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Abstract 

Individuals within a species vary in complex phenotypes, such as responses to toxins. This drug-

response variation causes patients who are treated with the same medicine to experience a range 

of side effects, ultimately decreasing the efficacy of some drugs. Particular genetic variants 

among individuals might contribute to differential drug responses, and these biomarkers could be 

used to predict treatment outcomes. However, detecting these genetic variants is difficult in 

human populations because of statistical power limitations and confounding environmental 

variation. The model organism Caenorhabditis elegans can be used to understand how genetic 

variants underlie drug responses across divergent strains. In this dissertation, I describe how I 

used linkage mapping to detect quantitative trait loci (QTL) that contribute to toxin-response 

differences between two divergent strains, N2 and CB4856. First, I discuss a study in which I 

identified a nematode-specific gene, scb-1, that causes differences in responses to the 

chemotherapeutic drug bleomycin. Variation in expression of this gene likely underlies bleomycin-

response differences across recombinant lines derived from the N2 and CB4856 strains. 

Additionally, I localized epistatic regions that contribute to bleomycin hypersensitivity. Next, I 

discuss the identification of regions of the genome that are enriched for toxin-response QTL. The 

detection of these hotspots suggests that pleiotropic loci might modulate drug responses in C. 

elegans. I also discuss the relative contributions of additive and interacting loci toward responses 

to each of these toxins. The results of these two projects suggest that toxin resistance might be 

selected in nature, especially in the case of bleomycin. My work on linkage mapping in C. elegans 

highlights the power of this system to detect additive and epistatic QTL and frames the importance 

of these findings in the light of evolution.  
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Chapter 1 - Introduction 

Cancer and chemotherapeutics  

Cancer is the second leading cause of death worldwide, and approximately one in six deaths can 

be attributed to cancer [1]. Because this disease is such a prominent issue in the modern world, 

an enormous amount of scientific research focuses on understanding the biology of cancer and 

developing effective treatment strategies [2]. The field of cancer research has identified effective 

preventive and screening strategies as well as advances in cancer treatment regimens, and the 

number of cancer-related deaths is declining [3,4]. Many of the advances in treatment strategies 

are attributed to an immense arsenal of chemotherapeutic drugs at the fingertips of oncologists. 

 

By definition, cancer cells abnormally divide without control, which can allow them to invade 

nearby tissues and spread to other parts of the patient’s body [5]. Chemotherapeutic drugs aim 

to stop the growth of these cancerous cells, either by killing them or by preventing them from 

dividing [5,6]. Currently, more than 100 different FDA-approved chemotherapeutic drugs exist [7], 

and the mechanisms by which they affect cancerous cells can be grouped into several classes, 

some of which are detailed below. 

 

The largest class of chemotherapeutic drugs comprises alkylating agents [6]. These drugs 

transfer alkyl groups to a broad range of molecules, including DNA bases, thereby disrupting 

molecular functions and leading to cytotoxicity [8]. Another common class of chemotherapeutics 

is topoisomerase poisons, which prevent the action of topoisomerase I and II. Topoisomerases 
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are necessary for DNA uncoiling during replication and transcription, and the disruption of their 

function by topoisomerase poisons leads to cell death [9]. Microtubule-targeting agents, such as 

vinca alkaloids [10] and taxanes [11,12] bind to and alter the dynamic polymerization of 

microtubules, thereby leading to apoptosis [13]. Finally, antitumor antibiotics cause breaks in DNA 

either directly or indirectly via superoxide [5]. 

 

Although each class of chemotherapeutic drug causes apoptosis in tumor cells, off-target effects 

can cause cell death in unintended tissues. In fact, the cytotoxic effects of mustard gas in WWII 

prompted its use as an early cancer treatment, eventually establishing alkylating agents as a 

promising class of chemotherapeutic drugs [14–16]. Because of the toxic nature of these tumor-

cell killing drugs, a range of side effects can be expected from chemotherapy. Typically, the off-

target effects of cancer treatment affect fast growing cells and lead to side effects such as 

chemotherapy-induced alopecia [17], nausea and vomiting [18,19], impaired immune system [20], 

and cardiovascular complications [21,22]. The presence and severity of these side effects can 

vary across individual patients, and oncologists aim to maximize the on-target while minimizing 

the off-target effects of chemotherapeutic regimens.  

Variation in chemotherapeutic responses across individuals 

The balance between efficacy and toxicity of chemotherapy, or the therapeutic index, varies from 

patient to patient. Chemotherapeutic efficacy and treatment side effects can be influenced by 

environmental variables, such as diet [23], exercise [24], and smoking habits [25]. Some 

environmental factors can be used to predict patient responses to a broad range of 

chemotherapeutic regimens whereas others can be specifically predictive of a particular side 
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effect. For example, the general role of gut microbiota on efficacy and toxicity of many drugs, 

including chemotherapeutics, has been highlighted in several studies [26–28]. Social support is 

another environmental variable that broadly predicts patient quality of life after chemotherapy [29–

31]. On the other hand, patient age, disease progression, and low BMI are specific predictors of 

low white blood cell counts after chemotherapy [32,33]. In addition to environmental variables that 

impact treatment outcomes, genetic variation among individuals can also account for differences 

in chemotherapeutic drug responses. Rapid advances in sequencing technology allow for genetic 

variants to be accurately measured, and particular genetic variants can inform patient treatment 

decisions.  

 

The heritability of a trait is the amount of phenotypic variation across a population that can be 

explained by genetic differences among those individuals. Researchers can estimate the 

heritability of chemotherapeutic drug responses by treating cell lines [34–39], model organisms 

[40–44], or familial patient samples [45–48] with a drug of interest in a controlled environment. 

Although some of the observed variation in patient responses to chemotherapeutic drugs is often 

heritable, the challenge lies in identifying which genes underlie variation in these treatment 

outcomes. 

 

The field of pharmacogenomics aims to identify genetic variants, or biomarkers, that underlie 

drug-response variation across patients. Variants that affect drug metabolism [49–55], drug 

transport [56–58], drug targets [59–62], or general immune responses [63–65] can lead to 

differences in patient drug responses. Approximately ten percent of all FDA approved drugs 

contain a biomarker on their label [66], and labels for 85 FDA-approved chemotherapeutic drugs 

contain the name of a genetic biomarker that can be used to predict treatment outcomes [67]. 
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Some of these biomarkers predict adverse responses to chemotherapeutic agents. For example, 

toxicity of 5-fluorouracil (5FU) is associated with variants that impair the dihydropyrimidine 

dehydrogenase (DPD) enzyme [68,69]. Other biomarkers inform potential efficacy of 

chemotherapeutics. Patients with tumors that have mutated EGFR respond well to tyrosine kinase 

inhibitors, such as erlotinib [70], gefitinib [71], and afatinib [72]. Indeed, biomarkers are powerful 

tools used to inform treatment decisions, but many genetic variants that impact chemotherapeutic 

drug responses have yet to be identified [73]. 

Challenges of biomarker identification in humans 

Although human studies have identified many biomarkers that inform cancer treatment options, 

much of the heritability in drug responses remains to be explained. Many of the current biomarkers 

for drug-response variation were identified through genome-wide association (GWA) studies. 

Although the power of pharmacogenomic GWA studies continues to improve with advancing 

genome sequencing technology [74–76] and expanding panels of individuals [77–79], many 

limitations of human GWA studies remain [73,80–83].  

 

As mentioned above, both genetic and environmental variables can affect drug responses. To 

maximize the heritability of drug-response variation, environmental variables must be tightly 

controlled among individuals. As one can imagine, removing variation in diet, exercise, tobacco 

use, microbiome, and all other environmental factors that might influence drug responses in 

human patients is nearly impossible. In the case of chemotherapeutic drug responses, tumor 

stage and heterogeneity varies across patients, even across patients that have the same cancer 

type, and this uncontrollable variation affects the efficacy of treatment [84]. Complicating matters 
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further, each cancer patient usually receives a combination of chemotherapeutic interventions 

[85–87]. Finding a cohort of patients who received identical treatments can be difficult, and drug-

drug interactions can lead to additional variation in treatment responses across individuals in a 

GWA study. 

 

Aside from the difficulty in minimizing environmental differences across individuals, human 

pharmacogenomic GWA studies are additionally limited by the complexity of drug-response traits. 

The precision of phenotypic measurements highly impacts the ability of a GWA study to identify 

a correlated genetic variant [88,89]. Tumor measurement strategies are subject to inaccuracies 

[90], and self-reported side effect information can be biased [91–94]. These imprecisions in 

phenotypic measurements make the identification of a biomarker more challenging. 

 

Another obstacle of human GWA studies is the type of genetic variants that are typically detected. 

Many of the loci identified by human GWA studies are common variants with large effects, 

whereas rare and small-effect variants are less likely to be detected [95,96]. Larger, less 

geographically biased panels of individuals are necessary to identify rare variants, but creating 

such panels is a costly endeavor [81,83,95,97]. Finally, many genomic variants that underlie 

complex trait differences affect gene expression rather than protein changes [98–100]. Genomic 

variants that affect gene expression must be more accurately called to maximize the success of 

human GWA studies [101–103]. Alternatively, research with model organisms offers controllable 

environments, precise phenotypic measurements, and broad, well characterized genetic diversity. 

These model systems can be used as a proxy to understand how genetic variants impact drug-

response differences across individuals.  
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Caenorhabditis elegans as a tractable model organism 

Eight years before his first publication on the species, Dr. Sydney Brenner sought a simple 

experimental organism that was suitable for genetic studies, and he settled on the roundworm 

Caenorhabditis elegans [104]. His original mutant screen established C. elegans as a “favorable 

organism for genetic analysis” and sparked an era of C. elegans research [104].  

 

C. elegans is a microscopic, non-infectious nematode that can be found throughout the world 

[105]. Populations of C. elegans can be grown in the laboratory on bacteria-seeded agar petri 

dishes, and its transparent body can be easily viewed with a dissecting microscope [106]. These 

animals are primarily hermaphroditic, and their ability to self-propagate allows for easy 

maintenance of clonal populations, which can be cryopreserved for long-term storage with limited 

mutation accumulation [104,106]. Under standard laboratory conditions, the life cycle of C. 

elegans is predictable, with embryos hatching and developing through the first, second, third, and 

fourth larval stage before becoming sexually mature adults [104]. This whole life cycle lasts three 

to four days [104]. Thanks to a remarkably dedicated team of researchers, the entire cell lineage 

of C. elegans, from embryo to adult, is characterized and the anatomy of the organism is deeply 

understood [107]. These aspects of C. elegans make it an excellent model for many types of 

biological studies. 

Genetics and genomics of C. elegans 

Although natural C. elegans strains exist primarily as hermaphrodites, males can be created using 

heat shock [106]. These males can be crossed to hermaphrodites to transfer genetic material. 
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Although hermaphrodites produce their own sperm, they preferentially use male sperm to fertilize 

their eggs, thereby increasing the efficiency of genetic crosses [108]. The ability to cross strains 

allows for the creation of powerful genetic tools, such as panels of recombinant strains and near-

isogenic lines [109–112]. 

 

Genetic crosses in C. elegans are complemented by the facile use of gene editing in the species. 

Bacterial clustered regularly interspaced short palindromic repeat (CRISPR) proteins, such as 

Cas9, can be leveraged to precisely modify regions of the C. elegans genome [113,114]. The 

Cas9 protein can be directed to a particular genomic region by introducing a CRISPR RNA 

(crRNA) that contains the sequence of interest [115]. Once targeted to a genomic location, Cas9 

cleaves the DNA and introduces a double-stranded break [114]. Broken DNA can be repaired 

through error-prone non-homologous end joining (NHEJ), which often leads to insertions and 

deletions in the repaired region and potential loss-of-function alleles [116–120]. When a more 

precise genome modification is desired, one can supply a repair construct with a genomic edit of 

interest, and homology-driven repair (HDR) can use this construct as a template to fix the broken 

DNA [119,121–125]. Cas9, crRNAs, and repair templates are easily injected into the gonad of 

adult C. elegans hermaphrodites, and a portion of their progeny will carry the mutation of interest 

[117,125].  

 

C. elegans was the first multicellular animal to have its genome fully sequenced [126]. Its 100 MB 

genome contains six chromosomes (five autosomes and one sex chromosome) and 20,191 

protein-coding genes (WormBase release WS269, December 2018), which is similar to the 

approximately 20,500 estimated human genes [127,128]. In fact, about 38% of the protein-coding 

genes in C. elegans have a human ortholog [129]. Many of the core components of the 
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RTK/Ras/MAPK, Notch, TGF-𝛽, and insulin pathways are conserved between C. elegans and 

humans [129]. These ancient pathways are commonly mutated in cancers, so a deeper 

understanding of cancer in humans can be facilitated by understanding the genetics of these 

pathways in C. elegans [130]. 

 

Notably, genomic variation across wild C. elegans strains has been well characterized, and whole-

genome sequence data are available for 330 wild strains at elegansvariation.org (CeNDR version 

1.3.1) [131–133]. The incredible genetic diversity characterized across the worldwide population 

of C. elegans makes it an excellent model organism for understanding how natural genetic 

variants underlie phenotypic differences, such as variation in drug responses [40,133–135]. 

Effects of natural genetic variants can be directly assessed by generating precise allele 

replacements between different strains of the species [40,134,135]. 

High-throughput assays of C. elegans 

Another advantage of research in C. elegans is the ability to measure phenotypes rapidly and 

with high precision while controlling for environmental variables. Several of these high-throughput 

assays have been developed, including automated microscopy, microplate readers, and flow 

cytometers [109,136–141]. Researchers can use these assays to measure drug responses of 

many C. elegans animals in a short amount of time. 

 

In particular, the Andersen Lab has used the COPAS BIOSORT (Union Biometrica) to measure 

fecundity and body size for many strains of C. elegans in response to a multitude of drugs 

[40,41,109,135,142,143]. During this high-throughput assay (HTA), C. elegans strains of interest 
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are synchronized at the L1 larval stage and then grown for 48 hours under highly controlled 

conditions. When these animals reach the L4 larval stage, they are sorted into 96-well microtiter 

plates containing either control or drug conditions using the BIOSORT, with three animals in each 

well. These three animals grow and reproduce in the presence of either the control or drug 

condition for 96 hours. Finally, the BIOSORT is used to measure the length and optical density of 

each animal in each well. Animal size and fecundity measurements reflect how sensitive a given 

strain is to a particular drug. The BIOSORT can score all animals in each well of a 96-well plate 

in approximately 23 minutes, so adding biological replicates increases the precision of drug-

response measurements without adding copious amounts of experiment time. A diagram of the 

high-throughput fitness assay is shown in Figure 1-1. 

 

Each HTA generates an enormous amount of animal size and fecundity measurements. To 

efficiently and reproducibly analyze HTA results, members of the Andersen Lab have developed 

the COPASutils and easysorter pipelines [144–146]. These analysis tools read in raw data from 

the BIOSORT, remove data from contaminated wells, summarize measurements within each well, 

prune biological impossibilities and outliers, and control for day-to-day assay variation as well as 

phenotypic variation present in the control condition. After passing HTA data through these 

pipelines, drug responses can be compared easily across assayed strains. 

  



29 

 

Figure 1-1 High-throughput assay (HTA) 

A diagram shows the high-throughput fitness assay protocol. From top to bottom, left to right: Each strain is chunked 
onto a fresh plate, and animals of the L4 stage are transferred for four generations. Gravid adults from the fourth 
generation are bleached to synchronize growth of all strains. Embryos are aliquoted to 96-well growth plates containing 
K medium and 5 mg/mL of bacterial lysate. After 48 hours, three L4 larvae are sorted from each well of the growth plate 
to the corresponding well of either a control plate (which contains K medium, 10 mg/mL bacterial lysate, and 1% distilled 
water) or a drug plate (which contains K medium, 10 mg/mL bacterial lysate, 1% distilled water, and bleomycin). Animals 
are grown in the control and drug plates for four days at 20ºC with shaking. Then, animals are scored using the COPAS 
BIOSORT. For each well, all animals are measured for length (TOF) and optical density (EXT). The normal distributions 
represent hypothetical distributions of all animals in a given well of a control (blue) plate or a drug (red) plate. Summary 
statistics of these distributions are measured to obtain a population growth estimate for all animals within a well. For 
each trait measured, the average control phenotype for a given strain is plotted against the drug phenotype for each 
replicate of that strain. A linear model is fit to those data, and the residual phenotype is calculated and used for further 
analysis.  
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Similar to human variation in drug responses, differences in drug responses across strains of C. 

elegans is apparent [40,41,109,135,142,143,147]. Heritability calculations show that much of 

these drug-response differences can be attributed to genetic variants among strains [40,41,142]. 

Given the challenges of identifying genetic variants that underlie these drug-response differences 

in humans, C. elegans can be used as a proxy to locate genetic factors that impact animal growth 

and fecundity during drug exposure. In fact, variants that underlie drug-response differences in 

C. elegans have been identified by GWA studies across many wild strains and by linkage mapping 

of recombinant lines derived from two divergent strains [40,135,142]. 

Linkage mapping in C. elegans 

Two highly diverged strains of C. elegans can be studied to understand how genetic variation 

between them can cause phenotypic differences. N2 is the canonical laboratory strain; it is derived 

from an isolate found in Bristol, England in 1951 and is one of the earliest strains in the field 

[104,148]. Across the globe, in 1972, the CB4856 strain was isolated from a pineapple field on 

the Hawaiian island of Maui [149]. For decades, these two strains have been extensively studied 

and are genetically divergent [131,150–154]. Additionally, these two strains display variation in 

many phenotypes, including social behavior [155], temperature responsiveness [156], RNAi 

susceptibility [157], gene expression profiles [158], and notably, drug responses [40,41,141–

143,147]. 

 

To isolate regions of the genome that might underlie drug-response variation between the N2 and 

CB4856 strains, panels of recombinant inbred advanced intercross lines (RIAILs) have been 

generated by crossing the two genotypes for many generations [109,110]. Each strain in the RIAIL 
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panel has a unique set of genetic markers derived from either the N2 or the CB4856 parental 

strain. Linkage mapping is used to correlate genetic markers with phenotypic variation across the 

RIAILs, and mappings are facilitated by the linkagemapping pipeline developed by members of 

the Andersen Lab [41,159]. Recently, the set of genetic markers used for a linkage mapping has 

increased from 1,454 to 13,003, which allows for the identification of more precise regions of the 

genome that correlate with phenotypic variation [160].  

 

Regions of the genome that are strongly correlated with phenotypic variation are called 

quantitative trait loci (QTL). Near-isogenic lines that isolate pieces of the QTL in a constant genetic 

background can be used to confirm the QTL effect and narrow the QTL to a smaller region of the 

genome. Ultimately, researchers are able to use CRISPR/Cas9-mediated genome editing to 

modify precise genomic loci and test the effect of those loci on the phenotype of interest. Several 

linkage-mapping studies in C. elegans, sometimes in combination with GWA studies, have 

identified a causal locus that underlies a quantitative trait [40,141,142,156,161–168]. 

 

C. elegans is an excellent model system that can be leveraged to understand how genetic 

variation causes phenotypic differences among individuals. In the case of drug-response variation 

in the clinic, it is sometimes difficult to attribute these life-threatening differences to particular 

genetic markers. Especially for drugs that target conserved signaling pathways, C. elegans can 

be a powerful tool for understanding how genetic differences underlie drug-response variation. 

Therefore, biomarkers that predict drug responses could be identified using C. elegans, and 

physicians might be able to use this information to screen patients before prescribing particular 

medicines, ultimately improving treatment outcomes. 
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Chapter 2 - Variation in scb-1 function underlies 

bleomycin response differences 

Preface 

In the spring quarter of 2015, I chose to complete my final first-year rotation in the Andersen Lab. 

I had a strong interest in joining the lab for my thesis work, so I worked with Erik to select a project 

that could bridge into my time as a Ph.D. candidate. Early members of the Andersen Lab had 

mapped responses to various drugs using genome-wide association and linkage mapping. The 

massive mapping dataset offered seemingly endless quantitative trait loci that I could choose to 

follow. Given its impressively significant correlation with a region on chromosome V, I chose 

bleomycin response as my trait of interest for my thesis work. This “low hanging fruit” seemed to 

be a very straightforward project, but sometimes science is more complex than it seems. The 

following chapter highlights the exciting project that took the majority of my time in the Andersen 

Lab, identifying the genetic variant that causes bleomycin-response differences across C. elegans 

strains, and this work was published in Genetics in 2019. 

Abstract 

Bleomycin is a powerful chemotherapeutic drug used to treat a variety of cancers. However, 

individual patients vary in their responses to bleomycin. The identification of genetic differences 

that underlie this response variation could improve treatment outcomes by tailoring bleomycin 

dosages to each patient. We used the model organism Caenorhabditis elegans to identify genetic 
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determinants of bleomycin-response differences by performing linkage mapping on recombinants 

derived from a cross between the laboratory strain (N2) and a wild strain (CB4856). This approach 

identified a small genomic region on chromosome V that underlies bleomycin-response variation. 

Using near-isogenic lines and strains with CRISPR/Cas9-mediated deletions and allele 

replacements, we discovered that a novel nematode-specific gene (scb-1) is required for 

bleomycin resistance. Although the mechanism by which this gene causes variation in bleomycin 

responses is unknown, we suggest that a rare variant present in the CB4856 strain might cause 

differences in the potential stress-response function of scb-1 between the N2 and CB4856 strains, 

thereby leading to differences in bleomycin resistance. 

Introduction 

Cancer is the second leading cause of death worldwide [1], which has led to extensive research 

for treatments, including the identification of over 100 effective chemotherapeutic drugs [7]. One 

of these drugs is bleomycin, an anti-tumor antibiotic that interacts with oxygen and transition 

metals to cause double-stranded DNA breaks [169]. Although the cytotoxicity of bleomycin can 

reliably induce cell death in tumor cells, off-target effects can lead to a range of harmful 

consequences from mild gastrointestinal irritation to severe bleomycin-induced pulmonary fibrosis 

[170]. The tradeoff between efficacy and toxicity varies across individuals, and understanding the 

genetic variants that affect bleomycin response might yield opportunities to broaden the 

therapeutic range [171,172].  

 

Bleomycin sensitivity has been shown to be heritable, suggesting that genetic markers can be 

used to predict bleomycin responses [173]. Many studies have attempted to identify the genetic 
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variant(s) that underlie bleomycin-response differences across cancer patients, and some have 

identified potential connections between the metabolic enzyme bleomycin hydrolase (BLMH) and 

patient outcomes. However, none of these studies established a causal connection between 

genetic differences in BLMH and variation in bleomycin responses [171,174–177]. The inability to 

identify a genetic variant that causes differences in bleomycin responses in humans might be 

attributed to limited sample sizes [178], confounding environmental factors [179,180], variation in 

drug regimens across patients [181], or tumor complexity and progression [182,183]. However, 

the DNA-damage pathways that might be implicated in bleomycin responses are evolutionarily 

conserved across eukaryotes [184]. Therefore, studying bleomycin responses in a model 

organism with natural genetic variation can offer insights into how bleomycin response differs 

across individuals and can potentially be applied to the clinic [185]. 

 

Caenorhabditis elegans is a soil-associated microscopic roundworm that is an excellent model 

for basic cellular and organismal processes [105]. Not only does C. elegans have a well annotated 

reference genome ([126,186,187], www.wormbase.org WS268), but this species also has broad 

genomic diversity across global populations [133]. Notably, the N2 strain and the CB4856 strain 

are well characterized and genetically divergent with approximately one single nucleotide variant 

per 850 bp [150–152]. These two strains were used to generate a panel of recombinant inbred 

advanced intercross lines (RIAILs) [109,110], which has been used to correlate genetic variants 

with differences in quantitative traits [40,134,141,156,161–168,188]. 

 

Here, we used a high-throughput fitness assay to measure bleomycin responses across a panel 

of 249 RIAILs [109] and then performed linkage mapping to identify quantitative trait loci (QTL) 

that underlie bleomycin-response variation. We used near-isogenic lines (NILs) to validate the 
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largest effect QTL on chromosome V. Our results from the NIL assays suggested that epistatic 

loci underlie bleomycin responses, but a two-factor genome scan was unable to detect significant 

genetic interactions. Next, we created and tested CRISPR-Cas9 mediated deletion alleles to 

investigate all six candidate genes in the QTL region. We identified a nematode-specific gene, 

H19N07.3, that underlies this QTL. Although this gene does not contain a protein-coding variant 

between the N2 and CB4856 strains, its gene expression varies across the RIAIL panel. 

Interestingly, a genome-wide association (GWA) approach identifies different QTL than the 

linkage mapping approach, suggesting that both common and rare variants underlie bleomycin 

response variation. Given the genetic complexity underlying the bleomycin response phenotype, 

this study highlights the power of the C. elegans model system to identify elusive causal genes. 

Materials and Methods 

Strains 

Animals were grown at 20ºC on 6 cm plates of modified nematode growth medium (NGMA), which 

contained 1% agar and 0.7% agarose, spotted with OP50 bacteria [147]. The two parental strains 

used in this study were N2 and CB4856. N2 is the canonical laboratory strain of C. elegans that 

has been extensively studied [104]. CB4856 is a well studied Hawaiian wild isolate that is 

genetically divergent from N2 and has a characterized genome [150–152]. The N2 and CB4856 

strains were crossed for several generations to create a panel of recombinant inbred advanced 

intercross lines (RIAILs) that contain regions of the genome derived from each parental strain. 

These RIAILs were constructed previously [109,110] and have well characterized genotypes and 

allele frequencies, and we used this panel of RIAILs in our study to identify regions of the genome 
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correlated with drug response. The construction of near-isogenic lines (NILs), as well as CRISPR-

Cas9 mediated deletion and allele-replacement strains, is detailed below. All strains and reagents 

used in strain constructions are listed in Table S2-1.  

High-throughput fitness assays 

We used the high-throughput assay (HTA) described above. Populations of each strain were 

passaged on 6 cm plates for four generations to amplify animal numbers and reduce the effects 

of starvation [141]. Gravid adults were bleached for stage synchronization, and approximately 25 

embryos from each strain were aliquoted into 96-well plates at a final volume of 50 µL of K medium 

[189]. The following day, arrested L1 larvae were fed 5 mg/mL HB101 bacterial lysate in K medium 

(Pennsylvania State University Shared Fermentation Facility, State College, PA; [190] and were 

grown for 48 hours at 20º with constant shaking. A large-particle flow cytometer (COPAS 

BIOSORT, Union Biometrica, Holliston, MA) was used to sort three L4 larvae into each well of a 

96-well plate that contained 50 µL K medium plus HB101 lysate at 10 mg/mL, 50 µM kanamycin, 

and either 1% distilled water (control) or 1% distilled water and bleomycin (drug). The sorted L4 

larvae were grown and propagated for 96 hours at 20º with constant shaking. The population of 

parents and progeny were treated with sodium azide (50 mM in M9) and quantified by the 

BIOSORT for several fitness parameters. Because bleomycin exposure can affect animal 

proliferation (brood size), animal growth (length), and animal development (optical density), the 

fitness parameters we measured with the BIOSORT included brood size (n), animal length (time 

of flight, TOF), and optical density (extinction time, EXT). 
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Bleomycin-response trait measurements and processing 

Phenotypic measurements collected by the BIOSORT were processed using the R package 

easysorter [144]. Using this package, read_data imported measurements from the BIOSORT and 

remove_contamination was used to remove contaminated wells from analysis. The sumplate 

function then calculated normalized measurements (norm.n -- brood size normalized to number 

of animals sorted, norm.EXT -- EXT normalized by TOF measurements) and summary statistics 

(mean, median, 10th, 25th, 75th, 90th percentile, interquartile range, covariance, and variance) of 

each trait for the population of animals. A total of 26 HTA traits were measured. When strains 

were phenotyped across multiple days, the regress(assay=TRUE) function was used to fit a linear 

model with the formula (phenotype ~ assay) to account for variation among assay days. Next, the 

prune_outliers() function removed phenotypic values that were beyond two standard deviations 

of the mean (unless at least 5% of the strains were outside this range in the case of RIAIL assays). 

Finally, bleomycin-specific effects were calculated using the regress(assay=FALSE) function from 

easysorter, which fits a linear model with the formula (phenotype ~ control phenotype). The 

residual phenotypic values account for differences among strains that were present in control 

conditions. 

Bleomycin dose response 

A dose-response high-throughput assay was performed using quadruplicates of four genetically 

divergent strains (N2, CB4856, JU258, and DL238) tested in various concentrations of bleomycin. 

The broad-sense heritability at each concentration was calculated using the lmer function within 

the lme4 R package with the phenotype as the dependent variable and strain as a random effect 

phenotype ~ 1 + (1|strain). The concentration of bleomycin that provided the highest mean broad-
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sense heritability across the 26 HTA traits was selected for linkage mapping experiments (50 µM, 

mean H2 = 0.58). Bleomycin sulfate was purchased from Biotang Inc via Fisher Scientific (Catalog 

No. 50-148-546). 

Whole-genome sequence library prep and analysis 

Whole-genome sequencing was performed on recombinant advanced intercross lines (RIAILs) 

and near-isogenic lines (NILs) using low-coverage sequencing. DNA was isolated from 100-300 

µL of packed worms using Omega BioTek’s EZ 96 Tissue DNA Kit (catalog no. D1196-01). All 

samples were diluted to 0.2 ng/µL and incubated with diluted Illumina transposome (catalog no. 

FC-121-1031). Tagmented samples were amplified with barcoded primers. Unique libraries (192) 

were pooled by adding 8 µL of each library. The pooled material was size-selected by separating 

the material on a 2% agarose gel and excising the fragments ranging from 400-600 bp. The 

sample was purified using Qiagen's Gel Extraction Kit (catalog no. 28706) and eluted in 30 µL of 

buffer EB. The concentration of the purified sample was determined using the Qubit dsDNA HS 

Assay Kit (catalog no. Q32851). RIAILs and NILs were sequenced at low coverage (mean = 

2.13x) using the Illumina HiSeq 2500 platform with a paired-end 100 bp reaction lane. RIAIL and 

NIL genotypes were imputed using VCF-kit [191]. To determine genotypes, a list of filtered, high-

quality sites (n = 196,565) where parental strains possess different genotypes was extracted from 

a previously established variant dataset [132]. All RIAIL genotypes can be accessed by 

downloading the linkagemapping R package at github.com/AndersenLab/linkagemapping. NIL 

genotypes are described below. 
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Linkage mapping 

Linkage mapping was performed on each of the 26 HTA traits described above using the R 

package linkagemapping (www.github.com/AndersenLab/linkagemapping). The function 

load_cross_obj(“N2xCB4856cross_full”) was executed to load a cross object containing 13,003 

SNPs that describe locations of genetic recombination in the RIAIL panel (out of the 195,565 high-

quality SNPs at which genotypes were called). The genotypic data and residual phenotypic data 

(after control-condition regression) were merged into a cross object using the merge_pheno 

function with set = 2 to include strains with a reduced allele-frequency skew on chromosome I. 

The fsearch function was used to calculate logarithm of odds (LOD) scores for each marker and 

each trait as −𝑛(𝑙𝑛(1 − 𝑅()/2𝑙𝑛(10)), where R is the Pearson correlation coefficient between 

RIAIL genotypes at the marker and trait values [40,41,162,192]. A 5% genome-wide error rate 

was calculated by permuting phenotype and genotype data 1,000 times. Mappings were repeated 

iteratively, each time using the marker with the highest LOD score as a cofactor until no significant 

QTL were detected. The annotate_lods function was used to calculate the percent of variance in 

RIAIL phenotypes explained by each QTL and a 95% confidence interval around each peak 

marker, defined by any marker on the same chromosome within a 1.5-LOD drop from the peak 

marker. 

Generation of near-isogenic lines (NILs) 

A near-isogenic line (NIL) is genetically identical to another strain aside from a small genomic 

region that is derived from an alternate strain. NILs are used to test the effect of modifications to 

particular genomic regions in a consistent genetic background. To make each NIL, males and 

hermaphrodites of the desired RIAIL (QX131 for ECA230 and QX450 for ECA232) and parental 
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background (CB4856 for ECA230 and N2 for ECA232) were crossed in bulk, then male progeny 

were crossed to the parental strain in bulk for another generation. For each NIL, eight single-

parent crosses were performed followed by six generations of propagating isogenic lines to 

ensure homozygosity of the genome. For each cross, PCR was used to select non-recombinant 

progeny genotypes within the introgressed region by amplifying insertion-deletion (indel) variants 

between the N2 and CB4856 genotypes on the left and right side of the introgressed region. NIL 

strains ECA411 and ECA528 were generated by crossing ECA230 and CB4856 in bulk. 

Heterozygous F1 hermaphrodites were crossed to CB4856 males and the F2 L4 hermaphrodites 

were placed into individual wells of a 96-well plate with K medium and 5 mg/mL bacterial lysate 

and grown to starvation. After starvation, each well of the 96-well plate was genotyped to identify 

recombinants in the desired region. Recombinant strains were plated onto 6 cm plates and 

individual hermaphrodites were propagated for several generations to ensure homozygosity 

across the genome. NIL strains were whole-genome sequenced as described above to confirm 

their genotypes. Reagents used to generate all NIL strains and a summary of each introgressed 

region are detailed in the Table S2-1. 

Two-factor genome scan 

We performed a two-factor genome scan to identify potentially epistatic loci that might contribute 

to traits of interest (either bleomycin responses or gene-expression levels). We used the scantwo 

function in the R qtl package to perform this analysis. Each pairwise combination of loci were 

tested for correlations with trait variation in the RIAILs. The summary of each scantwo output 

includes the maximum interactive LOD score for each pair of chromosomes. To determine a 

threshold for significant interactions, we performed 1000 permutations of the scantwo analysis 

and selected the 95th percentile from these permutations. For the bleomycin-response variation 
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scantwo, the significant interaction threshold was a LOD score of 4.08. The significant interaction 

threshold for the scb-1 expression variation scantwo was 4.05. 

Identification of genes with non-synonymous variants 

The get_db function within the cegwas R package was used to query WormBase build WS245 

for genes in the QTL confidence interval (V:11,042,745-11,189,364). Our initial linkage mappings 

used the 1,454 marker set [110] and had a QTL confidence interval larger than the interval found 

using the whole-genome marker set (described above). Because this confidence interval was 

larger and more conservative, we kept it for subsequent testing of candidate genes. This 

expanded interval contained an additional 20 kb on either side of the whole-genome marker set 

confidence interval. The snpeff function within the cegwas R package was used to identify variants 

within the region of interest. We identified variants predicted to have MODERATE (coding variant, 

inframe insertion/deletion, missense variant, regulatory region ablation, or splice region variant) 

or HIGH (chromosome number variant, exon loss, frameshift variant, rare amino acid variant, 

splice donor/acceptor variant, start loss, stop loss/gain, or transcript ablation) phenotypic effects 

according to Sequence Ontology [193] and selected variants at which the CB4856 strain contains 

the alternate allele. This search found five candidate genes in the interval: C45B11.8, C45B11.6, 

jmjd-5, srg-42, and cnc-10, which each contain one non-synonymous variant between the N2 and 

CB4856 strains. 

Generation of deletion strains 

Deletion alleles for genes of interest were generated to test the effects of loss-of-function variants 

on bleomycin responses. For each desired deletion, we designed a 5’ and a 3’ guide RNA with 
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the highest possible on-target and off-target scores, calculated using the Doench algorithm [194]. 

The N2 and CB4856 L4 hermaphrodite larvae were picked to 6 cm agar plates seeded with OP50 

E. coli 24 hours before injection. The CRISPR injection mix was assembled by first incubating 

0.88 µL of 200 µM AltR® CRISPR-Cas9 tracrRNA (IDT, catalog no. 1072532), 0.82 µL of each of 

the 5’ and 3’ AltR® CRISPR-Cas9 crRNAs at a stock concentration of 100 µM in Duplex Buffer 

(IDT), and 0.12 µL of 100 µM dpy-10 co-injection crRNA at 95º for five minutes. 2.52 µL of 69 µM 

AltR® S. pyogenes Cas9 Nuclease (IDT, catalog no. 1081058) was added to the tracrRNA/crRNA 

complex mixture and incubated at room temperature for five minutes. Finally, 0.5 µL of 10 µM 

dpy-10 repair construct and distilled water were added to a final volume of 10 µL. The injection 

mixture was loaded into the injection capillary using a mouth pipet to avoid bubbles in the injection 

solution. Young adult animals were mounted onto agar injection pads, injected in either the 

anterior or posterior arm of the gonad, and allowed to recover on 6 cm plates in bulk. Twelve 

hours after injection, survivors were transferred to individual 6 cm plates. Broods with successful 

edits were easily observed because of the dpy-10 co-injection marker, which created animals with 

an obvious locomotive defect, roller (Rol), or morphological phenotype, dumpy (Dpy). Three to 

four days after injections, plates were checked for the presence of Rol or Dpy F1 progeny. These 

Rol F1 progeny were transferred to individual 6 cm plates, allowed to lay offspring, and genotyped 

for the desired edit 24 hours later. Genotyping was performed with PCR amplicons designed 

around the desired site of the deletion. Plates with heterozygous or homozygous deletions were 

propagated and genotyped for at least two more generations to ensure homozygosity and to cross 

out the Rol mutation. Deletion amplicons were Sanger sequenced to identify the exact location of 

the deletion. Reagents used to generate deletion alleles are detailed in Table S2-2. 
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Generation of CRISPR-mediated jmjd-5 allele replacements 

Allele replacement strains were created to test the effect of a particular amino acid substitution 

on bleomycin responses. A guide RNA was designed to cut two bp downstream of the the natural 

variant, with an on-target score of 31 and off-target score of 47 [194]. Two repair constructs were 

designed, one for the N2 to CB4856 replacement and vice versa. Repair oligonucleotides were 

homologous to the background strain except for the nucleotide variant, a silent mutation in the 

PAM site (A339A) to eliminate repair construct cleavage, and a silent mutation that introduces a 

BsaAI restriction enzyme cut site (T336T). Repair constructs contained a 35-bp homology arm on 

the PAM-proximal side of the edit and a 91-bp homology arm on the PAM-distal side of the edit. 

Injection mixes were made as above, with 0.6 µL of 100 µM jmjd-5 repair construct added with 

the dpy-10 repair construct in the last step of the protocol. Animals were injected as above and 

Rol F1 progeny were genotyped using PCR and restriction enzyme digestion. As with the deletion 

alleles, edited strains were homozygosed and their genotypes were confirmed with Sanger 

sequencing. Reagents used to generate these allele replacement strains are detailed in the Table 

S2-2. 

Linkage mapping of expression QTL 

Microarray data for 13,107 probes were collected for synchronized young adult populations of 

209 recombinant lines previously [158]. We performed linkage mapping as described above on 

these expression data and identified significant peaks for 3,298 probes. 
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Hemizygosity high-throughput assay 

Hemizygosity assays were used to test the effect of zero (two deletion alleles), one (one deletion 

allele and one wild-type allele), or two (two wild-type alleles) functional copies of a gene product 

on bleomycin responses. If the phenotype is affected by gene function, one would expect to see 

bleomycin responses scale with the number of functional alleles of the gene present in each strain. 

For each heterozygous/hemizygous genotype, 30 hermaphrodites and 60 males were placed onto 

each of four 6 cm plates and allowed to mate for 48 hours. The same process was completed for 

homozygous strains to remove biases introduced by the presence of male progeny in the assay. 

Mated hermaphrodites were transferred to a clean 6 cm plate and allowed to lay embryos for eight 

hours. After the egg lay period, adults were manually removed from egg lay plates, and embryos 

were washed into 15 mL conicals using M9 and a combination of pasteur pipette rinsing and 

scraping with plastic inoculation loops. Embryos were rinsed and centrifuged four times with M9 

before being resuspended in K medium and 50 µM kanamycin. Embryos hatched and arrested in 

the L1 larval stage in conicals overnight at 20º with shaking. The next morning, 50 L1 larvae were 

sorted into each well of a 96-well plate containing K medium, 10 mg/mL bacterial lysate, 50 µM 

kanamycin, and either 1% distilled water or 1% distilled water plus bleomycin using the BIOSORT 

(dose-response assay) or by titering (hemizygosity assays). Animals were incubated in these 

plates for 48 hours at 20º with shaking and were paralyzed with 50 µM sodium azide in M9 before 

being scored for phenotypic parameters using the BIOSORT. 

Statistical analysis 

All statistical tests of phenotypic differences in the NIL, deletion strain, and allele-replacement 

strain assays were performed in R (version 3.3.1) using the TukeyHSD function [195] and an 
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ANOVA model with phenotype as the dependent variable and strain as the independent variable 

(phenotype ~ strain). The p-values of individual pairwise strain comparisons were reported, and 

p-values less than 0.05 were deemed significant. For each figure (with the exception of 

hemizygosity tests), phenotypes of NILs, deletion strains, and allele-replacement strains were 

compared to phenotypes of their respective background strains (either N2 or CB4856), and 

statistical significance is denoted by an asterisk above the boxplot for each strain. Correlation 

between RIAIL H19N07.3 expression and median optical density in bleomycin was tested using 

a Spearman’s correlation test. Statistical difference between N2 and CB4856 expression of 

H19N07.3 measured by RNA-seq was tested using a likelihood-ratio and a Wald test with a 

threshold of p < 0.05. 

RNA-seq 

Three independent replicates of RNA were sampled as follows. Bleach-synchronized embryos 

(~2,000) of the N2 and CB4856 strains were grown on 10 cm plates of NGMA for 66-69 hours. 

When F1 embryos appeared on the plate, synchronized young adults were collected by washing 

each plate twice with M9 buffer and incubating for 30 minutes in M9 to remove remaining bacteria. 

Then, samples were washed twice again with M9 buffer, and then washed with sterile water. 

Animals were pelleted and homogenized in Trizol (Ambion) by repeating freezing-thawing with 

liquid nitrogen five times. To extract RNA from each sample, chloroform, isopropanol, and ethanol 

were used for phase separation, precipitation and washing steps, respectively. RNA pellets were 

resuspended in TE buffer, and RNA quality was measured with a 2100 Bioanalyzer (Agilent). 

Library preparation and RNA sequencing (HiSeq4000, Illumina) were performed by the Genomics 

Facility at the University of Chicago. RNA-seq data were quantified with kallisto and then within-

sample and between-sample normalization was performed using sleuth, which is based on 
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DESeq [196–198]. Significant differences between samples were determined by likelihood-ratio 

and Wald tests. 

Genome-wide association mapping 

Bleomycin responses were measured for 83 C. elegans isotypes using the high-throughput fitness 

assay (Figure 1-1). Genome-wide association mapping was performed as described previously 

[134] using genotype data from CeNDR Release 20180527 [133]. In short, BCFtools was used to 

remove variants with missing genotype calls and variants with a minor allele frequency below 5% 

[199], and PLINK v1.9 was used to prune the genotypes at a linkage disequilibrium threshold of 

r2 < 0.8 [200,201], for a total of 59,241 pruned markers. A kinship matrix was generated using the 

A.mat function in the rrBLUP R package [202,203]. The GWAS function in the rrBLUP package 

was used to perform genome-wide association mapping with EMMA algorithm to correct for 

kinship [204,205]. The relatedness among these wild isolates was described previously 

[131,134,135]. 

Identification of rare variants 

VCF release 20180527 was downloaded from elegansvariation.org [133]. The VCF was filtered 

to select all variants within the linkage mapping confidence interval (V:11042745-11189364) 

where CB4856 contains the alternate allele. Variants with a minor allele frequency less than 0.05 

within the 83 wild isolates that have a bleomycin median optical density measurement were 

deemed “rare”. 
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Creation of neighbor-joining tree 

Protein sequences for homologs of the C. elegans H19N07.3 protein were input to MUSCLE 

[206,207] to generate a multiple-sequence alignment. CLUSTALW was then used to generate a 

neighbor-joining tree and output as a Newick formatted file. 

Results 

Genetic differences underlie bleomycin-response variation 

Bleomycin causes double-stranded DNA breaks, which ultimately lead to cytotoxicity of rapidly 

dividing cell populations. Therefore, exposure to bleomycin can affect the development of C. 

elegans larvae as well as germ-cell production of adult animals. We used a high-throughput assay 

(HTA) to measure the effects of bleomycin on development and brood size (Figure 1-1, Materials 

and Methods). To determine the concentration of bleomycin that would maximize among-strain 

while minimizing within-strain phenotypic variation, we used the HTA to perform a dose-response 

assay. We assessed bleomycin responses for four divergent strains (N2, CB4856, JU258, and 

DL238) across each of 26 HTA traits (Figure 2-1). For each concentration of bleomycin, we 

calculated the broad-sense heritability of the traits (Materials and Methods) and found that 

heritability was maximized at 50 µM bleomycin (mean H2 across all traits = 0.58). Given these 

results, we exposed animals to 50 µM bleomycin for all future HTA experiments. 
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Figure 2-1 Responses to different doses of bleomycin vary across wild isolates 

Dose-response phenotypes are shown for three high-throughput fitness traits: brood size (norm.n), mean length 
(mean.TOF), and median optical density (median.EXT). Phenotypes for each of the four wild isolates are shown as 
Tukey boxplots, colored by strain (N2 - orange, CB4856 - blue, JU258 - pink, DL238 - green). The x-axis shows the 
concentration of bleomycin (or water) to which the animals were exposed, and the y-axis shows the pruned phenotype. 
Each point is a biological replicate. The JU258 strain was pruned from the water and 50 μM bleomycin conditions 
because the wells were contaminated.  

 

Two of the strains used in the dose response assay, N2 and CB4856, have been extensively 

characterized at the genome level [150–152] and displayed divergent bleomycin responses 

(Figure 2-1). Recombinant inbred advanced intercross lines (RIAILs) were previously constructed 

between these two strains [109,110], and these RIAILs have been leveraged to identify genetic 

variants that cause phenotypic differences between the N2 and CB4856 strains [40,141,156,161–

168,188]. We used these RIAILs to identify genetic variants that contribute to differential 

bleomycin responses between the N2 and CB4856 strains. Using our HTA, we measured each 
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of the 26 fitness parameters for 249 RIAILs. Correlations between each pairwise combination of 

the 26 HTA measurements revealed several clusters of highly correlated traits (Figure 2-2). 

Therefore, the summary statistics measured by the BIOSORT should not be considered 

independent traits for linkage mapping. We selected median optical density (median.EXT) for 

future analyses, which is related to both animal length and optical extinction, because this trait 

was highly correlated with many of the 26 HTA traits and was highly heritable (H2 = 0.73). 

The QTL on the center of chromosome V strongly impacts bleomycin 

response 

We performed linkage mapping on the residual median optical density measurements in 

bleomycin and identified four significant quantitative trait loci (QTL, Figure 2-3A). The QTL on the 

center of chromosome V was highly significant (explained 43.58% of the total variation and 

55.60% of the genetic variation) with a LOD score of 32.57, and it was detected for 25 of the 26 

HTA traits (Figure S2-1). The QTL 95% confidence interval was approximately 147 kb. Strains 

with the N2 allele at the peak marker had a lower median optical density in bleomycin and were 

interpreted to be more sensitive than those RIAILs with the CB4856 allele (Figure 2-3B). For 

each of the 26 HTA traits, we compared the broad-sense heritability (calculated from the dose 

responses) to the narrow-sense heritability (the sum of all variance-explained percentages of 

each significant QTL) and found that in many cases the QTL explained most of the broad-sense 

heritability (Figure 2-4).  
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Figure 2-2 Bleomycin-response HTA traits are correlated 

Pairwise correlations of high-throughput assay (HTA) traits are shown. Top: A dendrogram of HTA traits, calculated 
from pairwise correlations of RIAIL phenotypes for each trait, is shown. Bottom: The x- and y-axes list HTA traits for 
which the pairwise correlation coefficients (r2) are shown as colored tiles, ranging from green to yellow to pink to white.  
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Figure 2-3 Bleomycin-response variation maps to four QTL 

Linkage-mapping analysis of bleomycin-response variation is shown for residual median optical density in bleomycin. 
A. On the x-axis, each of 13,003 genomic markers, split by chromosome, were tested for correlation with phenotypic 
variation across the RIAIL panel. The log of the odds (LOD) score for each marker is reported on the y-axis. Each 
significant quantitative trait locus (QTL) is indicated by a red triangle at the peak marker, and a blue ribbon shows the 
95% confidence interval around the peak marker. The total amount of phenotypic variance across the RIAIL panel 
explained by the genotype at each peak marker is shown as a percentage. B. Residual median optical density 
phenotypes (y-axis), split by allele at each QTL peak marker (x-axis), are shown. For each significant QTL, phenotypes 
of RIAILs that contain the N2 allele (orange) are compared to RIAILs that contain the CB4856 allele (blue). Phenotypes 
are shown as Tukey box plots with the phenotypes of each individual strain shown as points behind the box plots. 
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Figure 2-4 Linkage mapping QTL explain most of the broad-sense heritability for bleomycin responses 

For each of the 26 HTA traits, the broad-sense heritability estimate, calculated from the dose-responses, is plotted on 
the x-axis, and the narrow-sense heritability estimate, calculated as the sum of all variance-explained percentages of 
significant QTL, is plotted on the y-axis. The line x=y is shown as a visual reference. 
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We isolated this QTL in a controlled genetic background by generating near-isogenic lines (NILs) 

that each contain a genetic background derived from either the N2 or CB4856 strain and a region 

of chromosome V from the opposite parental genotype (Table S2-1). We used the HTA to test 

these strains in response to bleomycin. The NIL with the N2 genotype across this QTL 

introgressed into the CB4856 background (ECA230) was statistically more sensitive to bleomycin 

than CB4856 (Figure 2-5, p = 1.3e-14, Tukey HSD). This phenotype indicated that the N2 

genotype within the introgressed region (which includes the QTL confidence interval) confers 

sensitivity to bleomycin. However, the reciprocal NIL with the CB4856 locus introgressed into the 

N2 background (ECA232) had a bleomycin-response phenotype that was not significantly 

different from the N2 strain (Figure 2-5, p = 0.053, Tukey HSD), suggesting that interacting loci 

could underlie bleomycin responses in a background-dependent manner. We performed a two-

factor genome scan to map potential epistatic loci but did not identify a significant interaction 

between the QTL on chromosome V and other loci (Figure 2-6). However, the failure to detect 

significant interacting QTL could be because we have too few recombinant strains or because too 

few replicates of each RIAIL were phenotyped. Alternatively, more than two loci might underlie 

the transgressive phenotype of ECA230 and a two-factor genome scan might not be able to 

capture this complexity. 



54 

 

Figure 2-5 Broad NILs recapitulate the expected QTL effect on bleomycin responses 

Phenotypes and genotypes of NIL strains are shown. A. Phenotypes for each strain are shown as Tukey box plots, 
with strain name on the y-axis and residual bleomycin median optical density on the x-axis. Each point is a biological 
replicate. Parental strain box plots are colored by their genetic background, with orange indicating an N2 background 
and blue indicating a CB4856 genetic background. NILs are shown as grey box plots. A red asterisk indicates a 
significant difference between the phenotype of a given strain and the phenotype of the corresponding parental strain 
(p < 0.05, Tukey HSD). B. Chromosomal representations of chromosome V are shown for each of the strains in A. 
Strain names are reported on the y-axis, and genomic position (Mb) is shown on the x-axis. Blocks of color indicate 
genotypes of genomic regions with orange indicating the N2 genotype and blue indicating the CB4856 genotype. 
Vertical red lines mark the confidence interval of the QTL from linkage mapping. C. Background genotypes are 
represented as rectangles with colors indicating N2 (orange) or CB4856 (blue) genetic backgrounds.  
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Figure 2-6 A two-factor genome scan for bleomycin responses does not detect epistatic loci 

A two-factor genome scan for residual optical density in bleomycin is shown. Log of the odds (LOD) scores are shown 
for each pairwise combination of loci, split by chromosome. The upper-left triangle contains the epistasis LOD scores, 
and the lower-right triangle contains LOD scores for the full model. LOD scores are shown as colors, with lower scores 
in blue and higher scores in yellow, as shown in the color scale. The epistatic LOD score axis is on the left of the color 
scale and the full LOD score axis is on the right of the color scale.  
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Nonetheless, because ECA230 recapitulated the expected QTL phenotype, we generated two 

NILs (ECA411 and ECA528) that narrowed this introgressed region to more precisely locate the 

causal variant. In addition, the N2 region on the left of chromosome V was removed from both 

NIL strains to ensure that this region of introgression did not underlie the phenotypic difference 

between ECA230 and CB4856. The genotypes of ECA411 and ECA528 differ in a small region 

of chromosome V that includes the QTL confidence interval (Figure 2-7). Both of these strains 

were more sensitive to bleomycin than the background parental strain, CB4856. This result could 

suggest that the introgressed region shared between these strains, which does not include the 

QTL, conferred some bleomycin-response variation between the N2 and CB4856 strains (Figure 

2-7). Alternatively, the hypersensitivity of these NILs could suggest the presence of Dobzhansky-

Muller incompatibilities between the N2 and CB4856 genotypes [208] that might affect stress 

responses of the NILs. However, ECA528 was much more sensitive to bleomycin than ECA411 

(Figure 2-7). Because ECA528 has the N2 genotype across the QTL region and ECA411 has the 

CB4856 genotype, these results suggest that the QTL genotype strongly affects bleomycin 

sensitivity (Figure 2-7, ECA528 vs. each other strain p < 1e-14, Tukey HSD). The empirically 

defined region lies between 10,339,727 and 11,345,443 bp on chromosome V and fully 

encompasses the linkage mapping confidence interval (from 11,042,745 to 11,189,364 bp on 

chromosome V). 
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Figure 2-7 NILs localize the bleomycin-response QTL to a small region on chromosome V 

Phenotypes and genotypes of near-isogenic lines (NILs) are shown. A. Phenotypes for each strain are shown as Tukey 
box plots, with strain name on the y-axis and residual bleomycin median optical density on the x-axis. Each point is a 
biological replicate. Parental strain box plots are colored by their genetic background, with orange indicating an N2 
background and blue indicating a CB4856 genetic background. NILs are shown as grey box plots. A red asterisk 
indicates a significant difference between the phenotype of a given strain and the phenotype of the corresponding 
parental strain (p < 0.05, Tukey HSD). B. Chromosomal representations of chromosome V are shown for each of the 
strains in A. Strain names are reported on the y-axis, and genomic position (Mb) is shown on the x-axis. Blocks of color 
indicate genotypes of genomic regions with orange indicating the N2 genotype and blue indicating the CB4856 
genotype. Vertical red lines mark the confidence interval of the QTL from linkage mapping. C. Background genotypes 
are represented as rectangles with colors indicating N2 (orange) or CB4856 (blue) genetic backgrounds. 
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Genes with non-synonymous variants in the QTL region do not impact 

bleomycin responses 

Because the recombination rate in the centers of C. elegans chromosomes is lower than 

chromosome arms [110], it was difficult to generate additional NILs to narrow the QTL region 

further. Therefore, we took a targeted approach and created CRISPR-Cas9 directed modifications 

of candidate genes in the region. The 147 kb confidence interval on chromosome V contains 93 

genes, including pseudogenes, piRNA, miRNA, ncRNA, and protein-coding genes. Given the 

narrow confidence interval, we expanded our search to include an additional 20 kb on each side 

of the 147 kb interval (Materials and Methods). Of the 118 genes included in the wider region, five 

genes, C45B11.8, C45B11.6, jmjd-5, srg-42, and cnc-10, contain predicted non-synonymous 

variants between the N2 and CB4856 strains (Figure 2-8A). These variants could cause 

differential bleomycin sensitivity between the N2 and CB4856 strains. 

 

To test these genes in bleomycin-response variation, we systematically deleted each of the 

candidate genes in both the N2 and CB4856 backgrounds. We used CRISPR-Cas9 mediated 

genome editing to generate two independent deletion alleles of each gene in each genetic 

background to reduce the possibility that off-target mutations could cause phenotypic differences. 

We tested the bleomycin response of each deletion allele in comparison to the N2 and CB4856 

parental strains (Figure 2-8B). The deletion alleles of C45B11.8, C45B11.6, srg-42, and cnc-10 

each had a bleomycin response similar to the respective parent genetic background, which 

suggested that the functions of each of these genes did not affect bleomycin responses (Figure 

2-8B, p > 0.05, Tukey HSD). By contrast, the jmjd-5 deletion alleles in the N2 and the CB4856 

backgrounds were each more resistant to bleomycin than their respective parental strains (Figure 
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2-8B, ECA1047 vs. CB4856 p = 3.8e-10, ECA1048 vs. CB4856 p = 0.026, ECA1051 vs. N2 p = 

7.4e-4, ECA1052 vs. N2 p = 2.9e-6, Tukey HSD). However, we also noted that these strains were 

more sensitive in the control condition than other deletion strains (Figure 2-9). Therefore, the 

relative increased bleomycin resistance observed in the jmjd-5 deletion strains could be caused 

by their increased sensitivity in the control condition.  
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Figure 2-8 Strains with jmjd-5 deletion alleles are resistant to bleomycin 

Bleomycin responses of the deletion alleles for each candidate gene are shown. A. The linkage mapping QTL 
confidence interval (light blue) with 20 kb on the left and the right is displayed. Each protein-coding gene in the region 
is indicated by an arrow that points in the direction of transcription. Genes with non-synonymous variants between the 
N2 and CB4856 strains are shown as red arrows and are labeled with their gene name. B. Deletion alleles for each of 
these genes were tested in response to bleomycin. Bleomycin responses are shown as Tukey box plots, with the strain 
name on the x-axis, split by gene, and residual median optical density on the y-axis. Each point is a biological replicate. 
Strains are colored by their background genotype (orange indicates an N2 genetic background, and blue indicates a 
CB4856 genetic background). For each gene, two independent deletion alleles in each background were created and 
tested. Red asterisks indicate a significant difference (p < 0.05, Tukey HSD) between a strain with a deletion and the 
parental strain that has the same genetic background. Depictions of each deletion allele are shown below the phenotype 
for each candidate gene. White rectangles indicate exons and diagonal lines indicate introns. The 5’ and 3’ UTRs are 
shown by grey rectangles and triangles, respectively. The region of the gene that was deleted by CRISPR-Cas9 
directed genome editing is shown as a red bar beneath each gene model. 
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Figure 2-9 Strains with jmjd-5 deletion alleles are sensitive in the control condition 

Control-condition phenotypes of deletion alleles for each candidate gene are shown. Deletion alleles for each candidate 
gene were tested in response to the control condition (lysate in K medium with 1% distilled water). Control-condition 
responses are shown as Tukey box plots, with the strain name on the x-axis, split by gene, and median optical density 
on the y-axis. Each point is a biological replicate. Strains are colored by their background genotype (orange indicates 
an N2 genetic background, and blue indicates a CB4856 genetic background). For each gene, two independent deletion 
alleles in each background were created and tested. Red asterisks indicate a significant difference (p < 0.05, Tukey 
HSD) between a strain with a deletion and the parental strain that has the same genetic background. Depictions of 
each deletion allele are shown below the phenotype for each candidate gene. White rectangles indicate exons and 
diagonal lines indicate introns. The 5’ and 3’ UTRs are shown by grey rectangles and triangles, respectively. The region 
of the gene that was deleted by CRISPR-Cas9 directed genome editing is shown as a red bar beneath each gene 
model.  
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We tested if the non-synonymous variant in jmjd-5 between the N2 and CB4856 strains caused 

bleomycin-response differences. At residue 338 of JMJD-5, the N2 strain has a proline, whereas 

the CB4856 strain has a serine (S338P, Figure 2-10A). We used CRISPR-Cas9 to generate 

reciprocal allele replacements of the jmjd-5 single-nucleotide polymorphism that encodes the 

putative amino-acid change in the N2 background jmjd-5(N2 to CB4856) and in the CB4856 

background jmjd-5(CB4856 to N2) (Table S2-2, Materials and Methods). We created two 

independent allele replacements in each genetic background and measured each strain for 

bleomycin-response differences as compared to the parental strains (Figure 2-10B). Although 

the allele-replacement strains with the CB4856 allele in the N2 genetic background jmjd-5(N2 to 

CB4856) were significantly different from the N2 parental strain, these strains were more sensitive 

to bleomycin than N2 (Figure 2-10B, ECA576 vs. N2 p = 0.006, ECA577 vs. N2 p = 1.6e-6, Tukey 

HSD). This increased sensitivity was unexpected, because the CB4856 allele at the jmjd-5 locus 

should confer resistance. However, the NIL with the CB4856 genotype across the QTL was not 

different from the N2 parental strain (ECA232 in Figure 2-5), suggesting that the QTL might only 

confer increased sensitivity when the N2 allele is in the CB4856 background. Therefore, it 

remained unclear whether an allele replacement of jmjd-5 in the N2 parental background could 

confer resistance. Neither of the two strains with the N2 allele in the CB4856 background, jmjd-

5(CB4856 to N2), conferred a significantly more sensitive phenotype than the CB4856 parental 

strain (Figure 2-10B). Given that the QTL explained 43.58% of phenotypic variation among the 

RIAILs, the causal variant should have a clear impact on bleomycin response. Additionally, the 

NILs with the N2 allele at the QTL introgressed into the CB4856 background displayed a 

significant increase in bleomycin sensitivity compared to the parental CB4856 strain (Figure 2-

5). Taken together, the phenotypes of the reciprocal allele-replacement strains showed that the 

amino-acid change in JMJD-5 likely does not underlie bleomycin-response variation between the 
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N2 and CB4856 strains, although deletion of this gene did cause resistance to bleomycin 

regardless of the genetic background. 

 

 

Figure 2-10 The non-synonymous variant of jmjd-5 does not affect bleomycin responses 

Reciprocal allele-replacement strains of jmjd-5 were tested in response to bleomycin. A. A model of jmjd-5 is shown 
with white rectangles indicating exons and black diagonal lines indicating introns. The 5’ and 3’ UTRs are shown as a 
grey rectangle and triangle, respectively. The location of the amino-acid variant between the N2 and CB4856 strains is 
shown in black text above the gene depiction with the N2 residue in orange and the CB4856 residue in blue. B. 
Bleomycin responses of allele-replacement strains are shown as Tukey box plots, split and colored by genetic 
background (N2 in orange and CB4856 in blue) with the strain name on the x-axis and residual median optical density 
on the y-axis. Each point is a biological replicate. Red asterisks indicate a significant difference between an allele-
replacement strain and the parental strain sharing its genetic background (p < 0.05, Tukey HSD).  
 

To test whether other variation in jmjd-5 function between N2 and CB4856 impacts bleomycin 

responses, we designed a modified version of the HTA. This modified version allowed us to test 

bleomycin responses of heterozygous (two different functional alleles of jmjd-5) and hemizygous 

(one functional allele and one deletion allele of jmjd-5) animals. Thereby, this approach allowed 

us to determine the effect of adding or removing single N2 or CB4856 jmjd-5 alleles on bleomycin 

sensitivity. During the modified HTA, strains were crossed and approximately 50 heterozygous or 
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hemizygous F1 progeny were placed directly into either control or drug conditions. Whereas the 

original HTA allows animals to propagate for a generation in the presence of control or drug 

conditions, the modified HTA scores the F1 individuals that are sorted into the 96-well plates 

before they reproduce. Therefore, the scored F1 population remains heterozygous or hemizygous 

and a marker that differentiates heterozygous versus homozygous animals is not needed. First, 

we performed a dose response with this modified HTA to confirm that bleomycin responses 

differed among N2, CB4856, ECA411, and ECA528 when the modified HTA was used and to 

identify the dose of bleomycin with the highest heritability in the new approach. The most heritable 

concentration of bleomycin was 12.5 µM, and the same ranking of bleomycin resistance was 

recapitulated among the strains tested with the modified HTA as with the original HTA (Figure 2-

11). 

 

We performed a reciprocal hemizygosity assay to test if natural variation in jmjd-5 function 

affected bleomycin responses. The results of this assay supported the previously identified 

increase in bleomycin resistance of homozygous jmjd-5 deletions in both parental backgrounds 

(Figure 2-12, P < 0.05, Tukey HSD), which again might be caused by an increased sensitivity in 

the control condition (Figure 2-13). However, the increases in bleomycin resistance between 

each jmjd-5 deletion strain and the strain with the same genetic background were similar, and the 

reciprocal hemizygous strains show equivalent bleomycin responses (Figure 2-12). Taken 

together, these results suggest that natural variation in jmjd-5 function does not underlie this QTL. 
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Figure 2-11 Phenotypes in the modified HTA match previous bleomycin responses 

Dose-response phenotypes from the modified HTA are shown for three high-throughput fitness traits: mean length 
(mean.TOF), median optical density (median.EXT), and the 90th quantile of optical density (q90 EXT). Phenotypes for 
each of the four tested strains are shown as Tukey boxplots, colored by strain (N2 - orange, CB4856 - blue, ECA411 - 
light grey, ECA528 - dark grey). The x-axis shows the concentration of bleomycin (or water) to which the animals were 
exposed, and the y-axis shows the pruned phenotype. Each point is a biological replicate.  
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Figure 2-12 Natural variation in jmjd-5 does not underlie bleomycin-response differences 

Results of the jmjd-5 reciprocal hemizygosity assay are shown. The y-axis shows the residual median optical density 
for each strain reported along the x-axis. Bleomycin responses are reported as Tukey box plots where each point is a 
biological replicate. The genotypes of each strain are shown as colored rectangles beneath each box plot, where each 
rectangle represents a homolog (orange rectangles are an N2 genotype, and blue rectangles are a CB4856 genotype). 
The maternal homolog is shown on top and the paternal homolog is shown on bottom. Grey triangles indicate a deletion 
of jmjd-5, placed on the rectangle showing the background into which the deletion was introduced. The box plots for 
the parental strains (N2 and CB4856, on the left) are colored according to genotype. 
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Figure 2-13 Strains with homozygous jmjd-5 deletions are sensitive to the control condition, whereas 
hemizygous strains are not 

Control-condition phenotypes of the strains tested in the reciprocal hemizygosity experiment of jmjd-5 are shown. The 
y-axis shows the pruned median optical density upon exposure to the control condition (lysate in K medium plus 1% 
distilled water) for each strain reported along the x-axis. Control-condition responses are reported as Tukey box plots 
where each point is a biological replicate. The genotypes of each strain are shown as colored rectangles beneath each 
box plot, where each rectangle represents a homolog (orange rectangles are an N2 genotype, and blue rectangles are 
a CB4856 genotype). The maternal homolog is shown on top and the paternal homolog is shown on bottom. Grey 
triangles indicate a deletion of jmjd-5, placed on the rectangle showing the background into which the deletion was 
introduced. The box plots for the parental strains (N2 and CB4856, on the left) are colored according to genotype.  

 

The nematode-specific gene H19N07.3 impacts bleomycin variation 

Because none of the genes with a non-synonymous variant between the N2 and CB4856 strains 

explained the QTL, we explored other ways in which natural variation could impact bleomycin 

responses. We used the 13,003 SNPs to perform linkage mapping on the gene expression data 

of the RIAILs and identified 4,326 expression QTL (eQTL) across the genome ([158], Materials 

and Methods). Of the 118 genes in the 187 kb surrounding the bleomycin-response QTL, 
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expression for 50 genes were measured in the previous microarray study. We identified a 

significant eQTL for eight of these 50 genes, four of which mapped to chromosome V. eQTL for 

two of those four genes, H19N07.3 and cnc-10, mapped to the center of chromosome V and 

overlapped with the bleomycin-response QTL. Because cnc-10 did not underlie bleomycin 

response variation (Figure 2-8B), we hypothesized that H19N07.3 might underlie the bleomycin-

response QTL. The H19N07.3 eQTL explains 45.70% of the variation in H19N07.3 expression 

among the RIAILs (Figure 2-14A, Figure 2-14B). The length of animals and expression of scb-1 

was correlated in the RIAIL strains (Figure 2-14C, r2= 0.61, p < 9.5e-13 Spearman’s correlation). 

Although this gene does not have a non-synonymous variant between the N2 and CB4856 strains, 

natural variation in gene expression could impact bleomycin responses. We note that expression 

variation was measured for a different panel of RIAILs (set 1 RIAILs in the linkagemapping 

package [110]) than the linkage mapping shown in Figure 2-3 (mapped with set 2 RIAILs [109]). 

However, linkage mapping of bleomycin-response variation maps to the same location using the 

set 1 panel of RIAILs [110] as the mapping using set 2 RIAILs [109] (Figure 2-15), suggesting 

that the same variant underlies bleomycin-response differences in both strain sets. 
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Figure 2-14 H19N07.3 expression differences map to chromosome V and correlate with bleomycin responses 

Linkage mapping of the H19N07.3 expression difference among RIAILs is shown. A. On the x-axis, each of 13,003 
genomic markers, split by chromosome, were tested for correlation with H19N07.3 expression variation across the 
RIAIL panel. The log of the odds (LOD) score for each marker is reported on the y-axis. The significant quantitative trait 
locus (QTL) is indicated by a red triangle at the peak marker, and a blue ribbon shows the 95% confidence interval 
around the peak marker. The total amount of expression variance across the RIAIL panel explained by the genotype 
at the peak marker is printed as a percentage. B. RIAIL gene expression (y-axis), split by allele at the QTL peak marker 
(x-axis) is shown. Phenotypes of RIAILs containing the N2 allele (orange) are compared to RIAILs containing the 
CB4856 allele (blue). Phenotypes are shown as Tukey box plots, and each point is the H19N07.3 expression of an 
individual strain. C. The correlation between animal size in bleomycin and H19N07.3 expression is shown as a 
scatterplot, with each RIAIL shown as a point. Each axis was scaled to have a mean of zero and a standard deviation 
of one. The line of best fit is shown in blue. The identity line is shown in black for reference.  
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Figure 2-15 Linkage mapping of bleomycin-response differences among set 1 RIAILs maps to the same 
location as set 2 RIAILs 

Bleomycin responses were measured for set 1 RIAILs [110] and linkage mapping was performed to identify QTL that 
underlie drug-response differences. On the x-axis, each of 13,003 genomic markers, split by chromosome, were tested 
for correlation with phenotypic variation across the RIAIL panel. The log of the odds (LOD) score for each marker is 
reported on the y-axis. Each significant quantitative trait locus (QTL) is indicated by a red triangle at the peak marker, 
and a blue ribbon shows the 95% confidence interval around the peak marker. The total amount of phenotypic variance 
across the RIAIL panel explained by the genotype at each peak marker is shown as a percentage. 

 
 
We created two independent CRISPR-Cas9 mediated deletion alleles of H19N07.3 in the N2 and 

the CB4856 backgrounds and measured the bleomycin responses of these strains compared to 

the parental strains (Figure 2-16, Table S2-2, Materials and Methods). Each H19N07.3 deletion 

strain was more sensitive to bleomycin than the respective parental strain (Figure 2-16, ECA1133 

vs. CB4856 p < 1.4e-14, ECA1134 vs. CB4856, p < 1.4e-14, ECA1132 vs. N2, p = 6.9e-5, 

ECA1135 vs. N2, p = 0.006, Tukey HSD). These results suggest that H19N07.3 function is 

required for resistance to bleomycin. Therefore, we renamed this gene scb-1 for sensitivity to the 

chemotherapeutic bleomycin. Unlike with the jmjd-5 deletion strains, the scb-1 deletion strains 

had no significant differences in the control condition (Figure 2-17). Therefore, the bleomycin 

sensitivity of the scb-1 deletion strains were not caused by control-condition phenotypes. 
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Figure 2-16 Strains with H19N07.3 deletion alleles are sensitive to bleomycin 

Bleomycin responses of H19N07.3 deletion alleles are shown as Tukey box plots, with the strain name on the x-axis, 
split by genotype, and residual median optical density on the y-axis. Each point is a biological replicate. Strains are 
colored by their background genotype (orange indicates an N2 genetic background, and blue indicates a CB4856 
genetic background). Two independent deletion alleles in each genetic background were created and tested. Red 
asterisks indicate a significant difference (p < 0.05, Tukey HSD) between a strain with a deletion and the parental strain 
that has the same genetic background. A depiction of the deletion allele is shown below the box plots. White rectangles 
indicate exons, and diagonal lines indicate introns. The 5’ and 3’ UTRs are shown by grey rectangles and triangles, 
respectively. The region of the gene that was deleted by CRISPR-Cas9 directed genome editing is shown as a red bar 
beneath the gene model. 
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Figure 2-17 Strains with H19N07.3 deletion alleles are not sensitive in the control condition 

Control-condition phenotypes of deletion alleles H19N07.3 are shown. Deletion alleles for H19N07.3 were tested in 
response to the control condition (lysate in K medium with 1% distilled water). Control-condition responses are shown 
as Tukey box plots, with the strain name on the x-axis and median optical density on the y-axis. Each point is a biological 
replicate. Strains are colored by their background genotype (orange indicates an N2 genetic background, and blue 
indicates a CB4856 genetic background). Two independent deletion alleles in each background were created and 
tested. Red asterisks indicate a significant difference (p < 0.05, Tukey HSD) between a strain with a deletion and the 
parental strain that has the same genetic background. Depictions of the deletion allele is shown below the phenotype 
for each candidate gene. White rectangles indicate exons and diagonal lines indicate introns. The 5’ and 3’ UTRs are 
shown by grey rectangles and triangles, respectively. The region of the gene that was deleted by CRISPR-Cas9 
directed genome editing is shown as a red bar beneath the gene model.  
 

Because an scb-1 non-synonymous variant has not been identified between the N2 and CB4856 

strains, changes to protein function likely do not cause bleomycin response differences. RIAILs 

with the CB4856 allele at the QTL peak marker have increased expression of scb-1 and increased 

bleomycin resistance compared to RIAILs with the N2 allele (Figure 2-4, Figure 2-14). Therefore, 

scb-1 expression differences might cause the bleomycin-response variation between the parental 

strains. We performed RNA-seq of the N2 and CB4856 strains to assess scb-1 expression 

differences between the parental strains and did not identify a significant increase in expression 



73 

in the CB4856 strain (Figure 2-18, p = 0.20, Wald test; p = 0.17, likelihood ratio test). This result 

could be caused by the low sample size (n = 3) in the RNA-seq experiment, or the RIAIL strains 

could have a novel variant that arose during strain construction that causes scb-1 expression 

variation. Alternatively, the expression difference observed in the RIAIL strains could be attributed 

to epistatic loci. We performed a two-factor genome scan to identify epistatic loci that underlie 

scb-1 expression variation in the RIAILs and identified two significant interactions: one between 

loci on chromosomes IV and X and another between loci on chromosomes II and V (Figure 2-

19). This result might suggest that epistatic loci underlie scb-1 expression variation in the RIAILs 

and could explain why scb-1 expression is not variable in the parental strains. 

 

 

Figure 2-18 RNA-seq does not show scb-1 expression differences in the parental strains 

RNA-seq measurements of scb-1 expression for young adult populations of N2 and CB4856 are reported. The x-axis 
indicates the sample (N2 or CB4856), and the y-axis shows the transcripts per million (TPM) estimate for each replicate. 
Replicates are plotted as dots, colored by strain (orange for N2 and blue for CB4856).  
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Figure 2-19 A two-factor genome scan for scb-1 expression variation detects two significant genetic 
interactions 

A two-factor genome scan for scb-1 expression variation is shown. Log of the odds (LOD) scores are shown for each 
pairwise combination of loci, split by chromosome. The upper-left triangle contains the epistasis LOD scores, and the 
lower-right triangle contains LOD scores for the full model. LOD scores are shown as colors, with lower scores in blue 
and higher scores in yellow, as shown in the color scale. The epistatic LOD score axis is on the left of the color scale 
and the full LOD score axis is on the right of the color scale. The interactions between loci on chromosome II and V as 
well as between chromosomes IV and X are significant. 
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To test the role of natural variation in scb-1 function, we performed a reciprocal hemizygosity test 

in bleomycin and control conditions (Figure 2-20, Figure 2-21). These results matched the 

increase in sensitivity of homozygous deletions in both parental backgrounds observed 

previously. The hemizygous strain with the CB4856 allele of scb-1 had a bleomycin phenotype 

similar to the heterozygous strain, whereas the hemizygous strain with the N2 allele of scb-1 was 

more sensitive to bleomycin than the heterozygous strain. Taken together, these results suggest 

that natural variation in scb-1 function underlies the bleomycin-response difference between the 

N2 and CB4856 strains. 

 

 

Figure 2-20 Natural variation in scb-1 underlies bleomycin-response differences 

Results of the scb-1 reciprocal hemizygosity assay are shown. The y-axis shows the residual median optical density 
for each strain reported along the x-axis. Bleomycin responses are reported as Tukey box plots where each point is a 
biological replicate. The genotypes of each strain are shown as colored rectangles beneath each box plot, where each 
rectangle represents a homolog (orange rectangles are an N2 genotype, and blue rectangles are a CB4856 genotype). 
Maternal homologs are shown on top and paternal homologs are shown on bottom. Grey triangles indicate a deletion 
of scb-1, placed on the rectangle showing the background into which the deletion was introduced. The box plots for the 
parental strains (N2 and CB4856, on the left) are colored according to genotype. 
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Figure 2-21 Strains with scb-1 deletion alleles are not sensitive in the control condition 

Control-condition phenotypes of the scb-1 reciprocal hemizygosity assay are shown. The y-axis shows the median 
optical density in the control condition (K media and 1% water) for each strain reported along the x-axis. Control-
condition responses are reported as Tukey box plots where each point is a biological replicate. The genotypes of each 
strain are shown as colored rectangles beneath each box plot, where each rectangle represents a homolog (orange 
rectangles are an N2 genotype, and blue rectangles are a CB4856 genotype). Maternal homologs are shown on top 
and paternal homologs are shown on bottom. Grey triangles indicate a deletion of scb-1, placed on the rectangle 
showing the background into which the deletion was introduced. The box plots for the parental strains (N2 and CB4856, 
on the left) are colored according to genotype. 

 

Differences in scb-1 function might be regulated by a rare variant 

The scb-1 natural variant that underlies the bleomycin-response differences remains unknown. 

Because this gene does not have a predicted non-synonymous variant between the N2 and 

CB4856 strains, scb-1 gene expression might underlie bleomycin response differences. Potential 

candidate variants that could cause this expression difference include one variant two kilobases 

upstream of the gene and one variant in the third intron of scb-1. However, gene expression can 

be regulated by distant loci, so the identification of the specific variant is difficult. To understand 

whether natural variation of scb-1 underlies bleomycin-response differences in other strains, we 
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compared the bleomycin-response linkage mapping to a genome-wide association mapping 

(GWA). We used the HTA to measure median optical density in bleomycin for 83 divergent wild 

isolates and performed GWA mapping (Figure 2-22). Six QTL were identified from the GWA, but 

none of these QTL regions overlapped the QTL from linkage mapping (Figure 2-22). Therefore, 

the CB4856 strain might have a rare variant that underlies its increase in bleomycin resistance 

compared to the N2 strain. 

 

 

Figure 2-22 A genome-wide association mapping for bleomycin-response variation detects six QTL 

A genome-wide association study for residual median optical density in bleomycin for 83 wild isolates is shown. On the 
x-axis, each genomic marker, split by chromosome, was tested for correlation with phenotypic variation across the wild 
isolates. The log10(p) value of these correlations are reported on the y-axis. Each marker that reached a significance 
threshold determined by eigenvalue decomposition of the SNP correlation matrix is colored in red. QTL regions of 
interest are indicated by blue regions surrounding the significant markers. 

 

 

We identified all single nucleotide variants (SNVs), small insertion/deletions (indels), and 

structural variants (SVs) present in these 83 strains for which the CB4856 strain contains the 

alternate allele compared to the N2 reference strain. We found 105 variants within the QTL 

confidence interval (79 SNVs, 26 indels, 0 SVs) for which the CB4856 strain contains the alternate 

allele (Figure 2-23). We then identified SNVs and indels with a minor-allele frequency less than 

5% within the 83 strains, because these low-frequency variants are likely to have insufficient 
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power to map by GWA. Seventy-two of the 105 variants in the region were identified as rare 

variants that might underlie the bleomycin-response difference between the N2 and CB4856 

strains (Figure 2-23, Figure S2-2). Twenty-eight of these rare variants were not unique to 

CB4856, and other strains in the wild isolate panel shared these variants. However, none of these 

variants showed phenotypic trends consistent with an alternate allele conferring resistance to 

bleomycin (Figure S2-2). Forty-four of the 72 rare variants were unique to CB4856 within this set 

of 83 strains. One or more of these 44 variants could underlie the bleomycin-response QTL, but 

further work must be performed to identify which, if any, of these variants underlies the scb-1 

bleomycin-response difference between N2 and CB4856. 

 

 

Figure 2-23 Rare and common variants are present near the scb-1 gene 

All variants in the QTL confidence interval for which CB4856 contains the alternate allele are plotted as vertical lines. 
On the x-axis, genomic position of the variant is shown. Variants are colored by minor allele frequency (less than 0.05 
= red, greater than 0.05 = black). The location of scb-1 is shown as an arrow, labeled with the gene name.  
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We searched for homologs of scb-1 in other species using a BLASTp search 

(www.wormbase.org, Release WS268) and identified homologs in nine other Caenorhabditis 

species but none outside of the Nematoda phylum (Figure 2-24) [206,207]. None of the homologs 

of SCB-1 have previously identified functions. We used Phyre2 to predict protein domains within 

the SCB-1 protein and were unable to detect any functional domains by sequence homology. 

Twenty-three percent of the SCB-1 protein sequence matched a hydrolase of a Middle East 

respiratory syndrome-related coronavirus [209]. However, the low confidence of the model 

(21.5%) should be considered before making conclusions about the function of scb-1 based on 

these results. 

 

 

Figure 2-24 SCB-1 is conserved across nematodes 

A neighbor-joining tree from a multiple-sequence alignment of SCB-1 homologs is shown.  
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Evidence of unidirectional additive or epistatic effects on bleomycin response 

variation 

Although scb-1 was identified as the causal gene that underlies the QTL on chromosome V, the 

effect on this chromosome likely is not completely explained by a single scb-1 variant. The 

chromosome V NILs, ECA230 and ECA232, showed transgressive phenotypes in bleomycin. In 

particular, ECA230, which has the N2 QTL region introgressed into a CB4856 genetic 

background, is much more sensitive to bleomycin than the N2 parental strain. Given that this 

strain has the CB4856, resistant allele at each of the other three QTL identified with linkage 

mapping, we predicted that ECA230 would be more resistant to bleomycin than the N2 strain. 

One possible explanation for this phenomenon is that two or more loci act additively or interact in 

this NIL to cause this hypersensitivity phenotype. Because the transgressive phenotype is only 

seen in one direction (ECA230 is hypersensitive, but ECA232 is not hyper-resistant), epistasis is 

likely causing this phenomenon. We hypothesized that the N2 allele at one locus is incompatible 

with a CB4856 allele at another locus and sought to identify these interaction partners. 

 

We generated a panel of NILs to test this hypothesis and to identify regions of the genome that 

might be candidates for such interacting loci. Figures 2-25, 2-26, and 2-27 show the phenotypes 

of the strains in these experiments. We identified a minimum of three loci that interact to cause 

bleomycin hypersensitivity in the NILs. The locations of these regions, as well as the strains that 

define them, are described below. 
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Figure 2-25 Near-isogenic lines suggest that three loci interact to cause bleomycin hypersensitivity 

Phenotypes and genotypes of near-isogenic lines (NILs) are shown. A. Phenotypes for each strain are shown as Tukey 
box plots, with strain name on the y-axis and residual bleomycin median optical density on the x-axis. Each point is a 
biological replicate. Parental strain box plots are colored by their genetic background, with orange indicating an N2 
background and blue indicating a CB4856 genetic background. NILs are shown as grey box plots. A red asterisk 
indicates a significant difference between the phenotype of a given strain and the phenotype of the corresponding 
parental strain (p < 0.05, Tukey HSD). B. Chromosomal representations of chromosome V are shown for each of the 
strains in A. Strain names are reported on the y-axis, and genomic position (Mb) is shown on the x-axis. Blocks of color 
indicate genotypes of genomic regions with orange indicating the N2 genotype and blue indicating the CB4856 
genotype. Vertical red lines mark the confidence interval of the QTL from linkage mapping. Red, green, and blue vertical 
regions show potential epistatic loci. C. The allele combination of each strain is shown for the red, green, and blue 
regions. Phenotypic predictions based on this combination of alleles are written beside each genotype. 
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Figure 2-26 Near-isogenic lines suggest that three loci interact to cause bleomycin hypersensitivity 

Phenotypes and genotypes of near-isogenic lines (NILs) are shown. A. Phenotypes for each strain are shown as Tukey 
box plots, with strain name on the y-axis and residual bleomycin median optical density on the x-axis. Each point is a 
biological replicate. Parental strain box plots are colored by their genetic background, with orange indicating an N2 
background and blue indicating a CB4856 genetic background. NILs are shown as grey box plots. A red asterisk 
indicates a significant difference between the phenotype of a given strain and the phenotype of the corresponding 
parental strain (p < 0.05, Tukey HSD). B. Chromosomal representations of chromosome V are shown for each of the 
strains in A. Strain names are reported on the y-axis, and genomic position (Mb) is shown on the x-axis. Blocks of color 
indicate genotypes of genomic regions with orange indicating the N2 genotype and blue indicating the CB4856 
genotype. Vertical red lines mark the confidence interval of the QTL from linkage mapping. Red, green, and blue vertical 
regions show potential epistatic loci. C. The allele combination of each strain is shown for the red, green, and blue 
regions. Phenotypic predictions based on this combination of alleles are written beside each genotype. 
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Figure 2-27 Near-isogenic lines suggest that three loci interact to cause bleomycin hypersensitivity 

Phenotypes and genotypes of near-isogenic lines (NILs) are shown. A. Phenotypes for each strain are shown as Tukey 
box plots, with strain name on the y-axis and residual bleomycin median optical density on the x-axis. Each point is a 
biological replicate. Parental strain box plots are colored by their genetic background, with orange indicating an N2 
background and blue indicating a CB4856 genetic background. NILs are shown as grey box plots. A red asterisk 
indicates a significant difference between the phenotype of a given strain and the phenotype of the corresponding 
parental strain (p < 0.05, Tukey HSD). B. Chromosomal representations of chromosome V are shown for each of the 
strains in A. Strain names are reported on the y-axis, and genomic position (Mb) is shown on the x-axis. Blocks of color 
indicate genotypes of genomic regions with orange indicating the N2 genotype and blue indicating the CB4856 
genotype. Vertical red lines mark the confidence interval of the QTL from linkage mapping. Red, green, and blue vertical 
regions show potential epistatic loci. C. The allele combination of each strain is shown for the red, green, and blue 
regions. Phenotypic predictions based on this combination of alleles are written beside each genotype. 
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In Figure 2-25, ECA230 and ECA528 are both hypersensitive to bleomycin. These strains share 

particular genomic regions that are candidates for epistatic loci. First, these strains share the N2 

allele at the QTL peak marker as well as the region surrounding the QTL from V:10,339,728 to V: 

13,851,058. Additionally they share the CB4856 genotype from V:4,165,561 to V:7,082,838, from 

V:13851058 to the end of chromosome V, and on all other chromosomes. We hypothesized that 

a locus in their shared N2 region interacts with a locus in one of their shared CB4856 regions to 

cause their hypersensitivity to bleomycin. 

 

The ECA411 NIL shares much of its genome with ECA528, but ECA411 is not hypersensitive. 

Therefore, a genomic difference between ECA411 and ECA528 can localize one of the epistatic 

regions that causes ECA528 and ECA230 to be hypersensitive. ECA411 and ECA528 differ at 

the QTL peak marker and a region surrounding it from V:10,339,728 to V:11,345,444. At this 

region, ECA528 and ECA230 share the N2 genotype, whereas ECA411 contains the genotype 

across this region. Following this logic, we hypothesized that an N2 allele in this region 

(highlighted in red in Figure 2-25, Figure 2-26, Figure 2-27) interacts with a CB4856 allele at 

another region. Because ECA411 does not have the N2 allele in the red region, the interaction 

does not occur, and this strain is not hypersensitive. 

 

With the N2 interaction partner localized to the red area around the QTL marker, we sought to 

localize the CB4856 interaction partner that ECA230 and ECA528 share. ECA381 has the N2 

genotype across the red region and the CB4856 genotype across the majority of its genome, but 

ECA381 does not show the hypersensitivity to bleomycin that ECA230 and ECA528 share. 

Although ECA381 shares the N2 interaction partner with the hypersensitive strains, we 

hypothesized that ECA381 must not have the CB4856 interaction partner that ECA230 and 
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ECA528 share. With this logic, we were able to eliminate any CB4856 regions that are shared 

between ECA381 and ECA230/ECA528. Therefore, the CB4856 interacting partner could be 

localized to between V:13,851,058 and V:15,562,989 (highlighted in blue in Figure 2-25, Figure 

2-26, Figure 2-27), where ECA381 contains the N2 genotype whereas ECA230 and ECA528 

share the CB4856 genotype. In summary, this result determined that an N2 allele in the red region 

could interact with a CB4856 allele in the blue region to cause hypersensitivity to bleomycin. 

 

The N2-in-red/CB4856-in-blue interaction model holds true for several strains (ECA230, ECA528, 

ECA411, ECA383, ECA385, ECA379, and ECA381), but ECA386 did not fit this model. ECA386 

has the N2 genotype across the red region and the CB4856 genotype across the blue region and 

would therefore be predicted to have a hypersensitive phenotype. The fact that this strain is not 

hypersensitive indicates that the model must be more complex. We hypothesized that a third 

interaction partner exists in a region that ECA230 and ECA528 share but ECA386 does not. This 

third region could be between V:12,366,450 and V:13,943,824 (highlighted in green in Figure 2-

25, Figure 2-26, Figure 2-27) where ECA386 has the CB4856 genotype whereas ECA230 and 

ECA528 share the N2 genotype. This model would predict that the combination of an N2 allele in 

the red region, an N2 allele in the green region, and a CB4856 allele in the blue region interact to 

cause hypersensitivity to bleomycin. Alternatively, the third interaction partner could lie between 

V:4,165,561 and V:7,082,838, where ECA230 and ECA528 share the CB4856 genotype whereas 

ECA386 has the N2 genotype. With this alternative model, a combination of a CB4856 allele in 

the V:4,165,561-7,082,838 interval, an N2 allele in the red region, and a CB4856 allele in the blue 

region would predict a hypersensitive phenotype. Currently, we are unable to differentiate 

between these two models. 
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Figures 2-25, 2-26, and 2-27 show the phenotypes and genotypes of NILs. Potential locations of 

the three interaction regions are shown as colored rectangles on the NIL genotypes. To the right, 

the allele that each strain has across each of the three regions is written along with the phenotype 

that would be predicted by the model. The phenotypic predictions for this model match with the 

observed phenotypes for all three of these assays. The alternative model, where the green region 

is moved to V:4,165,561-7,082,838 also correctly predicts the observed phenotypes. 

Discussion 

Here, we performed linkage mapping of bleomycin-response variation and identified a highly 

significant QTL on chromosome V. We tested all six candidate genes in the QTL region to identify 

a causal gene that underlies bleomycin-response variation between two divergent strains. 

Deletions of four of these genes, C45B11.8, C45B11.6, srg-42, and cnc-10 did not impact 

bleomycin responses. Deletions in one gene, jmjd-5, showed increased bleomycin resistance in 

both parental backgrounds. However, we concluded that the QTL cannot be explained by 

differences in jmjd-5 after further analysis of allele-replacement strains and hemizygosity tests. 

Deletions in a gene with an expression difference, scb-1 (previously named H19N07.3), caused 

an increase in bleomycin sensitivity in both the N2 and the CB4856 strains. Results from a 

reciprocal hemizygosity assay indicated that natural variation in scb-1 function caused differences 

in bleomycin responses between the N2 and CB4856 strains. Because loss-of-function alleles in 

scb-1 caused increased bleomycin sensitivity (Figure 2-16) and the RIAILs with lower scb-1 

expression levels show increased bleomycin sensitivity (Figure 2-14), natural differences in scb-

1 expression might cause the bleomycin-response variation between the N2 and CB4856 strains. 
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The function of scb-1, and particularly how it regulates bleomycin response, remains unknown. A 

previous study found that RNAi of scb-1 impaired the DAF-16/FOXO-induced lifespan extension 

of daf-2(e1370ts) mutants, which suggests that scb-1 might play a role in stress response [210]. 

Because bleomycin causes double-stranded DNA breaks and introduces oxidative stress to cells 

[211], reduction of scb-1 function might inhibit the ability of an animal to respond to bleomycin. 

This model is in agreement with our observation that scb-1 deletions and RIAILs with lower scb-

1 expression are sensitive to bleomycin (Figure 2-16, Figure 2-14). We used the amino acid 

sequence of SCB-1 to query the Phyre2 database and found weak homology to a viral hydrolase 

[209,212]. This result could suggest that SCB-1 might function as a hydrolase, which could be the 

mechanism by which scb-1 regulates cellular stress. This finding would be similar to clinical 

studies that have suggested a role of bleomycin hydrolase (BLMH) in bleomycin-response 

variation [171,174–177]. Because scb-1 is expressed in the nucleus of all somatic cells, this gene 

might impact the ability of bleomycin to cause DNA damage within the cell nucleus [213]. 

Alternatively, scb-1 could impact bleomycin import, export, or another mechanism. If the 

mechanism of scb-1 is conserved in humans, this discovery could offer insights into the clinical 

applications of bleomycin. Our results also suggested the presence of genes that interact with 

scb-1 to cause bleomycin-response differences. These interacting genes could be conserved in 

humans and therefore inform the use of bleomycin in the clinic.  

 

Despite its lack of conservation in humans, the SCB-1 protein is homologous to other proteins in 

other nematode species. Bleomycin is produced by the soil bacterium, Streptomyces verticillus 

[214–216], which might be found in association with nematodes such as C. elegans in the wild 

[217]. A shared niche between C. elegans and S. verticillus could cause bleomycin resistance to 

be selected. Additionally, the CB4856 wild isolate is more resistant to bleomycin than the 
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laboratory-adapted strain, N2. In fact, the N2 strain is the most sensitive to bleomycin across all 

strains tested in our HTA (Figure S2-2), which could indicate that bleomycin resistance is 

beneficial for wild isolates. Given its potential role in the highly conserved insulin-like pathway, 

scb-1 could be beneficial in responses to multiple toxins. Interestingly, the scb-1 gene lies within 

a toxin-response QTL hotspot on chromosome V [41]. Understanding the mechanism of the role 

of scb-1 in toxin responses might offer insights into evolutionary processes that shaped the 

genomic diversity of C. elegans and other nematode species. 

 

Previous studies have leveraged both linkage mapping and GWA in C. elegans to identify genetic 

variants that underlie drug-response differences [40,134]. In each of these studies, drug-response 

QTL overlap between linkage mapping and GWA, and variants in common between both mapping 

strain sets have been shown to underlie drug-response QTL. In the case of the bleomycin 

response, the linkage-mapping QTL did not overlap with the QTL identified through GWA. 

Therefore, the variant that underlies the QTL likely is not present at an allele frequency above 5% 

in the panel of wild isolates used for the bleomycin GWA. The difference between linkage mapping 

and GWA results indicates that both rare and common natural variants underlie bleomycin-

response variation.  

 

This study emphasizes the power of the C. elegans model system to dissect complex traits. 

Although linkage mapping detected a highly significant QTL, the manner in which genetic 

components affect bleomycin responses is not simple. Certain near-isogenic lines showed 

transgressive phenotypes (Figure 2-5, Figure 2-7, Figure 2-25, Figure 2-26, Figure 2-27), which 

indicates that multiple loci interact to create extreme bleomycin sensitivity in particular strains with 

mixed genetic backgrounds. Our attempts to identify epistatic loci in the RIAILs by performing a 
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two-factor genome scan were unsuccessful (Figure 2-6), potentially because of the complexity of 

these epistatic interactions. We were able to identify particular regions of epistasis empirically 

(Figure 2-25, Figure 2-26, Figure 2-27, but the precise interacting loci remain elusive. Despite 

this complexity, scb-1 deletions showed increased bleomycin sensitivity in both parental 

backgrounds and expression variation among the RIAIL panel mapped to the same locus as the 

bleomycin response QTL. Interestingly, the parental strains do not seem to vary in scb-1 

expression, as measured by RNA-seq (Figure 2-18). Additional complexities of this trait include 

the lack of overlap between GWA and linkage mapping QTL and the potential effect of jmjd-5 

loss-of-function on bleomycin responses. Despite the complicated manner in which genetic 

variants seem to affect bleomycin responses, we leveraged the powerful model of C. elegans to 

identify a single gene that underlies this complex trait. 

Future directions 

Because RNA-seq did not confirm scb-1 expression level variation between N2 and CB4856, this 

expression variation still needs to be validated. Although RNA-seq is effective for measuring 

expression of a broad range of transcripts, qPCR offers a more targeted strategy to quantify levels 

of specific transcripts. Given its lower cost compared to RNA-seq, we could use qPCR to measure 

transcript abundance differences between N2 and CB4856 for a high number of replicates. 

However, scb-1 expression differences were observed in RIAILs, not in the parental strains. 

Therefore, novel mutations in the RIAILs could be driving the QTL at scb-1. We plan to deeply 

sequence ECA411 and ECA528, the two NILs that show a stark phenotypic difference in 

bleomycin responses (Figure 2-7). These NILs are both derived from RIAILs, so any novel 

mutation that underlies the scb-1 QTL in linkage mapping should be present in these strains. 
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Two-factor genome scans were performed on bleomycin-response differences and on expression 

differences of scb-1. Although the bleomycin-response analysis did not identify evidence of 

epistasis, interactions that underlie scb-1 expression differences were detected. These results 

suggest that interactions underlie scb-1 expression variation but do not underlie bleomycin-

response differences. However, two distinct panels of RIAILs were used in each of the two-factor 

scans (set 1 for the gene-expression scan [110] and set 2 for the bleomycin-response scan [109]). 

The linkage mapping of bleomycin-response variation in the set 1 RIAILs was less significant than 

that of the set 2 RIAILs, potentially because the set 1 strains were propagated at higher 

temperatures and for longer amounts of time before freezing, which can cause accumulation of 

de novo  variants and transposon insertions. Ideally, the two-factor scan for bleomycin-response 

differences and for scb-1 expression differences would be performed on set 2 strains. However, 

expression data are not available for the set 2 RIAILs. Future work should collect expression data 

for this panel of RIAILs, given its increased heritability in the HTA compared to set 1 RIAILs. 

 

To experimentally validate the effect of scb-1 expression differences on bleomycin responses, we 

can assay strains with over-expression of scb-1. Plasmids that contain GFP and functional scb-1 

under a heat-sensitive promoter can be injected into N2 and CB4856 animals to over-express 

scb-1. GFP-positive animals indicate that the overexpression plasmid is present, and scb-1 over-

expression can be induced by exposing animals to high temperatures. However, over-expression 

might have deleterious effects on the animals and therefore might not reflect the effects of natural 

variation in scb-1 expression levels on bleomycin responses. 
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Another goal of this project is to locate the precise variant that causes bleomycin-response 

variation. The scb-1 deletion assay and the scb-1 hemizygosity assay confirmed that natural 

variation in scb-1 function affects bleomycin responses (Figure 2-16, Figure 2-20). However, the 

precise variant that modulates the scb-1 function differences between N2 and CB4856 remains 

unknown. We have identified 72 candidate SNPs that might affect scb-1 function, thereby 

modulating bleomycin responses. Future experiments can use CRISPR/Cas9-mediated genome 

editing to modify each of these candidate variants in both genetic backgrounds, determining which 

variant underlies the scb-1 QTL. 

 

Although we were able to identify locations of potential epistasis that cause bleomycin 

hypersensitivity, more NILs are needed to narrow these three regions. First, assays with NILs that 

can differentiate between the model shown in the figures versus the alternative placement of the 

green region should be performed. Next, each region can be narrowed by constructing NILs with 

smaller regions of introgression and testing them. Although we proved that variation in scb-1 

underlies the bleomycin-response QTL, we cannot determine whether it is the red-region 

interacting partner or not. To test the impact of scb-1 on the epistasis that underlies bleomycin 

hypersensitivity, the gene must be deleted in multiple NILs. 

 

The bleomycin-response QTL maps to the toxin-response QTL hotspot in the center of 

chromosome V. Many QTL map to this same region, which might suggest a pleiotropic variant 

that affects responses to multiple toxins. We were able to identify scb-1 as the gene that underlies 

the bleomycin-response QTL, and scb-1 could underlie variation to multiple toxins. RNAi of scb-

1 has been shown to impair the DAF-26/FOXO-induced lifespan expansion of daf-2(e1370ts) 

mutants, which might implicate scb-1 function in stress responses. We can computationally 
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remove the effect of scb-1 on linkage mappings by setting the genotype at the bleomycin QTL 

peak marker as a cofactor and then see if chromosome V mappings are dependent on scb-1 

variation. With this analysis, many QTL in the center of chromosome V indeed no longer reach 

significance (Figure S2-3). However, loci in the center of chromosomes are tightly linked, so 

whether the disappearance of the chromosome V hotspot is dependent on scb-1 variation or 

another gene in the region remains unclear. Future experiments should test the responses of the 

scb-1 deletion strains to toxins that map to this hotspot (carmustine, chlorothalonil, cisplatin, 

irinotecan, mechlorethamine, paraquat, and silver). If scb-1 does underlie the response to multiple 

drugs, this finding could help define the mechanism of scb-1, and it would be an exciting example 

of a single gene that impacts multiple quantitative traits. 

Contributions 
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undergraduate mentee during this project and played a crucial role in running the lyses and PCRs 

of all of the deletion and allele-replacement strains in the project. Robyn Tanny and Dan Cook 

created libraries for sequencing and analyzed sequence data for all RIAILs, NILs, and wild 

isolates. Daehan Lee and Ye Wang performed RNA-seq and analyzed those data. Erik Andersen 

oversaw the entirety of this work and offered critical advice that helped guide each step of the 

project. Finally, Stefan Zdraljevic, Daehan Lee, and Katie Evans acted as my sounding boards, 

motivators, and advisors during the successes and failures of the “low hanging fruit” project.   
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Supplemental Tables 

Table S2-1 Reagents used to generate NILs 

ECA230 
eanIR150(V 
N2>CB4856) 

Constructed from: QX131 x CB4856 N2 into CB4856 

ECA232 
eanIR152(V 
CB4856>N2) 

Constructed from: QX450 x N2 CB4856 into N2 

ECA411 
eanIR185(V 
N2>CB4856) 

Constructed from: ECA230 x CB4856 N2 into CB4856 

ECA528 
eanIR302(V 
N2>CB4856) 

Constructed from: ECA230 x CB4856 N2 into CB4856 

Left indel - V: 7,862,556 

oECA799 TTCTCGCTACTGGAACACGC 

oECA800 TCAAGAAGCGTTGGGAAGTCT 

Right indel - V: 13,110,045 

oECA745 TGCAGAGGTGGAGTAACCCT 

oECA746 CTCGGTCTCTCCCCCACTAA 

 

Table S2-2 Reagents used to generate CRISPR/Cas9-mediated genome edits 

crECA36 dpy-10 guide RNA: GCUACCAUAGGCACCACGAG 

crECA37 dpy-10 repair construct: CACTTGAACTTCAATACGGCAAGATGAGAATGACTGGAAACC 

GTACCGCATGCGGTGCCTAGGTAGCGGAGCTTCACAT GGCTTCAGACCAACAGCCTAT 

 

jmjd-5(deletion) 

ECA1047 jmjd-5(ean136) CB4856 background 

ECA1048 jmjd-5(ean137) CB4856 background 

ECA1051 jmjd-5(ean141) N2 background 
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ECA1052 jmjd-5(ean142) N2 background 

guide RNAs 

crECA58 TGGTACAAAACTATTTCGGA 

crECA59 AAAATTGACGAGTGTCGCGA  

confirmation primers - external 

oECA1153 TCCTCGTATTACAATCCGTTGTCCA 

oECA1193 TGTCGTCTGGAAACATATGGCT 

confirmation primers - internal 

oECA1194 CCGATAAAGGGCTGTGTATGGG 

oECA1195 TCGAAAAGGCGATGTTGTGCAA 

 

C45B11.8(deletion) 

ECA996 C45B11.8(ean103) CB4856 background 

ECA998 C45B11.8(ean105) CB4856 background 

ECA699 C45B11.8(ean60) N2 background 

ECA700 C45B11.8(ean61) N2 background 

guide RNAs 

crECA22 GCTGCAGTAGAGGTGACATT 

crECA23 GAAGAAGTGAAAGAAGTGGG 

confirmation primers - external 

oECA1269 TCTCCGTGACTCAAATTTCGACA 

oECA1270 AGATGAAGATCACACTCTTGCGA 

confirmation primers - internal 

oECA1267 TCGCCTAATGTCACCTCTACTGC 

oECA1268 TCCTCCCACTTCTTTCACTTCT 
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C45B11.6(deletion) 

ECA1053 C45B11.6(ean142) CB4856 background 

ECA622 C45B11.6(ean46) CB4856 background 

ECA623 C45B11.6(ean47) N2 background 

ECA624 C45B11.6(ean48) N2 background 

guide RNAs 

crECA9 TCATCAGGATCAATTTCAAG 

crECA10 AGAATATCTGAATTGCCGAA 

confirmation primers - external 

oECA1226 TCCTGGTTTTTCTTTTCAGTGGTTGT 

oECA1227 TGTCTTCGGCAATTTTGTGCCC 

confirmation primers - internal 

oECA1224 GCTGGATTGCATTTGTCAAACCC 

oECA1225 AGTTAAGAAAAGCAGCACCTGGA 

 

srg-42(deletion) 

ECA1012 srg-42(ean119) CB4856 background 

ECA1013 srg-42(ean120) CB4856 background 

ECA697 srg-42(ean58) N2 background 

ECA698 srg-42(ean59) N2 background 

guide RNAs 

crECA19 TCAATTACAAACTAGCGATT 

crECA20 AGATGGTAAACCATAAATAG 

confirmation primers - external 

oECA1262 TCACGCGTCACAATTATTGCTGA 

oECA1263 AGCCATTGTTCAATTTCCCAGGT 
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confirmation primers - internal 

oECA1260 AGGGACAGTTATGATCACCAGT 

oECA1261 GCCTGGCCCTTTTCAGAGACAA 

 

cnc-10(deletion) 

ECA687 cnc-10(ean53) CB4856 background 

ECA696 cnc-10(ean57) CB4856 background 

ECA692 cnc-10(ean55) N2 background 

ECA693 cnc-10(ean56) N2 background 

guide RNAs 

oECA1186* ACAACGTCTGCTCAATTTTA 

crECA21* ACGTCTGCTCAATTTTATGG 

oECA1187 GCACTAATGGGAGCTGCAAT 

confirmation primers 

oECA1170** GTCCTTACTGAGGCGTGTCCAT 

oECA1266** TCCAGGATCTACGCAAAAATGAACT 

oECA1171 CAGGTTCAAATCCTGCGGACAG 

*oECA1186 and oECA1187 were used to generate the CB4856 deletions. crECA21 and oECA1187 were 
used to generate the N2 deletions. 
**oECA1170 and oECA1171 were used to confirm CB4856 deletions. oECA1266 and oECA1171 were 
used to confirm N2 deletions. 
 
 

H19N07.3(deletion) 

ECA1133 H19N07.3(ean179) CB4856 background 

ECA1134 H19N07.3(ean180) CB4856 background 

ECA1131 H19N07.3(ean177) N2 background 

ECA1132 H19N07.3(ean178) N2 background 

guide RNAs 
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crECA84 GCGAGCACAACTTCAAGAAA 

crECA85 CGTATGGCTGCCAAGGCCAG 

confirmation primers 

oECA1173 TCTTGCAGACACATGGGTCC 

oECA1174 ATCGGTGGGCACAATGTGAT 

 

jmjd-5(CB4856 to N2) 

ECA578 jmjd-5(ean12[S338P]) CB4856 background 

ECA579 jmjd-5(ean13[S338P]) CB4856 background 

guide RNA 

oECA1196 GGAATTTGAAAGTGGAATTA 

repair template 

oECA1199 ACTAGCATGGTTAATTCATGAAAATTTACCTGGTGTGTCATCTG
ATGATTGGATTCATTCGAGTTTTCAGTTCAATACAACTAATACG
TATCCTGCGTTAATTCCACTTTCAAATTCCAAATCTATCGATGA
ATGTGATGAAGATGA 

confirmation primers - to check for BsaAI site introduction 

oECA1194 CCGATAAAGGGCTGTGTATGGG 

oECA1195 TCGAAAAGGCGATGTTGTGCAA 

 

jmjd-5(N2 to CB4856) 

ECA576 jmjd-5(ean10[P338S]) N2 background 

ECA577 jmjd-5(ean11[P338S]) N2 background 

guide RNA 

oECA1196 GGAATTTGAAAGTGGAATTA 

repair template 

oECA1198 ACTAGCATGGTTAATTCATGAAAATTTACCTGG
TGTGTCATCTGATGATTGGATTCATTCGAGTTT
TCAGTTCAATACAACTAATACGTATTCTGCGTT
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AATTCCACTTTCAAATTCCAAATCTATCGATGA
ATGTGATGAAGATGA 

confirmation primers - to check for BsaAI site introduction 

oECA1194 CCGATAAAGGGCTGTGTATGGG 

oECA1195 TCGAAAAGGCGATGTTGTGCAA 
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Supplemental Figures 
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Figure S2-1 All linkage mapping results for bleomycin-response variation 

Linkage-mapping analysis of bleomycin-response variation for all 26 high-throughput traits are shown. A. On the x-
axis, each of 13,003 genomic markers, split by chromosome, were tested for correlation with phenotypic variation 
across the RIAIL panel. The log of the odds (LOD) score for each marker is reported on the y-axis. Each significant 
quantitative trait locus (QTL) is indicated by a red triangle at the peak marker, and a blue ribbon shows the 95% 
confidence interval around the peak marker. The total amount of phenotypic variance across the RIAIL panel explained 
by the genotype at each peak marker is shown as a percentage. B. RIAIL phenotypes (y-axis), split by allele at each 
QTL peak marker (x-axis) are reported. For each significant QTL, phenotypes of RIAILs containing the N2 allele 
(orange) are compared to phenotypes of RIAILs containing the CB4856 allele (blue). Phenotypes are shown as Tukey 
box plots, and each point is the phenotype of an individual strain.  
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Figure S2-2 Bleomycin responses for all wild isolates, colored by the genotype at each of the rare alleles 
around scb-1 

Phenotypes of all wild isolates assayed in bleomycin are shown for each of the 28 variants in the QTL region that are 
rare (MAF < 0.05) but not unique to CB4856. Each plot shows a bar plot indicating the distribution of residual bleomycin 
median optical density phenotypes across all 83 wild isolates assayed, arranged by phenotype. The x-axis indicates 
the strain name, and the y-axis indicates the phenotypic value. For each of the 28 variants, the position is written above 
the phenotypic distribution. Strains with the alternate allele at that site are colored blue, and strains with the reference 
allele are colored in grey.  
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Figure S2- 3 Chromosome V mappings after bleomycin QTL regression 

The bleomycin QTL peak marker was taken as a cofactor for linkage mapping to assess the impact of scb-1 variation 
on other chromosome V mappings. On the x-axis, each of the 4431 markers on chromosome V is tested for correlation 
with the drug response trait listed at the top of the plot. The y-axis indicates the LOD score of this correlation for each 
marker, with original mappings in black and mappings after setting scb-1 as a cofactor in red. The blue region indicates 
the confidence interval around the QTL from the original mapping. 
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Chapter 3 - Shared genomic regions underlie 

natural variation in diverse toxin responses 

Preface 

In my mind, the early years of the Andersen Lab involved each graduate student choosing a drug 

of interest and “chasing down” its quantitative trait locus in the genome-wide association or 

linkage mapping. In 2017, we realized that the number of peaks that were identified from the 

massive 2014 mapping effort greatly outweighed the capacity of a single lab. Katie Evans had 

just joined the Andersen Lab, and we joined forces to publish some of the data we, as a lab, would 

probably not pursue further. Katie and I spent many hours together building strains, running high-

throughput fitness assays, analyzing data, and writing a manuscript. Given that these data did not 

comprise the most favorable traits to dissect, the story of the “QTL hotspot paper” took an 

immense amount of brain power, cooperation, and perseverance. The following chapter is based 

on the 2018 Genetics manuscript, for which Katie and I were equal contributors. 

Abstract 

Environmental factors and genetic variants underlie the phenotypic complexity within and among 

species. Even when environmental variables are tightly controlled, some of the heritability of many 

complex phenotypes remains elusive. This missing heritability can be attributed to small-effect 

additive loci, as many yeast and Arabidopsis studies find. However, many heritable components 

of quantitative traits remain undetected in metazoan models. The missing heritability in animals 
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could be additive, small-effect loci, as in yeast and plants, or undetected interacting loci might be 

to blame. To obtain sufficient statistical power to detect these elusive additive or interacting loci, 

high replication of precise phenotypic measurements are required. Here, we use a panel of 296 

recombinant strains of the animal model Caenorhabditis elegans and a precise fitness assay to 

detect loci underlying reposes to 16 toxins. We use linkage mapping to identify 82 quantitative 

trait loci (QTL) that contribute to variation in toxin responses and predict the relative contributions 

of additive and interacting loci toward animal growth. We located three regions of the genome 

that underlie many toxin responses and call these regions “QTL hotspots”. These hotspots could 

be enriched for genes in common toxin-response pathways. We validated these QTL hotspots 

with near-isogenic lines and chromosome substitution strains, implicating additive and interactive 

loci that underlie toxin-response variation in a metazoan model. 

Introduction 

As genome sequencing becomes more feasible and less expensive, high-quality genomic data 

for a multitude of species rapidly accumulate [218]. When paired with precise, high-throughput 

phenotypic assays, researchers can use these genomic data to understand how genetic variation 

impacts complex phenotypes. Linkage mapping has been used to identify many quantitative trait 

loci (QTL) that underlie phenotypes important to human health [219–221], agriculture and 

livestock [222–225], and basic biology [109,226,227]. However, some of the heritability of trait 

variation often cannot be explained by these QTL [228]. Undetected small-effect additive or 

interacting loci might underlie this missing heritability [229]. Some studies find that interacting loci 

might explain missing heritability [230–234], whereas others argue that undetected small-effect 

additive loci are to blame, in cases of low statistical power [235–238]. Quantitative geneticists 
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have leveraged large numbers of recombinant strains in both yeast and Arabidopsis to overcome 

power limitations and concluded that, when power is sufficient, small-effect additive components 

can be identified that account for nearly all of the heritability of a given trait [192,229,239]. We 

require a metazoan system with high statistical power to determine whether this predominantly 

additive QTL model remains broadly applicable in animals.  

 

Caenorhabditis elegans is a tractable model organism that offers well characterized genomic 

diversity and many methods for precise measurement of quantitative traits. A panel of 

recombinant inbred advanced intercross lines (RIAILs) has been generated between the N2 and 

CB4856 strains of C. elegans [109,110], and this panel has been used for many linkage-mapping 

analyses [40,111,112,141–143,156,158,161–167,188,208,240–247]. Additionally, a high-

throughput phenotyping platform that rapidly and accurately measures animal fitness has been 

developed, and it could provide the replication and precision required to detect small-effect 

additive loci and to determine the relative contributions of additive and/or epistatic loci to trait 

variation [40,141]. Notably, the combination of these RIAILs and this high-throughput phenotyping 

platform have facilitated linkage mappings of multiple distinct fitness parameters, and studies 

have detected a single gene that underlies several fitness-related traits [40,141,142]. This 

example of pleiotropy suggests that large-scale studies could reveal additional pleiotropic effects.  

 

Studies have used this panel of RIAILs to map pleiotropic QTL that underlie variation in transcript 

abundance across a wide range of genes [158,248–250]. Variation in one master regulator that 

lies within an expression QTL hotspot can affect many traits - in this case, expression of many 

different genes. Other QTL hotspots could impact multiple traits, such as responses to various 

conditions. For example, in yeast, genetic variants in particular genomic regions have pleiotropic 
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effects across many conditions [251–253]. Although QTL underlying responses to individual 

conditions have been identified across multiple animal models [254–258], the existence of QTL 

hotspots that influence multiple condition responses has yet to be observed broadly in metazoans.  

 

Here, we identified genomic regions implicated in toxin-response variation across a panel of 

recombinant lines. We found three QTL hotspots that underlie responses to multiple toxins. 

Additionally, we showed that high replication and a precise fitness assay can enable the 

identification and validation of even small-effect QTL. We analyzed relative contributions of 

additive and epistatic genetic loci in various toxin responses in a metazoan model. Finally, we 

discovered evidence for interactions between loci of the N2 and CB4856 strains that impact 

several toxin responses and could suggest how large regions of the genome were swept across 

the species. 

Materials and Methods 

Strains  

Animals were grown at 20ºC on 6 cm plates of modified nematode growth medium (NGMA), which 

contained 1% agar and 0.7% agarose, spotted with OP50 bacteria [147]. The two parental strains 

used in this study were N2 and CB4856. N2 is the canonical laboratory strain of C. elegans that 

has been extensively studied [104]. CB4856 is a well studied Hawaiian wild isolate that is 

genetically divergent from N2 and has a characterized genome [150–152]. The N2 and CB4856 

strains were crossed for several generations to create a panel of recombinant inbred advanced 

intercross lines (RIAILs) that contain regions of the genome derived from each parental strain. 
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These RIAILs were constructed previously [109,110]and have well characterized genotypes and 

allele frequencies, and we used this panel of RIAILs in our study to identify regions of the genome 

correlated with drug response. The construction of near-isogenic lines (NILs) and chromosome 

substitution strains (CSSs) is detailed below. All strains and reagents used in strain constructions 

are listed in Table S3-1. 

High-throughput toxin-response assay  

We used the high-throughput assay (HTA) described above. Populations of each strain were 

passaged on 6 cm plates for four generations to amplify animal numbers and reduce the effects 

of starvation [141]. Gravid adults were bleached for stage synchronization, and approximately 25 

embryos from each strain were aliquoted into 96-well plates at a final volume of 50 µL of K medium 

[189]. The following day, arrested L1 larvae were fed 5 mg/mL HB101 bacterial lysate in K medium 

(Pennsylvania State University Shared Fermentation Facility, State College, PA; [190] and were 

grown for 48 hours at 20ºC with constant shaking. A large-particle flow cytometer (COPAS 

BIOSORT, Union Biometrica, Holliston, MA) was used to sort three L4 larvae into each well of a 

96-well plate that contained 50 µL K medium plus HB101 lysate at 10 mg/mL, 50 µM kanamycin, 

and either 1% distilled water (control) or 1% distilled water and a particular toxin (drug). The sorted 

L4 larvae were grown and propagated for 96 hours at 20ºC with constant shaking. The population 

of parents and progeny were treated with sodium azide (50 mM in M9) and quantified by the 

BIOSORT for several fitness parameters, including brood size (n), animal length (time of flight, 

TOF), and optical density (extinction time, EXT). 
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Toxin-response trait calculations  

Phenotypic measurements collected by the BIOSORT were processed using the R package 

easysorter [144]. Using this package, read_data imported measurements from the BIOSORT and 

remove_contamination was used to remove contaminated wells from analysis. The sumplate 

function then calculated normalized measurements (norm.n -- brood size normalized to number 

of animals sorted, norm.EXT -- EXT normalized by TOF measurements) and summary statistics 

(mean, median, 10th, 25th, 75th, 90th percentile, interquartile range, covariance, and variance) of 

each trait for the population of animals. A total of 26 HTA traits were measured. When strains 

were phenotyped across multiple days, the regress(assay=TRUE) function was used to fit a linear 

model with the formula (phenotype ~ assay) to account for variation among assay days. Next, the 

prune_outliers() function removed phenotypic values that were beyond two standard deviations 

of the mean (unless at least 5% of the strains were outside this range in the case of RIAIL assays). 

Finally, toxin-specific effects were calculated using the regress(assay=FALSE) function from 

easysorter, which fits a linear model with the formula (phenotype ~ control phenotype). The 

residual phenotypic values account for differences among strains that were present in control 

conditions. 

Dose-response assays  

For each toxin, a dose-response experiment was performed using quadruplicates of four 

genetically diverged strains (N2, CB4856, DL238, and JU258). Animals were assayed using the 

high-throughput fitness assay and toxin-response trait calculations were performed as described 

above. The concentration of each toxin that provided a highly reproducible toxin-specific effect 

with variation between N2 and CB4856 across three distinct traits (brood size, norm.n; mean 
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length, mean.TOF; and mean optical density, mean.norm.EXT) was selected for linkage mapping 

experiments. The chosen concentrations and diluents of each toxin are as follows: cadmium 100 

µM in water, carmustine 250 µM in DMSO, chlorothalonil 250 µM in DMSO, chlorpyrifos 1 µM in 

DMSO, cisplatin 250 µM in water, copper 250 µM in water, diquat 250 µM in water, fluoxetine 250 

µM in DMSO, Floxuridine (FUdR) 50 µM in water, irinotecan 125 µM in DMSO, mechlorethamine 

200 µM in DMSO, paraquat 500 µM in water (50 µM was used for the CSS and NIL assays), silver 

150 µM in water, topotecan 400 µM in water, tunicamycin 10 µM in DMSO, and vincristine 80 µM 

in water. The concentration of paraquat differs to the concentration used previously [109], 

suggesting why the genetic architectures are different between the two studies. Toxins assayed 

in this manuscript were purchased from Fluka Chemical (Buchs, Switzerland) (chlorothalonil, 

#36791-250MG; chlorpyrifos, #45395-250MG; and diquat dibromide monohydrate, #45422-

250MG-R), Sigma ([sigma Chemical], St. Louis, MO) (vincristine sulfate salt, #V8879-25MG; 

cisplatin, #479306-1G; silver nitrate, #209139; carmustine, #1096724-75MG; and topotecan 

hydrochloride, #1672257-350MG), Calbiochem (San Diego, CA) (tunicamycin, #654380), Aldrich 

Chemical (Milwaukee, WI) (mechlorethamine hydrochloride, #122564-5G and cadmium chloride 

#01906BX), Alfa Aesar (irinotecan hydrochloride trihydrate, #AAJ62370-MD), Bioworld (5-fluoro-

2’- deoxyuridine, #50256011), Enzo Life Sciences (fluoxetine, #89160-860), Mallinckrodt (cupric 

sulfate, #4844KBCK), and Chem Service (paraquat, #ps-366).  

Linkage mapping 

A total of 296 RIAILs were assayed in the high-throughput fitness assay in the presence of each 

of the 16 toxins listed above as well as control conditions (water or DMSO). Linkage mapping was 

performed on each of the 384 toxin-response traits (16 toxins x 24 population parameters per 

toxin) using the R package linkagemapping [159]. The genotypic data (WS245) and residual 
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phenotypic data were merged using the merge_pheno function with the N2xCB4856_cross object. 

QTL were detected using the fsearch function, which scaled phenotypes to have a mean of zero 

and variance of one, then calculated logarithm of odds (LOD) scores for each marker and each 

trait as -n(ln(1-r2)/ 2ln(10)), where r is the Pearson correlation coefficient between RIAIL 

genotypes at the marker and trait values [192]. We noted that this scaling of the data did not 

impact mappings because scaled and unscaled mappings were identical. The phenotypic values 

of each RIAIL were then permuted randomly while maintaining correlation structure among 

phenotypes 1,000 times to calculate a significance threshold based on a genome-wide error rate 

of 5%. The marker with the highest LOD score was then set as a cofactor and mapping repeated 

iteratively until no significant QTL were detected. Finally, the annotate_lods function was used to 

calculate the fraction of variation in RIAIL phenotypes explained by each QTL. The 95% 

confidence intervals were defined by markers within a 1.5-LOD drop from the marker with the 

maximum LOD score.  

Principal component analysis of RIAILs 

Because some of the 24 population parameters measured by the BIOSORT are highly correlated, 

a principal component analysis (PCA) was performed. For each growth-response trait, RIAIL 

phenotypic measurements were scaled to have a mean of zero and a standard deviation of one. 

The princomp function within the stats package in R [195] was used to run a PCA for each toxin. 

For each toxin, the minimum number of principal components (PCs) that explained at least 90% 

of the total phenotypic variance in the RIAILs was mapped through linkage mapping, totaling 97 

PCs across all toxins. We additionally performed a two-dimensional genome scan using the 

scantwo function in the qtl package [259] for all 47 significantly mapped PCs. Significant 
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interactions were determined by permuting the phenotype data for each PC 1,000 times and 

determining the 5% genome-wide error rate.  

Heritability estimates  

Broad-sense heritability was estimated for each of the 97 PCs using the formula H2 = (σR
2-σP

2)/σR
2, 

where σR
2 and σP

2 are the variance among the RIAIL and parental (N2 and CB4856) phenotypic 

values, respectively [260]. A variance-component model using the R package regress was used 

to estimate the fraction of phenotypic variation explained by additive genetic factors (“narrow-

sense” heritability) [229,261,262]. The additive relatedness matrix was calculated as the 

correlation of marker genotypes between each pair of strains. In addition, a two-component 

variance component model was calculated with both an additive and pairwise interaction effect. 

The pairwise interaction relatedness matrix was calculated as the Hadamard product of the 

additive relatedness matrix.  

Calculation of hotspots  

We estimated centiMorgan distances from recombination events in the RIAIL panel to account for 

nonuniform distribution of genetic diversity across the genome. The genome was divided into 65 

total bins with each bin containing 26 cM. To determine if the 82 QTL significantly clustered around 

particular genomic regions, we set a threshold for significant QTL hotspots based on the 99th 

percentile of a Poisson distribution with a mean of 1.2 QTL (total QTL/total bins).  
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Generation of NILs  

Males and hermaphrodites of the desired RIAIL and parental background were crossed in bulk, 

then male progeny were crossed to the parental strain in bulk for another generation. For each 

NIL, eight single-parent crosses were performed followed by six generations of propagating 

isogenic lines to ensure homozygosity of the genome. For each cross, PCR was used to select 

non-recombinant progeny genotypes within the introgressed region by amplifying insertion-

deletion (indel) variants between the N2 and CB4856 genotypes on the left and right side of the 

introgressed region. NIL strains were whole-genome sequenced as described above to confirm 

their genotypes. Reagents used to generate all NIL strains and a summary of each introgressed 

region are detailed in Table S3-1. A statistical power calculation was used to determine the 

minimal number of technical replicates required to observe the predicted phenotypic effect of each 

QTL at 80% power. The number of technical replicates tested per assay for any given toxin did 

not exceed 100 because of experimental timing constraints. The PCs that mapped to each NIL 

region are those with a QTL with a confidence interval that overlaps with or spans the entire 

introgressed region in the NILs.  

Whole-genome sequence library preparation and analysis  

Whole-genome sequencing was performed on recombinant advanced intercross lines (RIAILs) 

and near-isogenic lines (NILs) using low-coverage sequencing. DNA was isolated from 100-300 

µL of packed worms using Omega BioTek’s EZ 96 Tissue DNA Kit (catalog no. D1196-01). All 

samples were diluted to 0.2 ng/µL and incubated with diluted Illumina transposome (catalog no. 

FC-121-1031). Tagmented samples were amplified with barcoded primers. Unique libraries (192) 

were pooled by adding 8 µL of each library. The pooled material was size-selected by separating 
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the material on a 2% agarose gel and excising the fragments ranging from 400-600 bp. The 

sample was purified using Qiagen's Gel Extraction Kit (catalog no. 28706) and eluted in 30 µL of 

buffer EB. The concentration of the purified sample was determined using the Qubit dsDNA HS 

Assay Kit (catalog no. Q32851). RIAILs and NILs were sequenced at low coverage (mean = 

2.13x) using the Illumina HiSeq 2500 platform with a paired-end 100 bp reaction lane. RIAIL and 

NIL genotypes were imputed using VCF-kit [191]. To determine genotypes, a list of filtered, high-

quality sites (n = 196,565) where parental strains possess different genotypes was extracted from 

a previously established variant dataset [132]. 

Generation of chromosome substitution strains (CSS)  

CSSs were generated by crossing N2 and CB4856 parental strains, and mating cross progeny, 

to each parental genotype. For each CSS, eight crosses were performed followed by six 

generations of propagating isogenic lines to ensure homozygosity of the genome. For each cross, 

PCR amplicons for indels on the left and right of the introgressed region were used to confirm 

progeny genotypes and select non-recombinants within the introgressed region. CSSs were 

whole-genome sequenced as described above to confirm their genotype. Reagents used to 

generate CSSs are detailed in Table S3-1. As described for NIL assays, power calculations were 

performed to determine the number of technical replicates required to observe the predicted 

phenotypic effect of the CSSs.  

Selection of traits to categorize in CSS and NIL assays  

Pairwise correlations of RIAIL phenotypes among the 24 growth-response traits measured by the 

BIOSORT were calculated using the cor function within the stats package in R, with the use 
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argument set to “pairwise.complete.obs.” For each toxin, hierarchical clustering was performed 

using the function hclust from the stats package [195]. Cutree was then used to group the resulting 

dendrogram into k groups, where k is equal to the minimum number of PCs that explained at least 

90% of the phenotypic variance in the RIAILs. For each PC that mapped to a hotspot, the growth-

response trait that was most correlated to that PC, as well as all growth-response traits within that 

cluster of the dendrogram, were assayed in NIL and CSS experiments.  

Categorization of CSS and NIL results  

Toxin responses for NILs and CSSs were tested using the high-throughput fitness assay for traits 

correlated with mapped PCs as described above. Complete pairwise statistical analyses of strains 

was performed for each trait tested in all CSS and NIL assays (Tukey’s honest significant 

difference test). A P value of P < 0.05 was used as a threshold for statistical significance. NIL 

recapitulation was defined by the significance and direction of effect of the NIL compared to the 

parental strains. Six categories were defined: (1) “no parental difference,” (2) “recapitulation,” (3) 

“no QTL effect,” (4) “bidirectional interaction,” (5) “unidirectional interaction,” and (6) 

“miscellaneous”. Traits for which N2 and CB4856 phenotypes were not statistically different 

comprise the “no parental difference” category and were not further categorized. Traits in the 

“recapitulation” category must satisfy the following criteria: significant difference between the 

parental strain phenotypes, significant difference between phenotypes of each NIL and the parent 

that shares its background genotype, and both NILs must display the expected direction of effect 

of the introgressed genotype. Traits with “no QTL effect” displayed a significant parental 

phenotypic difference and the phenotype of each NIL was not statistically different from the 

phenotype of the parent sharing its background genotype. Traits that have a “bidirectional 

interaction” must display a significant parental phenotypic difference, the phenotypes of both NILs 
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must be significantly different from phenotypes of both parents, and the phenotypes of both NILs 

must be transgressive (lie beyond the phenotypic range of the parental strains). Lastly, traits with 

a “unidirectional interaction” were categorized similarly to the bidirectional interaction, except only 

one NIL must display a transgressive phenotype, and the other NIL either shows no QTL effect 

or recapitulation. Traits that did not fit these descriptions were categorized as “miscellaneous”.  

 

Traits in the chromosome V hotspot were further categorized using the combined data from both 

the CSS and NIL assays. Seven categories were defined: (1) “no parental difference”, (2) 

“recapitulation”, (3) “no QTL effect”, (4) “external interchromosomal interaction” (uni- or 

bidirectional), (5) “internal interchromosomal interaction” (uni- or bidirectional), (6) 

“intrachromosomal interaction” (uni- or bidirectional), and (7) “miscellaneous”. No parental 

difference was defined by traits in which the parental strains were either not significantly different 

from each other or did not have the same direction of effect in both the CSS and NIL assays. 

“Recapitulation” and “no QTL effect” traits were defined by traits that were classified as either 

recapitulating or no QTL effect, respectively, in both assays. Traits displaying an “external 

interchromosomal interaction” show evidence for interaction in the CSS but no interaction (either 

recapitulating or no QTL effect) in the NIL. On the other hand, traits displaying an “internal 

interchromosomal interaction” showed evidence of the same interaction for both the CSS and the 

NIL assays. Finally, traits displaying an “intrachromosomal interaction” showed evidence of an 

interaction in the NIL but not in the CSS assay. All other traits that did not fit these descriptions 

were categorized as “miscellaneous”.  
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Statistical analysis  

All statistical tests of phenotypic differences in the NIL and CSS assays were performed in R 

(version 3.3.1) using the TukeyHSD function [195] on an ANOVA model with the formula 

(phenotype ~ strain). The P values of individual pairwise strain comparisons were reported and a 

P value of P < 0.05 was deemed significant. The direction of effect of each NIL was determined 

by comparing the median phenotypic value of the NIL replicates to that of each parental strain. 

NILs whose phenotypes were significantly different from both parents and whose median lied 

outside of the range of the parental phenotype medians were considered hypersensitive or hyper-

resistant. Comparing LOD scores, and variance explained between traits with “no parental effect” 

and traits with a significant parental effect in the NIL assays, was performed using a Wilcoxon 

rank sum test with continuity correction using the wilcox.test function in R [195]. 

Results 

Many QTL underlie responses to 16 diverse toxins  

We used a high-throughput fitness assay (Figure 1-1) to measure the responses of four 

genetically divergent strains to various concentrations of 16 toxins, comprising 

chemotherapeutics, heavy metals, pesticides, and neuropharmaceuticals (Figure S3-1, Table 3-

1). We selected the concentration of each toxin with maximal broad-sense heritability between 

two strains, N2 (the laboratory strain) and CB4856 (a Hawaiian wild isolate) (Table 3-1). For the 

selected concentration of each toxin, we measured 24 growth-response traits for a panel of 296 

RIAILs generated between these two divergent strains [109]. We then performed linkage mapping 

for each of the 24 traits across each of the 16 toxins, for a total of 384 toxin-trait mappings, and 
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we identified 462 QTL across 247 traits (data available at Figshare: 

https://doi.org/10.25386/genetics.7158911). Because the high correlation among the 24 traits 

measured could increase the false-positive rate of QTL detection (Figure S3-2), we performed 

principal component analysis (PCA) for each toxin. We selected the minimum number of principal 

components (PCs) that explained at least 90% of the total phenotypic variance within each toxin, 

for a total of 97 PCs across all toxins (minimum of five PCs and a maximum of eight PCs per 

toxin, Table 3-2). We then performed linkage mapping to identify QTL that underlie variation in 

these 97 PCs.  

Table 3-1 List of doses tested for each toxin 

Toxin Class Doses Tested (µM) Mapping 

Concentration (µM) 

Diluent 

Cadmium Heavy Metal 100, 200, 300, 400 100 Water 

Carmustine Chemotherapeutic 125, 250, 500, 1000 250 DMSO 

Chlorothalonil Pesticide 125, 250, 500, 1000 250 DMSO 

Chlorpyrifos Pesticide 0.25, 0.5, 1, 2 1 DMSO 

Cisplatin Chemotherapeutic 125, 250, 500, 1000 250 Water 

Copper Heavy Metal 625, 125, 250, 500 250 Water 

Diquat Pesticide 250, 500, 1000, 2000 250 Water 

Fluoxetine Neuropharmaceutical 625, 125, 250, 500 250 DMSO 

FUdR Chemotherapeutic 37.5, 50, 75, 100 50 Water 

Irinotecan Chemotherapeutic 625, 125, 250, 500 125 DMSO 

Mechlorethamine Chemotherapeutic 200, 300, 400, 500 200 DMSO 

Paraquat Pesticide 500, 1000, 2000, 4000 500 Water 

Silver Heavy Metal 75, 150, 300, 500 150 Water 

Topotecan Chemotherapeutic 50, 100, 200, 400 400 Water 

Tunicamycin Chemotherapeutic 5, 10, 15, 20 10 DMSO 

Vincristine Chemotherapeutic 20, 40, 60, 80 80 Water 
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Table 3-2 Number of principal components that explain at least 90% of the variance in the RIAILs for each toxin 

Toxin Number of Principal Components Cumulative Variance Explained 

Cadmium 6 90.93% 

Carmustine 6 90.26% 

Chlorothalonil 6 91.98% 

Chlorpyrifos 7 91.60% 

Cisplatin 6 90.75% 

Copper 8 91.64% 

Diquat 6 90.95% 

Fluoxetine 7 90.09% 

FUdR 7 91.47% 

Irinotecan 5 92.78% 

Mechlorethamine 7 91.93% 

Paraquat 5 90.50% 

Silver 5 92.41% 

Topotecan 5 90.39% 

Tunicamycin 5 93.28% 

Vincristine 6 92.60% 

 

We detected a total of 82 significant QTL (across 47 PCs) from the 97 PCs tested (Figure 3-1, 

Figshare https://doi.org/10.25386/genetics.7158911). Although none of these toxin-response 

QTL were shared robustly across all of the toxins tested, we did find that the majority of 

chromosome I QTL were detected in responses to chemotherapeutics. Interestingly, almost every 

toxin (with the exception of FUdR) had PCs that mapped to at least two different chromosomes, 

highlighting the diverse architectures implicated across traits, even within a single toxin. In 

general, we found that the majority of the QTL (61%) mapped to chromosomes IV and V.  
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Figure 3-1 Toxin-response variation maps to many regions of the genome 

Diverse genetic architectures are implicated in responses to 16 toxins. Linkage mapping results for principal 
components that represent 82 QTL across 16 toxins, comprising chemotherapeutics (teal), heavy metals (orange), 
pesticides (purple), and neuropharmaceuticals (pink) are plotted. Genomic position (Mb) is shown along the x-axis, split 
by chromosome, and each of the 47 principal components with a significant QTL is plotted along the y-axis. Each QTL 
is plotted as a point at the location of the most significant genetic marker and a line indicating the 95% confidence 
interval. QTL are colored by the logarithm of the odds (LOD) score, increasing in significance from blue to green to 
yellow. 
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Both additive and interactive QTL underlie toxin responses  

We calculated the broad-sense heritability, narrow-sense heritability, and the proportion of 

narrow-sense heritability attributed to detected QTL for each of the PCs that mapped to the 82 

QTL identified using linkage mapping (Figure 3-2, Materials and Methods). In many cases, 

additive genetic components (narrow-sense heritability) could not explain all of the phenotypic 

variation predicted to be caused by genetic factors (broad-sense heritability). These results 

suggest that small-effect additive loci or genetic interactions remain undetected with our assay 

[192]. This missing heritability could be explained by achieving higher statistical power with larger 

sample sizes.  

 

 

Figure 3-2 Both additive and interacting loci underlie toxin response variation 

Additive genetic components identified by linkage mapping do not explain all heritable contributions to toxin-response 
variation. For 47 principal components representing the 82 QTL, we compared A. the broad-sense heritability (x-axis) 
calculated from the RIAIL phenotypic data versus the narrow-sense heritability (y-axis) estimated by a mixed model 
and B. the narrow-sense heritability (x-axis) versus the variance explained by all QTL detected by linkage mapping (y-
axis). In both plots, each principal component is plotted as a point whose color indicates drug class (chemotherapeutic, 
heavy metal, neuropharmaceutical, or pesticide). The diagonal line represents y = x and is shown as a visual guide. 
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To determine the proportion of phenotypic variance that derives from additive or interacting 

genetic components, we fit a linear mixed-effect model to the RIAIL phenotype data for the 47 

PCs controlled by the 82 QTL. Different toxin classes displayed a range of additive and epistatic 

components (Figure 3-2, Figure 3-3). On average, the heritability of responses to cisplatin, 

topotecan, and FUdR was primarily underlied by additive loci (Figure 3-3). On the other hand, 

variation in responses to paraquat, irinotecan, vincristine, and mechlorethamine was more 

attributable to genetic interactions than additive effects (Figure 3-3). We scanned the genome for 

interactions between pairs of markers that might affect the phenotypic distribution of the RIAIL 

panel and identified three significant interactions (Materials and Methods). However, the two-

factor genome scan did not localize all epistatic components that were identified by the linear 

mixed-effect model (Figure 3-2), perhaps because of missing small-effect additive loci in the 

model and/or insufficient statistical power to identify small-effect interactions.  
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Figure 3-3 The proportion of additive and interactive loci that underlie toxin responses differs among drugs 

Additive and interactive genetic components. The proportion of phenotypic variation predicted to be caused by additive 
and interactive genetic components is shown for each of the 47 principal components that represent the 82 QTL 
identified by linkage mapping. For each toxin, the fraction of phenotypic variation (x-axis) in a given principal component 
(y-axis) that is attributable to additive (light blue) versus interactive (dark blue) genetic components is shown as a 
stacked bar plot. Solid and dashed error bars show the standard error around the mean of additive and interactive 
components, respectively.   
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Three QTL hotspots underlie variation in responses to diverse toxins  

The majority of toxin-response QTL clustered on chromosomes IV and V (Figure 3-1). This 

clustering could be a chance occurrence, or it could indicate hotspots of toxin-response QTL. To 

test these two hypotheses, we first accounted for the higher rate of recombination, and thus more 

genetic diversity, on the chromosome arms [110] by dividing the genome evenly into 65 bins and 

then calculated the number of QTL that mapped to each bin (Figure 3-4, Materials and Methods). 

We identified three bins with more QTL than expected based on a Poisson distribution [260] and 

classified these bins as QTL hotspots. These three hotspots are located on the center of 

chromosome IV, the right of chromosome IV, and the center of chromosome V, and are hereby 

denoted as IVL, IVR, and V, respectively. We ran the same analysis with the full set of 247 growth-

response traits (as opposed to the 47 PCs) with significant QTL and located the same three 

hotspots. Importantly, these hotspots are not driven by multiple PCs within a single toxin; instead, 

they comprise multiple QTL across a variety of PCs and toxins. In fact, 14 of the 16 toxins tested 

(all but cadmium and diquat) have a PC that maps to at least one of the three hotspots (Table 3-

3). Of the 82 QTL that underlie PCs, 18 mapped to IVL, eight mapped to IVR, and nine mapped 

to V. In total, 33 QTL map to a hotspot (two QTL have confidence intervals that span both 

chromosome IV hotspots). We sought to experimentally validate the predicted additive and 

epistatic effects on toxin responses for QTL that mapped to the three hotspots.  
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Figure 3-4 Three regions of the genome are enriched for toxin-response QTL 

Three QTL hotspots impact toxin responses. Each chromosome is divided into equal bins of 26 cM, resulting in a total 
of 65 bins across the genome. The x-axis shows the genomic position (Mb), and the y-axis shows the number of QTL 
that lie within the corresponding bin. The red line indicates the 99th percentile of a Poisson distribution with a mean of 
1.26 QTL (total QTL/total bins). 
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Table 3-3 Toxin responses map to three QTL hotspots 

Toxin Class PCs in IVL PCs in IVR PCs in V 

Cadmium Heavy Metal 0 0 0 

Carmustine* Chemotherapeutic 1* 0 1* 

Chlorothalonil* Pesticide 2* 1* 1* 

Chlorpyrifos Pesticide 1 1 0 

Cisplatin* Chemotherapeutic 2* 1 2* 

Copper Heavy Metal 2 0 0 

Diquat Pesticide 0 0 0 

Fluoxetine* Neuropharmaceutical 1 2* 0 

FUdR Chemotherapeutic 1 1 0 

Irinotecan* Chemotherapeutic 0 1* 2 

Mechlorethamine Chemotherapeutic 0 0 1 

Paraquat* Pesticide 0 0 1* 

Silver* Heavy Metal 3* 0 1* 

Topotecan Chemotherapeutic 1 0 0 

Tunicamycin Chemotherapeutic 2* 0 0 

Vincristine Chemotherapeutic 2 1 0 

*Denotes a toxin tested in NIL/CSS experiments 

 

NILs confirm some of the predicted QTL effects  

We created and assayed NILs for the IVL, IVR, and V hotspots to validate the QTL identified from 

linkage mapping. Each NIL contains a genomic region introgressed from one parental strain into 

the genome of the opposite parental strain and were whole-genome sequenced to confirm their 

genotypes (Materials and Methods). We measured NIL responses to a subset of the toxins that 

map to a given hotspot. To test our ability to recapitulate QTL of various effect sizes by using 



155 

NILs, we chose to test toxins with QTL of small, medium, and large effect sizes (Table 3-4). We 

tested five toxins (10 QTL) with the IVL NILs, three toxins (four QTL) with the IVR NILs, and five 

toxins (six QTL) with the V NILs. In total, we tested 20 QTL across eight toxins for recapitulation 

using the NILs.  

Table 3-4 List of each toxin that maps to each QTL hotspot; bold denotes a trait tested in the NIL/CSS assays 

IV Left IV Right V 

Toxin Trait %VE Toxin Trait %VE Toxin Trait %VE 

Carmustine PC6 5.60 Chlorothalonil PC3 10.88 Carmustine PC1 7.00 

Chlorothalonil PC2 4.31 Chlorpyrifos PC2 7.74 Chlorothalonil PC1 15.35 

Chlorothalonil PC3 12.90 Cisplatin PC3 2.68 Cisplatin PC1 10.25 

Chlorpyrifos PC1 6.34 Fluoxetine PC1 10.73 Cisplatin PC4 7.18 

Cisplatin PC1 6.05 Fluoxetine PC5 7.92 Irinotecan PC2 6.78 

Cisplatin PC3 4.78 FUdR PC3 5.54 Irinotecan PC5 6.43 

Copper PC2 4.85 Irinotecan PC2 5.49 Mechlorethamine PC2 8.67 

Copper PC6 5.86 Vincristine PC6 6.75 Paraquat PC1 9.98 

Fluoxetine PC1 6.65    Silver PC1 17.81 

FUdR PC3 5.54       

Silver PC3 9.76       

Silver PC4 9.28       

Silver PC5 11.70       

Topotecan PC2 9.70       

Tunicamycin PC1 15.90       

Tunicamycin PC3 6.70       

Vincristine PC5 6.47       

Vincristine PC6 6.75       

 

For each of these 20 QTL, we identified the toxin-response trait that is most correlated with the 

PC controlled by that QTL. We then assayed the NILs for that toxin-response trait as well as all 

toxin-response traits within its same trait cluster, because each PC comprises multiple toxin-

response traits (Table 3-5, Materials and Methods). We tested 42 toxin-response traits with the 
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IVL NILs, 12 toxin-response traits with the IVR NILs, and 45 toxin-response traits with the V NILs 

(Table 3-5, data available at Figshare: https://doi.org/10.25386/genetics.7158911). Together, we 

performed 99 tests of recapitulation of QTL effects for toxin-response traits. We then sorted the 

recapitulation results into six different categories: “no parental effect”, “recapitulation”, “no QTL 

effect”, “unidirectional transgressive,” “bidirectional transgressive,” or “miscellaneous” (Figure 3-

5, Table 3-6).  

 

Table 3-5 All PCs assayed with NILs/CSSs and the traits that underlie each PC 

PC Hotspot Correlated Traits Correlation 
Range 

carmustine.PC1 V 
mean.EXT, mean.TOF, q75.EXT, median.EXT, 

median.TOF, q75.TOF, median.norm.EXT, q90.TOF, 
q90.EXT 

0.72-0.95 

carmustine.PC6 IVL q25.norm.EXT, q10.norm.EXT 0.33-0.39 

chlorothalonil.PC1 V mean.EXT, q75.EXT, mean.TOF, median.EXT, 
median.TOF, q75.TOF 0.73-0.95 

chlorothalonil.PC2 IVL cv.TOF, cv.EXT 0.72-0.90 

chlorothalonil.PC3 IVL, IVR mean.norm.EXT, q75.norm.EXT, q90.norm.EXT, 
median.norm.EXT 0.50-0.65 

cisplatin.PC1 IVL, V mean.EXT, mean.TOF, median.EXT, median.TOF, 
q75.TOF, q75.EXT, q90.EXT, q90.TOF 0.78-0.97 

cisplatin.PC3 IVL var.TOF, var.EXT 0.38-0.54 

cisplatin.PC4 V norm.n, n 0.76-0.80 

fluoxetine.PC1 IVR mean.norm.EXT, q75.norm.EXT, mean.EXT, q75.EXT, 
q90.norm.EXT, q90.EXT 0.79-0.96 

fluoxetine.PC5 IVR q90.norm.EXT, q75.norm.EXT, mean.norm.EXT, 
q75.EXT, mean.EXT, q90.EXT 0.07-0.40 

irinotecan.PC2 IVR cv.TOF, cv.EXT 0.57-0.84 
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paraquat.PC1 V 
median.EXT, mean.EXT, q25.EXT, q75.EXT, 

mean.TOF, q75.TOF, q10.EXT, q90.EXT, q90.TOF, 
median.TOF, q25.TOF, q10.TOF 

0.75-0.95 

silver.PC1 V mean.EXT, median.EXT, q75.EXT, mean.TOF, 
q90.EXT, q90.TOF, median.TOF, q75.TOF 0.77-0.96 

silver.PC3 IVL q10.norm.EXT, q25.norm.EXT, mean.norm.EXT, 
median.norm.EXT, q75.norm.EXT, q90.norm.EXT 0.32-0.64 

silver.PC4 IVL n, norm.n 0.84-0.84 

silver.PC5 IVL n, norm.n 0.41-0.41 

tunicamycin.PC1 IVL 

median.EXT, q75.EXT, mean.TOF, q75.TOF, 
median.TOF, median.norm.EXT, q90.EXT, q90.TOF, 

mean.EXT, q75.norm.EXT, mean.norm.EXT, 
q25.norm.EXT, q90.norm.EXT, q10.norm.EXT 

0.69-0.96 

tunicamycin.PC3 IVL norm.n, n 0.47-0.50 

 

Twenty-three of the 99 tests did not show a significant phenotypic difference between the parental 

strains (N2 and CB4856) in the NIL assay, and these were categorized as “no parental effect” 

(Materials and Methods, Figure 3-5, Table 3-6). The remaining 76 tests in which a significant 

parental difference was observed were classified further. If a single QTL in the introgressed region 

contributed to the parental phenotypic difference, one would expect each NIL to have a phenotype 

significantly different from the parental strain with the same genetic background. Furthermore, 

one would expect each NIL to have a phenotype reminiscent of the parental strain of its 

introgressed genomic region. Four tests fit this “recapitulation” model (Figure 3-5, Table 3-6). For 

example, the NILs on the center of chromosome V displayed a normalized brood size in cisplatin 

(cisplatin.norm.n in cisplatin PC4) that recapitulated the expected parental phenotype (Figure 3-

6). For 11 of the remaining 72 tests, the phenotype of each NIL was not significantly different from 

the phenotype of the parental strain sharing its background genotype (Figure 3-5, Table 3-6), 

which would indicate that the introgressed region does not affect the toxin-response phenotype. 
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This lack of QTL effect might suggest that the genetic architecture is more complex than the 

mapping predicted, we lacked sufficient statistical power to detect the QTL effect (especially likely 

in cases of small QTL effect sizes), or the real QTL lies outside of the introgressed region and 

therefore the mapping was imprecise. The NILs on the center of chromosome V showed this 

result for median animal length in silver (silver.median.TOF in silver PC1) (Figure 3-6). 
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Figure 3-5 NIL and CSS results can be placed into distinct categories 

Top: Flowchart for categorizing traits from the NIL or CSS tests of recapitulation of QTL effects. Bottom: Six potential 
categories for chromosome V traits tested in both NIL and CSS assays with a significant and consistent parental 
phenotypic split across both assays. The miscellaneous category is not depicted, but encompasses any other 
combination of NIL and CSS assay results. 
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Figure 3-6 NIL and CSS results represent several categories 

Results from near-isogenic line (NIL) and chromosome-substitution strain (CSS) tests of recapitulation of QTL effects 
are categorized based on potential genetic mechanisms implicated in toxin responses. A trait contributing to a mapped 
principal component for each category is reported: A. Recapitulation (cisplatin norm.n, PC4), B. Inter-chromosomal 
external bidirectional loci (silver median.TOF, PC1), C. Inter-chromosomal internal unidirectional loci (carmustine 
median.EXT, PC1), and D. Intra-chromosomal unidirectional loci (cisplatin q90.EXT, PC1). In each case, we show 
results from (i) the NIL assay (left) and CSS assay (right) plotted as Tukey box plots. The y-axis indicates residual 
phenotypic values for the given trait. Different letters (a-d) above each Tukey box plot represent significant differences 
(p < 0.05) whereas the same letter represents non-significant differences between two strains (Tukey HSD). The 
genotype of each strain on the x-axis is modeled by the colored rectangles beneath the plots (N2 genotypes are orange, 
CB4856 genotypes are blue). (ii) A stacked bar plot shows the proportion of phenotypic variation attributable to additive 
(light blue with dashed error bars) and interactive (dark blue with solid error bars) genetic factors of the principal 
component represented by each trait, based on a mixed model.  
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Table 3-6 List of primary categorizations from NIL assay results 

Primary Category Number of Tests (99) 

No Parental Effect 23 

Recapitulation 4 

No QTL Effect 11 

Unidirectional Transgressive 38 

Bidirectional Transgressive 7 

Miscellaneous 16 

 

 

The phenotypes of the NILs for the remaining 61 tests cannot be explained by a single-QTL 

model. For many of these tests, we observed NIL phenotypes that are more sensitive or more 

resistant than both parental strains, suggesting that loci of opposite genotypes act additively or 

interact in the NILs to create transgressive phenotypes [263]. This category was supported by the 

results of the mixed-effects model, which suggested that both additive and interacting QTL 

remained undetected by linkage mapping (Figure 3-2). We further explored the results of these 

61 tests by characterizing them based on the patterns of the transgressive phenotypes we 

observed.  

 

Only one of the two reciprocal NILs showed a transgressive phenotype for 38 of these 61 tests 

(Figure 3-5, Table 3-6). Some of these 38 “unidirectional transgressive” phenotypes seem to 

show an antagonism that counteracted the effect of the introgressed region (a predicted sensitive 

phenotype becomes hyper-resistant or a predicted resistant phenotype becomes hypersensitive, 

e.g., carmustine.median.EXT in carmustine PC1, Figure 3-6). Other phenotypes displayed 

synergy that increased the effect of the introgressed region (a predicted sensitive phenotype 
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becomes a hypersensitive phenotype or a predicted resistant phenotype becomes a hyper-

resistant phenotype, e.g., cisplatin.q90.EXT in cisplatin PC1, Figure 3-6). Interestingly, in most 

cases (82%), the transgressive phenotype was observed in the strain with the N2 genotype 

introgressed into the CB4856 background.  

 

We identified seven tests with suggested “bidirectional transgressive” phenotypes in which both 

NILs showed an extreme phenotype compared to the parental strains (Figure 3-5, Table 3-6) 

Some of these “bidirectional transgressive” phenotypes were suggestive of purely antagonistic 

effects (e.g., tunicamycin.mean.norm.EXT, Figshare https://doi.org/10.25386/genetics.7158911), 

whereas others suggested an antagonistic effect in one NIL and a synergistic effect in the other 

(e.g., paraquat.median.TOF, Figshare https://doi.org/10.25386/genetics.7158911). No cases of 

bidirectional synergistic effects were identified. The remaining 16 tests of the 76 with a parental 

difference did not fall into any of the above categories and were classified as “miscellaneous” 

(Table 3-6).  

 

As mentioned above, we selected particular toxin-response traits to represent the mapped PCs. 

Because each mapped PC comprised several toxin-response traits, we sought to analyze the 

overall QTL effect of each PC by comparing the NIL assay categorizations for the toxin-response 

traits that it comprises (Figure 3-7). For example, two traits, n and norm.n, were selected to 

represent cisplatin PC4 (Table 3-5). Both of these toxin-response traits were placed into the 

“recapitulation” category from the NIL assay results (Figure 3-5, Figure 3-7). These results 

suggest that a single additive QTL underlies the brood-size variation captured by PC4. Fourteen 

tunicamycin-response traits were selected to represent tunicamycin PC1 (Table 3-5). Eight of 

these 14 traits displayed “unidirectional transgressive phenotypes”, four traits displayed 
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“bidirectional transgressive phenotypes”, and the remaining two traits did not have a significant 

parental phenotypic difference (Figure 3-5, Figure 3-7). However, we see the same trend of 

resistance (ECA231 > N2 > CB4856 > ECA229) across 11 of the 14 traits representing this PC, 

regardless of test categorization. Therefore, some phenotypes might have been miscategorized 

because of our strict significance cutoffs (usually into the “miscellaneous” or “no parental/QTL 

effect” categories). The fact that 12 out of 14 tunicamycin-response traits showed evidence of 

transgressive phenotypes suggests that multiple QTL, acting additively or interacting, might 

impact tunicamycin responses.  

 

 

Figure 3-7 HTA traits that comprise each principal component are placed into similar categories 

The x-axis shows the principal component tested in NIL assays, split by hotspot. Each color represents the NIL assay 
categorization for each trait within a correlation cluster - either recapitulation (green), no QTL effect (red), unidirectional 
transgressive phenotype (light blue), bidirectional transgressive phenotype (dark blue), miscellaneous (light grey) or no 
significant parental difference (dark grey). The percent of all traits within the correlation cluster for each principal 
component that falls within a given category is shown on the y-axis. Numbers on the top of each bar indicate the number 
of traits within a correlation cluster.   
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We next asked if QTL effect sizes affected our ability to categorize toxin-response traits. The QTL 

underlying cisplatin PC4 explains a small percentage (7%) of the total phenotypic variance (Table 

3-4). The traits selected to represent cisplatin PC4 were placed into the recapitulation category, 

despite the small effect size of the QTL (Figure 3-5, Figure 3-7). On the other hand, the QTL 

underlying tunicamycin PC1 explains a large amount (almost 16%) of the total phenotypic 

variance, which is one of the highest effect sizes mapped in this study (Table 3-4). The toxin-

response traits selected to represent this PC showed mostly transgressive phenotypes, indicating 

undetected additive or interacting QTL despite the seemingly large-effect additive QTL identified 

in linkage mapping (Figure 3-5, Figure 3-7).  

CSSs localize QTL underlying transgressive phenotypes  

Because we found evidence of additive or interacting loci that cause transgressive phenotypes, 

we attempted to further characterize these loci (Figure 3-5, Figure 3-7). We first sought to identify 

each set of loci as “intrachromosomal” or “interchromosomal”. We chose to dissect transgressive 

phenotypes of QTL on the chromosome V hotspot to isolate the effects of one hotspot and avoid 

complications arising from traits whose confidence intervals might lie within both of the hotspots 

on chromosome IV. We built reciprocal CSSs for the chromosome V hotspot that had the entire 

chromosome V introgressed from one parental strain into the genome of the opposite parental 

strain (Materials and Methods). The CSSs were whole-genome sequenced and found to have the 

expected genotype at all markers (Materials and Methods), except for the chromosome I 

incompatibility locus [166,167]. We performed tests of recapitulation of QTL effects with the CSSs 

for each of the 45 toxin-response traits across the five toxins tested with the chromosome V NILs 

(Figure 3-7, Table 3-4, Table 3-6).  
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NIL and CSS phenotypes could be compared across assays for traits in which the parental 

phenotypic difference was significant and consistent across both sets of tests. Eight traits across 

five toxins fit this criterion (Table 3-7). One trait (cisplatin.norm.n) displayed phenotypic 

recapitulation of the introgressed region in both the NIL and the CSS tests, supporting a single-

QTL model (Figure 3-6, Table 3-7). Alternatively, transgressive phenotypes are indicative of a 

multi-QTL model, and by comparing the pattern of phenotypes in the NIL and the CSS tests, we 

can surmise the locations of these additive or interacting QTL. One of these loci must exist on 

chromosome V, where both the NILs and CSSs share introgressed genomic regions. The other 

locus can exist on the same chromosome (intrachromosomal) or on a different chromosome 

(interchromosomal). We further divided the interchromosomal class into two categories: 

“interchromosomal external,” in which the chromosome V locus is outside the region introgressed 

in the NILs, and “interchromosomal internal,” in which the chromosome V locus is within the region 

introgressed in the NILs. Figure 3-8 is a visual depiction of each type of multi-QTL model, and 

each of these models is described below. 

 

Table 3-7 Categorizations from combining the NIL and CSS assay results 

Secondary Category Number of Traits (8) Traits 

Recapitulation 1 cisplatin.norm.n 

Inter-chromosomal (external) 1 silver.median.TOF (bidirectional) 

Inter-chromosomal (internal) 1 carmustine.median.EXT (unidirectional) 

Intra-chromosomal 2 cisplatin.q90.EXT (unidirectional),  
cisplatin.q90.TOF (unidirectional) 

Miscellaneous 3 cisplatin.n,  
paraquat.q10.TOF,  
silver.median.EXT 
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Figure 3-8 NIL and CSS assay results can be compared to localize potential regions of epistasis 

A model for potential locations of two loci is shown, according to toxin-response phenotypes of near-isogenic lines 
(NILs) and chromosome-substitution strains (CSSs). The NILs are represented on the left, and the CSSs are 
represented on the right. The strain genotype is indicated by colored rectangles. N2 is orange, and CB4856 is blue. 
Brackets indicate the genomic region that is introgressed in the NILs. White asterisks represent a potential location for 
additive or epistatic loci underlying transgressive phenotypes. Although bidirectional transgressive phenotype models 
are shown, each model could be bidirectional (both reciprocal introgressed strains show transgressive phenotypes) or 
unidirectional (only one reciprocal introgressed strain shows a transgressive phenotype). Models showing A. inter-
chromosomal external effects between a locus outside of the introgressed region in the NILs and a locus on another 
chromosome, B. inter-chromosomal internal effects between a locus within the introgressed region in the NILs and a 
locus on another chromosome, and C. intra-chromosomal effects between a locus within and a locus outside of the 
introgressed region in the NILs are drawn. 

 

 

For an “interchromosomal external” model, we expect only the CSSs to display hypersensitivity 

or hyper-resistance, because both loci share the same genotype in the NILs (Figure 3-8) and 

would therefore not cause a more extreme phenotype than both parents. We found one such trait 

that fits a “bidirectional interchromosomal external” loci model (silver.median.TOF) (Figure 3-6, 

Table 3-7). For an “interchromosomal internal” model, we expected both the CSSs and the NILs 

to display the same hypersensitivity or hyper-resistance, because the two loci are of opposite 

genotypes in both the NILs and the CSS (Figure 3-8). We identified one such trait that fits a 
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“unidirectional interchromosomal internal” loci model (carmustine.median.EXT) (Figure 3-6, 

Table 3-7).  

 

To identify intrachromosomal loci that underlie transgressive phenotypes in the remaining 10 

traits, we searched for traits that display evidence of either a uni- or bidirectional transgressive 

phenotype in the NILs but not in the CSSs (Figure 3-8. This result would suggest that two loci of 

opposite genotypes on chromosome V, one within and one outside the region introgressed in the 

NILs, act additively or epistatically to cause transgressive phenotypes. Because the CSSs have 

a consistent genotype across the entirety of chromosome V, we would not expect these strains 

to show transgressive phenotypes. We found two examples of such “unidirectional 

intrachromosomal” loci models (e.g., cisplatin.q90.EXT, Figure 3-6, Table 3-7). The remaining 

three traits could not be characterized beyond their NIL assay characterization based on the 

results of the CSS assay (Table 3-7).  

 

We compared the findings of the empirical NIL/CSS comparison and the computational two-factor 

genome scan for each of these eight empirically classified traits. None of the traits with significant 

interaction terms in the NIL/CSS comparison were identified by the two-factor genome scan. 

Although many other pairs of loci show suggestive evidence of additive or interacting effects, the 

statistical power of this computational approach might be too limited to identify the effects we 

observed empirically. Overall, this study highlights the benefits of leveraging both experimental 

and computational strategies to further dissect genetic components that underlie quantitative traits 

in a metazoan model. 
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Discussion 

Here, we show that three QTL hotspots underlie differences in responses to 16 diverse toxins. 

We used computational and empirical approaches to characterize these QTL. By testing the toxin 

responses of NILs and CSSs, we confirmed small-effect QTL and attempted to localize genomic 

regions that cause transgressive phenotypes. Finally, we used statistical analyses to 

computationally identify loci that might support some of our empirical findings. Although the 

number of biological replicates and recombinant strains in this study increased our power to detect 

QTL compared to previous studies, we are still too underpowered to definitively assess if missing 

heritability is composed of small, additive effects or genetic interactions. 

Pleiotropic regions underlie QTL shared between and among toxin classes  

We performed PCA on toxin-response phenotypes collected for a panel of RIAILs and used 

linkage mapping to identify 82 toxin-response QTL. Although some of these QTL are unique to 

one particular toxin or one particular PC within a toxin, others suggest the existence of pleiotropic 

QTL that underlie responses to a diverse set of toxins. In particular, three QTL hotspots, IVL, IVR, 

and V, were enriched for toxin-response QTL and were investigated further. The notion that a 

single gene in each hotspot is regulating the response to several toxins is unlikely, given the 

diversity of molecular mechanisms implicated in response to each toxin. However, a single gene 

involved in drug transport could conceivably underlie one or several of these hotspots. More likely, 

multiple genes in close proximity, each regulating a process important for cellular proliferation and 

survival, might underlie these hotspots. Notably, two of the three QTL hotspots are in 

chromosomal regions with lower genetic diversity at the species level [131,132,264]. The 

laboratory strain, N2, has experienced each of the selective chromosomal sweeps, whereas 
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CB4856 has not. Linkage mapping using a panel of RIAILs built between these two strains could 

identify QTL that underlie phenotypic differences not only between N2 and CB4856, but more 

broadly between swept and non-swept strains. Moreover, identifying QTL in these swept regions 

that underlie variation in fitness-related traits, such as toxin responses, might indicate selective 

pressures that could have led to these chromosomal sweeps. For example, N2 is more resistant 

than CB4856 to tunicamycin (Figshare https://doi.org/10.25386/genetics.7158911), an antibiotic 

and chemotherapeutic produced by the soil bacterium Streptomyces clavuligerus [265]. This 

result might suggest that selective pressure toward responses to antibiotic compounds played a 

role in driving resistance-conferring alleles, such as those present in N2, to a high frequency. 

Alternatively, climate conditions could also impact local niche environments to sensitize toxin 

responses [266]. We observed that N2 is more resistant than CB4856 in responses to the majority 

of conditions, which could indicate that alleles present in swept strains confer robustness in 

responses to many conditions. This result emphasizes the importance of genetic background 

when considering toxin effects [185].  

 

In addition to the three QTL hotspots, pleiotropic QTL across toxins within certain classes are 

suggested by our linkage mapping results. QTL from the chemotherapeutic class are enriched on 

chromosome I, which could be representative of variants that affect a common mechanism 

targeted by these toxins, such as DNA damage or cell-cycle control. However, because many of 

these chemotherapeutics have distinct mechanisms of action, this enrichment is likely caused by 

an overrepresentation of chemotherapeutics in our study. Direct comparisons of toxins with similar 

cellular mechanisms could provide more insights. For example, irinotecan and topotecan are both 

chemotherapeutics that cause DNA damage by inhibiting topoisomerase I [267], and share a QTL 
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on the center of chromosome I. However, each of these chemotherapeutics also maps to distinct 

regions of the genome. For example, the irinotecan-response QTL on the right arm of 

chromosome V is not mapped for topotecan response and the topotecan-response QTL on the 

left arm of chromosome II is not mapped for irinotecan response. Vincristine also maps to this 

same region; however, its mechanism of action is distinct from irinotecan and topotecan. The 

combination of overlapping and distinct genetic architectures underlying these highly similar 

compounds suggest that although some genetic variation implicated in responses to irinotecan 

and topotecan is shared, other QTL are specific to each compound and not representative of a 

general topoisomerase I inhibition mechanism. We have also observed this phenomenon of 

distinct genetic architectures underlying similar compounds for benzimidazole responses [143]. 

Undetected epistatic loci might impact toxin responses  

We constructed NILs for the three hotspots and assayed them in responses to multiple toxins to 

determine if we had sufficient power to experimentally validate even small-effect QTL. NILs 

showed a significant phenotypic effect for some of these tests of recapitulation, even in cases of 

small-effect QTL. One such example is cisplatin.norm.n and cisplatin.n, which represent the QTL 

mapped by cisplatin.PC4 that only explain 7% of the phenotypic variance. Our ability to 

recapitulate such a small effect suggests that our assay had sufficient power to detect small 

phenotypic effects in at least some cases. We postulated that our inability to recapitulate other 

QTL effects could be attributed to either insufficient power or additional additive or epistatic QTL 

that were undetected by linkage mapping. Particularly in cases where the NILs displayed 

transgressive phenotypes, undetected loci of opposite genotypes, acting additively or 

epistatically, likely caused these effects. Therefore, we investigated these interactions and found 

evidence for additional QTL that interact with the originally detected loci. However, we must note 
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that whole-genome sequence data revealed that three of our NILs had a portion of the genome 

from the background of the starting RIAIL. Although we do not believe that these small regions 

are responsible for the unexpected phenotypes observed, this explanation could be a 

consideration for certain silver, cisplatin, carmustine, and chlorothalonil PCs, as they have 

significant QTL in these identified regions. This example emphasizes the importance of whole-

genome sequencing NILs to verify the expected genotypes before making conclusions about 

phenotypic effects of a targeted QTL.  

 

We categorized the results from the NIL assays into genetic models that might underlie NIL 

phenotypes. Mostly, categorizations were consistent across traits representing a PC, with most 

of these traits falling into one or a few categorizations. This widespread consistency suggests that 

similar genetic architectures underlie phenotypes for these correlated traits. Furthermore, this 

consistency highlights the reproducibility of our high-throughput toxin-response assay, because 

results from independent assays (trait correlations, linkage mappings from RIAIL assays, and 

phenotype classifications from NIL assays) often align to support the same conclusion obtained 

from the individual experiments. 

 

The majority of cases of transgressive phenotypes occur when the N2 genotype is introgressed 

into the CB4856 genome. This trend might indicate allele-specific unidirectional incompatibilities 

between the two strains, and localizing these interactions could improve our understanding of the 

evolutionary processes driving such incompatibilities. However, it is difficult to identify the loci that 

underlie these unidirectional transgressive phenotypes using a mixed-effect model or a two-factor 

genomic scan because only a small number of the RIAILs have the required allelic combinations 

to quantify such an effect. For example, cisplatin.q90.EXT, a trait chosen to represent cisplatin 
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PC1, fits a unidirectional intrachromosomal model. The results of the NIL and CSS assays show 

that, although the CSSs seem to display no QTL effect, the NIL with the N2 genotype introgressed 

into the CB4856 genome displays strong hypersensitivity (Figure 3-6). All of the narrow-sense 

heritability for cisplatin PC1 (25%) predicted by the mixed-effect model is explained by the three 

QTL identified through linkage mapping (the variance explained estimates of these three QTL add 

up to 26%). This finding suggests that most of the additive loci have been identified through 

linkage mapping, so the intrachromosomal loci are likely acting epistatically to cause a 

unidirectional transgressive phenotype. However, we do not find a significant interaction 

component for cisplatin PC1 using our mixed-model approach. On the other hand, a two-

dimensional genome scan for multiple loci that underlie this PC provides suggestive evidence for 

a two-QTL model over a one-QTL model, with or without interaction between the loci. These two 

loci are located on the left of chromosome V (outside the NIL interval) and in the center of 

chromosome V (inside the NIL interval), and match our empirical evidence of two 

intrachromosomal loci underlying the transgressive phenotype observed (Figure 3-6). Because 

the transgressive phenotype is unidirectional, RIAILs without the allelic combination that causes 

extreme phenotypes, including RIAILs with the reciprocal alleles at these two loci, could dilute our 

power to detect the loci. For this reason, combining both computational models and empirical 

investigation facilitates the detection of loci that control transgressive phenotypes. Additionally, 

future studies should include even larger RIAIL panels than what we used here to empower 

approaches to investigate the contributions of interactive loci.  

 

Although our modeling approaches are statistically underpowered to identify some small-effect 

additive and interacting loci, the combination of three methods of searching for potential 

interactions suggests that not all fitness traits in C. elegans are composed of additive effects. Our 
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two computational methods were used to identify additive and epistatic loci underlying many toxin 

responses, but their power was limited in cases of unidirectional transgressive phenotypes. 

Alternatively, the NIL and CSS phenotypic assays were able to identify unidirectional 

transgressive phenotypes, but they were restricted by their inability to distinguish between 

additive and epistatic loci. Double CSS strains or multi-region NILs, in which pairwise 

combinations of two genomic regions are introgressed within the opposite genotype, could help 

to further define loci underlying transgressive phenotypes. However, we must isolate each locus 

to determine if the two loci act additively or epistatically. The results from the two-dimensional 

genome scan might provide insights into where to begin these future steps. We are fairly confident 

that QTL are not purely additive in cases where all three of our techniques suggested epistasis. 

Testing a larger number of biological replicates and using an even larger panel of recombinant 

strains might allow us to further address the debate about how heritable loci contribute to trait 

variation in metazoans. 

Future directions 

As mentioned in the text, future studies for this project could leverage a larger panel of RIAILs to 

increase statistical power. In the Andersen Lab, we have accumulated a large number of 

recombinant strains that we could assay in response to many toxins. This larger panel would 

increase the number of statistical tests we could perform between various allelic combinations 

and phenotypic outputs. Additionally, a larger set of recombinant strains could introduce more 

breakpoints between genotypes, ultimately improving our resolution of QTL confidence intervals. 
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Additionally, we can test the hypotheses of multi-QTL models by creating double CSS strains and 

multi-region NILs. The CSSs and NILs that we used in this study each contain a single region of 

introgression in a genetic background of the opposite genotype. Double CSSs and multi-region 

NILs would allow us to test each pairwise combination of alleles at two loci (either two whole 

chromosomes, double CSSs, or two regions of a single chromosome, multi-region NILs) in a 

controlled genetic background. Depending on the phenotypes of these strains, we can deduce 

whether two loci act additively or epistatically to impact toxin responses. 
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Supplemental Tables 

Table S3-1 Reagents used to generate NILs and CSSs 

Chromosome IVL NILs 

ECA229 
eanIR149(IV: 3,684,741 -
9,045,991, N2>CB4856) 

Constructed from QX275 x CB4856 N2 into CB4856 

ECA231 
eanIR151(IV: 4,475,146 -
9,334,865, CB4856>N2) 

Constructed from QX591 x N2 CB4856 into N2 

Left indel primers (IV: 5,110,734) 

oECA781 GAGCACTTTGGCGACTTTCG 

oECA782 TCCGGGCAAATTAGTGTGGC 

Right indel primers (IV: 8,212,089) 

oECA857 CCACACGTCTACGCTTTGGA 

oECA858 AATCGTGGCATTGGTGGACA  

 

Chromosome IVR NILs 

ECA240 
eanIR160(IV:12,865,211- 
17,493,829, CB4856>N2)  

Constructed from QX349 x N2 CB4856 into N2 

ECA241 
eanIR161(IV:13,016,066-
17,493,829, N2>CB4856)  

Constructed from QX375 x CB4856 N2 into CB4856 

Left indel primers (IV: 13,207,120) 

oECA904 AACAGATACTCGCCGTTGCT  

oECA905 ATTTGTACCACGCGTGACCT 

Right indel primers (IV: 17,356,993) 

oECA910 GACAACGCCCACTACGACAA  

oECA911 ACCCAACCAGTTGAGCACAT  

 

Chromosome V NILs 

ECA230 
eanIR150(V: 7,082,839-
13,839,858, N2>CB4856)  

Constructed from QX131 x CB4856 N2 into CB4856 

ECA232 
eanIR152(V: 7,667,158-

Constructed from Q450 x N2 CB4856 into N2 
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13,678,801, CB4856>N2)  
Left indel primers (V: 7,862,556) 

oECA799 TTCTCGCTACTGGAACACGC  

oECA800 TCAAGAAGCGTTGGGAAGTCT  

Right indel primers (V: 13,110,045) 

oECA745 TGCAGAGGTGGAGTAACCCT  

oECA746 CTCGGTCTCTCCCCCACTAA  

 

Chromosome V CSS 

ECA554 
eanIR321(V:1-20,924,180, 
N2>CB4856) 

Constructed from N2 x CB4856 N2 into CB4856 

ECA573 
eanIR322(V:1-20,923,490, 
CB4856>N2)  

Constructed from N2 x CB4856 CB4856 into N2 

Left indel primers (V: 144,547) 

oECA1141 CTCATGGGAGTAACCTGGGC  

oECA1142 CGGTGACAACGGAGAATCCA  

Right indel primers (V: 20,622,851) 

oECA1147 GTTTAGTACCAGCGGGGCAT  

oECA1148 TGCATTCCGACCCAAGAGAC  
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Supplemental Figures 
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Figure S3-1 Results of a dose-response assay for all toxins are shown 

Raw phenotypic values for four divergent strains, CB4856 (blue), DL238 (green), JU258 (pink), and N2 (orange), in 
response to various concentrations of each toxin are plotted as Tukey box plots. Toxin responses for traits representing 
three distinct population parameters- brood size (norm.n), mean animal length (mean.TOF), and mean optical density 
(mean.norm.EXT) are shown. The x-axis indicates either the control (water or DMSO) or the concentration (μM) of the 
toxin, and the y-axis shows the raw phenotypic value for each trait. 
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Figure S3-2 Traits measured by the HTA are correlated 

Correlation coefficients (r2) between all pairwise combinations of traits based on the RIAIL phenotypes for the indicated 
concentration of the toxin are plotted as a heat map. Traits are labeled on the x- and y-axes, organized by hierarchical 
clustering (top) of the correlation matrix (bottom) for each toxin. Colors represent correlation coefficients increasing 
from green to yellow to pink to white.   



199 

Chapter 4  - Escape-room inspired learning 

enrichment 

Preface 

During my tenure as a graduate student, I was responsible for being a teaching assistant for two 

courses. For one of my TA assignments, I worked with Erik on his 2017 genetic analysis course. 

I enjoyed designing problem sets and holding office hours, during which I could share my passion 

for genetics with the undergraduate students. At the time, I had recently designed a science-

themed escape room for the Biotechnology Training Program orientation, which turned out to be 

a successful team-building activity. I had the idea of designing an escape room for the genetic 

analysis course that would allow the students to review for the final exam in a unique manner. 

Using the theme of firefly genetics, I created a storyline that would walk the students through each 

of the major steps of genetic analysis. The escape room was enjoyable and effective for the 

students, so Erik and I facilitated the review game in 2018 and 2019. I presented a poster 

regarding the escape-room review game at TeachX 2018, where many of the conference 

attendees encouraged me to publish the game and its results. The following chapter describes 

the game and our plan to assess its impact, and we plan to submit this work to an educational 

journal. 



200 

Abstract 

Active learning strategies engage students in instruction by making them an integral part of the 

teaching process. Gamification is one type of active learning approach that incentivizes student 

participation by incorporating gaming elements into learning. Although gamification might be an 

effective strategy for the introduction of new material, incorporating elements of games into a 

review activity can motivate students to study, help them organize material, and identify material 

that they should review further before an exam. Escape rooms are collaborative problem-solving 

challenges and aspects of escape-room experiences can be applied to active learning. Here, we 

describe an escape-room inspired review game for an advanced genetic analysis class at 

Northwestern University. We provide a detailed account of each puzzle within the review game 

and describe our plans for assessing the impact of the game on learning outcomes. 

Introduction 

Students comprehend and remember material most effectively when they are engaged in the 

learning process. Learner-centered approaches to teaching involve the use of active, cooperative, 

and problem-based learning techniques [268]. Many studies have identified positive effects of 

learning-centered instruction as opposed to traditional teaching-based lectures, especially in 

science, technology, engineering, and math (STEM) disciplines [268–273]. These learning-

centered approaches offer students a chance to apply critical thinking skills to understand the 

applications of a lesson at a greater depth. 
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Gamification, or the use of gaming elements in non-gaming contexts [274], is an increasingly 

popular method for implementing active learning in the classroom. Although the use of 

gamification to improve learning outcomes has mixed results, proper implementation of game-

based learning can increase student engagement and motivation [275–278]. Therefore, the 

combined use of active learning and gamification strategies to review concepts covered in a 

course, as opposed to introduce new concepts, can incentivize studying, help students organize 

material, and assist students in evaluating their depth of knowledge [279,280]. The challenge for 

educators is to determine a game format that works for their students and for the material taught 

in the course. 

 

Escape rooms are interactive experiences that challenge participants to use critical thinking and 

cooperation to achieve a goal [281]. Although many escape rooms are recreational, the use of 

escape-room inspired experiences for education has rapidly grown, especially in medical 

education [282–289]. Students report that the escape room games in the classroom improved 

their motivation to study [282,283,287], helped them conceptualize and retain curriculum 

[282,283,285,289], revealed topics they should spend more time reviewing [285], and were overall 

enjoyable experiences [282–288]. The hands-on challenges and time sensitivity of an escape 

room has obvious parallels to some of the practical skills needed for medical professions. 

Therefore, the use of escape rooms in medical education seems to be a clear fit. However, escape 

rooms might not be limited in this capacity. Indeed, they might be effective as review games for a 

wide array of subjects outside of the medical field. 

 

Here, we present the design and implementation of an escape room game for BIOL_SCI 393: 

Genetic Analysis at Northwestern University. This activity supplemented study guides and review 
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sessions for the final exam. During the game, students collaborated to solve genetic puzzles, 

ultimately unlocking the “Nobel Prize”. Each puzzle in the game covered a core concept that was 

taught in the course and would appear on the final exam. We discuss the workflow of the game, 

assess student responses, and offer suggestions for designing future escape room review 

activities.  

Methodology 

Participants: 

Students enrolled in BIOL_SCI 393, Genetic Analysis, were offered the option to participate in the 

escape room exam review session. Eighteen students were enrolled in the course and all 

participated in the escape room activity. 

 

Location and set up: 

The escape room review session took place in a standard lecture room on campus. Students 

were split into two groups of nine each to offer each student a more active role in the game. The 

course instructor and teaching assistant acted as facilitators for the activity, where they could 

deliver clues when appropriate but did not offer solutions to challenges in the room. 

 

Each activity was placed in a wooden box with some form of lock and the boxes were scattered 

throughout the room (Supplement A). When the students entered the game room, they noticed 

six locked boxes (Supplement A), a list of tools for a mutagenesis screen written on the board 

(Supplement A), a chalkboard drawing labeled “GFP plasmid” (Supplement A), a chalkboard 
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drawing of a cell lineage (Supplement A), and a mysterious poster board with hooks and elastic 

ID badge holders (Supplement A). 

Workflow 

Before the escape room review game took place, the facilitators printed all prompts (Supplement 

B), tested all puzzles and locks, and set up the room according to the setup guide (Supplement 

A). Facilitators followed the workflow in Supplement C to ensure the game was consistent across 

groups. A summary of the escape room workflow is described below. 

 

Introduction 

After all students had entered the room, they were presented with the Introductory Prompt 

(Supplement B): “Congratulations! You have won the Nobel prize for your work in Photinus 

pyralis, which, as you obviously know, is the scientific name for the big dipper firefly. You 

performed flawless genetic experiments and identified several genes involved in the 

bioluminescence of this wonderful organism and found genetic tests for diseases in the species, 

eventually earning you the highest honor in the field. However, your jealous lab mate doubts your 

knowledge of genetics and has hidden your Nobel prize in this room. To prove that you have 

earned this award and claim what is rightfully yours, you must complete a series of tasks, unlock 

several boxes, and find your Nobel prize before you give your big acceptance speech in one hour. 

Good luck!” 

 

Step 1: Mutagenesis 
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The facilitator handed Prompt 1 (Supplement B) to the students and started the timer that would 

expire after one hour. The prompt indicated that the students needed to draw a mutagenesis 

screen on the board (Figure 4-1). 

 

Figure 4-1 Mutagenesis screen answer 

The solution to Prompt 1 is shown. 

 

Step 2: Complementation 

When the mutagenesis screen was correct, the facilitator handed Key 1 (Supplement A) to the 

students, which they used to unlock Box 1 (Supplement A). Inside, they found Prompt 2 

(Supplement B), and a set of tea lights that were each labeled with a combination of two 
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mutations (Figure 4-2). The students tested the ability of each combination of mutants to glow by 

turning on each tea light and used this information to identify the largest non-complementation 

group (Figure 4-2). The numbers of the mutants in the largest non-complementation group were 

used to unlock Box 2 (Supplement A) once they were arranged according to the clue on the lock 

(Figure 4-2). 

 

 

Figure 4-2 Complementation puzzle 

A. Electronic tea lights represent double-mutant fireflies for pairwise combinations of nine mutations. Each tea light is 
labeled with the two mutations it represents. Tea lights are arranged with m1-m9 from left to right paired with m1-m9 
from top to bottom. B. An orange flame indicates that the tea light has batteries and will therefore light when turned on, 
whereas a grey flame indicates that the battery was removed and would therefore fail to light when turned on. C. Tea 
lights that failed to light indicate that the given mutations fail to complement. The non-complementation groups are 
indicated. D. A hint written on the lock of Box 2 is shown. E. The largest non-complementation group from C is placed 
into the order indicated by D and can be used to unlock Box 2.  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Step 3: Epistasis 

Inside Box 2 (Supplement A), the students found Prompt 3 (Supplement B) and the Epistasis 

Circuit (Figure 4-3). The students flipped the switches on the circuit board on and off to 

understand how the presence or absence of certain gene products affected the output of the 

phenotype (the color of the light). Using this information, the students organized the biosynthetic 

pathway of these modeled genes and identified the most upstream gene in the pathway (Figure 

4-3). This gene name was used to unlock Box 3 (Supplement A). 

 

Figure 4-3 Epistasis circuit 

A. A circuit board modeling the biochemical pathway that determines the color of light emission is shown. Three 
switches represent gene products of the trix1, oldy3, and play5 genes. B. The table indicates the color of the light output 
when each gene product is turned on or off. Given the information in the table, the biochemical pathway is modeled 
below, with the most upstream gene product circled in red. This gene name can be used to unlock Box 3.  
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Step 4: Designing plasmids 

In Box 3 (Supplement A), the students found Prompt 4 (Supplement B), magnets labeled with 

promoter types and alleles of genes (Figure 4-4), and a blacklight. The students placed the 

magnets into the Expression Plasmid on the blackboard (Supplement A, Figure 4-4). When 

they selected the correct magnets (Figure 4-4), the facilitator handed them Gene Expression 

Poster (Figure 4-5). 

 

Figure 4-4 Expression plasmid 

A. The expression plasmid to be drawn on the board before the activity is shown at top. Below, rectangles represent 
magnets that are labeled with promoter options and alleles of genes. B. The correct selection of magnets to complete 
the promoter is shown. 
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Figure 4-5 Gene expression poster 

A. A poster board with a drawing of a firefly is shown. Each of the abdominal cells are labeled. B. When a blacklight is 
shown onto the drawing, certain cells illuminate. This represents which cells fluoresce when the GFP plasmid from 
Figure 4B is placed into a mutant animal. Cells A2, A3, B1, B2, B4, C1, C2, D2, D3, and D4 illuminate under the 
blacklight.  
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Step 5: Nascent expression 
The students used the blacklight to look for expression of the gene product on the Gene 

Expression Poster. Once they correctly identified which cells were fluorescing (Figure 4-5), the 

facilitator handed them Prompt 5 (Supplement B). 

 

Step 6: Designing experiments 

The students selected the experimental tools they would need to test whether the gene function 

was required in certain cells. When they selected the correct combination of tools (Supplement 

C), the facilitator handed them Prompt 6 (Supplement B) and the Mutant Firefly Box (Figure 

4-6). 

 

Figure 4-6 Mutant firefly box 

A. A circuit box representing the abdominal cells of a mutant firefly is shown. B. A diagram of the circuit inside the box 
is shown. C. When iron nails are inserted into the proper locations (B1, B2, and B4), the circuit is completed and the 
box illuminates. The code shown can be used to unlock Box 4.  
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Step 7: Cell autonomy 

Following Prompt 6, students plugged the three nails into the given holes on the Mutant Firefly 

Box. When they did not see the box light up, they told the facilitator what this means about the 

cell autonomy of the gene product (Supplement C). When their answer was correct (Supplement 

C), the facilitator handed them Prompt 7 (Supplement B). 

 

Step 8: Rescue and Ablation 

Combining the information on Prompt 7 (Supplement B), the Cell Lineage drawn on the 

blackboard (Supplement A, Figure 4-7), and information from Steps 6 and 7, the students 

deduced where the function of the gene product is required to make the animal light up. They 

then placed the three iron nails into the corresponding slots in the Mutant Firefly Box (Figure 4-

6). When correct, the Mutant Firefly Box lit up and displayed the code to unlock Box 4 (Figure 

4-6). 

 

Figure 4-7 Abdominal cell lineage 

A diagram of the cell lineage for all abdominal cells is shown.  
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Step 9: Time of Activity 

In Box 4, the students found Prompt 8 (Supplement B) and six Time of Gene Action envelopes 

labeled “0”, “2”, “4”, ”6”, ”8” and “10” that each contained glow sticks (Supplement A, Figure 4-

8). The students tested the glow sticks for number of “animals” in the population that had the wild-

type glowing phenotype. If the students did not know how to use glow sticks, the facilitator 

instructed them to crack them. The students then stated when the gene function was required. If 

correct (Figure 4-8), the facilitator handed them the Modes of Inheritance Pedigrees (Figure 

4-9) and Prompt 9 (Supplement B). 
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Figure 4-8 Time of gene action 

A. Envelopes containing glow sticks represent temperature-sensitive mutant fireflies. Each envelope contains eight 
glow sticks that were shifted from the permissive to the restrictive temperature at the indicated time point. B. After 
cracking the glow sticks in each envelope, the number of animals that glow after each temperature shift are shown. 
This information can be used to generate the time of gene action diagram (below). 
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Figure 4-9 Modes of inheritance pedigrees 

Five pedigrees, each describing a different mode of inheritance are shown. Circles indicate females and squares 
indicate males. Affected individuals are shown in red. 

 

Step 10: Modes of Inheritance 

The students determined the mode of inheritance for each of the Modes of Inheritance 

Pedigrees. They then matched each pedigree to its proper mode of inheritance on the 

Mysterious Poster Board by stretching the ID tags from top hooks to bottom hooks. When 

correct, the strings from the ID tags made a pattern that crossed over three numbers on the 

Mysterious Poster Board (Figure 4-10). These three numbers were used to unlock Box 5 

(Supplement A). 
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Figure 4-10 Mysterious poster board 

A. A mysterious poster board that is found in the escape room is pictured. B. When each pedigree is matched to the 
proper mode of inheritance, the lines intersect over particular numbers, as shown. These numbers can be used to 
unlock Box 5.  
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Step 11: Informative Individuals 

In Box 5 (Supplement A), the students found Prompt 10 (Supplement B) and four Triplet 

Pedigrees (Figure 4-11). When the students correctly selected the most informative triplet 

(Figure 4-11), the facilitator handed them a Linkage Pedigree derived from the F1 individual of 

the selected triplet (Figure 4-12). The students determined the number of recombinant progeny 

in the pedigree and calculated the LOD score of the linkage between the disease and the marker 

loci using a theta score indicated on the Linkage Pedigree (Figure 4-12). The correct LOD score 

unlocked Box 6 (Supplement A). 

 

Figure 4-11 Triplet pedigrees 

A. Pedigrees for four triplets are shown. Circles indicate females and squares indicate males. Affected individuals are 
shown in red. Beneath each individual, the alleles at the disease locus (D or d) and at a marker locus (1, 2, 3 or 4) are 
printed. B. An explanation for the most informative triplet is written. 
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Figure 4-12 Linkage pedigree 

A. A pedigree derived from triplet 4 from Figure 4-11 is shown. Circles indicate females, squares indicate males, and 
affected individuals are shown in red. Beneath each individual, their alleles for a marker locus are shown. B. A LOD 
score calculation is shown for the pedigree in A. This LOD score can be used to unlock Box 6. 

 

Step 12: GWAS 

Inside Box 6 (Supplement A), the students found Prompt 11 (Supplement B), and a collection 

of GWAS Pipe Cleaners, folded into shapes (circles or straight lines) that represented the flight 

patterns of mutant fireflies. Each “flight pattern” was labeled with alleles at three potentially 

correlated SNPs (Figure 4-13). Students identified the SNP most highly correlated with the 

mutant (circular) flight path (Figure 4-13). Then, they used the genetic sequence of the triplet 

containing the correlated SNP with the putative disease allele (Figure 4-13) to unlock Box 7 

(Supplement A). 
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Figure 4-13 GWAS flight patterns 

A. Pipe cleaners model the flight patterns of wild-type (straight) and mutant (circular) flight patterns of fireflies. The tag 
on each flight pattern indicates the allele at three SNPs — SNP 1 (A or T), SNP 2 (T or C), and SNP 3 (G or C). B. The 
table indicates the number of affected (circular flight patterns) and unaffected (straight flight patterns) individuals with 
each allele at each SNP. The allele most correlated with the mutant phenotype is shown in bold. The entire sequence 
around this SNP is written below the table and can be used to unlock Box 7. 

 

Step 13: Receive Nobel Prize 

Inside Box 7 (Supplement A), the students found a replica of the Nobel Prize. The timer was 

stopped to record the amount of time needed to complete the escape room activity. 
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Step 14: Debriefing 

After each group completed the escape room, the facilitators walked through each of the activities 

briefly to highlight the topics that were reviewed and the correct answers. At this time, the 

facilitators answered questions regarding how the escape room activities modeled the concepts 

covered in the class. If a group did not complete the room in time, the facilitators would walk 

through the missed concepts with the group to guide them through the complete experience. 

Impact and Applications 

This escape-room review game was successful in many facets. The students expressed 

enthusiasm for the game before the review session took place. We were pleased with the level of 

collaboration that was displayed by most students, even some that were more reserved during 

other class discussions. In addition to the general excitement in the room, we were able to observe 

the thought process of the participants as they worked through the genetics puzzles in the room. 

Not only did this help us evaluate student comprehension, but we also observed several situations 

in which students were clearly learning from each other’s thought processes. Although our 

qualitative assessments of the activity’s efficacy suggests that the review game positively 

impacted learning, results of a formal pre- and post-survey (Supplement D, Supplement E) will 

be more telling. 

 

The development of this game involved several cycles of design, implementation, evaluation, and 

editing across the three academic years during which we included this activity. We attribute the 

successes of our escape room to a stepwise process of game design, and below we offer these 

steps to assist educators in designing a similar review game for other courses. 
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First, we established specific learning objectives that framed the basis of the escape room. For 

this course, we selected core concepts that would appear on the final exam and sought to review 

each of those topics during the game. Future educational escape room designers might benefit 

from similarly establishing the core concepts they aim to cover during the game. 

 

Next, we conceptualized a theme that would remain consistent during the escape room. Theme 

selection was a challenging piece of the design, because we wanted a theme that would tie all 

puzzles together and offer variation in the type of puzzle. We selected the theme of firefly genetics, 

because we imagined a variety of puzzle types that could model aspects of a bioluminescence 

phenotype (e.g. turning lights on or off, building circuits, assessing variation in light color). In our 

escape room game, we intentionally used the theme to create a storyline, because we wanted 

the students to think of genetics as a process rather than a series of disjointed puzzles. However, 

the game designer can choose a theme as an overarching concept without creating a storyline 

for the flow of the game, depending on the goal of the escape room. 

 

After selecting a theme, we chose a layout of game design that would fit our purposes. Because 

we were using the escape room as an exam review, we wanted all students to be involved in each 

step of the game. Therefore, we selected a linear path that requires students to solve one puzzle 

before they gain access to the next puzzle. One alternative layout we considered was a parallel 

pathway, where students split into groups and each group solves an independent track of puzzles, 

eventually leading each group to the final challenge that they would complete together. This type 

of design could be beneficial in other contexts, especially where the escape room is used as a 
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tool to assess individual student aptitude. Of course, a mixture of the linear and parallel layouts 

could be designed, depending on the goal of the game. 

 

Finally, with our learning objectives, theme, and layout in hand, we began designing puzzles. This 

part of the game design took the most amount of time, effort, and editing. We first brainstormed 

types of light-related phenomena that could be used during the game and identified which learning 

objectives could be modeled by each of those phenomena. For example, using a blacklight to 

expose invisible ink could represent fluorescent protein expression, which is invisible unless 

excited with a light of the proper wavelength. We then researched types of padlocks and 

brainstormed ways in which solutions to our genetics puzzles could be used to unlock boxes. The 

cycle of implementation, evaluation, and editing is an ongoing process that continues to improve 

the design of our escape room. 

 

In conclusion, we designed an escape room game for the BIOL_SCI 393: Genetic Analysis final 

exam review. We found that students were enthusiastic about the activity and we were able to 

gauge student comprehension of particular topics during the activity. Additionally, we believe that 

students were able to learn from experiencing the problem-solving process with their peers, but 

the formal assessment of impact will be more telling. The steps we used to design our escape 

room can be applied to other topics outside of genetics, and even outside of STEM. Because 

learning-centered practices encourage deep understanding of concepts, escape room review 

activities offer a unique method by which studying for exams can become not only more enjoyable 

but more effective. 
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Supplement A – Setup instructions 

Before the event day: 

Crack some glow sticks to ensure they do not glow on the day of the event when activated. Crack 

all glow sticks in envelopes “0 hours” and “2 hours”, crack 5/8 glow sticks in envelope “4 hours”, 

2/8 in envelope “6 hours”, and none from envelopes “8 hours” and “10 hours”. 

 

Room set up: 

1. Draw the expression plasmid (Figure 4-4A) on a magnetic chalkboard or whiteboard. 

2. Draw the abdominal cell lineage (Figure 4-7) on a chalkboard or whiteboard.  

3. Place the mysterious poster (Figure 4-10) somewhere in the room. 

4. Write the mutagenesis tools from Figure 4-1 on a chalkboard or whiteboard:  

WT fireflies 
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antennaless/longleg fireflies 

longleg is a chromosome 5 balancer 

longleg has a dominant long-legged phenotype 

antennaless has a dominant lack-of-antennae phenotype 

longleg and antennaless have recessive lethality phenotype 

EMS mutagen 

5. Print all prompts (Supplement B) 

6. Place items in the corresponding boxes (below) 

7. Place reserved items behind the desk with the facilitator (below) 

Box 1 
Prompt 2 

Complementation tea lights (Figure 4-2A) 
Locked with key-hole lock 

(can be unlocked using Key 1) 

 
 
 

Box 2 
Prompt 3 

Epistasis circuit (Figure 4-3) 
Locked with lock labeled “mmm” 

(can be unlocked with code 1-9-4) 
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Box 3 
Prompt 4 

Plasmid magnets (Figure 4-4A) 
Blacklight 

3 iron nails 
Locked with word lock 

(can be unlocked with code PLAY5) 

 
 
 

Box 4 
Prompt 8 

Envelopes with glow sticks (Figure 4-8) 
Locked with 3-digit lock 

(can be unlocked with code 1-3-5) 
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Box 5 
Prompt 10 

Triplet pedigrees (Figure 4-11) 
Locked with combination lock 

(can be unlocked with code 9-23-5) 
 

 
 
 
 

Box 6 
Prompt 11 

Flight pattern pipe cleaners (Figure 4-13) 
Locked with 4-digit lock 

(can be unlocked with code 1212) 
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Box 7 
Replica of Nobel Prize 
Locked with ACTG lock 

(can be unlocked with code ATGTGGTAA) 

 

 

Reserved items (held by facilitator) 

Prompt 1 (given at beginning) 

Key 1 (given after correct mutagenesis screen, Figure 4-1, is drawn on the board) 

Gene expression poster (Figure 4-5, given after plasmid magnet is correct) 
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Prompt 5 (given after students shine the blacklight on the firefly poster) 

Mutant firefly box (Figure 4-6, given when the students state the want a mutant animal after 

Prompt 5) 

Prompt 6 (given with mutant firefly box) 

Prompt 7 (given after students state “cell non-autonomous”) 

Prompt 9 (given after students state the correct time of gene action) 

Modes of inheritance pedigrees (Figure 4-9, given with Prompt 9) 

Linkage pedigree (Figure 4-12, given when students select the fourth triplet) 

Supplement B – Prompts  

Introductory Prompt 

“Congratulations! You have won the Nobel Prize for your work in Photinus pyralis, which, as you 

obviously know, is the scientific name for the Big Dipper Firefly. You performed flawless genetic 

experiments, identified several genes involved in the bioluminescence of this magical organism, 

and found genetic tests for diseases in the species, eventually earning you the highest honor in 

the field. However, your jealous lab mate doubts your knowledge of genetics and has hidden your 

Nobel Prize in this room. To prove that you have earned this award and claim what is rightfully 

yours, you must complete a series of tasks, unlock several boxes, and find your Nobel prize before 

you give your big acceptance speech in one hour! Good luck!” 

 

Prompt 1 

One of your big discoveries was a mutant for a gene on chromosome 5 that causes a recessive 

inability to bioluminesce. Given the following tools, draw out the cross you performed to identify 
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this mutant. When you are confident with your answer written on the board, request a check by 

the facilitator. 

  

Wild-type firefly stock 

antennaless/longleg stock 

Longleg is a chromosome 5 balancer 

Longleg has a dominant long-legged phenotype 

Antennaless has a dominant lack-of-antennae phenotype 

Longleg and antennaless have recessive lethality phenotypes 

EMS 

 

 

Prompt 2 

From your mutagenesis screen, you identified nine mutants with the recessive inability to 

bioluminesce phenotype. You called these mutants “m1” through “m9”. To perform a 

complementation test, you crossed each of these mutants to each other. The results of those 

crosses are in this box, represented by tea lights. Use these to identify the largest non-

complementation group. 

 

Prompt 3 

When you performed your screen for lack of bioluminescence, you also identified three mutants 

that are able to shine but show the incorrect color. These genes are called trix1, play5, and oldy3. 

When all three of these genes are functional, the wild-type color is green. This is represented by 

switching all three buttons on this epistasis model to “WT”. When the function of oldy3 is missing 
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but play5 and trix1 are functional (oldy3 is switched to “mut” and play5 and trix1 are switched to 

“WT”), the animal shines yellow. You suspected that defects in a biosynthetic pathway lead to the 

build up of colored precursors in these mutants. Identify the most upstream gene in this 

biosynthetic pathway. 

 

Prompt 4 

Going back to complementation group [1,9,4], you decided to look further into this gene, that you 

named dim1. Select a combination of the provided promoters and alleles of dim1 and insert them 

into the GFP plasmid on the board so you can see where in the animal dim1 is normally 

expressed. When you’re ready to check for expression, use this 480nm wavelength lightbulb to 

excite the GFP molecules and find cells that glow. Write the identity of these GFP-positive cells 

on the board. 

 

Prompt 5 

The four D cells are the only cells that bioluminesce in the wild-type animal. You suspect dim1 

function is required in some or all of the D cells (probably not required in D1 since dim1 is not 

expressed in that cell). Given a promoter that expresses in all D cells, describe to the puzzle 

master the experiment you would perform to test your hypothesis. 

 

Express ___(wild-type/mutant)___ dim1 in a ___(wild-type/mutant)___ animal under a 

_(nascent/D-cell specific)__ promoter.  
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Prompt 6 

This box represents a mutant animal. Notice it does not bioluminesce, because it is lacking a gene 

product in all 16 of the abdomen cells. Use the nails to represent a wild-type copy of dim1 to 

rescue dim1 function in the D cells (D2, D3, D4). State out loud what this means about the 

autonomy of dim1 function. 

 

Prompt 7 

Because expressing dim1 in the D cells did not rescue the bioluminescence function, you try other 

rescue experiments. You have a promoter that drives expression in all A and B cells. You find 

that using this promoter to drive expression of the wild-type copy of dim1 causes a rescue of 

bioluminescence! 

  

You also find that ablating the precursor for all A cells (Ap) in a wild-type embryo results in an 

animal that is still able to glow. However, ablating the (Bp) cell results in an animal that is unable 

to glow. 

  

Prove that you have identified the only three cells in which dim1 function is required for proper 

bioluminescence using the mutant animal model and the wild-type expression nails. 

 

Prompt 8 

Now that you know where dim1 function is required, you want to know when during development 

it acts. You have a heat-sensitive dim1 mutant and perform an upshift experiment. Each of these 

provided populations was upshifted to the restrictive temperature at the indicated time. Use these 
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to determine the developmental period during which dim1 function is required. State your answer 

out loud when you’re ready. 

 

Prompt 9 

Although your work on bioluminescence was ground-breaking, you are most proud of your work 

on identifying genetic diseases in firefly populations. You kept track of families of fireflies and 

drew these pedigrees for five different families. Given each of these pedigrees, determine the 

mode of inheritance for each firefly disease. 

 

Prompt 10 

You decided to focus on the third pedigree, with the dominant autosomal disorder known as 

“diurnal”. Unfortunately, this rare disease causes individuals to flash during the daylight instead 

of the night, ultimately resulting in lower mate attraction abilities. You have isolated some families 

of fireflies that are affected by this disease and a nearby marker that may be linked to the diurnal 

disease-causing locus. 

 

Select one family from which you will take the F1 individual and outcross it to determine linkage 

of the diurnal disease with the marker locus. State your selection out lout when you’re ready. Hint: 

You want your linkage mapping to be as informative as possible. 

 

Prompt 11 

After you successfully mapped the gene causing the diurnal disease, you focused your attention 

on a more common disease. This “curlyQ” disorder causes affected individuals to fly in circular 

patterns instead of straight. Enclosed are the observed flight patterns of a population of 
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individuals. You identified three SNPs (1, 2, and 3) that may be correlated with the curlyQ disease. 

Determine the full sequence of the genotype most likely to be found in curlyQ individuals. 

 

SNP1: ...TGCATT(A/T)GG... 

SNP2: ...CCGAAG(T/C)AA... 

SNP3: ...ATGTG(G/C)TAA… 

 

Supplement C – Workflow 

 
Key: 

Prompt (should be printed and given to students) 

Answer (should be deduced by the students) 

Facilitator (should be done by the facilitator) 

 

Introductory Prompt 

“Congratulations! You have won the Nobel Prize for your work in Photinus pyralis, which, as you 

obviously know, is the scientific name for the Big Dipper Firefly. You performed flawless genetic 

experiments, identified several genes involved in the bioluminescence of this magical organism, 

and found genetic tests for diseases in the species, eventually earning you the highest honor in 

the field. However, your jealous lab mate doubts your knowledge of genetics and has hidden your 

Nobel Prize in this room. To prove that you have earned this award and claim what is rightfully 

yours, you must complete a series of tasks, unlock several boxes, and find your Nobel prize before 

you give your big acceptance speech in one hour! Good luck!” 
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Give Prompt 1 

Start the timer 

 

Prompt 1 

One of your big discoveries was a mutant for a gene on chromosome 5 that causes a recessive 

inability to bioluminesce. Given the following tools, draw out the cross you performed to identify 

this mutant. When you are confident with your answer written on the board, request a check 

by the facilitator. 

Wild-type firefly stock 

antennaless/longleg stock 

 Longleg is a chromosome 5 balancer 

 Longleg has a dominant long-legged phenotype 

 Antennaless has a dominant lack-of-antennae phenotype 

 Longleg and antennaless have recessive lethality phenotypes 

EMS 

 

Figure 4-1 

When correct, give Key 1 

Use Key 1 to unlock Box 1 

 

Prompt 2 (in Box 1) 

From your mutagenesis screen, you identified nine mutants with the recessive inability to 

bioluminesce phenotype. You called these mutants “m1” through “m9”. To perform a 
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complementation test, you crossed each of these mutants to each other. The results of those 

crosses are in this box, represented by tea lights. Use these to identify the largest non-

complementation group. 

 

Figure 4-2 

Unlock Box 2 with code 194 

 

Prompt 3 (in Box 2) 

When you performed your screen for lack of bioluminescence, you also identified three mutants 

that are able to shine but show the incorrect color. These genes are called trix1, play5, and oldy3. 

When all three of these genes are functional, the wild-type color is green. This is represented by 

switching all three buttons on this epistasis model to “WT”. When the function of oldy3 is missing 

but play5 and trix1 are functional (oldy3 is switched to “mut” and play5 and trix1 are switched to 

“WT”), the animal shines yellow. You suspected that defects in a biosynthetic pathway lead to the 

build up of colored precursors in these mutants. Identify the most upstream gene in this 

biosynthetic pathway. 

 

Figure 4-3 

Unlock Box 3 with code PLAY5 

 

Prompt 4 (in Box 3) 

Going back to complementation group [1,9,4], you decided to look further into this gene, that you 

named dim1. Select a combination of the provided promoters and alleles of dim1 and insert them 

into the GFP plasmid on the board so you can see where in the animal dim1 is normally 
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expressed. When you’re ready to check for expression, use this 480nm wavelength lightbulb to 

excite the GFP molecules and find cells that glow. Write the identity of these GFP-positive 

cells on the board. 

 

Figure 4-4B 

When they use the nascent promoter and the wild-type allele of dim1, give them the gene 

expression poster (Figure 4-5) 

Expression in A1, A2, A3, B1, B2, B4, C1, C2, D2, D3, D4 

When they write these cells on the board, give them Prompt 5 

 

Prompt 5 

The four D cells are the only cells that bioluminesce in the wild-type animal. You suspect dim1 

function is required in some or all of the D cells (probably not required in D1 since dim1 is not 

expressed in that cell). Given a promoter that expresses in all D cells, describe to the puzzle 

master the experiment you would perform to test your hypothesis. 

 

Express ___(wild-type/mutant)___ dim1 in a ___(wild-type/mutant)___ animal under a 

_(nascent/D-cell specific)__ promoter. 

 

Express wild-type dim1 in a mutant animal under a D-cell specific promoter 

When they answer correctly, give them the mutant firefly box (Figure 4-6) and Prompt 6. 

 

Prompt 6 

This box represents a mutant animal. Notice it does not bioluminesce, because it is lacking a gene 
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product in all 16 of the abdomen cells. Use the nails to represent a wild-type copy of dim1 to 

rescue dim1 function in the D cells (D2, D3, D4). State out loud what this means about the 

autonomy of dim1 function. 

 

Turn off the room lights when they check if the box is glowing (it is not). 

“Cell non-autonomous” 

When they say “cell non-autonomous”, give them Prompt 7. 

 

Prompt 7 

Because expressing dim1 in the D cells did not rescue the bioluminescence function, you try other 

rescue experiments. You have a promoter that drives expression in all A and B cells. You find 

that using this promoter to drive expression of the wild-type copy of dim1 causes a rescue of 

bioluminescence! 

  

You also find that ablating the precursor for all A cells (Ap) in a wild-type embryo results in an 

animal that is still able to glow. However, ablating the (Bp) cell results in an animal that is unable 

to glow. 

  

Prove that you have identified the only three cells in which dim1 function is required for 

proper bioluminescence using the mutant animal model and the wild-type expression 

nails. 

 

Turn off the room lights when they check if the box is glowing. 

Given the cell lineage (Figure 4-7) and expression poster, deduce where function of dim1 is 
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required for bioluminescence. Put the nails in B1, B2, and B4 to rescue the function of dim1 in the 

necessary cells. Read the numbers from the mutant animal box. 

Unlock Box 4 with code 135. 

 

Prompt 8 (in Box 4) 

Now that you know where dim1 function is required, you want to know when during development 

it acts. You have a heat-sensitive dim1 mutant and perform an upshift experiment. Each of these 

provided populations was upshifted to the restrictive temperature at the indicated time. Use these 

to determine the developmental period during which dim1 function is required. State your answer 

out loud when you’re ready. 

 

Figure 8 

Function is required somewhere between 2 and 8 hours of development. 

When they state the correct time of gene function, give them the modes of inheritance pedigrees 

(Figure 4-9) and Prompt 9. 

 

Prompt 9 

Although your work on bioluminescence was ground-breaking, you are most proud of your work 

on identifying genetic diseases in firefly populations. You kept track of families of fireflies and 

drew these pedigrees for five different families. Given each of these pedigrees, determine the 

mode of inheritance for each firefly disease. 

 

Match the pedigrees to the correct mode of inheritance on the mysterious poster board. 

Figure 4-10. 



239 

Unlock Box 5 with code 9-23-5. 

 

Prompt 10 (in Box 5) 

You decided to focus on the third pedigree, with the dominant autosomal disorder known as 

“diurnal”. Unfortunately, this rare disease causes individuals to flash during the daylight instead 

of the night, ultimately resulting in lower mate attraction abilities. You have isolated some families 

of fireflies that are affected by this disease and a nearby marker that may be linked to the diurnal 

disease-causing locus. 

 

Select one family from which you will take the F1 individual and outcross it to determine linkage 

of the diurnal disease with the marker locus. State your selection out lout when you’re ready. 

Hint: You want your linkage mapping to be as informative as possible. 

 

Figure 4-11. 

“The fourth triplet” 

When they select the correct triplet, give them the linkage pedigree (Figure 4-12). 

Theta = 0.019 with 10 progeny. There are nine parental progeny and one recombinant, and we 

know the phase from the triplet. LOD = 1.212 

If they do not have a calculator, give them the answer to the LOD score (1.212). 

Use the code 1212 to unlock Box 6. 

 

Prompt 11 (in Box 6) 

After you successfully mapped the gene causing the diurnal disease, you focused your attention 

on a more common disease. This “curlyQ” disorder causes affected individuals to fly in circular 
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patterns instead of straight. Enclosed are the observed flight patterns of a population of 

individuals. You identified three SNPs (1, 2, and 3) that may be correlated with the curlyQ disease. 

Determine the full sequence of the genotype most likely to be found in curlyQ individuals. 

SNP1: ...TGCATT(A/T)GG... 

SNP2: ...CCGAAG(T/C)AA... 

SNP3: …ATGTG(G/C)TAA… 

 

Figure 13. 

Use the code ATGTGGTAA to unlock Box 7 

When they unlock Box 7, stop the timer. 
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Supplement D – Pre-activity survey 

Please mark your answers with an “X”. 
 

1 = Strongly disagree    2 = Disagree    3 = Neutral    4 = Agree 5 = Strongly agree 
 
 1 2 3 4 5 
      
I can draw a mutagenesis screen.      
I can draw a suppressor screen.      
I can perform a complementation test.      
I can determine epistasis of a biochemical pathway.      
I can identify where a gene is naturally expressed.      
I can assess cell autonomy of a gene product.      
I can use rescue results to see where a gene’s function is sufficient.      
I can use ablation results to see where a gene’s function is necessary.      
I can assess the developmental time of a gene’s action.      
I can use pedigrees to distinguish among modes of inheritance.      
I can determine phase of individuals in a pedigree.      
I can perform a GWAS given phenotype and genotype data.      
      
I feel comfortable communicating about genetics with my peers.      
I can follow the steps of genetic analysis from beginning to end.      
I can see how the BIO 393 topics fit into real-world genetic analysis.      
I feel prepared for the BIO 393 final exam.      
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1. When wild-type mice are suspended by their tails, they spread their hind legs. You 

identified four mutants that instead clasp their hind legs together upon tail suspension. 

You named the four mutants clasp1 through clasp4. You then performed crosses for each 

pairwise combination of these four genes and recorded the phenotypes of the progeny 

below. Identify which clasp mutations complement each other. 

 
 

 clasp1 clasp2 clasp3 clasp4 
clasp1 clasping spreading spreading clasping 
clasp2  clasping clasping spreading 
clasp3   clasping spreading 
clasp4    clasping 

 
 
 
 
 

2. Your friend owns a winery and is trying to understand the metabolic process of 

fermentation. She has collected mutant yeast that are unable to create ethanol, and she 

has identified certain precursors of the pathway that tend to build up in single and double 

mutants. Her observations are below. Please help her draw an epistasis model for the 

four mutants in the metabolic pathway. 

 
Wild-type: creates ethanol   P and S double mutant: build-up of sucrose 

Mutant P: build-up of pyruvate  G and P double mutant: build-up of glucose 

Mutant S: build-up of sucrose   G and S double mutant: build-up of glucose 

Mutant G: build-up of glucose 

 
 

3. Your uncle breeds beagles and notices that some dogs have much wetter noses than 

others. He has discovered the following: (i) the nose cells of wet-nosed beagles secrete 
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more mucus than dry-nosed beagles, (ii) the gene sniffer is required for wet noses, 

because sniffer mutants have dry noses, and (iii) sniffer is expressed in the nose, toenails, 

and tips of tails. He wanted to know where the gene product for sniffer is required, so he 

designed a plasmid that rescues sniffer under a nose-specific promoter. He placed the 

rescue construct into sniffer mutants and all the pups had dry noses. What does this 

mean about the cell autonomy of sniffer in the wet nose phenotype? 
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Supplement E – Post-activity survey 

Please mark your answers with an “X”. 
 

1 = Strongly disagree    2 = Disagree    3 = Neutral    4 = Agree 5 = Strongly agree 
 
 1 2 3 4 5 
      
I can draw a mutagenesis screen.      
I can draw a suppressor screen.      
I can perform a complementation test.      
I can determine epistasis of a biochemical pathway.      
I can identify where a gene is naturally expressed.      
I can assess cell autonomy of a gene product.      
I can use rescue results to see where a gene’s function is sufficient.      
I can use ablation results to see where a gene’s function is necessary.      
I can assess the developmental time of a gene’s action.      
I can use pedigrees to distinguish among modes of inheritance.      
I can determine phase of individuals in a pedigree.      
I can perform a GWAS given phenotype and genotype data.      
      
I feel comfortable communicating about genetics with my peers.      
I can follow the steps of genetic analysis from beginning to end.      
I can see how the BIO 393 topics fit into real-world genetic analysis.      
I feel prepared for the BIO 393 final exam.      
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1. When wild-type mice are suspended by their tails, they spread their hind legs. You 

identified four mutants that instead clasp their hind legs together upon tail suspension. 

You named the four mutants clasp1 through clasp4. You then performed crosses for each 

pairwise combination of these four genes and recorded the phenotypes of the progeny 

below. Identify which clasp mutations complement each other. 

 
 

 clasp1 clasp2 clasp3 clasp4 
clasp1 clasping spreading spreading clasping 
clasp2  clasping clasping spreading 
clasp3   clasping spreading 
clasp4    clasping 

 
 
 
 
 

2. Your friend owns a winery and is trying to understand the metabolic process of 

fermentation. She has collected mutant yeast that are unable to create ethanol, and she 

has identified certain precursors of the pathway that tend to build up in single and double 

mutants. Her observations are below. Please help her draw an epistasis model for the 

four mutants in the metabolic pathway. 

 
Wild-type: creates ethanol   P and S double mutant: build-up of sucrose 

Mutant P: build-up of pyruvate  G and P double mutant: build-up of glucose 

Mutant S: build-up of sucrose   G and S double mutant: build-up of glucose 

Mutant G: build-up of glucose 

 
 

3. Your uncle breeds beagles and notices that some dogs have much wetter noses than 

others. He has discovered the following: (i) the nose cells of wet-nosed beagles secrete 
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more mucus than dry-nosed beagles, (ii) the gene sniffer is required for wet noses, 

because sniffer mutants have dry noses, and (iii) sniffer is expressed in the nose, toenails, 

and tips of tails. He wanted to know where the gene product for sniffer is required, so he 

designed a plasmid that rescues sniffer under a nose-specific promoter. He placed the 

rescue construct into sniffer mutants and all the pups had dry noses. What does this 

mean about the cell autonomy of sniffer in the wet nose phenotype? 
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Please mark your answers with an “X”. 

1 = Strongly disagree    2 = Disagree    3 = Neutral    4 = Agree 5 = Strongly agree 

 
 1 2 3 4 5 
      
I enjoyed the escape-room activity.      
The escape room increased my interest in genetic analysis.      
      
My contributions were valued by my peers during the escape room.      
I valued the contributions that my peers made during the escape room.      
The escape-room activity helped me understand the process of genetic analysis.      
Listening to my peers articulate their problem-solving process during the escape 
room improved my ability to solve problems. 

     

      
The escape room helped me see how the BIO 393 topics fit into real-world genetic 
analysis. 

     

The escape room helped me identify topics that I should review more before the 
final exam. 

     

The escape room helped me feel prepared for the BIO 393 final exam.      
The escape room helped me retain information I learned in BIO 393.      

 
What skills, if any, did you learn in the escape room? 
 
 
 
 
 
 
 
 
 
Any other comments you would like us to know about the escape room? 

  



248 

Chapter 5 - Discussion 

Chapters two and three present two projects that took up a large portion of my time as a Ph.D. 

candidate. In this section, I discuss how the results of these two projects might impact C. elegans 

research and, more broadly, the field of quantitative genetics. Additionally, I suggest future 

experiments for each of these projects that might answer some of the lingering questions. 

Power of linkage mapping in C. elegans 

Both the bleomycin project and the QTL hotspot project used the C. elegans model system to 

identify genetic variants that underlie complex traits. In both cases, we performed linkage mapping 

to localize regions of the genome that underlie differences in toxin responses. The extensive panel 

of RIAILs that were previously constructed offered a powerful amount of genetic variants for 

linkage mappings [109,110]. Additionally, a high-throughput assay for measuring trait responses 

facilitated efficient and precise measurements of quantitative traits across these RIAILs [109]. 

Linkage mapping of those data detected both large and small-effect QTL that underlie different 

toxin responses, explaining as much as 51.6% (bleomycin mean.TOF) and as little as 2.3% 

(tunicamycin PC1) of variation in the RIAIL phenotypes. The range of QTL effect sizes identified 

by these mappings highlights the power of our system to detect genetic components that underlie 

drug responses.  

 

Why is the ability to detect small-effect QTL important? Studies of human height variation have 

concluded that this complex trait is influenced by many small-effect genetic loci [290,291]. 

Immense sample sizes are required to identify loci that underlie human height differences, and 
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only 10% of total height variation is explained by combining the effects of these detected variants 

[290]. Many complex traits in humans might also be explained by small-effect loci, but these 

variants remain undetected because of power limitations of human GWA and linkage studies 

[96,292,293]. Complex traits in other animals, such as milk production in dairy cattle [294], growth 

rate in chickens [295], and many phenotypes in mice [296] and dogs [297], are also heavily 

influenced by small-effect QTL, but many of these loci remain elusive, likely because of insufficient 

statistical power to detect them in these species. Although studies in yeast and Arabidopsis have 

achieved sufficient statistical power to detect most of the small-effect loci that influence 

quantitative traits [192,229,239,298], much of the narrow-sense heritability of complex traits 

remains unaccounted for in metazoans. We can generate large panels of recombinant strains in 

C. elegans more easily than in other animal models because of its fast generation time and 

simplicity of genetic crosses. Additionally, high-throughput assays developed in this animal model 

offer methods by which complex phenotypes can be measured more quickly and accurately than 

in other metazoans. Therefore, C. elegans is a uniquely powerful animal model with which we can 

correlate small-effect genetic loci to quantitative phenotypes. Our capacity to detect small-effect 

variants that underlie toxin responses emphasizes the impact of leveraging C. elegans to 

understand complex traits in animals. 

 

Some missing heritability can be explained small-effect QTL, but genetic interactions can also 

impact quantitative phenotypes [230,231,293,299–302]. These interactions often go undetected 

because of insufficient statistical power [192,303,304]. In chapters two and three, we identified 

evidence of epistasis that affects toxin responses, and in chapter two we found particular genomic 

regions that might contain these interacting loci. The ability of our system to identify evidence of 
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epistasis and to localize candidate epistatic regions again highlights the immense power of our 

model. 

 

Further exemplifying the power of linkage mapping in C. elegans is our ability to go from 

quantitative trait locus (QTL) to quantitative trait gene (QTG). We showed that scb-1 underlies 

bleomycin-response differences between the N2 and CB4856 strains. In many linkage mapping 

studies, the gene that underlies a QTL is not detected [228]. In fact, only 1% of QTL discovered 

in a mouse model have been resolved to a single gene [305]. Dozens of QTL underlying the well 

characterized quantitative trait of wing shape in Drosophila have been identified, but the particular 

mutants causing these associations have not been detected [306–308]. Our ability to identify scb-

1 as the causal gene was facilitated by the narrow confidence interval surrounding the bleomycin-

response QTL. The precision of this linkage mapping is partially attributed to the large amount of 

recombination in the RIAIL panel as well as the high-quality genomic data available for these 

strains. The expanded set of 13,003 markers that was used to map bleomycin responses should 

be used for future linkage mappings.  

Looking toward future linkage mapping studies 

Because SNPs that cause amino-acid changes are easily identified by sequencing, these protein-

coding variants are often tested for association with quantitative traits. However, many QTL are 

not underlied by variants in coding sequences; instead, mutations that lie outside of coding 

regions underlie many QTL [309–311]. We identified scb-1 as the causal gene underlying 

bleomycin-response differences, despite the lack of scb-1 coding variants. A QTL that underlies 

variation in scb-1 expression mapped to the same location as the bleomycin-response QTL, 
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suggesting that scb-1 expression variation might cause bleomycin-response differences across 

the RIAILs. However, we only have expression data for one panel of RIAILs, and that panel shows 

low heritability for drug-response phenotypes, potentially because of improper strain 

maintenance. Fortunately, the bleomycin-response QTL mapped to the same position in both 

panels of RIAILs (Figure 2-3, Figure 2-15), so expression QTL were able to be tested for 

correlation with bleomycin-response QTL. However, the RIAILs for which expression data are 

available do not reliably map for other drug responses. Therefore, we must collect expression 

data for the RIAILs that reliably map with linkage mapping as well as the wild isolates that are 

used for GWA mappings. Without these data, expression variants that underlie detected QTL will 

remain unidentifiable. 

 

Although we now know that scb-1 underlies variation in bleomycin responses, we spent a 

significant amount of time pursuing candidate genes with protein-coding variants. What lessons 

can we learn from this project that will improve future efficiency of identifying the variant that 

underlies a drug response? Now that we know non-coding variation in scb-1 underlies natural 

variation in bleomycin responses, we can retrospectively look for hints that might have suggested 

the effect of an expression variant rather than a protein-coding variant. 

 

For the expression data that is currently at our fingertips, we can now consider strategies to 

correlate eQTL with drug-response QTL. We can use scb-1 as a model to help determine 

signatures of eQTL that might underlie drug-response QTL. For example, eQTL for both scb-1 

and cnc-10 mapped to the region in the center of chromosome V. We empirically tested the effect 

of deleting cnc-10 and observed no difference in bleomycin responses. Perhaps computational 

methods could have determined that scb-1 was more likely than cnc-10 to underlie the bleomycin-
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response QTL. Mediation analysis, for example, identifies evidence of a causal chain by which an 

input affects a mediator which thereby affects the output (rather than the input directly affecting 

the output). Computational models that identify signatures of gene-expression variation mediating 

phenotypic differences could be used to predict which QTL are underlied by expression variants. 

 

Even without performing complex analyses, we might have been able to identify scb-1 expression 

variation as the causal factor underlying bleomycin-response differences. The linkage mapping 

of bleomycin responses showed that 43.58% of the phenotypic variation in the RIAILs could be 

explained by the QTL on chromosome V (Figure 2-3). Variation in scb-1 expression mapped to 

the center of chromosome V, and that eQTL explained 45.7% of the variation in gene expression 

(Figure 2-14). The similarity in effect sizes of these QTL suggested that expression differences 

of scb-1 might modulate bleomycin phenotypes. Furthermore, scb-1 expression was correlated 

to bleomycin responses with an r2 value of 0.65, which suggests that 65% of the variation in 

bleomycin phenotypes can be explained by scb-1 expression. Interestingly, this 65% effect size 

is larger than the effect size of the QTL underlying bleomycin responses or the eQTL underlying 

scb-1 expression differences, suggesting two conclusions. First, the difference between the 45% 

effect size of the eQTL on scb-1 expression and the 65% effect size of scb-1 expression on 

bleomycin responses suggests that undetected trans-eQTL must account for the scb-1 

expression variation across the RIAILs. Second, the strong correlation between scb-1 expression 

and bleomycin responses suggest that scb-1 is a major contributor to bleomycin responses. 

Perhaps this evidence could have indicated that scb-1 should have been our primary candidate 

gene. For future mappings, comparing the relative drug-response QTL effect sizes, gene-

expression QTL effect sizes, and correlation between drug responses and gene expression might 

identify cases that are indicative of a causal expression difference rather than protein-coding 
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change. Gathering expression data for each mapping panel is critical to the success of this 

strategy. 

 

The bleomycin-response variation discussed in Chapter 2 was affected by epistatic loci. In 

particular, the transgressive phenotypes apparent in the near-isogenic lines indicated that genetic 

interactions affect bleomycin responses. Could this presence of genetic interactions have hinted 

that gene-expression variants, rather than protein-coding variants, underlie bleomycin-response 

differences? Cis-regulatory variants that affect gene expression might cause less pleiotropic, and 

thereby less deleterious, effects than mutations that change amino-acid residues, and mutations 

in other regions of the genome could arise to compensate for small gene-expression changes 

[319]. Therefore, evidence of epistasis might indicate an increased probability of expression 

variants the underlie a quantitative trait. We need to find more cases of expression variants that 

underlie quantitative traits before we can determine whether epistasis is a strong predictor of 

expression rather than protein-coding causal variants. 

 

Aside from the scb-1 project, two studies have paired linkage mapping and GWA in C. elegans to 

identify a gene that underlies toxin-response variation [40,134]. In both of these cases, the 

linkage-mapping QTL and GWA QTL overlapped, which indicated that a common variant between 

the RIAILs and the wild isolates underlied both QTL. On the other hand, the bleomycin-response 

QTL from linkage mapping did not overlap with QTL identified by GWA. This lack of overlap 

suggested that a rare variant present in CB4856 underlies bleomycin-response variation in the 

RIAILs but is not present at high enough allele frequency to be detected in the wild strain set. 

Nonetheless, the distinct sets of QTL from each mapping strategy eliminated the possibility that 

variants common between both strain sets could underlie bleomycin responses. Therefore, 
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whether QTL overlap or not, the combination of linkage mapping and GWA allows for particular 

variants or regions of the genome to be excluded as causal loci. 

Evolutionary implications of toxin-response QTL 

Aside from the potential implications of toxin-response QTL for understanding how patients might 

vary in treatment outcomes, these QTL can also lead to a deeper understanding of evolutionary 

processes. By studying toxin-response variation between the laboratory-adapted N2 strain and 

the Hawaiian wild isolate CB4856, we can identify particular genetic regions that might be 

differentially selected in the lab versus in nature. For example, resistance to pesticides, such as 

chlorothalonil, has conceivable fitness benefits for wild C. elegans strains, and the QTL that 

underlie resistance to chlorothalonil might be under selection. Perhaps this selective pressure 

causes wild isolates to be more resistant to chlorothalonil than the laboratory-adapted N2 strain 

(Figure S3-1, Figure S3-5). 

 

The evolutionary implications of resistance to other classes of toxins might not be as obvious. For 

example, we found that variation in scb-1 causes differences in bleomycin sensitivity across 

strains of C. elegans. Although we do not know the molecular mechanism of this gene, scb-1 is 

conserved across nematodes. Therefore, bleomycin resistance might be selected in nature, but 

why would free-living nematodes benefit from resistance to a chemotherapeutic drug? 

Interestingly, bleomycin is produced by the soil bacteria S. verticillus [215,216]. Because C. 

elegans is often found on rotting substrates in association with soil, the idea that S. verticillus and 

this nematode might come into contact with each other in nature is highly likely. Perhaps 

ancestors of the CB4856 wild isolate adapted to bleomycin levels in the soil around the pineapple 
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field from which the strain was collected. Other nematodes might also encounter bleomycin, and 

the scb-1 gene that offers resistance to bleomycin might be under selective pressure.  

 

To confirm this hypothesis of the evolutionary context of bleomycin resistance, we must first prove 

that C. elegans and other nematodes with the scb-1 gene encounter the toxin in their natural 

environment. Each new sample that contains nematodes would need to be tested for the 

presence of bleomycin. Next, the association between wild isolate expression of scb-1 and 

substrate bleomycin presence would need to be tested. However, the GWA of bleomycin 

responses did not detect a QTL at scb-1, which might indicate that CB4856 has a rare allele of 

scb-1 that explains its bleomycin resistance. In this case, we would not expect to see an 

association between scb-1 expression and substrate bleomycin presence, because scb-1 

expression might not underlie bleomycin resistance in all strains.  

 

On the other hand, the N2 allele of scb-1 could be the minor allele. If this hypothesis is true, the 

GWA might not have detected the scb-1 QTL because N2 was one of few strains to have a 

genotype that differed from CB4856 at the causal SNP. The variant at V:11,130,591 shows this 

pattern, where all strains except N2 contain the same allele as CB4856 at the variant (Figure S2-

2). Additionally, the N2 strain is the most sensitive strain to bleomycin. This rare variant in the N2 

strain might have caused decreased expression of scb-1 and therefore decreased resistance to 

bleomycin, potentially because bleomycin resistance was not selected in the laboratory 

environment. However, bleomycin responses range widely across the strains with the CB4856 

allele at this SNP, so this variant would not explain much of the phenotypic differences in 

bleomycin responses across the wild isolates. 
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The lack of overlapping QTL between linkage mapping and GWA suggests that the variant 

underlying the linkage mapping peak are not at high enough frequency in the wild isolate panel 

to be detected in GWA. Although a single variant does not reach the allele frequency required for 

a significant QTL in GWA to be detected, variation in scb-1 still might underlie bleomycin-response 

variation in the wild isolate panel. A previous manuscript from the Andersen Lab observed allelic 

heterogeneity across the ben-1 gene, and each of these ben-1 alleles affected animal responses 

to benzimidazoles [135]. In this case, ben-1 did not map with GWA because no single ben-1 

variant reached a high enough allele frequency in the wild isolate panel. Burden testing grouped 

all variants within a gene together to increase the power of the mapping, and ben-1 alleles were 

found to significantly contribute to benzimidazole responses. A similar strategy could be used to 

group all scb-1 variants together. However, our hypothesis is that variation in scb-1 expression 

causes differences in bleomycin responses, and grouping all variants that impact scb-1 

expression would be more challenging than grouping all variants within the coding region of a 

given gene. More sophisticated burden tests would be required to confirm whether allelic 

heterogeneity of scb-1 expression causes bleomycin-response variation in the wild isolates. 

Alternatively, reciprocal hemizygosity tests could be used to assess if scb-1 function varies 

between wild isolates. 

Potential for future experiments 

Although we identified scb-1 as the gene that underlies the chromosome V bleomycin response 

QTL, the mechanism by which it impacts bleomycin responses remains unknown. Whereas 

RIAILs show variation in scb-1 expression that is correlated with bleomycin responses, RNA-seq 

measurements of scb-1 expression did not show significant differences between the N2 and 
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CB4856 parental strains. This result could suggest that the RIAILs have a novel variant that arose 

during strain construction or that epistatic loci cause scb-1 expression variation in the RIAILs. 

Alternatively, the lack of significant parental difference could be caused by the limited sample 

number in the RNA-seq experiment. More biological replicates can be measured with qPCR, and 

this experiment should be performed on the N2 and CB4856 parental strains as well as the 

ECA411 and ECA528 NILs. Because these NILs recapitulate the linkage-mapping QTL effect, 

the NILs should show scb-1 expression differences, if scb-1 expression indeed underlies the 

linkage mapping QTL. If parental strains do not show significant expression differences with 

qPCR, then the RIAILs might have a novel variant (and the NILs were created from the RIAILs, 

so they would have the novel variant too) or epistatic loci could cause the expression variation in 

the RIAILs and NILs. These two hypotheses could be differentiated by performing deep 

sequencing of the ECA411 and ECA528 NILs to identify novel variants that are not present in the 

N2 and CB4856 parental strains. 

 

To determine if scb-1 expression is induced upon bleomycin exposure, qPCR of scb-1 could be 

performed in bleomycin and control conditions. Ideally, scb-1 expression upon bleomycin 

exposure would be compared between the N2 strain and the CB4856 strain. However, bleomycin 

causes developmental delays, as evidenced by animal size differences in bleomycin and control 

conditions. Additionally, these developmental delays are more pronounced for the N2 strain than 

for the CB4856 strain, because N2 is more sensitive to bleomycin than CB4856. After the same 

amount of exposure time to bleomycin, N2 animals will be at earlier developmental stages than 

CB4856 animals. Unfortunately, gene expression profiles vary broadly in C. elegans depending 

on developmental stage. Therefore, the comparison between N2 and CB4856 scb-1 expression 
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upon bleomycin exposure would be confounded by developmental staging differences between 

the two test populations. 

 

To minimize the effect of developmental stage on bleomycin-induced expression differences, we 

could expose animals to lower doses of bleomycin. Lower doses of the drug might elicit a 

bleomycin-induced scb-1 expression difference without affecting animal growth and development. 

Alternatively, animals could be exposed to bleomycin at the adult stage. By exposing animals to 

bleomycin at the end of their life cycle, all animals assayed for expression differences would be 

of the same developmental stage, and therefore expression variation driven by developmental 

differences would not be present. However, scb-1 function might not be implicated in bleomycin 

responses in all animal stages, so expression differences that mapped with HTA phenotypes 

might not be detected with this experiment. Expression differences caused by low doses of 

bleomycin or by bleomycin exposure at the adult stage might not be representative of expression 

changes that underlie the bleomycin-response differences that were mapped, so conclusions 

about the role scb-1 expression in bleomycin responses should be considered carefully. 

 

In addition to quantifying the levels of scb-1 expression to confirm its role in bleomycin responses, 

the mechanism of scb-1 should be explored further. The effects of scb-1 overexpression should 

be tested by injecting plasmids that express scb-1 under a heat-shock inducible promoter into 

both the N2 and CB4856 strains. Strains with scb-1 overexpression should be assayed with the 

HTA in both control and bleomycin conditions to determine if scb-1 overexpression causes 

observable phenotypic effects in the control condition, which might inform its mechanism, or if the 

bleomycin responses of N2 and CB4856 strains change after scb-1 overexpression. One might 

expect an overexpression of scb-1 to increase bleomycin resistance, but ectopic expression of 
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the gene could also cause fitness disadvantages. Additionally, exposing animals to heat-shock 

could affect their responses to bleomycin and confound the results of this experiment. 

 

Bleomycin responses and responses to other toxins are partly underlied by epistatic loci, as 

evidenced in the NIL results in chapter two and three. We were able to identify three regions that 

interact to cause bleomycin hypersensitivity. For some of the other toxins, we were able to 

determine if epistatic loci were acting on the same chromosome or on different chromosomes by 

comparing NIL and CSS results. Further work to locate these epistatic regions would require the 

construction of additional NILs and CSSs. In particular, multi-region NILs (for example, two 

regions from the N2 genotype introgressed into a CB4856 background) and double CSSs (two 

chromosomes from one parental strain introgressed into the opposite genetic background) would 

be useful for localizing these interactions. Eventually, CRISPR/Cas9-mediated genome editing 

could be used to introduce pairwise combinations of candidate variants in multiple genetic 

backgrounds. Strains with multiple edits should be compared to strains with each individual edit 

to assess the epistatic versus additive effects of candidate variants. 

 

In summary, this work highlights the power of quantitative genetics in C. elegans. Linkage 

mapping identified small and large-effect QTL that impact toxin responses. NILs and 

CRISPR/Cas9-mediated genome editing were used to confirm QTL effects, and in one case to 

locate a gene that impacts bleomycin responses, despite its lack of coding variants. Additionally, 

this model system was used to locate regions of epistasis, confirming that both additive and 

interactive effects underlie toxin responses in metazoans. These findings might be informative for 

patient treatment decisions, and more broadly might indicate how selective pressures shaped the 

evolution of C. elegans.   
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Appendix A: Co-authored publications 

I had the pleasure of collaborating with members of my own laboratory as well as members of 

other laboratories on several papers. Here, I describe the publications I co-authored. 

Selection on a Subunit of the NURF Chromatin Remodeler 

Modifies Life History Traits in a Domesticated Strain of 

Caenorhabditis elegans 

Edward E. Large1 , Wen Xu1 , Yuehui Zhao1, Shannon C. Brady2 , Lijiang Long1 , Rebecca A. 

Butcher3 , Erik C. Andersen2 , Patrick T. McGrath1 *  

 

1School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA 

2Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA 

3Department of Chemistry, University of Florida, Gainesville, Florida, USA 

*Corresponding author, patrick.mcgrath@biology.gatech.edu 

 

This manuscript was published in PLoS Genetics in July 2016 [312] 

Abstract 

Evolutionary life history theory seeks to explain how reproductive and survival traits are shaped 

by selection through allocations of an individual’s resources to competing life functions. Although 

life-history traits evolve rapidly, little is known about the genetic and cellular mechanisms that 
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control and couple these tradeoffs. Here, we find that two laboratory-adapted strains of C. elegans 

descended from a single common ancestor that lived in the 1950s have differences in a number 

of life-history traits, including reproductive timing, lifespan, dauer formation, growth rate, and 

offspring number. We identified a quantitative trait locus (QTL) of large effect that controls 24%–

75% of the total trait variance in reproductive timing at various timepoints. Using CRISPR/Cas9-

induced genome editing, we show this QTL is due in part to a 60 bp deletion in the 3’ end of the 

nurf-1 gene, which is orthologous to the human gene encoding the BPTF component of the NURF 

chromatin remodeling complex. Besides reproduction, nurf-1 also regulates growth rate, lifespan, 

and dauer formation. The fitness consequences of this deletion are environment specific—it 

increases fitness in the growth conditions where it was fixed but decreases fitness in alternative 

laboratory growth conditions. We propose that chromatin remodeling, acting through nurf-1, is a 

pleiotropic regulator of life history trade-offs underlying the evolution of multiple traits across 

different species. 

Contributions 

I performed the high-throughput fitness assay of N2 and LSJ2 in water, arsenic, zinc, DMSO, 

albendazole, and abamectin and analyzed these data (Figure 6 of the manuscript). 
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Correlations of genotype with climate parameters suggest 

Caenorhabditis elegans niche adaptations 

Kathryn S. Evans*,†, Yuehui Zhao‡, Shannon C. Brady*,†, Lijiang Long‡, Patrick T. McGrath‡, and 

Erik C. Andersen*,§,**,1 

 

*Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208 

†Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 

60208 

§Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 

**Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois 60208 

‡School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332 

1Corresponding author, erik.andersen@northwestern.edu 

 

This manuscript was published in G3 in January 2017 [266] 

 

Abstract 

Species inhabit a variety of environmental niches, and the adaptation to a particular niche is often 

controlled by genetic factors, including gene-by-environment interactions. The genes that vary in 

order to regulate the ability to colonize a niche are often difficult to identify, especially in the 

context of complex ecological systems and in experimentally uncontrolled natural environments. 

Quantitative genetic approaches provide an opportunity to investigate correlations between 
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genetic factors and environmental parameters that might define a niche. Previously, we have 

shown how a collection of 208 whole-genome sequenced wild Caenorhabditis elegans can 

facilitate association mapping approaches. To correlate climate parameters with the variation 

found in this collection of wild strains, we used geographic data to exhaustively curate daily 

weather measurements in short-term (3 month), middle-term (one year), and long-term (three 

year) durations surrounding the date of strain isolation. These climate parameters were used as 

quantitative traits in association mapping approaches, where we identified 11 quantitative trait loci 

(QTL) for three climatic variables: elevation, relative humidity, and average temperature. We then 

narrowed the genomic interval of interest to identify gene candidates with variants potentially 

underlying phenotypic differences. Additionally, we performed two-strain competition assays at 

high and low temperatures to validate a QTL that could underlie adaptation to temperature and 

found suggestive evidence supporting that hypothesis. 

 

Contributions 

I worked with Katie on the competition assay for this manuscript. 
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The genetic basis of natural variation in a phoretic behavior 

Daehan Lee1,2, Heeseung Yang1, Jun Kim1, Shannon C. Brady2, Stefan Zdraljevic2, Mostafa 

Zamanian2,3, Heekyeong Kim4, Young-ki Paik4,5,6, Leonid Kruglyak7,8, Erik C. Andersen2*, and 

Junho Lee1* 

 

1Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National 

University, Seoul 08826, Korea 

2Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA 

3Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, 

USA 

4Yonsei Proteome Research Center, Yonsei University, Seoul 03722, Korea 

5Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Korea 

6Department of Biochemistry, Yonsei University, Seoul 03722, Korea 

7Department of Human Genetics and Biological Chemistry, University of California, Los Angeles, 

CA 90095, USA 

8Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA 

*Corresponding authors, erik.andersen@northwestern.edu and elegans@snu.ac.kr  

 

This manuscript was published in Nature Communications in August 2017 [162] 

Abstract 

Phoresy is a widespread form of commensalism that facilitates dispersal of one species through 

an association with a more mobile second species. Dauer larvae of the nematode Caenorhabditis 
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elegans exhibit a phoretic behavior called nictation, which could enable interactions with animals 

such as isopods or snails. Here, we show that natural C. elegans isolates differ in nictation. We 

use quantitative behavioral assays and linkage mapping to identify a genetic locus (nict-1) that 

mediates the phoretic interaction with terrestrial isopods. The nict-1 locus contains a Piwi-

interacting small RNA (piRNA) cluster; we observe that the Piwi Argonaute PRG-1 is involved in 

the regulation of nictation. Additionally, this locus underlies a trade-off between offspring 

production and dispersal. Variation in the nict-1 locus contributes directly to differences in 

association between nematodes and terrestrial isopods in a laboratory assay. In summary, the 

piRNA-rich nict-1 locus could define a novel mechanism underlying phoretic interactions. 

 

Contributions 

I constructed the CRISPR/Cas9-mediated deletion allele of prg-1 for this manuscript. 
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Discovery of genomic intervals that underlie nematode responses 

to benzimidazoles 
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Abstract 

Parasitic nematodes impose a debilitating health and economic burden across much of the world. 

Nematode resistance to anthelmintic drugs threatens parasite control efforts in both human and 

veterinary medicine. Despite this threat, the genetic landscape of potential resistance 

mechanisms to these critical drugs remains largely unexplored. Here, we exploit natural variation 
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in the model nematodes Caenorhabditis elegans and Caenorhabditis briggsae to discover 

quantitative trait loci (QTL) that control sensitivity to benzimidazoles widely used in human and 

animal medicine. High-throughput phenotyping of albendazole, fenbendazole, mebendazole, and 

thiabendazole responses in panels of recombinant lines led to the discovery of over 15 QTL in C. 

elegans and four QTL in C. briggsae associated with divergent responses to these anthelmintics. 

Many of these QTL are conserved across benzimidazole derivatives, but others show drug and 

dose specificity. We used near-isogenic lines to recapitulate and narrow the C. elegans 

albendazole QTL of largest effect and identified candidate variants correlated with the resistance 

phenotype. These QTL do not overlap with known benzimidazole target resistance genes from 

parasitic nematodes and present specific new leads for the discovery of novel mechanisms of 

nematode benzimidazole resistance. Analyses of orthologous genes reveal conservation of 

candidate benzimidazole resistance genes in medically important parasitic nematodes. These 

data provide a basis for extending these approaches to other anthelmintic drug classes and a 

pathway towards validating new markers for anthelmintic resistance that can be deployed to 

improve parasite disease control. 

Contributions 

I generated the CRISPR/Cas9-mediated deletion alleles of prg-1 in the N2 and CB4856 

backgrounds and measured their responses to albendazole. 
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Abstract 

We find that variation in the dbt-1 gene underlies natural differences in Caenorhabditis elegans 

responses to the toxin arsenic. This gene encodes the E2 subunit of the branched-chain α-keto 
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acid dehydrogenase (BCKDH) complex, a core component of branched-chain amino acid (BCAA) 

metabolism. We causally linked a non-synonymous variant in the conserved lipoyl domain of DBT-

1 to differential arsenic responses. Using targeted metabolomics and chemical supplementation, 

we demonstrate that differences in responses to arsenic are caused by variation in iso-branched 

chain fatty acids. Additionally, we show that levels of branched chain fatty acids in human cells 

are perturbed by arsenic treatment. This finding has broad implications for arsenic toxicity and for 

arsenic-focused chemotherapeutics across human populations. Our study implicates the BCKDH 

complex and BCAA metabolism in arsenic responses, demonstrating the power of C. elegans 

natural genetic diversity to identify novel mechanisms by which environmental toxins affect 

organismal physiology. 

Contributions 

I assisted Stefan in the construction of the CRISPR/Cas9-mediated allele replacement strains. 

  



310 

Appendix B: Collection of wild isolates on the 

Hawaiian Islands 

Preface 

In the summer of 2017, I and other members of the Andersen Lab went on a sampling trip to the 

Hawaiian Islands. In this section, I will summarize the purpose of the trip and my contributions to 

the sampling effort. A more complete description of the collection effort is detailed in Dan Cook’s 

Ph.D. thesis and Tim Crombie is developing a manuscript for publication [313]. 

Motivation for collections on the Hawaiian Islands 

The species of Caenorhabditis elegans harbors immense amount of genetic diversity [131–133]. 

In particular, strains isolated from the Hawaiian Islands, California, and New Zealand are highly 

divergent from strains collected in other regions of the globe [131]. In Erik’s 2012 paper, he states 

that “Hawaii and the Pacific Rim may be fruitful ground for discovery of additional highly diverged 

isolates” [131]. Additionally, collection efforts on the Hawaiian Islands often yield new strains of 

C. elegans. The potential to uncover genomic diversity and the high probability of sampling 

success encouraged Erik to schedule a sampling effort for the lab. 

Results 

One purpose of the sampling effort was to determine the niche preferences of C. elegans. 

Previous sampling efforts suggested that C. elegans are most likely found on decaying plant 
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material and in association with invertebrates [314,315]. We sampled these substrates along 

many trails of the islands of Kauai, Molokai, Maui, and Hawaii. We preferentially selected trails 

that traversed a range of elevations to sample across various environmental parameters. On each 

hike, we would collect samples of fruits, nuts, vegetable, flowers, leaf litter, slugs, and isopods. 

We collected samples opportunistically, upon finding a suitable substrate, as well as deeply within 

a three-meter grid. In total, we collected 2,263 samples. 

 

When we collected a sample, we recorded the precise location of the sample, ambient 

temperature and humidity, and substrate temperature and moisture level. We stored each 

collection in a plastic bag with a unique barcode. Each evening when we returned to the field 

house, we plated samples out on 6 or 10 cm agar plates seeded with E. coli and labeled with the 

sample barcode. The following day, we removed the substrate and isolated nematodes onto 

individual 3 cm plates, each labeled with a unique barcode. We used the Fulcrum app 

(fulcrumapp.com) to facilitate data management of nematode collections and isolations. Of the 

2,263 samples we collected, we were able to isolate nematodes from 1,120. Because we isolated 

multiple nematodes from each productive sample, this collection trip yielded 2,531 nematodes. 

 

We sent each of the 2,531 nematodes to Northwestern University, where members of the 

Andersen Lab led by Robyn Tanny and Tim Crombie performed lysis and PCR on each of the 

isolates. The primers used for PCR amplified a section of the ITS2 (internally transcribed spacer) 

region between the 5.8S and 28S rDNA, and successful amplification indicated that a sample was 

of the Rhabditid family [316]. We found 427 PCR-positive isolates, and each of these was Sanger 

sequenced for species identification. Ninety-five of these samples were positive for C. elegans 
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and were whole-genome sequenced, and we identified 26 distinct C. elegans isotypes from that 

analysis. 

 

To identify niche preferences of C. elegans, we looked for associations between environmental 

and substrate parameters to the presence or absence of the species on each sample. One striking 

observation was that we did not find C. elegans at elevations less than 500 meters. Perhaps 

because of this elevation constraint, we often identified C. elegans on cool substrates. We did not 

notice a clear substrate type preference of the species. 

Contributions 

The members of the Andersen Lab that attended the sampling trip in Hawaii were Erik Andersen, 

Daehan Lee, Dan Cook, Stefan Zdraljevic, Katie Evans, Briana Rodriguez, and me. The whole 

team spent one week on the island of Kauai, where Erik planned the hikes each day. The first 

day, the whole team hiked the Alaka’i Swamp Trail. The remaining days, I hiked with Briana and 

Katie (together, we were team “Moana”) along various hikes while Erik, Daehan, Stefan, and Dan 

(team “Raptors”) hiked together in other locations.  

 

After the first week, team Moana and the Raptors separated to sample different islands. I led team 

Moana and planned the hikes along which we sampled. On the first day, we flew to the island of 

Molokai where we first sampled in the Pala’au state park, including around Phallic Rock and 

Kalaupapa Lookout and then drove toward the Kamakou peak until the terrain became too muddy 

to safely traverse. We then flew to Maui, where we spent the rest of the sampling trip. We hiked 

on many trails around the island, including the Iao Valley, Wailuku trail, Polipoli cloud forest, 
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Waihou park, Haleakala Ridge, Hosmer Campground, Pipiwai, Road to Hana, Twin Falls, Garden 

of Eden, Pua’a Ka’a Falls, and Waihe’e trail. Overall, we found that many of the hikes in Maui 

were low elevation and/or too dry to contain rotting substrates. Future sampling efforts should 

focus on the big island, as the Raptors found many productive samplings sites on Hawaii.  
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Appendix C: Easysorter package 

Preface 

The easysorter package is a collection of functions in R that allows for easy analysis of data from 

the COPAS BIOSORT. This package uses many functions from the COPASutils package [144]. 

In this section, I explain the utility of functions within the easysorter package as well as my 

contributions to the package development. A brief description of the package and all of its 

functions are available at github.com/AndersenLab/easysorter. 

Explanation of functionality 

The COPAS BIOSORT is a large-particle flow cytometer that can measure the length (time of 

flight, TOF), fluorescence (green, yellow, or red), and optical density (extinction, EXT) of objects 

in wells of a 96-well plate. The BIOSORT stores information about each object as a tab-separated 

value (tsv) file, where each row is a unique object. During our standard high-throughput assay, 

the BIOSORT is used to collect data on both the sort/setup and the score day.  

 

To import data from the BIOSORT, template comma-separated value (csv) files first must be 

constructed to provide detail about the contents of each well of each plate. The strains.csv file 

should provide the name of each strain in each well. Strain layout should be identical across 

plates of a given assay, and only one strain.csv file is needed per experiment. The conditions.csv 

file should provide the experimental condition present in each well of each plate. Because each 

experiment likely tests multiple conditions (e.g. bleomycin and water), multiple condition.csv files 
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might be included for each experiment. The controls.csv file should provide the corresponding 

control condition that will be used to compare condition versus control responses. If a condition 

does not have a control, “None” should be used as the control condition. For example, “water” is 

the control condition for bleomycin, whereas “None” is the control for the water condition. Finally, 

each plate should contain a contamination.csv file, where each well is either TRUE (contaminated, 

as determined by visual inspection) or FALSE. The user should provide a contamination file for 

each plate assayed. 

 

After the template csv files and setup and score tsv files are in the proper directories (see 

github.com/andersenlab/easysorter for more detail), the easysorter package can be used to 

analyze the data. First, the read_data function creates a list of two data frames, where the first 

data frame derives from the score day data, and the second data frame is from the sort/setup day 

data. This function adds strain, condition, control, and contamination columns that incorporate 

these data for each object of each well. Next, the remove_contamination file removes all wells 

from the score data frame for which the contamination column is TRUE. 

 

Because each well of an assay contains many animals, the phenotypic distribution of all animals 

in each well can be summarized in several ways. The sumplate function groups all animals within 

the same well of the same plate and calculates summary statistics for the population distribution. 

First, the function counts the number of animals in each well and outputs that number as “n” and, 

if data from the sort/setup day are available, normalizes the number of animals in the well to the 

number of animals sorted into that well (brood size, norm.n). Then, the function normalizes the 

EXT measurement of each animal by its TOF measurement (normalized extinction, norm.EXT) 

and each of the fluorescence measurements by TOF (normalized green, norm.green, normalized 
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red, norm.red, and normalized yellow, norm.yellow). These normalized traits account for variation 

in animal lengths that might affect extinction and fluorescence values. The function then 

calculates summary statistics for the distribution of all animals in each well (mean, median, 

variance, covariance, interquartile range, and 10th, 25th, 75th, and 90th quantiles of the TOF, 

EXT, green, red, yellow, norm.EXT, norm.green, norm.red, and norm.yellow). Finally, the function 

categorizes animals into predicted larval stages, depending on their TOF measurements, and it 

calculates the fraction of the population of each well that is in the L1, L2/L3, L4, and adult life 

stages. 

 

After the population of animals in each well is summarized, the bioprune function is used to 

remove data that lie beyond particular biological cutoffs. Wells that contain less than five animals 

(indicating a lack of progeny and too few animals to accurately score) or more than 1,000 animals 

(indicating too many animals and likely contamination) are removed. If the norm.n trait was 

calculated in the previous step, this function also removes wells with a brood size greater than 

350 (again, indicating likely contamination). 

 

If assays were run across multiple days, assay normalization can then be performed using the 

regress(assay = TRUE) function. This function groups all data by the condition and trait and then 

fits the data to a linear model with the formula (phenotype ~ assay - 1), which takes phenotype 

as the response variable and sets assay as a fixed variable. The “-1” part of the model removes 

the y-intercept from the output. The phenotype output from this function is the residual value after 

this linear model is performed. 
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Next, outliers of the assay-regressed data are removed using either the bamf_prune function or 

the prune_outliers() function. The bamf-prune function, or “binned anomaly mitigate and fit” 

function, groups all data by condition and trait. It then calculates the interquartile range (IQR) for 

each group and determines how many data points lie beyond two, three, four, five, seven, and 

ten IQRs above the third or below the first quartile. Each data point is binned based on how many 

IQRs beyond the range it lies. The function then calculates the proportion of data points that lie 

in each bin. If less than 5% of all data points lie within a bin, all data within that bin are called 

outliers and are removed. However, if more than 5% of the data lie within a particular bin, all data 

points within that bin are kept. The bamf_prune function should be used for pruning mapping data, 

where data points are individual strains and clusters of outliers could represent a differential 

phenotype of a group of strains. For assays that are testing many replicates of isogenic lines, 

these clusters are not expected, and the prune_outliers function should be used. This function 

simply removes data points that lie beyond two IQR or two standard deviations from the median 

phenotype of each strain. 

 

Finally, the regress function is used to account for differences between strains in the control 

condition. For each strain, the mean phenotype in the control condition is calculated. The function 

then performs a linear model with the formula (phenotype ~ control phenotype -1), where 

phenotype is the dependent variable, the mean control phenotype for that strain is the fixed 

variable, and the y-intercept of the model is ignored. This function outputs residual phenotypes. 
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Contributions 

This package was initially developed by Tyler Shimko. I contributed to the package by fixing bugs 

and adding functionality, which are detailed here. 

Fixing Bugs 

Occasionally, during a high-throughput assay, the BIOSORT run needs to be interrupted, often to 

fix a clog in the flow cell. When a plate is interrupted during scoring, the data from that plate are 

split into different files, and these files need to be stitched together. The COPASutils package that 

works closely with the easysorter package contains a function that stitches data from each plate 

together in the event of a run interruption. However, this function was incorrectly assigning data 

into particular wells and therefore plate stitching was not working properly. I corrected the error in 

this function. Another error with the easysorter package was in the remove_contamination 

function. This function was not removing contaminated wells in all cases, so I modified the script 

to fix this issue. 

 

To account for phenotypic variation between strains that exists in the control condition, we often 

fit the data to a linear model with the condition phenotype as the dependent variable and control 

phenotype as the independent variable. The residual values from this model are often used as 

our control-corrected phenotypes. However, alternative strategies for control condition correction 

can be used, and I added a function in the easysorter package to perform two alternate methods 

for control correction. The altregress function can be used instead of the regress function and 

either “deltapheno” or “fracpheno” can be selected as the methods for control correction. Both of 

these methods first calculate the mean control phenotype of each strain. Then, the “deltapheno” 
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method subtracts each condition data point from its control-condition mean. The output for this 

method is the difference between the condition phenotype and the mean control phenotype. 

Alternatively, the “fracpheno” method divides each data point by its mean control phenotype. The 

output for this method is the condition phenotype as a fraction of the control phenotype. 

Updating for compatibility with LP sampler 

Union Biometrica has developed other models of large-particle flow cytometers aside from the 

COPAS BIOSORT. One of these models is the BioSorter, which is a modified version of the 

BIOSORT with increased capabilities including an increased number of user-defined sorting 

gates, ability to sort into a conical, electronic pressure valves, and up to four excitation lasers. 

Data from the BioSorter are imported in a slightly different manner than data from the BIOSORT. 

In particular, the “sort” data column is denoted as “Sorted.status” instead of “Status.sort”, the 

“time” data is denoted as “Time” rather than “Time.Stamp”, and the “EXT” measurement is called 

“Extinction” rather than “EXT”. To allow easorter to be compatible with the BioSorter data, I added 

a reflx flag to the read_data function. When BioSorter data are being imported, the user should 

run read_data(reflx = FALSE) and when BIOSORT data are being imported, the user should use 

the default TRUE setting of the reflx flag. 

Acknowledgements 

Tyler Shimko developed the majority of the COPASutils and easysorter package. Erik Andersen 

oversaw the development of both packages. Stefan Zdraljevic developed the bamf_prune function 

and fixed several bugs in the easysorter package. Katie Evans developed the prune_outliers 

function.  
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Appendix D: Linkagemapping package 

Preface 

The linkagemapping package is a collection of functions in R that allows users to run linkage 

mapping of phenotypic data from certain panels of C. elegans recombinant lines. Linkage 

mapping is used to identify regions of the genome that are correlated with phenotypic variation. 

These genomic regions are called quantitative trait loci, or QTL. The linkagemapping package 

uses many functions from the qtl package. In this section, I explain the utility of functions within 

the linkagemapping package as well as my contributions to the package development. A brief 

description of the package and each of its functions are available at 

github.com/AndersenLab/linkagemapping. 

Explanation of functionality 

The linkagemapping package requires a cross object that contains genotype and phenotype data 

for the mapping analysis. We provide four cross objects in the package that each contain 

genotype information for particular strain sets. The N2xCB4856cross contains genotype 

information for the 598 recombinant inbred advanced intercross lines generated between the N2 

and CB4856 strains at 1,454 genetic markers that were genotyped with the Illumina GoldenGate 

assay [109,110]. The N2xCB4856cross_full object contains the same strains plus an additional 

set of recombinant lines and an expanded set of 13,003 SNPs derived from whole-genome 

sequencing data of the panel. The N2xLSJ2cross object contains genotype information for 94 

recombinant lines generated between the CX12311 and LSJ2 strains at 176 informative SNPs 
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[317]. The AF16xHK104cross contains genotype information for 167 recombinant inbred lines 

between the AF16 and HK104 strains of C. briggsae at 1,031 SNPs [318]. Each cross object was 

generated by loading the genotype information and a dummy phenotype file and combining them 

using the read.cross function from the qtl package. Cross objects can be accessed by using the 

load_cross_obj function with the cross object name in double quotations (e.g. 

load_cross_obj(“N2xCB4856cross_full”)). 

 

Each cross object contains a “geno” list and a “pheno” data frame. The “geno” list is split into the 

six chromosomes, and each chromosome component contains a “data”, “map”, “argmax”, and 

“prob” object. The “data” data frame contains genotype information for each marker on the 

chromosome. For the N2xCB4856cross and N2xCB4856cross_full, a genotype of 1 indicates an 

N2 allele, whereas a 2 indicates a CB4856 allele; for the N2xLSJ2cross, a genotype of 1 indicates 

an N2 allele, whereas a genotype of 2 indicates an LSJ2 allele; for the AF16xHK104cross, a 

genotype of 1 indicates an AF16 allele, whereas a genotype of 2 indicates an HK104 allele. The 

“map” vector lists the centiMorgan position for each of the genetic markers in the cross object, 

calculated based on recombination information within the strains of the cross object. The “argmax” 

data frame is a matrix that contains the most likely sequence of genotypes for each strain given 

the marker data for all strains in the cross object, and the “prob” data frame contains the 

probabilities of those predicted genotypes. The “pheno” data frame of the cross object contains a 

dummy dataset that should be replaced by actual phenotype data for a mapping. This data frame 

contains a “strain” column with the name of all recombinant lines in the cross object and a “set” 

column that groups strains into particular categories, if applicable (N2xCB4856cross has two sets, 

the Rockman 2009 set and the Andersen 2012 set, N2xCB4856cross_full has an additional set 

of new recombinant strains). 
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The first step of performing a mapping with the linkagemapping package is to load the phenotype 

data. This data frame must contain columns named “strain” (strain name), “condition” (name of 

condition to which the strain was exposed), “trait” (phenotypic parameter that was measured, such 

as mean.TOF), and “phenotype” (numerical value of phenotype measurement) for proper merging 

of phenotype data into the cross object. The merge_pheno function is used to combine the 

phenotypic data into the “pheno” element of the cross object. If the user wants to run a mapping 

on a particular set of strains in a cross object, the set flag can be used to denote which strain set 

to include in the mapping (e.g. merge_pheno(set = 2)).  

 

After the user has merged the phenotype data into a given cross object, the linkage mapping can 

be performed. The fsearch function performs a mapping using the package’s internal map 

function. This mapping strategy scales phenotypes to have a mean of zero and a standard 

deviation of one, then tests the correlation between each genetic marker and the phenotypic 

variation of the recombinant lines and calculates a log of the odds (LOD) score for each marker. 

The forward search algorithm runs this mapping to identify the most significant QTL, then sets 

that QTL as a cofactor and performs another mapping. This process continues iteratively until no 

significant QTL are found. The fsearch function requires a cross object to be specified. Each trait 

within the cross object will be mapped independently, or the user can specify one particular trait 

to map using the phenotype flag in the fsearch function (e.g. fsearch(cross, phenotype = 

“bleomycin.mean.TOF”). Additionally, the markerset flag can be used to convert marker names 

to genomic positions at the end of mapping. Markersets include “N2xCB4856”, “N2xLSJ2”, 

“AF16xHK104”, “full” (for the N2xCB4856cross_full object), and NA if no marker conversion is 

desired. 
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The fsearch function calculates significance thresholds based on either a false-discovery rate 

(FDR) or a genome-wide error rate (GWER). In general, the FDR threshold should be used when 

many traits (>100) are being mapped, whereas GWER should be used when a few traits (<100) 

are being mapped. Both of these strategies calculate a threshold for significant QTL after 

performing permutations of the mapping. The type of threshold strategy to be used can be 

selected with the thresh flag and the number of permutations of the mapping to run can be set 

with the permutations flag in the fsearch function (e.g. fsearch(cross, thresh = “FDR”, 

permutations = 1000)). 

 

The output of the fsearch function is a data frame with the LOD score of each marker for each 

iteration of the mapping. It also reports the significance threshold for each iteration, so significant 

QTL can be identified. The annotate_lod function is used to define QTL confidence intervals and 

to calculate their effects on phenotypes. This function identifies the highest LOD score for each 

mapping iteration and then determines the confidence interval around the QTL using the method 

specified by the user. When the bayes argument is FALSE, the function uses markers within a 

1.5-LOD drop from the peak marker to define the confidence interval. When the bayes argument 

is TRUE, the function uses Bayesian probability to identify a 95% confidence interval. Additionally, 

the cutoff argument can be set to “chromosomal”, in which all markers on the same chromosome 

as the QTL that have LOD scores above the threshold are included in the QTL confidence interval, 

or to “proximal”, in which the nearest markers to the left and right of the QTL peak that reach the 

threshold are used to define the confidence interval. Finally, for each QTL, the annotate_LODs 

function performs a linear model with the formula (phenotype ~ genotype -1). The slope of the 
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model defines the effect size of a QTL and the r2 value of the model defines the percent of variance 

in the RIAIL phenotypes that is explained by the QTL. 

 

To easily visualize the results of linkage mapping, the package includes several plotting functions. 

The lodplot function plots an annotated mapping data frame, with each iteration of the mapping 

shown as a different colored line. An example of this type of plot is shown in Figure 10-1 The 

maxlodplot function combines the data from all iterations and plots the maximum LOD score for 

each marker across all iterations. Each QTL is shown as a red triangle and the percent of 

phenotypic variance explained by that QTL is printed as a percentage. An example of a 

maxlodplot output is shown in Figure 10-2. 

 

 

Appendix D Figure 1 Example lodplot output 

An example of a lodplot output is shown. On the x-axis, each of 13,003 genomic markers, split by chromosome, were 
tested for correlation with phenotypic variation across the RIAIL panel. The log of the odds (LOD) score for each marker 
is reported on the y-axis. Mapping repeated iteratively, and each iteration of the mapping is shown in a different color. 
The most significant quantitative trait locus (QTL) in each iteration is indicated by a triangle at the peak marker, and a 
grey ribbon shows the 95% confidence interval around the peak marker. The total amount of phenotypic variance 
across the RIAIL panel explained by the genotype at each peak marker is shown as a percentage. 
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Appendix D Figure 2 Example maxlodplot output 

An example of a maxlodplot output is shown. On the x-axis, each of 13,003 genomic markers, split by chromosome, 
were tested for correlation with phenotypic variation across the RIAIL panel. The log of the odds (LOD) score for each 
marker is reported on the y-axis. Each significant quantitative trait locus (QTL) is indicated by a red triangle at the peak 
marker, and a blue ribbon shows the 95% confidence interval around the peak marker. The total amount of phenotypic 
variance across the RIAIL panel explained by the genotype at each peak marker is shown as a percentage. 

 

 

Phenotypic differences between recombinant lines of alternate genotypes at a QTL marker can 

be visualized with the pxgplot function. This function outputs a box plot, where the recombinant 

lines are split into groups based on their allele at each significant QTL peak marker. Colors of 

boxplots are determined by the parent argument, which defaults to “N2xCB4856” but can be set 

to “N2xLSJ2” or “AF16xHK104”. This function requires an annotated linkage mapping data frame 

as well as the cross object with which the mapping was performed. An example of the pxgplot 

output is shown in Figure 10-3. The parental strains are automatically removed from mapping, 

so parent phenotypes will not be found in the cross object. If the user wishes to add the parental 

phenotypes to the pxgplot, the function pxgplot_par can be used instead. This function takes an 

additional argument, which is the phenotype data frame that was used in the merge_pheno 
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function and includes parental phenotypes. An example of a pxgplot_par output is shown in 

Figure 10-4. 

 

 

Appendix D Figure 3 Example pxgplot output 

An example of a pxgplot output is shown. On the x-axis, RIAILs are split into two groups according to their genotype at 
each QTL peak marker. Phenotypes of the RIAILs are shown as Tukey boxplots, where each point is a RIAIL. Strains 
with the N2 allele at the QTL marker are colored orange and strains with the CB4856 allele at the QTL marker are 
colored in blue. 
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Appendix D Figure 4 Example pxgplot_par output 

An example of the pxgplot_par output is shown. On the x-axis, RIAILs are split into two groups according to their 
genotype at each QTL peak marker, “N2-RIAIL” and “CB4856-RIAIL”. Parental strain phenotypes are shown as “N2 “ 
and “CB4856”. Phenotypes of the RIAILs and parents are shown as Tukey boxplots, where each point is a RIAIL. 
Strains with the N2 allele at the QTL marker are colored orange and strains with the CB4856 allele at the QTL marker 
are colored in blue. 

 

 

The effect size of each marker can be easily visualized with the effectplot function. This function 

takes the annotated mapping data frame as well as the cross object and determines the direction 

and magnitude of the phenotypic effect of each genetic marker. In the case of an 

N2xCB4856cross mapping, positive effect sizes indicate that strains with the CB4856 allele have 

larger phenotypes. An example of an effectplot output is shown in Figure 10-5. 
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Appendix D Figure 5 Example effplot output 

An example of the effplot output is shown. On the x-axis, each of the 13,003 genomic markers are shown, split by 
chromosome. On the y-axis, the maximum effect size for each marker across all mapping iterations is shown. Positive 
effect sizes indicate that RIAILs with the CB4856 genotype have larger phenotypes than RIAILs with the N2 genotype, 
and vice versa. Each QTL is indicated by a red triangle at the QTL peak marker and a blue ribbon showing the 95% 
confidence interval around the QTL. 

 

 

After a mapping is performed, the user might want to find reagents that can be used to test the 

validity of the QTL identified by the mapping. Fosmids, which are plasmids transformed with 

regions of the C. elegans genome, that contain a region of interest can be found using the 

findN2fosmids or findCBfosmids search. These functions find fosmids with the N2 and the 

CB4856 genotype, respectively, that tile across a given interval. The names of all fosmids in the 

region as well as a plot of their genotypes are output. An example of an output from the 

findN2fosmids is shown in Figure 10-6. 
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Appendix D Figure 6 Example findN2fosmids output 

An example of the findN2fosmids output is shown. On the x-axis, genomic positions near the search interval are shown. 
The search interval is indicated by two vertical orange lines. Each fosmid that tiles across the interval is shown as a 
horizontal line, which indicates the length of the fosmid. Fosmid names are printed in text above each horizontal line. 
The y-axis is arbitrary. 

 

 

Expression levels for many genes have been measured previously for the N2xCB4856 

recombinant lines using a microarray [158]. These expression data were used in a linkage 

mapping to identify regions of the genome that affect expression levels of each gene. These 
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expression QTL (eQTL) can be searched using the checkeQTLintervals function. The function 

finds eQTL peaks that overlap with a region of interest. The function outputs a data frame of 

quantitative information about detected eQTL in the interval as well as a data frame that contains 

qualitative data about the probes that mapped to those eQTL. A positive effect size means that 

the strains with the CB4856 allele at the QTL peak marker have higher expression of the probe 

than strains with the N2 allele at the QTL peak marker, and vice versa. 

 

Users may wish to identify recombinant strains that can be used to generate near-isogenic lines 

(NILs) to isolate a QTL in a consistent genetic background. Usually, ideal recombinant lines for 

making NILs do not contain genetic recombination events within the region of interest, unless the 

user is attempting to generate NILs that tile across a region. The FindRIAILsforNILs function can 

be used to identify recombinant lines that could be used for NIL construction. This function outputs 

a list of four elements, a data frame of all recombinant lines with a continuous genotype across 

the region, a data frame of all recombinant strains with breaks within the interval, a plot of all 

recombinant lines that have breakpoints inside and nearby the outside of the region, and a plot of 

all recombinant lines with a continuous genotype across the region. An example of the plots output 

from the is function is shown in Figure 10-7. 
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Appendix D Figure 7 Example findRIAILsforNILs output 

An example of the findRIAILsforNILs output is shown. On the x-axis, positions across chromosome V are shown. 
Vertical black lines indicate the search region. A. Each RIAIL with genetic recombination within the search interval is 
shown on the y-axis. B. Each RIAIL with a constant genotype through the search interval is shown on the y-axis. 
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Contributions 

This package was constructed by Tyler Shimko. I spent a significant amount of time learning the 

functionalities of the package, fixing issues, and expanding the functionality of the package. Here, 

I describe my contributions to the linkagemapping package. 

Fixing bugs in package 

In August of 2015, we were working on a collaboration with Patrick McGrath using the N2xLSJ2 

recombinant lines. We noticed that our mapping results were not matching up, and he was not 

using the linkagemapping package. I compared Patrick’s cross object with our N2xLSJ2cross 

object and noticed that the merge_pheno function was not properly matching strains to their 

phenotypes. This mismatch problem was resolved when I reconstructed the N2xLSJ2cross object 

after ordering the strains in alphanumeric order before running the read.cross function. 

 

In May of 2018, I noticed that setting the GWER or FDR threshold for QTL significance was not 

working. In particular, all iterations beyond the first iteration were being calculated with FDR, 

regardless of which method was selected in the fsearch argument. The threshold flag was being 

overwritten to the first-iteration threshold. I fixed this issue by changing the flag from “threshold” 

to “thresh” so the argument was not overwritten internally. Katie and I then reran all of the 

mappings to correct for this thresholding error. 
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Expanding functionality 

During my rotation in the Andersen Lab, I developed a fosmid search. I incorporated this 

functionality into the package, as described above. I also developed the eQTL search functionality 

of the package. 

 

In April 2017, I worked with Dr. Daniel E. Cook to establish an expanded marker set for the 

N2xCB4856cross object. We had whole-genome sequence data from the RIAILs and we wanted 

to add more markers into the cross object to improve mapping resolution. We had extensively 

sequenced the N2 and CB4856 parental strains and had identified 195,655 high-quality 

genotypes that differed between the two strains. We analyzed the sequences of the RIAILs at 

these sites and identified 13,003 SNPs that were reliably called in the RIAIL set and that were 

informative of genetic recombination events in the panel. Dan compiled the genotypes for the 598 

RIAILs in the N2xCB4856cross object as well as 548 newly constructed recombinant lines across 

the 13,003 SNPs. I then created the N2xCB4856cross_full object by following the procedure 

described in the qtl package [259]. 

 

In 2018, Kathryn Evans and I were working on the QTL hotspot paper, when we realized that our 

method for defining confidence intervals differed from the technique used in the qtl package [259]. 

The qtl package defined a confidence interval as including all loci on the same chromosome as a 

QTL that have a LOD score above a 1.5-LOD drop from the QTL peak. Our method was to walk 

marker-by-marker to the left of the QTL until the LOD score reached below the 1.5-LOD drop and 

to repeat the process to the right of the QTL peak. The valleys most proximal to the QTL peak 

marker defined the confidence interval, even if other markers climbed back up above that 
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threshold. We thought that both types of confidence intervals would be informative to 

linkagemapping package users, so we incorporated this option for defining confidence intervals 

into the package. 
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