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ABSTRACT

Optimization under Variable Uncertainty

Kartikey Sharma

In this dissertation, we study models and methods to address uncertainties that can vary

in optimization problems. Robust optimization is a popular approach for optimization

under uncertainty, especially if limited information is available about the distribution of

the uncertainty. It models the uncertainty through sets and finds a robust optimal solu-

tion that is feasible for all realizations of the uncertainty within the set and is optimal

for the worst-case realization. The structure of these sets determines the complexity of

the resulting optimization problem. In most models, the uncertainty set is assumed to be

exogenous i.e., pre-determined and is unaffected by decisions or other uncertainty realiza-

tions in the problem. This thesis introduces endogenous uncertainty models, which may

be affected by decisions that are made in the problem or by other uncertainty realizations

within the problem.

In the first chapter, we take a step towards generalizing robust linear optimization

to problems with decision dependent uncertainties. We show these problems to be NP-

complete in general settings. To alleviate these computational inefficiencies, we introduce
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a class of uncertainty sets whose sizes depend on binary decisions. We propose reformu-

lations that improve upon alternative standard linearization techniques. To illustrate the

advantages of this framework, a shortest path problem is discussed, where the uncertain

arc lengths are affected by decisions. The proposed notion of proactive uncertainty con-

trol provides modeling and performance advantages, and mitigates over conservatism of

common robust optimization approaches.

While the impact of the decisions on the uncertainty set was fixed in the first chap-

ter, we extend the decision-dependent models to allow for uncertainty in the influence of

decisions on the sets in the second chapter. Here, the exact impact of the decision on the

uncertainty set itself may be uncertain. This situation arises in many practical settings

where the decision’s impact may not be known a priori. It is especially relevant for prob-

lems in which the decision is on the gathering of information. We leverage robust and

stochastic optimization to incorporate uncertain influence into the optimization problem.

We then evaluate the performance of these models on a power systems unit commitment

problem.

The third chapter discusses the topic of Connected Uncertainties, i.e., uncertainty mod-

els in which past realizations influence future uncertainties. For this class of problems,

we develop a novel modeling framework that naturally incorporates this dependence via

connected uncertainty sets, whose parameters at each period depend on previous uncer-

tainty realizations. To find optimal here-and-now solutions, we reformulate robust and

distributionally robust constraints for popular set structures and demonstrate this mod-

eling framework numerically on broadly applicable knapsack and portfolio optimization

problems.
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In the fourth chapter of the thesis, we leverage the idea of connected uncertainty to de-

velop robust adaptive classifiers for streaming data. Classification algorithms are effective,

when data can be modeled by time-invariant distributions. In streaming settings, a classi-

fier needs to be updated continuously, and hence static classifiers lose their reliability over

time. We consider streaming data sets in which the behavior of each class can be mod-

eled by a time series. For classification of such streaming data, we extend the Minimax

Probability Machine to incorporate a time series model using the principles of connected

uncertainty sets. We illustrate the new methods by numerical experiments on synthetic

data.

Overall, this thesis led to insights in two directions. First, we introduced uncertainty

sets which depended on decisions. This enabled us to model reducing the uncertainty

at a price, which is common in practical applications. This approach also allowed us

to capture many problems in which the uncertainty naturally depends on decisions. In

the second direction, we studied multi-period problems where today’s uncertainty can

affect the uncertainty tomorrow. This led us to capture correlations over time, which are

common in many applications. Our future goal is to further extend this work in both

directions. Specifically, we want to solve larger unit commitment problems, solve the

problem of continuous variables affecting uncertainty sets and merge decision dependent

and connected uncertainties.
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CHAPTER 1

Introduction

Optimization problems are a corner stone of modern life. They occur in many appli-

cations and solving them is key to improving the performance of various systems. General

optimization problems are of the form,

(1.1)

min
x

f(x)

s.t. gi(x) ≥ 0 ∀i ∈ I

x ∈ X .

Here, the goal is to find a decision x that lies in the set X , satisfies the constraints

gi(x) ≥ 0 ∀i ∈ I, and minimizes the objective. In practical applications, the set X and

the constraints gi(x) ≥ 0, represent physical limitations, budgetary constraints, or model

assumptions etc. The objective function f(x) represents factors such as cost, utility, flows

etc. These functions f(x) and gi(x) are constructed from real systems and as such use

various parameters and their estimates. They may also use some parameters whose values

are inherently uncertain and cannot be known a priori. These sources of uncertainty limit

the scope of the problem (1.1), as any solution arising from this problem depends on

the parameter estimates used. If the true value, or the realization of the parameters, is

different from the estimate, it may lead to suboptimal or even infeasible solutions. This

danger is particularly relevant for optimal solutions since they tend to exist on boundaries.
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Two well-established approaches for optimization problems under such uncertainty are

stochastic and robust optimization.

Stochastic Optimization

Stochastic optimization (SO) assumes that the source of uncertainty can be described by

a distribution that is known to the decision maker. This distribution is leveraged to solve

the optimization problem. A general form of a SO problem is,

(1.2)

min
x

E[f(x, ξ)]

s.t. P[gi(x, ξ) ≥ 0 ∀i ∈ I] ≥ 1− α

x ∈ X .

Here, we minimize the expected value of the objective function while trying to satisfy the

constraints with probability 1 − α. SO problems are primarily solved using techniques

which leverage the structure of the optimization problem. These methods include Sample

Average Approximation [87] to approximate the expectation and the chance constraints,

cut generation methods for multistage problems [34], approximation techniques [26] for

evaluating solutions etc. These approaches leverage the structure of the optimization

problems to make up for the increase in problem size due to the existence of scenarios.

Robust Optimization

A key requirement for SO problems is the knowledge of the distribution which may be

unavailable in some settings. Robust optimization (RO) is a computationally attractive

alternative [12, 22] to SO, where we only require knowledge of the set, in which the
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uncertainty lies. RO problems can be expressed as following

(1.3)

min
x

max
ξ∈U

[f(x, ξ)]

s.t. gi(x, ξ) ≥ 0 ∀ξ ∈ U , ∀i ∈ I

x ∈ X .

In problem (1.3), the uncertainty is assumed to lie in a set U . We optimize for the

worst-case objective over all ξ in this set. Any solution x is required to be feasible for

all possible realizations of the uncertain parameter in U . The method of RO has been

developed considerably and applied to problems ranging from portfolio management [45],

to healthcare [30], to electricity systems [74], and to engineering design [21].

The geometry of the set U also determines the computational tractability of the prob-

lem. For example, certain combinatorial RO problems achieve a tractable reformulation

when the uncertain objective coefficients reside in a cardinality constrained set [3, 18]. The

size of such sets controls the magnitude of possible uncertainties, to which the solution is

immune. It also establishes probabilistic guarantees of constraint satisfaction.

Distributionally Robust Optimization

When the adversarial uncertain components exhibit probabilistic characteristics, distribu-

tionally robust optimization (DRO) offers an alternative approach by replacing standard
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uncertainty sets with ambiguity sets over distributions [35, 48],

(1.4)

min
x

max
P∈U

E[f(x, ξ)]

s.t. P[gi(x, ξ) ≥ 0 ∀i ∈ I] ≥ 1− α ∀P ∈ U ,

x ∈ X .

Here, we consider the worst-case expectation over all distributions lying in the set U .

These sets can be characterized by moments [99], by distance measures [13, 39, 43], or by

hypothesis tests [23]. DRO techniques have been applied to a broad range of applications,

such as portfolio management [79], simulation [66], and supply chain [42] problems.

Adjustable Robust Optimization

Most RO approaches focus on static here-and-now solutions. However, the benefits of

these solutions are limited in many settings, especially those that can accommodate adap-

tation. The extension of RO to multistage problems [11] has revealed the deficiencies of

static here-and-now solutions. Since these solutions do not adapt to uncertainty realiza-

tions, they lead to highly conservative solutions. Wait-and-see decisions adapt to uncer-

tainty realizations like recourse in SO. Such an adjustable robust optimization (ARO)

problem can be expressed as

(1.5)

min
x
f(x) + max

ξ∈U
min

y∈Y(x,y,ξ)
h(x,y, ξ)

s.t. x ∈ X .

In this problem, the second-stage decision y can adapt to the uncertainty realization

ξ. This approach improves the solution quality at the expense of higher computational
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complexity. Decision rules can provide a smooth trade-off between complexity and solution

quality [62] for ARO problems, by limiting the flexibility of the second-stage decision y.

This makes solving the problem easier but leads to suboptimal solutions to the original

problem. In the context of multistage DRO, solutions adapt to the realization of the

uncertainty instead of adapting to the realized distribution. Non-anticipative decision

rules can be leveraged to provide tractable reformulations for moment-based uncertainty

sets [38, 48]. Furthermore, adaptability has been extended to ambiguity sets defined by

the Wasserstein metric with a conic reformulation for a two-stage DRO problem [50].

Uncertainty Models

RO and DRO problems, both use sets to model the uncertainty. As mentioned earlier, the

geometry of the uncertainty set determines the computational tractability of the robust

problem as well as the amount of protection provided against the uncertainty. Some

commonly used standard uncertainty sets for RO problems are

• Elliposidal Uncertainty set {ξ | ξ = µ+ Lu, ‖u‖2 ≤ r}

• Polyhedral Uncertainty set {ξ | Dξ ≤ d, ξ ≥ 0}

• Cardinality Constrained Uncertainty set

U =

{
ξ
∣∣∣ N∑

i=1

|ξi − ξ̄i|
ξ̂i

≤ Γ
√
N, ξi ∈ [ξ̄i − Γξ̂i, ξ̄i + Γξ̂i]

}
.

Depending on the constraint being reformulated, the uncertainty set used, and the true

nature of the uncertainty, it is possible to achieve probabilistic guarantees on the con-

straint satisfaction of the robust solution [18]. For DRO problems, the uncertainty sets
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are over distributions instead of uncertainty realizations. These sets are described by

moments or metrics on the space of distributions. For example

• Moment Uncertainty set {P ∈ M |
∫

Ξ
dP (ξ) = 1,

∫
Ξ
ξdP (ξ) = µ}, where M is

the set of finite measures

• Ball uncertainty set {P ∈M | d(P, PN) ≤ r} where PN is a nominal distribution

and d(·, ·) is a metric on the space of distributions.

For both static and adaptive decisions, RO models primarily use pre-determined un-

certainty sets. These sets are unaffected by the decisions being made in the optimization

problem or by other uncertainty realizations in the problem. Our goal in this dissertation

is to address RO problems where the uncertainty set can be variable and affected by either

the decisions in the problem or other uncertainty realizations.

Notation

Throughout this dissertation, we use bold lower and uppercase letters to denote vectors

and matrices. Scalars are marked in regular font. All vectors are column vectors and the

vector of ones is denoted by e. For any given matrix A, the ith row is denoted by Ai,• and

the jth column is denoted by A•,j. Furthermore, diag(•) denotes a diagonal matrix with •

on the diagonal and zeros elsewhere. LHS denotes left-hand-side and RHS denotes right-

hand-side. We use the phrases “decision-dependent” and “endogenous” interchangeably.

Similarly, we refer to variables affecting an uncertainty set as influence variables. To

streamline the exposition, we use “uncertainty set” for both the RO and DRO settings.

For the former, the set is over parameters and for the latter it is over distributions and is
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also known as an ambiguity set. T denotes the total time periods, τ refers to a particular

time period, t serves as an index, and e is a vector of all ones.
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CHAPTER 2

Decision Dependent Uncertainty

2.1. Introduction

RO employs uncertainty sets that are predetermined and, hence, exogenous. How-

ever, in many real-world problems, the uncertainty can be affected by decisions. In such

decision-dependent cases, the uncertainty set is endogenous. Despite the wide prevalence

of such uncertainties in real-world settings, these problems have not received much at-

tention in the past, largely due to computational intractabilities. In this chapter, we

take a first step towards robust linear optimization problems with endogenous uncertain-

ties and provide a class of uncertainty sets, whose reformulations improve over standard

techniques. Specifically, we study a single-stage RO problem with decision-dependent

uncertainty sets

(RO-DDU)

min
x,y

c>x + f>y

s.t. a>i x + ξ>i y ≤ bi ∀ξi ∈ Ui(x) ⊆ Rn ∀i = 1, . . . ,m,

where x ∈ Rn and y ∈ Rn represent decision variables, which need to satisfy each con-

straint i = 1, . . . ,m for every realization from the set Ui(x) that bounds the uncertain

parameter ξi. Further, the parameters defining Ui(x) depend on decisions x. We first

study the complexity of (RO-DDU) for polyhedral Ui(x). We then assume x is binary
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and provide reformulations for special classes of polyhedral and conic uncertainty sets and

conclude with numerical experiments.

To show the range of applicability of this model, we illustrate two examples.

Example 1: Uncertainty Reduction. In facility location or inventory management

problems with uncertain demand, the uncertainty can be reduced by spending resources

to acquire information. Similarly, in healthcare problems, additional medical tests can

improve the diagnosis. This type of uncertainty reduction is characteristic of many real-

world problems. In order to improve solutions, decisions on uncertainty reduction have to

be included into the optimization problem, making the uncertainty a function of decisions

on acquiring additional information.

Example 2: Shortest Path on a Network. Consider the graph in Figure 2.1 with the

arcset A and let the uncertain length for any arc e be de = d̄e(1 + 0.5ξe), where d̄e

denotes the nominal value. The uncertain vector ξ lies in the uncertainty set U(x) ={
ξ | 0 ≤ ξe ≤ 1− 0.8xe ∀e,

∑
e∈A ξe ≤ 1

}
. The binary decision xe determines whether to

reduce the maximum possible uncertainty ξe to 0.2 (xe = 1) or leave it at 1 (xe = 0). For

simplicity, we assume the reduction to be possible for at most one of the arcs.

A BC

E
F

G

H

15.3
23

20
.6

25.5

13

31 64

16

Shortest Path Path Nominal Worst-case
Nominal A−C−B 95 31 + 1.5× 64 =

127
Robust A−E−F−G−H−B 97.4 15.3 + 23 + 20.6+

1.5× 25.5 + 13
= 110.15

Endogenous A−E−C−B 95.3 15.3 + 1.4× 16+
Robust 1.1× 64 = 108.1

Figure 2.1. Shortest path on a network. Nominal lengths are labeled.
Worst-case and reduced-case lengths are displayed with dashed and dot-
ted lines. The table shows the lengths in different settings.
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Figure 2.1 displays a network with source node A and destination B. In the worst-

case, the nominally shortest path lengthens to 127 units. RO optimizes against this case,

improving the worst-case length. If it is permitted to reduce the uncertainty of an arc,

then A−E−C−B is selected with xC−B = 1 and the worst-case path becomes 108.5. This

example demonstrates that decision-dependent sets can be leveraged to model decisions

that mitigate the worst-case scenario.

The contributions of this chapter can be summarized as follows:

(1) We study robust linear optimization problems with a polyhedral decisiondependent

set for the uncertain parameters. We prove such problems to be NP-complete.

We also show that when decisions that influence the uncertainties are binary, the

problem can be reformulated as a mixed integer optimization problem.

(2) For binary x, we provide a class of uncertainty sets for which a more efficient re-

formulation of the decision-dependent RO problem is possible. The set structure

and the nature of decision dependence are leveraged to provide reformulations

with fewer constraints.

(3) We provide an improvement to Big-M linearization for bilinear terms which can

reduce the number of constraints.

This chapter also showcases the advantages that can be gained in both stochastic and

robust optimization by proactively controlling uncertainties.

We also emphasize what this chapter fails to address. Reformulations for continuous

decisions influencing the uncertainty are not provided. Furthermore, the primary problem
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in this chapter is a static optimization problem, i.e., the decisions do not adapt to un-

certainty realizations. In fact, it is the uncertainty set and the corresponding worst-case

realization that are affected by decisions.

Section 2.3 discusses the complexity of the decision-dependent robust linear optimiza-

tion problem. Section 2.4 introduces a class of uncertainty sets which allow improved re-

formulations. Section 2.5 provides a comparison to the corresponding Big-M formulation.

It also provides methods to improve these standard techniques. A numerical experiment

is discussed in Section 2.6 to illustrate the advantages of the decision-dependent setting

and to computationally compare the three formulations.

2.2. Background

In the following, we first review endogenous settings in SO before discussing RO ap-

proaches.

The notion of endogenous uncertainty in SO generally corresponds to scenario trees,

where decisions determine the probabilities. For example, Jonsbr̊aten et al. [58] consider

the cost of an item to remain uncertain until it is produced. The probability distribu-

tion depends upon which item is to be produced and when. Goel and Grossmann [46]

address the problem of offshore oil and gas planning, with the objective of maximizing

revenues and investments over a period of time, when the recovery and size of oil fields

are not known in advance. They provide a disjunctive formulation that is solved by a

decomposition algorithm. This approach is extended to a multistage SO problem for opti-

mal production scheduling, that minimizes cost while satisfying the demand for different

goods [47]. For package sorting centers, Novoa et al. [83] seek to balance the flow across
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working stations. Capacities are modeled via budgeted uncertainties where the budget

is a function of workstation allocation. These and other approaches address endogenous

uncertainties probabilistically.

In RO, the endogenous nature of uncertainty is imposed directly on the uncertainty

set itself. For example, Spacey et al. [91] address a software partitioning problem, where

code segments are assigned to different computing nodes to reduce runtime with uncer-

tain execution order and for unknown frequency of segment calls. They employ tailored

decision-dependent uncertainty sets. Such sets also occur as a result of reformulations.

For example, Hanasusanto et al. [51] use a finite adaptability approximation to adjustable

robust optimization (ARO), as introduced by Bertsimas and Caramanis [16], and consider

optimization problems with binary recourse decisions. For problems with uncertain ob-

jective and constraints, they provide a formulation with decision-dependent uncertainty

sets before finally reformulating it as a MILP. Poss [84, 85] considers combinatorial opti-

mization problems with budgeted uncertainty sets. This extends the work of Bertsimas

and Sim [18] to decision-dependent budgets. These works focus on budget uncertainty

sets with limited discussion on general sets. On the other hand, for a dynamic pricing

problem with learning, Bertsimas and Vayanos [20] consider 1 or ∞-norm uncertainty

sets for price-dependent demand. Specifically, the uncertain demand curve is driven by

past realizations of price-demand pairs. Since the price is a decision variable, this leads

to decision-dependent uncertainty sets. In the context of robust scheduling problems,

Vujanic et al. [96] consider a decision-dependent uncertainty set which is a vector sum of

a collection of sets. The sets in the vector combination are selected by a decision which

is a part of the original problem. They probe the performance of an affine policy for the
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problem. More recently, decision-dependent sets were studied in the context of control

problems with primitive uncertainty sets [104]. Note that in all approaches to date, the

decision dependence is modeled in a specific context, often driven by an application.

The journey of RO has also included measures to reduce conservatism. The original

RO formulation by Soyster [90] produced over conservative solutions for many applica-

tions due to the use of box uncertainties. Later, Ben-Tal and Nemirovski [10] provided less

conservative solutions by using general polyhedral and ellipsoid uncertainty sets. ARO

models [11] and decision rule approximations took another step in this direction by al-

lowing decisions to depend on the realizations [44, 55]. In this vein, decision-dependent

uncertainty sets offer a new avenue to reduce the level of conservatism. For example,

Poss [84] decreases it for cardinality constrained sets. This chapter also motivates the no-

tion of proactive uncertainty control by using decision-dependent sets to enable deliberate

uncertainty reduction.

2.3. General Decision Dependence

Robust linear optimization problems encompass a wide variety of applications, in

portfolio optimization, healthcare, inventory management, and routing, amongst others.

The tractability of robust linear programs provides a suitable starting point to analyze

the complexity of RO problems with decision-dependent uncertainty. Here, we investigate

a robust linear optimization problem as in (RO-DDU). The underlying uncertainty set is

endogenous and defined as follows.
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Definition 2.3.1. The set with constraint matrix D, constant vector d, and decision

coefficient matrix ∆ given by

UP (x) = {ξ |Dξ ≤ d + ∆x}

is a polyhedral uncertainty set with affine decision dependence.

Note that ∆ determines the influence of x on the set and can be estimated from the

data or from the context of an application. In Section 2.6, we quantify it for a specific

application.

The following theorem shows that RO problems with decision-dependent sets cannot

be reformulated in a tractable fashion, a departure from standard RO problems. This oc-

curs despite the fact that linear programs with polyhedral uncertainty sets have tractable

robust counterparts.

Theorem 2.3.1. The robust linear problem (RO-DDU) with uncertainty set UP is

NP-complete.

Proof. The proof follows the following steps:

(1) Consider an instance of the 3-Satisfiability problem (3-SAT) for a set of literals

N = {1, 2, . . . , n} and m clauses, which seeks to find a solution x ∈ {0, 1}n that

satisfies

xi1 + xi2 + (1− xi3) ≥ 1 for m clauses and i1, i2, i3 ∈ {1, . . . , n}.
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(2) Consider the following special case of (RO-DDU) with x ∈ Rn y ∈ Rm , z ∈ R

(RO-SAT) min
x,y,z≥0

{
−z | z − ξ>y ≤ 0, ∀ξ ∈ U(x), x,y ≤ e, −y ≤ −e

}
,

where U(x) = {(ξ1, . . . , ξm) | ξi ≥ xi1 , ξi ≥ xi2 , ξi ≥ 1− xi3 , ξi ≤ 1}.

Note that the 3-SAT problem is embedded in this set.

(3) By Lemma 2.3.1 (provided after these steps), the optimal value of (RO-SAT) is

−m, if and only if the 3-SAT problem has a solution.

(4) Problem (RO-SAT) is a special case of (RO-DDU) with polyhedral set U(x).

(5) Since the 3-SAT problem is NP-complete [31], problem (RO-DDU) is also NP-

complete.

�

Lemma 2.3.1. The 3-SAT problem has a feasible solution x, if and only if prob-

lem (RO-SAT) has an optimal value of at most −m.

Proof. ( =⇒ ) Suppose the 3-SAT problem has a feasible solution x. This means, x has

to satisfy

xi1 + xi2 + (1− xi3) ≥ 1 ∀i = 1, . . . ,m.

Since x ∈ {0, 1}n, for each i at least one of xi1 , xi2 , or 1 − xi3 must be equal to 1. Now,

consider the uncertainty set

U(x) = {(ξ1, . . . ξm) | ξi ≥ xi1 , ξi ≥ xi2 , ξi ≥ 1− xi3 , ξi ≤ 1 ∀i = 1, . . . ,m} .
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Since at least one of xi1 , xi2 , or 1 − xi3 equals 1, ξi satisfies ξi ≥ 1. This implies that

ξi = 1 ∀i is the only point in U(x). For this uncertainty set, the feasible solution is

x,y = 1, z = m. This leads to the optimal solution −z ≤ −m or z ≥ m.

( ⇐= ) Suppose (RO-SAT) has an optimal solution (x∗,y∗) with the objective value

of −z∗ ≤ −m. We first show that strict inequality is not possible. Assume −z∗ < −m.

The constraints in (RO-SAT) imply z∗− ξ>y∗ ≤ 0, i.e., ξ>y∗ ≥ z∗ > m ∀ξ ∈ U(x∗). The

constraints also imply y∗i = 1 ∀i. This means that
∑m

i=1 ξi > m ∀ξ ∈ U(x∗). However, the

construction of the uncertainty set yields ξi ≤ 1. This leads to a contradiction, because∑m
i=1 ξi 6> m, and hence −z∗ = −m. Thus, ξ>y∗ = m ∀ξ ∈ U(x∗). Therefore, we can

write
∑m

i=1 ξi = m ∀ξ ∈ U(x∗), which implies minξ∈U(x∗)

∑m
i=1 ξi = m. However, since

the uncertainty set implies ξi ≤ 1 ∀i, we can conclude that the sum can only be equal to

m, if ξi = 1 ∀i.

We now show that this result implies for each i at least one of x∗i1 or x∗i2 or (1 − x∗i3)

is equal to 1. Suppose this is not true. This implies ∃i for which x∗i1 < 1 , x∗i2 < 1 and

(1 − x∗i3) < 1. That means that we can construct ξ′i = max{x∗i1 , x∗i2 , (1 − x∗i3)} which is

an element of the uncertainty set and ξ′i < 1. However, this contradicts the result of

ξi = 1 ∀i. Therefore, if z∗ = m, then we can find a feasible solution for the 3-SAT

problem. �

Although problem (RO-DDU) is NP-complete, it can be reformulated as a bilinear or

biconvex program, which may be solved by global optimization techniques [e.g., 60]. For

binary decision variables x influencing U(x), the problem (RO-DDU) can be reformulated

as a MILP, using the Big-M method (see Section 2.5). However, they suffer from weak

relaxations.
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2.4. Structured Uncertainty Sets

The weak numerical performance of Big-M linearization can be overcome, if the deci-

sion x plays a decisive role in governing the elements of the uncertainty set. Specifically,

if the effect of x on the uncertainty set constraints can be modeled by penalizing the

objective coefficients, then the number of constraints in the robust counterpart can be

reduced. Here, we discuss the setting where x controls the upper bounds of the uncertain

variables. This mechanism can be expressed in the set:

Π-Uncertainty: UΠ(x) = {ξ | Dξ ≤ d, ξ ≤ v + W(e− x), ξ ≥ 0} .

Here, D ∈ Rm×n is a coefficient matrix, d ∈ Rm is the RHS vector, v ∈ Rn
+ are the mini-

mum upper bounds, and W = diag(w) ∈ Rn×n
+ (a diagonal matrix) are the incremental

upper bounds, which apply when reduction is not applied. For UΠ, the influence variable

is x ∈ {0, 1}n. The decision dependence in UΠ affects the upper bounds on each uncertain

component ξi. This means, if the problem allows influencing uncertainties, this set can

model proactive uncertainty reduction. One possible example is disaster planning, where

a decision to reduce the fragility of certain roads yields an improved worst-case outcome.

Another example is measurement applications, where a decision for additional expendi-

ture leads to increased accuracy. We employed such a set in Example 2 and discuss it

further in the numerical application.

We now discuss how this structure can be leveraged to reformulate the original prob-

lem (RO-DDU). Note that the objective function remains unaffected by the definition

of the uncertainty set, as does the first term of the constraint. Therefore, we focus our



32

discussion on the parts of the constraint in problem (RO-DDU), that are affected by

uncertainty.

2.4.1. Π-Uncertainty

For succinctness, this section provides a reformulation of the following linear constraint

(LC) y>ξ ≤ b ∀ξ ∈ UΠ(x).

To satisfy this constraint for all ξ ∈ UΠ(x), the uncertain LHS needs to be replaced by

its maximum over the set. For this, consider the following two problems:

(P)

h(x,y) =

max
ξ

y>ξ

s.t. Dξ ≤ d

ξ ≤ v + W(e− x) : π(x,y)

ξ ≥ 0,

(P’)

h̄(x,y) =

max
ξ,ζ

(y −Πx)>ξ + y>ζ

s.t. Dξ + Dζ ≤ d

ξ ≤We

ζ ≤ v

ξ, ζ ≥ 0,

where in problem (P), π(x,y) denotes the corresponding dual variable. Problem (P) max-

imizes the LHS directly over UΠ(x). However, the standard reformulation of this problem

leads to bilinear terms. To avoid them, we can leverage the structure of the uncertainty

set and formulate problem (P) as problem (P’). Such a problem pair was also suggested in

the context of stochastic network interdiction [32]. Proposition 2.4.1 uses the duals of (P)

and (P’) to prove that they have the same objective value at optimality. Formulating
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problem (P’) requires the use of matrix Π = diag(π). Here, π is a component-wise upper

bound of the optimal value of the dual variable π(x,y) for all x,y. Note that the matrix

Π is similar to M of the Big-M method in that it estimates an upper bound to the dual

variables. We provide a method to estimate π in Proposition 2.4.2. The dual problems

of (P) and (P’) are given by:

(D)

g(x,y) =

min
π,q

q>d + π>v + π>W(e− x)

s.t. π> + q>D ≥ y>

π,q ≥ 0,

(D’)

ḡ(x,y) =

min
r,s,t

t>d + r>We + s>v

s.t. s> + t>D ≥ y>

r> + t>D ≥ y> − x>Π

r, s, t ≥ 0.

Proposition 2.4.1. Given a binary x, if the set UΠ(x) is nonempty and v,W ≥ 0,

then for all y:

h(x,y) = h̄(x,y).

Proof. Strong duality warrants the equalities g(x,y) = h(x,y) and ḡ(x,y) = h̄(x,y).

In the following, we also refer to the optimal objective values of the dual problems

as h(x,y) and h̄(x,y). Let (π,q) be an optimal solution to (D). Furthermore, let

(r = π −Πx, s = π, t = q) with Π = diag(π) be a potential feasible solution to (D’).

For these solutions, it follows that s> + t>D = π> + q>D ≥ y>, and

r> + t>D = π> − x>Π + q>D ≥ y> − x>Π ≥ y> − x>Π. Since π,q ≥ 0, and x is bi-

nary, we obtain r, s, t ≥ 0. This means (r, s, t) is a feasible solution to problem (D’). This
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yields

h̄(x,y) ≤ q>d + π>v + (π −Πx)>We

= h(x,y).

For the converse, let (r, s, t) be an optimal solution to (D’). Consider (π = s,q = t) to

be a solution to (D). The feasibility of (r, s, t) leads π> + q>D = s> + t>D ≥ y>, and

π = s ≥ 0,q = t ≥ 0. Hence, (π,q) is a feasible solution to (D), resulting in

h(x,y) ≤ t>d + s>v + s>W(e− x)

= h̄(x,y) + (s− r)>We− s>Wx.

In order to prove h(x,y) ≤ h̄(x,y), it is required to prove (s − r)>We − s>Wx ≤ 0.

This can be expressed as
∑

iwi(si − ri − sixi) ≤ 0. For all i with xi = 1, it holds that

wi(si − ri − sixi) = −wiri ≤ 0.

Consider now the set of all i with xi = 0, denoted by X0. Problem (D’) can be

rewritten as two nested minimization problems, where the outer problem is over t and

rj, sj with j /∈ X0 and the inner problem over ri, si with i ∈ X0:

h̄(x,y) = min
t,rj ,sj ,j /∈X0

t>d +
∑
j /∈X0

rjwj +
∑
j /∈X0

sjvj + l(t)

s.t. sj + t>D•,j ≥ yj

rj + t>D•,j ≥ yj − πj

rj, sj ≥ 0


∀j /∈ X0.
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The inner minimization is captured by the function l(t), which is given by

l(t) = min
ri,si, i∈X0

∑
i∈X0

riwi +
∑
i∈X0

sivi

s.t. si + t>D•,i ≥ yi

ri + t>D•,i ≥ yi

ri, si ≥ 0


∀ i ∈ X0.

Note that in this inner minimization problem, the same constraints act on si and ri. Since

wi and vi are nonnegative, there exist optimal solutions si and ri that are equal and set

to their lower bounds si = ri = max{yi − t>D•,i, 0}. Therefore,
∑

i∈X0
siwi − riwi = 0,

which means h(x,y) ≤ h̄(x,y). �

Using Proposition 2.4.1 and problem (D’), the constraint (LC) can be reformulated as

t>d + r>We + s>v ≤ b

s> + t>D ≥ y>

r> + t>D ≥ y> − x>Π

r, s, t ≥ 0.

Note that this reformulation does not contain any bilinear terms and includes fewer con-

straints than the standard Big-M formulations. Additionally, Proposition 2.4.1 allows us

to replace h(x,y) with h̄(x,y). This is important because h̄(x,y) is convex in (x,y).
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Therefore, cut generation algorithms can be used to solve this problem which is not pos-

sible for the original problem with the constraint (LC). In the following, we discuss the

matrix Π.

Estimation of Π The following proposition sheds light on how to estimate Π.

Proposition 2.4.2. If D and y are element-wise nonnegative, then πi(x,y) ≤ yi

∀(x,y) for constraint (LC) under the uncertainty set UΠ.

Proof. Consider the following problem for some index i

(2.1)

F (θ) = max
ξ

y>ξ

s.t. Dξ ≤ d : q

ξ ≤ v + W(e− x) + θei : π

ξ ≥ 0.

Let ξ0 be the optimal solution at θ = 0 and the corresponding optimal dual variables are

q0 and π0. Let the optimal basis of the above problem be given by some matrix B. Since

ξ0 is the optimal solution, the vector of basic variables is given by ξB0 = B−1b, where b

denotes the RHS vector of problem (2.1), i.e., b = [d>,v> + (e− x)>W]
>

. Assume that

the solution is non-degenerate. This means B−1b > 0. Then for a small enough change

in b, the optimal basis does not change. If it is degenerate, then b can be perturbed

by a small ε to obtain a non-degenerate solution, which only marginally changes the

objective [see, e.g., 19].

When θ > 0 is small enough, the basis matrix does not change. This means that both

solutions (corresponding to θ = 0 and θ > 0) have the same dual variables because the
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dual variables do not depend on the RHS vector. This means

F (θ)− F (0) = π>0 v + π>0 W(e− x) + θπ>0 ei + q>0 d− π>0 v − π>0 W(e− x)− q>0 d

= θπ>0 ei,

which represents the change in the objective value. Let ξ0 be the optimal solution of the

problem with θ = 0 and ξθ be the optimal solution of problem with θ > 0. Then the

change in the objective value is

θπ>0 ei = y>ξθ − y>ξ0.

Using Lemma 2.4.1, we can state that

θπ>0 ei = y>ξθ − y>ξ0

≤ y>ξ0 + θy>ei − y>ξ0

= θy>ei.

This implies that π0,i ≤ yi ∀i. �

Corollary 2.4.1. Proposition 2.4.2 allows the estimation of Π by

(2.2)

πi = max
y

y>ei

s.t. (x,y) ∈ Y

xi ∈ {0, 1},

where set Y denotes the remaining constraints of the original full problem.



38

Lemma 2.4.1. If the matrix D is element-wise greater than 0, then ξθ ≤ ξ0 + θei.

Proof. Suppose this is not true, i.e., there exists at least one index k such that

ξθ,k > ξ0,k + θei,k. In addition, it holds that for θ ≥ 0, y>ξθ > y>ξ0.

If k 6= i, then ξθ ≤ v + W(e− x), which suggests ξθ to be feasible for the problem with

θ = 0. This would contradict the optimality of ξ0.

If k = i, then ξθ,i > ξ0,i + θ. However, this results in ξ0 < ξθ− θei ≤ v + W(e−x). Since

D(ξθ − θei) = Dξθ − θDei ≤ d− θDei ≤ d, ξθ − θei is a feasible solution to the problem

with θ = 0. However, this indicates that y>(ξθ − θei) > y>ξ0 which also contradicts the

optimality of ξ0. Therefore, we can conclude that ξθ ≤ ξ0 + θei. �

This proposition allows us to estimate πi by setting it equal to the maximum value that

yi can take in the overall problem. In some cases, such as shortest path or facility location

problems, this is straightforwardly estimated from the underlying model. With this, all

components of the decision-dependent problem with the polyhedral uncertainty set UΠ

can be computed efficiently for practical size problems. We now extend Proposition 2.4.1

to more general uncertainty sets.

2.4.2. Extension to conic sets

Given a convex cone K, the decision-dependent uncertainty set UΠ(x) can be extended

to

UK(x) = {ξ | d−Dξ ∈ K, ξ ≤ v + W(e− x), ξ ≥ 0} .

Here d and D are coefficients and v and W = diag(w) denote upper bounds to the

uncertain component ξ. The objective is to reformulate the constraint y>ξ ≤ b, ∀ξ ∈
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UK(x). In order to satisfy this constraint for all ξ ∈ UK(x), its LHS can be expressed

with the following two problems:

(KP)

h(x,y) =

max
ξ

y>ξ

s.t. d−Dξ ∈ K

ξ ≤ v + W(e− x) : π(x,y)

ξ ≥ 0,

(KP’)

h̄(x,y) =

max
ξ,ζ

(y −Πx)>ξ + y>ζ

s.t. d−Dξ ∈ K

ξ ≤We

ζ ≤ v

ξ, ζ ≥ 0.

Here, π(x,y) denotes the dual variable for the corresponding constraint. Let Π be an

element-wise upper bound on the dual variables π(x,y). The following proposition shows

that the problems (KP) and (KP’) have the same optimal objective value.

Proposition 2.4.3. If ∀x ∈ {0, 1}n there exists a point ξ̄ such that d −Dξ̄ lies in

the relative interior of K and 0 ≤ ξ̄ ≤ v + W(e− x) with v,W ≥ 0, then for all x,y:

h(x,y) = h̄(x,y).

The proof of this proposition proceeds similar to that of Proposition 2.4.1. Strong

duality holds due to the assumptions on the uncertainty set [15, Proposition 5.3.1]. This

proposition allows us to utilize the convex counterpart of the function h in what follows.

For a complete proof, refer to [82].
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Using Proposition 2.4.3 and the dual problem of (KP’), the constraint (LC) can be

reformulated as

t>d + r>We + s>v ≤ b

s> + t>D ≥ y>

r> + t>D ≥ y> − x>Π

t ∈ K∗, r, s ≥ 0,

with the dual cone K∗. Note that this reformulation has only linear terms and, as we

will see in Section 2.5, fewer constraints than the standard Big-M formulation, hence it is

more suitable for larger sized problems. The proof of this formulation proceeds parallel

to that of Proposition 2.4.1.

In summary, these results allow the modeling of uncertainty sets with reducible upper

bounds. Such bounds motivate the notion of proactive uncertainty control. It mitigates

conservatism and better actualizes the tradeoff between cost of control and disadvantage

of uncertainty, both of which are instrumental parts of many real-world applications.

Until now, we discussed the special polyhedral set UΠ. The following section provides a

reformulation of problem (RO-DDU) under general polyhedral uncertainty sets.

2.5. Extensions to General Polyhedral Sets

The previous section leveraged the specific structure of the uncertainty set to obtain

smaller reformulations. The Big-M reformulation, however, has the advantage of not re-

quiring any special set structure. For completeness and a comparison of formulation sizes,

the following proposition reformulates problem (RO-DDU) for the general polyhedral set

UP (x).
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Proposition 2.5.1. If the uncertainty set Ui(x) is a polyhedron as in UP (x) with

Di ∈ Rmi×p, di ∈ Rmi, and ∆i ∈ Rmi×n and if x is binary, then the robust counterpart

of problem (RO-DDU) is

min
x,y,w,π

c>x + f>y

s.t. a>i x + π>i di +

mi∑
j=1

n∑
k=1

∆ijkwijk ≤ bi

π>i Di = y>

 ∀i

wijk ≤Mxk, wijk ≤ πij

wijk ≥ πij −M(1− xk)

πij ≥ 0, wijk ≥ 0


∀i, j, k

x ∈ {0, 1}n,

where M is a sufficiently large number.

Proof. We consider two cases, namely: Case 1: There exists a feasible solution (x,y)

to (RO-DDU). Therefore, x and y must satisfy all constraints a>i x+ξ>i y ≤ bi ∀ξi ∈ Ui(x)

for all i. This is equivalent to

a>i x + max
ξi∈Ui(x)

ξ>i y ≤ bi ∀i.(2.3)

If this problem is feasible and has a finite optimal solution, then by strong duality, the

corresponding dual problem has the same objective value. Problem (2.3) can now be
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expressed as

(2.4)

a>i x + π>i (di + ∆ix) ≤ bi

π>i Di = y>

πi ≥ 0


∀i,

where πi ∈ Rmi is the dual variable for constraints corresponding to the uncertainty set

Ui(x). Here mi refers to the number of constraints in the set Ui(x). Since the primal

problem is feasible and finitely valued, there exists a πi, for which the constraints (2.4)

are satisfied. Therefore, the original problem (RO-DDU) can be written as

min
πi,x,y

c>x + f>y

s.t. a>i x + π>i di + π>i ∆ix ≤ bi

π>i Di = y>

πi ≥ 0


∀i.

Note the bilinear term in the first constraint. By expanding the variable space, the ith

constraint can be rewritten as

a>i x +

mi∑
j=1

πijdij +

mi∑
j=1

n∑
k=1

∆ijkwijk ≤ bi, with wijk = πijxk.

In the bilinear term, wijk = πijxk, xk is binary, allowing to rewrite the term as

wijk ≤ πij, 0 ≤ wijk ≤Mxk, wijk ≥ πij −M(1− xk),
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where M is a sufficiently large constant. Consequently, the problem (RO-DDU) can be

reformulated as

(2.5)

min
x,y

c>x + f>y

s.t. a>i x + π>i di +

mi∑
j=1

n∑
k=1

∆ijkwijk ≤ bi

π>i Di = y>

 ∀i

wijk ≤Mxk, wijk ≤ πij

wijk ≥ πij −M(1− xk)

πi ≥ 0, wijk ≥ 0


∀i, j, k

x ∈ {0, 1}n.

Case 2: Problem (RO-DDU) is infeasible. Then the reformulation in (2.5) is infeasible.

To show this, consider the original problem (RO-DDU).

Suppose this problem is infeasible under the assumptions of Proposition 2.5.1. This

means that ∀x : ∃ξ ∈ U(x) such that a>i x + ξ>i y > bi. Consequently, the constraint

a>i x + maxξi∈Ui(x) ξ
>
i y > bi holds for at least one i. Using the dual of the inner problem,

the constraints can be written ∀πi as

(2.6)

a>i x + π>i (di + ∆ix) > bi

π>i Di = y>

πi ≥ 0.
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Now, assume that the reformulation in (2.5) is feasible. Given its constraints, there

exists a binary vector x and a vector w such that wijk = πijxk. However, this implies a

variable πi = (πi1, πi2, . . . , πik, . . . , πimi
) that satisfies π>i Di = y>, πi ≥ 0 and

a>i x +

mi∑
j=1

πijdij +

mi∑
j=1

n∑
k=1

∆ijkπijxk ≤ bi.

This contradicts the earlier assertion in (2.6) that there exist no such πi. �

This proposition allows us to reformulate the original decision-dependent RO problem

as a mixed integer linear program which can be solved for many realistic size problems

using off-the-shelf algorithms. Such mixed integer reformulations can also be provided for

general convex uncertainty sets [14], which includes conic and budgeted structures. Their

proofs (not shown) proceed parallel to that of Proposition 2.5.1.

Note that problem (RO-DDU) has n binary and p continuous variables, along with

m constraints. The ith uncertain ξi lies in an uncertainty set with mi constraints. Ta-

ble 2.1 presents the size of the reformulation under two settings: (i) x is binary as in

Proposition 2.5.1 and (ii) xi can take s possible values. For the sake of clarity, we assume

that mi = K ∀i, where K is some constant. Table 2.1 shows that for (ii), the size of the

reformulation increases rapidly with growing s. In certain cases, it is possible to improve

the Big-M reformulation by imposing mild assumptions, as we will discuss next.

Nature of x Binary var. Continuous var. Affine constr. Sign constr.
Binary n p+mK + nK m+mp+ 3nK mK(n+ 1)
Finite valued (n+ 1)s p+mK m+mp+ 2n mK(ns+ 1)

+nmK(s+ 1) +nmK(3s+ 1)
Table 2.1. Size of Big-M formulation of (RO-DDU) for Ui(x) with respect
to (i) x ∈ {0, 1}n and (ii) x ∈ Rn with xi taking s possible values: dim(y) =
p, K constraints in Ui(x), and m constraints in the complete problem.
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2.5.1. Modified Big-M Reformulation

Consider the uncertainty set UP(x) to be expressed as

UP(x) =

{
ξ | D>i• ξ ≤ di +

n∑
j=1

∆ijxj, ∀i = 1, . . . ,m

}
.

To overcome the poor numerical performance of standard Big-M reformulation due to

its weak relaxations, we impose the mild assumption that all elements of the coefficient

matrix ∆ are non-negative. Proposition 2.5.2 reformulates constraint (LC) for UP(x)

under this assumption.

Proposition 2.5.2. If ∆ij ≥ 0 ∀i, j, then the constraint (LC) with the uncertainty

set UP(x) and a large constant M can be reformulated as

m∑
i=1

πidi +
m∑
i=1

n∑
j=1

tij ≤ b

m∑
i=1

πiDij = yj, ∀j

tij ≥ πi∆ij −M(1− xj)

πi ≥ 0, tij ≥ 0

 ∀i, j.

Proof. The LHS maximization problem for the constraint (LC) can be written as

max
ξ

y>ξ

s.t. D>i• ξ ≤ di +
n∑
j=1

∆ijxj ∀i.
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Using the dual of this problem, the original constraint y>ξ ≤ b ∀ξ ∈ UP(x) can be

written as

(2.7)

m∑
i=1

πi(di +
n∑
j=1

∆ijxj) ≤ b

m∑
i=1

πiDij = yj ∀j

π ≥ 0.

The constraints in (2.7) can be rewritten by expanding the variable space as

(2.8)

m∑
i=1

πidi +
m∑
i=1

n∑
j=1

tij ≤ b

πi∆ijxj ≤ tij ∀i, j
m∑
i=1

πiDij = yj ∀j

π ≥ 0.

If there is a variable π feasible for the set of equations given by (2.7), then we can find a

feasible variable for (2.8) by tij = πi∆ijxj. On the other hand, if there exists a feasible

solution to (2.8), then it is also feasible for (2.7). If xj = 0, then tij ≥ 0 and if xj = 1,

then tij ≥ πi∆ij. This can be expressed as the following set of constraints

0 ≤ tj ≥ πi∆ij −M(1− xj).

which completes the proof. �
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The Proposition 2.5.2 leverages the fact that the variable tij remains at its lower

bound, making the upper bounding constraints from the Big-M linearization redundant.

However, if tij can be negative, the two lower bounding constraints are not sufficient.

In some cases, it is possible to reformulate the problem even if the RHS coefficients

Formulations Problem
Variables

Constraints

Π

t>d + r>We + s>v ≤ b

s> + t>D ≥ y>

r> + t>D ≥ y> − x>Π
r, s, t ≥ 0.

C: m+ 2n

A: 1 + 2n
S: m+ 2n

Big-M

t>d + s>v + s>We−
∑
i

ri ≤ b

s> + t>D ≥ y>

wisi −M(1− xi) ≤ ri ≤Mxi
ri ≤ wisi
r, s, t ≥ 0.

C: m+ 2n

A: 1 + 4n
S: m+ 2n

Modified
Big-M

t>d + s>v + r>e ≤ b

s> + t>D ≥ y>

ri ≥ wisi −Mxi
r, s, t ≥ 0.

C: m+ 2n

A: 1 + 2n
S: m+ 2n

Table 2.2. Comparison of (LC) reformulations for the set UΠ(x) (C: Con-
tinuous, A: Affine, S: Sign).

are negative. Consider the shortest path example presented in the introduction, which

has constraints of the form ξe ≤ 1 − γexe. Here, the coefficient ∆e = −γe is negative.

However, we can rewrite the constraint as ξe ≤ (1− γe) + γe(1− xe) and apply the Big-M

linearization on the variable (1 − xe) instead of on xe. This substitution allows the use

of the modified Big-M reformulation in more general settings. We report the numerical

performance of this approach in comparison with the earlier reformulations in Section 2.6.

For a comparison, we reformulate the constraint (LC) over the uncertainty set UΠ(x)
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using all three presented techniques, namely (i) Π, (ii) Big-M, and (iii) Modified Big-M.

Table 2.2 presents this comparison along with the corresponding problem sizes. The sign

constraints correspond to (• ≥ 0), which are presented separately since they can be solved

more efficiently. It displays that the primary difference between the Big-M and the other

two reformulations is the larger number of affine (linear) constraints. To gain intuition

and provide computational comparison between the different formulations, we extend the

introductory example of Section 2.1 to a more detailed numerical experiment.

2.6. Numerical Experiments

Shortest path problems on networks constitute a general class of models, describing

the most efficient connection between a source and target. Deterministic shortest routing

problems can be solved with polynomial time algorithms [37]. However, this does not

hold for uncertain arc lengths. Past research on robust shortest path problems focused

on scenario-based [103], cardinality [17], and interval uncertainty [7, 106]. Despite a

large body of literature, to the best of our knowledge, there is no work in the context of

uncertainties that depend on decisions. To this end, our goals are:

(1) Comparing the numerical performance of different robust formulations,

(2) Measuring the benefit of proactive reduction as a function of size, budget, or cost

of reduction,

(3) Measuring the number of arcs in the shortest path as a function of size, budget,

or cost,

(4) Evaluating the price of robustness and the benefit of interacting with uncertainties,

and
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(5) Comparing the average and worst-case cost of decision dependence for RO and

SO.

Here, we aim to model challenges that arise, e.g., in scenario planning of natural

disasters. When sections of a transportation network are damaged, the actual travel

times along arcs become uncertain. To plan for such a scenario, a decision-dependent RO

solution can determine the arcs which should be strengthened (by reducing uncertainty)

in order to improve the performance in an actual disaster. This strengthening incurs a fee.

This means that it is possible to mitigate the impact of a disaster by managing the damage

of a few particular arcs. Similarly, for transportation problems (e.g., air, ground), travel

time can be improved by acquiring additional traffic or weather information on segments

of the network.

To illustrate this setting, we discuss a problem on a graph G = (V ,A, d(•)) for the set of

nodes V , arcs A, and the distance function d(•). The objective is to find the shortest path

from the source to the target node (s→ t) when the actual realized distances from node

i to j are uncertain and a function dij(ξ) =
(
1 + 1

2
ξij
)
d̄ij of ξ. The variable xij decides

whether to reduce the maximum uncertainty in dij. This inquiry comes at a cost cij, which

can be motivated as an investment in road improvement and is imposed on travelers via

taxes or tolls. The parameter ξ resides in a cardinality constrained uncertainty set with

reducible upper bounds. The complete problem is given by

(SP)

min
x,y

max
ξ∈USP (x)

∑
(i,j)∈A

cijxij +
∑

(i,j)∈A

dij(ξ)yij

s.t. x ∈ X ⊆ {0, 1}|A|, y ∈ Y,



50

where yij decides whether the arc (i, j) lies in the shortest path. X denotes any constraints

on x and Y the set of routing constraints. The uncertainty set is given by

USP (x) =

ξ | ∑
(i,j)∈A

ξij ≤ Γ, ξij ≤ 1− γijxij, ξij ≥ 0 ∀(i, j) ∈ A

 .

We solve problem (SP) using the three different formulations: (i) Π−formulation from

Proposition 2.4.1, (ii) standard Big-M formulation, and (iii) Modified Big-M formulation

from Proposition 2.5.2. In Table 2.3, X×Y denote the collection of both the shortest path

Form. Problem
Variables

Constraints

Π

min
x,y
q,r,p

f(x,y)+pΓ+
∑

(i,j)∈A

qij(1−γij)+
∑

(i,j)∈A

rijγij

s.t. p+ qij ≥
yijdij − πijdijxij

2
p+ rij ≥

yijdij
2

p, qij, rij ≥ 0, x,y ∈ X × Y.

B: 2|A|
C: 2|A|+1

A: |V|+2|A|
S: 2|A|+ 1

Big-M

min
x,y
q,r,p

f(x,y) + pΓ +
∑

(i,j)∈A

qij −
∑

(i,j)∈A

γijrij

s.t. p+ qij ≥
dijyij

2
0 ≤ rij ≤Mxij
qij −M(1− xij) ≤ rij ≤ qij
p, qij, rij ≥ 0, x,y ∈ X × Y.

B: 2|A|
C: 2|A|+1

A: |V|+ 4|A|
S: 2|A|+ 1

Modified
Big-M

min
x,y
q,r,p

f(x,y) + pΓ +
∑

(i,j)∈A

rij+
∑

(i,j)∈A

qij(1− γij)

s.t. p+ qij ≥
dijyij

2
rij ≥ γij −Mxij
p, qij, rij ≥ 0, x,y ∈ X × Y.

B: 2|A|
C: 2|A|+1

A: |V|+ 2|A|
S: 2|A|+1

Table 2.3. Shortest path formulations for the set USP (x) (B: Binary, C:
Continuous, A: Affine, S: Sign).

and decision constraints. Furthermore, f(x,y) =
∑

(i,j)∈A cijxij +
∑

(i,j)∈A d̄ijyij denotes



51

the total cost of reduction and nominal length. Table 2.3 shows that the difference between

the Big-M formulation and the other two formulations lies in the number of affine (linear)

constraints, as in Table 2.2. We now discuss the numerical experiments.

Experiment 1: Performance Comparison The numerical setup is as follows. We

randomly generate points on a 100 × 100 area and connect them to create a complete

graph. The two furthest nodes constitute the source and destination. The final graph

is selected after removing 60% of the longest arcs in order to avoid direct connections

between the source and destination. The uncertainty budget Γ is set to 2. The cost

of reduction cij = c and the fraction of uncertainty reduced γij = γ are 1.0 and 0.2,

respectively. For each size |V| = {50, 75, . . . , 300}, 100 random graphs are generated.

These values serve as an illustration of the qualitative comparison of the formulations. In

practical applications, they need to be estimated from the economical value of travel time

(dij) relative to the per-trip tax burden for road investments (cij).
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Figure 2.2. Comparison of median solution times of reformulations from
Propositions 2.4.1, 2.5.2, and the standard Big-M.
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Computational Setup. To solve these problems, we used the Gurobi 7.0 solver on a

commercially available computing unit with Intel Core i7 at 3.6 GHz. We reformulated

the decision-dependent RO problem as a mixed integer linear program and implemented

it using the JuMP library in the Julia programming language v0.6.

The median computation times for different approaches and varying sizes are reported

in Figure 2.2. Note that all three methods lead to the same solution. The observations

from Figure 2.2 can be summarized as follows.

• The time increases with growing |V| for all formulations. However, the increase

is less steep for the Π and the Modified Big-M formulation than for the Big-M

formulation.

• The difference between the Big-M and the proposed formulations increases with

growing |V|. This highlights the advantage of the Π and Modified Big-M formu-

lation for larger graphs.

• The median time of the Modified Big-M formulation is less than that of the

Π-formulation.

Figure 2.2 highlights the benefits of using the proposed formulations to solve such decision-

dependent optimization problems. While the performance of the Modified Big-M and Π

formulations are comparable over a broad range of network sizes, the subproblem in the Π

reformulation is convex, which can be exploited by cut-generating methods, which may be

computationally advantageous. We also solved the Π formulation using a cut generation

approach (not shown). However, for this application, it converged slowly and required a

sizable number of cuts.
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We now focus on analyzing how the solution changes as the parameters of the uncer-

tainty set are varied. For this purpose, we introduce additional notation for observable

quantities.

Notation for Observables. The number of arcs in the shortest path is n∗, which is

a function of the budget Γ and the level of uncertainty reduction γ. These parameters

create three scenarios:

(i) nominal case, where no uncertainty is present, n∗(Γ = 0, γ = 0);

(ii) standard robust case with no decision dependence, n∗(Γ > 0, γ = 0); and

(iii) decision-dependent robust case with uncertainty reduction n∗(Γ > 0, γ > 0), in

which case ñ is the number of arcs whose uncertainty was reduced.

We also follow this notation for the optimal objective value z∗. Consequently, the differ-

ence
(
z∗(Γ > 0, γ = 0) − z∗(Γ = 0, γ = 0)

)
constitutes the price of robustness, whereas

the difference
(
z∗(Γ > 0, γ = 0)− z∗(Γ > 0, γ > 0)

)
constitutes the benefit of interaction.

There are four parameters that govern the effect of interactions with uncertainty:

γ, |V|, c, and Γ. To evaluate their role and to infer the underlying mechanism, we devise

four experiments by tuning across their range. Specifically, by adjusting one parameter

while keeping the other three fixed, we explore four orthogonal settings.

In these experiments, the problem (SP) is implemented on randomly generated graphs

of [20 − 50] nodes. This size is comparable to moderately sized transportation net-

works [78]. For each size, 2000 graphs are generated in a manner similar to the previous

experiment. We maintain these parameter values throughout the following experiments,

except in those where their change is probed. In the following, we discuss the four exper-

iments.
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Experiment 2: Uncertainty Reduction. We compare z∗, when reduction is permitted

(γ > 0) or not (γ = 0). Figure 2.3a shows that γ > 0 reduces z∗ (shorter paths), which

is independent of |V|. The inset of Figure 2.3a is a magnification, displaying marginal

fluctuations that stem from the random nature of graphs.

Experiment 3: Graph Size. We observe that not all arcs in the shortest path experience

uncertainty reduction (ñ < n∗(Γ > 0, γ > 0)), independent of |V|. This is attributed to

the non-zero c. We also observe that z∗ is independent of |V|, which can be explained by

the fact that |V| only increases from 20−50 and n∗(Γ > 0, γ > 0) does not change sizably

over this range as such the effect on z∗ is undetectable. We expect n∗ and z∗ to increase

measurably when |V| varies by a few orders of magnitude. Larger experiments come at a

significant computational burden and are outside the scope of this study.
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Figure 2.3. Dependence on graph size |V| for: a) average objective function
and b) average number of arcs. The inset is a magnification.

Figure 2.3b illustrates the average n∗(Γ > 0, γ > 0) and the average ñ for varying |V|.

We also observe a slight downward trend of n∗(Γ > 0, γ > 0) with increasing |V|. This is

because the connectivity within a graph increases with |V| as the number of arcs grows

faster than the number of nodes, because in the experimental setup, only a fixed fraction

of arcs are removed.
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Figure 2.4. Average objective value as a function of: a) cost of uncertainty
reduction c and b) maximum uncertainty Γ. The graph consists of |V| = 30
nodes.

Experiment 4: Cost of Uncertainty Reduction. The reduction cost c determines the

trade-off between accepting the uncertainty level and its reduction. It can be expected

that an increasing c marginalizes the benefits of reducing uncertainty. This means that

for a sufficiently low c, uncertainty can be reduced in every arc in the shortest path. On

the other hand, for high c, the opposite is true. Figure 2.4a (|V| = 30 and Γ = 12)

shows that for c ≤ 4, the average z can be decreased. However, for large c, the high

cost of reduction makes it disadvantageous to reduce uncertainty. The price of robustness

(difference between the dotted line in Figure 2.4a and z∗(Γ = 0, γ = 0) in Figure 2.4b)

is constant w.r.t. γ but changes with Γ. On the other hand, the benefit of interaction

decreases with increase in c, as can be observed in Figure 2.5a. Note that the maximum

benefit of interaction is calculated by assuming uncertainty is reduced on all the arcs in

the shortest path, at zero cost (c = 0).

Experiment 5: Uncertainty Budget. Γ governs the number of arcs that can be affected

by uncertainty. Figure 2.4b shows that z∗ increases gradually with Γ until it reaches the

level of the corresponding shortest path length affected by the relative uncertainty (1+ 1
2
)
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Figure 2.5. Average relative benefit of interaction as a function of: a) cost of
uncertainty reduction c and b) maximum uncertainty Γ. The graph consists
of |V| = 30 nodes.

and plateaus thereafter. This is because increasing Γ beyond a certain point does not

have any effect on n∗, since all the arcs in the path are already uncertain and additional

budget remains untapped. Consequently, the price of robustness increases with Γ and

plateaus beyond a certain Γ (not shown). An analogous behavior can be observed for

the benefit of interaction, as shown in Figure 2.5b. The maximum benefit is achieved at

c = 0.

Figure 2.6a displays how the average n∗ changes with Γ for the different settings. Note

that the values of uncertainty are relative to the nominal arc length. This provides an

upper bound on the maximum objective value, i.e., when every arc in the shortest path

(contributing to n∗) is affected by the uncertainty. At Γ = 0, we observe n∗(Γ = 0, γ = 0),

and ñ = 0. As Γ increases, it turns beneficial to choose more but shorter arcs, hence, the

average n∗(Γ > 0, γ = 0) initially increases and reaches a maximum at Γ ≈ n∗(Γ = 0, γ =

0). As Γ grows even further, the standard robust solution n∗(Γ > 0, γ = 0) decreases

and plateaus at the same level as n∗(Γ = 0, γ = 0). When γ > 0, we observe that an

increasing Γ ≥ 0 permits more uncertain arc lengths to be reduced (ñ ≥ 0) to a maximum
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Figure 2.6. The dependence on budget of uncertainty Γ for: a) average
number of arcs and b) their distribution. The graph consists of |V| = 30
nodes and uncertainty reduction is permitted.

of ñ ≤ n∗(Γ = 0, γ = 0). Since some of the arc uncertainty can be reduced, the peak of

n∗(Γ > 0, γ > 0) occurs at a lower budget than when no reduction is allowed, as seen

in Figure 2.6a. Note that for small Γ, in order to cope with uncertainty, the optimal

solution minimizes the length of each individual arc so that the impact of the uncertainty

is minimized.

To further support this observation, Figure 2.6b displays the distribution of the number

of arcs using different percentiles of n∗(Γ > 0, γ > 0) (corresponding to Figure 2.6a). Here,

we observe that as Γ increases, the distribution of n∗(Γ > 0, γ > 0) skews towards larger

number of arcs (the gaps between the percentiles increase). This means that the optimal

solution becomes more diversified. Specifically, the model selects a path consisting of

some certain and some uncertain arcs, with a subset of the latter experiencing uncertainty

reduction. This continues until the saturation point (here Γ ≈ 4) because beyond a certain

budget, diversification of paths becomes redundant. At this point, the shortest path is

chosen exclusively amongst uncertain arcs, almost all of which experience uncertainty

reduction (since Γ > n∗(Γ = 0, γ = 0)).
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Experiment 6: Comparison to SO. This experiment evaluates the average and worst

case performance of the robust DDU solutions and compares them to a similar SO prob-

lem. The SO formulation is given by

min
x

∑
(i,j)∈A

cijxij + EP(x)

 ∑
(i,j)∈A

dij(ξ)yij


s.t. y ∈ Y

x ∈ {0, 1}|A|,

with the uncertainty set

ξ ∈ USSP (x) = ×i,j∈A[0, 1− γxij].

The distribution P(x) is the uniform distribution over the support USSP (x). The explicit

expression for the expected value is displayed in Nohadani and Sharma [82]. The average

performance is evaluated by randomly generating the uncertain component ξij (from [0, 1]

for unreduced arcs and [0, 1−γxij] for reduced arcs) and implementing the existing robust

and stochastic solutions for these randomly generated arc costs. The following solutions

are evaluated: (i) RO: Robust solution for γ = 0. (ii) RO-DDU: Robust solution for

γ > 0. (iii) SO: Stochastic solution for γ = 0. (iv) SO-DDU: Stochastic solution for

γ > 0. The suffix of the average performances is “-A” and of the worst-case performances

“-W.”

Figure 2.7a shows that the average objective of SO is less than the average RO objec-

tive. This is because RO optimizes the worst case instead of the average performance as

in SO. However, analogously in Figure 2.7b, RO-W is significantly less than SO-W. The
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Figure 2.7. Comparison of RO and SO formulations: a) average and b)
worst-case objective value.

same applies to the decision-dependent counterparts for both cases. As can be expected,

the objective values increase with c until it is no longer beneficial to reduce the uncer-

tainty, i.e., the objective value of the RO-DDU solution increases until it matches that of

the RO solution. The same holds true for the SO-DDU and SO solutions.

In summary, the Π-formulation and the Modified Big-M formulation perform consid-

erably better than the standard Big-M formulation and their benefits increase with graph

size. The worst-case cost for the shortest path can be improved by proactively reducing

the uncertainty on a subset of arcs. As the budget of uncertainty grows, these benefits

improve but plateau beyond a certain level. At the same time, the cost of reduction curbs

these benefits. The RO-DDU problem performs better than SO-DDU for the worst-case

scenario. As expected, this benefit comes at the price of the average cost. This numerical

study provides an overview of the impact of different formulations, probes various model

parameters, and highlights the power of the proactive uncertainty control for both the

worst-case and average performance.



60

2.7. Conclusion

In this chapter, we present a novel optimization approach for solving problems with

decision-dependent uncertainties. We show that for general polyhedral sets, such problems

are, even in basic cases, NP-complete. To alleviate this, we introduce a class of uncertainty

sets whose upper bounds are affected by decisions. They enable more realistic modeling

of a broad range of applications and extend RO beyond the currently used exogenous

sets. We provide reformulations that have considerably fewer constraints compared to

standard linearization techniques, allowing for faster computations. Our approach should

be viewed as one option among many to model decision dependence while maintaining

computational advantages. The induced convexity of the sub-problem in the proposed

reformulation reveals a path forward to use advanced cut generating algorithms. We

believe that finding new and appropriate conditions on sets will further improve the

quality of the reformulations.

In addition, this chapter provides an alternative way of addressing one of the crit-

icisms of RO approaches, namely overly conservative solutions. The description via

decision-dependent sets enables mitigation of this issue by exercising proactive control

on uncertainties. This setting offers an immediate way to manage the tradeoff between

conservatism and optimality. Finally, novel cutting plane methods have instrumentally

enhanced solution times and we envision decision-dependent sets to solidify the tradeoff

between computation and optimality by inducing beneficial cuts.

In the next chapter, we extend our results on decision-dependent uncertainty sets

to allow for uncertain influence of the decisions on the sets. We further elaborate the
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discussion on the use of cutting place methods for decision-dependent sets in the context

of a unit commitment problem.
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CHAPTER 3

Decision Dependent Uncertainty with uncertain Influence

3.1. Introduction

The previous chapter discussed robust optimization problems with decision dependent

uncertainty. In these problems, a decision variable affects the uncertainty set by modifying

the parameters of the set. In the example of the set

U(x,W) = {ξ | Dξ ≤ d, 0 ≤ ξ ≤ v + W(e− x)} ,

where d,D and v are parameters of the set and e is a vector of all ones, the decision

variable x ∈ X ⊆ {0, 1}n, changes the set by modifying the upper bound on the uncertain

parameter ξ. Thus, the maximum possible value of ξ changes, depending on x. The exact

value of the upper bound plays a key role in the optimal solution of the optimization

problem. As such, evaluating the exact influence of decisions on the uncertainty set is

important. This influence, however, depends on the values of the parameter W, which

may not be known a priori and be uncertain as well. For example, in the shortest path

problem discussed in Chapter 2, the amount of reduction in the worst-case path length

may be unknown. This notion of uncertain influence can naturally exist when decision

dependent uncertainty involves scenario trees [46, 47, 58]. In these problems, the decision

can choose a branch of the scenario tree but exact impact of this choice on the future may

be uncertain as it may not be known what information is going to be revealed by that
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choice. In this chapter, we tackle this problem by incorporating the uncertainty present

in the value of the set influencing parameter, W, into the optimization problem.

3.2. Model

Chapter 2 focused on robust linear optimization problems with decision dependent

uncertainty. It introduced a special class of uncertainty sets that led to a direct convex

reformulation of the constraints. Here, we further refine the same class of sets to illustrate

the incorporation of uncertainty in the set influencing parameter into the optimization

problem. Consider the set U(x,W) = {ξ | Dξ ≤ d, 0 ≤ ξ ≤ v + W(e− x)}. The pa-

rameter W controls the influence of the decision x on the set. For any fixed value of W

we can write the optimization problem

(3.1) min
x∈X

{
c>x + max

ξ∈U(x,W)
min

y∈Y (x,ξ)
r>y

}
.

Here, x and y are the first and second stage decisions and ξ is the uncertain component.

Y (x, ξ) is the feasibility set for the second stage problem. We now express the dependence

of U on W explicitly.

When the parameter W is uncertain, its uncertainty can be described via sets or via

distributions. Examples are

• Interval Sets:

W ∈ W = {W : W ≤W ≤W},

• Finite distribution:

W ∼ W : P[W = Ws] = πs ∀s = 1, . . . , Ns.
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Depending on choice of a set based approach or a distribution based approach, we formu-

late the resulting problem differently, as we will describe in the following.

3.2.1. Robust formulation for set based information

In most cases, information about the parameter W may be limited. This is because

we may not be able to observe this reduction directly and may have to infer its value

from multiple observations of the uncertainty ξ. In these settings, robust optimization

is an appropriate approach to incorporating any uncertainty in W into the optimization

problem. Let the uncertain parameter W lie in an uncertainty set W . Then we can

express a robust reformulation of the problem (3.1) as,

(3.2) min
x∈X

{
c>x + max

W∈W

[
max

ξ∈U(x,W)
min

y∈Y (x,ξ)
r>y

]}
.

In this problem we consider the worst case over elements W which are contained in the

set W . This problem can be reformulated as following

Proposition 3.2.1. The problem (3.2) can be reformulated as

(3.3) min
x∈X

{
c>x + max

ξ∈U ′(x)
min

y∈Y (x,ξ)
r>y

}
,

where U ′(x) =
⋃

W∈W
U(x,W) = {ξ | Dξ ≤ d, 0 ≤ ξ ≤ v + W(e− x), W ∈ W}.

Proof. It is sufficient to prove that

⋃
W∈W

U(x,W) = {ξ | Dξ ≤ d, 0 ≤ ξ ≤ v + W(e− x), W ∈ W} .

Both inclusions hold by the definition of the union. �
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When the uncertainty set W is an interval uncertainty set, then the following propo-

sition gives an exact characterization of the worst case.

Proposition 3.2.2. If the set W = {W : W ≤W ≤W}, then problem (3.2) can be

reformulated as

(3.4) min
x∈X

{
c>x + max

ξ∈U(x,W)
min

y∈Y (x,ξ)
r>y

}
.

Proof. It is sufficient to prove that

⋃
W∈W

U(x,W) = U(x,W).

By the definition of W , we have the following inclusion for any x,

U(x,W) ⊆ U(x,W) ∀W ∈ W ,

=⇒
⋃

W∈W

U(x,W) ⊆ U(x,W).

The opposite inclusion holds true because W ∈ W . This proves our result. �

Note that the problems (3.2) and (3.4) are adjustable robust optimization problems.

They can solved using a column and constraint generation approach [105] or approximated

using decision rules.

The robust formulation requires only limited knowledge about W and thus can be

tractably used in many situations. However, it comes with the caveat of focusing on

the worst case and cannot capture situations in which the decision is on the information

gathering as needed to assemble and motivate the distribution on data. To address this,
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we also develop an optimization model that assumes distributional knowledge about the

parameter W.

3.2.2. Stochastic Formulation for distribution information

When some knowledge about the distribution of the parameter W is available, we can

evaluate the expected value instead of the worst case. The resulting problem can be

expressed as

(3.5) min
x∈X

{
c>x + E

W

[
max

ξ∈U(x,W)
min

y∈Y (x,ξ)
r>y

]}
.

Here, we assume that the distribution of W is given by a finite set Ns of scenarios Ws

with associated probabilities πs. The resulting optimization problem can be expressed as

(3.6) min
x∈X

{
c>x +

∑
s∈Ns

πs

[
max

ξ∈U(x,Ws)
min

y∈Y (x,ξ)
r>y

]}
.

Problem (3.6) is an adjustable robust optimization problem with |Ns| second-stage sce-

narios. We can solve this problem using an affine policy approach in which each second

stage has its own affine policy that may be different from those of other second stages.

This difference arises due to the dependence of these policies on the scenario s. Depend-

ing on the application, this dependence has an impact on the optimization problem. For

example, in an information gathering problem, we can observe the gathered data and use

a policy depending on it. However, in other applications we may not directly observe a

realization of W and instead only observe ξ, for example the shortest path problem dis-

cussed in chapter 2. In this case, we may not be able to distinguish between the different

scenarios and corresponding policies. We do not address this case in this thesis.
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In order to illustrate the concept of uncertain influence in a concrete fashion, we con-

duct a numerical experiment on an electricity unit commitment problem with uncertain

load, which is an extension of the work by Lorca et al. [74].

3.3. Unit Commitment Problem

Electric power systems need protection against multiple sources of uncertainty such

as load uncertainty [74], transmission line security [100], and power generation uncer-

tainty [95]. Unit commitment problems model such power systems and optimize for a

power generation schedule that ensures all loads are met while minimizing cost. It aims

to protect against all sources of uncertainty, while achieving its objective. Both stochas-

tic [88, 93] and robust optimization [74] have been used to model uncertainty in unit

commitment context problems. SO uses distributional knowledge about the various un-

certainty sources such as load, power generation etc. to model the problem. It primarily

focuses on multistage problems with finitely many scenarios and leverages the structure

of the problem for column or constraint generation procedures to improve computation.

RO captures the uncertainty through sets and focuses on using decision rules to reduce

computational difficulty. Though, cut generation procedures are still required by RO

problem due to the size of the unit commitment problem, the use of decision rules allows

us to avoid the use of non-anticipativity constraints as they can be naturally built-in. The

primary benefit of using RO models is the potential for solving larger problems due to

fewer constraints, however, it comes at the cost of focusing on the worst-case scenarios

instead of more realistically occurring ones.
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Unit commitment problems are primarily modeled as two-stage or multistage opti-

mization problems as the power generation depends on the realized load and the startup

and shutdown time of generators.

We focus on a multistage RO model for the unit commitment problem as used in [74].

3.3.1. Model

Consider the following model of a two-stage robust unit commitment problem:

(UC)

min
x,z,u,v

∑
t∈T

∑
i∈Ng

(Giz
t
i + Siu

t
i) +

∑
t∈T

ctjx
t
j + max

ξ∈U(x)
Q(x, z,u,v; ξ)

s.t. zti − zt−1
i = uti − vti ∀i ∈ Ng, ∀t ∈ T start and shutdown constraints

t+UTi−1∑
τ=t

zτi ≥ UTiuti ∀i ∈ Ng, ∀t ∈ T up time constraints

T∑
τ=t

(zτi − uti) ≥ 0 ∀i ∈ Ng, ∀t ∈ T

t+DTi−1∑
τ=t

(1− zτi ) ≥ DTivti ∀i ∈ Ng, ∀t ∈ T down time constraints

T∑
τ=t

(1− zτi − vti) ≥ 0 ∀i ∈ Ng, ∀t ∈ T

xti, z
t
i , u

t
i, v

t
i ∈ {0, 1} ∀i ∈ Ng, ∀t ∈ T .
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The second stage problem

Q(x, z,u,v; ξ) =

min
y

T∑
t=1

∑
i∈Ng

riy
t
i

s.t. pmini zti ≤ yti ≤ pmaxi zti ∀i ∈ Ng, ∀t ∈ T bounds on power generated

−RDiz
t
i − SDiv

t
i ≤ yti − yt−1

i ≤ RU t−1
i zt−1

i + SUiu
t
i ramping constraints

− fmaxl ≤ α>l (Bpyt −Bdξt) ≤ fmaxl ∀l ∈ Nl, ∀t ∈ T bounds on line flow∑
i∈Ng

yti =
∑
j∈Nd

ξtj ∀t ∈ T . demand satisfaction

Here, Ng,Nd,Nl denotes the set of generators, nodes with load, and transmission lines. The first

stage decisions zti , u
t
i, and vti correspond to on/off, startup, and shutdown decisions respectively,

while the second stage decision yti is the amount of power generated from the available generators

i. The variable xtj controls whether to reduce the uncertainty in the load in period t in node

j. The other parameters Gi, Si, c
t
j , UTi, DTi represent the fixed running cost, start up cost,

uncertainty reduction cost, minimum up time, and minimum down time, respectively.

For the second stage problem, the parameter ξ represents the uncertain load. From the rest,

ri, p
min
i , pmaxi , RDi, SDi, RUi, SUi are the power generation costs, minimum power generated,

maximum power generated, ramp down rate, shut down rate, ramp up rate, and start up rates,

respectively. For the line flow constraint, fl represents the maximum power flow through a

line, αl is the transmission line distribution factor, and Bp and Bd are the generation and load

incidence matrices.
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We assume that only the load is subject to uncertainty in this problem. The set capturing

this uncertainty is given by U(x) = U1(x1)× U2(x2)× · · · × UT (xT ), where

U t(xt) =

ξt ∣∣∣ ∑
j∈Nd

|ξtj − ξ̄tj |
ξ̂tj

≤ Γ
√
|Nd|, ξtj ∈ [ξ̄tj − Γξ̂tj , ξ̄

t
j + (Γ− γxtj)ξ̂tj ]

 .

This set is a cardinality constrained uncertainty set [18] and is inspired by the central limit

theorem. The decision xt allows us to modify the upper bound on the uncertain parameter and

reduce the maximum uncertainty in all nodes in the time period t.

Problem (UC) is an adjustable robust optimization problem with decision dependent uncer-

tainty. Therefore, it is difficult to solve directly. In order to allow for computational tractability,

we simplify problem (UC) by using affine decision rules

yti(ξ
[t]) = wti +Wit

∑
j∈Nd

ξtj ∀i ∈ Ng, ∀t ∈ T .(3.7)

With this assumption, we can use the results from [74]. The demand satisfaction constraint can

be reformulated as follows.

Proposition 3.3.1 (Lorca et al. [74]). For a full-dimensional uncertainty set, the robust

demand satisfaction constraints with affine decision rules of the form (3.7) are equivalent to

∑
i∈Ng

wti = 0,
∑
i∈Ng

Wit = 1 ∀t.

This result extends to decision-dependent uncertainty sets without any changes, if γ < Γ.

This assumption holds, if we require each load to have some minimum level of uncertainty. The

remaining robust constraints can be reformulated using duality theory. However, due to the

large number of constraints in the resulting reformulation, we use a cut generation algorithm to



71

incorporate the robust constraints into the problem. This cut generation process is possible for

decision-dependent uncertainty set by the results presented in chapter 2.

3.4. Cut generation

All the robust constraints of problem (UC), except the line flow constraints, can be expressed

in the form
∑

t∈T
∑

j∈Nd
αtjξ

t
j ≤ h ∀ξ ∈ U(x), where α is a linear function of the decision

variable y. We can write this as

α>ξ ≤ h ∀ξ ∈ U(x),

for the uncertainty set

UΠ(x) = {ξ | Gξ ≤ g, ξ ≤ v + W(e− x), ξ ≥ 0} .

Using the results from Chapter 2, this constraint can be reformulated as

(3.8)

max
z,ζ

(α−Πx)>χ+α>ζ

s.t. G(χ+ ζ) ≤ g

χ ≤We

ζ ≤ v

χ, ζ ≥ 0.

We can reformulate the above problem using duality, however, the large number of constraints

in (UC) leads to a very large robust problem which is difficult so solve. To avoid this, we develop

a cut generation algorithm, which allows us to generate the worst-case scenarios corresponding

to each constraint iteratively. For robust constraint, we solve the problem (3.8) and identify

a scenario which violates the constraint. This violated constraint is then added to the master

problem. Once we have added a violation corresponding to each of the constraints, the master
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problem is re-solved. This process is repeated until we are unable to find any violated constraints,

which solves the overall problem.

3.4.1. Pre-computed scenarios

The cut generation algorithm allows us to reduce the number of constraints in the problem.

However, it still requires the master problems to be solved repeatedly many times as the con-

straints are generated. This significantly increases the computational difficulty. To alleviate

this issue, we can pre-compute the worst-case scenarios for some of the constraints. These pre-

computed scenarios can then be added at the initialization of the problem. Consequently, the

corresponding constraints do not need to be generated iteratively. For this purpose, we make

the following assumption,

Assumption 3.4.1. The uncertainty influencing variable x does not depend on the nodes

j with net load.

This assumption enables us to pre-compute the scenarios and solve realistic size unit commit-

ment problems. In practice, such an assumption implies that any reduction in load uncertainty

happens across the board for all users at the specified times.

Consider the problem maxξt∈Ut(xt) αit
∑

j∈Nd
ξtj where

U t(xt) =

∑
j∈N

|ξtj − ξ̄tj |
ξ̂tj

≤ Γ
√
N, ξtj ∈ [ξ̄tj − Γξ̂tj , ξ̄

t
j + (Γ− γxti)ξ̂tj ]

 .
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Using the results from chapter 2, this problem can be expressed as

(3.9)

max
χ,ζ

Nd∑
j=1

((αit −Mxt)χjt + αitζjt)

s.t.

Nd∑
j=1

|χjt + ζjt − Γd̂jt|
d̂jt

≤ Γ
√
Nd

0 ≤ ζjt ≤ 2Γd̂jt − d̂jtγjt ∀j

0 ≤ χjt ≤ d̂jtγjt ∀j.

We have the following proposition for the solution to this problem.

Proposition 3.4.1. For any given αit and xt, the optimal solution to problem (3.9) is

(3.10)

(αit ≥ 0, xt = 1) : (χt, ζt) = arg max
χ,ζ

Nd∑
j=1

(−Mχjt + ζjt)

(αit ≥ 0, xt = 0) : (χt, ζt) = arg max
χ,ζ

Nd∑
j=1

(χjt + ζjt)

(αit < 0, xt = 1) : (χt, ζt) = arg max
χ,ζ

Nd∑
j=1

(−Mχjt − ζjt)

(αit < 0, xt = 0) : (χt, ζt) = arg max
χ,ζ

Nd∑
j=1

(−χjt − ζjt).

Proof. Case 1: If xt = 0, then the objective of (3.9) is maxχ,ζ∈Ut αit
∑Nd

j=1(χjt + ζjt). The

solution of this problem then only depends on the sign of αit and not on its value.

Case 2: If xt = 1, then the objective function becomes maxχ,ζ∈Ut

∑Nd
j=1((αit −M)χjt + αitζjt).

If αit > 0, then the objective is αit maxχ,ζ∈Ut

∑Nd
j=1((1− M

αit
)χjt + ζjt).

Let M ′ = M
αit

. Since M is large, this means that M ′ >> 1, and we can write the objective as

αit maxχ,ζ∈Ut

∑Nd
j=1(−M ′χjt + ζjt). For the case of αit < 0, we can arrive at the result similarly.

This completes the proof. �
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Using the proposition (3.4.1), we can pre-compute the worst-case scenarios for any of the

constraints which can be expressed in the form maxξt∈Ut(xt) αit
∑

j∈Nd
ξtj ≤ hit ∀i ∈ Ng, ∀t ∈ T .

This corresponds to the structure of the constraints which bound the power generated. For the

ramping constraints and the line flow constraints we use the standard cut generation process.

We now conduct numerical experiments on the final problem.

3.4.2. Numerical Experiments

We illustrate the benefits of the decision dependent approach as well as the impact of uncertain

reduction on a unit commitment problem. Specifically, we focus on a reduced version of the

IEEE-118 bus problem [1] with only 15 buses.

3.4.2.1. Setup. The reduced problem has |Ng| = 9 generators, |Nd| = 11 loads, and focuses

on a period of |T | = 12 hours. The values of the other parameters are Γ = 2, cost of reduction

rt = 10/load/time and d̂j = 0.1d̄j . The average loads are taken from the original 118 bus

problem.

Computational Setup. The master problem is modeled as a MILP while the sub problem is

solved as a linear program. The optimization problem is modeled using JuMP library on the

Julia programming language v1.0 and solved with the Gurobi v8 solver. The experiments are

run on a machine with an Intel Core i7 processor with 32 GB RAM.

3.4.2.2. Results. From Figure 3.1, it can be observed that as the price of reducing the uncer-

tainty increases, the benefit of reducing it decreases along with the amount of reduction. This

indicates that the price that needs to be paid plays a key role in determining whether it is worth

reducing the uncertainty. The figures also show the key role of the parameter γ, i.e., the amount

of reduction in the uncertainty. The benefit of reducing the uncertainty as well as the load

reduced changes significantly with the value of the parameter γ.
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Figure 3.1. Benefit of DDU (left) and Total load reduced (right)

Model γ Reduced Obj Change

Nominal 103926

Robust 0 115516 11.2%

DDU Fixed 0.5 Yes 114557 10.2%

DDU Robust 1 [0.4, 0.6] Yes 115216 10.9%

DDU Robust 2 [0.3, 0.7] No 115516 11.2%

DDU Stoch. 1 {0.4, 0.5, 0.6} Yes 114371 10.0%

DDU Stoch. 2 {0.3, 0.5, 0.7} Yes 114083 9.8%

Table 3.1. Comparison of uncertainty models

Table 3.1 shows the results for multiple uncertainty models for the unit commitment problem.

We can observe that robustness comes at a price as it increases the objective function. However,

this cost can be reduced by using decision dependent uncertainty. The benefit, however, depends

on the value of γ. For example, it is worthwhile to reduce the uncertainty for the model DDU

Robust 1, but not for DDU Robust 2. This is because worst value of γ is 0.3 for the DDU Robust

2, which is lower than 0.4 for DDU Robust 1. However, the situation is different for the stochastic
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model, because it focuses on the expected value instead of the worst-case as such the DDU Stoch.

2 model still reduces the uncertainty even though it has a support with bounds similar to DDU

Robust 2. However, the computational challenge of solving the Stochastic models is much higher

than that of the Robust models. Overall, we can observe that the presence of uncertainty in the

amount of reduction γ can have significant impact and it is necessary to incorporate it into the

optimization problem.

3.5. Conclusion

In this chapter, we extended decision-dependent uncertainty sets to also allow for uncertainty

in the influence of the decisions on the set. We discussed methods to incorporate this uncertainty

into the overall optimization problem by modeling the uncertainty in the influence as set based

or distribution based. This led to robust and stochastic optimization problems. The robust

problem focuses on worst cases, while the stochastic problem addresses on the expected value.

This increases the difficulty of solving the stochastic problems even though they may be more

realistic. In the numerical experiments on the unit commitment problem, we developed a cut

generation algorithm and provided results to pre-compute the worst-case scenarios for some of

the constraints, which improves the computability of the problem. The experiments illustrated

the benefits of incorporating any uncertainty in the influence into the optimization problem

as this can have a significant impact on the uncertainty reducing decision. The results also

indicated that the use of a RO or a SO model can lead to significantly different uncertainty

reduction decisions.
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CHAPTER 4

Connected Uncertainty

4.1. Introduction

Current optimization methods typically model adversarial uncertainties to be independent

across periods. In many practical settings, however, the realized uncertainty in a period can

affect subsequent uncertainty realizations. Such connections have been addressed previously

in the context of unit commitment [72] and inventory control problems [101]. The goal of this

chapter is to provide a general framework to directly model connected uncertainties, in particular

when they are based on time series. To this end, we develop this modeling framework for both

robust and distributionally robust optimization.

In many applications, the uncertainty at a time period depends on the realization of the un-

certain parameters in previous periods. A prominent example is when autocorrelation amongst

uncertainties is observed in decision-making settings. In queuing systems, e.g., Livny et al. [71]

study the impact of correlations in inter-arrival or service times. Similarly, Balvers and Mitchell

[8] study the optimal portfolio choice problem under the assumption of autocorrelated stock

returns. In newsvendor problems, Alwan et al. [4] provide models with autoregressive demand

for commodities. These problems leverage the connection amongst uncertain parameters and

would benefit from the RO paradigm to address worst-case outcomes. This is important because

the connection amongst uncertainties may amplify the worst-case outcomes. However, to the

best of our knowledge, connected uncertainty models in the context of RO have not yet been

studied in a general fashion.
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We study the class of interdependent and adversarial uncertainties in RO problems while

maintaining generality to ensure broad applicability. Specifically, we seek to provide a step

towards modeling this family of problems with uncertainty sets that capture connections to

previous realizations. We then extend this approach to the DRO perspective and provide re-

formulations for moment based ambiguity sets which depend on past realizations. To develop

intuition, we begin with an example.

4.1.1. Example

Consider a stylized knapsack problem:

max
xt∈X

T∑
t=1

c>t xt

s.t.
T∑
t=1

ξ>t xt ≤ B ∀ξt ∈ Ut ∀t = 1, . . . , T,

where xt ∈ Xt ⊆ Rn ∀t = 1, . . . , T are decision variables, ct ∈ Rn are known, ξt ∈ Rn are uncer-

tain coefficients, and B is the right-hand side (RHS) coefficient. In this setting, the uncertain ξt

can vary in each period while being correlated with the past. Figure 4.1(a) illustrates some of

the possible uncertainty realizations. In the paradigm of RO, these uncertainties can be modeled

by uncertainty sets Ut in different ways. For clarity, consider sets Ut that are parametrized by

their centers µt and sizes rt. In the following, we discuss three distinct models for T = 3.

• Often uncertainty sets across periods are modeled to be invariant as µ1 = µ2 = µ3

and r1 = r2 = r3, resulting in U1 = U2 = U3 as illustrated in Figure 4.1(b). While

this fixed model offers simplicity and computational advantages, it fails to capture all

possible scenarios, when uncertainties are actually auto-correlated.
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Figure 4.1. Uncertainties over time (a) can be modeled with (b) fixed, (c)
growing, and (d) connected sets with µt updated using specific realizations

ξ̂t.

• To overcome this limitation, Ut can be modeled to grow in size, i.e., µ1 = µ2 = µ3 and

r1 ≤ r2 ≤ r3, resulting in U1 ⊆ U2 ⊆ U3. Such growing uncertainty sets are sketched in

Figure 4.1(c). The expansion, however, may render the solutions over conservative.

• In both previous models, the uncertainty set in each period is independent of the

realizations in previous periods. We propose a new uncertainty set model Ut = Ut(ξt−1)

for t > 1, where the center of the set is correlated with the previous period uncertainty

realization. Such a setting occurs, for example, when µ2(ξ1) = Aξ1 and µ3(ξ2) = Aξ2

with A = αI, α > 0, and r1 = r2 = r3. Such sets are illustrated in Figure 4.1(d) for

positively correlated centers. This model has the advantage of capturing autocorrelated

uncertainties without increasing set size.
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We will revisit this example in Section 4.4 with more detailed numerical analysis. For clarity,

we now formally define the proposed uncertainty sets.

Definition 4.1.1. A connected uncertainty set (CU set) has parameters that can depend on

the realizations of the uncertainty in previous periods.

Consequently, we call realizations from CU sets as connected uncertainties. We will provide

specific examples of such sets for a variety of set structures.

4.1.2. Contributions

We study optimization problems over multiple time periods with both static and adaptive de-

cisions where the uncertainty at each period is influenced by the uncertainty realizations in the

past. Specifically, the contributions of this chapter are:

• We introduce the concept of connected uncertainty sets that offers generalizable in-

sights. Specifically, we discuss uncertainties that depend linearly or quadratically on

previous periods.

• We provide tractable reformulations with here-and-know decisions for common families

of uncertainty models, namely i) polyhedral CU sets, where the right-hand side param-

eters of the set depend on previous periods, ii) ellipsoidal CU sets, where the center

depends on the past, or (iii) ellipsoidal sets, where the covariance matrix depends on

previous periods.

• We also provide tractable reformulations for affinely adaptive decisions for polyhedral

and ellipsoidal uncertainty sets, which are commonly used sets in practical settings.

• We probe the proposed concept through numerical experiments on a stylized knap-

sack problem as it is applicable to a wide range of managerial and decision-making

applications.
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To clarify, note that such connected sets Ut(ξt−1) can also be expressed as a single joint

uncertainty set over ξ1, . . . , ξT to ease the reformulation. However, a key advantage of the

proposed CU sets is their explicit dependence on previous realizations. This modeling power

can be exploited, e.g., when the uncertainty stems from a time series. Furthermore, if an

application requires the repeated solving of the problem, our approach prescribes how to update

the sets over time.

The closest work to ours is application related. Lorca and Sun [72, 73] study multistage

economic dispatch and unit commitment under uncertain renewable power generation. They

incorporate a time series into uncertainty sets and solve the problem by cut generation, since

large-scale unit commitment problems are known to be intractable. Our work is on general

constraints, leverages duality theory for tractable reformulations, and can be used in a variety

of applications.

4.2. Connected Uncertainty with RO

The concept of interstage dependence in multistage problems is well studied in stochastic

optimization as it is naturally embedded in scenario trees and can be used to model complex

state dependent processes such as financial volatility [54]. Some models assume independence,

allowing decomposition algorithms and sharing of cuts within the same stage, e.g., L-shaped

method [56]. In general, sharing cuts is not permitted when the scenarios are dependent unless

the dependency follows simple time series models in which case these cuts can be modified and

shared [34].

In RO, uncertainty models typically employ a single set for all periods. The popular budgeted

uncertainty set models use one budget across periods to couple the uncertainty realizations [9,

57, 81]. Building upon this concept, the notion of dynamic uncertainty sets allows a time

series model to capture fluctuating demand. The set at each period depends on realizations in
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all previous periods [72, 73]. Similarly, in inventory management, Mamani et al. [76] studied

correlated and non-identically distributed demand over multiple periods, and Ang et al. [6]

investigated storage assignment.

In this chapter, we consider the dependence on past realizations for general purpose uncer-

tainty sets rather than application specific sets. We reformulate a standard linear constraint

over a sequence of uncertainty sets whose parameters (centers, covariances etc.) are connected

across time.

4.2.1. Model

In a variety of applications such as cutting stock and packing problems, capital budgeting, and

project selection etc., linear constraints are typically subject to connected uncertainties [41].

Since this effect can be confined to constraint coefficients, the goal of this section is to reformulate

the constraint

(C-RO)
T∑
t=1

ξ>t xt ≤ B ∀ξt ∈ Ut(ξt−1) ∀ξ1 ∈ U1 ∀t = 2, . . . , T.

Here, ξt is the vector of uncertain coefficients, xt denotes the decision variables, and B is a

constant upper bound. In each period, ξt resides in a set Ut(·), which may depend on ξt−1. The

robust counterpart of (C-RO) becomes

(RC) max
ξ1∈U1

{ξ>1 x1 + max
ξ2∈U2(ξ1)

{ξ>2 x2 + · · ·+ max
ξT∈UT (ξT−1)

ξ>T xT }} ≤ B.

Each period t is affected by the worst-case realization of the uncertain parameter in period t−1.

In this chapter, we focus on CU sets, whose parameters linearly depend on the previous

realization. Such uncertainties are prevalent in modeling popular applications, e.g., autoregres-

sive models and minimum mean square error predictors (linear or jointly normal) [52]. In the
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RO literature, when confidence regions of the uncertainty are available, ellipsoidal sets are com-

monly used, whereas when only bounds on the uncertainty are known, polyhedral uncertainty

sets are used. Therefore, we discuss CU sets of ellipsoidal and polyhedral structures to extend

the benefits of RO to multi-period settings. For ellipsoidal sets, we study the dependence of the

set center and of the covariance matrix on the past, which may arise from either a Bayesian or

frequentist update, or from a time series model. For polyhedral sets, we focus on the RHS set

coefficients that may depend on previous realizations. This occurs when the magnitude or the

location of the uncertainty is affected by past realizations.

4.2.2. Center Dependence of Ellipsoidal Sets

When uncertainties are Gaussian they can be modeled with ellipsoidal sets as Gaussian distribu-

tions have ellipsoidal contours. Confidence or predictive regions can also be naturally described

by ellipsoids [29]. For such sets, there are three parameters that can be affected by previous

uncertainty realizations: radius r, center µt, or covariance matrix Σt. The case of radius depen-

dence leads to a nested norm structure, resulting in nonconvex problems that are beyond our

scope. Here, we discuss the setting where µt depends on the previous period realizations, while

r and Σt are constant. Such dependence arises, when, e.g., the demand is autoregressive [4].

Section 4.2.3 discusses Σt dependence while r and µt are invariant.

When the set centers µt are connected, the uncertainty set for each period is

(E) Ut(ξt−1) = {ξt | ξt = µt(ξt−1) + Ltut : ‖ut‖2 ≤ rt},

where LtL
>
t = Σt. If µt is autoregressive and depends on the previous period realization as

(4.1) µt(ξt−1) = Atµt−1(ξt−2) + Ftξt−1 + ct,

the constraint (C-RO) can be reformulated as following.
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The nature of the connectedness motivates At, Ft and ct, e.g., by autoregressive or Bayesian

models, etc. We reformulate the uncertainty in a period assuming all previous realizations are

known. The robust counterpart at t has to take future uncertainties into account. As such,

all decisions are affected by succeeding decisions. We define recursive variables for each period

τ ∈ {1, . . . , T − 1} as:

yT−τ = xT−τ + (FT−τ+1 + AT−τ+1)>yT−τ+1, with yT = xT ,

CT−τ = c>T−τ+1yT−τ+1 + CT−τ+1, with CT+1 = 0 and

RT−τ = rT−τ‖L>T−τ (xT−τ + FT−τ+1yT−τ+1)‖2 +RT−τ+1 with RT = rT ‖L>T xT ‖2.

The aggregates CT−τ and RT−τ are functions of the variable yT−τ and represent the effect of

the constants ct in the update (4.1) and the 2-norm protection term, respectively.

Theorem 4.2.1. The robust counterpart of constraint (C-RO) for the ellipsoidal set (E) is

µ>1 y1 + C2 +R1 ≤ B.

Proof. We start by reformulating (C-RO) for an arbitrary τ and then extend it to τ = T .

Let sT−τ =
∑T−τ

t=1 ξ
>
t xt, then the robust counterpart of (C-RO) for τ is

(4.2) sT−τ + µT−τ+1(ξT−τ )>yT−τ+1 + CT−τ+2 +RT−τ+1 ≤ B.

We prove the statement for ξT , then assume it to be true for ξT−k+1, before proving it for ξT−k.

Base case (τ = 1). The constraint (C-RO) can be expanded as sT−1 + ξ>T xT + CT+1 ≤ B.

Because the constraint must hold for all uT ∈ {uT | ‖uT ‖2 ≤ rT }, it also holds for the robust

counterpart

sT−1 + µT (ξT−1)>xT + rT ‖L>T xT ‖2 + CT+1 ≤ B,
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as ξT = µT (ξT−1) + LTuT . With yT = xT , CT+1 = 0, and RT = rT ‖L>T xT ‖2, we obtain the

result

sT−1 + µT (ξT−1)>yT + CT+1 +RT ≤ B.

Inductive case (τ = k). Assume that the reformulation (4.2) holds for T − k + 1. Then the

robust counterpart of (C-RO) with respect to ξT , ξT−1, . . . , ξT−k+1 is

sT−k + µT−k+1(ξT−k)
>yT−k+1 + CT−k+2 +RT−k+1 ≤ B.

Substituting the mean and rearranging the terms, this can be expressed as

sT−k−1 + ξ>T−k(xT−k + F>T−k+1yT−k+1) + µT−k(ξT−k−1)>A>T−k+1yT−k+1

+ c>T−k+1yT−k+1 + CT−k+2 +RT−k+1 ≤ B.

Using the uncertainty set (E), this can be rewritten as

sT−k−1 + µT−k(ξT−k−1)>(xT−k + F>T−k+1yT−k+1)

+ µT−k(ξT−k−1)>A>T−k+1yT−k+1 + u>T−kL
>
T−k(xT−k + F>T−k+1yT−k+1)

+ c>T−k+1yT−k+1 + CT−k+2 +RT−k+1 ≤ B.

Taking the robust counterpart with respect to uT−k, we can write

sT−k−1 + µT−k(ξT−k−1)>(xT−k + F>T−k+1yT−k+1 + A>T−k+1yT−k+1)

+ rT−k‖L>T−k(xT−k + F>T−k+1yT−k+1)‖2

+ c>T−k+1yT−k+1 + CT−k+2 +RT−k+1 ≤ B.
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With yT−k = xT−k + F>T−k+1yT−k+1 + A>T−k+1yT−k+1 and the definitions of RT−k and CT−k,

we obtain the desired result

sT−k−1 + µT−k(ξT−k−1)>yT−k + CT−k+1 +RT−k ≤ B.

This concludes the induction, and the final reformulation is obtained by substituting τ = T . �

In summary, when modeling uncertainty with connected centers, a recursive variable yT−τ+1

is required to protect against the accumulating effect of future uncertainties. Current RO models,

which model uncertainties at each period to be independent, neglect this effect. Thus they do

not capture all uncertainties or lead to over conservative solutions. In order to optimally account

for uncertainty over all periods, Theorem 4.2.1 prescribes how to use this yT−τ+1 to modify the

2-norm in order to protect against uncertainty at each period. We will numerically demonstrate

this result for connected centers on a knapsack application in Section 4.4 and show that they

can improve constraint satisfaction and increase objective function value for any given level of

constraint satisfaction, when compared to non-connected sets.

Remark: Alternatively, a joint uncertainty set can be constructed by the union of the indi-

vidual uncertainty sets (E) over all time periods. This joint set is second-order cone representable

as such the constraint (C-RO) can be tractably reformulated over this set as well.

4.2.3. Matrix Dependence of Ellipsoidal Sets

The previous section focused on changes in the location of ellipsoidal uncertainty sets. Many

problems require models that allow for the shape of the set to vary, e.g., when the volatility in

an uncertain process depends on past realizations. Such uncertainties are usually described by

autoregressive conditional heteroskedastic models, e.g. in asset prices [27] or demand and sales

growth of firms [68]. To this end, we model the covariance Σt of the ellipsoidal uncertainty
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set to depend on previous realizations, while the radius r and mean µt are predetermined. A

general form of this dependence is

(4.3) ΣT−t+1(ξT−t) = atΣT−t(ξT−t−1) + ft(ξT−t − µT−t)(ξT−t − µT−t)> + Ct ∀t,

where at ≥ 0, ft ≥ 0, Ct � 0, and Σ1 � 0 are constants. This dependence captures frequentist

and Bayesian paradigms, where the former assumes no prior distribution and the latter assumes

one. Because the second term in (4.3) is rank 1 and Ct is positive semi-definite, the update (4.3)

preserves the positive semi-definiteness of Σt.

The quadratic dependence in (4.3) leads to nonlinear terms in the robust counterpart, ob-

scuring an analytic reformulation. For this, Theorem 4.2.2 provides a conservative reformulation.

Since the quadratic term can arise from a positive or a negative deviation from µT−t, we in-

troduce a sign variable n> = (n>1 ,n
>
2 , . . . ,n

>
T−1) with nt = (nt,1, nt,2, . . . , nt,t) to differentiate

between these cases. Each nt,k can be 1 or −1, and n>[T−τ ] = (n>T−τ , . . . ,n
>
T−1). The set N

consists of all possible 2
T
2

(T−1) vectors n, and N[T−τ ] consists of all combinations of n[T−τ ]. For

τ ∈ {1, . . . , T − 1}, we also define

yT−τ (n[T−τ ]) = xT−τ +
τ∑
t=1

nT−τ,t · yT−t+1(n[T−t+1]) rT−t+1

√
Aτ,tfτ ,

with yT+1 = 0 and yT = xT ,

RT−τ+1 = RT−τ+2 +

τ∑
t=1

rT−t+1

√
Aτ,t yT−t+1(nT−t+1)>CτyT−t+1(nT−t+1),

with RT+1 = 0, and

Aτ,t =
τ−1∏
j=t

aj , t = 1, . . . , τ − 1,

with Aτ,τ = 1.
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In what follows, we suppress the dependence of yT−τ on n[T−τ ] and Σt+1 on ξt for brevity. To

reformulate (C-RO), let ξT−τ for some τ ∈ {1, . . . , T − 1} reside in a set (E) with radius rT−τ ,

center µT−τ , and covariance matrix ΣT−τ with ΣT−τ = LT−τL
>
T−τ updated as in (4.3).

Theorem 4.2.2. A conservative robust reformulation of (C-RO) is

T∑
t=1

µ>t xt +

T∑
t=1

rT−t+1

√
AT,t ‖L>1 yT−t+1‖2 +R2 ≤ B ∀n ∈ N .

Proof. The reformulation proceeds through induction. The robust counterpart of (C-RO)

with respect to ξT−τ+1, . . . , ξT is

sT−τ + ΘT−τ+1 +
τ∑
t=1

rT−t+1

√
Aτ,ty>T−t+1ΣT−τ+1yT−t+1 +RT−τ+2 ≤ B,

∀nT−τ+1 ∈ N[T−τ+1],

with sT−τ =
T−τ∑
t=1

ξ>t xt, ΘT−τ+1 =
T∑

t=T−τ+1

µ>t xt and s0 = 0.

The proof proceeds parallel to that of Theorem 4.2.1.

Base Case (τ = 1). The constraint (C-RO) can be written as sT−1 +ξ>T xT ≤ B. Substituting

ξT = µT + LTuT . (C-RO) must hold for all uT with ‖uT ‖2 ≤ rT , and thus it also holds for

sT−1 + µ>T xT + rT ‖L>T xT ‖2 ≤ B. Using the equality ‖L>T xT ‖2 =
√

x>TΣTxT and yT = xT , we

obtain

sT−1 + ΘT + rT ‖L>T yT ‖2 ≤ B ⇔ sT−1 + ΘT + rT

√
y>T ΣTyT ≤ B.

Since RT+1 is assumed to be zero, we have achieved the desired result.
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Inductive case (τ = k). Assume that the result is true for T − k + 1, i.e., the reformulation

with respect to ξT , ξT−1, . . . ξT−k+1 is given by

sT−k + ΘT−k+1 +
k∑
t=1

rT−t+1

√
Ak,ty

>
T−t+1ΣT−k+1yT−t+1 +RT−k+2 ≤ B

∀nT−k+1 ∈ N[T−k+1].

Now, we have to prove that the reformulation with respect to ξT−k with τ = k + 1 is given by

sT−k−1 + ΘT−k +
k+1∑
t=1

rT−t+1

√
Ak+1,t y>T−t+1ΣT−kyT−t+1 +RT−k+1 ≤ B

∀nT−k ∈ N[T−k].

Substituting sT−k = sT−k−1 + ξ>T−kxT−k and ξT−k = µT−k + LT−kuT−k in the inductive

assumption

sT−k−1 + ΘT−k+1 + µ>T−kxT−k + u>T−kL
>
T−kxT−k

+
k∑
t=1

rT−t+1

√
Ak,ty

>
T−t+1ΣT−k+1yT−t+1 +RT−k+2 ≤ B ∀nT−k+1 ∈ N[T−k+1].

Utilizing (4.3) for t = k and ΘT−k = µ>T−kxT−k + ΘT−k+1, the constraint can be reformulated

as

sT−k−1 + ΘT−k + u>T−kL
>
T−kxT−k

+

k∑
t=1

rT−t+1

(
Ak,taky

>
T−t+1ΣT−kyT−t+1 +Ak,tfk((ξT−k − µT−k)>yT−t+1)

2

+Ak,ty
>
T−t+1CkyT−t+1

) 1
2

+RT−k+2 ≤ B ∀nT−k+1 ∈ N[T−k+1].
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Using the Cauchy-Schwarz inequality, a more conservative constraint is

sT−k−1 + ΘT−k + u>T−kL
>
T−kxT−k +

k∑
t=1

rT−t+1

√
Ak,taky

>
T−t+1ΣT−kyT−t+1

+
k∑
t=1

rT−t+1

√
Ak,tfk

∣∣∣(ξT−k − µT−k)>yT−t+1

∣∣∣
+

k∑
t=1

rT−t+1

√
Ak,ty

>
T−t+1CkyT−t+1 +RT−k+2 ≤ B ∀nT−k+1 ∈ N[T−k+1].

The above constraint holds for
∣∣∣(ξT−k − µT−k)>yT−t+1

∣∣∣, if it holds for both the positive and

the negative possible values. We use nT−k,t, which can take values 1 or −1 to express the above

as

sT−k−1 + ΘT−k + u>T−kL
>
T−kxT−k +

k∑
t=1

rT−t+1

√
Ak,taky

>
T−t+1ΣT−kyT−t+1

+
k∑
t=1

nT−k,t · rT−t+1

√
Ak,tfk(ξT−k − µT−k)>yT−t+1

+
k∑
t=1

rT−t+1

√
Ak,ty

>
T−t+1CkyT−t+1 +RT−k+2 ≤ B

∀nT−k,t ∈ {1,−1}, ∀t = 1, . . . , k, ∀nT−k+1 ∈ N[T−k+1].

Note that the use of nT−k,t allows to write the 2k constraints in this concise form. Combining the

set N[T−k+1] with {1,−1}k, using ξT−k−µT−k = LT−kuT−k, and collecting the terms involving
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u>T−kL
>
T−k, we obtain

sT−k−1 + ΘT−k + u>T−kL
>
T−k(xT−k +

k∑
t=1

nT−k,t · rT−t+1

√
Ak,tfkyT−t+1)

+

k∑
t=1

rT−t+1

√
Ak,taky

>
T−t+1ΣT−kyT−t+1 +

k∑
t=1

rT−t+1

√
Ak,ty

>
T−t+1CkyT−t+1

+RT−k+2 ≤ B ∀nT−k ∈ N[T−k].

With the definition of yT−k, we can write

sT−k−1 + ΘT−k + u>T−kL
>
T−kyT−k +

k∑
t=1

rT−t+1

√
Ak,taky

>
T−t+1ΣT−kyT−t+1

+
k∑
t=1

rT−t+1

√
Ak,ty

>
T−t+1CkyT−t+1 +RT−k+2 ≤ B ∀nT−k ∈ N[T−k].

Since this constraint must hold for all uT−k with ‖uT−k‖2 ≤ rT−k, taking the maximum over

uT−k and substituting ‖L>T−kyT−k‖2 =
√

y>T−kΣT−kyT−k, we obtain

(4.4)

sT−k−1 + ΘT−k + rT−k

√
y>T−kΣT−kyT−k

+
k∑
t=1

rT−t+1

√
Ak,taky

>
T−t+1ΣT−kyT−t+1

+
k∑
t=1

rT−t+1

√
Ak,ty

>
T−t+1CkyT−t+1 +RT−k+2 ≤ B ∀nT−k ∈ N[T−k].

Using Ak,tak =
∏k−1
j=t ajak = Ak+1,t, Ak+1,k+1 = 1, and

rT−k

√
Ak+1,k+1y

>
T−kΣT−kyT−k

= rT−(k+1)+1

√
Ak+1,k+1y

>
T−(k+1)+1ΣT−(k+1)+1yT−(k+1)+1,
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we can rewrite (4.4) as

sT−k−1 + ΘT−k +
k+1∑
t=1

rT−t+1

√
Ak+1,t y>T−t+1ΣT−kyT−t+1

+
k∑
t=1

rT−t+1

√
Ak,ty

>
T−t+1CkyT−t+1 +RT−k+2 ≤ B ∀nT−k ∈ N[T−k],

by extending the first summation. Using the definition of RT−k+1, we obtain the desired result,

sT−k−1 + ΘT−k +

k+1∑
t=1

rT−t+1

√
Ak+1,t y>T−t+1ΣT−kyT−t+1 +RT−k+1 ≤ B

∀nT−k ∈ N[T−k].

The complete reformulation follows immediately by substituting τ = T . �

The reformulation in Theorem 4.2.2 consists of a sum of 2-norms, making it computa-

tionally tractable, and hence attractive for large-scale problems with few periods. Similar

to center dependence in Section 4.2.2, yT−τ plays the key role in adapting the protection

against connected matrices. This advances the conventional RO paradigm because the pres-

ence of connectedness allows current worst-case realizations to affect future uncertainties, and

Theorem 4.2.2 describes how yT−τ modifies the 2-norm through the summation
∑τ

t=1 nT−τ,t ·

yT−t+1(n[T−t+1]) rT−t+1

√
fτAτ,t in order to incorporate this affect.

Summary for Ellipsoidal Sets. For center and matrix dependence, we showed how µt(ξt−1)

and Σt(ξt−1) can be affected by past uncertainties, and that the worst case is driven by future

uncertainties through yT−t, as in (4.3) and (4.4), respectively. These results explicitly reveal the

effect of connected uncertainties, namely that the past dependence establishes the location (for

µt dependence via (4.1) or for Σt dependence via (4.3)), while the future connections determine

the direction of the worst case (via theorems 4.2.1 for µt or 4.2.2 for Σt).
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4.2.4. Polyhedral Sets

When the upper and lower bounds of the uncertainty are known, box sets are commonly used,

e.g., in inventory management under demand uncertainty [89]. To reduce the inherent conser-

vatism, a budget can be placed on the number of uncertain components [18]. Such polyhedral sets

provide robustness while maintaining tractability. Here, we extend these models to the CU set-

ting. Specifically, we consider multi-period robust problems, where the uncertain constraint

coefficients of each period reside in a polyhedral CU set. We model the RHS set parameters

to depend on the realization of the previous period uncertainty. Such settings may arise, e.g.,

when the bounds on the uncertain demand in an inventory problem depend on past demand

realizations [see 76].

To reformulate the constraint (C-RO), let the uncertain ξt reside in a polyhedral set

(P) Ut(ξt−1) = {ξt | Gtξt ≥ gt + ∆tξt−1},

where the matrix ∆t is application based, e.g., from time series models. Here, without loss of

generality, the parameters of U1 are considered as known (∆1 = 0). This setting resembles the

introductory Example 3, and the following theorem reformulates (C-RO).

Theorem 4.2.3. The robust counterpart of constraint (C-RO) under the uncertainty set (P)

is

T∑
t=1

q>t gt ≤ B

q>t Gt = x>t + q>t+1∆t+1 ∀t = 1, . . . , T,

qt ≤ 0 ∀t = 1, . . . , T,

where ∆1 = 0 and ∆T+1 = 0.
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The proof leverages duality and is relegated to Appendix A.1. In this theorem, the term q>t gt

safeguards against all uncertainty realizations. The dual variable qt is appropriately adjusted

by q>t Gt = (xt + ∆>t+1qt+1)> to account for uncertainties. The connectedness, i.e., the nonzero

∆t+1, contributes the second term ∆>t+1qt+1. It is worthwhile pointing out that if the uncer-

tainty dependence occurs on the left-hand side (LHS) (e.g., Ũt(ξt−1) = {ξt | Gt(ξt−1)ξt ≥ gt}),

then the corresponding reformulation requires dual variables that are functions of ξt−1, resulting

in an infinite dimensional optimization problem.

In conclusion, theorems 4.2.1, 4.2.2 and 4.2.3 highlight that connected uncertainties can be

modeled in a natural fashion via CU sets, which also enable tractability. These results show

that modifying the decision variable in order to account for future worst cases is an instrumental

component of reformulating robust optimization problems with CU sets.

4.2.5. Extensions to Affinely adaptive Decisions

In previous sections, we focused on the effect of connected uncertainties on static and here-and-

now decisions. In many problems, decisions can also adapt to previously revealed uncertainties.

Adjustable robust optimization (ARO) problems were introduced by Ben-Tal et al. [11] and have

applications in inventory management [89] and unit commitment [73], amongst others. ARO

problems, however, are known to be NP-complete, which can be circumvented by leveraging

affine or piece-wise static decision rules [51].

In this section, we extend the notion of modeling with CU sets to adaptive decisions and

provide reformulations for a two-period ARO problem under affine decision rules. Such a problem
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can be expressed as

(CU-ARO)

min
x1

x2(ξ1)

max
ξ1∈U1

ξ2∈U2(ξ1)

c>1 x1 + c>2 x2(ξ1)

s.t. A11x1 ≥ b1(ξ1) ∀ξ1 ∈ U1

A21x1 + A22x2(ξ1) ≥ b2(ξ2) ∀ξ2 ∈ U2(ξ1)∀ξ1 ∈ U1

x2(ξ1) ≥ 0 ∀ξ1 ∈ U1

x1 ≥ 0.

We focus on polyhedral CU sets, where the RHS depends on the previous period realization as

U1 = {ξ1 | G1ξ1 ≥ g1}, U2(ξ1) = {ξ2 | G2ξ2 ≥ g2 + ∆1ξ1}.

For this setting, the following theorem shows the impact of CU sets with affine decision policies

on the fully adaptive decisions x2(ξ1) = x0
2 + X2ξ1. For brevity, we incorporated the constant

term x0
2 into the matrix X2 by modifying the uncertainty set and setting the first component of

ξ1 to be equal to 1. Then we can write x2(ξ1) = X2ξ1.

Theorem 4.2.4. The two-period adjustable RO problem (CU-ARO) has a tractable refor-

mulation, when the uncertainty affects the RHS linearly and the fully adaptive decisions are

replaced by affine decision rules.

Proof. We replace x2(ξ1) with the affine decision rule x2(ξ1) = X2ξ1 and expand b1(ξ1) =

B1ξ1 and b2(ξ2) = B2ξ2. We focus on reformulating the second constraint which is affected by
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the connected uncertainty and whose robust problem is

max
ξ1,ξ2

B>2,iξ2 − [A22X2]>i ξ1

s.t. G1ξ1 ≥ g1

G2ξ2 ≥ g2 + ∆1ξ1.

Using the dual, the complete second constraint of (CU-ARO) is given by

A21x1 ≥ P>g1 + Q>g2

P>G1 + Q>∆1 = B2

Q>G2 = −A22X2

P,Q ≤ 0.

The columns of P and Q correspond to dual variables of the original problem. The remaining

constraints in (CU-ARO) can be reformulated similarly, leading to a tractable reformulation. �

We can similarly obtain tractable reformulations for ellipsoidal CU sets via second order conic

programs, with the center of the ellipsoid being a linear function of the first period uncertainty

realization. The details of this reformulation are provided in Appendix A.2.

Theorem 4.2.4 provides a tractable reformulation for connected RHS uncertainty, covering

a broad range of applications. This extends the result of modeling with standard sets for

adaptive setting, where such reformulations are possible for RHS uncertainty, to CU sets. When

uncertainties affect the LHS, even problems with standard and non-connected sets are difficult

to reformulate [12]. Therefore, we forego their extension to the CU setting.

When uncertainties follow unknown distributions, the concept of connected sets can also be

applied to multi-period distributionally robust problems. Moment-based ambiguity sets lend

themselves naturally, where, e.g., the mean or covariance depends on uncertainty realizations
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from the previous period. In a parallel fashion to the RO setting, we now discuss modeling with

CU sets in a distributional environment for static solutions.

4.3. Connected Uncertainty with DRO

In distributionally robust settings, the uncertainty set models all distributions that satisfy

the set specifying constraints. For CU sets, the parameters of these constraints may depend on

previous realizations. Consider the following example of CU sets that are specified by distribu-

tional moments,

Ũ1 =

{
P1 ∈M

∣∣∣P1(ξ1 ∈ Ξ1) = 1,
∣∣EP1 [ξ1]− µ1

∣∣ ≤ δ1,

EP1 [(ξ1 − µ1)(ξ1 − µ1)>] � Σ1

}
,

Ũ2(ξ1) =

{
P2|1 ∈M

∣∣∣P2|1(ξ2 ∈ Ξ2) = 1,
∣∣EP2|1 [ξ2]− µ2(ξ1)

∣∣ ≤ δ2,

EP2|1 [(ξ2 − µ0
2)(ξ2 − µ0

2)>] � Σ2

}
,

where P2|1 describes the conditional distribution of ξ2 given the realization of ξ1. In these

uncertainty sets, the conditional mean EP2|1 [ξ2] is bounded by µ2(ξ1) + δ2 and µ2(ξ1)− δ2 and

the covariance matrix by Σ2, with the bounds updated based on the previous realization. These

sets naturally describe settings in which the uncertainty is modeled using time series. In what

follows, we consider distributional uncertainty sets to be connected, when the moments at any

given period depend on the realizations from previous periods, as presented in the example of

Ũ1 and Ũ2(ξ1).

The aim of this section is to reformulate the constraint

(C-DRO) EP [

T∑
t=1

ht(xt, ξt)] ≤ B.
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The expectation EP [·] is taken over the joint distribution P of all ξt, and ht(xt, ξt) is a function

of the decision variable xt ∈ Rnt and the uncertain parameter ξt ∈ Rm. Unless specified, we

do not make any assumptions on the structure of ht(·,·) beyond regularity conditions required

for the existence of integrals. The dimension of ξt shall be constant over time for the clarity of

exposition. Each ξt has a distribution that lies in a different uncertainty set, which depends on

the previous realization ξt−1.

Remark: While DRO problems with connected uncertainty sets appear similar to robust

Markov decision processes (MDPs), they are different in nature. In robust MDPs, the tim-

ing of decision-making and uncertainty realization alternates, whereas in DRO with CU sets all

decisions (over the entire time horizon) are made at the very first period, anticipating future

uncertainties and before any realization of the uncertainty occurs. This is necessary because

in many applications, longterm decisions have to be taken without full knowledge of future

uncertainties, e.g., in risk management settings.

In what follows, we first provide a general reformulation for the constraint (C-DRO) before

showing that the tractability can be improved with a conservative approximation.

4.3.1. Mean dependence

To reformulate (C-DRO) for moment based CU sets, consider the sets in which the bounds on

the first moment parameter depend on the previous realization as µt(ξt−1) = Atξt−1 +bt, given

by

(D)

Ũt(ξt−1) =

{
Pt|t−1 ∈M

∣∣∣Pt|t−1(ξt ∈ Ξt) = 1,
∣∣EPt|t−1

[ξt]− µt(ξt−1)| ≤ δt,

EPt|t−1
[(ξt − µ0

t )(ξt − µ0
t )
>] � Σt

}
.
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This set contains the distributions of ξt conditioned on ξt−1. The parameter µ0
t denotes a

constant estimate of the mean and is different than the true mean EPt|t−1
[ξt], which is unknown

and bounded by the set. To prevent the dependence of the second moment terms on the previous

realization, we also assume µ0
t to be different from µt(ξt−1). A possible value for µ0

t can be the

unconditional mean of a time series at time t. The robust counterpart of constraint (C-DRO)

can be expressed with the following proposition

Proposition 4.3.1. Given the sets Ũ1, . . . , ŨT (ξT−1) and their joint uncertainty set Ũ , we

have the following. Constraint (C-DRO), given by

sup
P∈Ũ

EP

[
T∑
t=1

ht(xt, ξt)

]
≤ B

is equivalent to

(4.5)

sup
P1∈Ũ1

EP1

[
h1(x1, ξ1)+ sup

P2|1∈Ũ2(ξ1)

{
EP2|1

[
h2(x2, ξ2) + . . .

+ sup
PT |T−1∈ŨT (ξT−1)

{
EPT |T−1

[
hT (xT , ξT )

]}]}]
≤ B.

The proof of Proposition 4.3.1 is provided in Appendix A.3. To ease the exposition, consider

the function

(4.6) gt(x[t+1:T ], ξt) := sup
Pt+1|t∈Ũt+1(ξt)

EPt+1|t [ht+1(xt+1, ξt+1) + gt+1(x[t+2:T ], ξt+1)].

For brevity, we denote Mt ≡ Σt −µ0
t (µ

0
t )
>, and use the compact notations p̃t, q̃

u
t , q̃

l
t and R̃t to

denote variables pt(ξt−1),qut (ξt−1),qlt(ξt−1) and Rt(ξt−1), which are functions of the previous

period realization to ensure compactness. The following theorem provides the reformulation.



100

Theorem 4.3.1. The constraint (C-DRO) can be reformulated as

p1 + (qu1 − ql1)>µ1 + (qu1 + ql1)>δ1 + R1 ·M1 ≤ B

αt(ξt−1, ξt) + βt(ξt−1, ξt)
>ξt + ξ>t R̃tξt − ht(xt, ξt) ≥ 0

∀(ξt−1, ξt) ∈ Ξt−1 × Ξt ∀t

p̃T + (q̃uT − q̃lT − 2R̃Tµ
0
T )>ξT + ξ>T R̃T ξT − hT (xT , ξT ) ≥ 0

∀(ξT−1, ξT ) ∈ ΞT−1 × ΞT

q̃ut , q̃
l
t ≥ 0, R̃t � 0 ∀ξt−1 ∈ Ξt−1

q̃uT , q̃
l
T ≥ 0, R̃T � 0 ∀ξT−1 ∈ ΞT−1,

where t = 1, . . . , T − 1 and

αi(ξi−1, ξi) = p̃i − p̃i+1 − (q̃ui+1 − q̃li+1)>bi+1 − R̃i+1 ·Mi+1 − (q̃ui+1 + q̃li+1)>δi+1

βi(ξi−1, ξi) = q̃ui − q̃li − 2R̃iµ
0
i −A>i+1q̃

u
i+1 + A>i+1q̃

l
i+1.

Proof. The proof proceeds by induction. We first provide the reformulation for t = 1, then

assume it to be true for t = k, before proving it for t = k + 1.

Base case (t = 1). The original constraint (C-DRO) can be expressed as

sup
P1∈Ũ1

EP1 [h1(x1, ξ1) + sup
P2|1∈Ũ2(ξ1)

EP2|1 [h2(x2, ξ2) + . . .

+ sup
PT |T−1∈ŨT (ξT−1)

E[hT (xT , ξT )]]] ≤ B,
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which can be compressed as sup
P1∈Ũ1 EP1 [h1(x1, ξ1) + g1(x[2:T ], ξ1)] ≤ B. This optimization

problem can be expressed as the following moment problem

sup
P1∈M

∫
Ξ1

(h1(x1, ξ1) + g1(x[2:T ], ξ1))dP1∫
Ξ1

dP1 = 1

µ1 − δ1 ≤
∫

Ξ1

ξ1dP1 ≤ µ1 + δ1∫
Ξ1

(ξ1 − µ0
1)(ξ1 − µ0

1)>dP1 � Σ1.

The last constraint is equivalent to EPt|t−1
[ξtξ

>
t ] − 2µ0

tEPt|t−1
[ξ>t ] � Σt − µ0

t (µ
0
t )
>. Thus the

dual problem is given by

inf
p1,qu

1 ,q
l
1,R1

p1 + (qu1)>(µ1 + δ1)− (ql1)>(µ1 − δ1) + R1 ·M1

s.t. p1 + (qu1 − ql1)>ξ1 − 2(µ0
1)>R1ξ1 + ξ>1 R1ξ1 ≥ h1(x1, ξ1)

+ g1(x[2:T ], ξ1) ∀ξ1 ∈ Ξ1

qu1 ,q
l
1 ≥ 0

R1 � 0,

which proves the base case.

Inductive case (t = k). For the t = k + 1 reformulation, consider the function

(4.7) gk(x[k+1:T ], ξk) = sup
Pk+1|k∈Ũk+1(ξk)

EPk+1|k [hk+1(xk+1, ξk+1) + gk+1(x[k+2:T ], ξk+1)].
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Now, the third constraint in the reformulation of Theorem 4.3.1 for t = k can be expressed as

p̃k + (q̃uk − q̃lk − 2R̃kµ
0
k)
>ξk + ξ>k R̃kξk ≥ hk(xk, ξk)

+ sup
Pk+1|k∈Ũk+1(ξk)

EPk+1|k [hk+1(xk+1, ξk+1) + gk+1(x[k+2:T ], ξk+1)]

∀ξk−1 ∈ Ξk−1 ∀ξk ∈ Ξk.

Using the dual of (4.7), we can write the above constraint as the following two constraints

p̃k + (q̃uk − q̃lk − 2R̃kµ
0
k)
>ξk + ξ>k R̃kξk

≥ hk(xk, ξk) + p̃k+1 + R̃k+1 ·Mk+1 + (q̃uk+1 − q̃lk+1)>µk+1(ξk)

+ (q̃uk+1 + q̃lk+1)>δk+1 ∀ξk−1 ∈ Ξk−1 ∀ξk ∈ Ξk

p̃k+1 + (q̃uk+1 − q̃lk+1 − 2R̃k+1µ
0
k+1)>ξk+1 + ξ>k+1R̃k+1ξk+1

≥ hk+1(xk+1, ξk+1) + gk+1(x[k+2:T ], ξk+1) ∀ξk ∈ Ξk ∀ξk+1 ∈ Ξk+1

q̃uk+1, q̃
l
k+1 ≥ 0, R̃k+1 � 0 ∀ξk ∈ Ξk.

Substituting µk+1(ξk) = Ak+1ξk + bk+1, we rearrange the first constraint as

pk + (q̃uk − q̃lk − 2R̃kµ
0
k −A>k+1q̃

u
k+1 + A>k+1q̃

l
k+1)>ξk + ξ>k R̃kξk

≥ hk(xk, ξk) + p̃k+1 + (q̃uk+1 − q̃lk+1)>bk+1 + (q̃uk+1 + q̃lk+1)>δk+1

+ R̃k+1 ·Mk+1 ∀ξk−1 ∈ Ξk−1 ∀ξk ∈ Ξk,
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which can be written in a more compact form as

αk(ξk−1, ξk) + βk(ξk−1, ξk)
>ξk + ξ>k R̃kξk − hk(xk, ξk) ≥ 0

∀ξk−1 ∈ Ξk−1 ∀ξk ∈ Ξk.

We can now give the complete set of constraints for t = k + 1 as

p1 + (qu1 − ql1)>µ1 + (qu1 + ql1)>δ1 + R1 ·M1 ≤ B

αt(ξt−1, ξt) + βt(ξt−1, ξt)
>ξt + ξ>t R̃tξt − ht(xt, ξt) ≥ 0

∀ξt−1 ∈ Ξt−1 ∀ξt ∈ Ξt, ∀t

p̃k+1 + (q̃uk+1 − q̃lk+1 − 2R̃k+1µ
0
k+1)>ξk+1 + ξ>k+1R̃k+1ξk+1 ≥ hk+1(xk+1, ξk+1)

+ gk+1(x[k+2:T ], ξk+1) ∀ξk ∈ Ξk ∀ξk+1 ∈ Ξk+1.

q̃ut , q̃
l
t ≥ 0 ∀ξt−1 ∈ Ξt−1 ∀t

R̃t � 0 ∀ξt−1 ∈ Ξt−1 ∀t,

The complete reformulation of the constraint (4.5) can be obtained by applying the induction

up to t = T , where

gT−1(xT , ξT−1) = sup
PT |T−1∈ŨT (ξT−1)

EPT |T−1
hT (xT , ξT ).

�

Theorem 4.3.1 provides a prescription for how to modify the protection term, when uncer-

tainties are connected. Notice that the variables in Theorem 4.3.1 depend on the uncertainty

realization in the previous period. Furthermore, the variables αi and βi conjoin the variables

of the current period with that of the future period. Therefore, Theorem 4.3.1 modifies the
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protection in order to account for the dependence amongst the uncertainties. That means when,

for example, autocorrelated uncertainties are modeled in the traditional (non-connected) way,

the protection terms are not appropriately modified, which can lead to constraint violations.

4.3.2. Conservative Reformulation

Since the reformulation in Theorem 4.3.1 is an infinite dimensional optimization problem, which

can be computationally challenging, the following theorem provides a conservative reformulation

that is tractable.

Theorem 4.3.2. The constraint (C-DRO) can be conservatively reformulated as

p1 + (qu1 − ql1)>µ1 + (qu1 + ql1)>δ1 + R1 ·M1 ≤ B

αt + β>t ξt + ξ>t Rtξt − ht(xt, ξt) ≥ 0 ∀ξt ∈ Ξt ∀t = 1, . . . , T − 1

pT + (quT − qlT − 2RTµ
0
T )>ξT + ξ>TRT ξT ≥ hT (xT , ξT ) ∀ξT ∈ ΞT

qut ,q
l
t ≥ 0, Rt � 0 ∀t = 1, . . . , T,

where

αi = pi − pi+1 − (qui+1 − qli+1)>bi+1 −Ri+1 ·Mi+1 − (qui+1 + qli+1)>δi+1

βi = qui − qli − 2Riµ
0
i −A>i+1q

u
i+1 + A>i+1q

l
i+1.

Proof. The proof proceeds by induction.
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Base case (t = 1). The original constraint (C-DRO) can be expressed as

sup
P1∈Ũ1

EP1 [h1(x1, ξ1) + sup
P2|1∈Ũ2(ξ1)

EP2|1 [h2(x2, ξ2) + . . .

+ sup
PT |T−1∈ŨT (ξT−1)

E[hT (xT , ξT )]]] ≤ B,

which can be shortened to sup
P1∈Ũ1 EP1 [h1(x1, ξ1) + g1(x[2:T ], ξ1)] ≤ B, and rewritten as

sup
P1∈M

∫
Ξ1

(
h1(x1, ξ1) + g1(x[2:T ], ξ1)

)
dP1∫

Ξ1

dP1 = 1

µ1 − δ1 ≤
∫

Ξ1

ξ1dP1 ≤ µ1 + δ1∫
Ξ1

(ξ1 − µ0
1)(ξ1 − µ0

1)>dP1 � Σ1.

The dual of this moment problem proves the base case via

inf
p1,qu

1 ,q
l
1,R1

p1 + (qu1)>(µ1 + δ1)− (ql1)>(µ1 − δ1) + R1 ·M1

s.t. p1 + (qu1 − ql1)>ξ1 − 2(µ0
1)>R1ξ1 + ξ>1 R1ξ1 ≥ h1(x1, ξ1) + g1(x[2:T ], ξ1)

∀ξ1 ∈ Ξ1

qu1 ,q
l
1 ≥ 0, R1 � 0.



106

Inductive case (t = k). We assume the constraints in Theorem 4.3.2 holds for t = k and

prove the reformulation for t = k + 1. These constraints can be expressed as

p1 + (qu1 − ql1)>µ1 + (qu1 + ql1)>δ1 + R1 ·M1 ≤ B

αt + β>t ξt + ξ>t Rtξt − ht(xt, ξt) ≥ 0 ∀ξt ∈ Ξt, ∀t

pk + (quk − qlk − 2Rkµ
0
k)
>ξk + ξ>k Rkξk ≥ hk(xk, ξk) + gk(x[k+1:T ], ξk)

∀ξk ∈ Ξk,

where t = 1, . . . , k − 1 and αt and βt are given in the theorem. For t = k + 1, consider the

function

gk(x[k+1:T ], ξk) = sup
Pk+1|k∈Ũk+1(ξk)

EPk+1|k [hk+1(xk+1, ξk+1) + gk+1(x[k+2:T ], ξk+1)],

which is bounded above by its dual for any feasible (pk+1,q
u
k+1,q

l
k+1,Rk+1) ∈ Pk+1 as

gk(x[k+1:T ], ξk) ≤ pk+1 + Rk+1 ·Mk+1

+ (quk+1 − qlk+1)>µk+1(ξk) + (quk+1 + qlk+1)>δk+1 ∀ξk ∈ Ξk.

Then the last constraint in the reformulation for t = k can be conservatively expressed as

(4.8)

pk + (quk − qlk − 2Rkµ
0
k)
>ξk + ξ>k Rkξk

≥ hk(xk, ξk) + pk+1 + Rk+1 ·Mk+1 + (quk+1 − qlk+1)>µk+1(ξk)

+ (quk+1 + qlk+1)>δk+1 ∀ξk ∈ Ξk

pk+1 + (quk+1 − qlk+1 − 2Rk+1µ
0
k+1)>ξk+1 + ξ>k+1Rk+1ξk+1

≥ hk+1(xk+1, ξk+1) + gk+1(x[k+2:T ], ξk+1) ∀ξk+1 ∈ Ξk+1.
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Using µk+1(ξk) = Ak+1ξk + bk+1, we can rearrange the first constraint as

pk + (quk − qlk − 2Rkµ
0
k −A>k+1q

u
k+1 + A>k+1q

l
k+1)>ξk + ξ>k Rkξk

≥ hk(xk, ξk) + pk+1 + (quk+1 − qlk+1)>bk+1 + (quk+1 + qlk+1)>δk+1 + Rk+1 ·Mk+1

∀ξk ∈ Ξk,

which can be written compactly as αk +β>k ξk + ξ>k Rkξk−hk(xk, ξk) ≥ 0 ∀ξk ∈ Ξk. With this,

the complete set of constraints for t = k + 1 are

p1 + (qu1 − ql1)>µ1 + (qu1 + ql1)>δ1 + R1 ·M1 ≤ B

αt + β>t ξt + ξ>t Rtξt − ht(xt, ξt) ≥ 0

∀ξt−1 ∈ Ξt−1 ∀ξt ∈ Ξt, ∀t

pk+1 + (quk+1 − qlk+1 − 2Rk+1µ
0
k+1)>ξk+1 + ξ>k+1Rk+1ξk+1 ≥ hk+1(xk+1, ξk+1)

+ gk+1(x[k+2:T ], ξk+1) ∀ξk+1 ∈ Ξk+1.

The complete reformulation of the robust counterpart of (C-DRO) can be obtained by repeating

the induction up to t = T , using

gT−1(xT , ξT−1) = sup
PT |T−1∈ŨT (ξT−1)

EPT |T−1
hT (xT , ξT ).

�

In the reformulation of Theorem 4.3.2, αi and βi conjoin the variables of the current and the

future periods, which is analogous to the results of theorems 4.2.1 and 4.3.1. This modification

of the protection term accounts for the connection between the periods. When the support set

is an ellipsoid and the objective function is piecewise linear concave in ξt, it is possible to use
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the S-Lemma to reformulate the constraints of the problems as semi-definite constraints, which

can then be solved using commercially available solvers.

Remark: While Theorem 4.3.2 provides a conservative reformulation of the constraint (4.5),

under certain conditions, it is also possible for this reformulation to be exact. This tightness

occurs, when gk−1(x[k:T ], ξk−1) is a linear function of the uncertain component ξk−1 over the set

Ξk−1. The linearity arises when there exists a single optimal solution for all ξk−1. Note that

the verification of this condition requires solving a sequence of bilinear optimization problems,

which is challenging.

In Section 4.5, we numerically demonstrate the advantages of CU sets through a portfolio

optimization problem, where the realized wealth exhibits a lower standard deviation, support-

ing the notion of robust decisions. In the next two sections, we probe the performance of the

proposed CU sets modeling frameworks through two stylized RO and DRO problems. Each

demonstration serves to model a broad range of decision-making settings. For a clean experi-

ment, randomly generated data is used to directly relate the findings to the properties of our

proposed models.

4.4. RO Application: Knapsack Problem

Knapsack problems offer an insightful benchmark for optimization problems because they

arise as sub-problems in many common applications [41, 77]. Consider a knapsack problem with

known objective but uncertain constraint coefficients (a.k.a. weights). The problem spans two

periods, each with an uncertain weight, where the second period weight value depends on the

first realized weight. These uncertain parameters arise from an auto-regressive model. Such a
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problem can be described by

(KS)

max
x1,x2

c>1 x1 + c>2 x2

s.t. ξ>1 x1 + ξ>2 x2 ≤ B ∀ξ2 ∈ U2(ξ1), ∀ξ1 ∈ U1

x1 ∈ {0, 1}m1 , x2 ∈ {0, 1}m2 .

The two binary decisions x1 and x2 with known objective c1, c2 and uncertain weight coefficients

ξ1, ξ2 correspond to periods one and two. Both decisions are taken before either of the weights

are realized, i.e., x1 and x2 are here-and-now decisions. The uncertain parameters ξt for t = 1, 2

are modeled to reside in ellipsoidal sets with given covariance matrices and known first period

center µ1. The uncertainty dependence can be modeled by allowing the center of the second

period ellipsoid µ2(ξ1) to depend on the realization of the first period weights ξ1 as

µ2(ξ1) = Φµ1 + Ψξ1.

Here, the parameters Φ and Ψ are matrices capturing the dependence and which may be de-

termined through time series modeling. We emphasize that the solutions to problem (KS) are

static, while the uncertainties are connected and as such stagewise. This uncertainty model is

parallel to the discussion in Section 4.2.2.

Given the mean of either period µ1 and µ2(ξ1), the residual uncertainties ε1 and ε2 in

(4.9) ξ1 = µ1 + ε1 and ξ2 = Φµ1 + Ψξ1 + ε2

are characterized by a normal distribution with mean 0 and covariance Σ such that LL> = Σ.

Then the corresponding first period uncertainty set is

U1 = {ξ1 | ξ1 = µ1 + Lu : ‖u‖2 ≤ r1} .
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The second period mean given the first period realization µ2(ξ1) has the same covariance matrix.

Consequently, the second period CU set is

U2(ξ1) = {ξ2 | ξ2 = Φµ1 + Ψξ1 + Lw, ‖w‖2 ≤ r2} .

In the experiment we compare the performance of the connected model to the standard

RO model, namely when uncertainty dependence is not taken into account. The first period

has the same uncertainty set U1. For the second period set, the parameters are µ2 = µ1 and

LL> = Σ2 = Σ. Therefore, the non-connected (NC) second period set is

U2,NC = {ξ2 | ξ2 = µ2 + Lw, ‖w‖2 ≤ r2} .

Note that the key difference between U2(ξ1) and U2,NC is that the center of U2(ξ1) is Φµ1 +Ψξ1

while that of U2,NC is µ2, i.e., not updated according to the realization of ξ1. The covariance

matrices for both remain the same. We now describe the experimental setting.

Computational Setup. We reformulate the robust problems as a mixed integer linear pro-

gram (MILP) for the knapsack problem and as a semi definite program (SDP) for the portfolio

optimization problem. These are then modeled using the JuMP library in the Julia program-

ming language v0.6. The solvers used a Gurobi for the MILP and Mosek for the SDP. The

experiments are run on a machine with an Intel Core i5 processor, with 8 GB RAM.

Numerical Experiments. Four experimental modules are conducted for uncertain ξ1, and ξ2,

which are generated by (4.9) for fixed values of Φ = I and Ψ = λI with the identity matrix I

and a scalar λ = 0.5. The parameter µ1 is set to e, and Σ is generated randomly. We consider

a problem with 20 items in each period m1 = m2 = 20, following these steps.

(i) Generate k samples of c1, c2 and k estimates of µ1 and Σ, each using l samples of

ξ1.
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(ii) For each estimate, solve (KS) for s different uncertainty set sizes, yielding k × s

solutions.

(iii) For each solution, generate n samples of ξ1, ξ2 from (4.9) to probe constraint satis-

faction.

(iv) Average over k × s objective values and k × s fractions of constraint satisfaction.

In module (i), let l = 500 and k = 30. Sample averages are used to estimate µ1 and Σ.

The coefficients c1 and c2 are sampled from normal distributions centered at e and 1.25 × e,

respectively with covariance matrix 1
100Σ. For the constraint RHS, the budget is B = 40.

In (ii), the experiment is conducted for s = 20 different uncertainty set sizes r1 = r2 ∈ [0, 4].

In (iii), the constraint satisfaction is measured using n = 500 samples.

To probe each setting, the knapsack problem is solved for both CU and NC sets. This is

parallel to the difference between models in Figure 4.1(b) and (d) of the introductory Example

2. Figure 4.2 shows the average constraint satisfaction (left) and the average objective value
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Figure 4.2. Comparison of connected and non-connected sets for the ro-
bust knapsack problem at different set sizes: (left) fraction of constraint
satisfaction, and (right) objective value.

(right) for a varying size r of the uncertainty set. Figure 4.3 shows the average objective value

for any level of constraint satisfaction (left) and show how the number of non-zero allocations



112

change as the set size increases (right). The data points at r1 = r2 = 0 correspond to the

nominal problem with no uncertainty.

We now summarize our observations.

• Effect of Uncertainty Set Size : For both models, constraint satisfaction increases

and average objective value decreases with r. The average objective is lower for CU,

since connectedness magnifies the worst-case. Note that the objective value is only

measured, if constraints are satisfied.

• CU vs. NC : For any r, CU solutions have higher constraint satisfaction than NC

solutions. This is because connected sets account for dependency on the first period

and provide additional protection beyond that of NC sets. Though this benefit comes

with lower objective value, for any level of satisfaction, the average objective of CU is

better than NC (see Figure 4.3 left).

• First vs Second period solutions: For a single estimate in (ii), Figure 4.3 (right)

shows that the optimal solution gradually concentrates only on x1 for CU and only

on x2 for NC as r increases. For NC, this is because c2 tends to be higher. For CU,

the second period weights are magnified due to connectedness, without corresponding

benefits. Overall more components of x1 and x2 are non-zero for NC, resulting in

higher objective but worse constraint satisfaction and vice versa.

• Negative Correlation : When consecutive uncertainties are negatively correlated,

CU sets achieve lower constraint satisfaction but higher objective value than NC sets

at any r (see Appendix A.4). This is because the worst-case uncertainty is dampened

for CU sets by the negative correlation. For any level of constraint satisfaction, both

models perform similarly. The solutions concentrate on x2 for increasing r because of

higher c2 (see the figures in A.4).
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Figure 4.3. Comparison of connected and non-connected sets: (left) objec-
tive vs constraint satisfaction, and (right) for a single iteration, the number
of non-zero variables vs set size.

Summary

CU sets exhibit clear advantages over non-connected sets for positively autocorrelated uncer-

tainties. Though CU has lower objective function values, it outperforms NC for any given level

of constraint satisfaction. The numerical analysis of modeling with CU sets responds to the re-

search question Q2, highlighting improvements in constraint satisfaction of popular uncertainty

sets. Note that an alternative NC model with growing uncertainty sets over time, as displayed

in Figure 4.1c, also does not improve over CU. Therefore, we recommended to model with CU

sets, particularly when uncertainties are positively correlated.

4.5. DRO Application: Portfolio Optimization

The area of portfolio optimization has seen sizable advancements by systematically managing

uncertainty, and DRO lends itself as a natural modeling framework. In particular, different

types of ambiguity sets have been proposed, such as moment constrained sets [35, 79] and sets

bounded by the Wasserstein metric [39] etc. In this section, we evaluate the performance of our

CU framework on portfolio optimization problems, resembling those by Delage and Ye [35]. We

investigate two instances of this problem.
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Multi-asset Portfolio Problem. Using historical data on 5 stocks, we probe our approach

in a real-world setting. We model the asset returns with a time series fitted to the historic

data for two periods of one week each. We solve this problem for randomly selected days to

evaluate average performance on actually realized returns. We compare the CU model to two

competing DRO model: one with same ambiguity sets for both periods, and one with the second

period ambiguity set centered at the expected second period return (unconditioned). We observe

that the standard deviation of wealth for the CU model is lower than both DRO models, while

achieving comparable returns. This is because the CU model captures the compounding worst-

case effects of autocorrelation, while managing conservatism. We relegate the numerical details

to the Appendix A.5.

Two-asset Portfolio Problem. To gain further intuition in a controlled environment, we

also simulate a two-asset portfolio optimization problem with synthetic data. The goal of this

experiment is to probe the long term benefits of anticipating the behavior of uncertainties when

making decisions as opposed to short term decision-making based on a fixed uncertainty model.

Specifically, we consider a 2-period problem, in which the choice of the portfolio has to be made

at the beginning. Such a problem can be expressed as

max
x1,x2

inf
P1∈Ũ1

EP1

[
u1(x1, ξ1) + inf

P2∈Ũ2(ξ1)
EP2 [u2(x2, ξ2)]

]

s.t. e>xt = 1 ∀t = 1, 2

xt ≥ 0 ∀t = 1, 2,

where ut are utility functions, xt decision variables, ξt return realizations, and Ũt the respective

distributional uncertainty sets. The uncertainty sets Ũ1 and Ũ2(ξ1) are as defined in (D). Each

period corresponds to one week, and at the end of the first week, the assets can be reassigned.

However, the reallocation decision has to be specified at the beginning when solving the problem.
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To illustrate the impact of correlation among assets and correlation over time, consider the

above problem with a concave utility function for each period given by min(1.5r, 0.015+r, 0.06+

0.2r). Here, r = x1ξ11 + x2ξ12 represents the portfolio return in each period. For this problem,

the expected return in the first period resides within a box centered at µ1 = [0.03, 0.06] with size

δ = [0.02, 0.02]. The expected return in the second period lies inside a similar set whose center

depends on the realized return of the first period as µ1 + ω · (ξ1 − µ1), where ω is a parameter

controlling the correlation over time. Furthermore, the covariance of the return in both periods

is bounded by Σ1

Σ1 =

 0.005 0.005 · ρ

0.005 · ρ 0.005

 ,
where ρ measures the correlation among the asset returns. We vary the parameters ω over the

range [−2, 2] and ρ ∈ [−1, 1] to study the impact of correlations on the following metrics of the

portfolio model:

(1) Asset allocation: to observe the behavior of decisions and to develop intuition (Fig-

ures 4.4).

(2) Average realized wealth: to test the performance under realistic (random) setting (Fig-

ure 4.5).

(3) Difference in standard deviation of the CU and DRO models: to probe sensitivity

(Figure 4.6).

We now discuss the outcomes of the numerical experiments with regard to these metrics.

Additional metrics are discussed in Appendix A.6. In each of the upcoming figures, the horizontal

axis represents the correlation over time ω, and the vertical axis the correlation among the assets.

We will divide the discussion into these two aspects. The color in the plots represents the metric

under consideration and its values are displayed in the legend.
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4.5.1. Asset Allocation

Figure 4.4 displays the asset allocation for Asset 1 for the CU model for period 1 (left), period

2 (center), and the DRO model in period 1 (right), which is the same as period 2. The sum of

allocations is one. Figure 4.4 displays that both the CU and DRO models allocate more wealth

to Asset 2. This is due to the fact that Asset 2 has higher expected returns.
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Figure 4.4. CU allocation to Asset 1 for CU period 1 (left), CU period 2
(center), and DRO period 1 (right).

Asset Correlation. For both CU and DRO models, the allocation to Asset 2 is reduced if

the assets are positively correlated. This is because a positive correlation reduces the protection

against the worst case that would arise by spreading the wealth among the two assets. A negative

correlation among the assets increases this protection, resulting in a broader spread.

Correlation over time. We also observe that as the correlation over time increases, the CU

model concentrates on Asset 2. This is because it has higher expected return and the benefit
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Figure 4.5. Average realized wealth for CU and DRO at the end of period 2.

of hedging against bad returns by spreading the wealth among both assets is reduced by the

positive correlation. The correlation over time mostly affects the assets in the second period. A

higher correlation leads to more allocations to Asset 2 since it has a higher expected value, and

thus leads to better worst-case performance than Asset 1.

4.5.2. Average wealth

Asset Correlation. Figure 4.5 shows the average wealth at the end of the second period. It

can be observed that high correlation between the assets leads to higher wealth. This contrasts

with the worst-case performance and is because positive correlations also promote high realized

returns. The wealth increases faster for the DRO model due to lower conservatism of the model.

Correlation over time. The realized wealth increases with correlation over time as it leads

to higher realized returns. This behavior is more visible for the CU as compared to the DRO

model.

4.5.3. Difference in CU and DRO models

Figure 4.6 (left) shows the difference in wealth standard deviation between the CU and DRO

models and Figure 4.6 (right) the difference in worst-case wealth between these two models.
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Figure 4.6. Difference in wealth standard deviation (left) and difference in
worst-case wealth (right) for period 2.

Asset Correlation. The difference in standard deviations is always positive, increases with the

asset correlation, and achieves a peak at 0.4. That means the CU model always leads to lower

standard deviation, highlighting robustness of solutions. Also, the worst-case wealth of the CU

model tend to perform better as the correlation increases and achieving best performance at 0.4.

Correlation over time. The benefits of the CU model in terms of lower standard deviation

and better worst-case wealth increases with correlation over time.

4.6. Conclusion

In multistage optimization under uncertainty, the model of the underlying uncertainty plays

a decisive role for both the solution quality as well as the computational effort. Current tech-

niques usually assume a collection of predetermined sets which are independent of each other.

Given that in many applications the uncertainty is connected over multiple periods, these meth-

ods are either over conservative or do not adequately capture all realizations of the uncertainty.

We introduce a new modeling framework in which the uncertainty model depends on past realiza-

tions. This chapter extends the efficacy of robust optimization as well as distributionally robust

optimization to the connected uncertainty paradigm. We study commonly used constraints and

uncertainty set dependencies and provide their respective reformulations. Specifically, for robust

settings, tractable reformulations are developed for polyhedral and ellipsoidal uncertainty sets



119

with linear and quadratic dependence, as they occur in a wide range of decision-making processes.

When the uncertainty is modeled in a distributionally robust fashion, we provide reformulations

for moment constrained ambiguity sets with the mean depending on the past, as in time series

settings. Numerical experiments on a knapsack problem exhibit sizable improvements in con-

straint satisfaction and better objective performance for any fixed level of constraint satisfaction,

when uncertainties are modeled with the proposed connected sets. Similarly, a distributionally

robust portfolio optimization problem achieves approximately the same expected returns at nar-

rower standard deviations, which highlights the robustness of solutions, when modeling with CU

sets. Thus, we recommend using connected uncertainty sets for autocorrelated or time-varying

uncertainties because they improve the performance over non-connected sets. Since in multi-

period problems, uncertainties are naturally connected across periods, the proposed approach

offers a general modeling framework that can be applied to numerous operational applications.

In the next chapter, we focus on an application of connected uncertainty sets to a classifi-

cation problem. Specifically, we leverage CU sets to extend the Minimax Probability Machine

model to develop policies for adaptive classifying surfaces.



120

CHAPTER 5

Robust Classifiers for Streaming Data

5.1. Introduction

When dividing data into two or more groups, classification methods have enhanced the ben-

efits of machine learning in many application domains such as image recognition [75], spam

filters [36], and medical diagnosis [70], amongst others. Two common approaches for classi-

fication are estimating a linear or non-linear surface that separates the classes (e.g., support

vector machines [92], maximum probability machines [67], and decision trees [28]) and predict-

ing the probability of a data point belonging to either class (e.g., neural networks [86], logistic

regression [53]). These two directions have also been combined in integrated approaches such as

ensemble learning methods [97].

In general, classification models assume that the distribution of each class is constant over

time, enabling a time invariant classifier. In many applications, however, the underlying distri-

butions can vary with time. For example, spammers change their tactics in response to detection

algorithms, leading to a change in the observed data [36]. Similarly, in credit fraud detection,

the characteristics of fraud change over time to counter the actions taken by banks or to adjust

to the economy [98]. Using static models for such dynamically changing data leads to classifiers

whose performance degrades over time.

To address these issues, modifications of existing algorithms are proposed which adapt to new

data, such as time-windows [69, 80, 107], forgetting methods [5, 61], and incremental learning

approaches [36, 102]. Most of these methods do not impose assumptions on how the data varies

over time. Despite their broad applicability, these approaches have limited capability to leverage
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a potentially known structure in the data in order to improve predictions. Recently, Kumagai

and Iwata incorporated time-series and Gaussian processes into the classification problem while

fitting statistical models [63, 64, 65].

In this chapter, we develop three classification methods that capture the changing behavior

of each class. Specifically, we consider data which can be modeled by time series and leverage

this structure when computing the classification surface. This allows the classification surface to

adapt to the newly observed data at each step, transforming into a new surface that optimally

reflects the changing behavior of data, and overcoming the limitations of static classifiers and

improving the accuracy. We assume the time series predicts the mean and covariance of the

next period based on observed data. This exposes the classifier to two layers of uncertainty:

(i) the moment information from the time series models inherits uncertainty on the underlying

distribution; and (ii) updates in time series models depend on past realizations, which are a-priori

uncertain, when devising the classifier.

In order to account for potential distributional uncertainty, as in layer (i), we employ a

Minimax Probability machine (MPM) model, as introduced by Lanckriet et al. [67]. The MPM

model finds the surface that maximizes the probability of correct classification, while accounting

for distributional uncertainty in the classes by the use of distributionally robust optimization and

has been used in several applications [33, 40, 49]. Since the true class distributions are unknown,

the MPM model optimizes for the worst-case distribution among all possible distributions for a

given mean and covariance. In order to account for uncertainty in time series model, as in layer

(ii), we use the method of robust optimization [12]. Its paradigm posits a robust optimal solution

that is feasible for all realizations of the uncertainty and optimal for the worst. To ensure this, the

original constraints are replaced by their robust counterpart which protects against infeasibility.

The practical advantage of this approach is that it does not require detailed information on

the uncertainty and rather describes its structure by sets. The geometry of these uncertainty
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sets determines the computational tractability [17]. In this chapter, the uncertain realizations

are modeled to reside in ellipsoids, which depend on the time series. The goal is to find how

to modify the classifier for every possible realization, including the worst-case. The resulting

classifier will then be robust to both layers of uncertainty for each observation, and hence relevant

to a broad range of streaming applications.

The topic of this chapter is similar to non-stationary online optimization with a variation

budget [24, 25, 59]. In both problems the underlying distribution, that generates the data,

changes over time. However, the key difference is how this change occurs. In the case of a

variation budget, the sum of all inter-period changes is bounded. In our work, however, we use

a time-series model to specify how the distribution will change over time. The non-stationary

online optimization problems in the literature primarily focus on minimizing a regret function,

while our model directly optimizes the objective as it has no restrictions on the data generating

distribution. These two aspects distinguish our work from the non-stationary online optimiza-

tion problem. More specifically, our main contributions in this chapter can be summarized as

following:

(1) We develop the Adaptable Robust Classifier (AdRC), where the time series predicts

the next period mean and covariance, which are used to solve the MPM problem via a

least squares algorithm. The resulting surface then classifies the incoming realization.

Once the new data point is classified, it is included in the time series of its true class

and the new moments are updated. This process is repeated for each new observation

of the streaming data.

(2) In a more proactive approach, we develop the Adjustable Robust Classifier (AjRC),

where the time series is directly imbedded into the MPM model in order to find a policy

on how to update the classifying surface for each new data point. The advantage is

that obtaining a new classifier does not require re-solving the full problem. However,
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the policies require a semi-definite program, which can be computationally expensive

for large data.

(3) To improve computation, we provide the Approximate Adjustable Robust Classifier

(AAjRC), where the worst-case approach of AjRC is approximated by a second order

conic program.

(4) We numerically evaluate the computational performance of these models on synthetic

data and probe the impact of autocorrelation as well as the practical relevance of the

methods for hourly wind speed data stream.

5.2. Model

In this section, we discuss the model components for the classifying algorithms with regard

to the computation of the classifying surface via MPM and modeling the time varying nature of

the data.

5.2.1. Minimax Probability Machine Model

The MPM problem assumes that data is generated from two classes X and Y with known means

and covariances [67]. Let x ∈ Rn and y ∈ Rn be random vectors in a binary classification

problem with means µx,µy and covariance matrices Σx,Σy. The MPM model determines a

hyper plane characterized by a and b, separating these two classes with maximum probability

over all distributions that have the given mean and covariance matrix. The model can be

expressed as

(MPM)

max
α,a,b

α

s.t. inf
Px∈Mx

Px[a>x ≥ b] ≥ α

inf
Py∈My

Py[a>y ≤ b] ≥ α,
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where Mx and My denote the set of distributions with means µx,µy and covariances Σx,Σy.

The probability of correct classification is denoted by α. This model can be tractably re-

formulated and solved using a least squares algorithm (see [67] for more details). The dual

reformulation of (MPM) can be expressed as

(D-MPM)

min
r,u,v

r

s.t. µx + Σ
1
2
xu = µy + Σ

1
2
y w

‖u‖2 ≤ r

‖w‖2 ≤ r.

This dual problem can be interpreted as follows. Consider 2 ellipsoids centered at µx and µy

with covariance matrices Σx and Σy. The problem (D-MPM) seeks to find the smallest size r

of the ellipsoids, at which they touch. Consequently, the common tangent passing through the

point of contact of these ellipsoids constitutes the classifying surface between the two sets of

(static) data.

The problem (MPM) can be used to find the optimal classifying surface, when the data are

independent over time. In this setting, we can aggregate the observed data in order estimate

the mean and covariance matrix. However, when data at a period depend on the realizations

of the previous periods, the classifying surface from (MPM) renders inaccurate. This is because

the mean or the covariance matrix of the next period can differ from that of the current period

due to the time-dependence. Such dependence can be modeled via time series.

5.2.2. Time Series Model

The data is assumed to be generated in the following general way. At each classification time

period t, either an element of class X is observed with probability p or an element of class Y
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with probability 1− p. If we observe an element of X, it is assumed to have been generated by

the time series model

x = ax + Axxxτx(t) + Axyyτy(t) + εx,t.

On the other hand, if an element of Y is observed, we assume it to be generated by

y = ay + Ayxxτx(t) + Ayyyτy(t) + εy,t.

Here, τx(t) and τy(t) are look up functions for finding the time of the most recently (before t)

observed elements of each class. The uncertain elements εx,t and εy,t follow unknown distri-

butions with mean 0 and Σx and Σy. This dynamic is illustrated in Figure 5.1 for the fifth

period of a data stream. The mean of the next period realization at t conditioned on the recent

x = ax + Axxx3 + Axyy1 + ✏x,5

y = ay + Ayxx3 + Ayyy1 + ✏y,5

y1x1 x2 x3

1 2 3 4 5

?

p

1 � p
time

Figure 5.1. An illustration of a data stream of two classes X and Y for 5
time periods.

realizations x̂ and ŷ can be written as

(TS)

µx(x̂, ŷ) = E[x|xτx(t) = x̂,yτy(t) = ŷ]

= ax + Axxx̂ + Axyŷ

µy(x̂, ŷ) = E[y|xτx(t) = x̂,yτy(t) = ŷ]

= ay + Ayxx̂ + Ayyŷ.

Note that this description of the time series model is general and captures the cross dependence of

the two classes (via Axy and Ayx) over time. It also allows extensions to dependency structures

on multiple previous realizations of either class.
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5.3. Adaptable Robust Classifier: AdRC

AdRC uses the time series model to predict the next period mean and covariance matrix for

each class. At each time period, the problem (MPM) is formulated as the following problem

min
u,β>0,η>0

β +
1

β
‖Σ

1
2
x (a0 + Fu)‖22 + η +

1

η
‖Σ

1
2
y (a0 + Fu)‖2,

which can be solved via an iterative least squares algorithm. Here, a0 = (µx −µy)/‖µx −µy‖22
and F is a basis for the null space of µx−µy, i.e., F is an orthogonal matrix whose columns span

the subspace of vectors orthogonal to µx − µy. Solving the reformulated problem iteratively

yields the classifier a = a0 + Fu with b = a · µx − β/(β − η). This surface then classifies the

incoming point of the stream, which is then used to update the estimate of the mean for both

classes for the next period’s classification. The steps of AdRC are summarized below.

Algorithm 1 The steps of AdRC for classifying streaming data.

1: Initialize: t = 1 and previous data points x0 and y0

2: while New streaming data point zt ∈ Rn is available do

3: Predict µx and µy using model (TS) and xτx(t),yτy(t).

4: Solve problem (MPM) using iterative least squares.

5: Use generated classifier to classify zt.

6: Record the observed true class for zt.

7: t = t+ 1

8: end while

The AdRC requires repeated computation and becomes expensive for large-scale data streams.

Since the AdRC method consists of two separable steps of (i) predicting the next period moments

and (ii) solving (MPM) using these moments, the improvement of each step can be directly ben-

eficial. For example, we can use better prediction methods for the moments or map the data
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into higher dimensions, also known as kernelization [67]. Nevertheless, the aggregating aspect

of the repeated computation for AdRC imposes limitations.

5.4. Adjustable Robust Classifier: AjRC

To overcome the repeated computation, we propose a method to solve the adjustable refor-

mulation of problem (D-MPM). The resulting policy prescribes how to adjust the classifier for

newly observed data from the stream. For this, we reformulate the problem (D-MPM) to allow

the variables to be functions of the uncertain realizations of previous periods. These variables

predict the contact points of the two ellipsoids as their centers vary with past realizations. This

policy is obtained by minimizing the worst-case norm of the contact point for all possible re-

alizations from the previous period. Given the stationarity of time series, we model previous

realizations to reside in ellipsoidal sets centered around the unconditional means. Therefore, the

adjustable dual MPM can be given by

(AD-MPM)

min
r,u(x,y)
w(x,y)

max
x∈Ux
y∈Uy

r(x,y)

s.t. µx(x,y) + Σ1/2
x u(x,y) = µy(x,y) + Σ1/2

y w(x,y)

∀x ∈ Ux ∀y ∈ Uy

‖u(x,y)‖2 ≤ r(x,y) ∀x ∈ Ux, y ∈ Uy

‖w(x,y)‖2 ≤ r(x,y) ∀x ∈ Ux, y ∈ Uy.

The uncertainty sets Ux and Uy represent the unconditioned (independent of past) sets of x

and y. For tractability, we make the following common assumption.

Assumption 5.4.1. The uncertainty sets Ux and Uy are ellipsoids with centers and covari-

ance matrices independent of the realizations of the time series of classes X and Y.
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Given Assumption 5.4.1, we model the corresponding uncertainty sets as

Ux =
{
x|x = µ0

x + Lxu : ‖u‖2 ≤ κx
}

Uy =
{
y|y = µ0

y + Lyw : ‖w‖2 ≤ κy
}
,

where LxL
>
x = Σx and LyL

>
y = Σy and µ0

x and µ0
y are the unconditional means for (TS).

Problem (AD-MPM) is an adjustable robust optimization (ARO) problem, which is known to

be NP-hard [11]. This can be overcome by approximating the functions u(x,y),w(x,y) and

r(x,y) with affine or static decision rules.

5.4.1. Affine Approximation

Affine decision rules, in addition to improving tractability, also maintain good approximation

properties for both the average and worst-case scenarios. Consider the time series models

µx(x,y) and µy(x,y) in (TS) and define ξ = (1,x>,y>)>. Then we can write

µx(ξ) = [ax | Axx | Axy] ξ = Xξ

µy(ξ) = [ay | Ayx | Ayy] ξ = Yξ.
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Similarly, we express the functional variables u(x,y) and w(x,y) as the following affine

functions

u(x,y) = u0 + Uxx + Uyy

= u(ξ) = [u0 | Ux | Uy]ξ = Uξ

w(x,y) = w0 + Wxx + Wyy

= w(ξ) = [w0 |Wx |Wy]ξ = Wξ

r(x,y) = r,

where u0,w0,Ux,Wx,Uy and Wy are the optimization variables and r is the static approxi-

mation of the radius. We also redefine the uncertainty sets Ux and Uy as a joint uncertainty set

over ξ through U = 1× Ux × Uy. Then, the problem (AD-MPM) with affine decision rules can

be expressed as

(AjRC)

min
r,U,V

r

s.t. Xξ + Σ
1
2
xUξ = Yξ + Σ

1
2
y Wξ ∀ξ ∈ U

‖Uξ‖2 ≤ r ∀ξ ∈ U

‖Wξ‖2 ≤ r ∀ξ ∈ U .

Note that the problem (AjRC) is a second order conic program with infinitely many con-

straints, making it difficult to solve. Let f(u,Ux,Uy) = u+Uxµ
0
x+Uyµ

0
y. Using the S-lemma,

the following theorem reformulates this problem as a semi-definite program.
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Theorem 5.4.1. The robust counterpart of the problem (AjRC) is given by

min
r,λ,U,W

r

s.t. ax + Σ
1
2
xu0 = ay + Σ

1
2
y w0

Axx + Σ
1
2
xUx = Ayx + Σ

1
2
y Wx

Axy + Σ
1
2
xUy = Ayy + Σ

1
2
y Wy

r − λxxκ2
x − λxyκ2

y f(u0,Ux,Uy)
> 0 0

f(u0,Ux,Uy) rI UxLx UyLy

0 L>x U>x λxxI 0

0 L>y U>y 0 λxyI


� 0



r − λyxκ2
x − λyyκ2

y f(w0,Wx,Wy)
> 0 0

f(w0,Wx,Wy) rI WxLx WyLy

0 L>x W>
x λyxI 0

0 L>y W>
y 0 λyyI


� 0

λxx, λxy, λyx, λyy ≥ 0.

The proof is in appendix A.7. This robust counterpart can be solved in polynomial time

through the use of commercially available solvers. As a result, data streaming classifiers can be

computed efficiently.

5.4.2. Estimating the classifying surface

The problem (AjRC) is similar to (D-MPM). It predicts the contact point of the two ellipsoids as

their centers vary while minimizing the maximum norm (over all uncertain ξ) of the normalized

contact point. However, there is a key distinction from the problem (D-MPM), namely the
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mean is known before computing the classifier and the solution occurs when the two ellipsoids

touch. At this point, the classifying surface is the common tangent. However, this is not the

case for (AjRC), because it calculates an approximate policy with a static radius. Consequently,

the contact point from (AjRC) can be a point of intersection of the two ellipsoids. Since the

static r is only for the worst-case, the actual radius for ξ can differ. Given realizations x̂ and ŷ,

let the two ellipsoids be expressed by

E1(x̂, ŷ) =
{

x | (x− µx(x̂, ŷ))>Σ−1
x (x− µx(x̂, ŷ)) ≤ r2

}
E2(x̂, ŷ) =

{
y | (y − µy(x̂, ŷ))>Σ−1

y (y − µy(x̂, ŷ)) ≤ r2
}
.

The solution of (AjRC) provides a point v = x = y. The tangents of E1(x̂, ŷ) and E2(x̂, ŷ) at v

are

g1 = 2Σ−1
x (v − µx(x̂, ŷ)) = 2Σ−1

x Lxu

g2 = 2Σ−1
y (v − µy(x̂, ŷ)) = 2Σ−1

y Lyw.

The tangential surfaces at these points are given by g>1 x = c1 and g>2 y = c2 for some c1 and

c2. Since both surfaces pass through the point v, we can estimate c1 and c2 by c1 = g>1 v and

c2 = g>2 v. Note that the surfaces g1, c1 and g2, c2 are affine functions of realizations x̂ and ŷ.

Choosing the correct surface: We evaluate the probability of correct classification for

both surfaces and choose the one with higher probability. Given the prior probability of class X

and Y as p and 1− p (see Figure 5.1), we can express the probability of correct classification as

P(gi) = p · P(g>i x ≥ ci) + (1− p) · P(g>i y ≤ ci).
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Here, P(g>i x ≥ ci) can be calculated assuming x to be normally distributed as N (µx(x̂, ŷ),Σx),

or for the worst-case as P(g>i x ≥ ci) = d2/(1 + d2) with d2 = max(g>i µx − ci, 0)2/
√

g>i Σxgi.

The overall algorithm to obtain the AjRC classifier can be summarized as follows.

Algorithm 2 The steps of AjRC for classifying streaming data.

1: Initialize: t = 1 and previous data points x0 and y0

2: Solve the problem in Theorem 5.4.1 and obtain policy matrices U and W.

3: while New streaming data point zt is available do

4: Let ξt = (1,xτx(t), ,yτy(t)).

5: Estimate contact point v = Xξ + LxUξ.

6: Calculate classifiers g1 = 2Σ−1
x LxUξ and g2 = 2Σ−1

y LyWξ with ci = g>i v.

7: Evaluate probabilities P(gi) = p · P(g>i x ≥ ci) + (1− p) · P(g>i y ≤ ci).

8: Use surface with higher probability to classify zt.

9: Record the observed true class of zt.

10: t = t+ 1

11: end while

5.4.3. Approximate Adjustable Robust Classifier

The key challenge in efficiently solving the problem (AjRC) is its reformulation of the infinite-

dimensional second order constraints. This difficulty can be alleviated by replacing the infinitely

many constraints for the uncertainty set U with a finite number. In this context, we can express
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the problem (AjRC) as

min
r,U,W

r

s.t. ax + Lxu0 = ay + Lyw0

Axx + LxUx = Ayx + LyWx

Axy + LxUy = Ayy + LyWy

‖u0 + Uxµ
0
x + Uyµ

0
y + UxLxu + UyLyw‖2 ≤ r

∀u ∈ Û,w ∈ Ŵ

‖w0 + Wxµ
0
x + Wyµ

0
y + WxLxu + WyLyw‖2 ≤ r

∀u ∈ Û,w ∈ Ŵ,

where Û and Ŵ denote a finite set of points to approximate the sets {u|‖u‖2 ≤ κx} and

{w|‖w‖2 ≤ κy}. This new problem is an SOCP, which can be solved significantly faster than

the previous semi-definite program. This is crucial for large-scale data streams. Depending on

the set of elements that are selected in Û and Ŵ, different approximations can be obtained. For

example, we may obtain an inner approximation of the uncertainty set by choosing the vertices

of an ellipsoid. Alternatively, we obtain an outer approximation by choosing the corners of a

box enclosing the underlying ellipsoid.

5.5. Numerical Experiments

We conducted three experiments. An illustrative experiment serves to generate intuition

for the classifying methods. The second experiment involves two sets of data with their means

separated by increasing distances, in order to measure accuracy and speed. The last experiment
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is a real-world test and uses meteorological data to predict high winds in the next hour. All

codes are available online.

Computational Setup. The AdRC model is solved using the algorithm provided in [67], while

the AjRC and AAjRC models are formulated as a SDP and a SOCP respectively. They are

implemented using the JuMP library in the Julia programming language v1.0. The solvers used

are Gurobi for the SOCP and Mosek for the SDP. They are solved on a machine with an Intel

Core i7 processor with 32 GB RAM.

5.5.1. Illustrative Experiment

Consider the following two-dimensional example. Suppose the two time-series are given by

xt = [−0.4,−0.4] + 0.2 xτx(t) + 0.05 yτy(t) + εx,t

yt = [0, 0.15] + 0.05 xτx(t) + 0.2 yτy(t) + εy,t.

We initialize the series and discard the first 1000 points to achieve steady state behavior. The

data generated after this warmup are used for classification, as illustrated in Figure 5.2 for four

time periods. The circular data points represent class X, and the triangular ones, class Y. The
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Figure 5.2. Four sequential iterations of classification. This segment is [x1, y1, x2, y2].

incoming data point has a filled symbol. From Figure 5.2 we observe:
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(1) for AdRC, the ellipsoids (centers have enlarged symbols) sizably change in each time

period, causing changes to the classifier, and

(2) the AdRC (solid line) and AjRC (dashed) classifiers are close to each other, indicating

that the affinely updated AjRC classifier closely predicts the AdRC classifier.

This proximity highlights the robustness of the AjRC surface to uncertainty in realized data.

5.5.2. Synthetic Data Stream Experiment

In a controlled environment, we measure the accuracy and speed of AdRC, AjRC, and AAjRC

on synthetic data, while varying data size and the distance between the two class means. Specif-

ically, for each dimension size, a time series generates the data. After an initial burn period of

1000 points, 4000 new data points are generated for the stream, which are divided into training

and testing sets. The training sets are used to find an estimate of the time series in order to

calculate the policy for updating the classifying surface and for predicting the next period’s

moments.

Table 5.1. Comparison of the three data stream classifiers on randomly

generated time series.

Size Distance AdRC AjRC AAjRC

Accuracy Time [s] Accuracy Time [s] Accuracy Time [s]

5 0.9 55.8 1.1 55.6 0.5 56.4 0.3

5 1.3 65.6 1.1 65.7 0.5 65.6 0.3

5 1.8 70.5 1.1 72.1 0.5 70.8 0.3

30 1.9 62.2 2.9 63.3 1558.4 62.9 4.9

30 2.8 67.4 2.6 69.3 1543.6 67.2 4.4

30 3.8 73.7 2.7 73.6 1753.8 73.5 4.0

Table 5.1 shows that the performance of all three models improves with the distance between

the classes, highlighting the benefits of leveraging time series for well separated streams. We also
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observe that the accuracy of the approximate model is comparable to the other two, indicating

that the SOCP reformulation captures the effects well. While AjRC offers the benefit of a policy

for classification, its computation for larger dimensions significantly degrades. However, AAjRC

offers the same benefits as AjRC, while maintaining a comparable speed to AdRC. Depending

on the application, this result allows practitioners to choose among the proposed methods.

5.5.3. Wind Speed Experiment

Predicting wind speeds plays an important role in aviation control. The hourly data stream

from the weather station at the Chicago O’Hare Airport contains several predictors, such as

temperature, air pressure, relative humidity, and past wind speeds. We divide the streaming

dataset, from January 1, 2010 to June 30, 2010 from the National Climate Date Center [2], into

two classes based on whether the wind speed was higher than the 90th percentile. We divide this

data into a training set for the time series and a test set to measure the accuracy of the classifier.

We compute the AdRC, AjRC, and AAjRC for this streaming data, assuming different levels of

auto correlation in the time series.

Table 5.2. Accuracy of meteorology data stream classification for wind speeds.

Auto-Corr AdRC Time [s] AjRC Time [s] AAjRC Time [s]

3 63.4 2.4 63.0 2.5 58.3 0.8

4 64.2 2.3 64.4 6.6 62.0 0.8

5 66.1 2.3 66.4 15.3 58.7 0.8

6 67.4 3.7 67.0 37.4 62.2 3.4

7 68.5 2.2 68.4 61.5 64.3 0.9

Table 5.2 shows that higher auto correlations improve accuracy. Similar to the previous

experiment, we observe that the computation of AjRC is more expensive, which can be overcome

by AAjRC, while maintaining the accuracy. We observe that the probability approximation for
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AjRC and AAjRC with a normal distribution leads to comparable results as assuming the worst

case (not shown).

5.6. Conclusion

We extend the Minimax Probability Machine to classification of data streams. For this,

the data variation over time is modeled by a cross class time series model. We present three

extensions which provide classifiers for future observations. The adaptive method uses the time

series model to predict the next period moments and solves the MPM problem to obtain the

classifying surface. The adjustable method directly embeds the time series into the optimization

problem and provides decision rules for adjusting the classifier to new observations. The ap-

proximate adjustable method reduces the problem size in order to manage larger data streams

while maintaining the accuracy. We evaluate the performance of these models on numerical

experiments and illustrate their benefits on synthetic and real-world data. These natural exten-

sions are robust to distributional uncertainties and are suitable for general classification of data

streams.
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CHAPTER 6

Conclusion and Future Research

Robust Optimization has become a popular method for addressing optimization problems

under uncertainty. So far, it has focused on uncertainty models that are fixed a priori. In

this dissertation, we addressed the topic of variable uncertainty sets for robust optimization

problems. These sets are affected by either the decisions made in the optimization problem, or

by uncertainty realizations from previous time periods.

6.1. Decision Dependent Uncertainties

We introduced decision-dependent uncertainty sets and proved that robust optimization

problems under such sets are NP-complete. We then introduced a special class of uncertainty

sets via intersections of a box and a polyhedron and proved that their structure can be leveraged

to improve the computation of these problems. This is achieved by moving the decision vari-

ables, affecting the uncertainty set, from the constraints defining the set, to the objective. This

reformulates the robust counterpart as a convex optimization problem. These results were then

illustrated through numerical experiments on a shortest path problem, highlighting the benefits

that could be extracted by leveraging decision dependent uncertainty. They showed that the

special class of uncertainty sets provides significant computational benefits over standard bilin-

ear reformulations. The experiments also indicated that the benefits of uncertainty reduction

significantly depend on the price for reducing the uncertainty. A low price can lead to large

benefits, which decrease as the price increases. The exact impact of the reduction depends on

the structure of the uncertainty set and the optimization problem.
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We then extended this concept to allow for uncertainty in the influence of the decisions on

the set. This influence uncertainty was modeled in both robust and stochastic optimization

settings. We provided reformulations for both settings and presented results to simplify the

robust setting for interval models of influence uncertainty. The impact of this uncertain influence

was illustrated through numerical experiments on an electricity unit commitment problem with

unknown load. We developed cut generation algorithms for this unit commitment problem with

decision dependent uncertainty by leveraging the results from Chapter 2. We provided pre-

computations of the worst-case scenarios for several of the unit commitment constraints. The

numerical experiments displayed the impact of modeling the uncertain influence. Depending on

the model, influence uncertainty led to differences in the decision to reduce the uncertainty. This

indicates the importance of incorporating any uncertainty in the influence into the optimization

problem.

6.2. Connected Uncertainties

In the second half, we studied the topic of connected uncertainty, where uncertainty real-

izations over multiple periods can affect each other. Specifically, we focused on a multi-period

problem in which the uncertainty in one period can affect the uncertainty set of the future

through a pre-specified model, such as a time series. We considered polyhedral and ellipsoidal

uncertainty sets and computed the resulting reformulations, when the parameters of these sets

are connected over time. We also extended these results to a distributionally robust optimization

problem with moment uncertainty sets. Here, we assumed the first moment, i.e., the mean, to

be dependent over time. This led to infinite dimensional optimization problems, which we con-

servatively approximated using static solutions. We evaluated the impact of such connections

on a knapsack and a portfolio optimization problem. For the knapsack problem, we showed

that the presence of connections can lead to more extreme worst-case scenarios, which are not
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captured by standard models. CU models capture these scenarios and provide better feasibility

at almost similar objectives. The experiments on the portfolio optimization problem displayed

similar results with the CU model lowering the risk (standard deviation), while achieving similar

wealth as the standard non-connected model.

We then leveraged the notion of connected uncertainty in the context of a minimax proba-

bility machine model to develop an adaptive classifier for streaming data. We assumed that the

data of each class over time was modeled by a time series. This allowed us to develop two clas-

sifiers referred to as AdRC and AjRC. AdRC re-computed the classifying surface at each time

step using the new predictions (from the time series) of the mean. AjRC was developed using

a connected uncertainty model and allowed us to compute a policy for updating the classifier

over time by solving a semi-definite optimization problem. We approximated AjRC as a second

order conic program AAjRC to improve the computation of the optimal policy. These models

were illustrated through experiments on synthetic and wind speed data. The results indicated

that both models perform well, when there is some distance between the means of each class.

However, their ability is limited when the classes are too close The AjRC and AAjRC models

also performed almost as well as the AdRC classifier demonstrating the potential of using affine

policies to update the classifying surface.

6.3. Future directions

In the future, my goal is to extend both decision dependent and connected uncertainty

further. First, the unit commitment models used to illustrate uncertain influence are of limited

size. My goal is to allow for large models by improving the cut generation procedures. A second

important area of research is to allow the use of continuous decision variables as a part of decision-

dependent uncertainty sets. In the context of connected uncertainty, a major area for future

research is improving the computability of the problem for adaptive optimization problems
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in application specific contexts. This is relevant for both robust and distributionally robust

optimization. Finally, it is necessary to improve the performance of the adaptive classifier as

currently its capabilities are limited. Overall, both of these concepts extend themselves naturally

to the study of machine learning and decision-making algorithms in adversarial settings.
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APPENDIX A

A.1. Proof of Theorem 4.2.3

The following is the proof for the robust counterpart for the polyhedral uncertainty set.

Proof. For (P), we define the joint uncertainty set U as

U =
{

(d>1 ,d
>
2 , . . . ,d

>
T )> | d1 ∈ U1, dt ∈ Ut(dt−1) ∀t = 2, . . . , T

}
=

{
(d>1 ,d

>
2 , . . . ,d

>
T )> | G1d1 ≥ g1, Gtdt ≥ gt + ∆tdt−1 ∀t = 2, . . . , T

}
,

combining the polyhedral sets for each period. The robust counterpart of (C-RO) becomes

T∑
t=1

d>t xt ≤ B ∀(d>1 ,d>2 , . . . ,d>T )> ∈ U ,

which can be rewritten as

max
(d>1 ,d

>
2 ,...,d

>
T )>∈U

T∑
t=1

d>t xt ≤ B.

The LHS is computed by

max
dt

T∑
t=1

d>t xt

s.t. G1d1 ≥ g1

Gtdt ≥ gt + ∆tdt−1 ∀t = 2, . . . , T.
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Using duality, the robust counterpart of (C-RO) is

T∑
t=1

q>t bt ≤ B

q>t At − q>t+1∆t+1 = x>t , ∀t = 1, . . . , T

qt ≤ 0 ∀t = 1, . . . , T,

which is the desired result. �

A.2. ARO with Ellipsoidal CU Sets

In this section, we reformulate the connected constraints from problem (CU-ARO) for ellip-

soidal uncertainty sets, where the center depends on the previous period realization as

(A.1) Ut(dt−1) = {dt | dt = µt(dt−1) + Ltut : ‖ut‖2 ≤ rt},

where LtL
>
t = Σt. The dependence of µt on the previous period realization is given by

(A.2) µt(dt−1) = Atµt−1(dt−2) + Ftdt−1 + ct.

For this setting, the following theorem provides the reformulation for CU sets with affine decision

policies.

Theorem A.2.1. The two-period adjustable optimization problem (CU-ARO) has a tractable

reformulation, when the uncertainty affects the center and the fully adaptive decisions are re-

placed by affine decision rules.

Proof. We replace x2(d1) with the affine decision rule x2(d1) = X2d1 and expand b1(d1) =

B1d1 and b2(d2) = B2d2. We focus on reformulating the second constraint, which is affected
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by the connected uncertainty and whose robust problem is

max
d1,d2

B>2,id2 − [A22X2]>i d1

s.t. d1 = µ1 + L1u1

d2 = µ2(d1) + L2u2

‖ut‖2 ≤ rt ∀t = 1, 2.

Substituting d1 and d2, we rewrite the problem as

max
d1,d2

B>2,i(A2µ1 + F2d1 + c2) + B>2,iL2u2 − [A22X2]>i µ1 − [A22X2]>i L1u1

s.t. ‖ut‖2 ≤ rt ∀t = 1, 2.

Using the dual, the complete second constraint of (CU-ARO) is given by

A>21,ix1 ≥ B>2,i(A2µ1 + F2µ1 + c2)− [A22X2]>i µ1 + r2‖B>2,iL2‖2 + r1‖B>2,iF2L1

− [A22X2]>i L1‖2.

The remaining constraints in (CU-ARO) is then reformulated in a similar manner, leading to a

tractable reformulation. �

A.3. Robust Counterpart of (C-DRO)

The following proposition better illustrates the connection between constraint (C-DRO) and

its robust counterpart (4.5). Given the uncertainty sets Ũ1, . . . , ŨT−1
T , their joint uncertainty set

is defined by

Ũ =
{
P | P = P1 × · · · × PT |T−1, P1 ∈ Ũ1, Pt|t−1 ∈ Ũt(dt−1) ∀dt−1 ∈ Ξt−1 ∀t

}
.
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The joint set, Ũ is the set of all distributions P with the marginals lying in the specified uncer-

tainty sets Ũt(dt−1).

Proposition A.3.1. Given the sets Ũ1, . . . , ŨT (dT−1) and their joint uncertainty set Ũ , the

robust counterpart of constraint (C-DRO), given by

(A.3) sup
P∈Ũ

EP

[
T∑
t=1

ht(xt,dt)

]
≤ B

is equivalent to

sup
P1∈Ũ1

EP1

[
h1(x1,d1) + sup

P2|1∈Ũ2(d1)

{
EP2|1

[
h2(x2,d2) + . . .

+ sup
PT |T−1∈ŨT (dT−1)

{
EPT |T−1

[hT (xT ,dT )]
}]}]

≤ B.

Proof. We first show the forward direction of the equivalence. Observe that for any dis-

tribution P ∈ Ũ with the corresponding marginal distribution P1, and for each dt−1 with the

conditional distribution Pt|t−1, it holds that

(A.4)

EP1

[
h1(x1,d1) +

{
EP2|1

[
h2(x2,d2) + · · ·+

{
EPT |T−1

[hT (xT ,dT )]
}]}]

= EP

[
T∑
t=1

ht(xt,dt)

]
.

For a small ε > 0, let P ∗ ∈ Ũ be such that

(A.5) EP ∗
[

T∑
t=1

ht(xt,dt)

]
≥ sup

P∈Ũ
EP

[
T∑
t=1

ht(xt,dt)

]
− ε.

That means the LHS of (A.5) is ε-optimal to the LHS of (A.3). Since P ∗ is in Ũ , there exist

marginal distributions P ∗1 , . . . , P
∗
T |T−1 such that P ∗1 lies in Ũ1 and the conditional distribution of

dt, P
∗
t|t−1 lies in Ũ(dt−1), where dt−1 ∈ Ξt−1. This holds true for all t = 2, . . . , T . Using (A.4),
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this means

sup
P1∈Ũ1

EP1

[
h1(x1,d1) + sup

P2|1∈Ũ2(d1)

{
EP2|1

[
h2(x2,d2) + . . .

+ sup
PT |T−1∈ŨT (dT−1)

{
EPT |T−1

[hT (xT ,dT )]
}]}]

≥ EP ∗1
[
h1(x1,d1) +

{
EP ∗

2|1

[
h2(x2,d2) + · · ·+

{
EP ∗

T |T−1
[hT (xT ,dT )]

}]}]
= EP ∗ [

T∑
t=1

ht(xt,dt)]

≥ sup
P∈Ũ

EP [
T∑
t=1

ht(xt,dt)]− ε.

Now for the opposite side of the inequality, let P ∗1 , P
∗
2|1 up to P ∗T |T−1 be ε-optimal to (4.5).

The constraints of (4.5) ensure that P ∗1 ∈ Ũ1 and P ∗t|t−1 ∈ Ũt(dt−1). Since Ũ is the set of all joint

distributions with these specified marginals, for the joint distribution P ∗ with these marginals,

the equation (A.4) will hold. However since P ∗1 and P ∗t|t−1 are ε-optimal, this means that

sup
P1∈Ũ1

EP1

[
h1(x1,d1) + sup

P2|1∈Ũ2(d1)

{
EP2|1

[
h2(x2,d2) + . . .

+ sup
PT |T−1∈ŨT (dT−1)

{
EPT |T−1

[hT (xT ,dT )]

}]}]

≤ EP ∗1
[
h1(x1,d1) +

{
EP ∗

2|1

[
h2(x2,d2) + · · ·+

{
EP ∗

T |T−1
[hT (xT ,dT )]

}]}]
+ ε

= EP ∗
[

T∑
t=1

ht(xt,dt)

]
+ ε

≤ sup
P∈Ũ

EP [

T∑
t=1

ht(xt,dt)] + ε.

This gives the opposite inequality, and the result follows by letting ε shrink to zero. �
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Note that this result does not depend on the structure of the moment based uncertainty

set and can be extended to sets Ũ1, . . . , ŨT (dT−1) of any structure, in which the parameters

depend on previous realizations. An important part of this result is the additive nature of the

constraint.

A.4. RO Application: Knapsack Problem with Negative Correlations

We repeat the experiments conducted for the Knapsack problem with a negative correlation

among the weights over time i.e., Ψ = −0.2 × I. Figure A.1 presents the value of average

objective for any level of constraint satisfaction (left) and the number of non-zero allocations

vs. set size. Figure A.2 displays how the average constraint satisfaction (left) and the average

objective value (right) change with size of the uncertainty set r. These results show that when

uncertainties are negatively correlated, CU solutions achieve a better objective value but a lower

constraint satisfaction than NC solutions. However, for any level of constraint satisfaction both

have similar performance.

• Effect of Uncertainty Set Size : For both models, constraint satisfaction increases

and average objective value decreases with r. Note that the objective value is only

measured, if constraints are satisfied.

• CU vs. NC : For any r, CU solutions have lower constraint satisfaction than NC

solutions. CU solutions also have higher average objective value. This is because

connected sets depend on the first period, and the negative correlation instead of

magnifying the worst-case causes one of the realizations to take a lower value. This

reduces the protection but increases the objective value.

Note that for any level of satisfaction, the average objective of CU is almost the

same as NC (see Figure A.2 left).
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Figure A.1. Comparison of connected and non-connected sets for the robust
knapsack problem at different set sizes: (left) average fraction of constraint
satisfaction, and (right) average objective value.
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Figure A.2. Comparison of connected and non-connected sets: (left) av-
erage objective value vs. constraint satisfaction, and (right) for a single
iteration, the number of non-zero variables of a period.

• First vs Second period solutions: For a single estimate in (ii) shown in Figure A.2

(right), the optimal solution gradually concentrates only on x2 for both CU and NC

as r increases. For NC, this is because c2 tends to be higher. For CU, the negative

correlation prevents the magnification of the weights for both periods as such second

period allocations which have higher objective coefficients can be selected.
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A.5. DRO Application: Portfolio Optimization

We study a practical portfolio optimization problem on historical stock data. For our port-

folio, we choose among 5 stocks. The experiment is repeated 150 times for randomly selected

dates. At each date, we compute the weekly returns for the previous 100 weeks based on stock

price data and fit them to a time series model. The two weeks following the selected dates serve

to evaluate the performance of the model.

To capture risk aversion, in each experiment, we maximize a concave piecewise linear utility

function u = min(1.5r, 0.015 + r, 0.06 + 0.1r), where r denotes the return on the portfolio. It

is assumed that µ2 = µ2(d1) + δ and µ
2

= µ2(d1) − δ with µ2(d1) = µ0 + Aµ1 + Bd1. The

vector µ0 and the matrices A and B are estimated from data via a vector autoregressive moving

average with lag 1 [94]. The parameters Σ1 and Σ2 are set to the residual covariance matrices.

The value of µ1 is the return point-estimate at the end of the first week and δ is three times

the standard error of this estimate (in order to cover almost all realized means under normality

assumption).

To probe the performance of the proposed CU model, we compare it against the standard

DRO and a modified DRO, described as following:

: CU: Model with connected uncertainty set,

: DRO-1: Model with µ2 = µ1, and

: DRO-2: Model with µ2 = Aµ1 + Bµ1.

DRO-1 represents the standard model as used widely in the literature. It is computationally

attractive because of a simpler reformulation. However, it does not take into account potential

connections to previous periods. We propose a modified version (DRO-2), which captures some

of the potential connections to previous periods using the unconditional mean for the second

period.
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In these experiments, the parameters µi and Σi are defined based on past weeks, and

the returns are computed over the future two weeks. We evaluate the solution quality from

these three models by comparing the returns. Each experiment starts with an initial wealth of

W0 = $100, which is recomputed using the total return on the portfolio

Wt+1 = Wt · (d̂>t xt), t = 1, 2,

The realized demand d̂t is taken from the actual stock data. This wealth (W) is then averaged

over the different experiments and reported in Table A.1, along with the standard deviation

(Std) as a measure for robustness of the solution.

Model Period 1 Period 2 Period 3
W Std W Std W Std

CU 100 0 100.1 1.97 101.2 5.38
DRO1 100 0 99.9 2.36 100.9 5.92
DRO2 100 0 99.9 2.36 100.9 6.06

Table A.1. Average wealth (W) and its standard deviation (Std) over time
for various models

Table A.1 displays the performances of the three different models. For all three, we observe a

positive average return at the end of two weeks, which is attributed to the mean positive return

on the random samples for the five stocks. Furthermore, the standard deviation (spread) of the

sample paths grows as time elapses, because the inherent uncertainty in returns is compounding

over time.

When comparing the three models, we observe marginal differences in the average wealth,

reflecting the relatively short time horizon. However, we observe the wealth standard deviation

for the CU model to be lower than both of the DRO models. This is attributed to the fact

that the CU model captures the compounding worst-case effect of connected periods and yields

a more conservative solution. the CU model reduces the wealth standard deviation for wealth
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Figure A.3. CU and DRO problem objective

by 0.417 (17.6% of the original wealth standard deviation) for period 1 and 0.563 (9.5%) for

period 2 compared to DRO-1. Other measures of deviation, such as interquartile range, reveal a

similar decrease in wealth. Therefore, the CU model is able to select assets that are less volatile

in order to provide more robust allocations.

Note that solving the CU model is computationally more demanding than either of the DRO

models, because of latter’s convex subproblems. Therefore, depending on the application, the

advantages of the CU model have to outweigh the additional computational burden. Further-

more, the DRO-2 model represents another way to leverage the connection between uncertainties

of different periods. However, it only accounts for the average effect between periods and not

the worst case.

A.6. DRO Application: Portfolio Optimization II

(1) Objective function: to measure performance of the model in the nominal setting (Fig-

ure A.3).

(2) Worst-case realized wealth: to study the effect of adversarial settings (Figure A.5).

(3) Standard deviation of wealth: to evaluate the robustness of solutions (Figure A.4).
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Figure A.4. Realized wealth standard deviation for CU and DRO at end of
period 2

Objective

Asset Correlation. Figure A.3 indicates that positive correlations among the assets reduce the

objective performance for the CU model. This is due to the fact that positive correlation worsens

the worst-case returns everywhere simultaneously, whereas a negative correlation prevents this

from occurring as a result the objective (which is worst-case by definition) reduces.

Correlation over time. Figure A.3 also presents similar behavior for correlation over time

leading to worse objective performance for the same reasons as asset correlation. The DRO

model does not capture the correlation over time but it also performs better when the assets are

negatively correlated.

Standard Deviation and Worst-Case Wealth

Figure A.4 shows the standard deviation for the realized wealth at the end of the second period.

Asset Correlation. The standard deviation is higher, when the assets are positively correlated

among themselves and over time.

Figure A.5 shows the worst-case realized wealth at the end of the second period. The worst

case wealth is higher, when assets are negatively correlated among themselves and over time.

This is because the negative correlation makes it unlikely for both returns to be very low. The
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Figure A.5. Worst-case realized wealth for period 2

pattern observed here is similar to that in Figure A.3, with the worst-case wealth being worse

when assets are positively correlated.

A.7. Proof of Theorem 5.4.1

Proof. We can rewrite problem (AjRC) as

min
r,U,V

r

s.t. (X + LxU−Y − LyW)ξ = 0 ∀ξ ∈ U

‖Uξ‖2 ≤ r ∀ξ ∈ U

‖Wξ‖2 ≤ r ∀ξ ∈ U .

Consider the constraint ‖Uξ‖2 ≤ r ∀ξ ∈ U . Expanding Uξ = u0 + Uxx + Uyy the constraint

becomes

‖u0 + Uxx + Uyy‖2 ≤ r ∀x ∈ Ux, y ∈ Uy,

where Ux,Uy are ellipsoids centered around µ0
x,µ

0
y with covariance matrices Σx,Σy and radius

κx, κy. Substituting the same we get the following constraint

‖u0 + Uxµ
0
x + Uyµ

0
y + UxLxu + UyLyw‖2 ≤ r ∀(u ∈ ‖u‖2 ≤ κx), (w ∈ ‖w‖2 ≤ κy).



165

Using the Lemma A.7.1, we can reformulate the above constraint as a semi-definite inequality

r − λxxκ2
x − λxyκ2

y u>0 + (µ0
x)>U>x + (µ0

y)
>U>y 0 0

u0 + Uxµ
0
x + Uyµ

0
y rI UxLx UyLy

0 L>x U>x λxxI 0

0 L>y U>y 0 λxyI


� 0

λxx, λxy ≥ 0.

Repeating a similar reformulation for the constraint ‖Wξ‖2 ≤ r ∀ξ ∈ U , we can write the

problem (AjRC) as

min
r,U,V

r

s.t. (X + LxU−Y − LyW)ξ = 0 ∀ξ ∈ U

r − λxxκ2
x − λxyκ2

y u>0 + (µ0
x)>U>x + (µ0

y)
>U>y 0 0

u0 + Uxµ
0
x + Uyµ

0
y rI UxLx UyLy

0 L>x U>x λxxI 0

0 L>y U>y 0 λxyI


� 0



r − λyxκ2
x − λyyκ2

y w>0 + (µ0
x)>W>

x + (µ0
y)
>W>

y 0 0

w0 + Wxµ
0
x + Wyµ

0
y rI WxLx WyLy

0 L>x W>
x λyxI 0

0 L>y W>
y 0 λyyI


� 0

λxx, λxy, λyx, λyy ≥ 0.
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Here, we have U = [u0 | Ux | Uy] and W = [w0 |Wx |Wy]. Next, if we assume that the

uncertainty set U = 1× Ux × Uy is full dimensional, i.e., any element in the real space with the

same dimension as U can be written as a linear combinations of elements in U , then we can

write the constraint (X + LxU−Y − LyW)ξ = 0 ∀ξ ∈ U as

X + LxU−Y − LyW = 0.

This is equivalent to

[ax | Axx | Axy] + Lx[u0 | Ux | Uy] = [ay | Ayx | Ayy] + Ly[w0 |Wx |Wy].

This simplifies to the following set of constraints

ax + Lxu0 = ay + Lyw0

Axx + LxUx = Ayx + LyWx

Axy + LxUy = Ayy + LyWy.
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Therefore, the optimization problem can be expressed as

min
r,U,V

r

s.t. ax + Lxu0 = ay + Lyw0

Axx + LxUx = Ayx + LyWx

Axy + LxUy = Ayy + LyWy

r − λxxκ2
x − λxyκ2

y u>0 + (µ0
x)>U>x + (µ0

y)
>U>y 0 0

u0 + Uxµ
0
x + Uyµ

0
y rI UxLx UyLy

0 L>x U>x λxxI 0

0 L>y U>y 0 λxyI


� 0



r − λyxκ2
x − λyyκ2

y w>0 + (µ0
x)>W>

y + (µ0
y)
>W>

y 0 0

w0 + Wxµ
0
x + Wyµ

0
y rI WxLx WyLy

0 L>x W>
x λyxI 0

0 L>y W>
y 0 λyyI


� 0

λxx, λxy, λyx, λyy ≥ 0.

�

Lemma A.7.1. The following two constraints are equivalent

(i) ‖a +
∑T

t=1 Atut‖2 ≤ r ∀(u1, . . .uT : ‖ut‖2 ≤ κt, ∀t).
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(ii) There exist λ1, . . . , λT ≥ 0 such that

(A.6)



r −∑T
t=1 λtκ

2
t a> 0 0 . . . 0

a rI A1 A2 . . . AT

0 A>1 λ1I 0 . . . 0

0 A>2 0 λ2I . . . 0

...
...

...
...

. . .

0 A>T 0 0 λT I


� 0.

Proof. The constraint ‖a +
∑T

t=1 Atut‖2 ≤ r ⇔ ‖a + [A1 A2 . . .AT ]


u1

...

uT

 ‖2 ≤ r can be

written as the following semi-definite constraint r a> +
∑T

t=1 u>t A>t

a +
∑T

t=1 Atut rI

 � 0.

Thus the robust version of the constraint can be written as r a> +
∑T

t=1 u>t A>t

a +
∑T

t=1 Atut rI

 � 0 ∀‖ut‖2 ≤ κt ∀t = 1, . . . , T.

This can be expressed as a quadratic using a vector [p,q>]>, where p ∈ R and q ∈ Rn via

rp2 + 2pq>(a +
T∑
t=1

Atut) + rq>q ≥ 0 ∀(u1, . . . ,uT : ‖ut‖2 ≤ κt ∀t = 1, . . . , T ).

Expanding the terms, we can write the above as

rp2 + 2pq>a +
T∑
t=1

2pq>Atut + rq>q ≥ 0 ∀(u1, . . . ,uT : ‖ut‖2 ≤ κt ∀t = 1, . . . , T ),
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which is equivalent to

rp2 + 2pq>a + rq>q +
T∑
t=1

min
ut:‖ut‖2≤κt

2pq>Atut ≥ 0, ∀[p,q]

⇐⇒ rp2 + 2pq>a + rq>q−
T∑
t=1

2pκt‖q>At‖2 ≥ 0, ∀[p,q]

⇐⇒ rp2 + 2pq>a + rq>q +
T∑
t=1

2q>Atξt ≥ 0, ∀[p,q, ξ1, . . . , ξT ] : ξ>t ξt ≤ p2κ2
t , ∀t = 1, . . . , T.

Next, we express the above constraints in terms of matrices. First, the quadratic equation on

the left hand side can be expressed as

(A.7) (p,q>, ξ>1 , ξ2
>, . . . , ξ>T )



r a> 0 0 . . . 0

a rI A1 A2 . . . AT

0 A>1 0 0 . . . 0

0 A>2 0 0 . . . 0

...
...

...
...

. . .

0 A>T 0 0 0





p

q

ξ1

ξ2

...

ξT


≥ 0.

For the set
{

(p,q, ξ1, ξ2, . . . , ξT ) : ξ>1 ξ1 ≤ p2κ2
1

}
, the above can be rewritten as

(A.8) (p,q>, ξ>1 , ξ2
>, . . . , ξ>T )



κ2
1 0 0 0 . . . 0

0 0 0 0 . . . 0

0 0 −I 0 . . . 0

0 0 0 0 . . . 0

...
...

...
...

. . .

0 0 0 0 0





p

q

ξ1

ξ2

...

ξT


≥ 0.
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This can be repeated for all such sets. Using the S-lemma, the constraint (A.7) holds for

all (p,q>, ξ>1 , ξ
>
2 , . . . , ξ

>
T ) that satisfy constraint (A.8), if and only if there exists a λ1 ≥ 0 such

that

(A.9)



r − λ1κ
2
1 a> 0 0 . . . 0

a rI A1 A2 . . . AT

0 A>1 λ1I 0 . . . 0

0 A>2 0 0 . . . 0

...
...

...
...

. . .

0 A>T 0 0 0


� 0.

Repeating this until t = T , we obtain the following constraint

(A.10)



r −∑T
t=1 λtκ

2
t a> 0 0 . . . 0

a rI A1 A2 . . . AT

0 A>1 λ1I 0 . . . 0

0 A>2 0 λ2I . . . 0

...
...

...
...

. . .

0 A>T 0 0 λT I


� 0,

which concludes the proof. �
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