facial attributes could classify 

sexual orientation at AUC scores almost comparable to when the entire facial image was used (4,096 

VGG-scores) for women.  

One question that might arise is which of these influences, facial morphology or self-

presentation, contributed most to classification of sexual orientation. There is ample evidence in facial 

perception research pointing to confounds in facial images, and how these confounds might render 

photographs unreliable measures of facial identity, appearance, or morphology (Jenkins & Burton, 2011; 

Jenkins et al., 2011). For example, Jenkins et al. (2011) found that within-person variability in 

photographs is sometimes even larger than between-person variability, which caused unfamiliar raters 
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to misidentify faces in the photographs. Noyes and Jenkins (2017) found that camera-to-person distance 

can also moderate the person's face shape in photographs, leading to different levels of face recognition 

by humans. Consistent with this line of research, my study would argue that my sample, i.e., dating 

photographs, is not fit to answer morphological related questions. It would be likely that facial 

morphology and self-presentation both contributed to classification of sexual orientation, and there 

might be a significant interaction between the two.  

Future research interested in the morphological contribution of sexual orientation classification 

should consider using standardized facial images that are taken in controlled conditions (such as the 

lab). Future studies should also control for the influence of important self-presentational features such 

as the presence of glasses and image backgrounds. In particular, social cognition researchers typically 

use stimuli, in which all non-facial parts of the face (including hair) are occluded (e.g., see Oosterhof & 

Todorov 2008, Figure 1). Researchers can use such controlled, standardized stimuli, in which there is no 

room for self-presentation, to determine whether sexual orientation can be detected from morphology. 

These arguments could be easily dismissed on grounds that advanced facial recognition 

algorithms are less affected by self-presentational features (Phillips, 2017; Prasad et al., 2020; Taigman 

et al., 2015). For example, the VGG-Face algorithm employed in this study was developed using 2.6 

million facial images of 2,622 unique individuals (Parkhi et al., 2015; Phillips, 2017; Prasad et al., 2020). 

Given that, on average, 1,000 images per person were fed into the algorithm, researchers believed it 

would start to recognize high-level facial patterns, such as the contour of the jaw or the shape of the 

nose and ignore confounding features such as the image background. However, consider the following 

illustration. Diane is an extrovert. She enjoys outdoor activities and likes taking selfies of herself 

outdoors. Mary is an introvert. She likes to stay at home and rarely takes photographs of herself. When 

they uploaded photographs to their social media platforms, Diane consistently chose photographs of her 

outdoors while Mary chose only a picture of her in her bedroom. Therefore, their personality traits, such 
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as whether they are extroverted, might be consistently reflected in their self-presentational behaviors, 

e.g., lighting of their photographs, skin tan, and image background, but not so much in their facial 

morphology or appearance. 

My findings suggest that facial recognition algorithms might not have eliminated self-

presentation features. While facial recognition algorithms perform well under different lighting 

conditions (Phillips, 2017), it does not mean that differences in lighting or brightness, a form of self-

presentational feature as seen in Studies 2a and 2b, are disregarded by the algorithm. The findings in 

Studies 2a and 2b suggest that when the algorithm was applied to sexual orientation classification (from 

facial recognition), it started to rely on such features. Thus, future research interested in facial 

morphology should consider methods in other areas of machine learning. For example, 3D face 

reconstructions using multiple facial images of the same person (Gecer et al., 2019; Tran et al., 2018) 

might produce more accurate morphological models, might be less affected by self-presentational 

features, and might more robustly model the relationship between morphology and behavioral 

outcomes (Kittler et al., 2016). 

In terms of impression management, the findings in this research are consistent with the idea 

that people present themselves differently based on their values, goals, identity, and social contexts 

(Goffman, 1959; Leary & Kowalski, 1990; Schlenker, 2012). My study found that people in the sample 

systematically uploaded different photographs to the dating website according to their sexual 

orientation and gender. For example, men on average uploaded photographs that differed significantly 

in image background and brightness across sexual orientations. As elucidated, while self-presentational 

differences were observed, impression management research suggests that self-presentations can be 

either conscious or subconscious (Leary & Kowalski, 1990). It is beyond the scope of my study to further 

examine the motivations. 
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The findings here also contribute to facial perception research. The literature has established a 

vast framework showing how morphological and self-presentational differences influence social 

evaluations (Oosterhof & Todorov, 2008, 2009; Todorov, 2008; Todorov et al., 2008). However, it seems 

there is a scarcity of research examining how image backgrounds or lighting in naturalistic facial images 

affect perceptions of faces. Future facial perception research can explore whether image properties 

affect the impressions of people, and how properties interact with morphologies or other self-

presentational styles in forming facial perceptions. The findings here also seem to connect to the 

burgeoning literature around the biasing nature of faces (Olivola et al., 2014; Olivola & Todorov, 2010; 

Todorov et al., 2015). If perceptions of faces can be biased, how do different self-presentations 

identified in this study affect or improve the accuracy of these perceptions? Future studies at the 

intersection of impression management and facial perception research could perhaps explore these 

questions further. 

Finally, my study might relate to research in person-environment transactions (Matz & Harari, 

2021; Wrzus et al., 2016). When correlating naturalistic facial images with behaviors, it is often 

impossible to eliminate the influence of image background. In fact, the findings here might demonstrate 

what was shown in Torralba et al. (2008), that scenes can be consistently predicted using tiny images. I 

did not directly test whether the difference in background and lighting was caused by ambient 

environmental conditions (or location), but if these conditions influenced the results here, it would open 

new doors to research. Perhaps future research can evaluate whether people of different characteristics 

or personality traits systematically take selfies in different locations, whether these locations are 

correlated with other self-presentational styles, and how these locations further influence people’s 

psychological states.  

Practical Implication. Most importantly, my research revealed a danger to privacy that was 

underestimated in previous research. The results here suggest that a small number of pixels at the 
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image border or even one pixel representing the average brightness of the image can expose sexual 

orientation information. Therefore, masking or blurring the face in naturalistic facial images does not 

completely prevent the loss of this sensitive information. One counter-argument is that classification of 

sexual orientation using self-presentational differences might be easier in the context of dating but 

more difficult in other contexts. However, previous research might suggest that some self-

presentational behaviors are habitual or consistent, thus do translate to other contexts (Agüera y Arcas 

et al., 2018). For example, gay individuals reported that they wore glasses more (and preferred the 

aesthetics of doing so) compared to heterosexual individuals. Therefore, “non-transient” self-

presentational factors might consistently reflect in other contexts, such as job interviews, and expose 

sensitive information. 

We live in a day when we are closely connected to the digital world and acculturated to 

expressing ourselves through online platforms. However, companies such as Clearview AI are taking 

advantage of this trend by amassing huge databases of facial images without our consent, and training 

facial recognition algorithms to expose our sensitive information in the name of law enforcement 

(Rezende, 2020). While research suggests that consumers can employ do-it-yourself methods to protect 

themselves (Li et al., 2017; Matzner et al., 2016; Shan et al., 2020; Zhang et al., 2014), the findings here 

indicate that these methods might not be as effective as researchers imagined. If governments and 

companies do not take the necessary steps to address this matter, the alternative to privacy protection 

would be people uploading fewer photographs and engaging in less online activity. However, this would 

entail a tradeoff between privacy and freedom of expression, one that would be detrimental to our 

society. Overall, based on the results in this study, I recommend against shifting the burden of privacy 

protection to consumers. Fortunately, some governments have started to limit the use of certain facial 

recognition systems (Conger et al., 2019). They are also implementing stricter privacy protection laws 
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(Rothstein & Tovino, 2019). It is my hope that with this trend continuing, people will not face the privacy 

concerns addressed in this study. 

Limitations. One question regarding Studies 1c and 2b might be whether the pre-trained VGG-

Face algorithm assisted the classification when the images were masked or blurred. In other words, 

were there artefacts in the pipeline or algorithm? To answer this question, I correlated the VGG-scores 

produced by the image augmentations with the scores produced by the original images. I found that the 

correlations decreased as images were progressively masked. When the images were fully masked, VGG-

Face produced zero-only scores. When fully blurred images of the dataset were entered, VGG-Face 

produced the same random scores (mostly zeros) for every image. These scores, when fed into the 

logistic regression model, all produced predictions of zero, resulting in AUC = 0.50 (95% CI = [0.5, 0.5]). 

These results show that the VGG-Face algorithm did not assist with the classifications and there were no 

artefacts in the pipeline. Additionally, I repeated the entire study by custom-training the VGG-Face 

algorithm (i.e., not using the pre-trained weights) using the augmented images for each of the 29 

augmentations. This process produced even higher classification powers, which might indicate over-

fitting. As an additional robustness check, I repeated the steps using different validation techniques. The 

results remained similar. These analyses confirmed that the classification powers reported here were 

indeed due to background or image brightness and not due to the “robustness” or artefacts of the VGG-

Face algorithm. 

A related issue might be why image augmentations were used to explain the algorithm in the 

first place. To elaborate, image augmentation is an attribution technique used in machine learning to 

increase interpretability (for other methods, see Biecek, 2018). This technique is not new and has been 

widely applied to many areas of machine learning (Shorten & Khoshgoftaar, 2019; Zeiler & Fergus, 

2013). However, I deliberately chose image augmentations, i.e., masking or blurring, because they are 

straightforward and offer results that were easy to interpret. More importantly, the augmentations 
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addressed the research questions in this study. One question was whether the background mattered for 

classification of sexual orientation. By masking the facial regions of the image, Study 1c showed that the 

background contributed to classification of sexual orientation. Another question was whether image 

brightness contributed to classifications. Thus, Study 4 blurred the image so that only the brightness 

information was used to classify sexual orientation. Lastly, the most important research question was 

whether data-protection tools would help people protect their private information (Li et al., 2017; 

Matzner et al., 2016; Shan et al., 2020; Zhang et al., 2014). Image augmentations directly tested whether 

such strategies were effective. Nevertheless, future studies can employ different attribution techniques 

and interpret the results here in tandem. 

A question regarding the classification results might be why AUC scores are generally lower in 

my study, especially for men, compared to Wang and Kosinski (2018), despite following that previous 

study closely in every procedure. First, the lower AUC scores might be due to the smaller sample. The 

total number of facial images in my final dataset is 31,762, whereas the total in Wang and Kosinski 

(2018) is 35,326. While my study aimed to collect a larger dataset, the preprocessing step pruned more 

samples compared to the previous study as participants were also matched on the number of facial 

images (see Table 1). Second, if the lower AUC scores were due to my reliance on a different sample 

(i.e., a different dating website), the fact that my study replicated the general trend in Wang and 

Kosinski (2018) shows that classification of sexual orientation is generalizable, providing evidence for 

even greater privacy concern.  

A relevant related question might be whether the AUC scores in the most extreme 

augmentations were too low to warrant any privacy concerns. The augmentations were deliberately 

exaggerated to examine whether there was a baseline, at which AUC would drop to chance-level. In 

other words, it would be unlikely that images in the wild would contain augmentations that were as 

severe as those in the 29th step of the augmentations. Even if they did, it is highly likely that companies, 
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such as Clearview AI, possess more facial images (in the hundreds) of the same person. These images 

might be used to produce much higher classification rates. 

Conclusion 

This study examined three research questions, namely whether people presented themselves 

differently in naturalistic facial images according to their sexual orientations, how differences 

contributed to classification of sexual orientation, and the implications for privacy. The research found 

that differences in self-presentation across sexual orientation were significant and that these differences 

contributed to classifications. Image augmentations found that even when the face was masked or 

blurred, sexual orientation was classified at rates significantly higher than chance, signaling a risk to 

privacy that was previously underestimated. Given these findings, I argue that the burden of privacy 

protection should not be shifted to the consumers, but must be initiated by governments and 

companies.  
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Chapter 2 

 

How Existing Biometric Privacy Acts Would Fail at  

Protecting People’s Privacy in Self-Posted Facial Photographs 

 

Introduction 

In recent years, more evidence has emerged that facial recognition is violating people’s privacy, 

threatening civil liberty, freedom, and safety in our society (Leong, 2019; Matz et al., 2020; Santow, 

2020). A number of studies have demonstrated how facial recognition can be easily repurposed to 

reveal people’s personal information from their online-posted facial photographs (Kosinski, 2021; D. 

Wang, 2021; Y. Wang & Kosinski, 2018). This information not only includes basic demographics (Ranjan 

et al., 2018), but also personal features such as sexual orientation (D. Wang, 2021; Y. Wang & Kosinski, 

2018), political orientation (Kosinski, 2021), personality traits (Kachur et al., 2020), and emotional states 

(Schwartz, 2019). Using artificial intelligence technology, companies can discretely engage in 

inappropriate activities, such as changing people’s purchasing behaviors (Matz et al., 2017), profiling 

people according to their race and psychological traits (Matz et al., 2020), and swaying public opinions 

and political views (Matz et al., 2017). The potential for facial recognition to be misused or even 

weaponized poses a significant threat to our society, a challenge that must be addressed urgently.  

The Current Regulatory Environment 

To tackle these concerns, many governments have started to implement different kinds of 

privacy acts (Almeida et al., 2021). One type is the consumer privacy act. For example, the California 

Consumer Protection Act of 2018 (CCPA) (California Consumer Privacy Act (CCPA), 2018) requires 

companies to ask consumers for consent when processing their data, including biometric-related data, 

and to provide consumers the liberty to have their data deleted. Facial recognition would be regulated 
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because both the input and output of the system, i.e., consumers’ facial photographs and biometric 

information, are within the scope (Helveston, 2018). However, this regulation is often criticized for the 

fact that companies are not required to publicly disclose how they engage in data-processing activities, 

and thus the burden of privacy falls on the shoulders of the consumers. Relying on consumers’ 

discretion has proven ineffective from a psychological perspective, as published research illustrates how 

consumers often cannot comprehend disclosure documents or are misled by ambiguous framing of 

privacy disclosure terms (Acquisti et al., 2020).  

On the other hand, many governments are considering a different form of regulation. This type 

is distinct from the above-mentioned as it targets only the output of facial recognition—biometric 

information. Furthermore, it requires companies to not only ask for consent, but also disclose how they 

are using the biometric data. A notable example is the Illinois Biometric Information Privacy Act of 2008 

(BIPA), which specifies that any “retina or iris scan, fingerprint, voiceprint, or scan of hand or face 

geometry” that could be used to “identify an individual” is regulated under this statute (BIPA, 2008). 

Moreover, companies “must develop a written policy, made available to the public” before biometric 

information is obtained or processed (BIPA, 2008). Recently, a watershed moment was reached when a 

class action lawsuit against Facebook under BIPA violation was settled, amounting to potentially 650 

million dollars of payout (Stempel, 2019). A summary of the current regulatory environment under 

biometric privacy regulations can be found in BCLP Law (2022).  

Biometric Information vs Non-Biometric Information 

One major assumption, which proved pivotal to the settlement of a number of court cases 

under existing biometric privacy acts (Stempel, 2019), is that privacy loss is a result of facial recognition’s 

power to extract biometric-equivalent information from facial photographs posted online (Sundararajan 

& Woodard, 2018). This assumption is crucial because existing biometric privacy acts exclude facial 

photographs in their definition of biometric data (BIPA, 2008; Norberg v. Shutterfly, 2015). Therefore, 
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for the law to be effective at regulating facial recognition, it must assume that the system can recognize 

faces and extract biometric information (Q. Cao et al., 2018; Parkhi et al., 2015; Prasad et al., 2020; 

Sundararajan & Woodard, 2018; Taigman et al., 2015). This assumption can also be supported by an 

abundance of evidence in social psychology, evolutionary psychology, and behavioral sciences that 

demonstrates robust links between faces (particularly facial geometry) and behavioral tendencies 

(Oosterhof & Todorov, 2008a, 2008b; Stirrat & Perrett, 2010; Todorov et al., 2005). However, recent 

research demonstrates that this basic assumption might not be valid (Geirhos et al., 2020; Rudin, 2019), 

for it would be possible that facial recognition learns non-biometric information too (Agüera y Arcas et 

al., 2018; D. Wang, 2021), and harms privacy due to features in the model previously overlooked by 

policymakers and legal practitioners. 

In the technical sense, biometric-equivalent information extracted using facial recognition 

systems is usually assumed to be the string of numbers at the end of the facial recognition model (see 

Figure 1a). This string of numbers is referred to as face-embeddings (Q. Cao et al., 2018; Parkhi et al., 

2015; Prasad et al., 2020; Schroff et al., 2015). Like fingerprints, face-embeddings are unique to each 

individual because the numerical values in the embeddings would largely remain similar regardless of 

the facial photographs given to the facial recognition system (Phillips, 2017). VGGFace, for example, is a 

pre-trained facial recognition model that extracts a unique identifier of 4,096 numerical values for each 

individual (Parkhi et al., 2015). These numbers remain roughly identical across different pose, 

illumination, and age of the same person (Q. Cao et al., 2018; Parkhi et al., 2015; Phillips, 2017), and 

thus can be used to verify the identity of the person or distinguish the person from others.  

 

----- INSERT FIGURE 1 ABOUT HERE ----- 

 



 
 

50 

However, given that deep learning systems are largely black-boxes (Rudin, 2019), researchers 

are starting to question whether face-embeddings extracted from photographs consist of only 

biometric-equivalent information (D. Wang, 2021). The existence of non-biometric information in facial-

embeddings would be possible because facial photographs posted online are usually voluntarily 

generated by people, thereby mingled with their behavioral tendencies (see Figure 1b). For example, 

psychological research has found that when people upload profile pictures to their social media 

accounts, they do not randomly upload their photographs (Todorov & Porter, 2014; White et al., 2017). 

Instead, they select photographs that they consider to best represent themselves (Agüera y Arcas et al., 

2018; D. Wang, 2021). They also add specific modifications such as image filters, different illuminations 

or brightness, or crop in or out objects that do or do not symbolize their values (White et al., 2017). 

These subtle behavioral cues, more often than not, are consistent across photographs of the same 

person (Agüera y Arcas et al., 2018).  

Thus, it would be highly likely that these behavioral features are also learned by the facial 

recognition model and would carry significant value in exposing people’s privacy. If companies could 

leverage on behavioral data extracted from photographs, instead of biometrics, to expose people’s 

sensitive information, the companies could still invade people’s privacy without the restrictions of 

biometric privacy acts. Such data can also be combined with other digital traces (such as text data) to 

increase prediction accuracies (West, 2019). Since the scope of existing biometric privacy acts do not 

include behavioral data (BIPA, 2008), if the abovementioned is true, it would not be broad enough to 

fully protect people’s privacy.  

In this research, we demonstrate a case in which sensitive information can be easily extracted 

without the help of a facial recognition system and biometric-equivalent information. We repurposed a 

face, image, and scene recognition model into trait classifiers. We found that the image and scene 

recognition models were capable of predicting the human traits at levels comparable to the facial 
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recognition model. We further de-identified individuals in the photographs by segmenting and masking 

the person in every photograph. In all cases, non-biometric models predicted traits at levels either 

comparable to or better than facial recognition models. The findings in this research reveal how the use 

of non-biometric information could endanger privacy, thereby rendering the current scope of biometric 

privacy acts incomplete. We hope our results contribute to the urgent discourse surrounding privacy 

regulations.  

Methods 

Data and Sample. We obtained two publicly available datasets, CelebA-HQ (Guo et al., 2016; 

Karras et al., 2018) and UTK-Face (Z. Zhang et al., 2017). While there are many open-source datasets, we 

chose these two because photographs were labeled with attributes of interest. Moreover, these 

datasets contain raw, unprocessed, and unaligned photographs found in realistic online settings. The 

CelebA-HQ dataset consists of 30,000 high-quality photographs of 2,222 celebrities collected in-the-wild, 

annotated with gender and age labels (Guo et al., 2016; Karras et al., 2018). The UTK-Face dataset 

consists of 24,102 photographs, one per person, collected from the Internet, annotated with gender, 

age, and race labels (Z. Zhang et al., 2017). 

As the number of prediction classes and images per person were somewhat different, we 

balanced the dataset by randomly drawing samples in each sub-category using a target sample size 

equivalent to but not more than the smallest sub-category. In the final sample, the number of images in 

each prediction class were perfectly balanced, as well as the number of images per person. Table 1a 

reports the size and distribution of the final sample for UTK-Face and Table 1b reports that for CelebA-

HQ.  

 

----- INSERT TABLE 1 ABOUT HERE ----- 
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Pre-trained Models. All embedding features (except the baseline) were extracted using deep 

neural network models. The first model was a facial recognition model called VGGFace (Parkhi et al., 

2015), trained on 2.6 million naturalistic facial images of 2,622 individuals. A number of studies have 

demonstrated how this model can be repurposed to detect sensitive traits, such as sexual orientation, at 

high accuracy rates (D. Wang, 2021; Y. Wang & Kosinski, 2018). Thus, we believe this pre-trained model 

would be appropriate to demonstrate our proposed effect. We replicated the preprocessing pipeline in 

previous research and took the performance of this model as the benchmark.  

In comparison, we obtained two off-the-shelf image and scene recognition models, namely 

ImageNet and Places-365. Both models were repurposed to predict human traits, far from their original 

intentions. The image recognition model was trained using a small subset (1.3 million) of the complete 

ImageNet dataset (Deng et al., 2009). These images include labels such as dog, cat, cup, and baseball. 

Similarly, the scene recognition model was trained on a small subset (1.8 million) of the complete 

Places-365 dataset (Zhou et al., 2018). These images include labels such as bathroom, bedroom, and 

warehouse.   

Image Preprocessing and Training Pipelines. To demonstrate a case in which non-biometric 

information in photographs posted online can reveal sensitive information, we reconditioned a face, 

image, and scene recognition model to predict three demographic traits: gender, age, and race. Note 

that while it is possible to demonstrate the effect using intimate human traits such as sexual orientation, 

we avoided doing so due to ethical concerns—we believe it unnecessary to commit a crime to 

demonstrate the criminality of an action. To compensate for the robustness of the research, we 

conducted conservative tests by de-identifying the person in each photograph and evaluating the 

performance using the same models. We replicated the results on two publicly available datasets, as 

well as made our code available for future research (see Code Availability).  
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Figure 2a illustrates the preprocessing and feature-extraction pipeline. For each photograph, we 

obtained a total of 10 sets of embedding scores. In the first two, a facial recognition model was applied 

on the aligned and unaligned photograph to extract the embedding scores (see upper half of Figure 2a). 

For the next two sets, we used an image and scene recognition model. As baseline, we included an 

analysis without the reliance of any deep neural network model. In other words, we relied directly on 

the flattened array of 150,528 pixels (224 pixels × 224 pixels × 3 color channels). This would allow us to 

understand how deep neural network models helped in processing and extracting relevant features 

from photographs. For the next five sets of features (see lower half of Figure 2a), we de-identified each 

photograph by segmenting the face and body (Lugaresi et al., 2019), dilated the mask to obscure edge 

information, and filled the segmented area using a simple inpainting technique (Bertalmio et al., 2001). 

The de-identified photographs were entered into the same pipeline as the previous five to extract the 

final embedding scores (see lower half of Figure 2a).  

 

----- INSERT FIGURE 2 ABOUT HERE ----- 

 

We passed every photograph in our sample through the deep neural network models to extract 

the embedding scores at the end of each model right before the classification block (see Methods). All 

the models were pre-trained using the VGG-16 deep neural network architecture (see Figure 2b). We 

deliberately did so to rule out any alternative explanations regarding the design of the networks. The 

embedding scores were used as inputs to a 10-fold grouped cross-validation pipeline, which fitted a 

singular-value-decomposition (500 parameters) and logistic regression model to predict the final 

outcome, similar to previous research (Kosinski, 2021; D. Wang, 2021; Y. Wang & Kosinski, 2018).  

Data availability. Data used for this study is available at https://osf.io/4zsn2/. 
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Code availability. Code used for balancing data, extracting embedding scores, and training 

models are available at https://osf.io/4zsn2/. 

Results 

To test the effectiveness of non-biometric, behavioral features extracted from online-posted 

facial photographs in predicting human traits, we compared the performance of image (ImageNet) 

(Deng et al., 2009) and scene recognition (Places-365) (Zhou et al., 2018) models to that of a facial 

recognition model (VGGFace) (Parkhi et al., 2015) in classifying the demographic information in two 

public datasets (see Methods). We report area under the receiver-operating-characteristic curve 

(AUROC) in Figure 3 and other common evaluation metrics and confidence intervals estimated by the 

bootstrap method in Tables 2 and 3. We report the performance of the models in the two datasets 

separately. 

We first assessed the performance of classifications using original photographs (Figure 3a and 

Table 2a). Overall, both gender and age were classified at AUROC level above random-chance by all 

models including the baseline (flattened-image). For gender, both the benchmark models, VGGFace 

(aligned) and VGGFace (unaligned), classified gender close to perfect, replicating results in previous 

biometric studies (D. Cao et al., 2011; Priadana et al., 2020). In comparison, ImageNet and Places-365 

came in very close, followed by the baseline. This pattern is similar for age classification, albeit slightly 

lower across the board compared to gender classification. That said, age was binned at an arbitrary 

threshold, thus a more optimized preprocessing pipeline would produce a better result. However, note 

that achieving state-of-the-art performance is not the goal of this study; instead we aim to evaluate the 

performance of non-biometric models against the benchmark and baseline. 

 

----- INSERT FIGURE 3 ABOUT HERE ----- 
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Surprisingly, even the baseline performed extremely well. This might be due to the very 

distinctive superficial differences between the prediction classes, making the task easy. Thus, we turned 

to a conservative test, by which the person in each photograph was completely de-identified. As 

described in the preprocessing steps (Figure 2a), we ensured that all identifiable information in the 

photographs was removed. We assessed whether our models could continue to classify demographic 

traits. The results are reported in Figure 3b and Table 2b. 

 

----- INSERT TABLE 2 ABOUT HERE ----- 

 

When photographs were de-identified, demographic traits continued to be classified at levels 

much higher than random-chance. The benchmark models, which previously achieved remarkable 

performance, consistently performed the worst among the deep neural network models. The baseline 

also dropped to almost random-chance level, demonstrating that the tasks here were more difficult 

than the previous ones. Despite the tasks being difficult, the non-biometric models consistently out-

performed the facial recognition models in all classification tasks. The results here demonstrate that 

when photographs were masked and de-identified, non-biometric deep neural network models would 

out-perform facial recognition models in the classification of basic human traits. 

To verify the robustness of our results, we tested the above analysis using another public 

dataset, UTK-Face (Z. Zhang et al., 2017), as well as using an additional human trait—race—to 

demonstrate the generalizability of our effect. Using original photographs, the performance by the 

benchmark models was unsurprisingly the greatest in all classification tasks (see Figure 3c and Table 3a). 

This was followed by the non-biometric models. All deep neural network models performed much better 

than the baseline.  
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Turning to the more conservative test using de-identified photographs (see Figure 3d and Table 

3b), the classification performance for deep neural network models dropped across the board, but was 

still much higher than the baseline and random-chance. In this case, ImageNet outperformed the 

benchmark models. Places-365 also achieved high performance, some cases surpassing the benchmark 

models. Finally, the baseline dropped to almost random-chance, showing that the tasks here were very 

difficult. These results provide yet more evidence that models not related to biometric-processing, as 

well as using de-identified photographs, can easily classify human traits from photographs. All in all, we 

consistently illustrated a serious case of privacy violation not covered by the scope of existing biometric 

privacy regulations.  

 

----- INSERT TABLE 3 ABOUT HERE ----- 

 

Limitations 

One may wonder what the mechanisms were that enabled image and scene recognition models 

to predict human traits. While it is beyond the scope of this study to explore this question, given existing 

social-psychological research, it is likely that objects in the photographs (Ebert et al., 2021; Torralba et 

al., 2008; D. Wang, 2021), as well as the context or location where the photographs were taken (Ebert et 

al., 2021; Matz & Harari, 2020), were robustly related to human traits or behavioral outcomes. These 

behavioral patterns were encoded in all the pre-trained models, including the facial recognition model, 

and assisted in predicting the classification outcomes. Future studies could unpack the phenomenon 

observed here using more human interpretable methods (Rudin, 2019). Future studies could also 

evaluate the degree to which such behavioral or non-biometric features were present in facial 

recognition models.  
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Another limitation is the fact that we only experimented on basic demographic traits and not 

more personal ones such as sexual (D. Wang, 2021; Y. Wang & Kosinski, 2018) and political orientation 

(Kosinski, 2021). As mentioned, given our ethical concerns, we believed it unnecessary to obtain more 

sensitive information to demonstrate this effect. The fact that demographics can be easily detected in 

people’s facial photographs, and without the use of biometric information, demonstrates that people 

who value privacy in such domains are already at risk of privacy loss. For example, minorities such as 

Muslims continue to be targets in racial profiling (Crawford et al., 2021). Nonetheless, to ensure the 

generalizability in other human traits and reproducibility of this research, we welcome future 

researchers, who similarly wish to raise awareness of privacy concerns, to replicate our findings using 

our open-source codes (see Code Availability).  

General Discussion 

In this research, we demonstrate an alarming case, in which one of the strictest privacy 

regulations concerning facial recognition—BIPA—would fail at protecting people’s privacy. Specifically, 

we show how image and scene recognition models, which are pre-trained in tasks far from biometric 

processing, can predict human traits from online posted facial photographs at levels almost comparable 

to facial recognition, bypassing the jurisdictions of current biometric privacy regulations. Furthermore, 

we demonstrate a conservative test by which this phenomenon was still present when the face and 

body in each photograph were masked and de-identified. In such case, non-biometric models virtually 

out-performed facial recognition models in classifying these important traits. Overall, the results in this 

research illustrate how biometric-equivalent information was almost not necessary in exposing human 

traits, rendering biometric protection regulations ineffective at protecting people’s privacy in online 

posted photographs.  

Recently, big technology companies, such as IBM, Amazon, Microsoft, and Facebook, 

consecutively halted the use of facial recognition technology (Palmer, 2021), yet according to the 
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findings in this research, the danger of privacy loss still looms large. Facebook announced that the 

company has shut down its facial recognition system as well as deleted all facial identifiers of its users 

(Hill & Mac, 2021). But since then, there has not been any public announcements about how the 

company would handle raw photographs. As most technology companies’ business models depend on 

the use of consumers’ data (Hartmann et al., 2016; West, 2019), if companies can still extract useful 

information from these data without the use of facial recognition and without reliance on biometric-

equivalent information, the danger of privacy loss would still be present in our society.  

We hope the current research contributes to the urgent ongoing discussion on how privacy 

regulations should be formulated in places where no privacy regulation exists, or reformed in places 

where only biometric privacy acts are in place. By unpacking the process and drawing some theoretical 

understanding on how human traits in facial photographs were revealed, we aim to shine a light on the 

current situation of privacy in the face of deep learning. Where administrators’ resources are sufficient, 

we recommend that policymakers should consider regulating both the input (facial photographs) and 

output (biometric information) of facial recognition. We also recommend that policymakers consider 

incorporating behavioral data into the scope of privacy laws because these data might reveal certain 

sensitive information more effectively than biometric data. Lastly, we hope policymakers can consider 

asking companies to publicly disclose their usage of facial photographs as well as other digital data to 

relevant auditing bodies with expert knowledge of privacy protection.   
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Chapter 3 

 

The Past is Better than the Future of Organizations Research 

Conceptualizing the Theory of Artificial Intelligence Application as a Decision-Making Process 

 

Introduction 

From smart phones to household appliances, artificial intelligence increasingly impacts our lives 

in ways once thought unimaginable. Utilizing decision-making systems based on computer algorithms, 

more organizations are incorporating automation technologies, replacing traditional systems based on 

individual or organizational intelligence. This trend, catalyzed by the recent Covid-19 pandemic, saw a 

growing number of companies adopt cloud-based, deep learning tools (Obrad & Circa, 2021); some 

employed automated interview systems that computerize hiring decisions, while others rolled out 

productivity monitoring algorithms that manage employees working from home. If these developments 

herald the new digital revolution changing how we live, work, and play, we, as organizational scholars, 

must ask: What will be the future of organizations? 

As the study of the future of organizations becomes a hot topic in organization and 

management research (Bailey et al., 2022), three perspectives have emerged, namely the automation, 

augmentation, and automation-augmentation paradox perspective (Raisch & Krakowski, 2021). Table 1 

summarizes these perspectives. Since their emergence, advocates of the three camps have been 

engaged in heated conversations with the other camps over which perspective would most accurately 

describe the future of organizations (Lindebaum & Ashraf, 2021), and which path is normatively more 

beneficial to organizations, societies, and what may come beyond (Raisch & Krakowski, 2021).  

However, these discussions often have ended unproductive, because the current scholarship 

seems to be fragmented at best and subjective at worst (for an example, see conversations between 
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Lindebaum & Ashraf, 2021 and Leavitt et al., 2020, 2021). It would not be an exaggeration to equate the 

impressions that many researchers portray, to scenes in a science-fiction novel, leaving one questioning 

whether such impressions are realistic and reflective of the actual phenomenon. Having many 

redundancies in theorization is not detrimental, but if noise turns away future scholars, or dampen 

optimism in current scholars, it would be a zero-sum game for everyone in this field (Colquitt & Zapata-

Phelan, 2007).  

We argue that the current fragmentation in artificial intelligence application theory would be 

improved by removing a few roadblocks. First, camps have not been communicating using a similar set 

of language, and therefore would greatly benefit with a bridging theme and a theory that unifies 

disparate constructs. For example, contributors to the automation perspective typically draw from 

technical research such as machine learning, computer science, and information systems research (Frey 

& Osborne, 2017). On the other hand, the augmentation perspective is situated mostly at the strategy 

(Choudhury et al., 2019, 2021), psychological (Logg et al., 2019), and decision-making (De Cremer & De 

Schutter, 2021; Lebovitz et al., 2022) literature, and a select few studies have convered the 

organizational perspective (Balasubramanian et al., 2020; Puranam, 2021).  

Second, camps use various units of analysis, similar to how management scholarship is broken 

into micro and macro positions (Rousseau, 2011). For example, the automation perspective is mostly 

interested in micro-level behaviors of individuals and machines, and how they linearly aggregate to 

organizational or societal outcomes, ignoring meso- and macro-level mechanisms of organizing (Felten 

et al., 2021; Frank et al., 2018; Frey & Osborne, 2017). While the automation-augmentation paradox 

perspective is concerned with the meso- or macro-level mechanisms, there is less discussion of how 

micro-level, cognitive mechanisms interact (Raisch & Krakowski, 2021). Lastly, despite all perspectives 

having some interest in intelligence and how intelligent systems contribute to organizational outcomes, 

they neglect a rich tradition of research in organizations and organizational intelligence (Levitt & March, 
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1988; March & Simon, 1958; Walsh & Ungson, 1991). All these limitations result in a set of mid-level 

theories that would fail to generalize beyond time and space, and interest audience beyond the field.  

In this work, we argue that the past is in fact better than the future in the theory of artificial 

intelligence application in organizations. This is because pioneering research in both domains has much 

to offer. By reviving the pioneering research, we contribute to the discourse of artificial intelligence 

application twofold: (1) conceptualizing tasks as decision-making, forging a level playing field for all 

perspectives and positioning the unit of analysis as a variable not limited to any levels, and (2) re-

introducing artificial intelligence, and introducing organizational intelligence as forms of decision-making 

systems that prioritize the “human” element over substantive or formal rationality.  

We began by reviewing the three major perspectives in artificial intelligence application. To 

conceptualize tasks as decision-making, we draw upon the bounded-rationality framework proposed in 

Simon (1947). We review how pioneering research in individuals, organizations and artificial intelligence 

all emerged, coordinately, in relation to bounded rationality in decision-making. To provide a working 

theoretical lens on how we can view issues in artificial intelligence application, we invoke the means-

ends chain proposed in March and Simon (1958). We provide some non-exhaustive spiel of examples 

how this lens can be adopted in our discourse and how it connects with many influential ideas in our 

domain. We conclude by pointing out how the use of our framework contributes to artificial intelligence 

application as well as research in management and organization.  

Main 

Perspectives of Artificial Intelligence Applications in Management 

Three perspectives—automation, augmentation, and automation-augmentation paradox—have 

recently emerged in management and organization research; they are outlined in Table 1. In general, 

despite many disagreements, all three perspectives would agree on the fact that humans and machines 

are capable of accomplishing organizational tasks. However, they disagree in their assumptions of how 
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humans and machines could accomplish these tasks, as well as how these differences would project the 

role machines play in organizations. In this section, we briefly review these perspectives.  

 

----- INSERT TABLE 1 ABOUT HERE ----- 

 

The Automation Perspective. This perspective, also referred to as the human “out of the loop” 

approach, predicts a future when certain tasks and occupations, otherwise only accomplishable through 

humans, will be replaced by machines (Brynjolfsson & McAfee, 2014). For example, Frey and Osborne 

(2017) identified three sets of bottlenecks to computerization—perception and manipulation, creative 

intelligence, and social intelligence. Using these bottlenecks, the authors estimated the probability that 

702 occupations would be substituted by automation, and found that transportation, administration, 

and repetitive jobs are more likely to be at risk.  

Since Frey and Osborne’s (2017) paper has been published, a train of research is published using 

similar framework and methodology. For example, Felten et al. (2021) created an Artificial Intelligence 

Occupational Exposure (AIOE) measure, which evaluated each occupation’s susceptibility to automation 

using a set of 10 artificial intelligence applications. They aggregated the score from the occupational 

level to the industry level to predict the trajectory of industries in the wake of artificial intelligence. 

Similarly, Frank et al. (2018) extended Frey and Osborne’s (2017) computerization predictions to 

geographical locations in the United States, and found that small cities are more at risk by automation.  

Most of the research in this perspective is based on the assumption that machines are either 

capable of or limited in completing certain tasks compared to humans, but most capabilities and 

limitations are defined rather subjectively. For example, Frey and Osborne (2017) wrote: “we 

subjectively hand-labelled 70 occupations, assigning 1 if automatable, and 0 if not.” Since the 

publication of Frey and Osborne (2017), research has questioned their predictions. Autor’s (2015) title, 
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“Why Are There Still So Many Jobs,” aptly summarizes this phenomenon. In a large-scale, near universal 

analysis of online job vacancies, Acemoglu and Restrepo (2020) found no detectable automation effect 

on the aggregate labor market.  

The Augmentation Perspective. An augmentation perspective, or the human “in the loop” 

approach, refers to the scenario where, instead of replacing humans, machines would assist humans in 

performing tasks (Brynjolfsson & McAfee, 2014; Davenport & College, 2016; Wilson & Daugherty, 2018). 

Augmentation is defined as “a process of enlargement or making something grander or more superior” 

(Lebovitz et al., 2022, p. 127). By expanding each other’s knowledge, expertise, and capabilities, human-

machine augmentations are predicted to help organizations reap superior performance (Lebovitz et al., 

2022; Wilson & Daugherty 2018).  

Typically, this approach is based on the assumption that machines are still vastly bounded in 

their capabilities, thereby warranting human expertise in their applications (Stohl, 2016). For example, 

Lebovitz et al. (2022) found that whether or not a diagnostician integrated claims made by artificial 

intelligence in judging diseases is moderated by the uncertainty arising from opacity in the machine’s 

decision-making process and the ability for the diagnostician to enact interrogation practices. This 

finding represents a great majority of writings in augmentation perspective, which are concerned with 

the configuration of human-machine collaboration (Balasubramanian et al., 2020). Some possible 

dependent variables include whether organizations adopt human-machine collaborations parallelly, 

sequentially, or at all (Puranam, 2021).  

One limitation in this line of work is that despite artificial intelligence application being 

conceptualized as an important variable affecting organizational intelligence, discussion of the 

relationship of artificial intelligence to organizational intelligence, as well as mechanisms connecting 

artificial to organizational intelligence and organizational learning, are lacking. For example, 
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Balasubramanian et al. (2020) calls for a “deeper conversation about the risks and benefits of ML 

[machine learning], and the roles of humans therein.”  

The Automation-Augmentation Paradox Perspective. This perspective focuses on the temporal 

and spatial process of artificial intelligence applications (Raisch & Krakowski, 2021). It proposes that 

automation and augmentation cannot be neatly separated from each other; instead they are 

dynamically interdependent, and the use of any one-sided strategy is not sufficient to ensure positive 

organizational and societal outcomes. For example, humans would first augment the development of AI 

capabilities because humans can use their expertise to “evaluate, select, and complement machine 

outputs” (Raisch & Krakowski, 2021, p. 196). Sequentially, such capability would lead to the automation 

of the task on a temporal scale. The automation of one task may spill over to other tasks, leading to an 

increase in automation in the spatial scale. As this virtuous cycle continues, augmentation and 

automation would interdependently improve organizational and societal outcomes. On the other hand, 

choosing one strategy over another may lead to a vicious cycle, due to the adoption of a partial solution.  

This perspective is valuable in shifting our focus from a static view to a temporal and spatial 

process of artificial intelligence application (Raisch & Krakowski, 2021). Indeed, technology advances 

quickly, very likely resulting in research failing to generalize in a few years. For example, Bailey et al. 

(2022, p. 1) recommended that scholars “treat these new technologies as ‘emerging’ because their uses 

and effects are still varied and have yet to stabilize around a recognizable set of patterns and because 

the technologies themselves are, by design, always changing and adapting.” We aim to build on this 

“process-focused” (Raisch & Krakowski, 2021) and “relational” view of artificial intelligence application 

(Bailey et al., 2022). In addition, we aim to argue that one variable could remain constant in 

organizations—decision-making—and would unify the process-relational view of artificial intelligence 

application. In the next section, we introduce decision-making as the unit of analysis, and call for a 

unified theory that is built around this tradition. 
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Decision-Making As The Unit of Analysis 

We call for a more focused approach that considers decision-making as the unit of analysis 

(Cyert & March, 1963). As Simon (1947, pp. xiii–xiv) posited, “[d]ecision making is the heart of 

administration,... [t]he vocabulary of administrative theory must be derived from the logic and 

psychology of human choice.” Since the publication of Simon’s theory of management, few other works 

have matched its extraordinary influence, with its reach expanding well beyond its original domain 

(Gavetti et al., 2007, 2012). We aim to connect with this rich tradition of research by focusing on 

decision-making, and to position the theory of artificial intelligence application at the heart of 

management and organizational research (Bailey et al., 2022). We offer a few reasons in this section.  

First, theorizing around the decision-making tradition allows us to tap into a readily available 

and well-developed set of theoretical tools (Cyert & March, 1963; Gavetti et al., 2007; Gavetti et al., 

2012; Luan et al., 2019). Concentrating on decision-making, the behavioral theory of the firm offers a set 

of open and versatile theoretical apparatus that “proved to be a source of strength, allowing a broad 

community of scholars to build on these ideas and offering opportunities for further enrichment of 

these ideas” (Gavetti et al., 2012, p. 29). Therefore, focusing on decision-making allows us to tap into 

many practical benefits in theory building. Conversely, adopting the theorical apparatus to a novel 

phenomenon would also contribute significantly to the relevance and continued interest of this classical 

theory in the current digital age.  

Second, focusing on decision tasks also revives the pioneering research in artificial and 

organizational intelligence. In their introductory paragraphs, Raisch and Krakowski (2021) rightfully cited 

works by Simon and colleagues (e.g., Newell et al., 1958; Simon & Newell, 1961). It is not a coincidence 

that Simon laid the foundation for both the classical theories in organizations and artificial intelligence. 

As we will highlight in our subsequent discussion, pioneering artificial intelligence research, which had 
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remained dormant since the 1960s (Buchanan, 2005), as well as organizational intelligence research has 

much to offer.  

Third, most theories in artificial intelligence application is partly built upon the premise that 

humans and machines commit bias in the application of artificial intelligence. However, despite bias 

being a crucial building block in these theories, the definition of bias is not clear. In fact, the use of 

“bias” is misleading because in decision-making under uncertainty (i.e., prediction), the bias-variance 

framework argues that bias is only one of the three components of any prediction error, the other two 

being variance and randomness (Luan et al., 2019). We believe this vagueness arose essentially from the 

lack of boundary in what tasks are. If we limit tasks to decision-making, outcomes of such tasks could be 

readily evaluated using measurements that already exist in such tradition.  

Bounded Rationality in Human Intelligence 

In his seminal work, “Administrative Behavior,” Simon (1947) proposed that humans are 

boundedly rational. According to Simon (1969), “What a person cannot do he or she will not do, no 

matter how strong the urge to do it…” (p. 28). Grounded in realism and drawing from psychology, Simon 

(1969) proposed that decision-makers, despite being self-interested, are vastly bounded through 

knowledge and computation. A real decision-maker cannot achieve rationality simply because they do 

not have the ability to do so. This proposal was a fervent response to the then dominant rational-agent 

model of decision-making in economics, which described human agents as “omniscient demons” 

(Simon, 1976), who are “motivated by self-interest and completely informed about all available 

alternatives” (Scott & Davis, 2006).  

Given bounded rationality, a limitedly rational decision-maker would engage in a decision-

making process called satisficing. The word “satisficing” is formed from the words “satisfy” and “suffice” 

(Simon, 1947). A typical individual would search for alternatives to a decision, but stop right after the 

first satisfactory alternative. For example, in personnel selection, a satisficing recruiter would start to 
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interview candidates even before the application deadline ends. Even if the recruiter waited for the 

deadline to end, there might be cases when suitable candidates did not apply for the job because the 

job advertisement failed to reach them. In such cases, a satisficing recruiter typically would not actively 

search for those candidates and would start to hire the first satisfactory candidate. Lastly, instead of 

relying on all information for each candidate, a satisficing recruiter would rely on stages of evaluation, 

screening candidates by batches and in rounds. Overall, “Individuals are boundedly rational because 

they know but a tiny fraction of the possible choice alternatives and their values” (Gavetti et al., 2012, p. 

5). 

After discovering bounded rationality as a more realistic model of decision-making (Simon, 

1947), Simon shifted his focus to other forms of intelligence, contemplating the question: how do other 

forms of intelligence, in relation to human intelligence, address issues in rationality in decision-making? 

Subsequently, most of his research can be roughly categorized into two domains: artificial intelligence 

with colleagues, eminently Allen Newell (see Newell et al., 1959), and organizations or organizational 

intelligence with colleagues, notably James March (see March & Simon, 1958). In the next sections, we 

review these works and draw connections to our current discussion of artificial intelligence applications.  

Pioneering Research in Artificial Intelligence 

Gugerty (2006) argued that Newell et al.’s (1959) artificial intelligence algorithm “was perhaps 

the first working program that simulated some aspects of peoples' ability to solve complex problems.” In 

1956, Simon persuaded his university (then known as the Carnegie Institute of Technology) to purchase 

its first computer, the IBM 650. It was housed in the basement of the business school. There, Simon and 

Newell created the General Problem Solver, which became one of the earliest artificial intelligence 

programs. The program was in fact created to solve a decision-making task. The Rand Corporation 

adopted it in its missile defense system, in which the computer program provides responsive and timely 

decisions during a missile strike.  
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Unfortunately, as Raisch and Krakowski (2021) explained, early artificial intelligence research 

soon entered into a state of dormancy, widely known as the Artificial Intelligence Winter As we enter 

into a season of revival in artificial Intelligence research, it is timely to look back and understand what 

led to the winter of artificial intelligence research. We believe one possible reason is a myopic 

interpretation of the intentions of Simon’s pioneering research in artificial intelligence. 

Because Newell and Simon’s research in artificial intelligence was conceptualized as a decision-

making system, on surface, the research seems to be concerned with problems of bounded rationality. 

Indeed, machines improve computational efficiencies, response time to decisions, and ability to conduct 

search for alternatives and information, compared to human decision-makers. However, these 

improvements were in fact not the entire purpose. “[T]he computer, as a piece of hardware, or even as 

a piece of programmed software, has nothing to do directly with the matter” (Simon, 1969, p. 126). We 

will highlight in our subsequent sections how bounded rationality ultimately gave way to procedural 

rationality in organizational intelligence research. While people discredited early artificial intelligence 

programs for falling short of expectations and relying on rule-based (instead of learning-based) 

algorithms, these programs were in fact, not entirely created to demonstrate accuracies or efficiencies 

in computations. What, then, are the other purposes? 

According to Simon, if we considered all man-made systems as artificial, the study of artificial 

intelligence would become a study of design11—the reasons behind design choices (procedural 

rationality) and how designs adapt to external environments (ecological rationality) instead of the 

design outcomes (substantive rationality). Sadly, this misinterpretation, or the focus on outcomes, is 

common. In the contemporary academic community, for example, a psychologist might use machine 

 

11 The other overlooked purpose in Newell et al.’s (1959) pioneering artificial intelligence research was to model human 
decision-making and to study the human mind. Despite Simon knowing all too well the bounds and limits of human rationality, 
the early artificial intelligence systems in Newell et al. (1959) were, as a matter of fact, based on the human thought process.   
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learning to study human cognition by comparing accuracies in two study conditions, but their intention 

would easily be discredited due to the fact that their accuracies in predictions were too low. Simon 

(1969, p. 126) wrote: “Consequently we as designers, or as designers of design processes, have had to 

be explicit as never before about what is involved in creating a design and what takes place while the 

creation is going on.” 

Overall, we identify three valuable lessons from pioneering research in artificial intelligence. 

First, its conceptualization of artificial intelligence as decision agents helps us to connect artificial 

intelligence research to the original problem of bounded rationality as well as relationships to other 

forms of intelligent systems such as organizational intelligence. As explained in Simon (1991), “Artificial 

intelligence was born in close connection with management science, grew apart from it, and is now 

forming new links with it, as well as with the other disciplines that have come together in cognitive 

science.” Comparing capabilities and limitations of the different intelligence systems is one goal; other 

goals include modeling systems based on their counterparts (e.g., see Csaszar & Steinberger, 2022). 

Second, the conceptualization of artificial intelligence research as a study of design and design 

process shifted the focus from the outcome of design to the mechanisms and process in design. It also 

gave rise to a temporal, iterative view of system design, which is crucial for our current understanding of 

the application of artificial intelligence. As Bailey et al. (2022) rightfully pointed out, technology is 

constantly changing. If we view artificial intelligence as playing a crucial relational role in a bigger system 

of organized intelligence, we will achieve greater openness to possibilities, descriptive power, and 

generalizability of our theories.  

Third and relatedly, anchoring too deep on the accuracies, efficiencies, and rationalities of 

artificial intelligence makes us lose sight of the joy and human elements of research. This warning is 

acknowledged in Lindebaum et al. (2020), who argued that “decision making premised on formal 

rationality is not based on the qualities of the individual concerned—neither the judgment of the 
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decision maker nor the specific conditions of the decision maker—but, rather, is predicated on 

universalism and calculation with reference to formal rules and regulations.” 

Organizational Intelligence and Procedural Rationality 

March & Simon (1958) proposed that organizations are an alternative form of intelligence in 

relation to bounded rationality in individual decision-making. An organization is a distributed system of 

human decision-makers, organized to capitalize on individual intelligence such that “[a]n organization 

may be smarter than its individual members” (Glynn, 1996, p. 1091). According to Simon (1969, p. 42): 

“business organizations, like markets, are vast distributed computers whose decision processes are 

substantially decentralized. The top level of a large corporation, which is typically subdivided into 

specialized product groups, will perform only a few functions.” 

Organizations engage in a form of distributed intelligence or cognition; other forms of 

organizational intelligence include cross-level and aggregated intelligence (for a review, see Glynn, 

1996). Distributed organizational intelligence is “embedded in the organization’s systems, routines, 

standard operating procedures, symbols, culture, and language” (Glynn, 1996, p. 1091). These systems 

“both simplify decisions and support participants in the decision they need to make” (Scott & Davis, 

2006 p. 53).  

Simplification is achieved through limiting the scope of the decision. If the decision process is 

viewed as means (method in achieving expectations from a decision) and ends (expectations of a 

decision), simplification parcels out the ends. For example, organizations distribute decision-making 

responsibilities into specialized, hierarchical divisions, limiting the space of information search, 

simplifying the decision topic-wise. For example, organizations are divided into marketing, finance, 

accounting, human resources, and so on. Each member in the sub-unit requires only knowledge in their 

own domain. Organizations also decentralize decision-making hierarchically. Hierarchical structure helps 

to break tasks such that “[those] closer to the top make decisions about what the organization is going 
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to do; those in lower positions are more likely to be allowed to make choices as to how the organization 

can best carry out its tasks” (Scott & Davis, 2006, pp. 53–54).  

Support is given by formalized structure. Besides providing them with resources, tools, and the 

necessary information to make appropriate decisions, organizations support their participants by 

enacting formal rules, guidelines, standard operating procedures, and routines. For example, in novel 

and uncertain situations, the alterative space is infinite, and thus existing organizational knowledge that 

exists in the organizational memory would support each individual decision-maker.  

As the focus is shifted from decisions per se to how decisions are deliberated, the act of 

organizing is consequently shifted from substantive rationality, which is rationality in the outcome of the 

decision, to procedural rationality, which is rationality in the process of making decisions (Simon, 1976). 

By paying more attention to the process, we can hope for more rational outcomes. Note that procedural 

rationality in decision-making exists not only at the organizational level but at the individual level, 

making it a variable that is not limited to any level of analysis. If the reader is convinced that 

organizations are intelligence systems used to address decision-making issues, the next question to ask 

is: how should we study it? In the next section, we propose a working framework and a bag of non-

exhaustive theoretical tools to study organizational intelligence in relation with artificial intelligence.  

Means-Ends Chains of Decision-Making 

Unbeknownst to many, the means-ends analysis is a common theme in Simon’s study of 

individuals, organizations, and artificial intelligence. Consider the following quote from Simon (1976, p. 

68), which draws similarity between human and computer intelligence:  

 

Like a modern digital computer's, Man's equipment for thinking is basically serial in 

organization. That is to say, one step in thought follows another, and solving a problem 

requires the execution of a large number of steps in sequence. The speed of his 
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elementary processes, especially arithmetic processes, is much slower, of course, than 

those of a computer, but there is much reason to think that the basic repertoire of 

processes in the two systems is quite similar. Man and computer can both recognize 

symbols (patterns), store symbols, copy symbols, compare symbols for identity, and 

output symbols. These processes seem to be the fundamental components of thinking 

as they are of computation.  

 

Here, Simon described a process largely similar to the modern day decision-tree analysis in 

machine learning. Decision process is decentralized into branches and nodes. Each branch represents a 

possible reality and each node a decision, whose outcome would lead to a subsequent decision. To 

study this in organizations, March and Simon (1958) proposed using goals of organizations “as the 

starting point for the construction of means-ends chains” (Scott & Davis, 2007, p. 54). This is also similar 

to how most computer scripts are executed, from the top to the bottom.  

For example, how does an entrepreneur achieve profit-maximization after deciding to go into, 

say, the personnel selection field? Following March and Simon (1958), when evaluating artificial 

intelligence application in organizations, scholars can choose to take organizational goals as given12 (i.e., 

deciding to go into personnel selection) and examine subsequent blocks in the means-ends chain of 

decision analysis (i.e., how to execute this goal). Once a goal is chosen, each level of the means-ends 

chain can be analyzed by looking at the input and output of each level. The end is the mean of the 

previous level, the mean is the end of the next level, and so on.  

The use of means-ends chains of decision is practically beneficial in the analysis of artificial 

intelligence application because we can leverage on much existing theory that connects the “ends” 

 

12 To the best of our knowledge, artificial intelligence has not yet been employed to decide organizational goals.  
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component of decisions to organizational outcomes. For example, the value-factual dichotomy 

differentiates the ends and relates them to organizational hierarchy. Specifically, value premises of goals 

are the desires, hopes, and aspirations arising out of a decision, and factual premises are representative 

observations of the world (March & Simon, 1958). This distinction is relevant to our discussion, because 

while most perspectives draw such differentiation, its implication for organizational design is not clearly 

stated. One design consideration is that decision-makers closer to the top of the organization typically 

make more value judgments, and those closer to the bottom make more factual judgments (Scott & 

Davis, 2006. If computerized decision-making is mostly factual, because machines are capable of 

consolidating and discovering patterns in big data (Choudhury et al., 2021), the decision of whether to 

support one political wing over another will still be formed through “the [human] members of the 

organizational coalition” (Cyert & March, 2002, p. 164).  

Apart from connecting artificial intelligence application research to organizational design, the 

means-ends chain analysis also allows organizational scholars to tap into a rich bag of apparatus that 

looks at the “means” component. A few non-exhaustive examples include theories on expectations 

(Cyert & March, 1958), experiential search (Gavetti & Levinthal, 2000), organizational learning (Levitt & 

March, 1988), and exploration-exploitation framework (March, 1991). In simple terms, after a goal is 

chosen, the decision-maker needs to make decisions on how to accomplish the goal. To decide, the 

entrepreneur would have to engage in a process of forming expectations or the prediction of future 

events, assuming no prior knowledge (Cyert et al., 1958; Cyert & March, 1963, 2002). In economics, 

expectations are given—no resources are needed to predict the outcome of a decision (Simon, 1969; 

Cyert & March, 1963). In human decision-making, “expectations of the attainable define an aspiration 

level that is compared with the current level of achievement” (Simon, 1969, p. 30). They are hopes and 

wishes of the individual. In organizational decision-making, expectations are formed also through the 

preferences of the sub-unit at the level of analysis.  
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As expectations affect choice, which in turn affects the outcome of the decision, humans (and 

organizations) engage in what Simon (1969) called feed forward mechanism. If achievements fall short 

of expectations, the decision-maker would experience negative feedback, and the decision-maker would 

continue to search for more satisfactory outcomes. Otherwise search is stopped. In organizations, 

however, positive feedback is encoded into routines in a process called organizational learning (Levitt & 

March, 1988). Thus, individuals and organizations adapt to the environment by progressively acquiring 

more knowledge, stored either in individual or organizational memory that could be retrieved to guide 

future behaviors (Levitt & March, 1988).  

Organizational learning represents a temporal and spatial process that is vastly similar to the 

process described in the paradox perspective of artificial intelligence application (Raisch & Krakowski, 

2021). For example, the organizational learning literature would predict organizational failure in the 

long-run if artificial intelligence is adopted using the automation strategy. This is because routines are 

detrimental to organizations due to the lack of exploration of new possibilities (March, 1991). Routines 

are also harmful to a firm’s adaptation to changing environments. Gavetti and Levinthal (2000, p. 113) 

argued that, “[c]hanging a cognitive representation itself can act as an important mode of adaptation, 

effectively resulting in the sequential allocation of attention to different facets of the environment.” 

Following this logic, increasing automation would lead to a tension requiring a change in cognitive 

representation, that is, more augmentation in the automation-augmentation cycle.  

Overall, in this section, we recommend adopting the means-ends chains of decision-making 

when theorizing the application of artificial intelligence for several reasons. This approach separates 

decision-making into inputs and outputs. We began by arguing that organizational goals can be taken as 

the starting point in this analysis. We then demonstrated that ends can be separated into useful 

dimensions such as the value-factual premise. Means can be further studied using theories such as 
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expectations, representations, and information search. Lastly, the temporal and spatial aspect of means-

ends chains can be easily connected to burgeoning theories in artificial intelligence application.  

Conclusions 

In this article, we began with three bottlenecks in existing perspectives on the application of 

artificial intelligence in organizations. These bottlenecks are a lack of similar language, inconsistent units 

of analysis, and a disconnect with organizational intelligence research. Motivated by these limitations, 

we propose a unified theory and analysis centered around decision-making and the bounded rationality 

framework. We argue that this framework would be a level playing ground for all perspectives because 

it creates a clear dependent variable—decision-making—as well as a set of existing theoretical 

apparatus to draw from. We then reviewed human, artificial, and organizational intelligence research 

and provided a working framework employing means-ends analysis. We believe this unified lens of 

looking at the application of artificial intelligence would lead to more fruitful and productive discourse 

between the various perspectives. This framework would also revive pioneering research in both 

artificial intelligence and management research. In closing, we believe that the past would tremendously 

shape our future for organizations and organizational research.  
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Tables  

Introduction 

Table 1 

A Summary of Artificial Intelligence Application in Social Psychological Research  

Input AI Application Output Citation 
Facial images DNN / PCA Criminal behavior Wu & Zhang, 2016 
Facial images PCA Leadership emergence Stoker et al., 2016 
3D facial images PCA Personality Hu et al., 2017 
Facial images API Behavioral tendencies Kosinski, 2017 
Facial images DNN Sexual orientation Y. Wang & Kosinski, 2018 
Facial images API Behavioral tendencies D. Wang et al., 2019 
Facial images DNN Personality Kachur et al., 2020 
Survey Responses DNN Unethical behavior attitudes Sheetal et al., 2020 
Facial images DNN Political orientation Kosinski, 2021 
Survey Responses DNN Cultural change markers Sheetal & Savani, 2021 
Facial images DNN Sexual orientation D. Wang, 2022 
Facial images DNN Demographics D. Wang, Under review 

Note: AI stands for artificial intelligence, DNN stands for deep neural networks, PCA stands for principal component analysis, 
API stands for application programming interface 
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Chapter 1 

Table 1 

Sample breakdown by users and number of facial images for studies 1a, 1b, 1c, 2a and 2b 

 Women Men 
 Lesbian Heterosexual Gay Heterosexual 
Unique users 5170 5170 2562 2562 
Total images 10800 10800 5081 5081 
Mean age (SD) 27.8 (4.5) 27.8 (4.5) 25.8 (4.3) 25.8 (4.3) 
Users with:     
1 image only 2259 2259 1189 1189 
2 images only 1266 1266 641 641 
3 images only 972 972 454 454 
4 images only 400 400 177 177 
≥5 images 273 273 101 101 
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Table 2 

Comparison of the means of self-presentational facial attributes by sexual orientation and gender for 

study 1a 

 Women (N = 10,340) 
 Heterosexual Lesbian Significance Test 

Mean 95% CI Mean 95% CI t 95% CI p d 
Fac. exp.:            
Neutral 0.254 [0.24, 0.26] 0.325 [0.32, 0.34] 10.408 [0.06, 0.08] <.001 0.205 
Happiness 0.622 [0.61, 0.63] 0.522 [0.51, 0.53] -12.804 [-0.12, -0.08] <.001 0.252 
Anger 0.015 [0.01, 0.02] 0.016 [0.01, 0.02] 1.263 [-0.00, 0.00] .206 0.025 
Disgust 0.016 [0.01, 0.02] 0.020 [0.02, 0.02] 1.938 [-0.00, 0.01] .053 0.038 
Surprise 0.049 [0.05, 0.05] 0.060 [0.06, 0.06] 3.457 [0.00, 0.02] <.001 0.068 
Sadness 0.031 [0.03, 0.03] 0.039 [0.04, 0.04] 3.251 [0.00, 0.01] <.001 0.064 
Head pose:            
Roll (abs) 0.031 [0.03, 0.03] 0.030 [0.03, 0.03] -2.300 [-0.00, -0.00] .021 0.045 
Yaw (abs) 0.458 [0.45, 0.46] 0.447 [0.44, 0.45] -2.400 [-0.02, -0.00] .016 0.047 
Pitch (abs) 0.551 [0.54, 0.56] 0.518 [0.51, 0.52] -7.143 [-0.04, -0.02] <.001 0.140 
Smiling 0.680 [0.67, 0.69] 0.576 [0.57, 0.59] -13.441 [-0.12, -0.09] <.001 0.264 
Eyes 0.117 [0.11, 0.12] 0.158 [0.15, 0.17] 7.296 [0.03, 0.05] <.001 0.144 
Glasses 0.183 [0.17, 0.19] 0.264 [0.25, 0.27] 11.150 [0.07, 0.10] <.001 0.219 
 Men (N = 5,124) 
 Heterosexual Gay Significance Test 
 Mean 95% CI Mean 95% CI t 95% CI p d 
Fac. exp.:            
Neutral 0.394 [0.38, 0.41] 0.441 [0.43, 0.46] 4.392 [0.03, 0.07] <.001 0.123 
Happiness 0.479 [0.46, 0.49] 0.424 [0.41, 0.44] -4.845 [-0.08, -0.03] <.001 0.135 
Anger 0.013 [0.01, 0.02] 0.017 [0.01, 0.02] 1.502 [-0.00, 0.01] .133 0.042 
Disgust 0.030 [0.03, 0.03] 0.029 [0.03, 0.03] -0.308 [-0.01, 0.00] .758 0.009 
Surprise 0.030 [0.03, 0.03] 0.034 [0.03, 0.04] 1.455 [-0.00, 0.01] .146 0.041 
Sadness 0.036 [0.03, 0.04] 0.039 [0.03, 0.04] 0.640 [-0.00, 0.01] .522 0.018 
Head pose:            
Roll (abs) 0.040 [0.04, 0.04] 0.041 [0.04, 0.04] 1.740 [-0.00, 0.00] .082 0.049 
Yaw (abs) 0.392 [0.38, 0.40] 0.408 [0.40, 0.42] 2.400 [0.00, 0.03] .016 0.067 
Pitch (abs) 0.438 [0.43, 0.45] 0.452 [0.44, 0.46] 2.023 [0.00, 0.03] .043 0.057 
Smiling 0.556 [0.54, 0.57] 0.493 [0.48, 0.51] -5.584 [-0.08, -0.04] <.001 0.156 
Eyes 0.227 [0.21, 0.24] 0.211 [0.20, 0.22] -1.655 [-0.04, 0.00] .098 0.046 
Glasses 0.235 [0.22, 0.25] 0.271 [0.26, 0.29] 3.341 [0.02, 0.06] <.001 0.093 
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Table 3 

Average accuracy afforded by self-presentational facial attributes by gender for study 1b 

 Women Men  
Accuracy Precision Recall F1 Accuracy Precision Recall F1 

Neutral 54.93% 56.20% 44.72% 49.81% 52.62% 52.73% 50.59% 51.63% 
Happiness 55.95% 56.31% 53.08% 54.65% 52.97% 52.89% 54.37% 53.62% 
Anger 50.48% 52.39% 10.62% 17.66% 50.35% 51.50% 12.06% 19.54% 
Disgust 50.27% 51.31% 10.58% 17.54% 50.02% 50.01% 85.21% 63.03% 
Surprise 51.39% 54.13% 18.26% 27.31% 50.10% 50.38% 12.80% 20.42% 
Sadness 51.20% 54.18% 15.53% 24.14% 49.75% 49.31% 18.03% 26.41% 
  Combined 56.21% 56.85% 51.55% 54.07% 52.48% 52.47% 52.58% 52.52% 
Roll (abs) 50.44% 50.37% 60.81% 55.10% 51.19% 51.47% 41.80% 46.13% 
Yaw (abs) 50.70% 50.68% 51.90% 51.28% 51.17% 51.25% 48.01% 49.58% 
Pitch (abs) 53.32% 53.45% 51.37% 52.39% 51.07% 51.11% 49.26% 50.17% 
  Combined 53.41% 53.55% 51.55% 52.53% 52.17% 52.24% 50.59% 51.40% 
Eyes 52.92% 56.32% 26.02% 35.59% 51.13% 50.84% 68.46% 58.35% 
Glasses 54.67% 57.70% 35.01% 43.58% 51.81% 52.76% 34.74% 41.89% 
Smiling 56.19% 57.17% 49.38% 52.99% 53.22% 53.17% 54.02% 53.59% 
  Combined 57.85% 57.87% 57.76% 57.81% 53.81% 53.67% 55.66% 54.65% 
  Combined 58.34% 58.54% 57.12% 57.82% 53.47% 53.48% 53.40% 53.44% 
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Table 4 

Baseline accuracy results by number of images and gender for study 1c 

 Women Men 
 Accuracy Precision Recall F1 Accuracy Precision Recall F1 
Average 64.83% 64.72% 65.18% 64.95% 61.10% 61.21% 60.66% 60.93% 
1 Image 63.64% 63.39% 64.55% 63.96% 59.37% 59.44% 58.98% 59.21% 
2 Images 65.22% 65.23% 65.17% 65.20% 62.56% 62.31% 63.58% 62.94% 
3 Images 65.62% 65.83% 64.98% 65.40% 64.75% 64.03% 67.35% 65.65% 
4 Images 65.68% 65.40% 66.57% 65.98% 65.29% 64.91% 66.55% 65.72% 
≥5 Images 66.85% 66.91% 66.67% 66.79% 72.28% 70.64% 76.24% 73.33% 
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Chapter 2 

Table 1 

Final sample size and by labels and prediction classes 

 Gender Age Race  
Label = 0 Label = 1 Label = 0 Label = 1 Label = 0 Label = 1 

CelebA-HQ 
    By image: 4,009 (50%) 4,009 (50%) 4,009 (50%) 4,009 (50%) - - 
    By person: 1,173 (50%) 1,173 (50%) 1,173 (50%) 1,173 (50%) - - 
UTK-Face 
    By image: 10,221 (50%) 10,221 (50%) 10,221 (50%) 10,221 (50%) 10,221 (50%) 10,221 (50%) 
    By person: 10,221 (50%) 10,221 (50%) 10,221 (50%) 10,221 (50%) 10,221 (50%) 10,221 (50%) 
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Table 2 

Classification performance using CelebA-HQ dataset 

a. Original image 
  VGGFace 

(aligned) 
VGGFace 
(unaligned) 

ImageNet 
(unaligned) 

Places-365 
(unaligned) 

Flattened-image 
(unaligned) 

Gender 

AUROC 1.00 (0.99, 1.00) 1.00 (0.99, 1.00) 0.99 (0.98, 0.99) 0.99 (0.98, 0.99) 0.98 (0.98, 0.99) 
Accuracy 0.98 (0.97, 0.98) 0.98 (0.98, 0.99) 0.95 (0.94, 0.96) 0.95 (0.94, 0.96) 0.94 (0.93, 0.95) 
Precision 0.98 (0.97, 0.99) 0.99 (0.98, 0.99) 0.96 (0.95, 0.97) 0.96 (0.95, 0.97) 0.95 (0.93, 0.96) 
Recall 0.97 (0.96, 0.98) 0.98 (0.97, 0.98) 0.94 (0.93, 0.95) 0.95 (0.93, 0.96) 0.94 (0.93, 0.96) 

Age 

AUROC 0.94 (0.93, 0.95) 0.94 (0.93, 0.95) 0.91 (0.89, 0.92) 0.90 (0.89, 0.91) 0.84 (0.83, 0.86) 
Accuracy 0.86 (0.85, 0.88) 0.87 (0.85, 0.88) 0.83 (0.81, 0.84) 0.81 (0.80, 0.83) 0.76 (0.74, 0.78) 
Precision 0.84 (0.82, 0.86) 0.84 (0.82, 0.86) 0.81 (0.79, 0.83) 0.80 (0.78, 0.82) 0.75 (0.73, 0.77) 
Recall 0.90 (0.88, 0.91) 0.90 (0.88, 0.92) 0.86 (0.84, 0.87) 0.84 (0.82, 0.86) 0.78 (0.76, 0.81) 

b. Masked image 

  VGGFace 
(aligned) 

VGGFace 
(unaligned) 

ImageNet 
(unaligned) 

Places-365 
(unaligned) 

Flattened-image 
(unaligned) 

Gender 

AUROC 0.78 (0.77, 0.80) 0.76 (0.74, 0.77) 0.83 (0.81, 0.85) 0.81 (0.79, 0.82) 0.59 (0.57, 0.61) 
Accuracy 0.72 (0.70, 0.74) 0.70 (0.68, 0.72) 0.77 (0.75, 0.79) 0.75 (0.73, 0.76) 0.58 (0.56, 0.60) 
Precision 0.72 (0.70, 0.75) 0.70 (0.68, 0.73) 0.78 (0.75, 0.80) 0.74 (0.72, 0.77) 0.57 (0.55, 0.60) 
Recall 0.73 (0.70, 0.76) 0.69 (0.66, 0.71) 0.77 (0.74, 0.79) 0.75 (0.73, 0.78) 0.62 (0.59, 0.65) 

Age 

AUROC 0.63 (0.61, 0.65) 0.63 (0.60, 0.65) 0.64 (0.62, 0.67) 0.64 (0.62, 0.66) 0.53 (0.50, 0.55) 
Accuracy 0.61 (0.58, 0.62) 0.60 (0.57, 0.61) 0.61 (0.59, 0.63) 0.62 (0.60, 0.63) 0.53 (0.51, 0.54) 
Precision 0.60 (0.57, 0.62) 0.59 (0.56, 0.61) 0.60 (0.57, 0.63) 0.61 (0.58, 0.64) 0.53 (0.50, 0.56) 
Recall 0.64 (0.61, 0.67) 0.64 (0.62, 0.67) 0.63 (0.60, 0.65) 0.63 (0.60, 0.66) 0.52 (0.49, 0.54) 
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Table 3 

Performance of gender, age and race classification using UTK-Face sample 

a. Original image 
  VGGFace 

(aligned) 
VGGFace 
(unaligned) 

ImageNet 
(unaligned) 

Places-365 
(unaligned) 

Flattened-image 
(unaligned) 

Gender 

AUROC 0.98 (0.98, 0.98) 0.97 (0.96, 0.97) 0.93 (0.93, 0.94) 0.90 (0.90, 0.91) 0.70 (0.69, 0.70) 
Accuracy 0.93 (0.93, 0.93) 0.90 (0.89, 0.90) 0.86 (0.85, 0.86) 0.82 (0.82, 0.83) 0.65 (0.64, 0.65) 
Precision 0.94 (0.93, 0.94) 0.90 (0.90, 0.91) 0.86 (0.86, 0.87) 0.83 (0.82, 0.84) 0.65 (0.64, 0.66) 
Recall 0.93 (0.92, 0.93) 0.89 (0.88, 0.89) 0.85 (0.84, 0.86) 0.82 (0.81, 0.82) 0.64 (0.63, 0.64) 

Age 

AUROC 0.94 (0.93, 0.94) 0.92 (0.91, 0.92) 0.86 (0.86, 0.87) 0.83 (0.82, 0.83) 0.68 (0.67, 0.68) 
Accuracy 0.85 (0.85, 0.86) 0.83 (0.82, 0.83) 0.77 (0.77, 0.78) 0.75 (0.74, 0.75) 0.63 (0.62, 0.64) 
Precision 0.85 (0.85, 0.86) 0.84 (0.83, 0.84) 0.77 (0.76, 0.78) 0.74 (0.74, 0.75) 0.63 (0.62, 0.64) 
Recall 0.85 (0.84, 0.86) 0.82 (0.81, 0.82) 0.77 (0.76, 0.78) 0.75 (0.74, 0.76) 0.63 (0.62, 0.64) 

Race 

AUROC 0.96 (0.95, 0.96) 0.93 (0.93, 0.94) 0.86 (0.86, 0.87) 0.83 (0.82, 0.83) 0.70 (0.69, 0.71) 
Accuracy 0.90 (0.90, 0.90) 0.86 (0.85, 0.86) 0.78 (0.78, 0.79) 0.75 (0.74, 0.76) 0.65 (0.64, 0.65) 
Precision 0.90 (0.89, 0.90) 0.85 (0.84, 0.86) 0.79 (0.78, 0.80) 0.76 (0.75, 0.76) 0.65 (0.64, 0.66) 
Recall 0.90 (0.90, 0.91) 0.87 (0.87, 0.88) 0.78 (0.77, 0.78) 0.74 (0.73, 0.75) 0.65 (0.64, 0.66) 

b. Masked image 

  VGGFace 
(aligned) 

VGGFace 
(unaligned) 

ImageNet 
(unaligned) 

Places-365 
(unaligned) 

Flattened-image 
(unaligned) 

Gender 

AUROC 0.68 (0.67, 0.68) 0.64 (0.64, 0.65) 0.68 (0.67, 0.69) 0.64 (0.63, 0.65) 0.51 (0.51, 0.52) 
Accuracy 0.63 (0.62, 0.63) 0.61 (0.60, 0.61) 0.64 (0.63, 0.64) 0.60 (0.59, 0.61) 0.51 (0.50, 0.52) 
Precision 0.61 (0.61, 0.62) 0.60 (0.60, 0.61) 0.64 (0.63, 0.65) 0.61 (0.60, 0.62) 0.51 (0.50, 0.52) 
Recall 0.68 (0.67, 0.69) 0.62 (0.61, 0.63) 0.62 (0.61, 0.63) 0.55 (0.54, 0.56) 0.52 (0.51, 0.53) 

Age 

AUROC 0.63 (0.63, 0.64) 0.61 (0.60, 0.62) 0.65 (0.64, 0.66) 0.63 (0.62, 0.64) 0.56 (0.55, 0.56) 
Accuracy 0.60 (0.59, 0.60) 0.58 (0.57, 0.59) 0.61 (0.60, 0.62) 0.59 (0.59, 0.60) 0.54 (0.53, 0.55) 
Precision 0.59 (0.58, 0.60) 0.58 (0.57, 0.59) 0.61 (0.60, 0.62) 0.59 (0.58, 0.60) 0.54 (0.53, 0.55) 
Recall 0.62 (0.61, 0.63) 0.60 (0.59, 0.61) 0.63 (0.62, 0.63) 0.62 (0.61, 0.62) 0.52 (0.51, 0.53) 

Race 

AUROC 0.59 (0.58, 0.60) 0.57 (0.57, 0.58) 0.62 (0.61, 0.63) 0.61 (0.60, 0.62) 0.54 (0.53, 0.54) 
Accuracy 0.57 (0.56, 0.57) 0.55 (0.54, 0.56) 0.59 (0.58, 0.59) 0.58 (0.57, 0.58) 0.53 (0.53, 0.54) 
Precision 0.56 (0.55, 0.57) 0.55 (0.54, 0.56) 0.59 (0.58, 0.60) 0.58 (0.57, 0.59) 0.53 (0.52, 0.54) 
Recall 0.59 (0.58, 0.60) 0.56 (0.55, 0.57) 0.57 (0.56, 0.58) 0.56 (0.55, 0.57) 0.51 (0.50, 0.52) 
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Chapter 3 

Table 1 

Perspectives of artificial intelligence applications in management 

Perspective Automation  Augmentation  Automation-Augmentation 
Paradox  

Theoretical Assumption As a wide range of tasks are 
now computerizable, certain 
jobs that used to be 
completed only by humans 
are now automatable.  

As they possess differing 
capabilities and limitations, 
humans and machines 
challenge each other, 
integrate another’s 
knowledge or collaborate 
when performing tasks.  

As augmentation is not 
neatly separatable from 
automation, organizations 
should adopt a broader 
perspective comprising both 
strategies.  

Examples of Dependent 
Variable 

The probability tasks, 
occupations, industries or 
geographies are 
computerizable 

Collaboration configuration, 
organizational design 

Positive or negative 
organizational or societal 
outcomes 

Examples of Moderating 
Variable 

- Opacity in machine’s 
decision processes 

Strategies of artificial 
intelligence applications  

Examples of Independent 
Variable 

Tasks, capabilities, skills or 
occupations 

Capabilities or limitations of 
humans and machines in 
performing tasks 

Tasks, capabilities, skills or 
occupations 

Representative Authors Frey & Osborne, 2017 Brynjolfsson & McAfee, 2014 Raisch & Krakowski, 2021 
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Figures 

Chapter 1 

Figure 1 

Comparison of the difference of the means of self-presentational facial attributes by sexual 

orientation and gender for study 1a 
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Figure 2 

Average AUC afforded by self-presentational facial attributes by gender for study 1b 
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Figure 3 

Baseline AUC results by number of images and gender for study 1c 
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Figure 4 

Baseline confusion matrices by number of images and gender for study 1c 

Women: 
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Men: 
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Figure 5 

AUC results by different degrees of masking compared to auc of random classifications (fully masked 

images) for study 1c 

 

 

Note: † baseline AUC. * random AUC. 
 

  



 
 

91 

Figure 6 

An example of the facial mask used to separate the facial regions for study 2a 
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Figure 7 

Image brightness by sexual orientation, facial regions, and gender for study 2a 
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Figure 8 

AUC results by different degrees of blurring compared to AUC of random (one-pixel blurred image of 

dataset) for study 2b 

 

Note: † baseline AUC. * random AUC. 
  



 
 

94 

Chapter 2 

Figure 1 

A toy example of a facial recognition system (FRS) 

 

a., Four facial images of two unique individuals, Person A and Person B, were entered into a toy facial recognition model. While 
the images were different, they produced identical face-embeddings for each person but different numbers between the two 
people. Companies would normally use the unique face embeddings to further extract other sensitive information such as 
sexual orientation or political orientation. b., Consider an universe with only two people, Person A and B. Person A enjoys 
outdoor activities, thus all photographs of Person A were taken during the day in rural places. Person B enjoys nightlife, so all 
Person B’s photographs were taken at night in urban places. In Classification Scenario 1, the facial recognition system 
successfully classified the two people (such as their identity or sensitive traits) but it is unclear whether the background and 
lighting contributed to the classifications. In Classification Scenario 2, faces were removed, but companies profiling these 
individuals were still able to classify identity or traits of Person A and Person B using these images because of their consistent 
behavioral tendencies.  
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Figure 2 

Overview of image preprocessing and training pipelines 

 

a., In the upper half of the figure, raw photographs were entered into a face-detector, called MTCNN (K. Zhang et al., 2016). We 
used the left and right eye positions as anchor points, to which we rotated the photograph so that the result would contain eye 
positions at the same target locations. For images not aligned, we created a total of 30 random crops around each photograph, 
varying in sizes and positions, plus the original uncropped photograph. The cropped and original photograph were separately 
entered into the face, image and scene recognition model to create 31 sets of embeddings for each model. The embeddings 
were then averaged to produce one set of embedding per model. For baseline, the image was simply flattened into a single 
array. All images were resized to 224 by 224 pixels and normalized to a range of -1 to 1 before feature extraction. In lower half 
of the figure, we employed selfie-segmentation using Google’s MediaPipe (Lugaresi et al., 2019). We dilated the segmentation 
mask by 5% of the image width to remove edge information. We then filled the mask using inpainting technique (Bertalmio et 
al., 2001). b., An example of the VGG-16 deep neural network model and custom-training process is shown. Only the 4,096 
scores from the final embedding layer of each deep neural network model is extracted. The original labels (not shown in figure) 
were not used. The extracted embedding scores were then cross-validated to produce the sexual orientation predictions.  
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Figure 3 

Comparison of classification performance 

 

a., Performance of demographic classification using original photographs from CelebA-HQ dataset (Guo et al., 2016; Karras et 
al., 2018), ranked from the model with the highest performance to the lowest. b., Performance using de-identified (masked) 
photographs from CelebA-HQ dataset. c., Performance of demographic classification using original photographs from UTKFace 
dataset (Z. Zhang et al., 2017). d., Performance using de-identified (masked) photographs from UTKFace dataset. Confidence 
intervals shown in grey.  
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Appendix 

Table 1 

Cronbach’s Alpha Reliability of Within-Subject Facial Attributes for Study 1a 

 Women Men 
Attribute Reliability 95% CI Reliability 95% CI 
Neutral 0.670 [0.660, 0.680] 0.681 [0.667, 0.694] 
Happiness 0.729 [0.721, 0.737] 0.718 [0.706, 0.730] 
Anger 0.141 [0.115, 0.167] 0.354 [0.325, 0.381] 
Surprise 0.370 [0.350, 0.389] 0.372 [0.345, 0.399] 
Disgust 0.239 [0.216, 0.262] 0.292 [0.261, 0.322] 
Sadness 0.228 [0.204, 0.251] 0.257 [0.224, 0.289] 
Eyes 0.372 [0.353, 0.391] 0.499 [0.476, 0.520] 
Glasses 0.794 [0.787, 0.800] 0.712 [0.699, 0.724] 
Smiling 0.766 [0.758, 0.773] 0.726 [0.714, 0.738] 
Roll 0.136 [0.110, 0.162] 0.225 [0.191, 0.258] 
Yaw 0.327 [0.306, 0.347] 0.327 [0.297, 0.355] 
Pitch 0.495 [0.480, 0.510] 0.545 [0.525, 0.565] 
Average 0.439 - 0.476 - 
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Table 2 

Sample Size by Cross-Validation Fold, Train-Test Partition and Number of Images Separately for Each 

Gender for Study 1c 

Panel A: Women 

Fold Split Participants Images Participants with: 
1 Image 2 Images 3 Images 4 Images ≥5 Images 

1 Train 9823 20520 4292 2405 1847 761 518 
Test 517 1080 226 127 97 39 28 

2 Train 9823 20520 4292 2405 1847 761 518 
Test 517 1080 226 127 97 39 28 

3 Train 9823 20520 4292 2405 1848 759 519 
Test 517 1080 226 127 96 41 27 

4 Train 9823 20520 4292 2405 1848 759 519 
Test 517 1080 226 127 96 41 27 

5 Train 9823 20520 4292 2405 1848 759 519 
Test 517 1080 226 127 96 41 27 

6 Train 9823 20520 4292 2405 1848 759 519 
Test 517 1080 226 127 96 41 27 

7 Train 9823 20520 4292 2405 1848 759 519 
Test 517 1080 226 127 96 41 27 

8 Train 9823 20520 4292 2405 1848 759 519 
Test 517 1080 226 127 96 41 27 

9 Train 9823 20520 4292 2406 1846 760 519 
Test 517 1080 226 126 98 40 27 

10 Train 9823 20520 4292 2406 1846 760 519 
Test 517 1080 226 126 98 40 27 

11 Train 9823 20520 4292 2406 1846 760 519 
Test 517 1080 226 126 98 40 27 

12 Train 9823 20520 4292 2406 1846 760 519 
Test 517 1080 226 126 98 40 27 

13 Train 9823 20520 4292 2406 1846 760 519 
Test 517 1080 226 126 98 40 27 

14 Train 9823 20520 4292 2406 1846 760 519 
Test 517 1080 226 126 98 40 27 

15 Train 9823 20520 4292 2406 1846 760 519 
Test 517 1080 226 126 98 40 27 

16 Train 9823 20520 4292 2406 1846 760 519 
Test 517 1080 226 126 98 40 27 

17 Train 9823 20520 4292 2406 1846 761 518 
Test 517 1080 226 126 98 39 28 

18 Train 9823 20520 4292 2406 1846 761 518 
Test 517 1080 226 126 98 39 28 

19 Train 9823 20520 4293 2404 1847 761 518 
Test 517 1080 225 128 97 39 28 

20 Train 9823 20520 4293 2404 1847 761 518 
Test 517 1080 225 128 97 39 28 

Entire 
Dataset 10340 21600 4518 2532 1944 800 546 
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Panel B: Men 

Fold Split Participants Images 
Participants with: 
1 Image 2 Images 3 Images 4 Images ≥5 Images 

1 Train 4867 9653 2258 1218 863 336 192 
Test 257 509 120 64 45 18 10 

2 Train 4867 9653 2258 1218 863 336 192 
Test 257 509 120 64 45 18 10 

3 Train 4868 9654 2259 1218 863 336 192 
Test 256 508 119 64 45 18 10 

4 Train 4868 9654 2259 1218 863 336 192 
Test 256 508 119 64 45 18 10 

5 Train 4868 9654 2259 1218 863 336 192 
Test 256 508 119 64 45 18 10 

6 Train 4868 9654 2259 1218 863 336 192 
Test 256 508 119 64 45 18 10 

7 Train 4868 9654 2259 1218 863 336 192 
Test 256 508 119 64 45 18 10 

8 Train 4868 9654 2259 1218 863 336 192 
Test 256 508 119 64 45 18 10 

9 Train 4868 9654 2259 1219 861 337 192 
Test 256 508 119 63 47 17 10 

10 Train 4868 9654 2259 1219 861 337 192 
Test 256 508 119 63 47 17 10 

11 Train 4868 9654 2259 1219 861 338 191 
Test 256 508 119 63 47 16 11 

12 Train 4868 9654 2259 1219 861 338 191 
Test 256 508 119 63 47 16 11 

13 Train 4868 9654 2260 1217 863 336 192 
Test 256 508 118 65 45 18 10 

14 Train 4868 9654 2260 1217 863 336 192 
Test 256 508 118 65 45 18 10 

15 Train 4868 9654 2260 1217 863 336 192 
Test 256 508 118 65 45 18 10 

16 Train 4868 9654 2260 1217 863 336 192 
Test 256 508 118 65 45 18 10 

17 Train 4868 9654 2260 1217 863 336 192 
Test 256 508 118 65 45 18 10 

18 Train 4868 9654 2260 1217 863 336 192 
Test 256 508 118 65 45 18 10 

19 Train 4867 9654 2258 1218 863 336 192 
Test 257 508 120 64 45 18 10 

20 Train 4867 9654 2258 1218 863 336 192 
Test 257 508 120 64 45 18 10 

Entire 
Dataset 5124 10162 2378 1282 908 354 202 
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Table 3 

Average AUC Results by Different Degrees of Masking Compared to AUC of Random (Fully Masked 

Images) for Study 1c 

 Women (N = 10,340) Men (N = 5,124) 
Degree AUC 95% CI p d AUC 95% CI p d 
Baseline .702 [.692, .712] <.001 4.002 .662 [.647, .677] <.001 2.643 
3% .695 [.685, .705] <.001 3.856 .660 [.645, .674] <.001 2.600 
6% .680 [.670, .690] <.001 3.528 .661 [.646, .675] <.001 2.616 
10% .665 [.654, .675] <.001 3.201 .652 [.637, .667] <.001 2.461 
13% .657 [.646, .667] <.001 3.035 .644 [.629, .659] <.001 2.332 
16% .652 [.641, .662] <.001 2.935 .638 [.623, .653] <.001 2.225 
20% .647 [.637, .658] <.001 2.841 .633 [.618, .648] <.001 2.146 
23% .645 [.635, .656] <.001 2.800 .628 [.613, .644] <.001 2.064 
26% .642 [.631, .652] <.001 2.731 .623 [.608, .638] <.001 1.975 
30% .639 [.629, .650] <.001 2.684 .622 [.607, .637] <.001 1.956 
33% .636 [.625, .646] <.001 2.606 .619 [.604, .634] <.001 1.905 
36% .634 [.624, .645] <.001 2.577 .615 [.600, .630] <.001 1.842 
40% .631 [.620, .641] <.001 2.510 .605 [.589, .620] <.001 1.673 
43% .629 [.619, .640] <.001 2.477 .606 [.590, .621] <.001 1.685 
46% .624 [.614, .635] <.001 2.382 .607 [.591, .622] <.001 1.701 
50% .620 [.609, .631] <.001 2.295 .602 [.587, .618] <.001 1.631 
53% .615 [.604, .626] <.001 2.192 .595 [.580, .611] <.001 1.518 
56% .612 [.601, .623] <.001 2.134 .596 [.581, .612] <.001 1.533 
60% .605 [.594, .616] <.001 2.000 .600 [.585, .616] <.001 1.596 
63% .605 [.594, .616] <.001 1.996 .593 [.578, .609] <.001 1.487 
66% .599 [.588, .610] <.001 1.885 .591 [.576, .607] <.001 1.449 
70% .592 [.581, .603] <.001 1.742 .589 [.574, .605] <.001 1.419 
73% .586 [.575, .597] <.001 1.632 .589 [.573, .604] <.001 1.408 
76% .582 [.571, .593] <.001 1.557 .583 [.568, .599] <.001 1.324 
80% .575 [.564, .586] <.001 1.420 .580 [.564, .595] <.001 1.267 
83% .567 [.556, .578] <.001 1.260 .579 [.563, .594] <.001 1.246 
86% .557 [.546, .568] <.001 1.082 .578 [.563, .594] <.001 1.241 
90% .554 [.543, .565] <.001 1.021 .576 [.560, .591] <.001 1.200 
93% .552 [.541, .563] <.001 0.975 .575 [.559, .590] <.001 1.187 
96% .540 [.529, .551] <.001 0.760 .568 [.552, .583] <.001 1.072 

 
Note: Average AUC was generated by the following steps. First, averaging the predictions across facial images for the same 
person. Second, comparing the averaged prediction to the observed value to generate the average AUC. 
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Table 4 

AUC Results Using One Image by Different Degrees of Masking Compared to AUC of Random (Fully 

Masked Images) for Study 1c 

 Women (N = 10,340) Men (N = 5,124) 
Degree AUC 95% CI p d AUC 95% CI p d 
Baseline .687 [.677, .697] <.001 3.679 .644 [.630, .659] <.001 2.340 
3% .679 [.669, .689] <.001 3.514 .644 [.629, .659] <.001 2.323 
6% .663 [.653, .673] <.001 3.169 .639 [.624, .654] <.001 2.244 
10% .648 [.638, .659] <.001 2.860 .632 [.617, .647] <.001 2.121 
13% .640 [.629, .650] <.001 2.693 .628 [.613, .643] <.001 2.056 
16% .636 [.626, .647] <.001 2.624 .625 [.610, .640] <.001 2.008 
20% .632 [.622, .643] <.001 2.544 .621 [.606, .636] <.001 1.939 
23% .631 [.620, .642] <.001 2.513 .614 [.599, .630] <.001 1.831 
26% .628 [.618, .639] <.001 2.460 .610 [.595, .626] <.001 1.765 
30% .626 [.615, .636] <.001 2.409 .610 [.594, .625] <.001 1.751 
33% .624 [.613, .635] <.001 2.376 .605 [.590, .620] <.001 1.678 
36% .623 [.612, .633] <.001 2.344 .603 [.588, .618] <.001 1.643 
40% .620 [.609, .630] <.001 2.285 .592 [.577, .608] <.001 1.473 
43% .618 [.607, .628] <.001 2.246 .592 [.576, .607] <.001 1.459 
46% .612 [.601, .623] <.001 2.141 .592 [.577, .608] <.001 1.472 
50% .608 [.597, .618] <.001 2.050 .589 [.574, .605] <.001 1.419 
53% .604 [.593, .614] <.001 1.972 .582 [.567, .598] <.001 1.305 
56% .601 [.590, .611] <.001 1.912 .582 [.566, .597] <.001 1.302 
60% .594 [.583, .605] <.001 1.778 .585 [.570, .601] <.001 1.353 
63% .593 [.582, .604] <.001 1.758 .578 [.562, .593] <.001 1.236 
66% .587 [.576, .598] <.001 1.645 .576 [.560, .592] <.001 1.206 
70% .580 [.569, .591] <.001 1.509 .574 [.558, .589] <.001 1.166 
73% .574 [.564, .585] <.001 1.408 .573 [.557, .588] <.001 1.150 
76% .567 [.556, .578] <.001 1.271 .567 [.552, .583] <.001 1.069 
80% .563 [.552, .574] <.001 1.195 .564 [.548, .580] <.001 1.013 
83% .555 [.544, .566] <.001 1.032 .564 [.548, .580] <.001 1.014 
86% .546 [.535, .557] <.001 0.862 .564 [.549, .580] <.001 1.017 
90% .545 [.534, .556] <.001 0.851 .563 [.547, .579] <.001 0.998 
93% .543 [.532, .555] <.001 0.818 .561 [.546, .577] <.001 0.970 
96% .534 [.523, .545] <.001 0.643 .556 [.540, .572] <.001 0.884 
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Table 5 

Average Accuracy Results by Different Degrees of Masking for Study 1c 

 Women Men 
Degree Accuracy Precision Recall F1 Accuracy Precision Recall F1 
Baseline 64.83% 64.72% 65.18% 64.95% 61.10% 61.21% 60.66% 60.93% 
3% 64.49% 64.57% 64.20% 64.38% 61.55% 61.91% 60.07% 60.97% 
6% 63.05% 63.32% 62.03% 62.67% 61.94% 62.50% 59.72% 61.08% 
10% 61.97% 62.20% 61.04% 61.62% 61.49% 62.35% 58.04% 60.12% 
13% 61.40% 61.41% 61.35% 61.38% 60.85% 61.87% 56.56% 59.09% 
16% 60.84% 60.92% 60.50% 60.71% 60.13% 61.06% 55.93% 58.38% 
20% 60.33% 60.39% 60.02% 60.21% 60.21% 60.91% 56.99% 58.88% 
23% 60.09% 60.12% 59.92% 60.02% 59.95% 60.88% 55.70% 58.17% 
26% 60.13% 60.18% 59.85% 60.01% 59.93% 61.03% 54.96% 57.84% 
30% 60.05% 60.03% 60.14% 60.08% 59.62% 60.41% 55.85% 58.04% 
33% 59.73% 59.73% 59.71% 59.72% 58.65% 59.54% 53.98% 56.62% 
36% 59.97% 59.87% 60.46% 60.17% 57.77% 58.36% 54.22% 56.21% 
40% 59.56% 59.38% 60.56% 59.96% 57.16% 57.55% 54.61% 56.04% 
43% 59.26% 59.11% 60.06% 59.58% 57.42% 57.71% 55.50% 56.59% 
46% 58.95% 58.75% 60.06% 59.40% 57.90% 58.16% 56.32% 57.23% 
50% 58.74% 58.52% 60.08% 59.29% 57.81% 58.01% 56.52% 57.26% 
53% 58.11% 57.91% 59.40% 58.65% 56.95% 57.03% 56.36% 56.69% 
56% 57.68% 57.40% 59.59% 58.47% 56.81% 56.88% 56.28% 56.58% 
60% 57.53% 57.30% 59.17% 58.22% 57.61% 57.67% 57.26% 57.46% 
63% 57.33% 57.13% 58.72% 57.92% 56.79% 56.77% 56.99% 56.88% 
66% 57.05% 56.88% 58.30% 57.58% 56.42% 56.29% 57.46% 56.87% 
70% 56.76% 56.59% 58.05% 57.31% 57.06% 56.80% 59.02% 57.89% 
73% 56.19% 56.15% 56.48% 56.32% 56.32% 56.12% 58.00% 57.04% 
76% 55.94% 55.89% 56.32% 56.11% 55.58% 55.37% 57.53% 56.43% 
80% 55.08% 55.10% 54.89% 54.99% 55.68% 55.42% 58.08% 56.72% 
83% 54.57% 54.64% 53.83% 54.23% 55.48% 55.24% 57.77% 56.48% 
86% 54.44% 54.64% 52.28% 53.43% 55.21% 55.03% 57.03% 56.01% 
90% 54.26% 54.43% 52.32% 53.35% 55.17% 55.01% 56.79% 55.89% 
93% 53.86% 53.92% 53.09% 53.50% 55.23% 55.02% 57.34% 56.15% 
96% 53.00% 53.09% 51.45% 52.26% 54.25% 54.06% 56.67% 55.34% 
Random 50.00% 50.00% 100.00% 66.67% 50.00% 50.00% 100.00% 66.67% 

 
Note: Average accuracy was generated by the following steps. First, averaging the predictions across facial images for the same 
person. Second, comparing the averaged prediction to the observed value to generate the average accuracy. 
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Table 6 

Accuracy Results for One Image Only by Different Degrees of Masking for Study 1c 

 Women Men 
Degree Accuracy Precision Recall F1 Accuracy Precision Recall F1 
0 63.64% 63.39% 64.55% 63.96% 59.37% 59.44% 58.98% 59.21% 
1 62.73% 62.68% 62.92% 62.80% 59.84% 60.29% 57.65% 58.94% 
2 61.71% 61.77% 61.45% 61.61% 59.31% 59.84% 56.64% 58.19% 
3 60.57% 60.68% 60.08% 60.38% 60.03% 60.79% 56.52% 58.58% 
4 60.04% 60.02% 60.12% 60.07% 59.15% 59.95% 55.15% 57.45% 
5 59.60% 59.53% 59.98% 59.76% 58.63% 59.44% 54.29% 56.75% 
6 59.54% 59.51% 59.69% 59.60% 59.17% 59.80% 55.97% 57.82% 
7 59.39% 59.43% 59.17% 59.30% 58.39% 59.09% 54.53% 56.72% 
8 59.18% 59.21% 59.01% 59.11% 58.80% 59.67% 54.29% 56.86% 
9 59.29% 59.25% 59.54% 59.39% 57.85% 58.49% 54.06% 56.19% 
10 58.81% 58.76% 59.11% 58.93% 57.20% 58.03% 52.03% 54.87% 
11 58.86% 58.78% 59.28% 59.03% 57.01% 57.62% 53.01% 55.21% 
12 58.53% 58.36% 59.56% 58.95% 56.05% 56.38% 53.43% 54.87% 
13 58.39% 58.24% 59.32% 58.78% 56.36% 56.64% 54.29% 55.44% 
14 58.03% 57.83% 59.28% 58.55% 56.26% 56.42% 55.04% 55.72% 
15 57.71% 57.46% 59.38% 58.40% 55.84% 56.02% 54.29% 55.14% 
16 57.43% 57.22% 58.84% 58.02% 55.58% 55.64% 55.04% 55.34% 
17 57.07% 56.82% 58.88% 57.83% 55.39% 55.49% 54.45% 54.96% 
18 56.67% 56.42% 58.63% 57.50% 56.30% 56.35% 55.97% 56.16% 
19 56.35% 56.15% 58.05% 57.08% 55.25% 55.18% 55.93% 55.55% 
20 55.80% 55.68% 56.87% 56.27% 55.00% 54.92% 55.74% 55.33% 
21 55.67% 55.49% 57.27% 56.37% 55.41% 55.22% 57.18% 56.18% 
22 55.21% 55.17% 55.59% 55.38% 55.21% 55.10% 56.32% 55.70% 
23 54.42% 54.35% 55.20% 54.77% 54.02% 53.82% 56.60% 55.18% 
24 54.04% 54.01% 54.39% 54.20% 53.96% 53.77% 56.44% 55.08% 
25 53.59% 53.66% 52.65% 53.15% 53.98% 53.75% 57.06% 55.36% 
26 53.22% 53.37% 51.04% 52.18% 54.47% 54.25% 57.03% 55.60% 
27 53.15% 53.30% 50.95% 52.10% 54.31% 54.12% 56.67% 55.37% 
28 53.20% 53.25% 52.40% 52.82% 54.63% 54.40% 57.14% 55.74% 
29 52.38% 52.46% 50.74% 51.58% 53.69% 53.46% 57.03% 55.18% 
30 50.00% 50.00% 100.00% 66.67% 50.00% 50.00% 100.00% 66.67% 

 

  



 
 

117 

 

Table 7 

Statistical Tests of Brightness Differences by Gender and Facial Regions for Study 2a 

Panel A: Brightness Difference in Image Background 
 Women (N = 10,340) 
 Heterosexual Lesbian Significance Test 

Mean 95% CI Mean 95% CI t 95% CI p d 
Red 0.400 [0.40, 0.40] 0.387 [0.38, 0.39] -5.328 [-0.02, -0.01] <.001 0.072 
Green 0.352 [0.35, 0.36] 0.342 [0.34, 0.34] -4.998 [-0.01, -0.01] <.001 0.068 
Blue 0.326 [0.32, 0.33] 0.315 [0.31, 0.32] -5.137 [-0.01, -0.01] <.001 0.070 
Average 0.359 [0.36, 0.36] 0.348 [0.35, 0.35] -5.329 [-0.02, -0.01] <.001 0.073 
 Men (N = 5,124) 
 Heterosexual Gay Significance Test 
 Mean 95% CI Mean 95% CI t 95% CI p d 
Red 0.423 [0.42, 0.43] 0.443 [0.44, 0.45] 5.532 [0.01, 0.03] <.001 0.110 
Green 0.394 [0.39, 0.40] 0.413 [0.41, 0.42] 5.312 [0.01, 0.03] <.001 0.105 
Blue 0.373 [0.37, 0.38] 0.389 [0.38, 0.39] 4.396 [0.01, 0.02] <.001 0.087 
Average 0.397 [0.39, 0.40] 0.415 [0.41, 0.42] 5.257 [0.01, 0.03] <.001 0.104 

 
Panel B: Brightness Difference in Facial Region 

 Women (N = 10,340) 
 Heterosexual Lesbian Significance Test 

Mean 95% CI Mean 95% CI t 95% CI p d 
Red 0.552 [0.55, 0.55] 0.542 [0.54, 0.54] -5.664 [-0.01, -0.01] <.001 0.077 
Green 0.418 [0.42, 0.42] 0.412 [0.41, 0.41] -4.041 [-0.01, -0.00] <.001 0.055 
Blue 0.371 [0.37, 0.37] 0.365 [0.36, 0.37] -3.453 [-0.01, -0.00] =.001 0.047 
Average 0.447 [0.44, 0.45] 0.440 [0.44, 0.44] -4.722 [-0.01, -0.00] <.001 0.064 
 Men (N = 5,124) 
 Heterosexual Gay Significance Test 
 Mean 95% CI Mean 95% CI t 95% CI p d 
Red 0.522 [0.52, 0.53] 0.549 [0.55, 0.55] 10.896 [0.02, 0.03] <.001 0.216 
Green 0.398 [0.40, 0.40] 0.414 [0.41, 0.42] 7.392 [0.01, 0.02] <.001 0.147 
Blue 0.359 [0.36, 0.36] 0.368 [0.37, 0.37] 4.393 [0.01, 0.01] <.001 0.087 
Average 0.426 [0.42, 0.43] 0.443 [0.44, 0.45] 8.252 [0.01, 0.02] <.001 0.164 

 
Panel C: Brightness Difference for Entire Image 

 Women (N = 10,340) 
 Heterosexual Lesbian Significance Test 

Mean 95% CI Mean 95% CI t 95% CI p d 
Red 0.951 [0.95, 0.96] 0.930 [0.93, 0.93] -6.568 [-0.03, -0.02] <.001 0.089 
Green 0.771 [0.77, 0.77] 0.754 [0.75, 0.76] -5.638 [-0.02, -0.01] <.001 0.077 
Blue 0.696 [0.69, 0.70] 0.681 [0.68, 0.68] -5.325 [-0.02, -0.01] <.001 0.072 
Average 0.806 [0.80, 0.81] 0.788 [0.78, 0.79] -6.198 [-0.02, -0.01] <.001 0.084 
 Men (N = 5,124) 
 Heterosexual Gay Significance Test 
 Mean 95% CI Mean 95% CI t 95% CI p d 
Red 0.946 [0.94, 0.95] 0.992 [0.99, 1.00] 9.701 [0.04, 0.06] <.001 0.192 
Green 0.793 [0.79, 0.80] 0.827 [0.82, 0.83] 7.645 [0.03, 0.04] <.001 0.152 
Blue 0.731 [0.72, 0.74] 0.757 [0.75, 0.76] 5.379 [0.02, 0.03] <.001 0.107 
Average 0.823 [0.82, 0.83] 0.858 [0.85, 0.86] 8.021 [0.03, 0.04] <.001 0.159 
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Table 8 

Average AUC Results by Different Degrees of Blurring (by Target Width) Compared to AUC of Random 

(One-pixel Blurred Image of Dataset) for Study 2b 

 Women (N = 10,340) Men (N = 5,124) 
Width AUC 95% CI p d AUC 95% CI p d 
224 .702 [.692, .712] <.001 4.010 .660 [.645, .675] <.001 2.610 
112 .703 [.693, .713] <.001 4.026 .661 [.646, .676] <.001 2.626 
74 .702 [.692, .712] <.001 4.011 .657 [.643, .672] <.001 2.562 
56 .703 [.693, .713] <.001 4.020 .662 [.647, .677] <.001 2.641 
44 .702 [.692, .712] <.001 4.002 .668 [.653, .683] <.001 2.745 
37 .697 [.687, .707] <.001 3.889 .662 [.647, .676] <.001 2.633 
32 .691 [.681, .701] <.001 3.770 .660 [.645, .674] <.001 2.596 
28 .689 [.679, .699] <.001 3.722 .657 [.642, .672] <.001 2.553 
24 .680 [.670, .691] <.001 3.535 .645 [.630, .660] <.001 2.350 
22 .670 [.660, .680] <.001 3.311 .642 [.627, .658] <.001 2.302 
20 .656 [.646, .667] <.001 3.032 .636 [.620, .651] <.001 2.184 
19 .656 [.646, .667] <.001 3.022 .631 [.616, .646] <.001 2.104 
18 .646 [.636, .657] <.001 2.821 .618 [.603, .633] <.001 1.888 
17 .642 [.631, .652] <.001 2.731 .615 [.599, .630] <.001 1.835 
16 .623 [.612, .634] <.001 2.356 .594 [.579, .610] <.001 1.501 
15 .618 [.607, .628] <.001 2.249 .601 [.585, .616] <.001 1.607 
14 .614 [.603, .624] <.001 2.168 .585 [.570, .601] <.001 1.352 
13 .607 [.596, .618] <.001 2.044 .589 [.573, .604] <.001 1.413 
12 .599 [.588, .610] <.001 1.879 .584 [.569, .600] <.001 1.337 
11 .596 [.585, .607] <.001 1.818 .581 [.565, .596] <.001 1.281 
10 .588 [.577, .599] <.001 1.666 .585 [.569, .600] <.001 1.347 
9 .590 [.579, .600] <.001 1.698 .580 [.565, .596] <.001 1.272 
8 .583 [.572, .594] <.001 1.568 .586 [.571, .602] <.001 1.374 
7 .581 [.570, .592] <.001 1.530 .589 [.573, .604] <.001 1.414 
6 .572 [.561, .583] <.001 1.355 .593 [.578, .609] <.001 1.484 
5 .575 [.564, .586] <.001 1.421 .578 [.563, .594] <.001 1.241 
4 .558 [.547, .569] <.001 1.090 .571 [.555, .586] <.001 1.122 
3 .559 [.548, .570] <.001 1.106 .566 [.550, .581] <.001 1.038 
2 .533 [.522, .544] <.001 0.628 .568 [.552, .584] <.001 1.078 
1 .529 [.518, .540] <.001 0.546 .563 [.548, .579] <.001 1.000 

 
Note: Average AUC was generated by the following steps. First, averaging the predictions across facial images for the same 
person. Second, comparing the averaged prediction to the observed value to generate the average AUC. 
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Table 9 

AUC Results Using One Image by Different Degrees of Blurring (by Target Width) Compared to AUC of 

Random (One-pixel Blurred Image of Dataset) for Study 2b 

 Women (N = 10,340) Men (N = 5,124) 
Width AUC 95% CI p d AUC 95% CI p d 
224 .687 [.677, .697] <.001 3.681 .643 [.628, .658] <.001 2.314 
112 .688 [.678, .698] <.001 3.696 .643 [.628, .658] <.001 2.315 
74 .687 [.677, .697] <.001 3.681 .642 [.627, .657] <.001 2.290 
56 .687 [.677, .698] <.001 3.691 .647 [.632, .662] <.001 2.376 
44 .686 [.676, .696] <.001 3.652 .646 [.631, .661] <.001 2.369 
37 .680 [.670, .690] <.001 3.528 .640 [.625, .655] <.001 2.261 
32 .673 [.663, .683] <.001 3.380 .638 [.623, .653] <.001 2.228 
28 .670 [.660, .681] <.001 3.325 .638 [.623, .653] <.001 2.224 
24 .660 [.650, .670] <.001 3.109 .623 [.608, .638] <.001 1.976 
22 .650 [.640, .661] <.001 2.904 .619 [.603, .634] <.001 1.901 
20 .637 [.627, .648] <.001 2.643 .617 [.602, .633] <.001 1.881 
19 .634 [.623, .644] <.001 2.569 .610 [.595, .625] <.001 1.757 
18 .630 [.619, .641] <.001 2.490 .601 [.586, .616] <.001 1.613 
17 .620 [.609, .631] <.001 2.298 .598 [.582, .613] <.001 1.559 
16 .606 [.595, .617] <.001 2.023 .581 [.566, .597] <.001 1.289 
15 .598 [.587, .609] <.001 1.869 .586 [.570, .602] <.001 1.367 
14 .594 [.583, .605] <.001 1.789 .571 [.555, .586] <.001 1.121 
13 .594 [.583, .605] <.001 1.779 .575 [.559, .590] <.001 1.182 
12 .585 [.574, .596] <.001 1.610 .573 [.558, .589] <.001 1.159 
11 .582 [.571, .593] <.001 1.556 .570 [.554, .585] <.001 1.104 
10 .575 [.564, .585] <.001 1.408 .571 [.555, .586] <.001 1.123 
9 .576 [.565, .587] <.001 1.441 .566 [.550, .581] <.001 1.041 
8 .569 [.558, .580] <.001 1.300 .570 [.554, .585] <.001 1.105 
7 .567 [.556, .578] <.001 1.272 .574 [.559, .590] <.001 1.177 
6 .562 [.551, .573] <.001 1.177 .581 [.566, .597] <.001 1.291 
5 .565 [.554, .576] <.001 1.228 .564 [.549, .580] <.001 1.021 
4 .550 [.539, .561] <.001 0.948 .559 [.544, .575] <.001 0.936 
3 .546 [.535, .557] <.001 0.872 .552 [.536, .568] <.001 0.819 
2 .527 [.516, .538] <.001 0.509 .548 [.532, .564] <.001 0.760 
1 .523 [.512, .534] <.001 0.437 .548 [.532, .564] <.001 0.758 
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Table 10 

Average Accuracy Results by Different Degrees of Blurring (by Target Width) for Study 2b 

 Women Men 
Width Accuracy Precision Recall F1 Accuracy Precision Recall F1 
224 64.76% 64.63% 65.20% 64.91% 61.32% 61.58% 60.19% 60.88% 
112 64.93% 64.79% 65.40% 65.09% 61.65% 61.94% 60.46% 61.19% 
74 64.89% 64.71% 65.53% 65.12% 61.28% 61.50% 60.30% 60.90% 
56 64.92% 64.69% 65.73% 65.20% 61.44% 61.59% 60.77% 61.18% 
44 64.76% 64.59% 65.34% 64.96% 62.24% 62.46% 61.36% 61.90% 
37 64.11% 63.76% 65.40% 64.57% 61.59% 61.56% 61.75% 61.65% 
32 64.52% 64.16% 65.76% 64.95% 62.06% 62.37% 60.81% 61.58% 
28 63.97% 63.58% 65.44% 64.49% 61.44% 61.84% 59.72% 60.76% 
24 63.42% 63.04% 64.89% 63.95% 60.40% 60.85% 58.35% 59.57% 
22 62.66% 62.23% 64.43% 63.31% 60.85% 61.53% 57.92% 59.67% 
20 61.42% 61.01% 63.31% 62.14% 60.44% 61.19% 57.10% 59.08% 
19 62.26% 61.60% 65.11% 63.31% 59.89% 60.57% 56.71% 58.58% 
18 61.33% 60.75% 64.06% 62.36% 58.24% 58.54% 56.44% 57.47% 
17 60.38% 59.86% 63.02% 61.40% 58.70% 59.18% 56.13% 57.61% 
16 59.31% 58.56% 63.69% 61.02% 56.79% 56.79% 56.83% 56.81% 
15 58.17% 57.71% 61.18% 59.39% 56.91% 57.21% 54.84% 56.00% 
14 58.14% 57.68% 61.16% 59.37% 56.64% 56.69% 56.25% 56.47% 
13 57.55% 57.17% 60.19% 58.65% 56.44% 56.47% 56.21% 56.34% 
12 57.43% 57.09% 59.79% 58.41% 56.03% 55.92% 56.99% 56.45% 
11 57.01% 56.77% 58.82% 57.78% 56.28% 56.20% 56.95% 56.57% 
10 56.61% 56.33% 58.76% 57.52% 56.67% 56.42% 58.63% 57.50% 
9 56.23% 55.98% 58.28% 57.11% 56.19% 56.05% 57.30% 56.67% 
8 56.32% 56.22% 57.08% 56.65% 56.23% 56.12% 57.10% 56.61% 
7 55.84% 55.69% 57.16% 56.41% 56.83% 56.81% 56.99% 56.90% 
6 55.05% 54.91% 56.50% 55.69% 56.93% 56.85% 57.53% 57.19% 
5 55.55% 55.58% 55.32% 55.45% 55.89% 55.73% 57.30% 56.51% 
4 54.04% 54.02% 54.29% 54.16% 54.98% 54.93% 55.46% 55.20% 
3 54.35% 54.15% 56.77% 55.43% 54.88% 54.86% 55.07% 54.97% 
2 52.79% 52.76% 53.29% 53.02% 55.13% 55.10% 55.46% 55.28% 
1 52.34% 52.36% 51.99% 52.17% 54.18% 54.16% 54.33% 54.25% 
Random 50.00% 50.00% 100.00% 66.67% 50.00% 50.00% 100.00% 66.67% 

 
Note: Average accuracy was generated by the following steps. First, averaging the predictions across facial images for the same 
person. Second, comparing the averaged prediction to the observed value to generate the average accuracy.  
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Table 11 

Accuracy Results for One Image Only by Different Degrees of Blurring (by Target Width) for Study 2b 

 Women Men 
Width Accuracy Precision Recall F1 Accuracy Precision Recall F1 
224 63.83% 63.59% 64.70% 64.14% 59.70% 59.89% 58.74% 59.31% 
112 63.38% 63.10% 64.41% 63.75% 60.19% 60.47% 58.82% 59.64% 
74 63.63% 63.29% 64.87% 64.07% 60.25% 60.50% 59.02% 59.75% 
56 63.40% 63.09% 64.60% 63.84% 60.62% 60.85% 59.56% 60.20% 
44 63.41% 63.09% 64.64% 63.86% 60.34% 60.56% 59.33% 59.94% 
37 63.00% 62.53% 64.85% 63.67% 59.78% 59.91% 59.13% 59.52% 
32 62.75% 62.38% 64.24% 63.29% 60.34% 60.77% 58.35% 59.54% 
28 62.36% 61.91% 64.24% 63.05% 59.62% 59.99% 57.77% 58.86% 
24 61.76% 61.28% 63.89% 62.56% 58.43% 58.83% 56.17% 57.47% 
22 60.84% 60.22% 63.87% 61.99% 58.47% 59.12% 54.92% 56.94% 
20 59.36% 58.94% 61.72% 60.30% 58.10% 58.76% 54.33% 56.46% 
19 59.95% 59.37% 63.08% 61.16% 57.75% 58.21% 54.92% 56.52% 
18 59.84% 59.27% 62.86% 61.02% 56.71% 56.94% 55.07% 55.99% 
17 58.32% 57.90% 60.97% 59.39% 56.83% 57.05% 55.27% 56.15% 
16 57.91% 57.32% 61.97% 59.55% 55.99% 56.06% 55.46% 55.76% 
15 56.91% 56.54% 59.73% 58.09% 55.89% 56.13% 53.98% 55.03% 
14 56.72% 56.35% 59.63% 57.95% 55.21% 55.22% 55.15% 55.18% 
13 56.46% 56.14% 59.03% 57.55% 55.00% 54.99% 55.04% 55.01% 
12 56.25% 56.02% 58.14% 57.06% 55.09% 54.97% 56.36% 55.66% 
11 55.93% 55.75% 57.52% 56.62% 55.37% 55.23% 56.64% 55.93% 
10 55.34% 55.17% 57.00% 56.07% 55.27% 55.05% 57.42% 56.21% 
9 55.08% 54.90% 56.87% 55.87% 55.13% 54.92% 57.30% 56.08% 
8 55.28% 55.16% 56.48% 55.81% 54.78% 54.68% 55.89% 55.28% 
7 54.85% 54.80% 55.44% 55.12% 55.52% 55.37% 56.99% 56.16% 
6 54.36% 54.24% 55.82% 55.02% 56.67% 56.58% 57.38% 56.98% 
5 54.65% 54.69% 54.27% 54.48% 55.31% 55.16% 56.71% 55.93% 
4 53.33% 53.33% 53.25% 53.29% 54.84% 54.77% 55.54% 55.16% 
3 53.17% 53.02% 55.69% 54.32% 53.98% 53.96% 54.29% 54.12% 
2 51.81% 51.78% 52.65% 52.21% 53.01% 52.98% 53.43% 53.21% 
1 51.94% 51.96% 51.47% 51.72% 53.10% 53.11% 53.01% 53.06% 
Random 50.00% 50.00% 100.00% 66.67% 50.00% 50.00% 100.00% 66.67% 
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Figure 1 

An Example Rendering of Image Augmentations Applied in Studies 1c and 2b 
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Figure 2 

A Plot of the Target Width Used to Downsize Images for Study 2b 

 

 

 

 


