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Abstract

Random and Small-scale Quantum Ergodicity

Robert Chang

This thesis contains results in mathematical quantum ergodicity in a probabilistic or

a complex analytic setting. For the former, we show that a random orthonormal basis

of spherical harmonics is almost surely quantum ergodic, in which the randomness is

induced by the generalized Wigner ensemble. For the latter, we show that small-scale

quantum ergodicity holds on a compact Kähler manifold equipped with a prequantum

line bundle, or the Grauert tube of a compact, negatively curved, real analytic manifold.

Furthermore, the nodal sets of the eigensections or the complexified eigenfunctions are

also equidistributed on small scales.
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CHAPTER 1

Introduction

Quantum ergodicity (QE) concerns the relationship between (the asymptotic behav-

ior of) eigenfunctions of Schrödinger-type operators (1.1) and dynamics of the underlying

Hamiltonian system (1.5). This thesis collects three sets of results on the subject. Theo-

rem 3.1.1 is a phase space realization of the probabilistic QE theorem (Theorem 3.2.2) of

Bourgade–Yau [2] for eigenvectors of random matrices. Theorem 4.1.4 and Theorem 5.1.4

are small-scale QE theorems for eigensections of a prequantum line bundle of a com-

pact Kähler manifold and for complexified eigenfunctions on a Grauert tube. Thanks to

complex analytic techniques, we are able to translate these small-scale equidistribution

results into small-scale distributions of zero sets in Theorem 4.1.2 and Theorem 5.1.1.

Such distribution results are unknown for zeros of real eigenfunctions in the Riemannian

setting.

1.1. Quantum Mechanics

Before quantum mechanics, the hydrogen atom was treated roughly as a 2-body plan-

etary system, with the electron orbiting around the nucleus as prescribed by the classical

laws of motion. There was, however, a serious problem: because the electron is acceler-

ating as it undergoes circular motion, it must lose energy (in the form of electromagnetic

radiation). The classical model would predict that the electron spirals into the nucleus,

contradicting the stability of the hydrogen atom.
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The ‘old quantum theory’ in the early 20th century was a first attempt to correct

the classical picture. It was postulated that special periodic orbits are quantized in

accordance with the Bohr–Summerfield quantization condition to produce certain allowed

states. While this theory works for the Hydrogen atom, it does not extend in any obvious

way to more complicated atoms, like the Helium atom consisting of a nucleus and two

electrons.

In 1926, Schrödinger introduced the eponymous operator

(1.1) Ĥh := −h2∆ + V,

where h is Planck’s constant, ∆ =
∑3

j=1
∂2

∂x2j
is the Laplace operator on R3, and V = V (x)

denotes multiplication by a potential1. An electron at a fixed energy E(h) is no longer

represented as a point particle, but as an L2-normalized vector2 ψ ∈ L2(R3) that satisfies

the eigenequation

(1.2) Ĥhψ(x) = E(h)ψ(x), ‖ψ‖L2(R3) = 1.

Classical Hamiltonian mechanics is thereby replaced by functional analysis, namely an

eigenvalue problem for the Schrödinger operator. The time evolution, governed by the

time-dependent Schrödinger’s equation, of an energy state (1.2) is given by

ψ(x) 7→ e
itE(h)
h ψ(x).

1In the case of the hydrogen atom, V (x) = |x|−1.
2We call ψ a wave function. As seen in (1.3), its modulus squared |ψ|2 is interpreted as the probability
density of detecting a particle of a given energy at a given region in space.
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Schrödinger proposed that the only physically relevant quantities are matrix elements

〈Aψ,ψ〉L2(R3) of bounded, self-adjoint operators A acting on L2(R3). For instance, when

A = 1B is multiplication by the characteristic function of a nice 3 B ⊂ R3, then the

corresponding matrix element

(1.3) 〈1Bψ, ψ〉L2(R3) =

∫
B

|ψ(x)|2 dx

represents the probability of finding an electron at energy E(h) in the region B ⊂ R3.

Matrix elements are invariant under time evolution:

〈Ae
itE(h)
h ψ, e

itE(h)
h ψ〉L2(R3) = |e

itE(h)
h |2〈Aψ,ψ〉L2(R3) = 〈Aψ,ψ〉L2(R3),

which explains how an orbiting electron can be moving and ‘stationary’ (in the sense that

it does not spiral into the nucleus) at the same time.

1.2. Hamiltonian Mechanics

While Schrödinger’s ‘new quantum theory’ is elegant and successful in explaining not

only the hydrogen atom, but also much more complicated systems, it replaces intuitions

from classical mechanics by abstract functional analysis. Recall that classically, Hamil-

ton’s equations are used to describe the motion of a point particle in phase space T ∗R3,

i.e., the cotangent bundle of the configuration space R3. The time evolution of a particle

3The boundary of B must have measure zero.
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at position x with momentum ξ obeys the system of differential equations

(1.4)


x′(t) =

∂H

∂ξ
(x(t), ξ(t)),

ξ′(t) = −∂H
∂x

(x(t), ξ(t)),

where the Hamiltonian

H : T ∗R3 → R, H(x, ξ) = |ξ|2 + V (x)

is the sum of the kinetic and potential energy of the system.

Classical Hamiltonian dynamics refers to the dynamical system generated by the

Hamiltonian flow4 (1.4) on the energy surfaces5

ΣE = {(x, ξ) ∈ T ∗R3 : H(x, ξ) = E}.

The dynamics can be highly chaotic, completely integrable, or somewhere in between

depending on the potential V .

1.3. Quantum ergodicity

The quantum-classical correspondence suggests that in the semiclassical limit h→ 0,

the asymptotic behavior of eigenfunctions (1.2) should reflect the dynamics of the classical

4More generally, when working on the cotangent space T ∗M of a Riemannian manifold (Mn, g), the
Hamiltonian vector field XH of a Hamiltonian H is defined by

ω( · , XH) = dH,

where ω is the natural symplectic form given locally by ω =
∑n

j=1 dξj ∧ dxj and dH is the exterior
derivative of H. The Hamilton flow of H is then

(1.5) exp(tXH) : T ∗M → T ∗M.

It can be shown that the flow preserves energy surfaces.
5It is an exercise in symplectic geometry that ΣE is invariant under the flow of H.



11

system (1.5). Mathematical quantum ergodicity is the rigorous study of the effects of

classical chaos on high frequency eigenfunctions. The fundamental theorem in this subject

is Theorem 2.3.1. Roughly, it asserts that when the Hamilton flow is ergodic on the energy

surface ΣE, then eigenfunctions are asymptotically equidistributed in phase space S∗ΣE.
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CHAPTER 2

Notation and Background

This chapter discusses some basic tools and results in the subject; more technical

background will be recalled as needed in subsequent chapters. We will henceforth assume

that the potential V vanishes in (1.1) and study Laplace eigenfunctions in relation to the

dynamics of (1.5), which reduces to the (homogeneous) geodesic flow in this setting.

2.1. The Laplacian on a Riemannian Manifold

Let (M, g) be an n-dimensional Riemannian manifold. The Laplacian ∆g = ∆ with

respect to the Riemannian metric g = (gjk) is the second-order differential operator given

locally by the formula

∆ =
1√

det g

n∑
j,k=1

∂

∂xj

(
gij
√
| det g| ∂

∂xk

)
.

When M is compact and without boundary, eigenvalues of −∆ form a discrete set in the

nonnegative real axis with accumulation only at the origin. We list the eigenvalues 0 =

λ2
0 < λ2

1 ≤ · · · ↑ ∞ in increasing order (repeated with multiplicity). The corresponding

L2-normalized eigenfunctions

(2.1) (∆ + λ2
j)ϕj = 0, ‖ϕj‖L2(M) = 1, 〈ϕj, ϕk〉L2(M) = δjk,
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form an orthonormal basis of L2(M). When convenient, we suppress subscripts and write

(2.2) (∆ + λ2)ϕλ = 0

for a general L2-normalized eigenfunction of −∆ with eigenvalue λ2. Often, the semiclas-

sical parameter h = hj is introduced via a change of variable h = λ−1. Then, (2.2) takes

the form

(h2∆ + 1)ϕh = 0.

The Hamiltonian corresponding1 to the Laplacian is the the metric norm-squared of

a covector. We take its square root and work instead with the Hamiltonian

(2.3) H(x, ξ) = |ξ|gx =

( n∑
j,k=1

gij(x)ξjξk

) 1
2

,

which corresponds to the operator2
√
−∆. Since eigenfunctions of −∆ coincides with

those of
√
−∆, it is immaterial whether we work with the flow generated by −∆ or by its

square root. The advantage of (2.3) is that its Hamilton flow (1.5) is the homogeneous

geodesic flow Gt(x, ξ), which can (without loss of generality) be restricted to the energy

surface Σ1 = {H = 1}:

(2.4) Gt : S∗M → S∗M, S∗M = {(x, ξ) ∈ T ∗M : |ξ|gx = 1} = Σ1.

1The principal symbol (2.6) of −∆ is given by σ−∆(x, ξ) = |ξ|2gx .
2Note that

√
−∆ is a pseudodifferential operator. (In fact, by a theorem of Seeley [55], complex powers

of an elliptic pseudodifferential operator on a compact manifold are pseudodifferential operators.) It can
be defined spectrally by the eigenfunction expansion

√
−∆ =

∑∞
j=1 λjϕj ⊗ ϕj , where (λ2

j , ϕj) are the
spectral data for −∆.
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The relationship between ergodicity of Gt and the asymptotic behavior of ϕj is summa-

rized in Theorem 2.3.1.

2.2. Standard Quantization

In general, quantization is a recipe for converting classical observables to quantum ob-

servables, i.e., for converting ‘nice’ functions on phase space, called symbols, to (pseudo-

differential) operators acting on some Hilbert space. Excellent references for quantization

and the calculus of pseudodifferential operators include [27, 19, 21, 75].

Definition 2.2.1 (Classical symbol). A classical symbol a ∈ Sm of order m ∈ R is

a smooth function a(x, ξ) ∈ C∞(T ∗M −{0}) in phase space (away from the zero section)

with the properties3

(i) |∂αx∂
β
ξ a| ≤ Cαβ〈ξ〉m−|β| for all multi-indices α, β, where 〈ξ〉 := (1 + |ξ|2gx)

1
2 is a

smoothed out version of the metric norm of a covector;

(ii) a(x, ξ) ∼
∑∞

j=0 aj(x, ξ), where aj(x, tξ) = tjaj(x, ξ) for |ξ| ≥ 1.

The asymptotic summation notation in (ii) means for every J ∈ N, the difference a −∑J
j=0 aj satisfies (i) with m = J + 1.

Definition 2.2.2 (Pseudodifferential operator). Given a ∈ Sm, define the (Schwartz

kernel of the) operator Op(a) : L2(M)→ L2(M) by the oscillatory integral

(2.5) Op(a) =
1

(2π)n

∫
T ∗yM

χ(x, y)a(x, ξ)ei〈exp−1
y (x),ξ〉dξ,

where

3Smooth functions satisfying only the derivative estimate (i) are called Kohn–Nirenberg symbols. Here,
we also require (ii), which is the condition that a is asymptotically polyhomogeneous, so it makes sense
to view it as a function on the cosphere bundle S∗M .
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• χ is a cutoff localizing near {(x, y) ∈M×M : d(x, y) < inj(M)}, in which inj(M)

denotes the injectivity radius;

• exp: TM →M is the Riemannian exponential map;

• Angle brackets denote the pairing of the vector exp−1
y (x) with the covector ξ.

Then, Op(a) ∈ Ψm is a pseudodifferential operator of order m with (full) symbol a ∈ Sm.

The map Op: Sm → Ψm is a (choice of) quantization. It is unique under change of

quantization and change of local coordinates modulo Ψm−1. In the reverse direction is

the principal symbol map

(2.6) σ : Ψm → Sm, A 7→ σA(x, ξ)

taking a pseudodifferential operator to its principal symbol. Again, uniqueness holds only

modulo lower order terms in Sm−1. There are generalizations of the definitions above to

incorporate the semiclassical parameter h; these will be presented in Section 5.5 when

small-scale quantum ergodicity (Theorem 5.5.1) is discussed.

More generally, we can quantize symplectic map as unitary Fourier integral operators

(see [62, 28, 75]). These are operators acting on L2(M) whose Schwartz kernels are oscil-

latory integrals similar to (2.5), except that the exponential part (i.e., the phase function)

can have more complicated expressions. Of particular importance is the quantization of

the geodesic flow (2.4) as the half-wave group

U(t)(x, y) := eit
√
−∆(x, y) =

∫
T ∗yM

χ(x, y)eit|ξ|gy ei〈exp−1
y (x),ξ〉dξ.
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(Again, χ here is a cutoff near the diagonal so that the exponential map is defined.)

Functional calculus implies that U(t) is defined spectrally as

(2.7) U(t)(x, y) =
∞∑
j=1

eitλjϕj(x)⊗ ϕj(y),

where (λ2
j , ϕj) are the spectral data for −∆.

2.3. Quantum Ergodicity for Laplace Eigenfunctions

Quantum observables are matrix elements

(2.8) 〈Aϕj, ϕj〉L2(M)

of bounded, self-adjoint operators A on L2(M) relative to an energy eigenstate ϕj in (2.1).

We are interested in the case where A ∈ Ψ0 is a zeroth order pseudodifferential operator

(Definition 2.2.2), so that its matrix elements process useful asymptotics as j →∞.

We give a flavor of how knowledge about (2.8) can be used to relate classical dynam-

ics to the behavior of eigenfunctions4. Notice that Laplace eigenfunctions ϕj are also

eigenfunctions of the half-wave group U(t):

(2.9) U(t)ϕj = eitλjϕj, U(t) := eit
√
−∆.

Therefore, at the level of matrix elements there is the identity

〈Aϕj, ϕj〉L2(M) = 〈U(t)AU(−t)ϕj, ϕj〉L2(M) for all A ∈ Ψ0.

4See [75, Chapter 15] for a detailed proof.
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Since the left-hand side is independent of t, the right-hand side can be replaced by its

time average:

〈Aϕj, ϕj〉L2(M) = 〈〈A〉Tϕj, ϕj〉L2(M) where 〈A〉T :=
1

T

∫ T

0

U(t)AU(−t) dt.

If the geodesic flow is ergodic on S∗M , then the ergodic theorem can be used to convert

this time average into a spatial average5. This leads to the celebrated quantum ergodicity

theorem of Shnirelman [59], Zelditch [66], and Colin de Verdière [12].

Theorem 2.3.1 (QE theorem [59, 66, 12]; see also [75, Theorem 15.5]). Let (M, g)

be a compact Riemannian manifold without boundary. Suppose the geodesic flow (2.4) is

ergodic. Then, there exists a density one subsequence of frequencies λjk such that

(2.10) 〈Aϕjk , ϕjk〉L2(M) →
1

µL(S∗M)

∫
S∗M

σA(x, ξ) dµL for every A ∈ Ψ0.

Here,

• Density one means limλ→∞
#{λjk≤λ}

#{λj≤λ:λ2j is an eigenvalue of −∆} = 1;

• µL = dx∧dξ
d|ξ|

∣∣
|ξ|=1

is the Liouville surface measure on S∗M ;

• σA is the principal symbol (2.6) of A.

5More precisely, the time-averaged principal symbol σ〈A〉T is converted to its spatial average −
∫

ΣE
σA dµL,

assuming that the geodesic flow is ergodic on the energy surface ΣE with respect to the measure µL.
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The QE theorem can be rephrased in the following way: Define Wigner distributions6

dΦj by

∫
S∗M

a(x, ξ) dΦj := 〈Op(a)ϕj, ϕj〉L2(M), a ∈ C∞(S∗M).

then QE is equivalent to the weak* convergence

dΦjk(x, ξ) ⇀
1

µL(S∗M)
dµL(x, ξ)

along a density one subsequence78. Since the Liouville measure (which is the natural

measure on S∗M coming from the metric g) is supported everywhere on S∗M , (2.10) is

interpreted as a statement about the eigenfunctions becoming ‘diffuse’ or ‘equidistributed’

in phase space.

A corollary9 of (2.10) is that quantum ergodic eigenfunctions equidistribute in config-

uration space:

|ϕjk(x)|2 dVg(x) ⇀
1

Vol(M)
dVg(x),

6Note that the Wigner distributions depend on the choice of quantization. There exist positive quantiza-
tions (such as Friedrichs or anti-Wick quantizations) with the property that a ≥ 0 implies its quantization
is a positive operator.
7Quantum unique ergodicity (QUE) is the statement that the entire sequence dΦj converges to the
Liouville measure dµL without needing to possibly discard a subsequence of density zero. A famous
conjecture of Rudnick–Sarnak [52] postulates that dµL is the unique quantum limit for negatively curved
manifolds. So far, QUE has only been proved for Hecke–Maas forms on arithmetic hyperbolic surfaces
by Lindenstrauss [42] in the compact case and Soundararajan [60] in the noncompact case.
8The set of weak* limits of dΦj is independent of the choice of quantization. Every weak* limit (also
called the microlocal defect measures associated to the sequence {ϕj}) is a positive probability measure
that is invariant under the geodesic flow.
9This follows from using test functions a(x, ξ) = a(x) that do not depend on the fiber variable and the
Portmanteau theorem.
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where dVg is the Riemannian volume measure on M .

2.4. Small-scale QE

In the works of Hezari–Rivière [25] and Han [24], QE is shown to hold for a sequence

of operators A = Ajk whose symbols are allowed to depend on the frequency parameter

λjk . In particular, eigenfunctions are shown to be equidistributed at length scale that is

logarithmic in the frequency parameter.

Theorem 2.4.1 (Small-scale QE, [24, 25]). Let (M, g) be a compact, negatively

curved, n-dimensional manifold without boundary. Let

0 < α <
1

3n
and r(λ) = (log λ)−α.

Then, there exists a density one subsequence such that

(2.11) cVol(B(x, rjk)) ≤
∫
B(x,rjk )

|ϕjk |2 dVg ≤ CVol(B(x, rjk)) uniformly for all x ∈M ,

where c, C > 0 depend only on (M, g).

The theorem above (and its semiclassical version Theorem 5.5.2) are small-scale ver-

sions of Theorem 2.3.1. Curiously, even though the latter gives the asymptotics (2.10),

the small-scale version gives only the volume comparison (2.11). This is an artifact of the

technique of the proof, which involves two extractions of subsequences. In the complex

setting described in Section 2.5 and Section 2.7, volume comparison can be used to derive

asymptotic distributions of zero sets.
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2.5. Berezin–Toeplitz Quantization

One drawback of the standard quantization (Section 2.2) is that the procedure does

not readily extend to more general phase spaces (i.e., symplectic manifolds that are not

cotangent bundles). In this section we present a Berezin–Toeplitz quantization scheme

that works for general compact Kähler manifolds; excellent references include [69, 45, 34].

Definition 2.5.1 (Kähler manifolds).

• A Hermitian manifold M is a complex manifold endowed with a Riemannian

metric g that is compatible with the complex structure J , i.e.,

g(JX, JY ) = g(X, Y ) for all X, Y ∈ TM .

• A Hermitian manifold M is said to be Kähler if the (1, 1)-form

ω(X, Y ) := g(JX, Y ) for all X, Y ∈ TM

is closed. We call ω the Kähler form.

• A prequantum line bundle (L, h)→ (M,ω) over a Kähler manifold is a holomor-

phic line bundle whose curvature form10 c1(h) coincides with the Kähler form ω.

We assume without loss of generality that L is very ample11.

10If eL is a non-vanishing local holomorphic frame for L over an open set U ⊂M , then

c1(h) = −
√
−1

π
∂∂̄ log ‖eL‖h,

where ‖eL‖h := h(eL, eL)1/2 denotes the h-norm of eL.
11By Kodaira’s embedding theorem, a line bundle L satisfying the curvature requirement is ample, i.e.,
there exists N0 ∈ N such that global holomorphic sections of LN0 := L⊗N0 can be used to embed M
into complex projective space of appropriate dimension. Note that this embedding is not an isometry.
Replacing L by LN0 , we may assume that L is very ample, i.e., the global sections of L define an
embedding into projective space.
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Let (L, h)→ (M,ω) be a prequantum line bundle over a compact Kähler manifold of

complex dimension dimCM = m. The (Liouville) volume form

dVω :=
ωm

m!

on M induces an inner product on the space Γ(M,LN) of global smooth sections of tensor

powers (LN , hN):

(2.12)


〈s1, s2〉 =

∫
M

hN(s1(z), s2(z)) dVω for s1, s2 ∈ Γ(M,LN),

‖s‖2
hN = 〈s1, s2〉 for s ∈ Γ(M,LN).

Let L2(M,LN) denote the completion of Γ(M,LN) with respect to (2.12). The space

H0(M,LN) of global holomorphic sections is a closed subspace of L2(M,LN) of dimen-

sion12

(2.13) dN := dimH0(M,LN) ∼ Nm as N →∞.

A key object is the orthogonal (Szegő) projection

(2.14) ΠN : L2(M,LN)→ H0(M,LN).

Definition 2.5.2 (Toeplitz operator). The Toeplitz operator (of level N) associated

to the smooth function a ∈ C∞(M) is given by13

ΠNaΠN : H0(M,LN)→ H0(M,LN).

12H0(M,LN ) is necessarily finite dimensional because of the compactness of M .
13Since the domain of the operator is taken to be the space of holomorphic sections, the right-most factor
of ΠN is redundant.



22

Here, ΠN is the Szegő projection as in (2.14), and a denotes multiplication by the function.

The Berezin–Toeplitz quantization scheme is as follows: Given a classical observable14

a ∈ C∞(M), we associate to it (a sequence of) Toeplitz operators ΠNaΠN acting on the

Hilbert spaces H0(M,LN) of global holomorphic sections of tensor powers of a very ample

line bundle (L, h) → (M,ω). In other words, the analogue of the quantization (2.5) in

the line bundle setting is the map

C∞(M)→
∞∏
N=1

End(H0(M,LN)), a 7→ (ΠNaΠN)∞N=1.

The quantum observables are, as in the Riemannian case, matrix elements

〈ΠNaΠNs, s〉, s ∈ H0(M,LN).

2.6. QE and Equidistribution of Zeros for Eigensections

Quantum ergodicity can also be studied in the line bundle setting. Recall in the Rie-

mannian case, the geodesic flow (2.4) is quantized as a Fourier integral operator (FIO),

namely the half-wave group, whose eigenfunctions (2.9) coincide with those of the Lapla-

cian. Here, we can similarly quantize a symplectic map χ : (M,ω)→ (M,ω) as (a sequence

of) unitary FIOs

(2.15) Uχ,N : H0(M,LN)→ H0(M,LN),

14Note that the Kähler form ω is symplectic, so it is natural to regard (M,ω) itself (and not its cotangent
bundle) as the phase space.
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and study the relationship between dynamics of χ and eigensections sNj ∈ H0(M,LN) of

the quantum map

Uχ,Ns
N
j = eiθN,jsNj , ‖sNj ‖hN = 1, 1 ≤ j ≤ dN ,

where eiθN,j are eigenphases and dN is the dimension as in (2.13). The operator (2.15) is

discussed in Section 4.2.2.

The line bundle analogue of the QE theorem is the due to Zelditch.

Theorem 2.6.1 (Zelditch [69]; see also [57] for random eigensections). Let (L, h)→

(M,ω) be a prequantum line bundle over a compact Kähler manifold without boundary.

Let χ : M → M be an ergodic symplectic map with χ∗ω = ω. Let Uχ,N : H0(M,LN) →

H0(M,LN) be its quantization. Then, there exists a density one subsequence JN ⊂

{1, . . . , dN} of indices, i.e.,

lim
N→∞

#JN
dN

= 1,

for which the corresponding eigensections sNj ∈ H0(M,LN) satisfy

(2.16)

∫
M

f(z)|sNj (z)|2 dVω
j∈JN−−−→
N→∞

∫
M

f(z) dVω for every f ∈ C0(M).

Equivalently, in the notation of weak* convergence of measures, we have

|sNj (z)|2 dVω
j∈JN−−−⇀
N→∞

dVω.
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Using complex analytic techniques, equidistribution of L2-mass (2.16) can be used to

prove equidistribution of the zero sets15 of eigensections sN ∈ H0(M,LN). In a local

frame eNL for LN , we can write sN = f (N)eNL with f (N) a holomorphic function. Let

g(z) := ‖eL(z)‖2
h = e−ϕ(z) where ϕ is the Kähler potential, then ‖eNL (z)‖2

hN = g(z)N

and ‖sN‖2
hN = |f (N)|2gN . The Poincaré–Lelong formula states that the current

[
ZsN

]
of

integration over the zero divisor of sN is given by

(2.17)
[
ZsN

]
=

√
−1

π
∂∂̄ log |f (N)| =

√
−1

π
∂∂̄ log ‖sN‖hN +Nω, sN ∈ H0(M,LN).

Theorem 2.6.2 (Shiffman–Zelditch [57]). Under the same assumptions and notation

as in Theorem 2.6.1, we have

∫
M

f(z)

[
1

N
ZsNj

]
∧ ωm−1 j∈JN−−−→

N→∞

∫
M

f(z) dVω for every f ∈ C∞(M).

In the notation of weak convergence of currents, we have

1

N

[
ZsNj

] j∈JN−−−⇀
N→∞

ω.

2.7. Complexification of Laplace Eigenfunctions to Grauert Tubes

The theory of Grauert tubes acts as a bridge between the Riemannian and the Kähler

setting. In this section we introduce only the basic setup; the geometry and analysis of

Grauert tubes will be recalled in Section 5.2 (see also [22, 23, 38, 39, 36]). The Grauert

tube Mτ0 (of radius τ0) of a real analytic manifold (M, g) can be identified with the co-ball

15Such precise distribution theorem for real zero sets of Laplacian eigenfunctions on a Riemannian man-
ifold are unavailable.
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bundle B∗τ0M (of radius τ0), on which a complex structure J = Jg compatible with the

Riemannian metric can be defined (see Section 5.2.1). Let ω be the canonical symplectic

form on T ∗M , then the triple (B∗τ0M,ω, J) is a Kähler manifold (Definition 2.5.1) with

boundary.

Laplace eigenfunctions (2.1) on M can be complexified to the Grauert tube B∗τ0M .

This is done by analytically continuing the eigenfunction expansion (2.7) of the half-wave

kernel U(t) = eit
√
−∆ in the time and spatial variable

U(iτ)(ζ, y) = e−τ
√
−∆(ζ, y) =

∞∑
j=1

e−τλjϕC
j (ζ)⊗ ϕj(y), τ ∈ R≥0, ζ ∈ (B∗τ0M,ω, J).

It follows that the complexification ϕC
j of an eigenfunction ϕj to B∗τ0M is given by

(2.18) ϕC
j (ζ) = eτλj(e−τ

√
−∆ϕj)(ζ), τ ∈ R≥0, ζ ∈ (B∗τ0M,ω, J).

It can be shown [71, Lemma 1.5] that the L2-masses of ϕC
j , appropriately normalized,

equidistribute in the Grauert tube.

The advantage of working with complexified eigenfunctions on the Grauert tube is

that, similar to the line bundle case, complex analysis lends powerful tools for studying

the zero sets16

[Zj] =

√
−1

π
∂∂̄ log |ϕC

j (z)|.

Equidistribution of [Zj] is due to Zelditch.

16As in the line bundle case, we view the zero sets as currents of integration (2.17).
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Theorem 2.7.1 (Zelditch [71]). Let (M, g) be a real analytic, n-dimensional manifold

without boundary. Suppose the geodesic flow (2.4) is ergodic. Define the complexification

ϕC
j of Laplace eigenfunctions to the Grauert tube Mτ0 ' B∗τ0M by (2.18). Then, there

exists a density one subsequence such that

∫
B∗τ0M

f

[
1

λjk
Zjk

]
∧ ωn−1

(n− 1)!
→
√
−1

π

∫
B∗τ0M

f∂∂̄|ξ|gx ∧
ωn−1

(n− 1)!
for all f ∈ C(B∗τ0M).

In the notation of weak convergence of currents, we have

1

λjk
[Zjk ] ⇀

√
−1

π
∂∂̄|ξ|gx .

2.8. Random Orthonormal Bases of Eigenfunctions

Much of the difficulty in the analysis of eigenfunctions is the lack of explicit formulae,

except in very special settings. It often helps17 to work probabilistically. One approach

is to decompose the state space H =
⊕∞

N=1HN into a direct sum of eigenspaces. For

instance, in the Riemannian setting with M = S2, the state space L2(S2) can be de-

composed into the linear spans of degree N spherical harmonics (see Section 3.1 and

[68, 74]). In the line bundle setting, there is a natural decomposition into a direct sum of

the spaces H0(M,LN) (see Section 4.2.1 and [57]). By fixing a background orthonormal

basis {ϕ1, . . . , ϕdN} of HN , any other orthonormal basis {ψ1, . . . , ψdN} can be uniquely

expressed as the linear combination

ψj =

dN∑
k=1

ujkϕk, 1 ≤ j ≤ dN .

17Law of large numbers and concentration of measure are particularly useful.
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In this way, a random basis of HN is identified with a random dN × dN unitary matrix

(ujk) ∈ U(dN), and a random basis of H =
⊕∞

N=1HN is identified with an element of the

product probability space
∏∞

N=1 U(dN).
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CHAPTER 3

Quantum Ergodicity of Wigner Induced Random Spherical

Harmonics

In this chapter we discuss the notion of a ‘random orthonormal basis of spherical

harmonics’ of L2(S2) using generalized Wigner ensembles and show that such a random

basis is almost surely quantum ergodic. Similar quantum ergodicity results (with vary-

ing degrees of generality) are obtained in [67, 68, 74, 47, 8] for random Laplacian

eigenfunctions defined using Haar measures on unitary groups. Our main contribution,

Theorem 3.1.1, comes from the use of a more general measure than previously studied.

We are able to work with this more general class of measures because Wigner eigenvectors

are asymptotically Gaussian, a result proved in [33, 61] (with additional assumptions on

the moments) and [2]. Our quantum ergodicity statement also provides a semiclassical

realization of the probabilistic ‘local quantum unique ergodicity’ of [2].

3.1. Main Results

The equidistribution condition (2.10) need not hold when the geodesic flow is not

ergodic. On the sphere, for instance, the geodesic flow is completely integrable and

direct computations show that the standard spherical harmonics localize not only on

phase space, but also on the base manifold S2. This fact notwithstanding, it is shown in

[67] that a random orthonormal basis (defined using Haar measures on unitary groups)

of spherical harmonics is almost surely quantum ergodic, a result that is extended to
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Laplacian eigenfunctions on compact Riemannian manifolds in [68, 74, 47, 8]. In this

chapter, we continue the investigation on the sphere and prove quantum ergodicity for a

wider class of ‘random’ spherical harmonics.

Consider the orthogonal decomposition of L2(S2) into a direct sum of subspaces HN =

span{Y k
N | −N ≤ k ≤ N} spanned by the standard degree N spherical harmonics. Here,

by ‘standard,’ we mean spherical harmonics Y k
N that are the joint eigenfunctions of the

Laplacian ∆ = ∆S2 and the z-component of the angular momentum operator Lz = 1
i
d
dϕ

,

that is, 
∆Y k

N = −N(N + 1)Y k
N ,

1

i

∂

∂ϕ
Y k
N = kY k

N .

Let dN = dimHN = 2N + 1 be the dimension of HN .

Let HN ∈ Herm(dN) be a generalized Wigner matrix. (See Section 3.2 for background

on random matrix theory.) For −N ≤ k ≤ N , let uN,k = (uN,k(α))Nα=−N be the eigenvec-

tors of HN . Our object of study is the Wigner induced random basis {ψN,k}Nk=−N for HN

obtained by ‘transplanting the Wigner eigenvectors onto the sphere’ in the obvious way:

(3.1) ψN,k :=
N∑

α=−N

uN,k(α)Y α
N , −N ≤ k ≤ N.

An equivalent way of thinking about the random basis {ψN,k} is to identify it with a

unitary change-of-basis matrix UN = (uN,k(α))−N≤k,α≤N viewed as an element of the

probability space (U(dN), µN). The probability measure µN on the unitary group U(dN)

is induced by a generalized Wigner matrix in the following way. Let π be the map from



30

Hermitian matrices to unitary matrices modulo the maximal torus U(1)dN defined by

π : Herm(dN)→ U(dN)/U(1)dN , HN = U∗ND(λ)UN 7→ [UN ],

where UN is a unitary matrix that diagonalizes HN and D(λ) is the resulting diagonal

matrix. If we write µW
N for the measure on the Hermitian matrices that describes the

generalized Wigner ensemble, then the induced measure µN on the unitary group is simply

the pushforward of µW
N under the above map π, that is,

(3.2) µN := π∗µ
W
N .

The construction of a Wigner induced random basis (3.1) for the finite dimensional

subspace HN extends naturally to all of L2(S2). Indeed, let U be the operator that

acts block-diagonally on the decomposition L2(S2) =
⊕

N≥0HN so that the restrictions

U |HN = UN ∈ U(dN) to the subspaces yield a sequence of independent unitary matrices

of the appropriate dimensions. By the preceding paragraph, a Wigner induced random

orthonormal basis Ψ = {ψN,k}−N≤k≤N,N≥0 for all of L2(S2) may be identified with such

an operator U viewed as an element of the product probability space
∏

n≥0(U(dN), µN).

Henceforth, when the context is clear, we will refer to Ψ simply as a ‘random basis’ with

the understanding that it is constructed randomly with respect to the product measure∏
µN .

For technical reasons, certain indices k need to be excluded from our computations.

Let 0 < ν < 3
4

be a positive constant (guaranteed by Theorem 3.2.1), and let

(3.3) IN = [[−N,−N +N1/4]] ∪ [[−N +N1−ν , N −N1−ν ]] ∪ [[N −N1/4, N ]]
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be the subset of indices −N ≤ k ≤ N that are, in the random matrix theory language, ‘in

the bulk’ and ‘near the edges.’ We can only work with indices belonging to IN because

the asymptotic normality result of Bourgade–Yau (Theorem 3.2.1), which we rely on, is

established only for k ∈ IN . (The set IN displayed above is precisely the set TN in the

statement of Theorem 1.2 in the original paper [2], except that the our indexing convention

is k ∈ [−N,N ], and the convention of [2] is k ∈ [1, N ].) It is expected that Theorem 3.2.1

holds for all indices k (see the remark immediately following Definition 5.1 in [2]). Luckily,

the set IN is sufficient for deriving a quantum ergodicity statement because we are still

left with a density one subsequence after discarding indices in the intermediate regime,

that is,

|{k ∈ IN}|
|{k ∈ [−N,N ]}|

→ 1.

Given a pseudodifferential operator (see Definition 2.2.2) A ∈ Ψ0(M) of order zero

and a random basis Ψ, let XN = XA
N({ψN,k}) : (U(dN), µN) → R≥0 be random variables

given by

(3.4) XN = XA
N({ψN,k}) =

1

dN

∑
k∈IN

|〈AψN,k, ψN,k〉 − ω(A)|2,

where

(3.5) ω(A) :=
1

µL(S∗M)

∫
S∗M

σA dµL

denotes the average of the principal symbol of A. Even though the random variable (3.4)

depends on the choice of a pseudo-differential operator and a random basis, for notational
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simplicity we will continue to write XN := XA
N({ψN,k}). Our quantum ergodicity result

is formulated in terms of XN .

Theorem 3.1.1 (QE of random spherical harmonics, Chang [9]). Let Ψ be a Wigner

induced random orthonormal basis of spherical harmonics for L2(S2). Then Ψ is almost

surely quantum ergodic with respect to the product probability measure
∏
µN in the sense

that

lim
M→∞

1

M

M∑
N=0

XN = 0 a.s.

for every A ∈ Ψ0(S2).

Remark 3.1.2. A standard extraction argument1 implies the almost-sure existence of

a density one subsequence of random spherical harmonics for which

〈AψN,k, ψN,k〉 → ω(A).

Note that the random variables XN are independent by construction. Theorem 3.1.1 is

therefore an easy consequence of the Kolmogorov convergence criterion and Strong Law of

Large Numbers once we show that EXN → 0 and EX2
N is bounded. Indeed, the following

holds.

Theorem 3.1.3 (Moment bounds, Chang [9]). We have EXN = O(d−ε0N ) and EX2
N =

O(d
−ε′0
N ) for some ε0, ε

′
0 > 0 guaranteed by Theorem 3.2.1.

This is a good place for some remarks. First, since we only work with random spherical

harmonics in this chapter, we confine ourselves to describing the construction of random

1See [75, Chapter 15].
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bases on S2. A similar construction that involves partitioning the spectrum of the Lapla-

cian appropriately can be used to make sense of random bases (defined using either Haar

measures or Wigner induced measures on unitary groups) on any compact Riemannian

manifold. Readers are referred to [68, 74, 47, 8] for the general construction. A natural

next step is to extend our quantum ergodicity result to Wigner induced random bases of

Laplacian eigenfunctions or approximate eigenfunctions on other manifolds.

Second, it is known that the eigenvectors of a Gaussian unitary ensemble is distributed

by Haar measure on the unitary group. Since the generalized Wigner ensembles contain

GUE as a special case, the measure with respect to which Wigner eigenvectors are dis-

tributed (i.e., the Wigner induced measure µN) is a vast generalization of Haar measure.

It is unknown to the author if such measures can be given an explicit characterization.

Nevertheless, universality results from random matrix theory are robust enough for show-

ing that Wigner induced random bases enjoy the same quantum ergodicity property as

‘GUE induced random bases’ (i.e., random bases defined using Haar measure) on the

sphere.

Finally, the methods presented in this chapter can be used to prove quantum ergodicity

of Wigner induced random spherical harmonics on higher dimensional spheres Sp for any

p ≥ 2. It will be clear from the proof that ε0 and ε′0 in the statement of Theorem 3.1.3

are independent of the dimension p because, in the notation of Theorem 3.2.1, we have

ε0 = ε0(Q1) and ε′0 = ε′0(Q2) where Q1, Q2 are polynomials of the form

Q1(z1, z2, z3, z4) = z1z2z3z4 and Q2(z1, . . . , z8) = z1z2z3z4z5z6z7z8.
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While ε0, ε
′
0 remain fixed for all p ≥ 2, the dimension dN of the space of degree N spherical

harmonics grows like Np−1 on Sp. Substituting the asymptotics for dN into the statement

of Theorem 3.1.3 gives EXN = O(N−ε0(p−1)) and EX2
N = O(N−ε

′
0(p−1)). Observe that,

for all p sufficiently large, the Borel–Cantelli lemma becomes applicable and implies the

stronger convergence statement that XN → 0 almost surely instead of the Cesàro means

1
M

∑M
N=0 XN → 0.

The rest of the chapter is organized as follows. Section 3.2 provides a brief summary

of random matrix theory that will be used in our proofs. The key result is Theorem 3.2.1,

which states that Wigner eigenvectors (with the appropriate scaling) are asymptotically

Gaussian random variables. Section 3.3 is devoted to proving Proposition 3.3.1, which is

a special case of Theorem 3.1.3. The techniques developed for this special case extends

easily to prove the main theorems in Section 3.4.

3.2. Background: The Wigner Ensemble and Bourgade–Yau Local QUE

We now summarize a universality result for Wigner eigenvectors proved in [2]. In

keeping with the indexing convention for spherical harmonics, the indices in this section

continue to range from −N to N . Recall also that dN = 2N + 1.

By a generalized Wigner matrix we mean a Hermitian matrix HN = (hjk)−N≤j,k≤N ∈

Herm(dN) such that:

• The entries hjk are independent random variables for j ≤ k, each with mean zero

and variance Eh2
jk =: σ2

jk satisfying the normalization condition
∑N

j=−N σ
2
jk = 1

for k fixed;
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• There exists a constant c1 > 0 independent of N such that (c1N)−1 ≤ σ2
jk ≤ c1N

for all −N ≤ j, k ≤ N ;

• There exists a constant c2 > 0 independent of N such that E(h∗jkhjk) ≥ c2N
−1 in

the sense of inequality between 2×2 positive matrices, where hjk := (<hjk,=hjk);

• For any q ∈ N, there exists a constant Cq > 0 such that for any N and any

−N ≤ j, k ≤ N , we have E|
√
dNhjk|q ≤ Cq.

Let uN,k = (uN,k(α))Nα=−N denote the eigenvectors of a generalized Wigner matrix

HN ∈ Herm(dN). The eigenvectors, indexed by k ∈ [−N,N ], are ordered so that the

corresponding eigenvalues form a nondecreasing sequence. Of course, an eigenvector is

well-defined only up to a phase eiθ ∈ U(1). This phase ambiguity may be eliminated, for

instance, by considering instead the equivalence class [uN,k].

Theorem 3.2.1 (Normality for eigenvectors, [2, Corollary 1.3]). Let {HN} be a se-

quence of generalized Wigner matrices. Let IN be the set of indices away from the inter-

mediate regime as defined in (3.3) (note that IN depends on a parameter ν). Then there

exists ν > 0 such that for any k ∈ IN and J ⊂ {−N, . . . , N} with |J | = m, we have

√
dN(uN,k(α))α∈J →

(
N (1)
j + iN (2)

j

)m
j=1

in the sense of convergence in moments modulo phases, where N (1)
j ,N (2)

j are independent

standard Gaussians. More precisely, for any polynomial Q in 2m variables, there exists

ε = ε(Q) > 0 such that for sufficiently large N we have

sup
J⊂{−N,...,N}
|J |=m, k∈IN

∣∣∣EQ(√2N
(
eiωuN,k(α), e−iωuN,k(α)

)
α∈J

)
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− EQ
((
N (1)
j + iN (2)

j ,N (1)
j − iN

(2)
j

)m
j=1

)∣∣∣ ≤ d−εN .

Here ω a phase independent of HN and uniform on (0, 2π).

In fact, a stronger statement is proved in [2, Theorem 1.2], namely the projection

〈q, uN,k〉 of an eigenvector to any unit vector q ∈ RdN is asymptotically normal. As a

corollary, generalized Wigner eigenvectors are ‘locally quantum unique ergodic’ in the

following sense. Let aN : {−N, . . . , N} → [−1, 1] be a function with
∑N

α=−N aN(α) = 0

and let |aN | = #{−N ≤ α ≤ N | aN(α) 6= 0} be the size of its support.

Theorem 3.2.2 (Local QUE for eigenvectors, [2, Corollary 1.4]). Let {HN} be a

sequence of generalized Wigner matrices. Then there exists ε > 0 such that for any δ > 0,

there exists a constant C > 0 so that for every sequence of functions {aN} as above and

k ∈ IN we have

(3.6) P
(∣∣∣∣ dN|aN |〈aNuN,k, uN,k〉

∣∣∣∣ > δ

)
≤ C(d−εN + |aN |−1),

where 〈aNuN,k, uN,k〉 :=
∑N

α=−N aN(α)|uN,k(α)|2.

Theorem 3.2.1 shows that Wigner eigenvectors are asymptotically flat even on small

scales by choosing the test functions aN to have small supports. Note that since the

left-hand side of (3.6) depends only the eigenvectors but not the eigenvalues, the measure

used in Theorem 3.2.2 is precisely the induced measure µN defined in (3.2).
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We take this opportunity to remark that on a compact manifold (M, g), the analogue

to the limiting formula (3.6) given by

(3.7)

∫
M

f(x)|ϕk(x)|2 dx→
∫
M

f(x) dx for every f ∈ C(M)

is insufficient for concluding that {ϕk} is quantum ergodic in the sense of Theorem 2.3.1.

This is because delocalization on the base manifold M is a much weaker condition than

diffuseness in the phase space S∗M . For instance, the Laplacian eigenfunctions ei〈λ,x〉 on

a flat torus Rn/2πZn are delocalized in the sense of (3.7). But, if {λk} is a sequence of

lattice points for which the unit vectors λk/|λk| tend to a limit vector ξ ∈ Rn, then the

asymptotic formula

〈Aei〈λk,x〉, ei〈λk,x〉〉 '
∫
Rn/2πZn

σA

(
x,

λk
|λk|

)
dx for every A ∈ Ψ0(Rn/2πZn)

shows that the corresponding weak* limit is a delta mass on the invariant Lagrangian

torus Tξ ⊂ S∗M for the geodesic flow. Since there always exists a sequence of λk/|λk|

converging to arbitrary ξ ∈ Rn, the eigenfunctions ei〈λ,x〉 are far from diffuse in phase

space. Of course, in the random matrix setting it is unclear even how to interpret the

phase space when the base manifold is an index set {−N, . . . , N}. We will need additional

tools from semi-classical analysis to show that Theorem 3.1.1 holds.

3.3. Towards a Proof of Main Theorems: Rotationally Invariant Case

The purpose of this section is to prove Proposition 3.3.1 stated below. The difference

between the proposition and Theorem 3.1.3 is the rotational invariance assumption we
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impose on A (and hence on the random variable XN). This additional assumption allows

us to isolate the key computational techniques and exhibit them in a simpler setting.

To clearly distinguish the special case we are currently considering from the general

case, let us introduce some new notation. Let B ∈ Ψ0(S2) denote pseudo-differential

operators of degree zero that are invariant under z-axis rotations. To these rotationally

invariant operators we associate random variables

(3.8) ZN = ZB
N ({ψN,k}) =

1

dN

∑
k∈IN

|〈BψN,k, ψN,k〉 − ω(B)|2,

where IN is defined in (3.3) and ω(B) is defined in (3.5). Our goal is to show the following.

Proposition 3.3.1. In the above notation, we have EZN = O(d−εN ) and EZ2
N =

O(d−ε
′

N ) for some ε, ε′ > 0 guaranteed by Theorem 3.2.1.

Proof of Proposition 3.3.1. Note that the rotational invariance hypothesis im-

plies that the matrix elements 〈BY α
N , Y

β
N 〉 vanish whenever α 6= β. Rewriting the random

basis elements ψN,k in terms of spherical harmonics Y α
N using (3.1), the expression (3.8)

becomes

ZN =
1

dN

∑
k∈IN

∣∣∣∣∣
N∑

α,β=−N

〈BY α
N , Y

β
N 〉uN,k(α)uN,k(β)− ω(B)

∣∣∣∣∣
2

=
1

dN

∑
k∈IN

∣∣∣∣∣∑
α

〈BY α
N , Y

α
N 〉|uN,k(α)|2 − ω(B)

∣∣∣∣∣
2

= S1 + S2,
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where

S1 =
1

dN

∑
k∈IN

∑
α,β

〈BY α
N , Y

α
N 〉〈BY

β
N , Y

β
N 〉|uN,k(α)|2|uN,k(β)|2,

S2 = −2ω(B)

dN

∑
k∈IN

∑
α

〈BY α
N , Y

α
N 〉|uN,k(α)|2 +

1

dN

∑
k∈IN

ω(B)2.

We use the Weingarten formula [64] to compute the expectation EZN = ES1 + ES2.

Let (uN,k(α))−N≤k,α≤N ∈ U(dN) be a unitary matrix and for 1 ≤ j ≤ m, let kj, k
′
j, αj, α

′
j ∈

[−N,N ] be indices. The Weingarten formula states that the integral

IN(m) :=

∫
U(dN )

uN,k1(α1) · · ·uN,km(αm)uN,k′1(α
′
1) · · ·uN,k′m(α′m) dUN

of a polynomial in the entries of (uN,k(α)) with respect to Haar measure dUN has an

asymptotic formula in terms of the Kronecker delta functions on the indices:

(3.9) IN(m) = d−mN
∑

δk1k′j1
δα1α′j1

· · · δk`k′jmδα`α′jm +O(d−m−1
N ),

where the sum is over all choices of j1, . . . , jm as a permutation of 1, . . . ,m. Let Q be

the polynomial in 2m variables defined by Q
(
(zj, wj)

m
j=1

)
:= z1 · · · zmw1 · · ·wm. Then, in

the notation of Theorem 3.2.1, direct computation with Gaussian random variables shows

that

(3.10)

∣∣∣∣ 1

dmN
EQ

((
N (1)
j + iN (2)

J ,N (1)
J − iN

(2)
J

)m
j=1

)
− IN(m)

∣∣∣∣ = O(d−m−1
N )

Putting together (3.9), (3.10), and Theorem 3.2.1 proves the following key lemma.
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Lemma 3.3.2. Let (uN,k(α)) ∈ U(dN) be a unitary matrix. For indices

k1, . . . , km, k
′
1, . . . , k

′
m ∈ IN and α1, . . . , αm, α

′
1, . . . , α

′
m ∈ [−N,N ],

we have

E
(
uN,k1(α1) · · ·uN,km(αm)uN,k′1(α

′
1) · · ·uN,k′m(α′m)

)
(3.11)

= d−mN
∑

δk1k′j1
δα1α′j1

· · · δkmk′jmδαmα′jm +O(d−m−εN )

for some ε = ε(Q) > 0 guaranteed by Theorem 3.2.1.

Returning to the quantity EZN = ES1 + ES2, we find that (3.11) implies

E
(
|uN,k(α)|2|uN,k(β)|2

)
= d−2

N (1 + δαβ) +O(d−2−ε1
N ) for k ∈ IN ,

which gives

ES1 =
1

dN

∑
k∈IN

∑
α,β

〈BY α
N , Y

α
N 〉〈BY

β
N , Y

β
N 〉E

(
|uN,k(α)|2|uN,k(β)|2

)
(3.12)

=
∑
α,β

〈BY α
N , Y

α
N 〉〈BY

β
N , Y

β
N 〉
(

1

d2
N

(1 + δαβ) +O(d−2−ε1
N )

)

=

(
1

dN

∑
α

〈BY α
N , Y

α
N 〉

)2

+
1

d2
N

∑
α

〈BY α
N , Y

α
N 〉2 +O(d−ε1N ).

The first sum in (3.12) can be rewritten using semi-classical analysis. Let ΠN : L2(S2)→

HN denote the spectral projection onto the eigenspace of degree N spherical harmon-

ics. Let A ∈ Ψ0(S2) be any pseudo-differential operator of degree zero (not necessarily
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rotationally invariant), then Weyl’s law states that

(3.13)
1

dN

∑
α

〈AY α
N , Y

α
N 〉 =

1

dN
tr(ΠNAΠN) = ω(A) +O(d−1

N ).

For the second sum in (3.12), it suffices to note that the squares 〈AY α
N , Y

α
N 〉2 of the matrix

elements are uniformly bounded in N because the pseudo-differential operator A ∈ Ψ0(S2)

(again, not necessarily rotationally invariant) is a bounded operator from L2(S2) to itself.

Since we are summing over −N ≤ α ≤ N (i.e., summing dN number of terms) and

dividing by d2
N , the second sum has only a lower order contribution:

(3.14)
1

d2
N

∑
α

〈BY α
N , Y

α
N 〉2 = O(d−1

N ).

Combining (3.12), (3.13), and (3.14) yields

ES1 =
(
ω(B) +O(d−1

N )
)2

+O(d−1
N ) +O(d−ε1N ) = ω(B)2 +O(d−ε1N ).

The asymptotics for ES2 is similarly computed. By (3.11), we have

E|uN,k(α)|2 = d−1
N +O(d−1−ε2

N ) for k ∈ IN ,

whence

ES2 = −2ω(B)

dN

∑
k∈IN

∑
α

〈BY α
N , Y

α
N 〉E|uN,k(α)|2 +

1

dN

∑
k∈IN

ω(B)2

= −2ω(B)
∑
α

〈BY α
N , Y

α
N 〉
(

1

dN
+O(d−1−ε2

N )

)
+ ω(B)2

= −2ω(B)2 + ω(B)2 +O(d−ε2N ),
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where the last equality follows from Weyl’s law (3.13). Adding together the expressions

for ES1 and ES2 shows that EZN = O(d
−min{ε1,ε2}
N ) = O(d−εN ) as the factors of ω(B)2

cancel exactly. This proves the first part of Proposition 3.3.1.

The computations for the second moment EZ2
N is more tedious, but no new techniques

are required. Write a second copy of the random variable ZN with the indices j, η, ξ in

place of k, α, β, then direct computation shows

EZ2
N = T1 + T2 + · · ·+ T5,

where

T1 =
1

d2
N

∑
k,j∈IN

∑
α,β,η,ξ

〈BY α
N , Y

α
N 〉〈BY

β
N , Y

β
N 〉|uN,k(α)|2|uN,k(β)|2

× 〈BY η
N , Y

η
N〉〈BY

ξ
N , Y

ξ
N〉|uN,j(η)|2|uN,j(ξ)|2,

T2 = −4ω(B)

d2
N

∑
k,j∈IN

∑
α,β,η

〈BY α
N , Y

α
N 〉〈BY

β
N , Y

β
N 〉|uN,k(α)|2|uN,k(β)|2

× 〈BY η
N , Y

η
N〉|uN,j(η)|2,

T3 =
2ω(B)2

d2
N

∑
k,j∈IN

∑
α,β

〈BY α
N , Y

α
N 〉〈BY

β
N , Y

β
N 〉|uN,k(α)|2|uN,k(β)|2,

T4 =
4ω(B)2

d2
N

∑
k,j∈IN

∑
α,η

〈BY α
N , Y

α
N 〉|uN,k(α)|2〈BY η

N , Y
η
N〉|uN,j(η)|2,

T5 = −4ω(B)3

d2
N

∑
k,j∈IN

∑
α

〈BY α
N , Y

α
N 〉|uN,k(α)|2 +

1

d2
N

∑
k,j∈IN

ω(B)4.
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We work out the asymptotics for ET1 in detail. Appealing once again to (3.11), we

have

(3.15) E
(
|uN,k(α)|2|uN,k(β)|2|uN,j(η)|2|uN,j(ξ)|2

)
= d−4

N

(
C1 + δkjC2

)
+O(d

−4−ε′1
N ),

where

C1 = C1(α, β, η, ξ) = (1 + δαβ)(1 + δηξ),

C2 = C2(α, β, η, ξ) = δαη(1 + δβξ + 2δηξ) + δαξ(1 + δβη + 2δβξ)

+ δβη(1 + 2δαβ) + δβξ(1 + 2δηξ) + 6δαβδβξδηξ.

These imply

ET1 =
1

d4
N

∑
α,β,η,ξ

C1(α, β, η, ξ)〈BY α
N , Y

α
N 〉〈BY

β
N , Y

β
N 〉〈BY

η
N , Y

η
N〉〈BY

ξ
N , Y

ξ
N〉

+
1

d5
N

∑
α,β,η,ξ

C2(α, β, η, ξ)〈BY α
N , Y

α
N 〉〈BY

β
N , Y

β
N 〉〈BY

η
N , Y

η
N〉〈BY

ξ
N , Y

ξ
N〉+O(d

−ε′1
N ).(3.16)

Notice that the leading orders of C1 and C2 are different because there is a factor of δkj

in front of C2 but not C1 in (3.15).

Consider the first line of the expression (3.16) (i.e., the part that involves only C1).

Recall that C1 = (1 + δαβ)(1 + δηξ) = 1 + δαβ + δηξ + δαβδηξ contains four terms. We claim

that only the constant term has a top order contribution when computing the asymptotics

of ET1; the other three terms containing Kronecker delta functions all have lower order
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contributions. Indeed, notice that

1

d4
N

∑
α,β,η,ξ

δαβ〈BY α
N , Y

α
N 〉〈BY

β
N , Y

β
N 〉〈BY

η
N , Y

η
N〉〈BY

ξ
N , Y

ξ
N〉

is equal to

1

d4
N

∑
α,η,ξ

〈BY α
N , Y

α
N 〉2〈BY

η
N , Y

η
N〉〈BY

ξ
N , Y

ξ
N〉 = O(d−1

N ),

which is a lower order term because we are summing d3
N number of uniformly bounded

products of matrix elements but dividing by d4
N .

We now turn our attention to the second line of the expression (3.16) (i.e., the part

that involves only C2). Notice that each term of C2 contains at least one Kronecker delta

function on the indices α, β, η, ξ. At the same time, we are dividing the sum by d5
N .

Therefore, the entire second line is of order at most O(d−2
N ). These observations imply

that the expected value of T1 has the simple asymptotics

ET1 =
1

d4
N

∑
α,β,η,ξ

〈BY α
N , Y

α
N 〉〈BY

β
N , Y

β
N 〉〈BY

η
N , Y

η
N〉〈BY

ξ
N , Y

ξ
N〉+O(d

−ε′1
N )

= ω(B)4 +O(d
−ε′1
N ).

Similar arguments show that

ET2 = −4ω(B)

d2
N

∑
k,j∈IN

∑
α,β,η

〈BY α
N , Y

α
N 〉〈BY

β
N , Y

β
N 〉〈BY

η
N , Y

η
N〉

× 1

d3
N

(
1 + δαβ + δkj(δαη + δβη + 2δαβδβη)

)
+O(d

−ε′2
N )

= −4ω(B)4 +O(d
−ε′2
N ),
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ET3 =
2ω(B)2

d2
N

∑
k,j∈IN

∑
α,β

〈BY α
N , Y

α
N 〉〈BY

β
N , Y

β
N 〉

1

d2
N

(1 + δαβ) +O(d
−ε′3
N )

= 2ω(B)4 +O(d
−ε′3
N ),

ET4 =
4ω(B)2

d2
N

∑
k,j∈IN

∑
α,η

〈BY α
N , Y

α
N 〉〈BY

η
N , Y

η
N〉

1

d2
N

(1 + δkjδαη) +O(d
−ε′3
N )

= 4ω(B)4 +O(d
−ε′3
N ),

ET5 = −4ω(B)3

d2
N

∑
k,j∈IN

∑
α

〈BY α
N , Y

α
N 〉

1

dN
+

1

d2
N

∑
k,j∈IN

ω(B)4 +O(d
−ε′4
N )

= −4ω(B)4 + ω(B)4 +O(d
−ε′4
N ).

As before, the factors of ω(B)4 cancel exactly, and we are left with

EZ2
N = ET1 + · · ·+ ET5 = O(d

−min{ε′1,...,ε′4}
N ) = O(d−ε

′

N ).

This concludes the proof of Proposition 3.3.1. �

3.4. Proof of Main Theorems

We now return to Theorem 3.1.1 and Theorem 3.1.3, which do not have invariance

assumptions on the operator A ∈ Ψ0(S2). This means that we can no longer assume

a priori (as we did in the previous section) that the matrix elements 〈AY α
N , Y

β
N 〉 vanish

for α 6= β. We will show, however, that by taking a Fourier series representation of the

operator A and using orthogonality properties of the spherical harmonics, the general case

reduces to the rotationally invariant case.



46

3.4.1. Reduction to Fourier coefficients

The goal of this section is to obtain a Fourier series representation for a general pseudo-

differential operator. Let rθ denote rotation about the z-axis by angle θ, that is, if we

write a point x = (cos τ sinϕ, sin τ sinϕ, cosϕ) ∈ S2 in spherical coordinates, then

rθ(x) := (cos(τ − θ) sinϕ, sin(τ − θ) sinϕ, cosϕ).

Given A ∈ Ψ0(S2), form a new operator

Aθ := r∗θAr
∗
−θ ∈ Ψ0(S2),

where (r∗θϕ)(x) := ϕ(rθ(x)) for any smooth function ϕ ∈ C∞(S2). For n ∈ Z, the Fourier

coefficients Â(n) of Aθ are defined by

(3.17) Â(n) := −
∫
S1

e−inθAθ dθ ∈ Ψ0(S2).

These new operators are related to the original operator A in the following way.

Lemma 3.4.1. The partial sums
∑
|n|≤N Â(n) converge in the operator norm to A as

N →∞.

Proof of Lemma 3.4.1. Let Dθ denote the generator of z-axis rotation so that

r∗θ = e−iθDθ . Then, since Dθ and r∗θ commute, we have

∂

∂θ
Aθ =

(
∂

∂θ
r∗θ

)
Ar∗−θ + r∗θA

(
∂

∂θ
r∗−θ

)
=

1

i
(DθAθ − AθDθ) =

1

i
adDθ(Aθ) ∈ Ψ0(M).
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This implies that the map θ 7→ Aθ is differentiable, and by elementary properties of

convolution with the Dirichlet kernel DN(θ) =
∑N

n=−N e
inθ we get uniform convergence

�
N∑

n=−N

Â(n) =
N∑

n=−N

−
∫
S1

e−inθAθ dθ = −
∫
S1

DN(θ)Aθ dθ → A0 = A.

Lemma 3.4.2. For n 6= 0, we have ‖Â(n)‖ = O(n−`) for every ` ≥ 1.

Proof of Lemma 3.4.2. Integrating (3.17) by parts gives

nÂ(n) =
i

2π
e−inθAθ

∣∣∣∣2π
θ=0

−−
∫
S1

e−inθ adDθ(Aθ) dθ = −−
∫
S1

e−inθ adDθ(Aθ) dθ.

It follows that integrating by parts ` times yields

(−n)`Â(n) = −
∫
S1

e−inθ(adDθ)
`(Aθ) dθ.

Since (adDθ)
`(Aθ) ∈ Ψ0(S2) for all ` ≥ 1, we conclude that n`‖Â(n)‖ = O(1). �

These lemmas allow us to replace A with finite sums of the form
∑
|n|≤N Â(n). We

record several facts about the operators Â(n). First, conjugating by rotation A 7→

r∗θAr
∗
−θ = Aθ changes the principal symbol of A by the canonical transformation on

the cosphere bundle:

σAθ(x, ξ) = σA(rθ(x), (Dr−θ(x))−1ξ).
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It follows from definition (3.17) of Â(n) that

(3.18) ω(Â(n)) :=

∫
S∗M

−
∫
S1

e−inθσA(rθ(x), (Dr−θ(x))−1ξ) dθdµL =


ω(A) if n = 0,

0 if n 6= 0,

where the latter equality follows from interchanging the order of integration and using

the fact that the Liouville measure µL is invariant under canonical transformations.

Second, from the definition of spherical harmonics, for each fixed n the matrix elements

of Â(n) are related to those of A by the identity

(3.19) 〈Â(n)Y α
N , Y

β
N 〉 =


〈AY α

N , Y
α−n
N 〉 if α = β + n

0 if α 6= β + n

simultaneously for all N .

In other words, the infinite block-diagonal matrix with blocks (〈Â(n)Y α
N , Y

β
N 〉)Nα,β=−N is

obtained from the infinite block diagonal matrix with blocks (〈AY α
N , Y

β
N 〉)Nα,β=−N by re-

placing all the entries except those on the nth diagonal above (or below, depending on

the sign of n) the main diagonal by zeros.

3.4.2. Computations with Fourier coefficients

Having defined Fourier coefficients Â(n) and discussed their properties, we proceed to

compute the expected value and second moment of the associated random variables

Wn,N :=
1

dN

∑
k∈IN

|〈Â(n)ψN,k, ψN,k〉 − ω(Â(n))|2
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=



1

dN

∑
k∈IN

∣∣∣∣∣
N∑

α=−N+n

〈AY α
N , Y

α
N 〉uN,k(α)uN,k(α)− ω(A)

∣∣∣∣∣
2

if n = 0,

1

dN

∑
k∈IN

∣∣∣∣∣
N∑

α=−N+n

〈AY α
N , Y

α−n
N 〉uN,k(α)uN,k(α− n)

∣∣∣∣∣
2

if n 6= 0,

where the second equality is obtained by first writing ψN,k in terms of Y α
N using (3.1),

and then applying (3.18) and (3.19). We make the crucial observation that the discussion

following (3.19) implies the identity

(3.20) XN =
∑
n∈Z

Wn,N for each N = 0, 1, 2, . . . .

The asymptotics for EWn,N and EW 2
n,N can be easily computed.

Lemma 3.4.3. For each fixed n ∈ Z, we have EWn,N = O(d−εN ) and EW 2
n,N = O(d−ε

′

N )

for some ε, ε′ > 0 guaranteed by Theorem 3.2.1.

Proof of Lemma 3.4.3. Thanks to (3.19), we recognize that Â(0) is a rotationally

invariant operator of the kind considered in Section 3.3. Thus, when n = 0 the statement

of the lemma follows from Proposition 3.3.1.

When n 6= 0, expanding the square yields

Wn,N =
1

dN

∑
k∈IN

∑
α,β

〈AY α
N , Y

α−n
N 〉〈AY β

N , Y
β−n
N 〉uN,k(α)uN,k(β)uN,k(α− n)uN,k(β − n).

Appealing once again to the asymptotic formula (3.11), we find

E
(
uN,k(α)uN,k(β)uN,k(α− n)uN,k(β − n)

)
= d−2

N (δα,α−nδβ,β−n+δα,β−nδβ,α−n)+O(d−2−ε
N ).
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Since n 6= 0 by hypothesis, by what is now a standard argument we conclude that all the

terms in the expression of EWn,N that contain Kronecker delta functions are of order at

most O(d−1
N ), so EWn,N = O(d−εN ).

The second moment computation is equally straightforward. Indeed, we have

W 2
n,N =

1

d2
N

∑
k,j∈IN

∑
α,β,η,ξ

〈AY α
N , Y

α−n
N 〉〈AY β

N , Y
β−n
N 〉〈AY η

N , Y
η−n
N 〉〈AY ξ

N , Y
ξ−n
N 〉

× uN,k(α)uN,k(β)uN,k(α− n)uN,k(β − n)uN,j(η)uN,j(ξ)uN,j(η − n)uN,j(ξ − n).

It is easy to verify using (3.11) that the expected value of the product of eigenvector

components is asymptotically zero because every term in the asymptotic formula contains

a factor of δα,α−n for n = 1, . . . , 4. �

3.4.3. Approximation argument

We finish the computations for EXN and EX2
N by an approximation argument.

Proof of Theorem 3.1.3. Fix some small constant ω > 0, then by (3.20) there

exists M > 0 such that
∑
|n|>M Wn,N < ω. Using Lemma 3.4.3 for the asymptotics of

EWn,N yields

EXN ≤ E
( ∑
|n|≤M

Wn,N + ω

)
=
∑
|n|≤M

EWn,N + ω = O(d−εN ) + ω.
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The asymptotics for the second moment is similarly computed using the elementary

inequality (a1 + · · ·+ am)2 ≤ m(a2
1 + · · ·+ a2

m) and Lemma 3.4.3:

EX2
N ≤ E

( ∑
|n|≤M

Wn,N + ω

)2

≤ (2M + 1)
∑
|n|≤M

EW 2
n,N + 2ω

∑
|n|≤M

EWn,N + ω2

= O(d−ε
′

N ) +O(d−εN ) + ω2.

Since ω is arbitrary, Theorem 3.1.3 is proved with ε0 = ε and ε′0 = min{ε, ε′}. �

Proof of Theorem 3.1.1. Let σ2
N := EX2

N − (EXN)2 be the variance of the ran-

dom variable XN . Theorem 3.1.1 shows that the sequence {XN} satisfies Kolmogorov’s

convergence criterion, that is,
∑∞

N=1 σ
2
N/N

2 < ∞. We may therefore invoke the Strong

Law of Large Numbers to conclude that the partial sums 1
M

∑M
N=0XN converge to its ex-

pected value almost surely. But EXN = O(d−εN ), which implies that the expected values

of the partial sums converge to zero, finishing the proof of Theorem 3.1.1. �



52

CHAPTER 4

Log-scale Equidistribution of Zeros of Quantum Ergodic

Eigensections

This chapter concerns the small-scale equidistribution of masses and of zeros of holo-

morphic eigensections in the line bundle setting introduced in Section 2.5–Section 2.6.

The main theorems, Theorem 4.1.2 and Theorem 4.1.4, are small-scale versions of the

ones presented in Section 2.6.

Let (L, h) → (M,ω) be a prequantum line bundle over a compact Kähler manifold

of complex dimension m without boundary(Definition 2.5.1). Under certain quantization

conditions (discussed in Section 4.2.2 and [69]), a symplectic map

χ : (M,ω)→ (M,ω), χ∗ω = ω

on the base manifold can be quantized as a sequence {Uχ,N}∞N=1 of unitary Fourier integral

Toeplitz operators

Uχ,N : H0(M,LN)→ H0(M,LN)

acting on the spaces H0(M,LN) of global holomorphic sections of LN with the inner

product (2.12) induced by h.
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The eigensections sNj ∈ H0(M,LN) of the operators Uχ,N are characterized by

Uχ,Ns
N
j = eiθN,jsNj , 1 ≤ j ≤ dN ,

where eiθN,j are eigenphases and dN = dimH0(M,LN). We write

ZsNj = {z ∈M : sNj (z) = 0} and
[
ZsNj

]
=

√
−1

π
∂∂̄ log ‖sNj (z)‖2

hN +Nω

for the zero set of sNj and the current of integration1 over the zero set of sNj , respectively.

Assuming χ is ergodic, Zelditch [69] proved that the eigensections of the quantum maps

Uχ,N are quantum ergodic. Moreover, Nonnenmacher–Voros [50] and Shiffman–Zelditch

[57] (see also Rudnick [51] for the modular surface setting) proved that the zeros of ‘almost

all’ quantum ergodic eigensections are asymptotically equidistributed with respect to the

Kähler volume form: There exists a subsequence Γ ⊂ {(N, j) : N ≥ 1, j = 1, . . . , dN} of

density one for which

(4.1) lim
(N,j)∈Γ
N→∞

∫
M

f(z)

[
1

N
ZsNj

]
∧ ωm−1 =

∫
M

f
ωm

m!
for all f ∈ C(M).

4.1. Main Results

Let m = dimCM . Fix a logarithmic scale εN depending on parameter γ:

(4.2) εN := |logN |−γ for some constant 0 < γ <
1

6m
independent of N .

The main purpose of this paper is to show (with additional assumptions on χ, described

below) that the equidistribution result (4.1) holds with the domain of integration M

1Recall the Poincaré–Lelong formula (2.17).
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replaced by any ball B(p, εN) centered at p ∈ M with radius εN = |logN |−γ for any

γ < (6m)−1. This is what is meant by “equidistribution of zeros at the logarithmic scale.”

To obtain this log-scale improvement, we use two dynamical properties of χ:

• For T ∈ Z, let χT denote the T -fold iterate of χ (or of its inverse χ−1, depending

on the sign of T ). By the chain-rule χ satisfies the exponential growth estimate

(4.3) ‖χT‖C2 = O(e|T |δ0) for some fixed constant δ0 > 0 independent of T .

In particular, if χ lifts to a contact transformation χ̃ on the unit co-disk bundle

X →M (see Section 4.2.2), then ‖F ◦ χ̃`‖2
C2 = OF (e2|T |δ0) for any F ∈ C∞(X).

• We assume that χ has sufficiently fast decay of correlations2. Namely, that there

exist constants 0 < β < 1, c1 > 0, and c2 = c2(β) > 1 such that3

(4.4)

∣∣∣∣∫
M

(g ◦ χT )f dV −
∫
M

f dV

∫
M

g dV

∣∣∣∣ ≤ c1(1 + |T |)−c2‖f‖C0,β‖g‖C0,β

for all f, g ∈ C0,β(M). Here and throughout,

(4.5) dV =
ωm

m!

is the normalized volume form.

The explicit error estimate in Egorov’s theorem for Toeplitz operators (Proposition 4.3.1,

proved in Section 4.6) relies on assumption (4.3). Assumption (4.4) is used in the proof

of logarithmic decay of quantum variances (Theorem 4.1.6) in Section 4.3.

2Even though an exponential decay rate (i.e., with (1 + |T |)−c2 replaced by e−c2|T |) is often assumed in
the literature, much less is necessary for the proof; this was also noted in Schubert [53].
3Note that this condition implies χ is mixing and hence ergodic.
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4.1.1. Log-scale equidistribution of zeros

The log-scale equidistribution of zeros states that zeros in balls of radii εN are uniformly

distributed with respect to the volume form (4.5). It is simplest to state the result by

dilating such shrinking balls by ε−1
N back to a fixed reference ball of radius 1. In a local

Kähler normal coordinate chart (U, z) with z = 0 at p, define local dilation maps

(4.6) Dp
ε : B(p, 1)→ B(p, ε), Dεz = εz.

Here we abuse notation by writing B(p, 1) when we mean the image of the metric unit

ball centered at p in the local coordinate chart based at p. The inverse dilation is defined

by

(Dp
ε)
−1 : B(p, ε)→ B(p, 1).

Remark 4.1.1. Recall Kähler normal coordinates z1, · · · , zm centered at point z0 are

holomorphic coordinates in which z0 has coordinates 0 ∈ Cm, and

ω(z) = i
m∑
j=1

dzj ∧ dz̄j +O(|z|2).

We may also choose a local reference frame eL of the line bundle in a neighborhood of z0

such that the induced Kähler potential ϕ takes the form

ϕ(z) = |z|2 +O(|z|3).

See [20] for background.
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Let Dp∗
ε be the corresponding pullback operator on forms. For simplicity of notation

we denote the pullback (Dp
ε)
∗−1 of the inverse dilation by Dp

ε∗ so that

Dp
ε∗ : Dm−1,m−1(B(p, 1))→ Dm−1,m−1(B(p, ε)),

where Dm−1,m−1 is the space of compactly supported smooth (m − 1,m − 1) test forms.

In particular, for η ∈ Dm−1,m−1(B(p, 1)), we have

∫
B(p,ε)

Dp
ε∗η ∧

1

N

[
ZsNj

]
=

∫
B(p,1)

(
η ∧ 1

N
Dp∗
ε

[
ZsNj

])
.

Theorem 4.1.2 (Equidistribution of zeros, Chang–Zelditch [11]). Let (L, h)→ (M,ω)

be a prequantum line bundle. Let χ satisfy (4.3) and (4.4). Let {sN1 , . . . , sNdN} be an or-

thonormal basis of eigensections of Uχ,N acting on H0(M,LN). Then, for every 0 < γ <

(6m)−1 and εN = |logN |−γ, there exists a full density subsequence Γ ⊂ {(N, j) : j =

1, . . . , dN} such that for every p ∈M ,

1

Nε2
N

Dp∗
εN

[
ZsNj

] Γ3(N,j)→∞−−−−−−−⇀ ωp0 in the weak sense of currents on B(p, 1),

where ωp0 =
√
−1

2π
∂∂̄ log |z|2 is the flat Kähler form in Kähler normal coordinates at p.

Remark 4.1.3. The weak convergence statement in Theorem 4.1.2 means

∫
B(p,1)

(
η ∧ 1

Nε2
N

Dp∗
εN

[
ZsNj

])
=

∫
B(p,1)

η ∧ ωp0 + o(1)

for every test form η ∈ Dm−1,m−1(B(p, 1)).
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The key ingredients of the proof are the log-scale mass comparison result (Theo-

rem 4.1.4), the Poincaré–Lelong formula (2.17) and compactness results on logarithms of

scaled sections.

4.1.2. Log-scale equidistribution of mass

The equidistribution result of Theorem 4.1.2 is based on log-scale volume comparison

theorems similar to those of Hezari–Rivière [25, Lemma 3.1] and Han [24, Corollary 1.9].

Theorem 4.1.4 (Equidistribution of masses, Chang–Zelditch [11]). Under the as-

sumptions of Theorem 4.1.2. Then, given any 0 < γ′ < (6m)−1 and ε′N = |logN |−γ′ as

defined by (4.2), there exist a full density subsequence Γ and constants C1, C2 uniform in

p ∈M and independent of N such that

C1
Vol(B(p, ε′N))

Vol(M)
≤
∫
B(p,ε′N )

‖sNj ‖2
hN dV ≤ C2

Vol(B(p, ε′N))

Vol(M)
as Γ 3 (N, j)→∞.

Here, dV is the normalized volume form (4.5).

There is no need to put primes on γ or εN in the statement above, but we do so to

foreshadow that in the proof of Theorem 4.1.2, the result of Theorem 4.1.4 is applied

with γ < γ′ and ε′N < εN . The comparison (as opposed to asymptotic) result on log-scale

mass equidistribution is sufficient for deriving equidistribution of zeros at a slightly larger

logarithmic scale. In fact, only the lower bound is used, and the bound itself is much

stronger than necessary for the proof.
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Theorem 4.1.4 is based on a quantitative quantum variance estimate (Theorem 4.1.6)

in the holomorphic setting. Before stating the estimate, we record here another one of its

corollaries, which is analogous to [24, Corollary 1.8].

Proposition 4.1.5 (Asymptotics for fixed center, Chang–Zelditch [11]). Assume the

hypotheses of Theorem 4.1.2. Fix z0 ∈ M . Then, given any 0 < γ < (4m)−1 and εN as

defined by (4.2), there exists a subsequence Γz0 ⊂ {(N, j)} of density one such that

∫
B(z0,εN )

‖sNj ‖2
hN dV =

Vol(B(z0, εN))

Vol(M)
+ o(|logN |−2mγ).

Here, dV is the normalized volume form (4.5).

Recall dimCM = m, so Vol(B(z0,εN ))
Vol(M)

= C(M, g)ε2m
N = C(M, g)|logN |−2mγ. The differ-

ences between Proposition 4.1.5 and Theorem 4.1.4 are that the former is an asymptotic

result for a fixed base point, whereas the latter is a comparison result that holds for all

points in M . Moreover, in the former case the range of values that γ can take is improved.

Proposition 4.1.5 is not used in proving Theorem 4.1.2 or Theorem 4.1.4.

4.1.3. Log-scale quantum ergodicity

By the quantum variance associated to f we mean the quantity

(4.7) VN(f) :=
1

dN

dN∑
j=1

∣∣∣∣ ∫
M

f(z)‖sNj ‖2
hN dV −−

∫
M

f dV

∣∣∣∣2 for f ∈ C∞(M).

Here, dV is the normalized volume (4.5). Thanks to Egorov’s theorem for Toeplitz oper-

ators (Proposition 4.3.1, proved in Section 4.6) and the decay of correlations assumption

(4.4), we show the quantum variance has a logarithmic decay rate when f ∈ C∞(M):
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Theorem 4.1.6 (Decay of quantum variances, Chang–Zelditch [11]). Assume the

hypotheses of Theorem 4.1.2. Then, there exists a constant κ0 > 0 independent of N such

that for every 0 < β < 1 and for every f ∈ C2(M),

VN(f) = O
(
‖f‖2

C0,β

logN

)
+O

(
‖f‖2

C2|logN |2

N
1
2

)
+O

(
‖f‖2

C0,β

N logN

)
,

where ‖ · ‖C0,β is the β-Hölder norm.

We specialize to the following logarithmically dilated symbols. In Kähler normal

coordinates, let fz0 ∈ C∞0 (B(z0, 2),R) be a smooth cut-off function that is equal to 1 on

B(z0, 1), vanishes outside of B(z0, 2) and satisfies 0 ≤ fz0 ≤ 1. For “small-scale quantum

ergodicity,” we work with locally dilated symbols (recall the notation (4.6)) of the form

fz0,ε(z) := Dz0
ε∗fz0(z) = f

(z
ε

)
∈ C∞0 (B(z0, 2ε),R), where z0 ∈M and ε > 0.

Then set ε = εN . It follows from Theorem 4.1.6 that, to leading order in N , the quantum

variance associated to such symbols have the estimate

VN(fz0,εN ) = O(‖fz0‖2
C0,β |logN |2γβ−1).

Since 0 < β < 1 and γ < 1
6m

, we have 2γβ− 1 < 0. Since the second term is smaller than

the first, we obtain:
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Corollary 4.1.7 (Decay of quantum variances 2, Chang–Zelditch [11]). Let εN be

as defined in (4.2). Under the same hypotheses as in Theorem 4.1.2, we have

VN(fz0,εN ) = O(‖fz0‖2
C0,β |logN |2γβ−1),

where the error estimate is uniform in z0.

An application of Corollary 4.1.7 and a covering argument together imply Theo-

rem 4.1.4.

4.1.4. Further results

The results of this paper are the line bundle analogues of the small-scale quantum er-

godicity results in the Riemannian setting proved in [25, 24]. Specializing to the torus

Td = Rd/2πZd, Lester–Rudnick [41, Theorem 1.1] proved the stronger uniform mass

distribution result

lim
k→∞

sup
B(y,r)∈Bjk

∣∣∣∣ 1

Vol(B(y, r))

∫
B(y,r)

|ϕjk |2 dx− 1

∣∣∣∣ = 0,

for a density one subsequence of Laplace eigenfunctions. The supremum is taken over the

set Bjk of balls B(y, r) ⊂ Td of radii r > λ
−1/(2d−2)+o(1)
jk

.

For Hecke modular eigenforms, Lester-Matomäki-Radziwi l l [40, Theorem 1.5] proved

that for a sequence {fk} of Hecke modular cusp forms of weight k, there exists a certain

δ > 0 such that

sup
R⊂F

∣∣∣∣∫
R
yk|fk(z)|2dxdy

y2
− 3

π

∫
R

dxdy

y2

∣∣∣∣ ≤ Cε(log k)−δ+ε,
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where the supremum is taken over all rectangles R with sides parallel to the coordinate

axes. This is a stronger result because it is valid for all Hecke eigenforms and because

the supremum is taken over rectangles of any size rather than of size comparable to

εk = |log k|−γ. The authors also proved [40, Theorem 1.1] the equidistribution of zeros

(again without needing to possibly discard a density zero subsequence of fk’s):

#{z ∈ B(z0, r) : fk(z) = 0}
#Zfk

=
3

π

∫
B(z0,r)

dxdy

y2
+O

(
r(log k)−δ+ε

)
when r ≥ (log k)−δ/2+ε.

In the line bundle setting, Shiffman–Zelditch [57] proved equidistribution of zeros

(not at the logarithmic scale) for random orthonormal bases of H0(M,LN) as well as for

eigensections of quantized ergodic symplectic maps. It is probable that Theorem 4.1.2

can also be generalized to random orthonormal bases using the construction discussed in

Section 2.8.

4.1.5. Existence of quantizable ergodic symplectic maps

An obvious question is whether quantizable ergodic symplectic maps satisfying the decay

of correlations condition (4.4) exist on a given Kähler manifold. (Any diffeomorphism

satisfies the exponential growth estimate (4.3) automatically.) There seem to exist few

studies of ergodic symplectic dynamics in dimensions > 2. After consulting with several

experts in the field, we give a brief summary of the examples that we are aware of.

The simplest and most-studied examples are hyperbolic symplectic toral automor-

phisms induced by an element of Sp(2n,Z) and small perturbations of such automor-

phisms (see [69, 30] for their Toeplitz quantizations). More generally, any hyperbolic
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or Anosov symplectic diffeomorphism satisfies the assumptions. There is a quantization

condition, but as explained in [17], it is always satisfied if one tensors with a flat line

bundle and modifies the contact form.

Most studies of smooth ergodic maps concern volume preserving diffeomorphisms.

Studies of ergodic symplectic diffeomorphisms on manifolds other than tori are rare except

in dimension two, in which case ergodic (indeed, Bernoulli) symplectic diffeomorphisms

are known to exist (see [29] and [1, Theorem 1.26]) on surfaces if any genus. As mentioned

above, they are quantizable. We also mention that pseudo-Anosov diffeomorphisms are

singular ergodic symplectic diffeomorphisms which are smooth away from a finite number

of singular points. They act hyperbolically with respect to two transverse (singular)

measured foliations. Since they are singular, our techniques do not apply directly but

it is plausible that they can be modified by suitably cutting off singular points. These

examples may turn out to be the most explicitly computable ones on surfaces other than

tori and are very likely to satisfy all the conditions of this article.

In higher dimensions, Anosov diffeomorphisms have been studied on certain types

of nilmanifolds in addition to tori (see [13]). Partially hyperbolic symplectic diffeomor-

phisms are studied in [48]. There are further partially hyperbolic examples obtained

by perturbation. As explained to the authors by A. Wilkinson, a symplectic toral au-

tomorphism (or any partially hyperbolic symplectic diffeomorphism) can be perturbed

to produce a symplectic diffeomorphism which is stably accessible (see [16]). Moreover,

if the original map is “center bunched,” then the perturbed map is stably ergodic (see

[7]). These examples are additional to the usual Anosov diffeomorphisms of tori and their

perturbations. We refer to these articles for the definitions and further discussion.
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4.2. Background: Quantization of Symplectic Diffeomorphisms

This section explains the quantization Uχ,N of a symplectic diffeomorphism χ : (M,ω)→

(M,ω) as unitary FIOs. Additional background and notation are found in Section 2.5–

Section 2.6.

4.2.1. Hardy space of CR holomorphic functions

Let (L∗, h∗) be the dual line bundle to L→M . Thanks to the positivity of c1(h), the unit

co-disk bundle D∗ ⊂ L∗ relative to the dual metric h∗ is a strictly pseudoconvex domain

whose boundary

X := ∂D∗ = {v ∈ L∗ : h∗(v, v) = 1} ⊂ L∗

is a CR manifold. The Hardy space H2(X) is the space of square integrable CR functions

on X, or equivalently the space of boundary values of holomorphic functions on the unit

disk bundle with finite L2(X) norm.

We introduce a defining function ρ for X, which will be featured in the Boutet de

Monvel–Sjöstrand parametrix. We write points in the co-disk bundle as x = (z, λe∗L(z)),

where λ ≤ 1 and e∗L(z) is a normalized dual frame centered at z ∈M . Define

(4.8) ρ : D∗ → R, ρ(z, λe∗L(z)) = 1− |λ|2e−ϕ(z) where ϕ is the Kähler potential.

Then ρ is a defining function for X satisfying (i) ρ is defined in a neighborhood of X; (ii)

ρ > 0 in D∗; (iii) ρ = 0 on X; (iv) dρ 6= 0 near X. Define the contact form

α = dcρ|X .
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Let rθ be the natural circle action on X, that is, rθx = eiθx for x ∈ X. Note that a

section s ∈ H0(M,L) determines an equivariant function ŝ on L∗ by the rule

ŝ(z, λ) = (λ, s(z)), z ∈M , λ ∈ L∗z.

It is easy to verify restricting ŝ to X yields ŝ(rθx) = eiθŝ(x). Conversely, a section

sN ∈ H0(M,LN) determines an equivariant function ŝN on L∗ whose restriction to X

satisfies ŝ(N)(rθx) = eiNθŝN(x). The map sN 7→ ŝN is in fact a unitary equivalence

between the space H0(M,LN) of holomorphic sections and the weight spaces

H2
N(X) :=

{
F ∈ H2(X) : F (rθx) = eiNθF (x)

}
with H2(X) =

⊕
N≥0

H2
N(X).

The Szegő projector is the orthogonal projection

Π: L2(X)→ H2(X)

and its Fourier components are denoted by

ΠN : L2(X)→ H2
N(X).

4.2.2. Quantization of symplectic maps

We use the dynamical Toeplitz quantization method of [69]. A symplectic map χ : M →

M is quantizable if and only if it lifts to a connection-preserving contact transformation

χ̃ : X → X, that is, χ̃∗α = α. Denote by

Tχ̃ : L2(X)→ L2(X), Tχ̃F = F ◦ χ̃
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the pre-composition by the lift χ̃. Note that χ̃ commutes with the natural circle action

rθ on X, and ‖χ̃‖C2(X) = c · ‖χ‖C2(M) for some constant c.

The quantization of a quantizable map χ is defined to be a unitary Fourier integral

operator

(4.9) Uχ := ΠσTχ̃Π: H2(X)→ H2(X).

Here, σ is a zeroth order symbol that makes the operator Uχ defined by (4.10) unitary. Its

existence is guaranteed by the construction in [69]). We emphasize again that Tχ denotes

translation by the lifted map; such translation is not well-defined on the base because it

does not preserve the line bundle.

Under the identification H2(X) =
⊕

N≥0H
2
N(X), Uχ decomposes into a sequence of

unitary Fourier integral operators Uχ,N defined by

(4.10) Uχ,N := ΠNσNTχ̃ΠN : H2
N(X)→ H2

N(X).

Here, σN is a zeroth order symbol making Uχ,N unitary. The Fourier coefficients ΠN have

an explicit parametrix given in (4.12).

4.2.3. Boutet de Monvel–Sjöstrand parametrix for the Szegő projector

In preparation for the proof of Egorov’s theorem for Toeplitz operators (Proposition 4.3.1),

we briefly recall the Boutet de Monvel–Sjöstrand parametrix for the Szegő kernel. Let

Π(x, y) denote the kernel of the Szegő projector Π in (4.9), that is,

ΠF (x) =

∫
X

Π(x, y)F (y) dV (y) for all F ∈ L2(X).
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It is proved in [5] that Π is a complex Fourier integral operator of positive type. Near the

diagonal, there is a parametrix of the form

Π(x, y) ∼
∫ ∞

0

eitψ(x,y)s(x, y, t) dt,

where

s(x, y, t) ∼
∞∑
n=0

tm−nsn(x, y)

belongs to the symbol class Sm(X ×X ×R≥0) and ψ ∈ C∞(D∗×D∗) is a complex phase

of positive type. (Recall that D∗ stands for the unit co-disk bundle, of which X is the

boundary.)

The phase function ψ is obtained as the almost-analytic continuation of the defining

function ρ in (4.8). Explicitly, for xj = (zj, λje
∗
L(zj)) ∈ D∗, we have

ψ(x1, x2) =
1

i

(
1− λ1λ̄2e

−ϕ(z1)
2
−ϕ(z2)

2
+ϕ(z1,z̄2)

)
,

where ϕ(z1, z̄2) is obtained from the Kähler potential ϕ by writing ϕ(z1) = ϕ(z1, z̄1) on the

diagonal of M ×M and extending to a neighborhood of the diagonal. When the metric is

real analytic the extension is analytic; in the general C∞ case it is almost-analytic. If we

assume in addition that xj ∈ X lie on the co-circle bundle, then λj = eiτj is uni-modular,

whence xj = (zj, τj) and

(4.11) ψ(x1, x2) = ψ(z1, τ1, z2, τ2) =
1

i

(
1− e−

ϕ(z1)
2
−ϕ(z2)

2
+ϕ(z1,z̄2)ei(τ1−τ2)

)
on X ×X.
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The kernels of the partial Szegő projectors ΠN in (4.10) are the Fourier coefficients of

Π(x, y):

ΠN(x, y) =

∫ ∞
0

∫
S1

e−iNθeitψ(rθx,y)s(rθx, y, t) dθdt(4.12)

= N

∫ ∞
0

∫
S1

eiN [−θ+tψ(rθx,y)]s(rθx, y,Nt) dθdt,

where the second line follows from a change of variable t 7→ Nt.

4.2.4. Off-diagonal estimates and scaling asymptotics

We will be using two off-diagonal estimates for the lifted Szegő kernel on X ×X. Again,

write xj = (zj, τj) for points in the co-circle bundle X. Let d(z, w) be the distance with

respect to the Kähler metric on M .

The first is an Agmon-type estimate giving global off-diagonal bounds:

(4.13)

|ΠN(x1, x2)| ≤ A1N
me−A2

√
Nd(z1,z2) for constants A1, A2 independent of N, x1, x2

due to Lindholm [43], Delin [14] and others. The second is a near diagonal Gaussian

decay estimate: There exists A3 < 1 independent of N, x1, x2 such that

|ΠN(x1, x2)| ≤
(

1

πm
+ o(1)

)
Nme−

1−A3
2

Nd(z1,z2)2 +O(N−∞) whenever d(z, w) ≤ N−
1
3 .

We refer to [57, 58, 46] for background and references.

We further use near off-diagonal scaling asymptotics from [58, 44]. At each z ∈ M

there is an osculating Bargmann–Fock or Heisenberg model associated to (TzM,Jz, hz).
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Let (u, θ1, v, θ2) be linear coordinates on TzM × S1 × TzM × S1. The model Heisenberg

Szegő kernel on the tangent space is denoted by

(4.14) ΠTzM
hz ,Jz

(u, θ1, v, θ2) : L2(TzM)→ H(TzM,Jz, hz) = HJ .

We recall that the semi-classical Szegő kernels of the Heisenberg group have the form

(4.15) ΠH
N (x1, x2) =

1

πm
NmeiN(τ1−τ2)eN(z1·z̄2− 1

2
|z1|2− 1

2
|z2|2).

In [44] the notion of K-coordinates is introduced, refining the notion of Heisenberg

coordinates in [58]. These are Kähler-type coordinates in which (4.14) equals (4.15) to

leading order (up to rescaling):

ΠTzM
hz ,Jz

(u, θ1, v, θ2) = π−mei(θ1−θ2)eu·v̄−
1
2

(|u|2+|v|2) = π−mei(θ1−θ2)ei=(u·v̄)− 1
2
|u−v|2

The lifted Szegő kernel is shown in [58] and in [44, Theorem 2.3] to have the following

scaling asymptotics.

Theorem 4.2.1. Fix P0 ∈M and choose a K-frame centered at P0. Then, identifying

coordinates (z1, τ1, z2, τ2) on X2 with coordinates (u, θ1, v, θ2) on (TzM × S1)2, we have

N−mΠN

(
u√
N
,
θ1

N
,
v√
N
,
θ2

N

)

= ΠTzM
hz ,Jz

(u, θ1, v, θ2)

(
1 +

K∑
r=1

N−r/2br(P0, u, v) +N−(K+1)/2RK(P0, u, v,N)

)
,
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where ΠTzM
hz ,Jz

is the osculating Bargmann–Fock Szegő kernel for the tangent space TzM '

Cm equipped with the complex structure Jz and Hermitian metric hz. Here,

• br =
∑2[r/2]

α=0

∑[3r/2]
j=0 (ψ2)αQr,α,3r−2j, where Qr,α,d is homogeneous of degree d and

ψ2(u, v) = u · v̄ − 1

2
(|u|2 + |v|2);

(in particular, br has only even homogeneity if r is even, and only odd homogene-

ity if r is odd);

• ‖RK(P0, u, v,N)‖Cj({|u|≤ρ, |v|≤ρ} ≤ CK,j,ρ for j ≥ 0, ρ > 0 and CK,j,ρ is indepen-

dent of the point P0 and choice of coordinates.

4.3. Proof of Theorem 4.1.6: Logarithmic Decay of Variances

The variance estimate is similar to the ones given in [57, 53, 54, 25, 24]. A key

ingredient is Egorov’s theorem in the Kähler setting, whose proof is deferred to Section 4.6.

Let π : X → M be the natural projection from the unit co-disk bundle to the base

manifold. A function f ∈ C∞(M) pulls back F := π∗f to a function on X that is

constant along the fibers X → M . Recall also that χ̃ : X → X is the contact lift of a

symplectic diffeomorphism χ : M → M for which the exponential growth estimate (4.3)

and the polynomial decay of correlations (4.4) apply.

Proposition 4.3.1 (Egorov’s theorem with remainder). Let MF denote multiplica-

tion by a smooth function F := π∗f ∈ C∞(M) that is the lift of some f ∈ C∞(M). Let

T ∈ Z be an integer. Then

UT
χ,N(ΠNMFΠN)(U∗χ,N)T = ΠNMF◦χ̃TΠN +RT

N ,
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where F ◦ χ̃T denotes the T -fold composition of F with χ̃, and RT
N is a Toeplitz operator

with

1

dN
Tr[(RT

N)∗RT
N ] = O

(
T 2

N
‖F‖2

C2e2δ0|T |
)
.

In particular, at the level of matrix elements one has

〈
UT
χ,NΠNMFΠN(U∗χ,N)T sNj , s

N
j

〉
=
〈
ΠNMF◦χ̃TΠNs

N
j , s

N
j

〉
+O

(
T 2

N
‖F‖2

C2e2δ0|T |
)
.

Taking Proposition 4.3.1 for granted, we proceed to prove Theorem 4.1.6. We write

each integral in the Cesàro sum (4.7) as a matrix element:

(4.16) −
∫
M

f(z)‖sNj ‖2
hN dV = 〈ΠNMFΠNs

N
j , s

N
j 〉.

It is convenient to introduce shorthands for the time-averages:

(4.17)



[ΠNMFΠN ]T :=
1

2T + 1

T∑
n=−T

Un
χ,N(ΠNMFΠN)U∗nχ,N ,

[F ]T :=
1

2T + 1

T∑
n=−T

F ◦ χ̃n,

[Mf ]T := M[f ]T .

Since sNj are eigensections of Uχ,N , we may replace ΠNMFΠN in (4.16) by its time average

defined in (4.17):

(4.18)

∫
M

f(z)‖sNj ‖2
hN dV =

〈
[ΠNMFΠN ]T s

N
j , s

N
j

〉
.
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Proposition 4.3.1, that is Egorov’s theorem, gives

(4.19) [ΠNMFΠN ]T = ΠN [MF ]TΠN +R
(T )
N ,

with the remainder term satisfying the error estimate

(4.20)
1

dN
Tr[(R

(T )
N )∗R

(T )
N ] = O

(
T 2‖F‖2

C2e2δ0|T |

N

)
.

Here the exponential growth condition (4.3) on χ is used.

By substituting (4.19) into (4.18), the quantum variance (4.7) can be rewritten as

VN(f) =
1

dN

dN∑
j=1

∣∣∣∣〈[MF ]T s
N
j , s

N
j

〉
+ 〈R(T )

N sNj , s
N
j 〉 − −

∫
M

f dV

∣∣∣∣2

≤ 2

dN

dN∑
j=1

∣∣∣∣〈[MF ]T s
N
j , s

N
j

〉
−−
∫
M

f dV

∣∣∣∣2 +
2

dN

dN∑
j=1

∣∣∣〈R(T )
N sNj , s

N
j 〉
∣∣∣2 .

Applying the Cauchy–Schwarz inequality to the first term and the error estimate (4.20)

to the second term, we find

VN(f) ≤ 2

dN

dN∑
j=1

−
∫
M

∣∣∣∣[f ]T‖sNj ‖2
hN −−

∫
M

f dV

∣∣∣∣2 dV +O
(
T 2‖F‖2

C2e2δ0|T |

N

)

≤ 2

dN

dN∑
j=1

−
∫
M

∣∣∣∣[f ]T −−
∫
M

f dV

∣∣∣∣2 ‖sNj ‖2
hN dV +O

(
T 2‖F‖2

C2e2δ0|T |

N

)

=
2

dN
−
∫
M

∣∣∣∣[f ]T −−
∫
M

f dV

∣∣∣∣2 ΠN(z, z) dV +O
(
T 2‖F‖2

C2e2δ0|T |

N

)
.(4.21)

Recall (cf. [70, 57]) the pointwise expansion for the Bergman kernel along the diagonal:

ΠN(z, z) = a0N
m + a1(z)Nm−1 + a2(z)Nm−2 + · · · ,
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where the coefficients aj(z) are invariant polynomials in derivatives of the metric h, and

where the leading order coefficient is a constant equal to a0 = c1(L)m/m!. Combining the

Bergman kernel expansion with (4.21) yields

VN(f) ≤
(

2c1(L)m

m!
+O

(
1

N

))(∫
M

∣∣∣∣ [f ]T −−
∫
M

f dV

∣∣∣∣2 dV)+O
(
T 2‖F‖2

C2e2δ0|T |

N

)
.

Set

T = T (N) =
1

4δ0

|logN |,

then, thanks to the decay of correlations assumption (4.4), we get (for all 0 < β < 1)

VN(f) = O
(
‖f‖2

C0,β

logN

)
+O

(
‖f‖2

C2|logN |2

N
1
2

)
+O

(
‖f‖2

C0,β

N logN

)
.

(Note ‖F‖C2 = ‖f‖C2 by definition of F = π∗f .) This completes the proof of Theo-

rem 4.1.6.

4.4. Proof of Theorem 4.1.4: Log-scale Mass Equidistribution

4.4.1. Proof of Proposition 4.1.5

We begin by defining constants κ1, κ2 that will appear in the proof. Let κ1 be any constant

satisfying

(4.22) 0 < κ1 < 1− 4mγ.
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It follows that

κ1 ≤ 1− 4γ(m+ β) for some 0 < β < 1,

whence

(4.23) |logN |4γβ−1 ≤ |logN |−4mγ−κ1 .

We also let κ2 be any constant satisfying

(4.24) 0 < κ2 <
κ1

2
.

Now fix z0 ∈M . Define symbols ρN ∈ C∞0 (B(z0, 1 + 2|logN |−
κ2
β+1 , [0, 1]) by

ρN(z) :=


1 for z ∈ B(z0, 1 + |logN |−

κ2
β+1 ),

0 for z /∈ B(z0, 1 + 2|logN |−
κ2
β+1 ).

Note that the support of ρN depends on N . We perform a further rescaling

(4.25) (D−1
εN

)∗ρN(z) = ρN(ε−1
N z).

The statement of Corollary 4.1.7 (which follows easily from Theorem 4.1.6 as discussed

in Section 4.1.3) with fz0,εN replaced by ρN(ε−1
N z) becomes

1

dN

dN∑
j=1

∣∣∣∣〈M(D−1
εN

)∗ρN
sNj , s

N
j

〉
−−
∫
M

ρN(ε−1
N z) dV

∣∣∣∣2 = O(‖ρN‖2
C0,β |logN |4γβ−1)

≤ O(‖ρN‖2
C0,β |logN |−4mγ|logN |−κ1)(4.26)
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for any κ1 satisfying (4.22). In the last line we used (4.23).

Now apply Markov’s inequality P(X ≥ a) ≤ a−1EX. We view each term of the sum

on the left-hand side of (4.26) as a random variable indexed by (N, j). The probability

measure is the normalized counting measure on the indices {0 ≤ j ≤ dN}. Finally take a

to equal |logN |ε (for some small ε > 0) times the right side of (4.26). It follows that for

any constant κ2 satisfying (4.24) there exists a full density subsequence Γ′z0 ⊂ {(N, j)}

such that the corresponding eigensections satisfy

(4.27)∣∣∣∣∫
B(z0,2)

ρN(ε−1
N z)‖sNj ‖2

hN −
1

Vol(M)

∫
B(z0,2)

ρN(ε−1
N z)

∣∣∣∣ ≤ C‖ρN‖C0,β |logN |−2mγ|logN |−κ2

for (N, j) ∈ Γ′z0 . In other words, almost all the terms in the averaged sum (4.27) each

satisfies the slightly worse than the average upper bound C‖ρN‖C0,β |logN |−2mγ|logN |−κ2 .

We then have

∫
B(z0,εN )

‖sNj ‖2
hN dV ≤

∫
B(z0,2)

ρN(ε−1
N z)‖sNj ‖2

hN dV

≤ 1

Vol(M)

∫
B(z0,2)

ρN(ε−1
N z) dV + C‖ρN‖C0,β |logN |−2mγ|logN |−κ2

≤ Vol(B(z0, εN))

Vol(M)
+ C

(
|logN |−2mγ− κ2

β+1 + ‖ρN‖C0,β |logN |−2mγ−κ2
)
.

The first inequality follows from the definition (4.25) of ρN . The second inequality follows

from the estimate (4.27). The third inequality follows from the support condition of (4.25)

and from the volume of spherical shells (the “thickness” of the shell being 2|logN |−
κ2
β+1 ):

∫
B(z0,2)

ρN(ε−1
N z) dV =

∫
B(z0,1+2|logN |−

κ2
β+1 )\B(z0,1)

ρN(ε−1
N z) dV +

∫
B(z0,1)

ρN(ε−1
N z) dV
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≤ ε2m
N

∫
B(z0,1+2|logN |−

κ2
β+1 )\B(z0,1)

dV +

∫
B(z0,εN )

dV

≤ Cε2m
N |logN |−

κ2
β+1 + Vol(B(z0, εN)),

where C depends only on (M,ω) and the choice of ρ.

Note that ‖ρN‖C0,β ≤ C(|logN |
κ2
β+1 )−β, which gives

∫
B(z0,εN )

‖sNj ‖2
hN dV ≤

Vol(B(z0, εN))

Vol(M)
+ C|logN |−2mγ

(
|logN |−

βκ2
β+1 + |logN |−

βκ2
β+1

)
=

Vol(B(z0, εN))

Vol(M)
+ o(|logN |−2mγ).(4.28)

(From (4.22) and (4.24) of how κ1, κ2 are defined, we have 0 < βκ2/(β + 1) < 1.)

A similar argument using appropriately chosen ρ̃N of the form ρ̃N(z) = ρN(3z) gives

the opposite inequality

(4.29)

∫
B(z0,εN )

‖sNj ‖2
hN dV ≥

Vol(B(z0, εN))

Vol(M)
+ o(|logN |−2mγ)

for a full density subsequence Γ′′z0 of eigensections. The intersection Γ′z0∩Γ′′z0 =: Γz0 indexes

a full density subsequence of eigensections for which (4.28) and (4.29) hold simultaneously.

This completes the proof of Proposition 4.1.5.

4.4.2. Proof of Theorem 4.1.4

Note that one must first fix a single base point z0 ∈ M for the asymptotic statement of

Proposition 4.1.5 to hold. To move towards global statements that hold for all z ∈ M

simultaneously, we introduce the concept of a log-good cover, for which we have uniform
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estimates on each element (i.e., a Kähler ball) of the cover. The existence of a cover

satisfying the following conditions is proved in [24].

Definition 4.4.1. Let εN = |logN |−γ for any fixed 0 < γ < (6m)−1 as before. A

log-good cover UN is a cover of M by geodesic balls {B(zN,α, εN)}R(εN )
α=1 with the following

properties:

• The number R(εN) of balls in the cover is bounded above

R(εN) ≤ c1ε
−2m
N (dimRM = 2m)

by some constant (independent of N) multiple of ε−2m
N .

• An arbitrary ball B(p, εN) ⊂ M is covered by at most c2 (independent of N)

number of balls from the cover.

• An arbitrary ball B(p, εN) ⊂ M contains at least one of the shrunken balls

B(zN,α,
εN
3

).

We now proceed with the proof of Theorem 4.1.4, suppressing the prime notation on γ

and εN . Let 0 < γ < (6m)−1 be given and set εN = |logN |−γ. For each N , fix a log-good

cover UN as defined above. As before, let 0 ≤ fzN,α ≤ 1 be a smooth cut-off function that

is equal to 1 on B(zN,α, 1), and vanishes outside B(zN,α, 2). Let fzN,α,εN = fzN,α(εNz).

(This is a slight abuse of notation, where we mean balls in Kähler normal coordinate

charts centered at zN,α.) In what follows, κ3 > 0 is a parameter independent of N, j, to

be chosen later.
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The extraction argument uses Markov’s inequality P(X ≥ a) ≤ a−1EX. To this end,

for each 1 ≤ j ≤ dN and 1 ≤ α ≤ R(εN) set

XN,j,α :=

∣∣∣∣ ∫
M

fzN,α,εN‖sNj ‖2
hN dV −−

∫
M

fzN,α,εN dV

∣∣∣∣2 .
We view XN,j,α as a random variable with respect to the normalized counting measure on

the set of indices 1 ≤ j ≤ dN . Thanks to Corollary 4.1.7 and (4.23), its expected value is

EXN,j,α = O(|logN |−(1−2γβ)) = O(|logN |−(4mγ+κ1)) for any κ1 satisfying (4.22).

(The error is uniform in zN,α.) In particular, we may choose κ1 to equal

(4.30) 0 < κ1 := 1− 4m(γ + β) < 1 for some 0 < β <
1− 6mγ

4m
< 1.

It follows from an application of Markov’s inequality with X = XN,j,α; with the normalized

counting measure on {1, . . . , dN}; and with a = |logN |−(4mγ−κ3), that the ‘exceptional

sets’

Λα(N) :=

{
j = 1, . . . , dN :

∣∣∣∣ ∫
M

fzN,α,εN‖sNj ‖2
hN dV −−

∫
M

fzN,α,εN dV

∣∣∣∣2 ≥ |logN |−4mγ−κ3
}

satisfy

#Λα(N)

dN
≤ C|logN |4mγ−κ3|logN |−(4mγ+κ1) = C|logN |−(1−4m(γ+β)−κ3).
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Now define ‘generic sets’

Σα(N) := {j : 1 ≤ j ≤ dN} \ Λα(N) and Σ(N) :=
⋂

α : B(zN,α,εN )∈UN

Σα(N).

The number of elements in the cover UN is of order ε−2m
N = |logN |2mγ, whence

#Σ(N)

dN
≥ 1−

∑
α

#Λα(N)

dN

≥ 1− C| logN |2mγ|logN |−(1−4m(γ+β)−κ3)

= 1− C|logN |−(1−6mγ−4mβ−κ3)

→ 1 by choosing β, κ3 > 0 sufficiently small.(4.31)

Indeed, by choice (4.30) of β, we have 1− 6mγ− 4mβ > 0, so κ3 can always be chosen to

ensure (4.31) holds. This is analogous to the estimate in [25] preceding Lemma 3.1 or in

[24, p.3263].

The construction of indexing sets Σ(N) yields a full density subsequence

Σ :=
⋃
N≥1

Σ(N)

such that, for every B(zα, εN) ∈ UN , we have

∫
B(zN,α,εN )

‖sNj ‖2
hN dV ≤

∫
B(0,2)

fzN,α,εN‖sNj ‖2
hN dV

≤ 1

Vol(M)

∫
B(0,2)

fzN,α,εN dV + C|logN |−(2mγ+κ3/2)

≤ Vol(B(zN,α, 2εN))

Vol(M)
+ o(|logN |−2mγ)
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≤ CVol(B(zN,α, εN))

simultaneously for all α = 1, . . . , R(εN) as Σ 3 (N, j)→∞. The constant C is indepen-

dent of α.

Now let p ∈ M be arbitrary. By construction, the ball B(p, εN) is contained in at

most c2 number (independent of N) of elements of the log-good cover UN . Thus,

∫
B(p,εN )

‖sNj ‖2
hN dV ≤

c2∑
i=1

1

Vol(M)

∫
B(0,2)

fzN,αi ,εN dV +o(|logN |−2mγ) ≤ CVol(B(p, εN))

for every p ∈ M as Σ 3 (N, j) → ∞. The constant C is independent of p. This is the

statement of the volume upper bound.

It remains to repeat the same construction by dilating the symbol 0 ≤ gzα ≤ 1 that

is a smooth cut-off function supported in B(zα, 1/3) and equals to 1 in B(0, 1/6). There

exists a full density subsequence Σ′ such that

∫
B(zN,α,εN/3)

‖sNj ‖2
hN dV ≥

∫
B(zα,1/3)

gzα,εN‖sNj ‖2
hN dV

≥ 1

Vol(M)

∫
B(zN,α,1/3)

gzα,εN/3 dV − C|logN |−(2mγ+κ3/2)

≥ Vol(B(zN,α, εN/6))

Vol(M)
− o(|logN |−2mγ)

≥ cVol(B(zN,α, εN))

simultaneously for all α = 1, . . . , R(εN) as Σ 3 (N, j)→∞. Now let p ∈M be arbitrary.

Every ball B(p, εN) contains at least one element B(zN,α, εN/3) ∈ UN of the log-good
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cover, whence

∫
B(p,εN )

‖sNj ‖2
hN dV ≥ cVol(B(p, εN))

for every p ∈M as Σ 3 (N, j)→∞. This is the statement of the volume lower bound.

The intersection Γ = Σ ∩ Σ′ is again a full density subsequence. By construction, the

eigensections indexed by Γ satisfy the two-sided bound: for all p ∈M ,

cVol(B(p, εN)) ≤
∫
B(p,εN )

‖sNj ‖2
hN dV ≤ CVol(B(p, εN)) as Γ 3 (N, j)→∞.

This completes the proof of Theorem 4.1.4.

4.5. Proof of Theorem 4.1.2: Log-scale Equidistribution of Zeros

Let 0 < γ < (6m)−1 from the statement of Theorem 4.1.2 be given. We distinguish

two logarithmic scales by fixing another parameter γ′:

0 < γ < γ′ <
1

6m
so that |logN |−γ′ = ε′N < εN = |logN |−γ.

Let Γ be the full density subsequence corresponding to scale ε′ as guaranteed by Theo-

rem 4.1.4. We show that the same Γ satisfies the statement of Theorem 4.1.2 at the scale

εN > ε′N .

In the notation of Section 2.6, relative to a local frame we write the eigensections

locally as

sNj = f
(N)
j eNL , f

(N)
j a local holomorphic function.
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The Poincaré–Lelong formula (2.17) reduces the growth rate of zeros to the growth rate of

the local plurisubharmonic functionN−1 log |f (N)
j |2 or to the global quasi-plurisubharmonic

function4 u
(N)
j (z) = N−1 log ‖sNj (z)‖2

hN . Fix p ∈M and consider the dilated function

(4.32) u
(N)
j (z) :=

1

N
log ‖sNj (εNz)‖2

hN = Dp∗
εN

[
1

N
log ‖sNj (z)‖2

hN

]
on B(p, 1),

where Dp
εN

is the local dilation defined by (4.6) in Kähler normal coordinates centered at

p = 0. Since Dp
εN

is a local holomorphic map, (4.32) remains quasi-plurisubharmonic. We

state a key lemma:

Lemma 4.5.1. Let Γ be the subsequence of density one for the finer scale ε′N of The-

orem 4.1.4. For (N, j) ∈ Γ, the logarithmically dilated potential (4.32) satisfies

‖u(N)
j ‖L1(B(p,1)) = o(ε2

N),

where the remainder is at a coarser scale εN .

Remark 4.5.2. We emphasize that we are assuming the eigensections indexed by Γ

satisfy

(4.33) C1
Vol(B(p, ε′N))

Vol(M)
≤
∫
B(p,ε′N )

‖sNj ‖2
hN dV ≤ C2

Vol(B(p, ε′N))

Vol(M)

and then inverse dilating B(p, εN) to B(p, 1), so that any ball B(q, ε′N) ⊂ B(p, ε) gets

inverse dilated to (slightly deformed) by (Dp
εN

)−1 to (slightly deformed) balls of radius

ε−1
N ε′N ' | logN |−γ′+γ in B(p, 1).

4‘Quasi’ means p.s.h. up to a fixed continuous term, here the potential log g where g(z) := ‖eL(z)‖2h.
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Let’s assume Lemma 4.5.1 for now and proceed to finish the proof of Theorem 4.1.2.

Using the Poincaré-Lelong formula and the fact that the holomorphic rescaling Dp
ε com-

mutes with ∂∂̄, we obtain

1

N
Dp∗
εN

[
ZsNj

]
=

√
−1

2πN
∂∂̄ log |f (N)

j (εNz)|2 =

√
−1

2πN
∂∂̄ log ‖sNj (εNz)‖2

hN +Dp∗
εN
ω.

For every test form η ∈ Dm−1,m−1(B(p, 1)) and Γ 3 (N, j)→∞, integration by parts and

Lemma 4.5.1 give

∫
B(p,1)

(
η ∧ 1

N
Dp∗
εN

[
ZsNj

])
=

∫
B(p,1)

η ∧Dp∗
εN
ω +

∫
B(p,1)

√
−1

2πN
log ‖sNj (εNz)‖2

hN∂∂̄η(z)

=

∫
B(p,1)

η ∧Dp∗
εN
ω + o(ε2

N).(4.34)

Locally at p = 0, the Kähler potential can be written as ϕ(z) = |z|2 +O(|z|4), so

(4.35) Dp∗
εN
ω =

√
−1

2π
Dp∗
εN
∂∂̄ϕ = ε2

N

√
−1

2π
∂∂̄|z|2 +O(ε4

N) = ε2
Nω

p
0 +O(ε4

N),

with ωp0 the flat Kähler form. Combining (4.34) and (4.35) (and dividing by ε2
N) yields

∫
B(p,1)

(
η ∧ 1

Nε2
N

Dp∗
εN

[
ZsNj

])
=

∫
B(p,1)

η ∧ ωp0 + o(1) as Γ 3 (N, j)→∞,

which is equivalent to the statement of Theorem 4.1.2.

Proof of Lemma 4.5.1. The argument is similar to the one in [57] except for the

dilation of the plurisubharmonic functions. The log-scale quantum ergodicity successfully

replaces unscaled quantum ergodicity in the key step of the argument due to the fact that
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the local dilation is holomorphic. But we need to use two logarithmic scales and for later

applications we need the remainder estimate.

Let N0 be sufficiently large so that for all N ≥ N0, eL is a local frame for L over

an open subset U containing B(p, 1) and eNL is the corresponding frame for LN . Since

g(z) = ‖eL(z)‖2
h, we have

‖eNL (z)‖2
hN = gN and ‖sNj (εNz)‖2

hN = |fNj (εNz)|2gN(εNz).

We first show that ‖u(N)
j ‖L1 → 0, and then indicate how the argument can be adapted to

yield the o(ε2
N) improvement.

Observe that any L2-normalized section satisfies

‖sN(z)‖2
hN ≤ ΠN(z, z) =

(
c1(L)m

m!
+O

(
1

N

))
Nm.

Hence ‖sN(z)‖hN ≤ CNm/2 for some C <∞ and taking the logarithm gives

(i) The functions u(N) are uniformly bounded above on M ;

(ii) lim supN→∞ uN ≤ 0.

Now consider the plurisubharmonic function

v
(N)
j (z) :=

1

N
log|f (N)

j (εNz)|2 = u
(N)
j (z)− log g(εNz) ∈ PSH(B(p, 1)).

It is clear that v
(N)
j are uniformly upper bounded. A standard result on plurisubharmonic

functions (see [26, Theorem 4.1.9]) then implies a subsequence v
(Nk)
j either converges

uniformly to −∞ on B(p, 1) or else has a subsequence that is convergent in L1
loc(B(p, 1)).
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Let us rule out the first possibility. If it occurred, there would exist K > 0 such that

1

Nk

log ‖sNkj (εNkz)‖2
hNk
≤ −1 ⇐⇒ ‖sNkj (εNkz)‖2

hNk
≤ e−Nk on B(p, 1) for all k ≥ K.

Equivalently, the same exponential decay estimate holds on B(p, εNk) for the undilated

sections. But this contradicts the lower bound of (4.33).

Therefore the sequence v
(N)
j is pre-compact in L1(B(p, 1)), and every sequence contains

a subsequence, which we continue to denote by {v(Nk)
j }, that converges in L1(B(p, 1))

to some v ∈ L1(B(p, 1)). By passing if necessary to a further subsequence, we may

assume that {v(Nk)
j } converges pointwise almost everywhere in B(p, 1) to v, and hence by

observation (ii),

v(z) = lim sup
(Nk,j)→∞

(
u

(Nk)
j (z)− log g(εNkz)

)
≤ 0 a.e. on B(p, 1).

Let

v∗(z) := lim sup
w→z

v(w) ≤ 0

be the upper-semicontinuous regularization of v. Then v∗ is plurisubharmonic on B(p, 1)

and v∗ = v almost everywhere. We claim that v∗ = 0. To this end, we use the second

scale ε′N . If v∗ 6= 0, then

‖v(Nk)
j +Dp∗

εNk
log g‖L1(B(p,1)) = ‖u(Nk)

j ‖L1(B(p,1)) ≥ δ > 0.

Hence, for some c > 0, the open set Uc = {z ∈ B(p, 1) : v∗(z) < −c} is nonempty. For

sufficiently large k, this set contains a ball B(q, ε′Nkε
−1
Nk

). By Hartogs’ Lemma, there exists
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a positive integer K such that v
(Nk)
j (z) ≤ −c/2 for z ∈ B(q, ε′Nkε

−1
Nk

) and k ≥ K, that is

‖sNkj (εNz)‖2
hNk
≤ e−cNk/2 on B(q, ε′Nkε

−1
Nk

) for all k ≥ K.

But this again contradicts the lower bound in Theorem 4.1.4 on B(q, ε′Nk). We have

therefore proved ‖u(N)
j ‖L1(B(p,1)) = o(1).

We now exploit the exponential decay to prove the sharper result ‖u(N)
j ‖L1(B(p,1)) =

o(ε2
N). Consider the renormalized sequence

ε−2
N u

(N)
j =

1

Nε2
N

D∗εN log ‖sNj (z)‖2
hN .

Note that this is still an upper-bounded sequence of plurisubharmonic functions because

of the exact cancellation between dilating by Dp∗
εN

and dividing by ε2
N . Indeed, log g =

|z|2 +O(|z|4) as |z| → p = 0 in local coordinates, so ε−2
N Dp∗

εN
log g remains bounded.

We now run through the previous argument again with this re-normalized sequence.

If ε−2
Nk
vNkj → −∞ uniformly on compact subsets of B(p, 1), then

1

Nkε2
Nk

‖sNkj (εNkz)|2
hNk
≤ −1 ⇐⇒ ‖sNkj (εNkz)‖2

hNk
≤ e

−ε2NkNk on B(p, 1),

a contradiction to (4.33) as before. The alternative (namely ε−2
Nk
vNkj being pre-compact)

leads to the estimate

‖sNkj (εNz)‖2
hNk
≤ e

−cε2NkNk/2 on B(q, ε′Nkε
−1
Nk

) for all k ≥ K,

again a contradiction. This completes the proof of Lemma 4.5.1. �



86

4.6. Appendix: Egorov’s Theorem

The purpose of this section is to prove a long time Egorov’s theorem with remainder

as stated in Proposition 4.3.1. It is convenient to work on the contact manifold (X,α) by

lifting χ onM to the contact transformation χ̃ onX and viewing sections sNj ∈ H0(M,LN)

as equivariant functions ŝNj ∈ L2(X) as discussed in Section 4.2.1.

We recall the setting. Let χ be a quantizable symplectic map (whose quantization

Uχ,N is defined in (4.10)) satisfying the exponential growth condition (4.3) and decay of

correlations condition (4.4). Let MF denote multiplication by F ∈ C∞(X) and F ◦ χ̃T

the composition of F with the T -fold iterate of χ̃ (or χ̃−1, depending on the sign of T ).

Proposition 4.3.1, which is a statement on the base manifold M , is equivalent to the

following statement on the co-circle bundle X.

Proposition 4.6.1. Let χ be a quantizable symplectic map on M satisfying conditions

(4.3) and (4.4). Let χ̃ denote its lift to (X,α) as a contact transformation. Let F ∈

C∞(X) and T ∈ N. Then

UT
χ,N(ΠNMFΠN)(U∗χ,N)T = ΠNMF◦χ̃TΠN +R

(T )
N ,

where R
(T )
N is a Toeplitz operator with

1

dN
‖R(T )

N ‖
2
HS =

1

dN
Tr[(R

(T )
N )∗R

(T )
N ] = Oχ̃,F,h

(
T 2

N
‖F‖2

C2e2δ0|T |
)
,

where the O symbol depends on the metric h and a fixed number of derivatives of χ̃, F

depending on the dimension.
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The proposition is the analogue for Toeplitz operators of the well-known estimate of the

Egorov remainder, except that the remainder is stated in terms of the normalized Hilbert–

Schmidt norm rather than the operator norm5. The Hilbert-Schmidt norm is simpler to

estimate since it is defined by a trace, and the remainder estimate is simply the standard

one in the stationary phase expansion of Hörmander [26]. Sharper remainder estimates

have been proved for quantizations of Hamiltonian flows on T ∗Rn in [6, Theorem 1.4,

Theorem 1.8]. Subsequently, there are many articles proving related results for T ∗M . But

there do not seem to exist parallel results for Toeplitz operators in the Kähler setting,

in particular for powers of a map rather than for Hamiltonian flows. In special cases

such as symplectic toral automorphisms and their perturbations, Egorov’s theorem with

remainder have been proved (see [53, 54]) but the proofs use special properties of the

metaplectic representation and do not generalize to our setting. Egorov’s theorem without

estimate of the time-dependence of the remainder may be obtained from the composition

theorem for Toeplitz operators in [3].

Remark 4.6.2. The strategy of the proof is to use induction on T . At each stage,

the remainder terms from the previous stage are left ‘untouched’, and are estimated using

that unitary conjugations do not change Hilbert-Schmidt norms. Unlike most statements

of the Egorov theorem, we only need the principal term and a remainder of order N−1,

and we do not try to give a formula for the lower order terms in the symbol. Thus, at

the T th stage we only conjugate by one power of Uχ,N a Toeplitz operator whose symbol

is of the form F ◦ χ̃T−1. This is why the resulting remainder after T steps involves the

5The more difficult norm estimate of the remainder will be presented elsewhere.
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C2 norm of F ◦ χ̃T and otherwise only involves a fixed number of derivatives of the data

χ̃, h, F .

4.6.1. Reduction to T = 1 case

In this section we reduce the proof of Proposition 4.6.1 to the proof of the following

lemma.

Lemma 4.6.3. Under the same assumption as Proposition 4.6.1, we have

(4.36) Uχ,NΠNMFΠNU
∗
χ,N = ΠNMF◦χ̃ΠN +RN ,

where RN is a Toeplitz operator with

1

dN
‖RN‖2

HS =
1

dN
Tr[R∗NRN ] = Oχ̃,F,h

(
1

N
‖F‖2

C2e2δ0

)
.

We now indicate how Lemma 4.6.3 implies the statement of Egorov’s theorem. The

rest of the section is then devoted to proving Lemma 4.6.3.

Proof of Proposition 4.6.1 given Lemma 4.6.3. Given T ∈ N and two opera-

tors U and A, we introduce the shorthand

AdT (U)(A) = UTA(U∗)T

for the T -fold conjugation of A by U . To keep track of the remainders we henceforth

denote RN in the statement of Lemma 4.6.3 by R
(1)
N . Invoking the assumption (4.3) that
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‖χ̃T‖2
C2 = O(e2|T |δ0), Lemma 4.6.3 reads


Ad(Uχ,N)ΠNMFΠN = ΠNMF◦χ̃ΠN +RN ,

1

dN
Tr[R∗NRN ] = O

(
1

N
‖F‖2

C2e2δ0

)
.

We now iterate the conjugation. Conjugating a second time by Uχ,N yields two terms:

(4.37) Ad2(Uχ,N)ΠNMFΠN = Ad(Uχ,N)ΠNMF◦χ̃ΠN + Ad(Uχ,N)R
(1)
N .

It follows from Lemma 4.6.3 (with MF replaced by MF◦χ̃) that the first term on the

right-hand side of (4.37) equals

(4.38)


Ad(Uχ,N)ΠNMF◦χ̃ΠN = ΠNMF◦χ̃2ΠN + R̃

(2)
N ,

1

dN
Tr[(R̃

(2)
N )∗R̃

(2)
N ] = O

(
1

N
‖F ◦ χ̃‖2

C2e2δ0

)
= O

(
1

N
‖F‖2

C2e4δ0

)
.

In the error estimate we again made use of the exponential growth assumption (4.3).

The unitarity of Uχ,N implies that the second term Ad(Uχ,N)R
(1)
N in (4.38) satisfies

(4.39) Tr[(Ad(Uχ,N)R
(1)
N )∗Ad(Uχ,N)R

(1)
N ] = Tr[(R

(1)
N )∗R

(1)
N ] = O

(
1

N
‖F‖2

C2e2δ0

)
.

Combining (4.37) and (4.38) gives

(4.40) Ad2(Uχ,N)ΠNMFΠN = ΠNMF◦χ̃2ΠN + R̃
(2)
N + Ad(Uχ,N)R

(1)
N .

Set

(4.41) R
(2)
N := R̃

(2)
N + Ad(Uχ,N)R

(1)
N ,
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then (4.38) and (4.39) imply

1

dN
Tr[(R

(2)
N )∗R

(2)
N ] ≤ 2

dN
Tr[(R̃

(2)
N )∗R̃

(2)
N + (R

(1)
N )∗R

(1)
N ]

= 2

(
O
(

1

N
‖F‖2

C2e4δ0

)
+O

(
1

N
‖F‖2

C2e2δ0

))
= 3O

(
1

N
‖F‖2

C2e4δ0

)
.(4.42)

The statement of Proposition 4.6.1 with T = 2 is proved thanks to (4.40), (4.41) and

(4.42).

The calculation is similar when Ad(Uχ,N) is iterated T times. By a similar stationary

phase computation presented in the subsequent section, it is easy to see that on the T th

iterate, we pick up the leading order term:
Ad(Uχ,N)ΠNMF◦χ̃T−1ΠN = ΠNMF◦χ̃TΠN + R̃

(T )
N ,

1

dN
Tr[(R̃

(T )
N )∗R̃

(T )
N ] = O

(
1

N
‖F‖2

C2e2δ0|T |
)
.

We also have to conjugate the (T − 1) ‘old’ remainders from the (T − 1)st iterate:

Ad(Uχ,N)R̃
(T−1)
N + Ad2(Uχ,N)R̃

(T−2)
N + Ad3(Uχ,N)R̃

(T−3)
N + · · ·+ AdT−1(Uχ,N)R̃

(1)
N .

The Hilbert–Schmidt norm of R̃
(`)
N does not change under conjugation by Uχ,N . Therefore,

the combined remainder term

R
(T )
N := R̃

(T )
N + Ad(Uχ,N)R̃

(T−1)
N + Ad2(Uχ,N)R̃

(T−2)
N + · · ·+ AdT−1(Uχ,N)R̃

(1)
N
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at the T th stage of the iterate has the estimate

1

dN
Tr[(R

(T )
N )∗R

(T )
N ] ≤ T

dN

T∑
`=1

Tr[(R
(`)
N )∗R

(`)
N ] = T

T∑
`=1

O
(

1

N
‖F‖2

C2e2δ0|`|
)
.

Replacing each e2δ0|`| in the above sum by e2δ0|T | for ` = 1, 2, . . . , T completes the proof

of Proposition 4.6.1 assuming Lemma 4.6.3. �

4.6.2. Proof of Lemma 4.6.3 via stationary phase computation

Let

L̃N := Uχ,NΠNMFΠNU
∗
χ,N and LN := ΠNMF◦χ̃ΠN ,

From the definition (4.10) of Toeplitz quantization, the conjugated operator has the

form

L̃N = ΠNσNTχ̃ΠNMFΠNTχ̃−1σ̄NΠN .

Next, insert the identity operator Id = Tχ̃−1Tχ̃ between the operators ΠN and MF in the

above expression. Note that Tχ̃FTχ̃−1 = F ◦ χ̃. Hence, the expression becomes

(4.43) L̃N = ΠNσNΠχ̃
NMF◦χ̃Πχ̃

N σ̄NΠN .

where Πχ̃
N := Tχ̃ΠNTχ̃−1 is the operator with Schwartz kernel Πχ̃

N(x, y) = ΠN(χ(x̃), χ(ỹ)).

In the notation (4.36),

RN = L̃N − LN = ΠN

(
σNΠχ̃

NMF◦χ̃Πχ̃
N σ̄N −MF◦χ̃

)
ΠN .
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Evidently,

(4.44) Tr[R∗NRN ] = Tr[L̃∗N L̃N ]− 2 Tr[L̃NLN ] + Tr[L∗NLN ].

We evaluate each term asymptotically by stationary phase with remainder and add the

terms. Lemma 4.6.3 follows from:

Lemma 4.6.4. We have

(4.45)
1

dN
Tr[L∗NLN ] =

∫
M

|F ◦ χ̃|2 dV +O
(

1

N
‖F‖2

C2e2δ0

)
.

Moreover,

1

dN
Tr[L̃∗N L̃N ] =

1

dN
Tr[L̃∗NLN ] +O

(
1

N
‖F‖2

C2e2δ0

)
=

1

dN
Tr[L∗NLN ] +O

(
1

N
‖F‖2

C2e2δ0

)
.

In particular, thanks to (4.44) we have

1

dN
Tr[R∗NRN ] = O

(
1

N
‖F‖2

C2e2δ0

)
.

The first statement (4.45) is the well-known Szegő limit formula with remainder. Since

χ̃ is symplectic it may be removed from F ◦ χ̃ in the integral. The leading order term is

calculated in [3] using the homogeneous calculus of Toeplitz operators. The semiclassical

calculation and the remainder estimate may be calculated by the method below.

For the rest of the section, we calculate the most difficult of the three terms, namely

d−1
N Tr[L̃∗N L̃N ], asymptotically to leading order by the method of stationary phase for
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oscillatory integrals with complex phases of positive type. The calculations of the other

two terms are similar and therefore omitted.

All three traces in (4.44) have the same leading order term (4.45), and so the leading

term cancels when taking the sum (4.44). The cancellation between the ‘symbols’ σN and

the Hessian determinants in the calculation of the leading order terms (4.45) is guaranteed

by unitarity of Uχ,N (see also [69] for explicit calculation of the symbol).

From (4.43), we have

(4.46)
1

dN
Tr[L̃∗N L̃N ] =

1

dN
Tr
[
ΠN σ̄NΠχ̃

NMF◦χ̃Πχ̃
NσNΠNσNΠχ̃

NMF◦χ̃Πχ̃
N σ̄N

]
.

Note that we may drop the factor of ΠN at the end when computing the trace. We use

the shorthand

ỹj := χ̃(yj), yj ∈ X.

Recall that σN denotes multiplication by the symbol σN , and the Szegő projectors have

Schwartz kernels

Πχ̃
N(y1, y2) = ΠN(ỹ1, ỹ2),

ΠN(y1, y2) = N

∫ ∞
0

∫
S1

eiN [−θ+tψ(rθy1,y2)]s(rθy1, y2, Nt) dθdt.

The last equality is the Boutet de Monvel–Sjöstrand parametrix introduced in Section 4.2.3.

Using Schwartz kernels, the trace (4.46) can be written as the following oscillatory integral

1

dN
Tr[L̃∗N L̃N ] =

1

dN

∫
X

(L̃∗N L̃N)(x, x) dx
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=
1

dN

∫
X

(
N6

∫
X5×(S1)6×(R+)6

A(x,y,θ, t)eiNΨ(x,y,θ,t) dtdθdy

)
dx,

where

y = (y1, . . . , y5) ∈ X5, θ = (θ1, . . . , θ6) ∈ (S1)6, t = (t1, . . . , t6) ∈ (R+)6

and the amplitude and phase function are given by

A = s(rθ1x, y1, t1N)σ̄N(y1)s(rθ2 ỹ1, ỹ2, t2N)F (ỹ2)s(rθ3 ỹ2, ỹ3, t3N)σN(y3)

× s(rθ4y3, y4, t4N)σN(y4)s(rθ5 ỹ4, ỹ5, t5N)F (ỹ5)s(rθ6 ỹ5, x̃, t6N)σ̄N(x),

Ψ = t1ψ(rθ1x, y1)− θ1 + t2ψ(rθ2 ỹ1, ỹ2)− θ2 + t3ψ(rθ3 ỹ2, ỹ3)− θ3

+ t4ψ(rθ4y3, y4)− θ4 + t5ψ(rθ5 ỹ4, ỹ5)− θ5 + t6ψ(rθ6 ỹ5, x̃).

The functions s and ψ come from the Boutet de Monvel–Sjöstrand parametrix (4.12), and

σN comes from the quantization formula (4.10).

The method of stationary phase is used to compute the inner integral. The off-diagonal

exponential decay estimate (4.13) for the Bergman kernel allows us to localize the X5-

space integral to the region {d(yj, yk) < N−1/3} and absorb the error in the remainder

estimate for RN . To locate the critical points of the phase function Ψ, recall from (4.11)

that the function ψ has the form

ψ(x, y) =
1

i

(
1− Λ(x, y)

)
with Λ(x, y) := e−

ϕ(z1)
2
−ϕ(z2)

2
+ϕ(z1,z̄2)ei(τ1−τ2),
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from which it follows

ψ(rθx, y) =
1

i

(
1− eiθΛ(x, y)

)
.

Therefore,

Dt1Ψ = ψ(rθ1x, y1) = 0 ⇐⇒ 1 = eiθ1Λ(x, y1).

The Schwarz inequality shows that a real critical point exists if and only if x = y1. Similar

computations for DtjΨ demand that ỹ1 = ỹ2 = ỹ3, y3 = y4, and ỹ4 = ỹ5 = x̃. The real

critical point of Ψ must therefore satisfy

(4.47) x = y1 = y2 = y3 = y4 = y5.

Consider now the θ1 derivative:

Dθ1Ψ = −t1eiθ1Λ(x, y1)− 1 = 0 ⇐⇒ 1 = −t1eiθ1Λ(x, y1).

From the constraint (4.47), we must have x = (z1, τ1) = (z2, τ2) = y1, so Λ(x, y1) = 1.

It follows that t1 = −1 and θ1 = 0. Similar computations for DθjΨ show that the real

critical point of Ψ satisfies

(4.48) θ1 = · · · = θ6 = 0 and t1 = · · · = t6 = −1.
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Finally, we claim that DyjΨ automatically vanishes at the points satisfying (4.47) and

(4.48). Indeed, at the critical point we have

Dy1Ψ

∣∣∣∣x=y1=···=y5
θj=0
tj=−1

= −Dy1ψ(x, y1)|y1=x −Dy1ψ(ỹ1, ỹ2)|y2=y1=x.

Recall, however, that along the diagonal of X ×X we have

d1ψ = −d2ψ =
1

i
dρ|X = α,

where α is the contact form. Here dj refers to the derivative with respect to the jth slot of

ψ(·, ·). The assumption that χ lifts to a contact transformation, that is, χ̃∗α = α, implies

−Dy1ψ(x, y1)|y1=x−Dy1ψ(ỹ1, ỹ2)|y2=y1=x = α(x)−1

i
dρ(χ̃(x)) = α(x)−χ̃∗

(
1

i
dρ

)
(x) = 0.

Similar computations for DyjΨ show that the real critical points of Ψ are completely given

by (4.47) and (4.48).

It is straightforward to verify that the Hessian at the critical point is a block matrix

of the form

Hess Ψ(x) =



DttΨ = 0 DtθΨ = −Id Dt1Ψ Dt2Ψ

DθtΨ = −Id DθθΨ = i · Id Dθ1Ψ Dθ2Ψ

D1tΨ D1θΨ D11Ψ D12Ψ

D2tΨ D2θΨ D21Ψ D22Ψ
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with

Dt1Ψ = −Dt2Ψ =



α(x) 0 0 0 0

−α(x) α(x) 0 0 0

0
. . . . . . 0 0

0 0
. . . . . . 0

0 0 0 −α(x) α(x)

0 0 0 0 −α(x)


= −(D2tΨ)t = (D1tΨ)t,

Dθ1Ψ = −Dθ2Ψ =



−iα(x) 0 0 0 0

iα(x) −iα(x) 0 0 0

0
. . . . . . 0 0

0 0
. . . . . . 0

0 0 0 iα(x) −iα(x)

0 0 0 0 iα(x)


= −(D2θ)

t = (D2θΨ)t,

D11Ψ =



−dα(x) dα(x) 0 0 0

dα(x)
. . . . . . 0 0

0
. . . . . . . . . 0

0 0
. . . . . . dα(x)

0 0 0 dα(x) −dα(x)


= D22Ψ.

This Hessian matrix is invertible by the Schur complement formula (recall that −idρ = α

is non-vanishing in a neighborhood of X). The method of stationary phase shows that
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the Schwartz kernel (L̃∗N L̃N)(x, x) along the diagonal has the expansion

(4.49) (L̃∗N L̃N)(x, x) ∼ N6

(N12+10m det Hess Ψ(x))1/2

∑
j,k,`,p,q,u,v≥0

N6m−j−k−`−p−q−u−v

× Lj
(
sk(x, x)s`(x, x)sp(x̃, x̃)sq(x̃, x̃)su(x̃, x̃)sv(x̃, x̃)|σN(x)|4|F (x̃)|2

)
,

where Lj are differential operators of order at most 2j that can be explicitly expressed in

terms of sk and the Hessian [26, Theorem 7.7.5].

Observe that the leading order term (obtained from the above expression by setting

j = k = · · · = v = 0) is of order N6(N12+10m)−1/2N6m = Nm. The symbol σN is

constructed to make Uχ,N unitary, i.e., U∗χ,NUχ,N = ΠN , and by taking the symbol of this

equation it follows that

(4.50) (det Hess Ψ(x))−1/2s0(x, x)2s0(x̃, x̃)4|σN(x)|4 = 1.

Indeed, if we set F ≡ 1 so that MF = Id, then L̃∗N L̃N = Uχ,NU
∗
χ,NUχ,NU

∗
χ,N = Id. The

identity (4.50) follows from plugging this particular choice of F into (4.49). Therefore,

after dividing by dN ∼ Nm (for N large enough), the leading order term of d−1
N Tr[L̃∗N L̃N ]

is of order 0, and is equal to
∫
|F (x̃)|2 =

∫
|F ◦ χ̃|2, which agrees with (4.45). The second

order term (cf. [26, Theorem 7.7.5]) of L̃∗NLN(x, x) is bounded above in sup norm by

C
∑
|α|≤2

∥∥∥Dα
(

(det Hess Ψ(x))−
1
2 s0(x, x)2s0(χ̃(x), χ̃(x))4|σN(x)|4|F ◦ χ̃(x)|2

)∥∥∥
∞

= C
∑
|α|≤2

∥∥∥Dα|F ◦ χ̃(x)|2
∥∥∥
∞
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≤ C

(∑
|α|≤2

∥∥∥Dα|F ◦ χ̃(x)|
∥∥∥
∞

)2

≤ C‖F‖2
C2e2δ0 .

for some constant C that depends on a fixed number of derivatives of the phase function

Ψ (and hence on χ̃) but is otherwise independent of N . Dividing through by dN ∼ Nm

yields the desired error estimate O(N−1‖F‖2
C2e2δ0). This completes the computation for

L̃N .
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CHAPTER 5

Log-scale Equidistribution of Nodal Sets in Grauert Tubes

This chapter discusses small-scale equidistribution results, namely Theorem 5.1.1,

Theorem 5.1.4, and Theorem 5.7.2, for complexified eigenfunctions on Grauert tubes.

Throughout, let (Mn, g) be a compact, negatively curved, real analytic Riemannian man-

ifold without boundary. By a well-known theorem of Bruhat–Whitney, M admits a com-

plexification MC into which it embeds as a totally real submanifold. The metric g on M

induces a plurisubharmonic function ρ whose square root
√
ρ : MC → [0,∞) is called the

Grauert tube function. There exists a geometric constant τ0 = τ0(M, g) > 0 so that, for

each τ ≤ τ0, the sublevel set

Mτ := {ζ ∈MC :
√
ρ(ζ) < τ}

is a strictly pseudo-convex domain in MC. We call Mτ the Grauert tube of M of radius τ .

The (1, 1)-form ω := −i∂∂̄ρ endows Mτ with a Kähler metric and (M, g) ↪→ (Mτ , ω) is an

isometric embedding. (The unusual sign convention that makes the Kähler form negative

is adopted from [22].) We write

(5.1) dµ := ωn and dµτ :=
ωn

d
√
ρ |∂Mτ

=
ωn

dτ
.

for the Kähler volume form on Mτ and the Liouville surface measure on ∂Mτ , respectively.

There exists a diffeomorphism E, defined in (5.8), between Mτ and the co-ball bundle
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B∗τM = {(x, ξ) ∈ T ∗M : |ξ|gx < τ}. The Kähler form ω on Mτ is the pullback under E

of the standard symplectic form on B∗τM . Conversely, E endows B∗τM with a complex

structure Jg adapted to g. Definitions and background are recalled in Section 5.2; see also

[23, 38].

5.1. Main Results

Every eigenfunction ϕj on M admits an analytic extension ϕC
j to the maximal Grauert

tube Mτ0 . The analytically continued eigenfunctions are smooth on the boundaries ∂Mτ

for every τ ≤ τ0. The complex zero set of ϕC
j is the complex hypersurface

Zj := {ζ ∈Mτ0 : ϕC
j (ζ) = 0}.

The zero sets define currents [Zj] of integration in the sense that for every smooth (n −

1, n− 1) test form η ∈ Dn−1,n−1(Mτ0), we the pairing

(5.2) 〈[Zj], η〉 :=

∫
Zj

η =

∫
Mτ0

i

2π
∂∂̄ log|ϕC

j |2 ∧ η

is a well-defined closed current1. In the special case η = fωn−1, the zero set defines a

positive measure |Zj| by

〈|Zj|, f〉 :=

∫
Zj

fωn−1, f ∈ C(Mτ0).

1Since Zj may be singular, we include background on the last statement in Section 5.8.
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The limit distribution of the zero currents (5.2) has been investigated in [71]. It was

shown that on a compact, real analytic, negatively curved manifold, one has

(5.3)
1

λjk
[Zjk ] ⇀

i

π
∂∂̄
√
ρ weakly as currents on Mτ0

along a density one subsequence of eigenvalues λjk . The motivating problem of this

article is to obtain a similar convergence theorem on balls in Mτ0\M with logarithmically

shrinking radii of size

ε(λj) := (log λj)
−α for some fixed α > 0 to be specified.

The parameter α depends only on the dimension, and is independent of the frequency λj.

The resulting log-scale convergence theorems, Theorem 5.1.1 and Theorem 5.7.2, along

with their proofs, are generalizations of those in [11] in the setting of eigensections of

ample line bundles over a compact boundaryless Kähler manifold, but have several new

features.

5.1.1. Log-scale equidistribution of zeros

Theorem 5.1.1 (Equidistribution of complex zeros, Chang–Zelditch [10]). Let (M, g)

be a real analytic, negatively curved, compact manifold without boundary. Let ω := −i∂∂̄ρ

be the Kähler form on the Grauert tube Mτ0. Assume that

0 ≤ α <
1

2(3n− 1)
, ε(λj) = (log λj)

−α.
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Then there exists a full density subsequence of eigenvalues λjk such that for any f ∈

C(Mτ0) and for any arbitrary but fixed ζ0 ∈Mτ0 \Mτ , we have

(5.4)

∣∣∣∣∣ 1

λjkε(λjk)
2n−1

∫
Zjk∩B(ζ0,ε(λjk ))

fωn−1

− 1

ε(λjk)
2n−1

∫
B(ζ0,ε(λjk ))

f
i

π
∂∂̄|=(ζ − ζ0)|g0 ∧ ωn−1

0

∣∣∣∣∣ = o(1).

Here, ω0 := −i∂∂̄|=(ζ − ζ0)|2g0 denotes the flat Kähler form in local Kähler coordinates

centered at ζ0, with | · |g0 the Euclidean distance. The o(1) remainder is uniform for any

ζ0 lying in an ‘annulus’ 0 < τ1 ≤
√
ρ(ζ0) ≤ τ0.

Theorem 5.1.1 is deduced from a rescaled version given in Theorem 5.7.2. The latter

theorem is stated using the holomorphic dilation introduced in Section 5.3.1. Briefly,

define dilation operator Dζ0
ε(λj)

: ζ 7→ ζ0 + ε(λj)(ζ − ζ0) in Kähler normal coordinates

around ζ0. The zero currents [Zj] on shrinking balls B(ζ0, ε(λj)) pulls back to currents

Dζ0∗
ε(λj)

[Zj] on a fixed unit ball B(ζ0, 1) ⊂ Cn. The normalizing factors in Theorem 5.1.1

arise from homogeneity and rescaling: ωn−1, ωn−1
0 are homogeneous of degree 2n− 2 and

i
π
∂∂̄|=(ζ − ζ0)|g0 is homogeneous of degree 1. The scaling of the nodal current on the left

side is the same as that of its limit current i
π
∂∂̄|=(ζ − ζ0)|g0 .

Remark 5.1.2. In the statement of Theorem 5.1.1, the center ζ0 is arbitrary but fixed

in the interior of Mτ0\M and only the radii of the balls are shrinking. Also, note that ζ0

must lie away from the totally real submanifold M of Mτ0, or equivalently the zero section

0M of B∗τ0M . Reasons are discussed in Section 5.1.4.
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Remark 5.1.3. The zero sets Zj may be singular, but it is known that the singular

set of the real nodal set is of real codimension four (see Section 5.8). For generic metrics,

all of the nodal sets are regular [63].

5.1.2. Log-scale equidistribution of masses

Knowledge of the log-scale L2 masses of eigenfunctions is required to deduce Theo-

rem 5.1.1. To state the relevant result, we need some more notation:

Θj(ζ) := ‖ϕC
j |∂M√ρ(ζ) ‖L2(∂M√ρ(ζ)), Uj(ζ) :=

ϕC
j (ζ)

Θj(ζ)
, (ζ ∈Mτ0 \M)

In words, the normalizing factor Θj(ζ) is the L2-norm (of the restriction ϕC
j |∂M√ρ(ζ)) of

ϕC
j along the boundary of the Grauert tube of radius

√
ρ(ζ). The function Uj is the (the

unrestricted) complexified eigenfunction ϕC
j normalized by this L2-norm. Finally, let

uτj (Z) := Uj(Z) |∂Mτ=
ϕC
j (Z) |∂Mτ

‖ϕC
j |∂Mτ ‖L2(∂Mτ )

, (Z ∈ ∂Mτ , 0 < τ ≤ τ0)

be the restriction of Uj to the Grauert tube of radius
√
ρ(ζ) = τ . (We denote points by

Z instead of ζ when working on a fixed slice ∂Mτ .) The global behavior of L2 masses

of Uj and uτj are known. Specifically, Zelditch [71, Lemma 1.4, Lemma 4.1] proved the

existence of a density one subsequence {ϕjk} of orthonormal basis such that

(5.5) |Ujk |2 ωn ⇀ ωn and |uτjk |
2 dµτ ⇀ dµτ

in the sense of weak* convergence on C(Mτ0) and on C(∂Mτ ) for each 0 < τ ≤ τ0, respec-

tively. (Recall (5.1) for the definitions.) Integrating over Mτ0 (resp. ∂Mτ ) implies the L2
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masses of Ujk (resp. uτjk) become equidistributed in all of Mτ0 (resp. ∂Mτ ). It is not known

whether the convergence (5.5) holds at logarithmic length scales (i.e., simultaneously on

all Kähler balls of logarithmically shrinking radii). Luckily, all that is needed for the proof

of Theorem 5.1.1 is a uniform L2 volume comparison theorem, which we presently state.

Theorem 5.1.4 (Equidistribution of masses, Chang–Zelditch [10]). Let (M, g) be a

real analytic, negatively curved, compact manifold without boundary. Let ω := −i∂∂̄√ρ

denote the Kähler form on the Grauert tube Mτ0. Assume that

0 ≤ α <
1

2(3n− 1)
, ε(λj) = (log λj)

−α.

Then there exists a full density subsequence of eigenvalues λjk such that for arbitrary but

fixed ζ0 ∈Mτ0\M , there is a uniform two-sided volume bound

(5.6) cVolω(B(ζ0, ε(λjk))) ≤
∫
B(ζ0,ε(λjk ))

|Ujk |2dµ ≤ CVolω(B(ζ0, ε(λjk))).

The constants c, C are geometric constants depending only on
√
ρ(ζ0); they are uniform

for any ζ0 lying in an ‘annulus’ 0 < τ1 <
√
ρ(ζ0) ≤ τ0.

Remark 5.1.5. Only the lower bound in the statement of Theorem 5.1.4 – used cru-

cially in a proof by contradiction argument for Proposition 5.7.5 around (5.42)–(5.43) –

is needed to imply Theorem 5.1.1.

Log-scale results of this kind, which we briefly recall in Section 5.5, were first proved in

the real domain by Hezari–Rivière [25] and Han [24]. In the setting of a general compact,

negatively curved, Kähler manifold (not necessarily real analytic), an analogous result

can be found in [11, Theorem 2].
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Remark 5.1.6. The semiclassical notation h := λ−1 is also used throughout Sec-

tion 5.4–Section 5.6, in which we write δ(h) = |log h|−α = (log λ)−α = ε(λ); see (5.18).

5.1.3. Outline of proof

Theorem 5.1.4 is proved by expressing the L2 mass of uτj (resp. Uj) in terms of matrix

elements of Szegő-Toeplitz operators on ∂Mτ for 0 < τ ≤ τ0 (resp. Bergman-Toeplitz op-

erators on Mτ0). We show that a certain Poisson-FBI transform conjugates a (smoothed)

characteristic function of the ball B(ζ0, ε(λj)) to a semiclassical pseudodifferential oper-

ator acting on L2(M) whose symbol has the same properties as (but does not coincide

with) the small-scale symbols used in [24]. This conjugation allows us to derive Proposi-

tion 5.6.2, a variance estimate for matrix elements in the complex domain, by relating it

to the known variance estimate in the real domain of [24].

Once the variance estimate is proved, the comparability result of Theorem 5.1.4 follows

the path in [25, 24, 11]. Namely, one chooses an appropriate covering of Mτ0 and extracts

a subsequence of eigenvalues of density one for which one has simultaneous asymptotic

log-scale QE for the balls in every cover. The balls are ‘dense enough’ that one obtains

good upper and lower bounds for eigenfunction mass in any logarithmically shrinking ball.

Lastly, to derive Theorem 5.1.1 from Theorem 5.1.4, we follow the method of [57, 11]

that uses well-known facts about plurisubharmonic functions. We begin by rewriting the

zero current [Zj] as ∂∂̄ of plurisubharmonic functions using the Poincarè–Lelong formula

(5.33). A standard compactness theorem yields the desired result.
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5.1.4. Singular behavior along the real domain

We briefly discuss the reasons for requiring centers ζ0 of balls to lie in Mτ0\M .

The key tool in studying the mass and zeros in the complex domain is the complexified

Poisson operator P τ : L2(M)→ O n−1
4 (∂Mτ ) defined in Section 5.2.3. By O−n−1

4 (∂Mτ ) we

mean the Hardy-Sobolev space of boundary values of holomorphic functions in Mτ with

the designated Sobolev regularity. This Hilbert space is the quantization of the symplectic

cone Στ ⊂ T ∗(∂Mτ ) defined in Section 5.2.2, an R+-bundle Στ → ∂Mτ . The Poisson

operator is a homogeneous Fourier integral operator with positive complex phase adapted

to the homogeneous symplectic isomorphism ιτ : T ∗M \ 0M → Στ of (5.10).

The homogeneous theory becomes singular along the zero section 0M , or equivalently

along the totally real submanifold M . This reflects the fact that the eigenfunctions ϕj

microlocally concentrate on energy surfaces {|ξ|g = λj}, the characteristic variety of ∆ +

λ2
j . In the semiclassical setting of h2∆ + 1 (with h = λ−1

j ), the eigenfunctions concentrate

on S∗M . The energy level 1 is arbitrary here and depends on the choice of constant C in

the semiclassical scaling hj = Cλ−1
j . One may adjust it so that eigenfunctions concentrate

on any energy surface ∂B∗τM ' ∂Mτ with respect to semiclassical pseudodifferential

operators Ophj(a). But this scaling breaks down on the zero section.

The singularity of the theory along the zero section may be seen in Theorem 5.4.1.

When conjugated back to the real domain, the symbols become functions of |ξ| and are

singular when ξ = 0. It seems that the behavior on the zero section can be studied by using

an adapted class of observables that smoothly interpolates between pseudodifferential

operators when τ = 0 and Toeplitz operators when τ > 0. We hope to clarify this issue

in the future.
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5.2. Background: Microlocal Analysis on Grauert Tubes

5.2.1. Grauert tube and the co-ball bundle

The readers are referred to [22, 23, 38, 39] for the analysis of the complex Monge–

Ampère equation, the Grauert tube function, the geometry of Grauert tubes and related

topics. Here we provide only a brief summary of some notation and theorems needed for

this paper, following [71, 73].

A real analytic manifold (M, g) always possesses a complexification MC, that is, a

complex manifold of which M is a totally real embedded submanifold. Let expx : T ∗xM →

M be the Riemannian exponential map, i.e., expx ξ = π exp tΞ|ξ|2g , where π : T ∗M → M

is the natural projection and Ξ|ξ|2g is the Hamiltonian flow of |ξ|2g. The analyticity of M

implies that the exponential map admits an analytic extension

(5.7) expC
x : Ux ⊂ T ∗xM ⊗ C→MC

defined in a suitable domain Ux ⊂ T ∗xM . Its restriction to the imaginary axis (that is,

the analytic extension in t of expx(tξ) to imaginary time t = i) is denoted by

(5.8) E : B∗τM →MC, (x, ξ) 7→ E(x, ξ) := expC
x (iξ).

For all τ > 0 sufficiently small, (5.8) is a diffeomorphism between the co-ball bundle

B∗τM = {(x, ξ) ∈ T ∗M : |ξ|gx < τ} and the subset

Mτ := {ζ ∈MC :
√
ρ(ζ) < τ} ⊂MC.
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Here,
√
ρ is known as the Grauert tube function, and its sublevel set Mτ is known as the

Grauert tube (of radius τ). The restriction E |∂B∗τM of (5.8) to the co-sphere bundle is

a CR holomorphic diffeomorphism between the two strictly pseudo-convex CR manifolds

∂B∗τM and ∂Mτ .

The square ρ of the Grauert tube function is a strictly plurisubharmonic function

uniquely determined by two conditions:

• It is a solution of the Monge-Ampère equation (∂∂̄
√
ρ)n = δM , where δM is the

delta-function on the real manifold M with respect to the volume form dVg;

• The Kähler form ω := −i∂∂̄ρ restricts to g along M .

If we write r(x, y) for the Riemannian distance function on M , then r2(x, y) is real analytic

in a neighborhood of the diagonal in M×M . It possesses an analytic continuation r2(ζ, ζ̄)

for ζ ∈ MC in a sufficiently small neighborhood of the totally real submanifold M . The

plurisubharmonic function is related to the Riemannian distance function by

ρ(ζ) = −1

4
r2(ζ, ζ̄).

For the trivial case M = Rn, we have MC = Cn and
√
ρ(ζ) =

√
−1

4
(ζ − ζ̄)2 = |=ζ|. More

examples are found in [71].

5.2.2. Szegő projector

Let O(∂Mτ ) denote the space of CR holomorphic functions on ∂Mτ . We use the notation

Os+
n−1
4 (∂Mτ ) := W s+n−1

4 (∂Mτ ) ∩ O(∂Mτ )
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for the subspace of the Sobolev space W s+n−1
4 (∂Mτ ) consisting of CR holomorphic func-

tions. The inner product is taken with respect to the Liouville surface measure (5.1). The

Szegő projector

(5.9) Πτ : L2(∂Mτ )→ O0(∂Mτ )

is the orthogonal projection onto boundary values of holomorphic function. It is well-

known (cf. [5, 49, 23]) that Πτ is a complex Fourier integral operator of positive type,

whose real canonical relation is the graph of the identity map on the symplectic cone

Στ = {(Z; rdc
√
ρ(Z)) ∈ T ∗(∂Mτ ) : Z ∈ ∂Mτ , r > 0}

spanned by the contact form dc
√
ρ = −i(∂ − ∂̄)

√
ρ on ∂Mτ . Since Στ is an R+-bundle

over ∂Mτ , we can define the symplectic equivalence of cones:

(5.10) ιτ : T ∗M \ 0→ Στ , ιτ (x, ξ) :=

(
E
(
x, τ

ξ

|ξ|

)
, |ξ|dc√ρE(x,τ ξ

|ξ| )

)
.

5.2.3. Poisson-wave operator

A key object in our analysis is the Poisson-wave operator

P τ : L2(M)→ O
n−1
4 (∂Mτ ).

(Unlike for the Szegő projector (5.9), τ appears as a superscript here because we will

be considering semiclassical Poisson-wave operators, which are denoted by P τ
h .) The

Poisson-wave operator is obtained from the half-wave operator by analytic extension in

the time and spatial variables. Specifically, recall that the half-wave operator is given by



111

U(t) := eit
√
−∆. When t = iτ lies in the positive imaginary axis, P τ := U(iτ) = e−τ

√
−∆

is a complex Fourier integral operator known as the Poisson-wave operator. As discussed

in [4, 23, 36], for 0 < τ ≤ τ0 and y ∈ M fixed, the Poisson kernel P τ ( · , y) = U(iτ, · , y)

extends to a holomorphic function on Mτ .

Take for concreteness the wave kernel on Rn as an example. The Euclidean wave

kernel

U(t, x, y) =

∫
Rn
eit|ξ|ei〈ξ,x−y〉 dξ

analytically continues to (iτ, x+ ip) ∈ C+ × Cn by the integral formula

P τ (x+ ip, y) =

∫
Rn
e−τ |ξ|ei〈ξ,x−y+ip〉 dξ,

which converges absolutely for |p| < τ .

On a general Riemannian manifold there exists a similar Lax–Hörmander parametrix

for the wave kernel:

(5.11) U(t, x, y) =

∫
T ∗yM

eit|ξ|yei〈ξ,exp−1
y (x)〉A(t, x, y, ξ) dξ,

where | · |y is the metric norm function at y, and where A(t, x, y, ξ) is a polyhomogeneous

amplitude of order 0. The holomorphic extension x 7→ ζ to the Grauert tube Mτ0 at time

t = iτ is a Fourier integral operator with complex phase of the form

(5.12) P τ (ζ, y) =

∫
T ∗yM

e−τ |ξ|yei〈ξ,(expC
y )−1(ζ)〉A(t, ζ, y, ξ) dξ.
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The complexified exponential map expC
y appearing in the phase function of the parametrix

above is the local holomorphic extension of the Riemannian exponential map as defined

in (5.7). It is easy to see that the integral converges absolutely for
√
ρ(ζ) < τ . We refer

to [62, 35, 72] for proofs and background. The following result is stated by Boutet de

Monvel [4]; proofs are given in [72, 35].

Theorem 5.2.1. Let ιτ : T ∗M \ 0 → Στ be the symplectic equivalence defined by

(5.10). Then the Poisson-wave operator P τ : L2(M)→ O(∂Mτ ) with the parametrix given

by (5.12) is a complex Fourier integral operator of order −n−1
4

associated to the positive

complex canonical relation

Γ := {(y, η, ιτ (y, η)} ⊂ T ∗M × Στ .

Moreover, for any s,

P τ : W s(M)→ Os+
n−1
4 (∂Mτ )

is a continuous isomorphism.

It is helpful to introduce the framework of adapted Fourier integral operators. This

notion is defined and discussed in the [3, Appendix A.2]. If X,X ′ are two smooth real

manifolds, and Σ ⊂ T ∗X \ 0, Σ′ ⊂ T ∗X ′ − 0 are two symplectic cones, then a Fourier

integral operator F with complex phase is adapted to a homogeneous symplectic diffeo-

morphism χ : Σ→ Σ′ if the canonical relation of F is a positive complex canonical relation

whose real points consist of the graph of χ and if the symbol of F is elliptic. Theorem 5.2.1

may be reformulated in this language as follows: P τ is a Fourier integral operator with
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complex phase of order −n−1
4

adapted to the symplectic isomorphism ιτ : T ∗M \ 0→ Στ

given by (5.10). The point of the reformulation is that one may identify the graph of

ιτ with the graph of Giτ , where Gt(x, ξ) = |ξ|Gt(x, ξ|ξ|) is the homogeneous geodesic flow

defined on T ∗M \ 0. Its analytic continuation in t is also homogeneous, so we have

Giτ (x, ξ) = |ξ|Giτ
(
x,

ξ

|ξ|

)
.

It is observed in [73] that ιτ (y, η) = Giτ (y, η). Thus, Giτ gives a homogeneous symplectic

isomorphism Giτ : T ∗M \ 0→ Στ .

In light of Theorem 5.2.1 and the calculus of FIOs, the operator

(5.13) Aτ := (P τ∗P τ )−
1
2 : L2(M)→ L2(M).

is an elliptic, self-adjoint pseudodifferential operator of order n−1
4

with principal symbol

|ξ|n−1
4 . Equivalently, P τ∗P τ is a pseudodifferential operator of order −n−1

2
with principal

symbol |ξ|−n−1
2 . An immediate consequence of Theorem 5.2.1, (5.13) and the symbol

calculus of FIOs is the following.

Proposition 5.2.2. The operator V τ := P τAτ : L2(M) → O0(∂Mτ ) is unitary (of

order 0) with an approximate left inverse given by V τ∗AτP τ∗. Moreover,

(Aτ )2P τ∗ : O0(∂Mτ )→ L2(M)

is an approximate left inverse to P τ .
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5.2.4. Analytic continuation of eigenfunctions via the Poisson-wave kernel

Let {ϕj} be an orthonormal basis of Laplacian eigenfunctions on (M, g) with eigenvalue

−λ2
j . Then the half-wave kernel U(t, x, y) := eit

√
−∆(x, y) admits the eigenfunction ex-

pansion

U(t, x, y) =
∞∑
j=0

eitλjϕj(x)ϕj(y).

It follows that the holomorphic extension to Mτ ×M of the Poisson kernel is given by

P τ (ζ, y) = U(iτ, ζ, y) =
∞∑
j=0

e−τλjϕC
j (ζ)ϕj(y), (ζ, y) ∈Mτ ×M.

We therefore obtain a formula for the analytic extension ϕC
j of an eigenfunction ϕj to the

Grauert tube. Specifically, if Z ∈ ∂Mτ (so in particular
√
ρ(Z) = τ), then

(5.14) ϕC
j (Z) = eτλj(P τϕj)(Z) = e

√
ρ(Z)λj(P τϕj)(Z), Z ∈ ∂Mτ .

5.2.5. Szegő–Toeplitz multiplication operators

Let Mτ0 be a Grauert tube of some fixed radius τ0. For 0 < τ ≤ τ0 we consider operators

of the form

(5.15) ΠτaΠτ : O0(∂Mτ )→ O0(∂Mτ ),

where by an abuse of notation we write a for multiplication by the symbol a ∈ C∞(∂Mτ ).

The operator (5.15) is an example of a Szegő–Toeplitz operator. More generally, such an

operator of order s acting on H2(∂Mτ ) is of the form ΠτQΠτ , with Q a pseudodifferential



115

operator of order s. For this article it suffices to take Q = a to be a multiplication

operator. A Szegő–Toeplitz operator might be homogeneous or semiclassical depending

on the nature of Q.

5.2.6. Poisson conjugation of Szegő–Toeplitz operators

The conjugation of a Toeplitz multiplication operator by the Poisson-wave FIO is studied

in [71, Lemma 3.1] and in [73, Section 4.1]

Lemma 5.2.3. Let a ∈ C∞(Mτ0) and let P τ be the Poisson-wave operator defined by

(5.12). Then the conjugation

P τ∗ΠτaΠτP
τ ∈ Ψ−

n−1
2 (M)

is a pseudodifferential operator with principal symbol equal to (the homogeneous extension

of) a(x, ξ)|ξ|−
n−1
2

g . Moreover, let V τ be the unitary operator defined in Proposition 5.2.2,

then

V τ∗ΠτaΠτV
τ ∈ Ψ0(M)

with principal symbol equal to (the homogeneous extension of) a(x, ξ).

Note that

V τ∗ΠτaΠτV
τ = AτP τ∗ΠτaΠτP

τAτ ,

so that the second statement follows from Proposition 5.2.2 or from the first by (5.13).
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Remark 5.2.4. The factors of Πτ are redundant here because, by Theorem 5.2.1, P τ

maps into the range of Πτ .

5.3. Balls and Dilation in Grauert Tubes

The purpose of this section is to introduce the balls and local dilation that are relevant

to the calculus of pseudodifferential operators with log-scale symbols.

Definition 5.3.1. We define Kähler balls B(ζ0, ε(λj)) in the Grauert tube to be balls

with respect to the Kähler metric ω = −i∂∂̄ρ. For reasons discussed in Section 5.1.4, we

consider Kähler balls whose centers ζ0 ∈Mτ0 \M do not lie on the totally real submanifold

M . The radii ε(λj) = (log λj)
−α shrinks logarithmically relative the frequency parameter

λj.

We also need to introduce local dilation centered at points ζ0 ∈ Mτ0 . When working

with holomorphic or plurisubharmonic functions, we always use local holomorphic dila-

tion. But when working with dilated symbols we may use more general dilation that are

more convenient. A technical point to address is that the local dilation does not preserve

the family of Kähler balls. But for centers close enough to the real domain M , the metric

is almost Euclidean on logarithmically shrinking balls.

5.3.1. Holomorphic dilation

Let ζ0 = E(x0, ξ0) ∈ Mτ0 be fixed and consider a local Kähler normal coordinate chart

around ζ0 [20]. In such a chart, the Kähler potential satisfies ρ(ζ, ζ) = |=(ζ − ζ0)|2 +

O(|=(ζ − ζ0)|4), so that ∂∂̄ρ = g0 + O(|=(ζ − ζ0)|2), where g0 is the standard Euclidean
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Hermitian metric. We denote the unit ball centered at ζ0 in this local Euclidean metric

by B(ζ0, 1).

The local holomorphic dilation of B(ζ0, 1) in Kähler normal coordinates ζ centered at

ζ0 ∈Mτ0 \M is defined by

(5.16) Dζ0
ε(λ) : B(ζ0, 1)→ B(ζ0, ε(λ)), ζ 7→ ζ0 + ε(λ)(ζ − ζ0).

This choice of local dilation is not adapted to Grauert tube geometry in that sense

that the ε-dilate of a point in ∂Mτ is not necessarily a point in ∂Mετ . But since the metric

and tube function are almost Euclidean in shrinking balls one has constants cg, Cg > 0 so

that

cgε(λ)
√
ρ(ζ) ≤ √ρ(Dζ0

ε(λ)ζ) ≤ Cgε(λ)
√
ρ(ζ)

provided
√
ρ(ζ) is small enough. Indeed, it suffices to verify the inequalities for the

Euclidean metric, where
√
ρ(ζ) = |=ζ| and where Cg = cg = 1.

5.3.2. Phase space dilation

Theorem 5.4.3 introduces another type of dilation, which is more conveniently expressed in

terms of the usual cotangent coordinates (x, ξ). The dilation in local coordinates centered

at (x0, ξ0) ∈ ∂B∗τM is of the form

(5.17) (x, ξ) 7→
(
x0 +

x− x0

ε(λ)
, ξ0 +

τ ξ̂ − ξ0

ε(λ)

)
, (x0, ξ0) ∈ ∂B∗τM.
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Note that the unit vector ξ̂ := ξ/|ξ| is scaled by the parameter τ = |ξ0|x0 , with (x0, ξ0)

the fixed center of dilation.

This is closely related to, but not identical to, the dilation introduced in [24]. In that

article one fixes a point (x0, ξ0) ∈ S∗M = ∂B∗1M in the unit co-sphere bundle and dilates

by

(x, ξ) 7→
(
x0 +

x− x0

ε(λ)
, ξ0 +

ξ̂ − ξ0

ε(λ)

)
, (x0, ξ0) ∈ S∗M.

Both types of dilation are homogeneous in ξ. The one essential difference is that in (5.17),

we allow |ξ0|x0 = τ and τ ξ̂ to be any positive numbers bounded away from zero; they

need not be the same. Thus, we are not only localizing in the direction of co-vectors but

also in their norms.

5.4. Poisson Conjugation of Semiclassical Toeplitz Operators to Semiclassical

Pseudodifferential Operators

In this section, we generalize the conjugation result of Lemma 5.2.3 in two ways. On

one hand, we let the symbol depend on the frequency λ, similar to the δ(h)-(micro)localized

symbols (5.26) in the Riemannian setting. On the other hand, we consider Bergman-

Toeplitz operators, realized as direct integrals of Szegő-Toeplitz operators. We show that

conjugation by the FBI transform takes a decomposable, log-scale Bergman-Toeplitz op-

erator to a semiclassical pseudodifferential operator with a log-scale symbol.

It is convenient to introduce the semiclassical parameter

(5.18) h := λ−1, h−2Ej = λ2
j , δ(h) := |log h|−α = (log λ)−α = ε(λ).
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In this semiclassical notation, the Laplacian eigenfunctions satisfy ∆ϕj = h−2Ejϕj =

λ2
jϕj.

5.4.1. Semiclassical Poisson-wave operator

The Poisson kernel (5.12) may be realized as a semiclassical Fourier integral operator

with the introduction of a semiclassical parameter h. In the Euclidean case, we define the

semiclassical Poisson kernel to be

P τ
h (x, y) = h−n

∫
Rn
e
i
h
〈x−y,ξ〉e−τ |ξ|/h dξ.

Here, we use the semiclassical Fourier transform

Fhu(y) = h−n
∫
Rn
e−

i
h
〈y,ξ〉f(y) dy,

to diagonalize P τ = e−τ
√
−∆. It is evident that P τ

h = P τ by changing variables ξ → ξ/h.

Indeed,

P τ
h e

i〈x,k〉/h = e−τ |k|/hei〈x,k〉/h.

Thus P τ
h is still the homogeneous Poisson operator e−τ

√
−∆.

The same change of variables is valid in the manifold setting (5.11) and we continue

to denote the Poisson operator in semiclassical form by P τ
h . The semiclassical version of

the zeroth order unitary operator V τ from Proposition 5.2.2 is denoted

V τ
h := P τ

h (P τ∗
h P τ

h )−
1
2 : L2(M)→ O0(∂Mτ ).
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5.4.2. Log-scale symbols and semiclassical pseudodifferential operators

Let 0 ≤ a ≤ 1 be a smooth cutoff function that is equal to 1 on B(0, 1) ⊂ Cn and vanishes

outside B(0, 2) ⊂ Cn. We use (5.8) to identify Mτ0 with B∗τ0M . Using local coordinates

induced by expC
x0

: T ∗x0M ⊗ C → Mτ , consider symbols that, near (x0, ξ0) ∈ ∂B∗τM , are

locally of the form

(5.19) a
(x0,ξ0)
δ(h) (x, ξ) := a

(
x0 +

x− x0

δ(h)
, ξ0 +

ξ − ξ0

δ(h)

)
.

Symbols of the type (5.19) satisfy the estimate

(5.20) |Dβa
(x0,ξ0)
δ(h) | ≤ Cβδ(h)−|β|,

and are said to belong to the symbol classes S0
δ(h). More generally, a function b ∈

C∞(T ∗M) belongs to the symbol class Skδ(h) if

(5.21) sup
(x,ξ)∈T ∗M

|∂βx∂
γ
ξ b| ≤ Cβ,γδ(h)−|β|−|γ|(1 + |ξ|2x)(k−|β|)/2

for some constant Cβ,γ independent of h.

The semiclassical pseudodifferential operator quantizing a symbol a is defined by the

usual local (semiclassical) Fourier transform formula

Oph(a)(x, y) :=
1

(2πh)n

∫
Rn
e
i
h
〈ξ,x−y〉a(x, ξ, h) dξ.

The quantization of a symbol b ∈ Skδ(h) is denoted by Oph(b) ∈ Ψk
δ(h). We refer to [24] for

a discussion of the symbol classes Skδ(h) and [75] for symbol classes and quantizations in

general.
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5.4.3. Semiclassical Poisson conjugation of log-scale Toeplitz operators

Theorem 5.4.1. Let (x0, ξ0) ∈ ∂B∗τM be fixed. For symbols a
(x0,ξ0)
δ(h) ∈ C∞(Mτ0) of the

form (5.19), we have

(5.22)

P τ∗
h Πτa

(x0,ξ0)
δ(h) ΠτP

τ
h = Oph

(
h
n−1
2 |ξ|−

n−1
2 a

(
x0 +

x− x0

δ(h)
, ξ0 +

τ ξ̂ − ξ0

δ(h)

))
∈ Ψ

−n−1
2

δ(h) (M)

modulo hδ(h)−2Ψ
−n−1

2

δ(h) (M) and

V τ∗
h Πτa

(x0,ξ0)
δ(h) ΠτV

τ
h = Oph

(
a

(
x0 +

x− x0

δ(h)
, ξ0 +

τ ξ̂ − ξ0

δ(h)

))
∈ Ψ0

δ(h)(M)

modulo hδ(h)−2Ψ0
δ(h)(M). Note that the τ -scaling affects only ξ̂ := ξ/|ξ|.

Remark 5.4.2. Note that the factors of Πτ are redundant because P τ maps into the

range of Πτ . We prove only (5.22) as the second conjugation statement may be proved

using the first statement and the composition rule for pseudodifferential operators.

Proof of Theorem 5.4.1. The proof is essentially the same as in Lemma 5.2.3,

since the dilation has no effect on the properties of the conjugation. Indeed, conjugation

by the Fourier integral operator P τ
h preserves the symbol class S∗δ(h). Since a

(x0,ξ0)
δ(h) is

a function on ∂Mτ , it defines a homogeneous symbol of order zero on Στ in the fiber

direction. Under conjugation by P τ
h it goes over to a pseudodifferential operator of order

zero on M whose symbol is the transport a
(x0,ξ0)
δ(h) (ιτ (x, ξ)) to T ∗M \ 0M , with ιτ given by

(5.10). If πτ : Στ → ∂Mτ is the natural projection then

ι∗τa
(x0,ξ0)
δ(h) (x, ξ) = a

(x0,ξ0)
δ(h) (E(x, τ ξ̂)), ξ̂ =

ξ

|ξ|
.
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For τ, δ(h) small enough we may use the Euclidean approximation to the distance function.

If we center the local coordinates at (x0, ξ0) then the cutoff as a function on T ∗M has the

form

(5.23) a
(x0,ξ0)
δ(h) (ιτ (x, ξ)) = a

(
x0 +

x− x0

δ(h)
, ξ0 +

τ ξ̂ − ξ0

δ(h)

)
, ξ̂ =

ξ

|ξ|
.

Thus, P τ∗
h Πτa

(x0,ξ0)
δ(h) ΠτP

τ
h is a homogeneous pseudodifferential operator with dilated sym-

bol.

We now provide more details. Since the calculation is local we first provide a proof in

the Euclidean case.

5.4.3.1. Euclidean case. Write Z = x1 + iτp with |p| = 1 and centering the dilation at

Z0 = x0 + iξ0. We do not assume τ = |ξ0|. The composition has the form

P τ∗
h Πτa

(x0,ξ0)
δ(h) ΠτP

τ
h (x, y)

= h−2nτn−1

∫
Rn×Rn×Sn−1×Rn

eΨ0/ha

(
x0 +

x1 − x0

δ(h)
, ξ0 +

τp− ξ0

δ(h)

)
dξ1dξ2dσ(p)dx1,

where dσ(p) is the standard surface area measure on Sn−1. The phase is

Ψ0(ξ1, ξ2, x1, p;x, y, τ) = −τ(|ξ1|+ |ξ2|) + i〈ξ1, x1 + iτp− y〉 − i〈ξ2, x− (x1 − iτp)〉

We note that

<Ψ0 = −τ(|ξ1|+ |ξ2|)− τ〈ξ1 − ξ2, p〉 ≤ 0

with equality if and only if ξ̂1 = −ξ̂2 = ±p, that is, the Schwartz kernel integral is of

smooth and of order O(h∞). We absorb the factor apply the complex stationary phase
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method to the dx1dξ2dσ(p) integral. The critical point equations for =Ψ in (x1, ξ2) are


dx1=Ψ0 = 0 ⇐⇒ ξ1 = −ξ2,

dξ2=Ψ0 = 0 ⇐⇒ x1 = x

The extra dp integral localizes at the above point. Since the dx1dξ2 integral has a non-

degenerate Hessian, we may eliminate the dx1dξ2 integrals by stationary phase, obtaining

a simpler oscillatory integral

h−2n+nτn−1

∫
Rn×Sn−1

eΨ1/ha

(
x0 +

x− x0

δ(h)
, ξ0 +

τp− ξ0

δ(h)

)
dξ1dσ(p),

with

Ψ1(ξ1, p;x, y, τ) = −2τ |ξ1| − 2τ〈ξ1, p〉+ i〈ξ1, x− y〉.

Applying the method of stationary phase (steepest descent) to the integral over Sn−1 gives

the critical point equation p = −ξ̂1, i.e., the point where the phase is maximal. It follows

that

P τ∗
h Πτa

(x0,ξ0)
δ(h) ΠτP

τ
h (x, y)

= h−2n+n+n−1
2 τn−1−n−1

2

∫
Rn
ei〈ξ1,x−y〉/ha

(
x0 +

x− x0

δ(h)
, ξ0 +

τ ξ̂1 − ξ0

δ(h)

)
dξ1

modulo terms of order hδ(h)−2 (since each derivative of the symbol pulls out a factor of

δ(h)−1).
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5.4.3.2. General Riemannian manifold. The proof is similar on any real analytic

Riemannian manifold. In place of the integral over Rn × Sn−1 we now have an integral

over Z ∈ ∂Mτ or (x1, sp) ∈ ∂B∗τM with |p| = 1 under the map Z = E(x1, sp). Using the

parametrix (5.12), we have

P τ∗
h Πτa

(x0,ξ0)
δ(h) ΠτP

τ
h (x, y)

= h−2nτn−1

∫
T ∗xM×T ∗yM×∂Mτ

eΨ/ha

(
x0 +

x1 − x0

δ(h)
, ξ0 +

sp− ξ0

δ(h)

)
AAdξ1dξ2dµτ (Z)

with

Ψ = −τ (|ξ1|x + |ξ2|y) + i〈ξ1, (expC
y )−1(Z)〉 − i〈ξ2, (expC

x )−1(Z̄)〉.

The phase is only well-defined when Z is sufficiently close to x and to y, but the phase

is non-stationary and the integral is exponentially decaying otherwise. The only points for

which the integral is not exponentially decaying are those Z satisfying =〈ξ1, (expC
y )−1(Z)〉 =

τ |ξ1| (and a similar condition holds with y replaced by x and ξ1 replaced by ξ2). Note

that (expC
x )−1(Z) ∈ Ux ⊂ T ∗xM ⊗ C.

The critical set CΨ of the phase is defined by

CΨ = {(x, y, τ ; ξ1, ξ2, Z) : dξ1,ξ2,ZΨ = 0}.

The associated canonical relation is defined by the embedding

(5.24) ιΨ : CΨ → T ∗M × T ∗M, (x, y, τ ; ξ1, ξ2, Z)→ (x, dxΨ, y,−dyΨ).
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The composite operator is manifestly a Fourier integral operator with complex phase, and

is a pseudodifferential operator if and only if CΨ = ∆T ∗M×T ∗M (the diagonal).

Let Z = E(x1, τp). Then the critical point equations are

(i) dξ1Ψ = 0 ⇐⇒ (expC
y )−1(Z) = −iτ ξ̂1 ⇐⇒ x1 = y, p = −iτ ξ̂2,

(ii) dZΨ = dZ
(
〈(expC

y )−1(Z), ξ2〉 − (expC
x )−1(Z̄), ξ1〉

)
= 0,

(iii) dξ2Ψ = 0 ⇐⇒ (expC
x )−1(Z̄) = −iτ ξ̂2.

Equations (i) and (iii) show that

Z = expC
x (iτ ξ̂2) = expC

y (−iτ ξ̂1).

This implies that Z ∈ π−1
τ (x) ∩ π−1

τ (y), where πτ : ∂Mτ →M . Of course, these fibers are

disjoint unless x = y, so only in that case does there exist a solution of the critical point

equation. It then follows that ξ̂1 = −ξ̂2.

To see that ξ1 = −ξ2 on the critical point set, we use further use (ii). There only

exists a solution of the critical point equations when x = y, and then we may write

Z = u+ iv ∈ T ∗xM ⊗ C and study the restricted critical point equation

dZΨ = 0 ⇐⇒ du,v (〈u+ iv, ξ2〉 − 〈u+ iv, ξ1〉) = 0.

Just using u ∈ T ∗xM already shows that ξ1 = ξ2 on the critical set.

To calculate (5.24) we may use the Euclidean approximation to the phase based at

(x, ξ1) because on CΨ only the first order terms in the Taylor expansion of Ψ contribute.

But then it is evident that dxΨ = ξ2 = −dyΨ|y=x = ξ1, proving that the canonical relation

is the diagonal.
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The principal symbol of P τ∗
h ΠτP

τ
h (x, y) is calculated in [71] and the principal symbol

of P τ∗
h Πτa

(x0,ξ0)
δ(h) ΠτP

τ
h (x, y) is the same multiplied by the value of a

(x0,ξ0)
δ(h) at the critical

point. Note that because of the symbol class we are working with, the sub-leading term

is of order hδ(h)−2 as each derivative of the symbol pulls out a factor of δ(h)−1. If we use

V τ
h in place of P τ

h as in Proposition 5.2.2 then the principal symbol is the one stated in

Theorem 5.4.1. �

5.4.4. Comparison of symbols

We note that symbols of the form (5.23) are not quite the same as the log-scaled symbols

abz0(x, ξ;h) of (5.26) considered in [24]. However, as long as (x0, ξ0) are fixed at a positive

distance from the real domain M , the same symbol estimates (5.20) are valid. Also note

that it is not necessary to multiply by a cutoff ϕ(|ξ|) to S∗M since the cutoff abz0(x, ξ;h)

is supported in a shrinking Kähler ball around E(x0, ξ0). In fact, we define the sequence

hj so that eigenfunctions concentrate on the energy surface ∂Mτ0 with |ξ0|x0 = τ0. There

is no difficulty as long as τ0 > 0. We continue to use the notation Oph(a) for semiclassical

pseudodifferential operators with symbols of the form (5.23).

5.4.5. Decomposable Poisson–FBI transform and Bergman–Toeplitz operators

In this section we introduce a Poisson FBI transform taking L2(M) to a weighted Hilbert

space of holomorphic functions on Mτ rather than to CR-holomorphic functions on ∂Mτ .

As explained in Section 5.4.6, it is defined in a novel way by a direct integral of Poisson

transforms P s, and therefore all of its main properties flow from those established above

for the Poisson kernel. The main result is the conjugation Theorem 5.4.3.
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5.4.6. Weighted Bergman space and Poisson–FBI transform

The Poisson kernel endows O0(Mτ ) with a plurisubharmonic weight e−
√
ρ/h. We define

A2(Mτ , h
−n−1

2 e−2
√
ρ/hdµ)

to be the Hilbert space of holomorphic functions on Mτ that lie in L2(Mτ , e
−2
√
ρ/hdµ). It

is isometric to the Hilbert space

H√ρ := {fh−
m−1

4 e−
√
ρ/h : f ∈ A2(Mτ} ⊂ L2(Mτ , dµ)

endowed with the inner product of L2(Mτ , dµ).

It is useful to regard H√ρ as a direct integral

H√ρ =

∫ ⊕
[0,τ0]

H2(∂Mτ ) dτ

of Hilbert spaces H2(∂Mτ ). Here,
∫ ⊕

[0,τ0]
H2(∂Mτ ) dτ denotes the space of L2 sections

f(τ) ∈ H2(∂Mτ ) of the Hilbert bundle, and the direct integral formula follows from

Fubini’s theorem,

‖f‖2 =

∫ τ0

0

(∫
∂Mτ

|f(Z)|2 dµτ (Z)

)
dτ.

We then define the ‘moving Poisson operator’ or FBI transform by

Thf(ζ) = P
√
ρ(ζ)f(ζ) =

∫
M

P
√
ρ(ζ)(ζ, y)f(y) dV (y), ζ ∈Mτ0 .
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We claim that Th : L2(M) → H√ρ is a unitary operator. To see this, we use that P τ is

unitary from L2(M) to each integrand, and observe that

Th =

∫ ⊕
[0,τ0]

P τ
h dτ

is the direct integral of a family of unitary operators index by τ .

5.4.7. FBI conjugation theorem

Next we define Bergman–Toeplitz operators. For a ∈ C∞(Mτ0) define

Õph(a) =

∫ ⊕
[0,τ0]

Πτ (a|∂Mτ )Πτ dτ.

Implicitly H2(∂Mτ ) ⊥ H2(∂Mσ) if τ 6= σ. This is a decomposable operator.

Theorem 5.4.3. For symbols a
(x0,ξ0)
δ(h) ∈ C∞(Mτ0) of the form (5.19), we have

(5.25) T ∗h Õph(a
(x0,ξ0)
δ(h) )Th

= Oph

(∫ τ0

0

h
n−1
2 |ξ|−

n−1
2 a

(
x0 +

x− x0

δ(h)
, ξ0 +

τ ξ̂ − ξ0

δ(h)

)
dτ

)
∈ Ψ

−n−1
2

δ(h) (M).

Note that (5.25) follows from (5.22) thanks to the identity

T ∗h Õph(a)Th =

∫ τ0

0

P τ∗
h Õph(a)P τ

h dτ.
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Indeed, a multiplication operator is automatically decomposable and the Schwartz kernel

is

∫
Mτ0

P ∗h (x, ζ)a(ζ)Ph(ζ, y) dµ(ζ) =

∫ τ0

0

(∫
∂Mτ

P τ∗
h (x, Z)a(Z)P τ

h (Z, y) dµτ (Z)

)
dτ.

By Theorem 5.4.1, each integrand of the dµτ (Z) integral in the expression above is a

semiclassical pseudodifferential operator by (5.22). The entire dτ integral is therefore an

integral of an analytic family (in τ) of semiclassical pseudodifferential operators on M

with the prescribed principal symbol.

5.5. Log-scale Quantum Ergodicity in the Real Domain

A key part of our analysis is to relate log-scale quantum variance estimates in the com-

plex domain to those in the real domain, and reduce variance estimates to the small-scale

quantum ergodicity results on negatively curved Riemannian manifolds due to Hezari–

Rivière [25] and Han [24]. We briefly review their results in preparation for the next

section.

As before, let δ(h) = |log h|−α, with the semiclassical parameter given by (5.18).

Consider compactly supported smooth functions that, near z0 = (x0, ξ0) ∈ S∗M , can be

locally expressed as

(5.26) abz0(x, ξ;h) := b

(
x0 +

x− x0

δ(h)
, ξ0 +

ξ̂ − ξ̂0

δ(h)

)
ϕ(|ξ|x) ∈ S0

δ(h),

where b ∈ C∞c (Rn × Rn−1) is some compactly supported smooth function and where ϕ ∈

C∞c ((1−1/2, 1+1/2)) is a smooth cutoff function that is identically 1 on (1−1/4, 1+1/4).2

2There is a misprint in [24] where the support is said to be (− 1
2 ,

1
2 ) around the zero section 0M . In fact,

it needs to be around S∗M .
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It is easy to see that such a function belongs to the symbol class S0
δ(h) by verifying the

symbol estimate (5.21). The following result pertains to δ(h)-microlocalized symbols

(5.26).

Theorem 5.5.1 (Han [24, Theorem 1.6]). Let (Mn, g) be negatively curved (not

necessarily real analytic). Let

0 < α <
1

2(2n− 1)
, 0 ≤ β < 1− 2α(2n− 1) or α = 0, β = 1.

Set δ(h) = |log h|−α. Then for any orthonormal basis {ϕj} of h2∆, we have

hn−1
∑

Ej∈[1,1+h]

∣∣∣∣〈Oph(a
b
z0

)ϕj, ϕj〉 − −
∫
S∗M

abz0 dµL

∣∣∣∣2 = O(δ(h)2(2n−1)|log h|−β).

Here, Oph is a suitable semiclassical quantization, and dµL is the Liouville measure.

A covering argument using balls of inverse logarithmic radii implies the next volume

comparison result.

Theorem 5.5.2 ([24, Corollary 1.9]; see also [25, Lemma 3.1]). Let (Mn, g) be neg-

atively curved (not necessarily real analytic). Let

0 < α <
1

3n
and r(λ) = (log λ)−α.

Ten, there exists a full density subsequence such that

cVol(B(x, rjk)) ≤
∫
B(x,rjk )

|ϕjk |2 dV ≤ CVol(B(x, rjk))

uniformly for all x ∈M , where c, C > 0 depends only on (M, g).
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Remark 5.5.3. An important technical point for this article is that the proofs of the

theorems hold for symbols in S0
δ(h); the precise form of abz0 is not relevant.

5.6. Proof of Theorem 5.1.4: Log-scale QE in Grauert Tubes

We introduce some notation. Let

Θj(ζ) :=
∥∥ϕC

j |∂M√ρ(ζ)
∥∥
L2(∂M√ρ(ζ))

denote the L2-norm of ϕC
j restricted to the boundary of the Grauert tube of radius

√
ρ(ζ).

Let

Uj(ζ) :=
ϕC
j (ζ)

Θj(ζ)

denote the normalized complexified eigenfunction. We will also consider its restriction to

∂Mτ for each 0 < τ ≤ τ0 fixed:

(5.27) uτj (Z) := Uj(Z) |∂Mτ=
ϕC
j (Z) |∂Mτ∥∥ϕC

j |∂Mτ

∥∥
L2(∂Mτ )

, (Z ∈ ∂Mτ ).

Note that the denominator in (5.27) is a constant (depending on τ), and the numerator

is a CR-holomorphic function on ∂Mτ .
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5.6.1. Variance estimates in Grauert tubes

We begin with a log-scale variance estimate for symbols on ∂Mτ , which parallels [11,

Theorem 4]. Using the E map (5.8) to identify B∗τ0M with Mτ0 , we henceforth write

aζ0δ(h) := a
(x0,ξ0)
δ(h) ∈ C∞(Mτ0), ζ0 = E(x0, ξ0)

for small-scale symbols of the form (5.19). We write Z in place of ζ when restricting to

the boundary ∂Mτ , so for instance

aζ0δ(h)(ζ) |∂Mτ= aζ0δ(h)(Z), Z ∈ ∂Mτ .

Proposition 5.6.1. Let (Mn, g) be negatively curved and real analytic. Let

0 < α <
1

2(2n− 1)
, 0 ≤ β < 1− 2α(2n− 1) or α = 0, β = 1.

Set δ(h) = |log δ|−α as in (5.18). Let {ϕj} be an orthonormal basis of eigenfunctions for

∆. Then for every 0 < τ ≤ τ0 and every ζ0 ∈Mτ\M , we have

hn−1
∑

Ej∈[1,1+h]

∣∣∣∣∫
∂Mτ

aζ0δ(h)(Z)|uτj (Z)|2 dµτ (Z)− 1

µτ (∂Mτ )

∫
∂Mτ

aζ0δ(h)(Z) dµτ

∣∣∣∣2
= O(δ(h)2(2n−1)|log h|−β).

The remainder is uniform for any ζ0 in an ‘annulus’ 0 < τ1 ≤
√
ρ(ζ0) ≤ τ0.

Proof of Proposition 5.6.1. We use Theorem 5.4.1 to transport matrix elements

on ∂Mτ to matrix elements of pseudodifferential operators on L2(M). Since the restriction
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ϕC
h (Z) to ∂Mτ is a CR-holomorphic function, it satisfies Πτϕ

C
j (Z) = ϕC

j (Z). Moreover,

e−2
√
ρ(Z)/h = e−2τ/h on ∂Mτ . Therefore,

∫
∂Mτ

aζ0δ(h)(Z)|uτj (Z)|2 dµτ (Z) = ‖ϕC
j ‖−2

L2(∂Mτ )

〈
aζ0δ(h)Πτϕ

C
j ,Πτϕ

C
j

〉
L2(∂Mτ )

= e2τ/h‖ϕC
j ‖−2

L2(∂Mτ )

〈
aζ0δ(h)ΠτP

τ
hϕj,ΠτP

τ
hϕj

〉
L2(M)

=
〈P τ∗

h Πτa
ζ0
δ(h)ΠτP

τ
hϕj, ϕj〉L2(M)

〈P τ∗
h ΠτP τ

hϕj, ϕj〉L2(M)

.(5.28)

The last equality follows from setting aζ0δ(h) ≡ 1, which implies

1 = e2τ/h‖ϕC
j ‖−2

L2(∂Mτ ) 〈P
τ∗
h ΠτP

τ
hϕj, ϕj〉L2(M) .

By Theorem 5.4.1, P τ∗
h Πτa

ζ0
δ(h)ΠτP

τ
h is an h-pseudodifferential operator with principal

symbol

h
n−1
2 |ξ|−

n−1
2 a

(
x0 +

x− x0

δ(h)
, ξ0 +

τ ξ̂ − ξ0

δ(h)

)
.

By taking aζ0δ(h) ≡ 1 in Theorem 5.4.1, the denominator P τ∗
h ΠτP

τ
h = P τ∗

h P τ
h is found to be

an h-pseudodifferential operator with principal symbol h
n−1
2 |ξ|−n−1

2 . The quotient (5.28)

may be rewritten using Theorem 5.4.1:

∫
∂Mτ

aζ0δ(h)(Z)|uτj (Z)|2 dµτ (Z)

=

〈
Oph

(
h
n−1
2 |ξ|−n−1

2 a
(
x0 + x−x0

δ(h)
, ξ0 + τ ξ̂−ξ0

δ(h)

))
ϕj, ϕj

〉
L2(M)

+O(hδ(h)−2)〈
Oph

(
h
n−1
2 |ξ|−n−1

2

)
ϕj, ϕj

〉
L2(M)

+O(hδ(h)−2)
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=

〈
Oph

(
a

(
x0 +

x− x0

δ(h)
, ξ0 +

τ ξ̂ − ξ0

δ(h)

))
ϕj, ϕj

〉
L2(M)

+O(hδ(h)−2)

=
〈
V τ∗
h Πτa

ζ0
δ(h)ΠτV

τ
h ϕj, ϕj

〉
L2(M)

+O(hδ(h)−2).(5.29)

As noted in Remark 5.5.3, Theorem 5.5.1 applies to symbols in the symbol class S0
δ(h).

But V τ∗
h Πτa

ζ0
δ(h)ΠτV

τ
h ∈ Ψ0

δ(h)(M), so the proof is complete. �

Proposition 5.6.2. With the same notation and assumptions as in Proposition 5.6.1:

For every ζ0 ∈Mτ \M and aζ0δ(h), we have

hn−1
∑

Ej∈[1,1+h]

∣∣∣∣∣
∫
Mτ0

aζ0δ(h)(ζ)|Uj(ζ)|2 dµ(ζ)−
∫ τ0

0

∫
∂Mτ

aζ0δ(h)(Z)

µτ (∂Mτ )
dµτ (Z)dτ

∣∣∣∣∣
2

= O(δ(h)4n|log h|−β).

The remainder is uniform for any ζ0 in an ‘annulus’ 0 < τ1 ≤
√
ρ(ζ0) ≤ τ0.

Proof of Proposition 5.6.2. Rewrite the integral over Mτ0 as an iterated integral:

∫
Mτ0

aζ0δ(h)(ζ)|Uj(ζ)|2 dµ(ζ) =

∫ τ0

0

∫
∂Mτ

aζ0δ(h)(Z)|uτj (Z)|2 dµτ (Z)dτ.

We make two observations. First, for the outer integral it suffices to integrate over τ ∈

[
√
ρ(ζ0)− 2δ(h),

√
ρ(ζ0) + 2δ(h)] thanks to the choice (5.19) of symbols. Second, the inner

integral may be replaced by matrix elements of V τ∗
h Πτa

ζ0
δ(h)ΠτV

τ
h at the cost of O(hδ(h)−2)
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in light of (5.29):

∫
Mτ0

aζ0δ(h)(ζ)|Uj(ζ)|2 dµ(ζ) =

∫ √ρ(ζ0)+2δ(h)

√
ρ(ζ0)−2δ(h)

(〈
V τ∗
h Πτa

ζ0
δ(h)ΠτV

τ
h ϕj, ϕj

〉
dτ +O(hδ(h)−2)

)
=

∫ √ρ(ζ0)+2δ(h)

√
ρ(ζ0)−2δ(h)

〈
V τ∗
h Πτa

ζ0
δ(h)ΠτV

τ
h ϕj, ϕj

〉
dτ +O(hδ(h)−1).

We now subtract
∫ τ0

0

∫
∂Mτ

a
ζ0
δ(h)

(Z)

µτ (∂Mτ )
dµτ (Z)dτ from both sides of the equality and then square

both sides. The error is then of order h2δ(h)−2, which we move to the left-hand side of

the equality to conserve space:

∣∣∣∣∣
∫
Mτ

aζ0δ(h)(ζ)|Uλj(ζ)|2 dµ(ζ)−
∫ τ0

0

∫
∂Mτ

aζ0δ(h)(Z)

µτ (∂Mτ )
dµτ (Z)dτ

∣∣∣∣∣
2

+O(h2δ(h)−2)

= (4δ(h))2

∣∣∣∣∣
∫ √ρ(ζ0)+2δ(h)

√
ρ(ζ0)−2δ(h)

(〈
V τ∗
h Πτa

ζ0
δ(h)ΠτV

τ
h ϕj, ϕj

〉
−
∫
∂Mτ

aζ0δ(h)(Z)

µτ (∂Mτ )
dµτ (Z)

)
dτ

4δ(h)

∣∣∣∣∣
2

≤ (4δ(h))2

∫ √ρ(ζ0)+2δ(h)

√
ρ(ζ0)−2δ(h)

∣∣∣∣∣〈V τ∗
h Πτa

ζ0
δ(h)ΠτV

τ
h ϕj, ϕj

〉
−
∫
∂Mτ

aζ0δ(h)(Z)

µτ (∂Mτ )
dµτ (Z)

∣∣∣∣∣
2

dτ

4δ(h)

= 4δ(h)

∫ √ρ(ζ0)+2δ(h)

√
ρ(ζ0)−2δ(h)

∣∣∣∣∣〈V τ∗
h Πτa

ζ0
δ(h)ΠτV

τ
h ϕj, ϕj

〉
−
∫
∂Mτ

aζ0δ(h)(Z)

µτ (∂Mτ )
dµτ (Z)

∣∣∣∣∣
2

dτ.

For the inequality we used that dτ
4δ(h)

is a probability measure on the interval [
√
ρ(ζ0) −

2δ(h),
√
ρ(ζ0) + 2δ(h)], so Jensen’s inequality applies. Performing the Cesàro sum and
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using Proposition 5.6.1, we find

hn−1
∑

Ej∈[1,1+h]

∣∣∣∣∫
Mτ

aζ0δ(h)(ζ) |Uj(ζ)|2 dµ(ζ)−
∫ τ0

0

∫
∂Mτ

aζ0δ(h)(Z)

µτ (∂Mτ )
dµτ (Z)dτ

∣∣∣∣∣
2

≤ 4δ(h)

∫ √ρ(ζ0)+2δ(h)

√
ρ(ζ0)−2δ(h)

Cδ(h)2(2n−1)|log h|−β dτ

= O(δ(h)4n|log h|−β) +O(h2δ(h)−2).

This completes the proof. �

5.6.2. Proof of Theorem 5.1.4 using Proposition 5.6.2

We now have enough tools to tackle the key volume comparison estimate Theorem 5.1.4,

which is a Grauert tube analogue of Theorem 5.5.2. The proof uses the covering argument

of [25, §3.2], [24, §5.2], [11, §4.2]. In what follows we revert to using λ-notation. Recall

from (5.18) that the semiclassical h-notation in Proposition 5.6.1 and Proposition 5.6.2;

in particular, we have δ(h) = |log h|−α = (log λ)−α = ε(λ).

Proof of Theorem 5.1.4. Let τ0, τ1 be fixed with 0 < τ1 < τ0. In what follows we

work with centers ζk that lie in the fixed ‘annulus’ Mτ0 \Mτ1 , on which the errors remain

uniform estimates. As in [24, Lemma 5.1], for every ε(λ), there exists a log-good cover

Uλ := {B(ζk, ε(λ))}R(ε(λ))
k=1

of Mτ0 \Mτ1 by balls of radii cε(λ) such that

(i) The number R(ε(λ)) of elements in the covering satisfies c1ε(λ)−2n ≤ R(ε(λ)) ≤

c2ε(λ)−2n, where c1, c2 are independent of ε(λ).
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(ii) Any B(ζ ′, ε(λ)) ⊂ Mτ0 \ Mτ1 is covered by at most c3 (independent of ε(λ))

number of elements of Uλ.

(iii) Any B(ζ ′, ε(λ)) ⊂Mτ0 \Mτ1 contains at least one element of {B(ζk,
1
3
ε(λ))}R(ε(λ))

k=1 .

We proceed to provide the extraction argument. For each

(5.30) λj ∈ [λ, λ+ 1], 1 ≤ k ≤ R(ε(λ)),

Set

Xj,k :=

∣∣∣∣∣
∫
Mτ0

aζkε(λ)(ζ)|Uj|2 dµ−
∫ τ0

0

∫
∂Mτ

aζkε(λj)(ζ)

µτ (∂Mτ )
dµτdτ

∣∣∣∣∣
2

.

(The two subscripts j, k correspond to the subscript j for the eigenvalue λj and the

subscript k for the points ζk.) Also, let β′ > 0 be a parameter to be chosen later and

define ‘exceptional sets’ by

Λk :=

{
j : λj ∈ [λ, λ+ 1], Xj,k ≥ ε(λ)4n(log λ)−β

′
}
.

We claim

(5.31)
#Λk

λn−1
≤ C(log λ)−β+β′ .

Indeed, this follows from Markov’s inequality P(Xj,k ≥ x) ≤ x−1EXj,k. We view Xj,k

as real-valued random variables index by j. The probability measure is the normalized

counting measure on the set of indices j satisfying (5.30). Thanks to Proposition 5.6.2,
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for all such j the expected value of this random variable is

EXj,k = O(ε(λ)4n(log λ)−β),

with the error is uniform in ζk ∈ Mτ0 \Mτ1 for k = 1, 2, . . . , R(ε(λ)). Finally, setting

x = ε(λ)4n(log λ)−β
′

in the inequality yields (5.31).

Moreover, the union

Λ :=

R(ε(λ))⋃
k=1

Λk

of the exceptional sets satisfies

(5.32)
#Λ

λn−1
≤ CR(ε(λ))(log λ)−β+β′ = Cε(λ)−2n(log λ)−β+β′ = C(log λ)2nα−β+β′ .

Recall from Proposition 5.6.2 that 0 < β < 1−2α(2n−1), so β′ > 0 can always be chosen

small enough such that the quantity (5.32) tends to zero whenever 2nα−(1−2α(2n−1)) <

0. This corresponds to the range of α in the statement of Theorem 5.1.4.

Consider now the ‘generic set’

Σ := {j : λj ∈ [λ, λ+ 1]} \ Λ,

which is by construction a subsequence of full density:

#Σ

λn−1
≥ 1− Cε(λ)−2n(log λ)−β+β′ → 1.
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If j ∈ Σ, then we must have∣∣∣∣∣
∫
Mτ0

aζkε(λj)(ζ)|Uj|2 dµ−
∫ τ0

0

∫
∂Mτ

aζkε(λj)(ζ)

µτ (∂Mτ )
dµτdτ

∣∣∣∣∣
2

≤ ε(λ)4n(log λ)−β
′

simultaneously for all k = 1, 2, . . . , R(ε(λ)), that is,

∫
Mτ0

aζkε(λj)(ζ)|Uj|2 dµ ≤ CVolω(B(ζk, ε(λj))) + o(ε(λ)2n(log λ)−β
′/2).

If ζ ′ ∈Mτ \M is an arbitrary point, then the ball B(ζ ′, ε(λj)) is contained in at most c2

number (independent of λ) of elements of the log-good cover Uλ, whence we obtain the

upper bound

∫
B(ζ′,ε(λj))

|Uj|2 dµ ≤ C

c2∑
`=1

Volω(B(ζk` , ε(λj))) + o(ε(λ)2n(log λ)−β
′/2) ≤ CVol(B(ζ ′, ε(λj)).

The constant C = C(M, g) is independent of ζ ′ throughout.

It remains to extract another full density subsequence Σ′ using symbols of the form

bζ0ε (ζ) := b(ζ/ε) in local coordinates centered at ζ0. Here, 0 ≤ b ≤ 1 is taken to be a smooth

cut-off function that equals 1 on B(0, 1/6) ⊂ Cn and vanishes outside B(0, 1/3) ⊂ Cn.

Repeating the same arguments, we see that for j ∈ Σ′, we have

∫
B(ζk,ε(λj)/3)

|Uj|2 dµ ≥ cVol(B(ζk, ε(λj)/6))− o(|log λ|−β′/2)

simultaneously for all k = 1, 2, . . . , R(ε(λ)). Let ζ ′ ∈ Mτ \M be arbitrary. Every ball

B(ζ ′, ε(λj)) contains at least one element B(ζ ′, ε(λj)/3) ∈ Uλ of the log-good cover, whence

∫
B(ζ′,ε(λj))

|Uj|2 dV ≥ cVol(B(ζk0 , ε(λj)/3)) ≥ cVol(B(ζ ′, ε(λj))).
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Again, it is easy to verify that c = c(M, g) is independent of ζ ′. This is the statement of

the volume lower bound.

The intersection Γ = Σ∩Σ′ is again a full density subsequence. By construction, every

j ∈ Γ satisfies the two-sided bound:

cVolω(B(ζ ′, ε(λj))) ≤
∫
B(ζ′,ε(λj))

|Uj|2 dµ ≤ CVol(B(ζ ′, ε(λj))) for all ζ ′ ∈Mτ \M.

This completes the proof of Theorem 5.1.4. �

5.7. Proof of Theorem 5.1.1: Log-scale Equidistribution of Complex Zeros

Recall from the previous section the two key objects of study:

Θj(ζ) := ‖ϕC
j |√ρ(ζ) ‖L2(M√ρ(ζ)) and Uj(ζ) :=

ϕC
j (ζ)

Θj(ζ)
.

By the Poincaré–Lelong formula [20, p.388, Lemma], the current of integration [Zj] over

the zero set Zj = {ζ ∈Mτ0 : ϕC
j (ζ) = 0} is given by the identity

(5.33)
i

2π
∂∂̄ log|Uj|2 =

i

2π
∂∂̄ log|ϕC

j |2 −
i

2π
∂∂̄ log Θ2

j = [Zj]−
i

2π
∂∂̄ log Θ2

j .

To study the currents [Zj] at logarithmic length scales, let Dζ0∗
ε(λj)

denote the corre-

sponding pullback operator corresponding to the local holomorphic dilation map (5.16).

This allows us to work not on shrinking balls B(ζ0, ε(λj)) but on a fix-sized ball B(ζ0, 1),

which is more convenient. The (normalized) small-scale version of (5.33) becomes

(5.34)
i

2πλjε(λj)
∂∂̄Dζ0∗

ε(λj)
log|Uj|2
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=
1

λjε(λj)
Dζ0∗
ε(λj)

[Zj]−
i

2πλjε(λj)
∂∂̄Dζ0∗

ε(λj)
log Θ2

j as currents on B(ζ0, 1).

We used the fact that the local dilation map Dζ0
ε(λj)

, being holomorphic, commutes with

∂∂̄.

Remark 5.7.1. The λ−1
j normalization is already present in (5.3), due to [71]. Here

there is an additional factor of ε(λj)
−1, which comes from the proof of Proposition 5.7.4,

specifically (5.41).

5.7.1. Proof of Theorem 5.1.1 using Theorem 5.1.4

We rescale the convergence statement (5.4) as in (5.34), so that the various objects are

defined on a fixed-sized ball B(ζ0, 1) that does not change with respect to the frequency

λ.

We point out a subtlety involving the parameter α > 0 in the proof of Theorem 5.1.1

using Theorem 5.1.4. Namely, if a full density subsequence satisfies volume comparison

(5.6) at length scale ε(λj) = (log λj)
−α, then it satisfies the zeros distribution result (5.4)

at a coarser length scale ε′(λj) := (log λj)
−α′ for any α′ < α. This inequality is strict – see

the argument around (5.42)–(5.43). To emphasize the role of the two scales, we restate

Theorem 5.1.1 and Theorem 5.1.4 as follows.

Theorem 5.7.2. Let (M, g) be a real analytic, negatively curved, compact manifold

without boundary. Let ω := −i∂∂̄ρ denote the Kähler form on the Grauert tube Mτ0.

Assume that

0 ≤ α′ <
1

2(3n− 1)
, ε′(λj) = (log λj)

−α′ .
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Then there exists a full density subsequence of eigenvalues λjk such that for arbitrary but

fixed ζ0 ∈Mτ0\M , there is a uniform two-sided volume bound

(5.35) cVolω(B(ζ0, ε
′(λjk))) ≤

∫
B(ζ0,ε′(λjk ))

|Ujk |2dµ ≤ CVolω(B(ζ0, ε
′(λjk))).

The constants c, C are geometric constants depending only on
√
ρ(ζ0); they are uniform

for ζ0 lying in an ‘annulus’ 0 < τ1 ≤
√
ρ(ζ0) ≤ τ0.

Moreover, for any α satisfying

0 ≤ α < α′ <
1

2(3n− 1)
, ε(λj) = (log λj)

−α,

the full density subsequence satisfying (5.35) also satisfies

(5.36)
1

λjkε(λjk)
Dζ0∗
ε(λj)

[Zλjk ] ⇀
i

π
∂∂̄|=(ζ − ζ0)|g0 as currents on B(ζ0, 1).

Here, Dζ0∗
ε(λj)

denote pullback by the local holomorphic dilation (5.16) and g0 denotes the

flat metric. Equivalently, for every test form η ∈ D(n−1,n−1)(B(ζ0, 1)),

∫
B(ζ0,1)

η ∧ 1

λjkε(λjk)
Dζ0∗
ε(λj)

[Zλjk ] =

∫
B(ζ0,1)

η ∧ i

π
∂∂̄|=(ζ − ζ0)|g0 + o(1).

Remark 5.7.3. By a partition of unity argument, Theorem 5.7.2 for general test

forms supported on Kähler balls implies Theorem 5.1.1 for test forms on Mτ0 of the form

fωn−1 with f ∈ C(Mτ0).

The volume comparison (5.35) has already been proved in the previous section. Com-

paring what is left to prove – namely (5.36) – with the identity (5.34), we see that it

suffices to establish Proposition 5.7.4 and Proposition 5.7.5 below.
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Proposition 5.7.4. For the entire sequence of eigenvalues λj, for every ζ0 ∈Mτ0\M ,

we have

i

2πλjε(λj)
∂∂̄Dζ0∗

ε(λj)
log Θ2

j →
i

π
∂∂̄|=(ζ − ζ0)|g0 as currents on B(ζ0, 1).

Here, | · |g0 denotes the Euclidean distance.

Proposition 5.7.5. There exists a full density subsequence of eigenvalues λjk such

that, for every ζ0 ∈Mτ0\M , we have

(i) (λjkε(λjk))
−1 logDζ0∗

ε(λjk )|Ujk |2 → 0 strongly in L1(B(ζ0, 1));

(ii) (λjkε(λjk))
−1∂∂̄ logDζ0∗

ε(λjk )|Ujk |2 ⇀ 0 weakly in D(n−1,n−1)′(B(ζ0, 1)).

5.7.2. Proof of Proposition 5.7.4 using pseudodifferential operators

Using (5.14), we see

(5.37) ϕC
j (ζ) = eλj

√
ρ(ζ)(P

√
ρ(ζ)ϕj)(ζ), ζ ∈Mτ0 .

Therefore,

Dζ0∗
ε(λj)

Θj(ζ)2 = Dζ0∗
ε(λj)

∥∥ϕC
j |∂M√ρ(ζ)

∥∥2

L2(∂M√ρ(ζ))

=

∥∥∥∥ϕC
j |∂M

D
ζ0∗
ε(λj)

√
ρ(ζ)

∥∥∥∥2

L2
(
∂M

D
ζ0∗
ε(λj)

√
ρ(ζ)

)
=

〈
Π
D
ζ0∗
ε(λj)

√
ρ(ζ)

ϕC
j ,ΠD

ζ0∗
ε(λj)

√
ρ(ζ)

ϕC
j

〉
L2
(
∂M

D
ζ0∗
ε(λj)

√
ρ(ζ)

)
= e

2λjD
ζ0∗
ε(λj)

√
ρ(ζ)
〈
P
D
ζ0∗
ε(λj)

√
ρ(ζ)∗

Π
D
ζ0∗
ε(λj)

√
ρ(ζ)

P
D
ζ0∗
ε(λj)

√
ρ(ζ)

ϕj, ϕj

〉
L2(M)

.(5.38)
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The last equality follows from (5.37).

The operators

A(ε(λj),
√
ρ(ζ)) := P

D
ζ0∗
ε(λj)

√
ρ(ζ)∗

Π
D
ζ0∗
ε(λj)

√
ρ(ζ)

P
D
ζ0∗
ε(λj)

√
ρ(ζ) ∈ Ψ−

n−1
2 (M)

forms an analytic family in the parameter
√
ρ(ζ) ∈ (0, τ0] with A(ε(λj),

√
ρ(ζ)) → Id as

√
ρ(ζ)→ 0. It is easy to see using the Schur-Young test that (1 + ∆)−

n+1
2 A(ε) ∈ Ψ−n(M)

is a uniformly upper bounded family of operators on L2(M) (see [71, (34)]). Therefore,

writing A(ε(λj),
√
ρ(ζ)) = (1 + λj)

n+1
2 (1 + ∆)−

n+1
2 A(ε(λj),

√
ρ(ζ)), we find

(5.39)

∣∣∣∣∣ 1

λj
log

〈
P
D
ζ0∗
ε(λj)

√
ρ(ζ)∗

Π
D
ζ0∗
ε(λj)

√
ρ(ζ)

P
D
ζ0∗
ε(λj)

√
ρ(ζ)

ϕj, ϕj

〉
L2(M)

∣∣∣∣∣ ≤ C
log λj
λj

for some C independent of ε. Combining (5.38) and (5.39) gives

(5.40)
1

2πλjε(λj)
logDζ0∗

ε(λj)
Θj(ζ)2 =

1

πε(λj)
Dζ0∗
ε(λj)

√
ρ(ζ) +O(λ−1

j log λj).

Recall from Section 5.2 that the Grauert tube function ρ is related to the complexified

Riemannian distance function r on MC ×MC by

ρ(ζ) = −1

4
r2(ζ, ζ̄), ζ = expC

x (iξ) ∈Mτ0 .

Taylor expanding the metric yields
√
ρ(ζ) = |=(ζ−ζ0)|g0 +O(|=(ζ−ζ0)|2g0), in which | · |g0

denotes the flat metric. This gives rise to the λj →∞ asymptotics

(5.41) Dζ0∗
ε(λj)

√
ρ(ζ) = ε(λj)|=(ζ − ζ0)|g0 +O(ε(λj)

2), ζ = expC
x (iξ) ∈Mτ0 .
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The statement of Proposition 5.7.4 is now an immediate consequence of (5.40) and (5.41).

5.7.3. Proof of Proposition 5.7.5 using subharmonic function theory

Proposition 5.7.5 is modeled after arguments that have appeared in [57, 71, 11]. Given

ζ0 ∈Mτ0\M , consider the family of plurisubharmonic functions

vj :=
1

λjε(λj)
logDζ0∗

ε(λj)
|ϕC
j |2 ∈ PSH(B(ζ0, 1)).

(The functions vj are indeed subharmonic because ϕC
j are holomorphic by construction.)

We claim

(i) {vj} is uniformly bounded above on B(ζ0, 1);

(ii) lim supj→∞ vj(ζ) ≤ 2
√
ρ(ζ) on B(ζ0, 1).

Notice supB(ζ0,1)D
ζ0∗
ε(λj)
|Uj|2 = supB(ζ0,ε(λ))|Uj|2. To prove the first statement, it suffices to

obtain a uniform upper bound on each slice ∂Mτ ∩ B(ζ0, ε(λj)) that is independent of τ .

Since uτj ∈ O
n−1
4 (∂Mτ ), we see (cf. [71, §5.1])

sup
∂Mτ∩B(ζ0,ε(λj))

|Uj|2 ≤ sup
∂Mτ

|uτj |2 ≤ λnj ‖uτj‖L2(∂Mτ ) = λnj .

Rewriting the left-hand side as Uj = ϕC
j /‖ϕC

j ‖L2(∂M√ρ), taking the logarithm, dividing by

λj, and finally using the limit formula of Proposition 5.7.4 finishes the proof of (i) and

(ii).

It follows from a standard compactness theorem on plurisubharmonic functions [26,

Theorem 4.1.9] that either vj → −∞ locally uniformly, or there exists a subsequence that

is convergent in L1
loc(B(ζ0, 1)). The first possibility is easily ruled out. Indeed, if it were
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true, then

1

λjε(λj)
logDζ0∗

ε(λj)
|Uj|2 ≤ −1 on B(ζ0, 1) for all λj � 1

⇐⇒ |Uj|2 ≤ e−λjε(λj) on B(ζ0, ε(λj)) for all λj � 1,

contradicting the mass comparison assumption (5.35).

Remark 5.7.6. By a covering argument similar to the proof of Theorem 5.1.4, it is

easy to see that if a sequence {Uj} satisfies volume comparison (5.35), then it satisfies

volume comparison at all coarser length scales ε(λj) = (log λj)
−α for α′ < α < 1

2(3n−1)
.

Therefore, vj has a subsequence, which we continue to denote by vj, that converges in

L1 to v ∈ L1(B(ζ0, 1)). By passing to yet another subsequence if necessary, we may assume

that the convergence to v is pointwise almost everywhere. The upper-semicontinuous

regularization

v∗(ζ) := lim sup
η→ζ

v(η) ≤ 2
√
ρ(ζ)

of v is then a plurisubharmonic function on B(ζ0, 1) and vj → v∗ pointwise almost every-

where.3 The upper bound of 2
√
ρ(ζ) follows from claim (ii) above.

Set

ψ := v∗ − 2
√
ρ ≤ 0 on B(ζ0, 1).

3A similar argument is used in [57, Lemma 1.4], which gives further details. See also [32] for background.
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Assume for purposes of a contradiction that ‖λ−1
j ε(λj)

−1 logDζ0∗
ε(λj)
|Uj|2‖L1(B(ζ0,1) ≥ δ > 0.

It follows that

(5.42) Wδ := {ζ ∈ B(ζ0, 1) : ψ(ζ) < −δ/2}

is an open set with nonempty interior. The shape of Wδ is unknown – it may have a very

small inradius – but it is a fixed (independent of λj) open set. To gain control over this

unknown set Wδ, we make use of the volume comparison assumption (5.35) that takes

place at the finer scale ε′(λj) = (log λj)
−α′ for α′ < α. From this assumption we know

∫
B(ζ′,ε′(λj))

|Uj|2ωn ≥ cVolω(B(ζ0, ε
′(λj))) for all ζ ′ ∈Mτ0 \M .

Rescaling yields

(5.43)

∫
B(ζ′,ε′(λj)ε−1(λj))

Dζ0
ε(λj)
|Uj|2ωn ≥ cVolω(B(ζ0, ε

′(λj)ε
−1(λj))).

Notice in the above integral the radii ε′(λj)ε
−1(λj) = log(λj)

−(α′−α) of the domain of inte-

gration shrinks to 0. Therefore, there exists ζ ′ ∈Mτ0 \M for which B(ζ ′, ε′(λj)ε
−1(λj)) ⊂

Wδ for all λj sufficiently large.

On one hand, from the definition (5.42), we know that on all of Wδ – and in particular

on B(ζ ′, ε′(λj)ε
−1(λj)) – we have the upper bound λ−1

j ε(λj)
−1 logDζ′∗

ε(λj)
|Uj|2 < −δ/2, i.e.,

(5.44) Dζ0∗
ε(λj)
|Uj(ζ)|2 ≤ e−δλjε(λj), ζ ∈ B(ζ ′, ε′(λj)ε

−1(λj)), λj � 1.

Clearly, the exponential decay upper bound (5.44) is incompatible with the logarithmic

lower bound (5.43) as λj → ∞. This shows by way of contradiction that the original
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assumption

‖λ−1
j ε(λj)

−1 logDζ0∗
ε(λj)
|Uj|2‖L1(B(ζ0,1) ≥ δ > 0

does not hold, thereby proving Proposition 5.7.5 (i), from which Proposition 5.7.5 (ii) is

an immediate consequence. Combining (5.34), Proposition 5.7.4, and Proposition 5.7.5

(ii), we obtain the zeros distribution statement of Theorem 5.7.2:

1

λjkε(λjk)
Dζ0∗
ε(λj)

[Zλjk ] ⇀
i

π
∂∂̄|=(ζ − ζ0)|g0 as currents on B(ζ0, 1)

for a full density subsequence satisfying volume comparison at the finer scale α′. This

concludes the proof of Theorem 5.1.1.

5.8. Appendix: Currents of Integration over Singular Varieties

In general, the zero set X of a holomorphic function on a complex manifold V is

called a complex analytic variety (which could also be the common zeros of finitely many

holomorphic functions). See for instance [65]. It has a decomposition into a regular set

R(X) and a lower-dimensional singular set S(X), i.e., X = R(X) ∪ S(X) where R(X)

is a manifold and dimS(X) < dimX (see [31, Theorem 2.1.8]). In [31, Theorem 3.1.1]

it is proved that if X a k-dimensional complex subvariety of a complex manifold V and

u ∈ A2k
c (V ) is a smooth (2k)-form then

[X](u) :=

∫
X

u =

∫
R(X)

ι∗u

is a closed current (due to Lelong [37]). King used Federer’s geometric measure theory

[18] to study such currents. A modern exposition can be found in [15, Example 1.16].
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5.8.1. Shiffman’s Appendix

We asked B. Shiffman for further references on currents of integration over singular an-

alytic varieties. He wrote the following addition to the Appendix, and refers to [56,

Lemma A.2] for an elementary proof.

Here is a simpler way to show that [X] = [Zf ] is a well-defined current: It suffices

to show that the set R(X) of smooth points has finite volume in a neighborhood U of a

singular point z0. By the Weierstrass preparation theorem applied to f , it follows that

projections from X∩U to coordinate hyperplanes have finite fibers of bounded cardinality

(for good coordinates) and therefore Vol(R(X) ∩ U) =
∫
R(X)∩U ω

n−1 <∞.

The fact that Poincaré–Lelong holds at the singular points follows from the fact

that the singular set S(X) has Hausdorff (2n − 3)-dimensional measure 0, and there-

fore ‖∂∂̄ log |f |‖(S) = 0, since the total variation measure of a current of order zero and

dimension p vanishes on sets of Hausdorff p-measure zero. (In fact, S(X) is a subvariety

of real codimension 4).
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[46] Xiaonan Ma and George Marinescu. Berezin-Toeplitz quantization on Kähler mani-
folds. J. Reine Angew. Math., 662:1–56, 2012.

[47] Kenneth Maples. Quantum unique ergodicity for random bases of spectral projec-
tions. Math. Res. Lett., 20(6):1115–1124, 2013.

[48] Karina Marin. Cr-density of (non-uniform) hyperbolicity in partially hyperbolic sym-
plectic diffeomorphisms. Comment. Math. Helv., 91(2):357–396, 2016.
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