Inverse Analyses Techniques for Parameter Identification in Simulation of Excavation Support System

ABSTRACT

Two numerical procedures are described that quantitatively identify a set of constitutive parameters that best represents observed ground movement data associated with a deep excavations in urban environments. This inverse problem is solved by minimizing an objective (or error) function of the weighted least-squares type that contains the difference between observed and calculated ground displacements. The problem is solved with two different minimization algorithms, one based on a gradient method and other on a genetic algorithm. The objective function is shown to be smooth with a unique solution. Both methods are applied to lateral movements from synthetic and real excavations to illustrate various aspects of the implementation of the methods. The advantages and disadvantages of each method applied to excavation problems are discussed.

INTRODUCTION

This paper describes two procedures to identify selected constitutive parameters of a soil constitutive model by inverse analysis of performance data from excavation support systems. The identification method is an iterative approach to solve the inverse problem (Gioda and Maier 1980; Tarantola, 1987). Trial values of the unknown parameters are used as input values in a finite element code to simulate the associated direct problem until the discrepancies between measurements and numerical results are minimized. The problem is reduced to a parameter optimization.

Inverse analysis techniques have been applied to geotechnical problems since the 1980s (e.g., Gioda and Maier 1980; Cividini et al., 1981; Sakurai and Takeuchi 1983). Its use allows one to evaluate performance of geotechnical structures by a quantifiable observational method. It has been used to identify soil parameters from laboratory or in situ tests (Anandarajah and Agarwal 1991; Pal et al., 1996; Zentar et al., 2001; Samarajiva et al., 2005), and performance data from excavation support systems (Ou and Tang1994; Calvello and Finno 2004; Finno and Calvello 2005; Levasseur et al., 2007),

excavation of tunnels in rock (Sakurai and Takeuchi, 1983; Ledesma et al., 1996; Gens et al., 1996; Gioda and Locatelli, 1996; Lecampion et al. 2002; Lecamion and Cantantinescu 2005), and embankment construction on soft soils (Arai et al., 1986; Honjo et al., 1994; Wakita and Matsuo, 1994). Most of these previous studies of performance data were conducted with simple soil models that severely restricted the ability of the computations to accurately reflect the observed field performance data, irrespective of employing inverse techniques.

When applying inverse analysis techniques to study the behavior of a supported excavation, concerns exists about the proper representation of the real system as well as the efficiency of the inverse analysis technique and its ability to find a unique set of parameters for a particular problem. This paper focuses on the identification of soil parameters based on lateral movement data obtained close to the walls of excavation support systems. Results from two optimization methods are presented, a gradient-based method developed by Hill (1998) and applied to the excavation problem by Finno and Calvello (2005) and a genetic algorithm method developed by Levasseur et al. (2007). The methods are applied to a "synthetic" excavation so as to evaluate each method without the complexity of real performance data and to a well-documented case study (Finno and Roboski, 2005) to illustrate the some of the judgment required to apply the methods in the field. In the former, the field observations are artificially generated by FEM analyses and an optimum set of parameter values were chosen to reproduce representative orders of magnitude of measured performance data. This approach permits a direct comparison between the two inverse techniques without the interference of errors arising from simplifying the real geotechnical problem into a plane strain model, and field measurement errors other than those arising from instrument inaccuracies.

BACKGROUND

Two main types of inverse analysis have been applied to geotechnics, optimization by iterative algorithms such as gradient methods (Ou et al., 1994; Ledesma et al., 1996; Calvello and Finno 2004; Finno and Calvello 2005; Lecampion and Contantinescu 2005) and optimization by techniques from the field of artificial intelligence, including artificial

neural networks (Yamagami et al., 1997; Hashash et al., 2003, 2006) or genetic algorithms (Pal et al., 1996; Samarajiva et al., 2005; Levasseur et al., 2007). These methods are distinguishable by their physical approach. The gradient method is a local parameter identification of a specific constitutive law. The artificial neural network is a method which creates by learning phases its own constitutive law from geotechnical measurements. Genetic algorithms are global optimization methods which localize an optimum set of solutions close to the "true" value.

Finno and Calvello (2005) applied a gradient-based inverse analysis procedure to update predictions of lateral deformations observed a 12.2 m deep excavation through Chicago glacial clays. The field observations were obtained from inclinometer data that measured lateral movements of the soil behind the supporting walls on opposite sides of the excavation throughout construction. The constitutive responses of the soil were represented by the Hardening-soil (H-S) model (Schantz et al., 1999). Of the six basic H-S input parameters, only one the reference value for the primary loading stiffness was optimized, while the other parameters were either kept constant or related to the updated value of the optimized value. Because the soil around the structure was already 'strained' due to previous construction activity at the site, the methodology could be effectively used to recalibrate the model of the excavation at early construction stages, such that good "predictions" could be made of the behavior of the soil at later stages. The final optimized parameters were reasonable and were within values that could have been reasonably selected *a priori*.

Levasseur et al. (2007) discussed the use of inverse analysis by a genetic algorithm for the constitutive parameter identification of an *a priori* known soil constitutive law from typical geotechnical tests and measurements. In particular, parameters of the Mohr-Coulomb model were estimated to reproduce the horizontal displacements of a sheet pile wall between successive stages of excavation and also to reproduce a pressuremeter curve. The study showed genetic algorithms converge to a set of solutions close to the best one. The identified set of solutions characterized the soil properties well for a particular stress path. Furthermore, the evolution of the population process provided information about parameter sensitivity and about existing mathematical correlations

between parameters. However, a drawback of genetic algorithm method can be its high calculation cost.

PROCEDURES FOR INVERSE ANALYSIS

In this study, the commercial finite element program PLAXIS 8.2 was used to simulate the excavations in plane strain. The optimizations were carried out by coupling PLAXIS with a search algorithm program and minimizing an objective function of the weighted least-squares type. Two different search algorithms were used and compared, a gradient method based in the Newton's method as published in the program UCODE (Poeter and Hill, 1998), and a genetic search method developed by Laboratoire 3S-R for geotechnical studies (Levasseur et al., 2007).

Gradient method

UCODE is a universal inverse code that can be used with any application model. It performs inverse modeling posed as a parameter estimation problem, by calculating parameter values that minimize a weighted least-squares objective function using nonlinear regression. Nonlinear regression is needed when simulated values are nonlinear with respect to parameters being estimated. The weighted least-squares objective function $S(\underline{b})$ is expressed as:

$$S(\underline{b}) = \left[\underline{y} - \underline{y}'(\underline{b})\right]^{T} \underline{\omega} \left[\underline{y} - \underline{y}'(\underline{b})\right] = \underline{e}^{T} \underline{\omega} \underline{e}$$
[1]

where \underline{b} is a vector containing values of the parameters to be estimated; \underline{y} is the vector of the observations being matched by the regression; $\underline{y}'(\underline{b})$ is the vector of the computed values which correspond to observations; $\underline{\omega}$ is the weight matrix; and \underline{e} is the vector of residuals. This function represents a quantitative measure of the accuracy of the predictions.

In the inverse procedure, a sensitivity matrix \underline{X} , is computed using a forward difference approximation based on the changes in the computed solution due to slight perturbations of the estimated parameter values. Regression analysis of this non-linear

problem is used to find the values of the parameters that result in a best fit between the computed and observed values. This fitting is accomplished with the Gauss-Newton method modified by the addition of a damping parameter and a Marquardt parameter (Hill, 1998).

The normal equations and the iterative process for the modified Gauss-Newton optimization method can be expressed as:

$$\underbrace{\left(\underline{C}^{T} \underline{X}_{r}^{T} \underline{\omega} \underline{X}_{r} \underline{C} + \underline{I} m_{r}\right)}_{\underline{C}^{-1} \underline{d}_{r}} = \underline{C}^{T} \underline{X}_{r}^{T} \underline{\omega} \left(\underline{V} - \underline{Y}' \left(\underline{b}_{r}\right)\right)$$
[2]

$$\underline{b}_{r+1} = \rho_r \underline{d}_r + \underline{b}_r \tag{3}$$

where r is the parameter estimation number; \underline{X}_r is the sensitivity matrix evaluated at parameter estimates \underline{b}_r with elements equal to $\partial y_i/\partial b_j$ calculated using forward or central differences; $\underline{\omega}$ is the weight matrix; $\underline{X}_r^T \underline{\omega} \underline{X}_r$ is a symmetric, square matrix of NP by NP dimensions; \underline{C} is a diagonal scaling matrix with element c_{jj} equal to $[\underline{X}^T \underline{\omega} \underline{X}_p]^{1/2}$, which produces a scaled matrix with the smallest possible condition number (Forsythe and Strauss 1955; Hill 1998); \underline{d}_r is a vector with the number of elements equal to the number of estimated parameters and it is used to update parameter estimates; \underline{I} is an NP dimensional identity matrix; m_r is the Marquardt parameter (Marquardt 1963); and ρ_r is a damping parameter. The Marquardt parameter is used to improve regression performance for ill-posed problems. Initially $m_r = 0$ for each parameter-estimation iteration r. For iterations in which the vector \underline{d} defines parameter changes that are unlikely to reduce the value of the objective function, m_r is increased according to $m_r^{new} = 1.5 \cdot m_r^{old} + 0.001$ until the condition is no longer met.

The damping parameter, ρ_r , can vary in value from 0.0 to 1.0 and modifies all values in the parameter change vector \underline{d}_r by the same factor. Thus, in vector terminology, the direction of \underline{d}_r is preserved. The damping parameter is used to ensure that the absolute values of fractional parameter value changes are all less than a user-specified value, and

to damp oscillations that occur when elements in \underline{d}_r and \underline{d}_{r-1} define opposite directions (Hill, 1998).

Non-linear regression begins with the initially estimated parameter values and ends when the parameter values change less than a fractional amount between regression iterations (0.01 for the Synthetic case and 0.05 for the Lurie Center case). When analyzing the Lurie case, an additional convergence criterion was imposed; therein, when the sum of the squared weighted residuals changed less than a fractional amount (0.05) over three regression iterations, the regression was stopped, indicating that model calibration was not progressing.

Genetic algorithm optimization method

The Genetic algorithm is an optimization method inspired by Darwin's theory of evolution. It is a stochastic global search technique which does not need any derivative evaluation of the error function. It is recognized to be highly efficient in dealing with large, discrete, non linear and poorly understood optimization problems (Kang et al., 2004; Wrobel and Miltiadou 2004). This method does not guarantee the exact identification of the optimum solution of a problem. However, genetic mechanisms allow an optimum set of solutions to localize to the optimum in a given search space (Gallagher and Sambridge 1994). Its basic principles have been developed by Goldberg (1989) and Renders (1994). The optimization program developed in Fortran language by Laboratoire 3S-R for geotechnical studies is based on this method (Levasseur et al., 2007).

The genetic algorithm objective (or error) function that assesses the discrepancy between the N measurements, Ue_i , and the associated numerical results, Un_i , is expressed as a scalar error function F_{err} in the sense of the least squares method:

$$F_{err} = \left(\frac{1}{N} \sum_{i=1}^{N} \frac{\left(Ue_{i} - Un_{i}\right)^{2}}{\Delta U_{i}^{2}}\right)^{1/2}$$
[4]

 $1/\Delta U_i$ is the weight given to the gap between Ue_i and Un_i . Physically, this parameter is linked to experimental and numerical uncertainties on point "i" and is expressed as:

$$\Delta U_i = \varepsilon + \alpha U e_i \tag{5}$$

where the parameter ε represents an absolute error of a measurement, and the parameter α represents a dimensionless relative error of a measurement. Through the values given to ε and α , one can change the description of uncertainties in the model.

The genetic algorithm optimization method consists of four main stages, including:

- 1) Defining the research space: For N_p parameters to optimize, the minimization problem is solved in the N_p -dimension space, restricted to specified values for each parameter p between p_{min} and p_{max} .
- 2) Encoding individuals and populations: Each parameter is binary encoded with a given number of bytes (N_b) to form a gene. As this encoding meshes the research space into $(2^{N_b})^{Np}$ elements, the choice of N_b is directly linked to the expected precision of the parameter values. Concatenation of several genes forms an individual. Each individual represents one point of the research space, that is, a vector of solution parameters for a particular problem. A set of N_i individuals is a population. Note that the genetic algorithm is used on a meshed parameter research space. Consequently, the identified solutions are linked to the nodes of this mesh.
- 3) Generating an initial population: A random set of N_i individuals, or initial population, is chosen within the research space. The objective function, or fitness F_{err} , of each individual of this population is evaluated by FEM calculation.
- *4) Selection, reproduction* and *mutation:* these mechanisms begin to evolve the population to better-adapted individuals of the research space.

Selection: Depending on the F_{err} values (minimal cost of the scalar error function), only the best $N_i/3$ individuals are preserved for the next population. These best individuals are called parents. This "elitist" selection is known to be more efficient for unimodal function optimization (Goldberg, 1989).

Reproduction and Crossing: The parents are randomly paired off and crossed over to generate new pairs of individuals (see illustration on Table 1). To improve the algorithm efficiency the cross point number is chosen equal to the number of sought parameters (Pal et al., 1996). This process is repeated until $2N_i/3$ new individuals, called children, are created.

Mutation and Generation of a new population: Putting together the parent and the children individuals defines a new population of N_i individuals. To limit the convergence problems and to diversify the population, some of the individuals are randomly mutated (inversion of one byte on individual chain; see illustration on Table 2). Then, the objective function, F_{err} , of each individual of this new population is evaluated by FEM calculation.

These three last steps are repeated until one of the following convergence conditions are satisfied:

- i) if the average value of the error function applied to the parents or its standard deviation becomes small enough, the data are well reproduced by one or more parameter sets, specifically, a value of the error function less than 10^{-5} and 10^{-2} with standard deviations less than 10^{-6} and 10^{-3} for the Synthetic and Lurie Center excavation cases, respectively.
- ii) if the value of the error function applied to one individual becomes small compared to the others, then one solution is identified for the problem. In this case, all the parents quickly converged to this individual or the convergence was stopped by the preset maximum number of iterations.

THIS LAST CRITERIA IS STILL NOT CLEAR TO ME. WHAT IS "SMALL" AND WHAT IS THE MAXIMUM NUMBER OF ITERATIONS? WE SHOULD BE SPECIFIC FOR CONVERGENCE CRITERIA

When the optimization is finished, a post-treatment analysis permits one to evaluate the solutions. The GA provides an optimum defined as the parameter values that give the minimal value of the scalar error function. However, because the GA converges without a guarantee to identify the exact optimum, these values are not necessary the exact sought parameters. The GA also yields several parameter combinations with an error function less than a given one, an error function less than 1.15 times the optimum one, and thus it defines a set of solutions for a problem. The average and the standard deviation of parameter values of this set permit one to evaluate a range of variation for each parameter value, and represents an approximation of the solution set.

SYNTHETIC EXCAVATION

The purpose of these parametric studies of a synthetic excavation is to evaluate how well each algorithm reproduces the "field" displacements and to assure that parameters that do so with each model are indeed the "field" parameters that resulted in such movements. In other words, does each method converge to a "correct" solution? It is necessary to evaluate the numerics behind each procedure prior to applying the methods to field conditions because many more uncertainties exist when applying such procedures to real problems. A synthetic example allows a direct comparison of the two inverse analysis techniques without interference of model uncertainties and errors in field measurements other than those due to the precision of the instrumentation.

Description

The synthetic model is a 2-dimensional plane strain representation of a typical supported excavation through Chicago clays. The soil profile consists of 3.5 m of granular fill on top of a saturated clay layer of increasing strength and stiffness with depth. The retaining system is a 14 m deep sheet pile wall with two levels of internal bracing.

Figure 1 shows the main features of this model. The excavated depth is 11 m. The model assumes perfect symmetry and only one-half of the excavation is represented. The soil response is assumed to follow that prescribed by the stress-level dependent, Hardening-Soil model (Schantz et al., 1999).

Observations

The "field" data were generated by finite element analysis using selected input parameters noted as "field" parameters. The 'observations' employed here were computed soil horizontal displacements located along a vertical line 2 m behind the wall, a common location for an inclinometer in practice. The accuracy of a typical inclinometer is ± 2.4 mm/m, and this value was used herein; the errors associated with measurements were related to this accuracy, and that the error is larger at the ground surface than at depth. In application, this implies that the weight matrix used in the gradient objective function (eq.1) is diagonal. The weights were expressed as the inverse of the variance for

the 95% confidence interval for the accuracy of the inclinometer. In GA error function (eq.5) it implies that the absolute error uncertainty ϵ is equal to zero and the relative error uncertainty α is equal to 2.4 mm/m. These considerations make the error structure different for each method.

For the gradient algorithm, the weighting of the observations is defined as:

$$\omega_i(m^{-2}) = \frac{1}{\left(\frac{0.24}{1000 \cdot 1.96} \cdot d_i(m)\right)^2}$$
 [6]

where d_i = distance to the bottom of the casing for the ith observation

For the genetic algorithm, the weighting of the observations is defined as:

$$\omega_i(m^{-2}) = \frac{1}{\left(\frac{0.24}{1000} \cdot Ue_i(m)\right)^2}$$
 [7]

where Ue_i is the value of the ith observation. This definition of the weight makes the error in [7] about 4000 times smaller than the observation, and consequently no observations are excluded in the GA analyses.

Soil model, parameters and variations

The Hardening-Soil model is an elasto-plastic model for simulating the behavior of soils (Schantz et al., 1999) and accounts for both volumetric and shear hardening. For volumetric hardening, an elliptical yield function is used and an associative flow rule is assumed. For shear hardening, a yield function of hyperbolic type is applied and a non-associative flow rule that incorporates a dilation angle is employed. Useful features of this model are its ability to represent the stress dependency of soil stiffness and to account for shear hardening, compression hardening and dilation. The model was chosen for this study because it resulted in good estimations of magnitude and vertical distribution of lateral ground movements close to the wall for the excavation at Chicago-State subway renovation project in Chicago (Finno and Calvello, 2005).

Table 3 summarizes the Hardening-soil model parameters employed as "field" values in the analysis. Of the 9 parameters, only two in the clay layer were chosen for optimization. These are the reference values for primary deviatoric loading E_{50}^{ref} , and for

elastic unloading-reloading E_{ur}^{ref} . They are the parameters that most influence the behavior of an excavation where movements are limited (Finno and Calvello, 2005). Values of the tangent stiffness for primary ædometer loading, E_{oed}^{ref} , were also varied in the analysis, but were always computed as 0.7 times the E_{50}^{ref} value on each iteration. The remaining parameters were given reasonable values according to data available for Chicago soils (Finno and Chung, 1992; Finno and Calvello, 2005).

Results

The synthetic model was analyzed with both optimization methods. For the gradient method, five different parameter sets were considered – the "field" set of parameter values (the one that produces a zero value of the objective function), and four different sets of starting parameter values ranging from $\frac{1}{4}$ to 4 times the "field" values. An added constraint arises because PLAXIS internally limits the values of parameter E_{ur}^{ref} between 2 and 20 times E_{50}^{ref} . For the Genetic algorithm, two different tests were considered for optimization on a research space defined between $\frac{1}{4}$ and 4 times the "field" values for the synthetic case. According to these limits for the research space, each parameter is encoded by 6 bytes for GA optimization. Then, the research space is composed of 2^6 times 2^6 nodes, that is to say 4096 nodes. It imposes a mesh size for the research space equals to ± 1170 kPa for E_{50}^{ref} and ± 3500 kPa for E_{ur}^{ref} . For each optimization, the initial population is randomly defined on the research space. Because the GA converges without a guarantee to identify the exact optimum, a second GA optimization conducted for this synthetic case to confirm the solution obtained by the first one, as suggested by Gallagher and Sambridge (1994).

Table 4 presents the results obtained for all cases. For a synthetic case, the optimum is defined exactly. To simplify the comparison with the gradient method, the "mathematical" Genetic algorithm optima are considered for this synthetic case, corresponding to the parameter values with the minimal value of the GA error function. However, as the research space is meshed for GA optimization, we can notice that these

GA results include uncertainties on parameter values equal to ± 1170 kPa for E_{50}^{ref} and ± 3500 kPa for E_{uv}^{ref} (these values correspond to the chosen research space mesh size).

Table 4 shows the field values were reproduced quite well with both techniques. As expected, the field values are identified more accurately with the gradient algorithm. It also shows the computational effort, expressed as total number of runs of the finite element code to achieve the final values: the genetic algorithm needed 208 runs for each case, compared to 20-35 runs needed by the gradient algorithm. In the GA approach, one must perform many finite element calculations at the beginning of the optimization process to define the error function topology in the search space. This sweep, which is essential for the genetic algorithm efficiency, makes this method very expensive if there is only a few parameters to identify.

Figure 2 shows a contour plot of the objective functions. To draw the contour lines, the objective function was computed from finite element analyses for each of 233 pairs of parameter values $\begin{bmatrix} E_{50}^{ref}, E_{ur}^{ref} \end{bmatrix}$, with contours generated by kriging (Isaaks and Srivastava, 1989) using the commercial software SURFER based on the discrete values. The progress of the optimization in the gradient method is indicated by the iteration number and symbol showing the parameter pair at that iteration. From the two starting points at different ends of the parameter range, the paths reach the optimum values within 8 to 10 iterations. The contours show that the objective function is smooth with no secondary minima within this parameter space.

Figure 3 shows the progress followed by the genetic algorithm. The shape of the objective function contours is similar to that computed by the gradient method and also exhibits one local minimum. Initially, the genetic algorithm evaluates the error function in 96 points chosen randomly on the research space with contours again found by kriging. This initial number of points corresponds to around 2% of all discrete parameter combinations for this space. Only the best third will remain in the next iteration and will generate children. By the first iteration, the genetic algorithm has quickly identified the better-adapted part on the research space in order to find the solution. Through the mechanism of selection, the less probable parameter sets are eliminated from the parent population. At the same time, crossings and mutations are used to create new individuals

(not shown on this figure), in order to converge with more accuracy to the solution and to look for a possible other optimum on the research space. After 11 iterations, the genetic algorithm has reduced the search space to a very close area around the minimum after 11 iterations and converges to a "mathematical" minimum. All individuals of the parent population around the minimum could be considered as solution of the problem

Figure 4 compares the performance of the methods by plotting the fit improvement of the objective functions versus the iteration number, defined as:

$$FI_i = \frac{S(b)_{ini} - S(b)_i}{S(b)_{ini}}$$

where $S(b)_{ini}$ is the initial value of the objective function and $S(b)_i$ is the optimized value of the objective function at the end of stage i. It indicates by what percentage the optimized results improved compared to the initial estimate. The figure shows that the genetic algorithm already has an 80% improvement only in the first iteration, whereas the gradient algorithm achieves between 15 and 60%, depending on how far the starting point is from the optimum.

Both methods yielded satisfactory results by reasonably estimating the "exact" parameter values. The gradient algorithm was more precise due to tight convergence criteria. The genetic algorithm yielded less accurate parameters because it is a global optimization method based on a meshed research space. The gradient method was much faster in achieving convergence, needing about ten times fewer finite element iterations than the genetic algorithm. However, the genetic algorithm was capable of identifying a small region containing the optimum by the first iteration, with a fit improvement of 80%. The synthetic case shows that if the problem is well defined with few parameters to optimize, a gradient method is more efficient than the genetic algorithm method. It gives more precise results with less calculation. The GA is more suited for simultaneous optimization of more parameters.

APPLICATION TO LURIE RESEARCH CENTER EXCAVATION

The two optimization techniques are applied to actual performance data that adds additional important constraints to the methods when dealing with field data. The purpose of this presentation is to evaluate if the algorithms will converge to a minimum value.

Further, it illustrates issues related to the resolution of this inverse problem of this excavation (and likely many others as well) from the actual problem into a plane strain numerical simulation. This challenge exists in all excavation problems since the construction process is inherently 3-dimensional. This excavation was represented in 2D, assuming the center portion of the walls were adequately idealized as plane strain throughout the excavation process, so as the plane strain ratio equaled 1 (Finno et al. 2006; Ou and Chiou 1993; Ou et al. 1996) throughout construction. The field observations were selected such that they complied with those conditions, and were larger than measurement errors. With these two conditions, a meaningful estimation is theoretically possible.

Description

The Lurie Research Center is located in downtown Chicago, IL. Plan dimensions of the excavation are 80 by 68 m². This excavation and its observed performance were described in detail by Finno and Roboski (2005).

Figure 5 summarizes the soil profile at the site. Beneath the surficial medium dense to dense rubble fill lies a loose to medium dense beach sand. These granular soils overlie a sequence of glacial clays of increasing shear strength with depth. Undrained shear strengths, Su, in the soft to stiff clays on Figure 5 are based on results of vane shear tests. The excavation averaged approximately 12.8 m deep and bottomed out in the medium stiff clay. The ground water level perched in the granular soils is related to the water level of the nearby Lake Michigan and it was located at approximately 0 m Chicago City Datum (CCD).

The retaining system consisted on a PZ-27 sheet pile wall on all sides. Two levels of tieback ground anchors were installed on the east wall due to the presence of the basement of an adjacent building. Three levels of tieback anchors provided lateral support on the other three walls. Both the first and second level ground anchors were founded in the beach sand at approximately the same elevations. Because these two levels of anchors were staggered in the direction along the sheet pile wall, the spacing between the ground anchors was adequate to install them such that the performance tests were

passed without resorting to post-grouting. This oddity in geometry affects the finite element model of the excavation, as will be discussed later.

Field observations

The monitoring program consisted on 8 inclinometers and 150 surface survey points, all put in place prior to wall installation. Figure 6 shows the instrumentation layout. Finno and Roboski (2005) defined seven major construction activities that could be correlated to performance data, as summarized on Table 5. Figure 7 shows two of the inclinometer responses to these major construction activities. The data were re-zeroed after wall installation because in the finite element model for this problem the walls are wished-in-place and installation effects are not modeled.

Data from Inclinometers LR8 on the south side, and the LR6 on the west side were selected to form the basis of the observations because the 3-dimensional stiffening effect of the corners did not affect significantly the data, important because the finite element model for the excavation in a 2D plane strain model. Finno and Roboski (2005) showed that these locations remained close to a fully plane strain condition throughout excavation. Inclinometers from neither the north nor east sides were not selected because adequate 2-D simulations could not be made due to lack of information related to the nearby building in the east side and the abandoned timber piles provided restraint to movements that could not be represented in a 2-D simulation without creating more uncertainty about the effective soil parameters at those locations.

Figure 7 shows the lateral displacements remain relatively small during the first four stages, when a sudden increase was observed when the excavation reaches 80 cm into the soft-medium clay for the installation of the third tieback level. This behaviour was observed in all inclinometers. Also, inclinometer LR8 recorded maximum movements in the order of 10 mm in the stiff clay, while the inclinometer LR6 remains almost fixed at that same depth (elevations –12 to –15 m). Data from the geotechnical report for the stiff and hard clays suggested spatial variations in soil stiffness from east to west, with the soil stiffer in the west side.

The abrupt increase in measured displacements between construction stages 4 and 5 suggests that the soil strain levels before and after stage 5 are very different and so are the

soil (stiffness) parameters that could be optimized. Recalibration of the model of the excavation at an early construction stage would not give, in this case, good "predictions" of the soil behavior at later stages because the variations in small strain stiffness are not included in the H-S model. Therefore, it was decided that for this study that the optimizations would be carried out only for stage 6 to compare the two optimization approaches.

Finite element model

Figure 8 shows the main features of the model at the south side of the excavation. Only one half of the excavation is represented because the 68 by 80 m excavation was wide and the support system, consisting of tiebacks, does not transfer forces from opposite sides, as it would occur if cross-lot bracing were used. The mesh extended – m WHAT IS THIS DISTANCE? FILL IN BLANK away from the excavation, not entirely shown in the figure.

Table 6 summarizes the excavation stages as defined in the finite element model and their correspondence with the main construction activities. A key issue for representing this excavation in plane strain was the appropriate idealization of the tiebacks. The computed behavior of the upper soil was dominated by the way the tiebacks were represented, rather than by the constitutive responses of the fill and sand. This peculiarity arose because staggered anchors in the first two levels were represented in the plane strain simulation as being very close to one another without the benefit of the actual distance between them in the direction parallel to the wall, resulting in concentration of the stresses in the soil near the anchors and producing excessive lateral wall displacements. The field conditions were better approximated when the tiebacks were simulated as elastic struts oriented along the axis of the tiebacks.

Parameters and variations

The stress-strain behavior of all soil layers were modeled as Hardening soil responses. As shown in Table 7, the optimized soft-medium and stiff clay layer parameters were the reference value for the primary deviatoric loading, E_{50}^{ref} , in each layer. Inclinometer

observations were taken only in these two layers. The reference value for the unloading-reloading elastic modulus, E_{ur}^{ref} , and the tangent stiffness for primary codometer loading, E_{oed}^{ref} , were computed at each iteration as 3 and 0.7 times E_{50}^{ref} . The remaining parameters were defined following Finno and Calvello (2005). No settlement data were used as observations because the Hardening-soil model does not reproduce well the settlement profile behind the wall, neither in magnitude nor shape. The version the Hardening-soil model used in this work does not account for small-strain non-linearity and thus could not represent the stiffness variation over the range of strain levels that diminishes with the distance to the wall.

The research space for the application of the genetic algorithm was defined on the basis of the optimized parameter values from the Chicago-State case study (Finno and Calvello, 2005): $\left(E_{50}^{ref}\right)_{medium\ clay} = 5000\ kPa$ and $\left(E_{50}^{ref}\right)_{tif\ fclay} = 30000\ kPa$: The range varied between 1/3 and 3 times E_{50}^{ref} for the soft-medium clay, and between 1/6 and 6 times E_{50}^{ref} for the stiff clay. These ranges include parameter values based on inverse analyses of conventional drained triaxial compression tests conducted on tube samples extracted from the Chicago-State site. The research space is meshed in 64 by 64 elements that introduce uncertainties on the parameter estimates: ± 350 kPa for E_{50}^{ref} in medium clay and ± 2350 kPa for E_{50}^{ref} in stiff clay.

Selection of field observations

The observations used in the analysis were selected from inclinometers LR6 and LR8 readings at the end of the excavation (stage 6). They were taken below elevation –4.9 m CCD, within the clay layers. In practice, not all available observations could be used, but only those whose magnitudes were larger than their measurement errors, according to the definition of measurement error for the gradient method. This excluded half of the observations from inclinometer LR6 in the Stiff and Hard clays. Figure 9 shows the field data for each inclinometer; marked with open circles are those excluded from the analysis: those from the fill and sand layers, and those from the clay layers that were too small.

Results

As with the Synthetic model, the Lurie Center excavation was analyzed with the two optimization methods. For each method, the objective and error functions are the same as those defined for the synthetic case.

Table 8 summarizes the results of the optimizations. There is little difference in the results generated by the two methods. Figure 9 shows the computed and observed displacements based on the optimized parameters for each approach. Good agreement is seen for both cases. The optimized parameter value for the soft-medium clay shows little variation from method to method and between the south and the west models (4960 to 6020 kPa). This result indicates that the observations contain enough information for the parameter to be estimated accurately because the soft-medium clay layer is relatively deep, and contains enough observations with relatively large movements. Because of the lack of spatial difference in the results, the soft-medium clay is of relatively uniform composition across the site, as was also reflected in the site investigation data (Finno and Roboski, 2005). The good agreement between the computed and observed results also suggests that the selected cross-sections indeed responded in plane strain.

In contrast to the soft clay comparisons, only the LR8 readings contain enough information about the stiff clay for a meaningful parameter estimation. The estimated parameter value for the stiff clay is similar by both methods (52200 and 56250 kPa). For the inclinometer LR6 readings, the observations in the stiff clay are very small and of the same order of magnitude as the measurement error. The final estimates are similar for both methods (129000 and 134000 kPa) but there is some uncertainty in the estimation that can be appreciated in the contour plots of the objective functions on Figure 10. These contours were based on – finite element simulations, each made with a different pair of the stiffness parameters. As can be seen, the objective functions are smooth and have a bounded solution in the research space considered. The shown contours are computed by UCODE, but those from the GA have similar shapes. The solution is better defined for the south side (LR8 measurements), with contour lines more concentrated around the optimum, as that location had more available observations and larger measured displacements in the Stiff clay layer than the west side. The contours of the objective

function for the west side show a long narrow vertical valley, indicating that variations in values of E_{50}^{ref} stif fat near optimum values of E_{50}^{ref} med have little impact on this solution, and thus are not well defined by the available observations.

For each method, a satisfactory optimum is obtained, with little difference between the optimized values. The differences in the final values computed by the two approaches are due to the different definition of the measurement error. Because those differences are small, the estimated parameter values are not very sensitive to the differences in the weights used in the two analyses. This result suggests that, in practice, accurate results can be obtained if the weighting is approximately correct. In this case the two error structures are similar and the error grows with the distance to the bottom of the casing (linearly for the gradient method, and proportionally to the observed values for the genetic algorithm).

In general, these results suggest that the problem has a unique solution in the research space considered. The gradient method and the genetic algorithm method reach basically the same parameter values. The solution is better defined for the south side, with its larger measured displacements in the stiff clay, than those measured on the west side.

DISCUSSION

The set of field observations at the Lurie site was very complete, including inclinometer and settlement data at numerous locations and excavation stages, but they had to be carefully filtered because of model shortcomings. In addition to being a plane strain model, an important limitation is the constitutive model used to represent soil responses. The H-S model used herein does not take into account the variation of stiffness at very small strain levels, so settlement observations were not used as observations in any of the analyses. Also because of this same drawback, the optimized stiffness parameters would not be appropriate for the beginning stages of excavation where very small movements develop. Thus limitations arising from instrumentation accuracy and constitutive models limit the use of inverse analysis when trying to use field observations during early stages of excavation to predict what will occur during later stages, unless relatively large movements develop during early stages. This scenario

occurred at the Chicago-State excavation (Finno and Calvello 2005) where 10 mm of lateral movement developed adjacent to a secant pile wall as it was installed.

The gradient method can identify an accurate solution to an inverse problem if the problem is well defined. Moreover, it need less calculation cost than genetic algorithm. Then, in this sense, gradient method is more efficient than GA method. However, the inverse analysis raises fundamental questions about the existence and uniqueness of a solution (Tikhonov & Arsenine, 1976). Gradient optimization methods assume the solution of the inverse problem is unique. But, inverse problems in geotechnics field using *in situ* measurements can be "ill-posed" unless care is taken to all aspects of the modeling, for example, expecting too much from a constitutive model or inadequately accounting for situ measurement uncertainties. In these cases, there is not one exact solution, but rather an infinite number of approximate solutions around an optimum. The aim of the parameter identification in this case should be the identification of the approximate solutions rather than the one with the arbitrarily-defined lowest error function. The GA permits the localization of an optimum set of solutions close to this optimum. In this sense, optimization by GA method in these cases is more relevant than gradient method.

CONCLUSIONS

Based on results of the inverse analyses of synthetic and the Lurie excavations by both gradient and genetic algorithm methods reported herein, the following conclusions can be drawn.

When both techniques were applied to a synthetic excavation, and two stiffness parameters from one clay layer were optimized, the results show that the problem had a unique solution even when the starting parameters were ½ to 4 times larger than the actual "field" values. Both methods were accurate in the sense that the "field" parameters were obtained after optimization. The gradient method used less computational time to find the optimal solution. After one iteration, the GA method

identified a small region that contained the optimum and the computed displacements had a fit improvement of 80%.

In the analysis of the Lurie excavation, one stiffness parameter in each of two clay layers was optimized. The optimization of this field case was unique in the research space considered. The search algorithms yielded similar results and the objective functions were smooth with no secondary minima. The solution was better defined on the side of the excavation with larger measured displacements in the stiff clay. When representing an excavation in plane strain, the simplification from 3D to 2D requires careful selection of observations from locations that were in fully plane strain condition for selected excavation stages and that are consistent with the predictive capabilities of the constitutive model selected to represent soil behavior.

ACKNOWLEDGMENTS

Financial support for this work was provided by National Science Foundation grant CMS-0219123 and the Infrastructure Technology Institute (ITI) of Northwestern University. The support of Dr. Richard Fragaszy, program director at NSF, and Mr. David Schulz, ITI's director, is greatly appreciated.

REFERENCES

- Anandarajah A., Agarwal D. 1991. Computer-aides calibration of soil plasticity model. International Journal for Numerical and Analytical Methods in Geomechanics Vol. 15, pp. 835-856
- Arai K., Ohta H., Kojima K. 1986. Application of back analysis to several test embankments on soft clay deposits. *Soils and Foundations*. Vol.26(2), pp.60-72
- Calvello M. and Finno R.J. 2004. Selecting parameters to optimize in model calibration by inverse analysis. *Computers and Geotechnics*, Elsevier, Vol. 31, 5, 2004, 411-425.
- Cividini A., Jurina L., Gioda G. 1981. Some aspects of characterization problems in geomechanics. *Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.* Vol.18 pp. 487-503
- Finno R.J., Calvello M. 2005. Supported Excavations: Observational Method and Inverse Modeling. *Journal of Geotechnical and Geoenvironmental Engineering*, Vol. 131(7), pp. 826-836
- Finno, R. J. and Roboski, J. F. 2005. Three-Dimensional Responses of a Tied-Back Excavation through Clay, *Journal of Geotechnical and Geoenvironmental Engineering*, Vol. 131(3), pp. 273-282
- Finno, R.J., Blackburn J.T, and Roboski, J.F. 2006. Three-dimensional effects for supported excavations in clay. Paper submitted to the *Journal of Geotechnical and Geoenvironmental Engineering*. ASCE.
- Finno R.J. and Chung C.K. 1992. Stress-strain-strength responses of compressible Chicago glacial clays. *Journal of Geotechnical Engineering*, ASCE, Vol. 118, No. 10, p.1607-1625.
- Forsythe, G.E. and Strauss, E.G., 1955, On best conditioned matrices: American mathematical Society proceedings, v. 10, no. 3, p. 340-345.
- Gallagher K, Sambridge M, 1994. Genetic algorithms: a powerful tool for large-scale nonlinear optimization problems. *Computer & Geosciences* Vol. 20(7/8) pp.1229-1236
- Gens A., Ledesma A., Alonso E.E. 1996. Estimation of parameters in geotechnical backanalysis. 2. Application to a tunnel excavation problem. *Computer and Geotechnics* Vol. 18(1) pp.29-46

- Gioda G., Locatelli L. 1999. Back analysis of the measurements performed during the excavation of the shallow tunnel in sand, *International Journal for Numerical and Analytical Methods in Geomechanics*, Vol.23, pp.1407-1425
- Gioda G, Maier G. 1980. Direct search solution of an inverse problem in elastoplasticity: Identification of cohesion, friction angle and in situ stress by pressure tunnel tests, *International Journal for Numerical Methods in Engineering*, Vol.15, pp. 1823-1848
- Goldberg David E., 1989. Genetic algorithms in search, optimization and machine learning. Ed. Adisson-Wesley.
- Hashash Y.M.A., Marulanda C., Ghaboussi J., Jung, S. 2006. Novel approach to integration of numerical modeling and field observation for deep excavation. *Journal of geotechnical and geoenvironnmental engineering*, Vol. 132(8), pp.1019-1031
- Hashash YMA, Marulanda C, Ghaboussi J, Jung S. 2003. Systematic update of deep excavation model using field performance data. *Computer and Geotechnics* Vol. 30, pp. 477-488Hill, M. 1998. *Methods and guidelines for effective model calibration*.
 U.S. Geological Survey. Water-resources investigations report 98-4005.
- Honjo Y., Wen-Tsung L., Guha, S. 1994. Inverse analysis of an embankment on soft clay by extended Bayesian method, *International Journal for Numerical and Analytical Methods in Geomechanics*, Vol.18, pp.709-734Isaaks, E.H. and Srivastava, R.M. 1989. *An introduction to Applied Geoestatistics*. Oxford University Press, New York.
- Kang YL, Lin XH, Qin QH. 2004. Inverse/genetic method and its application in identification of mechanical parameters of interface in composite, *Composite Structures* Vol. 66, pp.449-458.
- Lecampion B., Contantinescu A. 2005. Sensitivity analysis for parameter identification in quasi-static poroelasticity, *International Journal for Numerical and Analytical Methods in Geomechanics*, Vol.29, pp.163-185Lecampion B, Constantinescu A, Nguyen Minh D. 2002. Parameter identification for lined tunnels in viscoplastic medium, *International Journal for Numerical and Analytical Methods in Geomechanics*, Vol. 26, pp. 1191-1211.
- Ledesma A, Gens A, Alonso EE. 1996. Estimation of parameters in geotechnical backanalysis. I Maximum likelihood approach, *Computer and Geotechnics*, Vol.18(1) pp.1-27

- Levasseur S., Malécot Y., Boulon M., Flavigny E., 2007. Soil parameter identification using a genetic algorithm. *International Journal for Numerical and Analytical Methods in Geomechanics*, in press.
- Ou, C.Y. and Chiou, D.C. 1993. Three-dimensional finite element analysis of deep excavations. *Proc.*, 11th Southeast Asian Geotechnical Cong., The Institute of Engineers, Malaysia, Kuala Lumpur, Malaysia, 769-774
- Ou, C.Y., Chiou, D.C. and Wu, T.S. 1996. Three-dimensional finite element analysis of deep excavations. *J. Geotech. Engrg.*, ASCE, 122(5), 473-483.
- Ou C.Y., Tang Y.G. 1994. Soil parameter determination for deep excavation analysis by optimization. *Journal of the Chinese Institute of Engineering*, Vol. 17(5)}, pp.671-688
- Marquardt, D.W., 1963, An algorithm for least-squares estimation of nonlinear parameters: *Journal for the Society of Industrial and Applied Mathematics*, v.11, no.2, p.431-441.
- Pal S., Wathugala G.W., Kundu S. 1996. Calibration of constitutive model using genetic algorithms. *Computers and Geotechnics*, Elsevier, Vol. 19(4), pp.325-348.
- PLAXIS, Finite Element Code for Soil and Rock Analyses http://www.plaxis.nl/ie.html.
- Poeter, E. and Hill, M. 1998. UCODE, a computer code for universal inverse modeling. U.S. Geological survey.
- Renders J-M., 1994. Algorithmes génétiques et Réseaux de neurones, Hermès.
- Sakurai S. and Takeuchi K. 1983. Back analysis of measured displacements of tunnels, *Rock mechanics and rock engineering* Vol.16. pp.173-180
- Samarajiva P., Macari E.J., Wathugala W. 2005. Genetic algorithms for the calibration of constitutive models of soils. *International Journal of Geomechanics*, Vol.5(3), pp. 206-217
- Schantz, T., Vermeer, P.A. and Bonnier, P.G. 1999. Formulation and verification of the Hardening–Soil Model. *R.B.J. Brinkgreve, Beyond 2000 in Computational Geotechnics*. Balkema, Rotterdam, 281-290.
- Tarantola A. 1987. Inverse Problem Theory: Methods for data fitting and model parameter estimation. Elsevier Science B.V.
- Tikhonov A, Arsenine V. 1977. Solutions of ill-posed problems, Halsted Press.

- Wakita, E. and Matsuo, M. 1994. Observational design method for earth structures constructed on soft ground. *Géotechnique*. 44, No. 4, 747-755.
- Wrobel L, Miltiadou P. 2004. Genetic algorithms for inverse cathodic protection problems, *Engineering analysis with boundary element*. Vol. 28 pp.267-277.
- Yamagami T., Jiang J.C., Ueta, Y. 1997. Back calculation of strength parameters for landslide control works using neural networks. *Proceedings of the 9th Int. Conf. on Computer methods and advances in geomechanics*, Wuhan, China.
- Zentar R., Hicher P.Y., Moulin G. 2001. Identification of soil parameters by inverse analysis. *Computer and Geotechnics*. Vol.28, pp.129-144