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ABSTRACT

Optimization under Variable Uncertainty

Kartikey Sharma

In this dissertation, we study models and methods to address uncertainties that can vary
in optimization problems. Robust optimization is a popular approach for optimization
under uncertainty, especially if limited information is available about the distribution of
the uncertainty. It models the uncertainty through sets and finds a robust optimal solu-
tion that is feasible for all realizations of the uncertainty within the set and is optimal
for the worst-case realization. The structure of these sets determines the complexity of
the resulting optimization problem. In most models, the uncertainty set is assumed to be
exogenous i.e., pre-determined and is unaffected by decisions or other uncertainty realiza-
tions in the problem. This thesis introduces endogenous uncertainty models, which may
be affected by decisions that are made in the problem or by other uncertainty realizations
within the problem.

In the first chapter, we take a step towards generalizing robust linear optimization
to problems with decision dependent uncertainties. We show these problems to be NP-

complete in general settings. To alleviate these computational inefficiencies, we introduce



a class of uncertainty sets whose sizes depend on binary decisions. We propose reformu-
lations that improve upon alternative standard linearization techniques. To illustrate the
advantages of this framework, a shortest path problem is discussed, where the uncertain
arc lengths are affected by decisions. The proposed notion of proactive uncertainty con-
trol provides modeling and performance advantages, and mitigates over conservatism of
common robust optimization approaches.

While the impact of the decisions on the uncertainty set was fixed in the first chap-
ter, we extend the decision-dependent models to allow for uncertainty in the influence of
decisions on the sets in the second chapter. Here, the exact impact of the decision on the
uncertainty set itself may be uncertain. This situation arises in many practical settings
where the decision’s impact may not be known a priori. It is especially relevant for prob-
lems in which the decision is on the gathering of information. We leverage robust and
stochastic optimization to incorporate uncertain influence into the optimization problem.
We then evaluate the performance of these models on a power systems unit commitment
problem.

The third chapter discusses the topic of Connected Uncertainties, i.e., uncertainty mod-
els in which past realizations influence future uncertainties. For this class of problems,
we develop a novel modeling framework that naturally incorporates this dependence via
connected uncertainty sets, whose parameters at each period depend on previous uncer-
tainty realizations. To find optimal here-and-now solutions, we reformulate robust and
distributionally robust constraints for popular set structures and demonstrate this mod-
eling framework numerically on broadly applicable knapsack and portfolio optimization

problems.



In the fourth chapter of the thesis, we leverage the idea of connected uncertainty to de-
velop robust adaptive classifiers for streaming data. Classification algorithms are effective,
when data can be modeled by time-invariant distributions. In streaming settings, a classi-
fier needs to be updated continuously, and hence static classifiers lose their reliability over
time. We consider streaming data sets in which the behavior of each class can be mod-
eled by a time series. For classification of such streaming data, we extend the Minimax
Probability Machine to incorporate a time series model using the principles of connected
uncertainty sets. We illustrate the new methods by numerical experiments on synthetic
data.

Overall, this thesis led to insights in two directions. First, we introduced uncertainty
sets which depended on decisions. This enabled us to model reducing the uncertainty
at a price, which is common in practical applications. This approach also allowed us
to capture many problems in which the uncertainty naturally depends on decisions. In
the second direction, we studied multi-period problems where today’s uncertainty can
affect the uncertainty tomorrow. This led us to capture correlations over time, which are
common in many applications. Our future goal is to further extend this work in both
directions. Specifically, we want to solve larger unit commitment problems, solve the
problem of continuous variables affecting uncertainty sets and merge decision dependent

and connected uncertainties.
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CHAPTER 1

Introduction

Optimization problems are a corner stone of modern life. They occur in many appli-
cations and solving them is key to improving the performance of various systems. General

optimization problems are of the form,

mxin f(x)
(1.1) st.gi(x) >0 VieZ

xeX.

Here, the goal is to find a decision x that lies in the set X, satisfies the constraints
gi(x) > 0 Vi € Z, and minimizes the objective. In practical applications, the set X and
the constraints g;(x) > 0, represent physical limitations, budgetary constraints, or model
assumptions etc. The objective function f(x) represents factors such as cost, utility, flows
etc. These functions f(x) and g;(x) are constructed from real systems and as such use
various parameters and their estimates. They may also use some parameters whose values
are inherently uncertain and cannot be known a priori. These sources of uncertainty limit
the scope of the problem (1.1), as any solution arising from this problem depends on
the parameter estimates used. If the true value, or the realization of the parameters, is
different from the estimate, it may lead to suboptimal or even infeasible solutions. This

danger is particularly relevant for optimal solutions since they tend to exist on boundaries.
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Two well-established approaches for optimization problems under such uncertainty are

stochastic and robust optimization.

Stochastic Optimization

Stochastic optimization (SO) assumes that the source of uncertainty can be described by
a distribution that is known to the decision maker. This distribution is leveraged to solve

the optimization problem. A general form of a SO problem is,

min B[ (x, )
(1.2) s.t. Plgi(x,€) >0 VieZ]>1—«
x € X.

Here, we minimize the expected value of the objective function while trying to satisfy the
constraints with probability 1 — a. SO problems are primarily solved using techniques
which leverage the structure of the optimization problem. These methods include Sample
Average Approximation [87] to approximate the expectation and the chance constraints,
cut generation methods for multistage problems [34], approximation techniques [26] for
evaluating solutions etc. These approaches leverage the structure of the optimization

problems to make up for the increase in problem size due to the existence of scenarios.

Robust Optimization

A key requirement for SO problems is the knowledge of the distribution which may be
unavailable in some settings. Robust optimization (RO) is a computationally attractive

alternative [12, 22] to SO, where we only require knowledge of the set, in which the
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uncertainty lies. RO problems can be expressed as following

min max|f(x, )]

(1.3) st gi(x,€) >0 VeEelU, Viel
xeX.

In problem (1.3), the uncertainty is assumed to lie in a set . We optimize for the
worst-case objective over all £ in this set. Any solution x is required to be feasible for
all possible realizations of the uncertain parameter in 4. The method of RO has been
developed considerably and applied to problems ranging from portfolio management [45],
to healthcare [30], to electricity systems [74], and to engineering design [21].

The geometry of the set U also determines the computational tractability of the prob-
lem. For example, certain combinatorial RO problems achieve a tractable reformulation
when the uncertain objective coefficients reside in a cardinality constrained set [3, 18]. The
size of such sets controls the magnitude of possible uncertainties, to which the solution is

immune. It also establishes probabilistic guarantees of constraint satisfaction.

Distributionally Robust Optimization

When the adversarial uncertain components exhibit probabilistic characteristics, distribu-

tionally robust optimization (DRO) offers an alternative approach by replacing standard



18

uncertainty sets with ambiguity sets over distributions [35, 48],

min max E[f(x, &)]

x PeUd
(1.4) st Plgi(x,6) >0 ViceI]>1—a VPclU,
xeX.

Here, we consider the worst-case expectation over all distributions lying in the set U.
These sets can be characterized by moments [99], by distance measures [13, 39, 43], or by
hypothesis tests [23]. DRO techniques have been applied to a broad range of applications,

such as portfolio management [79], simulation [66], and supply chain [42] problems.

Adjustable Robust Optimization

Most RO approaches focus on static here-and-now solutions. However, the benefits of
these solutions are limited in many settings, especially those that can accommodate adap-
tation. The extension of RO to multistage problems [11] has revealed the deficiencies of
static here-and-now solutions. Since these solutions do not adapt to uncertainty realiza-
tions, they lead to highly conservative solutions. Wait-and-see decisions adapt to uncer-
tainty realizations like recourse in SO. Such an adjustable robust optimization (ARO)

problem can be expressed as

minf(x) + max min A(x,y,
. inf(x) +max  min h(x,y,£)

st.xe X.

In this problem, the second-stage decision y can adapt to the uncertainty realization

&. This approach improves the solution quality at the expense of higher computational
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complexity. Decision rules can provide a smooth trade-off between complexity and solution
quality [62] for ARO problems, by limiting the flexibility of the second-stage decision y.
This makes solving the problem easier but leads to suboptimal solutions to the original
problem. In the context of multistage DRO, solutions adapt to the realization of the
uncertainty instead of adapting to the realized distribution. Non-anticipative decision
rules can be leveraged to provide tractable reformulations for moment-based uncertainty
sets [38, 48]. Furthermore, adaptability has been extended to ambiguity sets defined by

the Wasserstein metric with a conic reformulation for a two-stage DRO problem [50].

Uncertainty Models

RO and DRO problems, both use sets to model the uncertainty. As mentioned earlier, the
geometry of the uncertainty set determines the computational tractability of the robust
problem as well as the amount of protection provided against the uncertainty. Some

commonly used standard uncertainty sets for RO problems are

e Elliposidal Uncertainty set {£ | € = p+ Lu, ||ullz <7}
e Polyhedral Uncertainty set {£ | D€ < d, £ > 0}

e Cardinality Constrained Uncertainty set

N -

U= {e \ > ’&g STV, el —Fé,mr&]} .
i=1 i

Depending on the constraint being reformulated, the uncertainty set used, and the true

nature of the uncertainty, it is possible to achieve probabilistic guarantees on the con-

straint satisfaction of the robust solution [18]. For DRO problems, the uncertainty sets
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are over distributions instead of uncertainty realizations. These sets are described by

moments or metrics on the space of distributions. For example

e Moment Uncertainty set {P € M | [CdP(€) =1, [(&€dP(&) = p}, where M is
the set of finite measures
e Ball uncertainty set {P € M | d(P, Py) < r} where Py is a nominal distribution

and d(-,-) is a metric on the space of distributions.

For both static and adaptive decisions, RO models primarily use pre-determined un-
certainty sets. These sets are unaffected by the decisions being made in the optimization
problem or by other uncertainty realizations in the problem. Our goal in this dissertation
is to address RO problems where the uncertainty set can be variable and affected by either

the decisions in the problem or other uncertainty realizations.

Notation

Throughout this dissertation, we use bold lower and uppercase letters to denote vectors
and matrices. Scalars are marked in regular font. All vectors are column vectors and the
vector of ones is denoted by e. For any given matrix A, the i*" row is denoted by A;. and
the j column is denoted by A.;. Furthermore, diag(+) denotes a diagonal matrix with «
on the diagonal and zeros elsewhere. LHS denotes left-hand-side and RHS denotes right-
hand-side. We use the phrases “decision-dependent” and “endogenous” interchangeably.
Similarly, we refer to variables affecting an uncertainty set as influence variables. To
streamline the exposition, we use “uncertainty set” for both the RO and DRO settings.

For the former, the set is over parameters and for the latter it is over distributions and is
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also known as an ambiguity set. T denotes the total time periods, 7 refers to a particular

time period, t serves as an index, and e is a vector of all ones.
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CHAPTER 2

Decision Dependent Uncertainty

2.1. Introduction

RO employs uncertainty sets that are predetermined and, hence, exogenous. How-
ever, in many real-world problems, the uncertainty can be affected by decisions. In such
decision-dependent cases, the uncertainty set is endogenous. Despite the wide prevalence
of such uncertainties in real-world settings, these problems have not received much at-
tention in the past, largely due to computational intractabilities. In this chapter, we
take a first step towards robust linear optimization problems with endogenous uncertain-
ties and provide a class of uncertainty sets, whose reformulations improve over standard
techniques. Specifically, we study a single-stage RO problem with decision-dependent

uncertainty sets

min ¢ x+f'y
X7y

(RO-DDU)
stoa/x+&y<b V& eU(x)CRY Vi=1,...,m,

where x € R"” and y € R"” represent decision variables, which need to satisfy each con-

straint ¢ = 1,...,m for every realization from the set U;(x) that bounds the uncertain

parameter &,. Further, the parameters defining U;(x) depend on decisions x. We first

study the complexity of (RO-DDU) for polyhedral i;(x). We then assume x is binary
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and provide reformulations for special classes of polyhedral and conic uncertainty sets and
conclude with numerical experiments.

To show the range of applicability of this model, we illustrate two examples.
Example 1: Uncertainty Reduction. In facility location or inventory management
problems with uncertain demand, the uncertainty can be reduced by spending resources
to acquire information. Similarly, in healthcare problems, additional medical tests can
improve the diagnosis. This type of uncertainty reduction is characteristic of many real-
world problems. In order to improve solutions, decisions on uncertainty reduction have to
be included into the optimization problem, making the uncertainty a function of decisions
on acquiring additional information.

Example 2: Shortest Path on a Network. Consider the graph in Figure 2.1 with the
arcset A and let the uncertain length for any arc e be d, = d.(1 + 0.5,), where d,
denotes the nominal value. The uncertain vector & lies in the uncertainty set U(x) =
{€ |0< & <1 —-08x. Ve, Y o468 < 1}. The binary decision x, determines whether to
reduce the maximum possible uncertainty & to 0.2 (z. = 1) or leave it at 1 (z. = 0). For

simplicity, we assume the reduction to be possible for at most one of the arcs.

Shortest Path Path Nominal | Worst-case

Nominal A-C-B 95 31+ 1.5 x64=
127

Robust A-E-F-G-H-B 97.4 15.3 + 23 4+ 20.6+
1.5 x 25.5 4 13
=110.15

Endogenous A-E-C-B 95.3 15.3 + 1.4 x 16+
Robust 1.1 x 64 = 108.1

Figure 2.1. Shortest path on a network. Nominal lengths are labeled.
Worst-case and reduced-case lengths are displayed with dashed and dot-
ted lines. The table shows the lengths in different settings.
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Figure 2.1 displays a network with source node A and destination B. In the worst-
case, the nominally shortest path lengthens to 127 units. RO optimizes against this case,
improving the worst-case length. If it is permitted to reduce the uncertainty of an arc,
then A—E—C—B is selected with zc_g = 1 and the worst-case path becomes 108.5. This
example demonstrates that decision-dependent sets can be leveraged to model decisions
that mitigate the worst-case scenario.

The contributions of this chapter can be summarized as follows:

(1) We study robust linear optimization problems with a polyhedral decisiondependent
set for the uncertain parameters. We prove such problems to be NP-complete.
We also show that when decisions that influence the uncertainties are binary, the
problem can be reformulated as a mixed integer optimization problem.

(2) For binary x, we provide a class of uncertainty sets for which a more efficient re-
formulation of the decision-dependent RO problem is possible. The set structure
and the nature of decision dependence are leveraged to provide reformulations
with fewer constraints.

(3) We provide an improvement to Big-M linearization for bilinear terms which can

reduce the number of constraints.

This chapter also showcases the advantages that can be gained in both stochastic and
robust optimization by proactively controlling uncertainties.
We also emphasize what this chapter fails to address. Reformulations for continuous

decisions influencing the uncertainty are not provided. Furthermore, the primary problem
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in this chapter is a static optimization problem, i.e., the decisions do not adapt to un-
certainty realizations. In fact, it is the uncertainty set and the corresponding worst-case
realization that are affected by decisions.

Section 2.3 discusses the complexity of the decision-dependent robust linear optimiza-
tion problem. Section 2.4 introduces a class of uncertainty sets which allow improved re-
formulations. Section 2.5 provides a comparison to the corresponding Big-M formulation.
It also provides methods to improve these standard techniques. A numerical experiment
is discussed in Section 2.6 to illustrate the advantages of the decision-dependent setting

and to computationally compare the three formulations.

2.2. Background

In the following, we first review endogenous settings in SO before discussing RO ap-
proaches.

The notion of endogenous uncertainty in SO generally corresponds to scenario trees,
where decisions determine the probabilities. For example, Jonsbraten et al. [58] consider
the cost of an item to remain uncertain until it is produced. The probability distribu-
tion depends upon which item is to be produced and when. Goel and Grossmann [46]
address the problem of offshore oil and gas planning, with the objective of maximizing
revenues and investments over a period of time, when the recovery and size of oil fields
are not known in advance. They provide a disjunctive formulation that is solved by a
decomposition algorithm. This approach is extended to a multistage SO problem for opti-
mal production scheduling, that minimizes cost while satisfying the demand for different

goods [47]. For package sorting centers, Novoa et al. [83] seek to balance the flow across
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working stations. Capacities are modeled via budgeted uncertainties where the budget
is a function of workstation allocation. These and other approaches address endogenous
uncertainties probabilistically.

In RO, the endogenous nature of uncertainty is imposed directly on the uncertainty
set itself. For example, Spacey et al. [91] address a software partitioning problem, where
code segments are assigned to different computing nodes to reduce runtime with uncer-
tain execution order and for unknown frequency of segment calls. They employ tailored
decision-dependent uncertainty sets. Such sets also occur as a result of reformulations.
For example, Hanasusanto et al. [51] use a finite adaptability approximation to adjustable
robust optimization (ARO), as introduced by Bertsimas and Caramanis [16], and consider
optimization problems with binary recourse decisions. For problems with uncertain ob-
jective and constraints, they provide a formulation with decision-dependent uncertainty
sets before finally reformulating it as a MILP. Poss [84, 85] considers combinatorial opti-
mization problems with budgeted uncertainty sets. This extends the work of Bertsimas
and Sim [18] to decision-dependent budgets. These works focus on budget uncertainty
sets with limited discussion on general sets. On the other hand, for a dynamic pricing
problem with learning, Bertsimas and Vayanos [20] consider 1 or co-norm uncertainty
sets for price-dependent demand. Specifically, the uncertain demand curve is driven by
past realizations of price-demand pairs. Since the price is a decision variable, this leads
to decision-dependent uncertainty sets. In the context of robust scheduling problems,
Vujanic et al. [96] consider a decision-dependent uncertainty set which is a vector sum of
a collection of sets. The sets in the vector combination are selected by a decision which

is a part of the original problem. They probe the performance of an affine policy for the



27

problem. More recently, decision-dependent sets were studied in the context of control
problems with primitive uncertainty sets [104]. Note that in all approaches to date, the
decision dependence is modeled in a specific context, often driven by an application.
The journey of RO has also included measures to reduce conservatism. The original
RO formulation by Soyster [90] produced over conservative solutions for many applica-
tions due to the use of box uncertainties. Later, Ben-Tal and Nemirovski [10] provided less
conservative solutions by using general polyhedral and ellipsoid uncertainty sets. ARO
models [11] and decision rule approximations took another step in this direction by al-
lowing decisions to depend on the realizations [44, 55]. In this vein, decision-dependent
uncertainty sets offer a new avenue to reduce the level of conservatism. For example,
Poss [84] decreases it for cardinality constrained sets. This chapter also motivates the no-
tion of proactive uncertainty control by using decision-dependent sets to enable deliberate

uncertainty reduction.

2.3. General Decision Dependence

Robust linear optimization problems encompass a wide variety of applications, in
portfolio optimization, healthcare, inventory management, and routing, amongst others.
The tractability of robust linear programs provides a suitable starting point to analyze
the complexity of RO problems with decision-dependent uncertainty. Here, we investigate
a robust linear optimization problem as in (RO-DDU). The underlying uncertainty set is

endogenous and defined as follows.
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Definition 2.3.1. The set with constraint matriz D, constant vector d, and decision

coefficient matriz A given by

U (x) = {¢|DE <d+ Ax}

1s a polyhedral uncertainty set with affine decision dependence.

Note that A determines the influence of x on the set and can be estimated from the
data or from the context of an application. In Section 2.6, we quantify it for a specific
application.

The following theorem shows that RO problems with decision-dependent sets cannot
be reformulated in a tractable fashion, a departure from standard RO problems. This oc-
curs despite the fact that linear programs with polyhedral uncertainty sets have tractable

robust counterparts.

Theorem 2.3.1. The robust linear problem (RO-DDU) with uncertainty set U is

NP-complete.

Proof. The proof follows the following steps:

(1) Consider an instance of the 3-Satisfiability problem (3-SAT) for a set of literals
N ={1,2,...,n} and m clauses, which seeks to find a solution x € {0,1}" that

satisfies

xi, + 1, + (1 — ;) > 1 for m clauses and iy, 49,43 € {1,...,n}.
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(2) Consider the following special case of (RO-DDU) with x e R*y ¢ R™ |, z € R

(RO_SAT) min {_Z | 2 ETy < O’ \V/£ S U(X)7 X,y <e, -y < _e} )

x,y,220

where U(x) = {(&1, .., &m) | &> xiy , & 2wy, &> 11—y, & < 1}
Note that the 3-SAT problem is embedded in this set.
(3) By Lemma 2.3.1 (provided after these steps), the optimal value of (RO-SAT) is
—m, if and only if the 3-SAT problem has a solution.
(4) Problem (RO-SAT) is a special case of (RO-DDU) with polyhedral set U (x).
(5) Since the 3-SAT problem is NP-complete [31], problem (RO-DDU) is also NP-

complete.

Lemma 2.3.1. The 3-SAT problem has a feasible solution x, if and only if prob-

lem (RO-SAT) has an optimal value of at most —m.

Proof. ( = ) Suppose the 3-SAT problem has a feasible solution x. This means, x has
to satisfy

$11+$12+(1—$13)21 szl,,m

Since x € {0,1}", for each i at least one of x;,, x;,, or 1 — x;; must be equal to 1. Now,

consider the uncertainty set

UX)={(&, - &) |&>ai  &G2my, 21—, <1 Vi=1,...,m}.
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Since at least one of x;,, x;,, or 1 — x;, equals 1, ; satisfies § > 1. This implies that
& = 1 Vi is the only point in U(x). For this uncertainty set, the feasible solution is
x,y = 1, z = m. This leads to the optimal solution —z < —m or z > m.

( <= ) Suppose (RO-SAT) has an optimal solution (x*,y*) with the objective value
of —z* < —m. We first show that strict inequality is not possible. Assume —z* < —m.
The constraints in (RO-SAT) imply z* —&'y* <0, ie., £ y* > 2* > m V€ € U(x*). The
constraints also imply y; = 1 Vi. This means that Y ", & > m V€ € U(x*). However, the
construction of the uncertainty set yields & < 1. This leads to a contradiction, because
S & # m, and hence —z* = —m. Thus, ¢'y* = m V€ € U(x*). Therefore, we can
write > & = m V€ € U(x*), which implies mingeyx+) > iy & = m. However, since
the uncertainty set implies &; < 1 Vi, we can conclude that the sum can only be equal to
m, if & =1 Vi.

We now show that this result implies for each 7 at least one of z} or z}, or (1 —z7,)
is equal to 1. Suppose this is not true. This implies 3 for which x; <1, zj, <1 and

(1 —z;,) < 1. That means that we can construct & = max{xz} ,z;,, (1 — z;,)} which is
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an element of the uncertainty set and £, < 1. However, this contradicts the result of
& = 1 Vi Therefore, if 2 = m, then we can find a feasible solution for the 3-SAT

problem. [l

Although problem (RO-DDU) is NP-complete, it can be reformulated as a bilinear or
biconvex program, which may be solved by global optimization techniques [e.g., 60]. For
binary decision variables x influencing U (x), the problem (RO-DDU) can be reformulated
as a MILP, using the Big-M method (see Section 2.5). However, they suffer from weak

relaxations.
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2.4. Structured Uncertainty Sets

The weak numerical performance of Big-M linearization can be overcome, if the deci-
sion x plays a decisive role in governing the elements of the uncertainty set. Specifically,
if the effect of x on the uncertainty set constraints can be modeled by penalizing the
objective coefficients, then the number of constraints in the robust counterpart can be
reduced. Here, we discuss the setting where x controls the upper bounds of the uncertain

variables. This mechanism can be expressed in the set:
II-Uncertainty: Z/Iﬁ(x) ={¢|DE<d, £E<v+W(e—x), £€>0}.

Here, D € R™*" is a coefficient matrix, d € R™ is the RHS vector, v € R’} are the mini-
mum upper bounds, and W = diag(w) € R}*" (a diagonal matrix) are the incremental
upper bounds, which apply when reduction is not applied. For Z/{ﬁ, the influence variable
is x € {0,1}". The decision dependence in U affects the upper bounds on each uncertain
component &;. This means, if the problem allows influencing uncertainties, this set can
model proactive uncertainty reduction. One possible example is disaster planning, where
a decision to reduce the fragility of certain roads yields an improved worst-case outcome.
Another example is measurement applications, where a decision for additional expendi-
ture leads to increased accuracy. We employed such a set in Example 2 and discuss it
further in the numerical application.

We now discuss how this structure can be leveraged to reformulate the original prob-
lem (RO-DDU). Note that the objective function remains unaffected by the definition

of the uncertainty set, as does the first term of the constraint. Therefore, we focus our
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discussion on the parts of the constraint in problem (RO-DDU), that are affected by

uncertainty.

2.4.1. II-Uncertainty
For succinctness, this section provides a reformulation of the following linear constraint
(LC) y'E<b vE €U (x).

To satisfy this constraint for all £ € Z/{ﬁ(x), the uncertain LHS needs to be replaced by

its maximum over the set. For this, consider the following two problems:

h(x,y) =
h(x,y) =
max (y —IIx) "€ +y'¢
max y' & ¢
st. DE+ D¢ <d
(P) st De<d (P7)

£ < We
E<v+W(e—-x) :m(x,y)

¢<v
£>0,

£,¢>0,

where in problem (P), 7r(x,y) denotes the corresponding dual variable. Problem (P) max-
imizes the LHS directly over Z/lﬁ(x). However, the standard reformulation of this problem
leads to bilinear terms. To avoid them, we can leverage the structure of the uncertainty
set and formulate problem (P) as problem (P’). Such a problem pair was also suggested in
the context of stochastic network interdiction [32]. Proposition 2.4.1 uses the duals of (P)

and (P’) to prove that they have the same objective value at optimality. Formulating
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problem (P’) requires the use of matrix IT = diag(7). Here, T is a component-wise upper
bound of the optimal value of the dual variable 7 (x,y) for all x,y. Note that the matrix
1T is similar to M of the Big-M method in that it estimates an upper bound to the dual
variables. We provide a method to estimate 7 in Proposition 2.4.2. The dual problems

of (P) and (P’) are given by:

g(x,y) =
g(x,y) =
migcl t'd+r We+s'v

min q'd+7'v+ 7 W(e—x)
@ D) st sT+t D>y’
st. w' +q'D>y'
r' +t' D>y’ —x'II

r,s,t > 0.

Proposition 2.4.1. Given a binary x, if the set UM (x) is nonempty and v, W > 0,
then for all y:

h(x,y) = h(x,y).

Proof. Strong duality warrants the equalities g(x,y) = h(x,y) and §(x,y) = h(x,y).
In the following, we also refer to the optimal objective values of the dual problems
as h(x,y) and h(x,y). Let (m,q) be an optimal solution to (D). Furthermore, let
(r=m—IIx,s = m,t =q) with II = diag(w) be a potential feasible solution to (D’).
For these solutions, it follows that s" +t'D=x" +q'D >y', and
r'+t' D=7 —x'II+q'D>y" —x"TI >y’ —x"II. Since w,q > 0, and x is bi-

nary, we obtain r,s,t > 0. This means (r,s, t) is a feasible solution to problem (D’). This
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yields

h(x,y) < q'd+7'v+(m—IIx) We

= h(x,y).

For the converse, let (r,s,t) be an optimal solution to (D’). Consider (7w =s,q =1t) to
be a solution to (D). The feasibility of (r,s,t) leads #' +q'D=s"+t'D >y’ and

m=s2>0,q9=t>0. Hence, (7,q) is a feasible solution to (D), resulting in

h(x,y) < t'd+s'v+s W(e—x)

= hx,y)+(s—1) We—-s'Wx.

In order to prove h(x,y) < h(x,y), it is required to prove (s —r)'We — s"Wx < 0.
This can be expressed as ) . w;(s; — r; — s;;) < 0. For all ¢ with 2; = 1, it holds that
wi(s; —ry — six;) = —wir; < 0.

Consider now the set of all ¢ with x; = 0, denoted by X,. Problem (D’) can be
rewritten as two nested minimization problems, where the outer problem is over t and

rj,s; with j ¢ Xy and the inner problem over r;, s; with ¢ € Xj:

h(x,y)= min t'd+ riw; + siv; + 1(t
( ) t77‘.7-78j7j§éX0 ngXO J= J;)(O Y5 ( )

\

s.t. Sj + tTD.J’ Z yj

r; + tTD.J > Y — T vy ?é Xo.

Tj, 85 Z 0
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The inner minimization is captured by the function [(t), which is given by

[(t) = min E riwi—l—g S;U;
Ti,8:, 1€ X0

1€Xp i€ Xo

s.t. s; + tTD.,i > Y
ri +t'D.; >y, Vie Xo.

Ti,8; > 0

J
Note that in this inner minimization problem, the same constraints act on s; and r;. Since
w; and v; are nonnegative, there exist optimal solutions s; and r; that are equal and set
to their lower bounds s; = r; = max{y; — t'D.;,0}. Therefore, ZieXo s;w; — ryw; = 0,

which means h(x,y) < h(x,y). O

Using Proposition 2.4.1 and problem (D’), the constraint (LC) can be reformulated as

t'd+r'We+s'v<b
s'+t' D>y’

r' +t' D>y’ —x'II
r,s,t > 0.

Note that this reformulation does not contain any bilinear terms and includes fewer con-
straints than the standard Big-M formulations. Additionally, Proposition 2.4.1 allows us

to replace h(x,y) with h(x,y). This is important because h(x,y) is convex in (x,y).
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Therefore, cut generation algorithms can be used to solve this problem which is not pos-
sible for the original problem with the constraint (LC). In the following, we discuss the
matrix IT.

Estimation of II  The following proposition sheds light on how to estimate IT.

Proposition 2.4.2. If D and y are element-wise nonnegative, then m;(x,y) < y;

V(x,y) for constraint (LC) under the uncertainty set U™.

Proof. Consider the following problem for some index ¢
F(0) = max y'€

s.t. D€ <d 'q
(2.1)

E<v+W(e—x)+0e :m
§£>0.

Let &, be the optimal solution at § = 0 and the corresponding optimal dual variables are
qo and 7. Let the optimal basis of the above problem be given by some matrix B. Since
&, is the optimal solution, the vector of basic variables is given by 569 = B~ 'b, where b
denotes the RHS vector of problem (2.1),i.e., b=[d",v' + (e — X)TW]T. Assume that
the solution is non-degenerate. This means B™'b > 0. Then for a small enough change
in b, the optimal basis does not change. If it is degenerate, then b can be perturbed
by a small € to obtain a non-degenerate solution, which only marginally changes the
objective [see, e.g., 19].

When 6 > 0 is small enough, the basis matrix does not change. This means that both

solutions (corresponding to # = 0 and 6 > 0) have the same dual variables because the
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dual variables do not depend on the RHS vector. This means

F(6)— F(0) = wv+ 7o W(e—x)+0mje; +qjd—mjv—m) W(e—x)—qpd
= o, e;,
which represents the change in the objective value. Let &, be the optimal solution of the

problem with 6 = 0 and &, be the optimal solution of problem with # > 0. Then the

change in the objective value is
Omjei=y & —y'&.
Using Lemma 2.4.1, we can state that

Qﬁgei = YTEQ - YT50

< y'&+0yle—y'E,

= Oy'e;.

This implies that my; <y; Vi. [

Corollary 2.4.1. Proposition 2.4.2 allows the estimation of II by
T; = max yTei
y
(2.2) st. (x,y) €Y
x; € {07 1}7

where set Y denotes the remaining constraints of the original full problem.
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Lemma 2.4.1. If the matriz D is element-wise greater than 0, then &, < &, + Oe;.

Proof. Suppose this is not true, i.e., there exists at least one index k such that
Cox > Eox + Oe; k. In addition, it holds that for 6 > 0, y &, > y'&,.
If k # i, then &) < v+ W (e — x), which suggests &, to be feasible for the problem with
6 = 0. This would contradict the optimality of &,.
If k =1, then &; > &, + 0. However, this results in £, < &, —fe; < v+ W (e —x). Since
D(&y —be;) = D&y — 0De; < d —0De; < d, & — Oe; is a feasible solution to the problem
with § = 0. However, this indicates that y' (€, — fe;) > y '€, which also contradicts the

optimality of §,. Therefore, we can conclude that £, < &, + fe;. d

This proposition allows us to estimate 7; by setting it equal to the maximum value that
y; can take in the overall problem. In some cases, such as shortest path or facility location
problems, this is straightforwardly estimated from the underlying model. With this, all
components of the decision-dependent problem with the polyhedral uncertainty set U
can be computed efficiently for practical size problems. We now extend Proposition 2.4.1

to more general uncertainty sets.

2.4.2. Extension to conic sets

Given a convex cone K, the decision-dependent uncertainty set Z/{ﬁ(x) can be extended
to

U(x)={¢|d-DE¢ek, £E<v+W(e—x)&>0}.

Here d and D are coefficients and v and W = diag(w) denote upper bounds to the

uncertain component & The objective is to reformulate the constraint y'¢ < b, V€ €
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UX(x). In order to satisfy this constraint for all & € U*(x), its LHS can be expressed

with the following two problems:

h(x,y) =
h(va) =
max (y —Tx) € +y'¢
max y & ’
¢ st. d—Dg& e
(KP) st. d—-D€ek (KP)

£ < We
E<v+W(e—x) : w(x,y)

¢<v
£>0,

§¢>0.

Here, 7(x,y) denotes the dual variable for the corresponding constraint. Let IT be an
element-wise upper bound on the dual variables 7 (x,y). The following proposition shows

that the problems (KP) and (KP’) have the same optimal objective value.

Proposition 2.4.3. If Vx € {0,1}" there exists a point & such that d — DE lies in

the relative interior of K and 0 < & < v + W (e — x) with v, W > 0, then for all x,y:

h(x,y) = h(x,y).

The proof of this proposition proceeds similar to that of Proposition 2.4.1. Strong
duality holds due to the assumptions on the uncertainty set [15, Proposition 5.3.1]. This
proposition allows us to utilize the convex counterpart of the function h in what follows.

For a complete proof, refer to [82].
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Using Proposition 2.4.3 and the dual problem of (KP’), the constraint (LC) can be
reformulated as
t'"d+r " We+s'v<b
s'+t' D>y’
r' +t' D>y’ —x'II

te K" r,s >0,
with the dual cone K*. Note that this reformulation has only linear terms and, as we
will see in Section 2.5, fewer constraints than the standard Big-M formulation, hence it is
more suitable for larger sized problems. The proof of this formulation proceeds parallel
to that of Proposition 2.4.1.

In summary, these results allow the modeling of uncertainty sets with reducible upper
bounds. Such bounds motivate the notion of proactive uncertainty control. It mitigates
conservatism and better actualizes the tradeoff between cost of control and disadvantage
of uncertainty, both of which are instrumental parts of many real-world applications.
Until now, we discussed the special polyhedral set U™, The following section provides a

reformulation of problem (RO-DDU) under general polyhedral uncertainty sets.

2.5. Extensions to General Polyhedral Sets

The previous section leveraged the specific structure of the uncertainty set to obtain
smaller reformulations. The Big-M reformulation, however, has the advantage of not re-
quiring any special set structure. For completeness and a comparison of formulation sizes,
the following proposition reformulates problem (RO-DDU) for the general polyhedral set
Ur(x).
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Proposition 2.5.1. If the uncertainty set U;(x) is a polyhedron as in UT(x) with
D; e R™*P d; € R™, and A; € R™*" and if x is binary, then the robust counterpart

of problem (RO-DDU) is

min c¢'x+f'y
X7y’w7ﬂ

my n
s.t.oa, x+mw d; + Z Z Ajjrwie < b;
=1 k=1 Vi

T T
5 D, = y
Wik < Mxg, wijr < 7

wijk Z 7Tij — M(l — l‘k) \V/i,j, k

mij 2 0, wijr >0
x € {0,1}",

where M 1is a sufficiently large number.

Proof. We consider two cases, namely: Case 1: There exists a feasible solution (x,y)
to (RO-DDU). Therefore, x and y must satisfy all constraints a; x+£, y < b; V€, € U;(x)
for all 7. This is equivalent to

(2.3) a, x + max)&?y <b; Vi

If this problem is feasible and has a finite optimal solution, then by strong duality, the

corresponding dual problem has the same objective value. Problem (2.3) can now be
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expressed as

a/ x + 7 (d; + Ax) < b,

(2.4) 7/ Di=y' Vi,

7

J
where 7; € R™ is the dual variable for constraints corresponding to the uncertainty set
U;(x). Here m; refers to the number of constraints in the set U;(x). Since the primal
problem is feasible and finitely valued, there exists a 7r;, for which the constraints (2.4)

are satisfied. Therefore, the original problem (RO-DDU) can be written as

min ¢'x+f'y
™, X,y
S.t. aiTx + ﬂ'deZ- + wiTAix < b;
D=y’ Vi.

J
Note the bilinear term in the first constraint. By expanding the variable space, the ith

constraint can be rewritten as

m; m; n
. :
a;, x + g Tijdij + E E Ajjrwije < b;, with wije = 755y,

j=1 j=1 k=1

In the bilinear term, w;j; = m;;xy, x) is binary, allowing to rewrite the term as

wige < i, 0 < wigy < Mg, wi, > my — M(1 - xy),
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where M is a sufficiently large constant. Consequently, the problem (RO-DDU) can be

reformulated as

min ¢'x+f'y
x’y

m; n
st. a)x+mw d; + Z Z Ajjrwigr < b;
j=1 k=1 Vi

T T
5 D, = y
Wijr < Mxy, wijr < mj

wijk Z 7Tij — M(l — C(]k) Vi,j, k

;> 0, wip >0
x € {0,1}".
Case 2: Problem (RO-DDU) is infeasible. Then the reformulation in (2.5) is infeasible.
To show this, consider the original problem (RO-DDU).
Suppose this problem is infeasible under the assumptions of Proposition 2.5.1. This
means that Vx : 3¢ € U(x) such that a]x + E:y > b;. Consequently, the constraint
a/ X + maxe, cuf; (x) €y > b; holds for at least one i. Using the dual of the inner problem,
the constraints can be written V; as
a;l—X + 7l';r (dz + AIX) > b;
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Now, assume that the reformulation in (2.5) is feasible. Given its constraints, there
exists a binary vector x and a vector w such that w;;, = m;;x;. However, this implies a
variable 7; = (m;1, T2, - - ., Wik, - - -, Tim, ) that satisfies 7riTDi =y', m >0and

m; m; n

-

a, x+ E miidi; + E E Ajjrmigrg < b
=1

j=1 k=1
This contradicts the earlier assertion in (2.6) that there exist no such ;. O

This proposition allows us to reformulate the original decision-dependent RO problem
as a mixed integer linear program which can be solved for many realistic size problems
using off-the-shelf algorithms. Such mixed integer reformulations can also be provided for
general convex uncertainty sets [14], which includes conic and budgeted structures. Their
proofs (not shown) proceed parallel to that of Proposition 2.5.1.

Note that problem (RO-DDU) has n binary and p continuous variables, along with
m constraints. The i*! uncertain &; lies in an uncertainty set with m; constraints. Ta-
ble 2.1 presents the size of the reformulation under two settings: (i) x is binary as in
Proposition 2.5.1 and (ii) z; can take s possible values. For the sake of clarity, we assume
that m; = K Vi, where K is some constant. Table 2.1 shows that for (ii), the size of the
reformulation increases rapidly with growing s. In certain cases, it is possible to improve

the Big-M reformulation by imposing mild assumptions, as we will discuss next.

Nature of x | Binary var. | Continuous var. | Affine constr. Sign constr.

Binary n p+mK +nK | m+mp+3nkK mK(n+1)

Finite valued | (n+ 1)s p+mKk m +mp + 2n mK (ns+ 1)
+nmK(s+1) +nmK(3s + 1)

Table 2.1.  Size of Big-M formulation of (RO-DDU) for ¢;(x) with respect
to (i) x € {0,1}" and (ii) x € R™ with z; taking s possible values: dim(y) =
p, K constraints in U;(x), and m constraints in the complete problem.
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2.5.1. Modified Big-M Reformulation

Consider the uncertainty set 4" (x) to be expressed as

n

j=1
To overcome the poor numerical performance of standard Big-M reformulation due to
its weak relaxations, we impose the mild assumption that all elements of the coefficient
matrix A are non-negative. Proposition 2.5.2 reformulates constraint (LC) for U"(x)

under this assumption.

Proposition 2.5.2. If A;; > 0 Vi,j, then the constraint (LC) with the uncertainty

set UP(x) and a large constant M can be reformulated as

i=1

i=1 j=1
Z mDij = y;, vj
i=1
tz’j 2 WiAz'j - M(]_ - .Z‘j)
Vi, j.
m >0, t;; >0
Proof. The LHS maximization problem for the constraint (LC) can be written as
msax y '

j=1
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Using the dual of this problem, the original constraint y'¢ < b V& € UY(x) can be

written as
i mi(d; + i Ajxj) <b
i=1 j=1
(2.7) Zm:WiDij =y; VJj
i=1
7T > 0.

The constraints in (2.7) can be rewritten by expanding the variable space as

i=1

1=1 j=1
ﬂ-iAijxj S tij VZ,j
(2.8) i
Z 7riD1] yj V]
i=1
T>0

If there is a variable 7 feasible for the set of equations given by (2.7), then we can find a
feasible variable for (2.8) by ¢;; = m;A;;z;. On the other hand, if there exists a feasible
solution to (2.8), then it is also feasible for (2.7). If x; = 0, then ¢;; > 0 and if z; = 1,

then ¢;; > m;A;;. This can be expressed as the following set of constraints

0 S tj 2 WiAij —M(l —l’j).

which completes the proof. O
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The Proposition 2.5.2 leverages the fact that the variable ¢;; remains at its lower
bound, making the upper bounding constraints from the Big-M linearization redundant.
However, if ¢;; can be negative, the two lower bounding constraints are not sufficient.

In some cases, it is possible to reformulate the problem even if the RHS coefficients

Formulations Problem M
Constraints
t'd+r' ' We+s'v<b C:m+2n
i s'+t' D>y’ —
r,s,t > 0. S:m+2n
t'd+s'v+s We— ZT" <lb
- C:m+2n

' s'+t D>y’ —_—
Big-M wis; — M(1 —z;) <r; < Max; A:1+44n

T < w;s; S:m+2n
r,s,t > 0.
t'd+s'v+re<b C:m+2n
Modified s'T+t' D>y’ -
Big-M ri > w;s; — Mz, A:1+42n
r,s,t> 0. S:m+2n

Table 2.2. Comparison of (LC) reformulations for the set #™(x) (C: Con-
tinuous, A: Affine, S: Sign).

are negative. Consider the shortest path example presented in the introduction, which
has constraints of the form & < 1 — v.x.. Here, the coefficient A, = —~, is negative.
However, we can rewrite the constraint as & < (1 —.) + 7.(1 — x.) and apply the Big-M
linearization on the variable (1 — z.) instead of on z.. This substitution allows the use
of the modified Big-M reformulation in more general settings. We report the numerical
performance of this approach in comparison with the earlier reformulations in Section 2.6.

For a comparison, we reformulate the constraint (LC) over the uncertainty set U™ (x)
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using all three presented techniques, namely (i) I, (ii) Big-M, and (iii) Modified Big-M.
Table 2.2 presents this comparison along with the corresponding problem sizes. The sign
constraints correspond to (+ > 0), which are presented separately since they can be solved
more efficiently. It displays that the primary difference between the Big-M and the other
two reformulations is the larger number of affine (linear) constraints. To gain intuition
and provide computational comparison between the different formulations, we extend the

introductory example of Section 2.1 to a more detailed numerical experiment.

2.6. Numerical Experiments

Shortest path problems on networks constitute a general class of models, describing
the most efficient connection between a source and target. Deterministic shortest routing
problems can be solved with polynomial time algorithms [37]. However, this does not
hold for uncertain arc lengths. Past research on robust shortest path problems focused
on scenario-based [103], cardinality [17], and interval uncertainty [7, 106]. Despite a
large body of literature, to the best of our knowledge, there is no work in the context of

uncertainties that depend on decisions. To this end, our goals are:

(1) Comparing the numerical performance of different robust formulations,

(2) Measuring the benefit of proactive reduction as a function of size, budget, or cost
of reduction,

(8) Measuring the number of arcs in the shortest path as a function of size, budget,
or cost,

(4) Evaluating the price of robustness and the benefit of interacting with uncertainties,

and
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(5) Comparing the average and worst-case cost of decision dependence for RO and

SO.

Here, we aim to model challenges that arise, e.g., in scenario planning of natural
disasters. When sections of a transportation network are damaged, the actual travel
times along arcs become uncertain. To plan for such a scenario, a decision-dependent RO
solution can determine the arcs which should be strengthened (by reducing uncertainty)
in order to improve the performance in an actual disaster. This strengthening incurs a fee.
This means that it is possible to mitigate the impact of a disaster by managing the damage
of a few particular arcs. Similarly, for transportation problems (e.g., air, ground), travel
time can be improved by acquiring additional traffic or weather information on segments
of the network.

To illustrate this setting, we discuss a problem on a graph G = (V, A, d(+)) for the set of
nodes V, arcs A, and the distance function d(+). The objective is to find the shortest path
from the source to the target node (s — t) when the actual realized distances from node
i to j are uncertain and a function d;;(€) = (1+ 1 &;) d;; of €& The variable z;; decides
whether to reduce the maximum uncertainty in d;;. This inquiry comes at a cost ¢;;, which
can be motivated as an investment in road improvement and is imposed on travelers via
taxes or tolls. The parameter &€ resides in a cardinality constrained uncertainty set with

reducible upper bounds. The complete problem is given by

Ifcliyngegls&}?%x) > cmit Y di(€)yi
(SP) ’ (1) €A (i.j)EA

st. xe X C{0,1}H yev,
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where y;; decides whether the arc (4, j) lies in the shortest path. X denotes any constraints

on x and Y the set of routing constraints. The uncertainty set is given by
U (x) =€ Z §ij <T, & < 1— iy, & >0 V(i,5) € A
(1,5)eA

We solve problem (SP) using the three different formulations: (i) IT—formulation from
Proposition 2.4.1, (ii) standard Big-M formulation, and (iii) Modified Big-M formulation

from Proposition 2.5.2. In Table 2.3, X xY denote the collection of both the shortest path

iabl
rorm. Problem Comsitain
min f(x, Y)+pr+z qij (1 =)+ Z Tij Vil B: 2l Al
qQ,r,p (i,5)€EA (i,5)€A C 2|A|+1
1] st. p+qij 2 viidiy _;ijdijwij
o Yiidi A |V]42] A
N S:2|4] + 1
p7qu,7“u20 X}’EXXY
mlnf X,Y) pF—l—Z Qij — Z YijTij
aip (i,4)€A (i,j)€A B: 2| A]
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Table 2.3. Shortest path formulations for the set U (x) (B: Binary, C:
Continuous, A: Affine, S: Sign).

and decision constraints. Furthermore, f(X,¥) = > ;e Cii%ij + D j)ea dijy;; denotes
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the total cost of reduction and nominal length. Table 2.3 shows that the difference between
the Big-M formulation and the other two formulations lies in the number of affine (linear)
constraints, as in Table 2.2. We now discuss the numerical experiments.

Ezxperiment 1: Performance Comparison  The numerical setup is as follows. We
randomly generate points on a 100 x 100 area and connect them to create a complete
graph. The two furthest nodes constitute the source and destination. The final graph
is selected after removing 60% of the longest arcs in order to avoid direct connections
between the source and destination. The uncertainty budget I' is set to 2. The cost
of reduction ¢;; = ¢ and the fraction of uncertainty reduced 7;; = v are 1.0 and 0.2,
respectively. For each size |V| = {50,75,...,300}, 100 random graphs are generated.
These values serve as an illustration of the qualitative comparison of the formulations. In
practical applications, they need to be estimated from the economical value of travel time

(d;;) relative to the per-trip tax burden for road investments (c;;).
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Figure 2.2. Comparison of median solution times of reformulations from
Propositions 2.4.1, 2.5.2, and the standard Big-M.
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Computational Setup. To solve these problems, we used the Gurobi 7.0 solver on a
commercially available computing unit with Intel Core i7 at 3.6 GHz. We reformulated
the decision-dependent RO problem as a mixed integer linear program and implemented
it using the JuMP library in the Julia programming language v0.6.

The median computation times for different approaches and varying sizes are reported
in Figure 2.2. Note that all three methods lead to the same solution. The observations

from Figure 2.2 can be summarized as follows.

e The time increases with growing |V| for all formulations. However, the increase
is less steep for the IT and the Modified Big-M formulation than for the Big-M
formulation.

e The difference between the Big-M and the proposed formulations increases with
growing |V|. This highlights the advantage of the IT and Modified Big-M formu-
lation for larger graphs.

e The median time of the Modified Big-M formulation is less than that of the

TI-formulation.

Figure 2.2 highlights the benefits of using the proposed formulations to solve such decision-
dependent optimization problems. While the performance of the Modified Big-M and IT
formulations are comparable over a broad range of network sizes, the subproblem in the IT
reformulation is convex, which can be exploited by cut-generating methods, which may be
computationally advantageous. We also solved the IT formulation using a cut generation
approach (not shown). However, for this application, it converged slowly and required a

sizable number of cuts.
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We now focus on analyzing how the solution changes as the parameters of the uncer-
tainty set are varied. For this purpose, we introduce additional notation for observable
quantities.

Notation for Observables. The number of arcs in the shortest path is n*, which is
a function of the budget I" and the level of uncertainty reduction v. These parameters

create three scenarios:

(i) mominal case, where no uncertainty is present, n*(I' = 0,y = 0);
(i) standard robust case with no decision dependence, n*(I' > 0,y = 0); and
(741) decision-dependent robust case with uncertainty reduction n*(I' > 0,7 > 0), in

which case n is the number of arcs whose uncertainty was reduced.

We also follow this notation for the optimal objective value z*. Consequently, the differ-
ence (z*(F >0,y=0)—2('=0,y = O)) constitutes the price of robustness, whereas
the difference (2*(I' > 0, = 0) — z*(I' > 0,7 > 0)) constitutes the benefit of interaction.

There are four parameters that govern the effect of interactions with uncertainty:
v, V|, ¢, and T'. To evaluate their role and to infer the underlying mechanism, we devise
four experiments by tuning across their range. Specifically, by adjusting one parameter
while keeping the other three fixed, we explore four orthogonal settings.

In these experiments, the problem (SP) is implemented on randomly generated graphs
of [20 — 50] nodes. This size is comparable to moderately sized transportation net-
works [78]. For each size, 2000 graphs are generated in a manner similar to the previous
experiment. We maintain these parameter values throughout the following experiments,
except in those where their change is probed. In the following, we discuss the four exper-

iments.
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Ezperiment 2: Uncertainty Reduction. We compare z*, when reduction is permitted
(v > 0) or not (y = 0). Figure 2.3a shows that v > 0 reduces z* (shorter paths), which
is independent of |V|. The inset of Figure 2.3a is a magnification, displaying marginal
fluctuations that stem from the random nature of graphs.

Ezxperiment 3: Graph Size. We observe that not all arcs in the shortest path experience
uncertainty reduction (n < n*(I' 