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ABSTRACT

Methods for Linear Programs with Complementarity Constraints

Francisco I. Jara-Moroni

This thesis studies three approaches for solving linear programs with complementarity

constraints (LPCC). The focus of Chapter 2 lies on difference-of-convex (DC) penalty

formulations and the associated difference-of-convex algorithm (DCA) for computing

stationary solutions of LPCCs. We concentrate on three such formulations and establish

connections between their stationary solutions and those of the LPCC. Additionally,

improvements of the DCA are proposed to remedy certain drawbacks in a straightforward

adaptation of the DCA to these formulations. Extensive numerical results, including com-

parisons with an existing nonlinear programming solver and the mixed-integer formulation,

are presented to elucidate the effectiveness of the overall DC approach.

On Chapter 3 we present a global optimization algorithm for LPCCs, based on a

logical Benders approach introduced by Hu et al. (2008). Complementarity pieces are

selected from an ever-updating branch-and-bound tree formed from satisfiability clauses,

and then discarded by means of a hybrid cut generating procedure which combines an



4

`1-norm formulation with a sequential sparsification process. Numerical results show that

the number of iterations decreases as compared with the base method.

Finally, Chapter 4 shows a numerical study for a global-local approach to find good

quality local optima for stochastic LPCCs derived from stochastic linear bilevel programs

with here-and-now and wait-and-see outer and inner level decisions, respectively. We

approach the stochastic problem via Sample Average Approximation and we analyze

how local solvers for LPCC perform when the starting point is the global solution of a

subsampled LPCC, in terms of their proximity to the global solution of the stochastic

LPCC. Experiments on a Bilevel Network Newsvendor Problem allow us to present a

simple technique to improve the solutions provided by the local solvers by taking advantage

of degeneracy of the inner level problems.
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become not only my guide, but also my friend. Andreas, thanks for all your support,

patience and help, and for accepting me as your student. Additionally, my biggest and

sincerest gratitude goes to professors Jorge Nocedal, Jong-Shi Pang and John Mitchell.

I learned a lot from the three of you and I really hope our lives cross once again in the

future.

I will also take the time to thank CONICYT for their invaluable financial support. It

would have been hard to go through these years without it, specially when raising two

kids.

Having people visiting us during this period made everything so much easier for us,

which is why we are so grateful of all our friends who took their time to come to Evanston

and share so many moments with us. This is a long list so be patient...
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CHAPTER 1

Introduction

This thesis investigates the computation of local and global solutions of linear programs

with complementarity constraints (LPCCs) of the form

(1.1)

minimize
x,y,w

cTx+ dTy

subject to Ax+By ≥ f

Mx+Ny + q = w

and 0 ≤ y ⊥ w ≥ 0,

where c ∈ Rt, d, q ∈ Rn, f ∈ Rm, A ∈ Rm×t, B ∈ Rm×n, M ∈ Rn×t and N ∈ Rn×n.

The expression “y ⊥ w” means that the vectors w and y are orthogonal, i.e., wTy = 0.

Beginning with the early work in the integer programming community on what was known

then as the “complementary program” (Ibaraki, 1971, 1973; Jeroslow, 1978), and as a

special case of a mathematical program with equilibrium constraints (MPECs) (Luo et al.,

1996) on which there is an extensive literature to date, the LPCC has grown in importance

in applications (Hu et al., 2012b) as complementarity constraints can be used to model

many logical, piecewise, and nonconvex conditions (Hu et al., 2012b), even discontinuous

ones such as cardinality objective (Feng et al., 2013) and constraints (Burdakov et al.,

2016). In addition, the LPCC provides an interesting framework for the study of nonconvex

quadratic programs (Hu et al., 2012a). In general, determining the global solution of
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LPCCs is NP-hard. While there has been recent research into the global solution of

the LPCC (Hu et al., 2008; Yu, 2011) and its extension to a quadratic program with

complementarity constraints (Bai et al., 2013), the task of designing a general-purpose

procedure with a provable certificate to compute a globally optimal solution to the LPCC

efficiently, if it exists, remains practically challenging.

With respect to local solutions, LPCCs still represent a challenging problem since

no feasible solution can satisfy all inequalities strictly. Therefore, the Mangasarian-

Fromovitz constraint qualification (MFCQ) is violated at every feasible point (Scheel and

Scholtes, 2000). This absence of regularity makes traditional non-linear programming

(NLP) approaches tend to perform poorly, and the algorithms may converge to spurious

stationary points which allow for trivial descent directions over the feasible region of the

LPCC (Fang et al., 2012). For example, sequential quadratic programming (SQP) methods

can give rise to inconsistent constraint linearizations, while interior point methods present

conflicting goals of enforcing complementarity while keeping the variables away from their

bounds (Leyffer et al., 2006).

Adding stochasticity to an LPCC gives way to a much broader set of applications, mostly

related to hierarchical optimization, in fields such as economic equilibrium, engineering

design, logistics, transportation and energy, to name a few. The presence of uncertainty,

though, makes the LPCC an even harder problem to tackle, even if the underlying random

variables have a finite support, due to large scale nature of its stochastic counterpart. In

the presence of continuous random variables, several works have been oriented to prove

convergence of stationary points, from discretized deterministic LPCCs, to stationary

points of their stochastic counterpart, extending the traditional results of convergence of



18

globally optimal solution and value, from stochastic programming (Shapiro and Xu, 2008;

Xu and Jane, 2011).

1.1. Overview

In this thesis we present our research related to local and global optima, and stochastic

LPCCs, divided into three chapters.

In Chapter 2 we study the application of the difference-of-convex algorithm (DCA) to

penalized versions of the LPCC, with an exact (smooth and non-smooth) penalization

term. First we introduce several concepts of stationarity and state their relationships and

equivalences, as well as highlight the difficulty of assessing whether a candidate optimal

solution falls into any of those definitions. Later we describe the DCA in detail alongside

with its convergence properties and how it fits with the presented penalized versions of

the LPCC. We also introduce three different decompositions over which we can execute

the DCA and state the properties of its limiting points, from the perspective of the LPCC

problem. Before presenting the numerical results, we propose two enhancements over the

basic DCA: one based on corrected reduced costs, which allows the non-smooth penalized

LPCC to escape weakly stationary points, and an active set method which overcomes the

inherent slow speed of first order methods for the quadratic decomposition of the smooth

penalization. Extensive numerical results for the linear complementarity problems, inverse

quadratic problems and problems from the MacMPEC library are presented.

Chapter 3 extends the works of Hu et al. (2008) and Bai et al. (2013) in a logical

Benders approach for globally solving LPCCs. The main contribution of this chapter is to

present an interpretation of the logical Benders method as a reversed branch-and-bound
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method, where the whole exploration procedure starts from the leaf nodes, as opposed

to the root node, in an enumeration tree. We use this interpretation to provide a new

framework over which we can combine master problem and cut generation, as in the

traditional Benders algorithm, in a single process. We also present an `1-norm formulation

which makes the cut generation more efficient. Numerical results over the test sets of Hu

et al. (2008) are performed and extended to larger complementarity dimensions, exceeding

what the state-of-the-art has been able to solve so far.

Finally, we present a numerical study for the Stochastic Linear Bilevel Network

Newsvendor problem, by means of its LPCC formulation. We combine both global and

local solvers to obtain good approximations of global solutions of a Sampled Average

Approximation version of the problem, obtained by drawing a large sample of scenarios.

We introduce an alternating weights technique which overcomes the degeneracy of the

inner level problem and is capable of finding better solutions. We confirm that in the

small instances we are able to find the global solution of the real stochastic problem,

while in the larger ones the local solutions obtained overtake, from the point of view of

the true stochastic problem, those found from globally solving smaller subsamples. We

also highlight that the time taken by combining global and local methods is drastically

reduced, as compared to the best performing subsampled global solution, and show that

the alternating weights technique manages to find good approximations of global solutions,

even if the subsample is not solved to global optimality.
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CHAPTER 2

Local Solutions and Stationarity of Linear Programs with

Complementarity Constraints

2.1. A Study of the Difference-of-Convex Approach for Solving Linear

Programs with Complementarity Constraints

2.1.1. Introduction

This chapter extends the work of two references (Le Thi and Dinh, 2011; Muu et al., 2011)

in which problems with complementarity constraints are solved via their reformulations as

difference-of-convex (DC) programs; these reformulated DC programs are solved by the

difference-of-convex algorithm (DCA) pioneered by Le Thi Hoai An and Pham Dinh Tao

(Le Thi et al., 2014; Dinh and Le Thi, 2014; Le Thi and Dinh, 2013; Tao et al., 2005; Tao

and An, 1997). In (Le Thi and Dinh, 2011), based on several DC decompositions, the

DCA was applied to the standard linear complementarity problem (Cottle et al., 1992); in

Muu et al. (2011), the DC approach was embedded in a branch-and-bound scheme for

solving mathematical programs with affine variational inequality constraints. Our work

is in the spirit of (Le Thi and Dinh, 2011); specifically, we introduce several penalized

formulations of the complementarity constraint and employ various DC decompositions

of the resulting penalty functions, based on which the DCA is applied to the resulting

penalized DC programs and enhancements to this basic algorithm are introduced. This
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approach is different from a nonlinear programming approach as implemented in the

solvers filter (Fletcher and Leyffer, 2002; Fletcher et al., 2002) and knitro (Byrd et al.,

2006), which are applicable to deal with the complementarity constraints (Fletcher* and

Leyffer, 2004; Leyffer et al., 2006). Recently, motivated by a sequential LPCC method

for solving MPCCs (Leyffer and Munson, 2007), a pivoting method (Fang et al., 2012) is

developed that includes an anticycling technique for verifying “B(ouligand)-stationarity”.

For a survey of algorithms for solving LPCCs, see (Júdice, 2012).

The organization of the remainder of this chapter is as follows. After formally defining

the LPCC and introducing three main stationarity concepts for this problem in the next

section, we briefly review the DCA for computing a critical point of a DC program in

Section 2.1.3. Three penalty formulations of complementarity constraint are then discussed

in detail in Section 2.1.4 that is divided into subsections, one for each penalty formulation.

Section 2.2 describes enhancements to the DCA applied to the penalized formulations

of the LPCC. Extensive computation results are reported in Section 2.3 to support the

practical performance of the enhanced DCA. Overall, this chapter has allowed us to gain

a deeper understanding of the DC approach to the local solution of the LPCC.

2.1.2. Concepts of Stationarity

Stationarity concepts for mathematical programs with complementarity constraints have

been well studied. For the LPCC, the references (Fletcher et al., 2006, Sections 3 and

4), (Scheel and Scholtes, 2000) and (Fang et al., 2012, Section 2) are most pertinent

to the following discussion; in particular, background and details of these stationarity

concepts can be found therein. As it is well known, the diversity of these concepts is
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due to the disjunctive nature of the complementarity constraint. Different ways handling

this combinatorial constraint leads to the individual stationarity notions which are made

precise in Definition 2.1.1. For concise notation, we define the set of linear constraints in

the LPCC (1.1) without the complementarity condition:

Ω ,
{

(x, y, w) ∈ Rt × R2n
+ | Ax+By ≥ f, Mx+Ny + q = w

}
.

Let (x̄, ȳ, w̄) be a feasible point of the LPCC (1.1). We define the following partition of

the variable indices for y and w:

(2.1)
Iy(ȳ, w̄) , { i | ȳi = 0 < w̄i}, Iw(ȳ, w̄) , { i | ȳi > 0 = w̄i},

I0(ȳ, w̄) , { i | ȳi = 0 = w̄i},

and refer to the indices in I0(ȳ, w̄) as the degenerate (or bi-active) indices, for which strict

complementarity fails to hold. Corresponding to these index sets, we define the relaxed

linear program:

RxLP: minimize
(x,y,w)∈Ω

cTx+ dTy

yi = 0 ≤ wi, i ∈ Iy(ȳ, w̄)

yi ≥ 0 = wi, i ∈ Iw(ȳ, w̄)

and yi, wi ≥ 0, i ∈ I0(ȳ, w̄)
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and the restricted linear program:

RsLP: minimize
(x,y,w)∈Ω

cTx+ dTy

yi = 0 ≤ wi, i ∈ Iy(ȳ, w̄)

yi ≥ 0 = wi, i ∈ Iw(ȳ, w̄)

and yi, wi = 0, i ∈ I0(ȳ, w̄)

Moreover, for every subset J ⊆ I0(ȳ, w̄), we also define the piecewise linear program:

LP(J ): minimize
(x,y,w)∈Ω

cTx+ dTy

yi = 0 ≤ wi, i ∈ Iy(ȳ, w̄)

yi ≥ 0 = wi, i ∈ Iw(ȳ, w̄)

yi = 0 ≤ wi, i ∈ J

and yi ≥ 0 = wi, i ∈ I0(ȳ, w̄) \ J ,

which is a piece of the LPCC at the given point (x̄, ȳ, w̄). Based on the LPs: (RxLP),

(RsLP), and LP(J ), we have the following definition.

Definition 2.1.1. A feasible triple (x̄, ȳ, w̄) of the LPCC (1.1) is said to be

• strongly stationary if it is a solution of the relaxed LP (RxLP);

• weakly stationary if it is a solution of the restricted LP (RsLP);

• B(ouligand)-stationary if it is a solution of LP(J ) for all J ⊆ I0(ȳ, w̄). �

These stationary concepts can be described in terms of multipliers of the constraints;

in particular, using the notation ◦ for the Hadamard product of two vectors, we see that a
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triple (x̄, ȳ, w̄) ∈ Ω is weakly stationary if and only if it is feasible to (1.1) and there exist

multipliers λ ∈ Rm and µy and µw ∈ Rn, so that

(2.2)

ATλ+MTµw = c

BTλ+NTµw + µy = d

0 ≤ λ ⊥ Ax̄+Bȳ − f ≥ 0

ȳ ◦ µy = 0 and w̄ ◦ µw = 0.

Notice that there is no sign restriction on µyi and µwi for i ∈ I0(ȳ, w̄)); if these bi-active

multipliers are restricted to be nonnegative, then the resulting conditions are equivalent

to the strong stationarity of the given triple (x̄, ȳ, w̄). In contrast, B-stationarity cannot

be described in terms of a single tuple of multipliers due to the multiple LPs that depend

on the index subsets J of I0(ȳ, w̄). Proposition 2.1.2 elucidates the connections among

the above stationarity conditions and the local minimizing property of the triple. An

example in (Scheel and Scholtes, 2000) shows that a B-stationary point is not necessarily

strongly stationary. Related results will be given in the next section when we discuss

various penalty formulations of the complementarity constraint.

Proposition 2.1.2. Let (x̄, ȳ, w̄) be a given feasible solution of (1.1). The following

implications hold:

strong stationarity ⇒ local minimizing

m

B-stationarity ⇒ weak stationarity.
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Proof. It is clear that strong stationarity implies B-stationarity which implies weak

stationarity. It remains to show that B-stationarity is equivalent to local minimizing. This

is not difficult to see because locally near (x̄, ȳ, w̄), the feasible region of the LPCC is the

union of the feasible sets of the pieces of the LP(J ) for all J ⊆ I0(ȳ, w̄). (This fact was

noted in the early work of the MPCC as described in (Luo et al., 1996).) �

With the equivalence of B-stationarity and the locally minimizing property (for the

LPCC), we see that this is the sharpest among the other stationarity concepts. One way

to compute a B-stationary solution is to apply a global resolution scheme such as the

logical Benders approach described in (Hu et al., 2008) or other global methods (Muu

et al., 2011; Yu, 2011) that invariably involve some kind of enumeration. Alternatively, it

is possible to formulate the LPCC as a difference-of-convex constrained program and apply

the (deterministic) algorithm described in (Pang et al., 2016) that is designed to compute

a B-stationary solution of the latter program. Such an algorithm also involves some level

of enumeration which can be alleviated using a probabilistic choice of subprograms to be

solved whose almost sure convergence to a B-stationary solution can be established. This

paper does not address either of these two approaches; instead we focus on a penalized

DC approach introduced in the next section. As we will see, the notions of strongly and

weakly stationary solutions have a relevant role to play in the various DC formulations of

the LPCC; see Propositions 2.1.6, 2.1.7 and 2.1.9.
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2.1.3. The Difference of Convex Functions Approach

The proposed method replaces the complementarity constraint 0 ≤ y ⊥ w ≥ 0 by a

penalization term that is added to the objective function:

(2.3) minimize
(x,y,w)∈Ω

cTx+ dTy + ρ φ(y, w).

Here, ρ > 0 is a penalty parameter, and the penalty function φ : Rn
+ × Rn

+ −→ R+ is

zero if and only if y ⊥ w. Starting from (Luo et al., 1996), penalty formulations have

been studied extensively in the literature of the MPCCs. Our focus here is based on the

assumption that φ(y, w) is a difference of two convex functions, i.e.

(2.4) φ(y, w) = φ+(y, w)− φ−(y, w),

where φ+ and φ− are convex. Writing the objective function in (2.3) as f+(x, y, w) −

f−(x, y, w) with f+(x, y, w) = cTx+ dTy + ρφ+(y, w) and f−(x, y, w) = ρφ−(y, w), we see

that (2.3) is a DC program which has the following general form:

(2.5) minimize
z∈C

f(z) , f1(z)− f2(z),

where f1, f2 : Rm −→ R are convex and C ⊆ Rm is a closed convex set. The basic idea of

the DCA (Le Thi and Dinh, 2013; Tao and An, 1997; Tao et al., 2005) for solving (2.5) is

as follows: At an iterate zk, the algorithm overestimates the concave part of the objective

function by a linear function, using a subgradient gk ∈ ∂f2(z
k) of f2 at zk. An optimal
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solution of the resulting convex auxiliary problem

(2.6) min
z∈C

f1(z)− (gk)T (z − zk)

provides the new iterate. Needless to say, the choice of the subgradient has an important

effect on the practical efficiency of the algorithm; we will discuss more about such choices

in specific contexts of the function f2. The algorithm is formally stated in Algorithm 1.

Algorithm 1 Basic difference-of-convex functions algorithm

1: Choose termination tolerance εtol > 0.

2: Let z1 ∈ C and k ← 0.

3: repeat

4: Set k ← k + 1.

5: Compute subgradient gk ∈ ∂f2(zk) of f2 at zk.

6: Compute the new iterate zk+1 as solution of (2.6).

7: until f(zk)− f(zk+1) ≤ εtol

8: Return zk+1.

Properties of the DCA have been well known in the DC literature, see e.g. (Le Thi

et al., 2014; Le Thi and Dinh, 2013). In particular, it has been shown that when

z∗ = zk is returned by the algorithm for some finite k or if z∗ is a limit point of an

infinite sequence {zk} (with εtol = 0), then z∗ is a critical point for (2.5) in the sense

that ∂f2(z
∗) ∩ (∂f1(z∗) +N (z∗;C)) 6= ∅, where N (z∗;C) is the normal cone of C at z∗.

Moreover, if C is polyhedral, as in the case of (2.3), and if either f1 or f2 is polyhedral

convex (Rockafellar, 1997), then the algorithm will terminate in a finite number of steps.

Subsequently, we show in Proposition 2.1.5 that criticality in a penalized piecewise linear

(thus non-differentiable) DC formulation of the LPCC is equivalent to weak stationarity of
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the LPCC. It has been noted in (Pang et al., 2016) that the condition of criticality is in

general weaker than that of d(irectional)-stationarity for a convex constrained DC program.

Specifically, z∗ ∈ C is d-stationary for (2.5) if f ′(z∗, z − z∗) ≥ 0 for all z ∈ C, where

the prime ′ notation denotes the directional derivative at z∗ in the direction z − z∗; the

stationarity condition is equivalent to the inclusion ∂f2(z∗) ⊆ (∂f1(z∗) +N (z∗;C)). It is

an elementary fact that d-stationarity is a necessary condition of the locally minimizing

property for a convex constrained optimization problem with a directionally differentiable

objective function.

2.1.4. DC Penalty Functions

We present three different choices for the penalty function φ in the following subsections.

They correspond to the DC objective functions used in (Le Thi and Dinh, 2011) for the

solution of linear complementarity problems and are here extended to the LPCC. This

reference presents also a fourth DC function (the “simple constrained quadratic program”);

since the numerical results therein show rather poor performance with this formulation, we

are not exploring it in this paper. Besides providing the foundation for the penalty-based

algorithmic approach for the solution of the LPCC, the discussion in the subsections

herein relate the stationarity conditions of the penalty formulation to the various LPCC

stationarity conditions introduced in Definition 2.1.1. While connections like these have

been discussed to some extent in the MPCC literature (see e.g. Fang et al. (2012); Fletcher

et al. (2006)), there are two emphases in our presentation that are not fully transparent in

this literature. First, we address the stationarity conditions of the penalty formulations for

fixed values of the penalty parameter ρ; second, being nonconvex optimization problems,
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practically computable solutions to the penalty formulations are typically of the stationary

kind; it is therefore important to understand how such computed solutions translate into

the LPCC stationarity solutions.

2.1.4.1. A piecewise linear penalty. The first penalty function that we consider is

(2.7) φPL(y, w) ,
n∑
i=1

min ( yi, wi )

which is clearly a concave, thus DC, function. This corresponds to the “concave separable

minimization” formulation in (Le Thi and Dinh, 2011). The authors of this reference

identified this as the most effective formulation among the ones they used for solving the

standard LCP. Incidentally, this penalty function was used in a successive linearization

algorithm (Mangasarian, 1997) that reformulates the LCP as a concave minimization

problem. With (2.7) as the penalty function, the problem (2.4) becomes

(2.8) minimize
z,(x,y,w)∈Ω

θPL(z) , cTx+ dTy + ρ
n∑
i=1

min( yi, wi ).

In what follows, we examine the stationarity and local minimizing properties of a triple

z̄ , (x̄, ȳ, w̄) ∈ Ω that is feasible for (2.8) but may not be feasible to (1.1). We further

show in Proposition 2.1.5 how stationarity in terms of the directional derivatives of the

objective function, i.e., d-stationarity, is related to the criticalilty property in terms of

the subdifferentials of the two convex components of the DC representation of the min

function. We begin with a result showing that z̄ ∈ Ω is d-stationary for (2.8) if and only if

is locally minimizing; we further relate this stationarity property in terms of the LP pieces
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of the LPCC (1.1), given by LPρ(Ĵ )

(2.9) minimize
x,y,w∈Ω

cTx+ dTy + ρ

 ∑
i∈Îy(ȳ,w̄)

yi +
∑

i∈Îw(ȳ,w̄)

wi +
∑
i∈Ĵ

yi +
∑
i∈Ĵ c

wi


for all subsets Ĵ of Î=(ȳ, w̄), where

(2.10)
Îy(ȳ, w̄) , { i | ȳi < w̄i } , Îw(ȳ, w̄) , { i | w̄i < ȳi } ,

Î=(ȳ, w̄) , { i | ȳi = w̄i } .

and the Ĵ c is taken over Î=(ȳ, w̄). For easiness of notation, whenever there is no ambiguity,

we will drop the term (ȳ, w̄) in Îy, Îw and Î= .

Proposition 2.1.3. Let ρ > 0 and a triple z̄ρ , (x̄ρ, ȳρ, w̄ρ) ∈ Ω be given. The

following three statements are equivalent.

(a) z̄ρ is a local minimizer of (2.8);

(b) z̄ρ is d-stationary for (2.8);

(c) z̄ρ is a minimizer of the LPρ(Ĵ ) for every subset Ĵ of Î=.

Proof. (a) ⇒ (b). This is trivially true in general for a directionally differentiable

objective.



31

(b) ⇒ (c). Suppose that z̄ρ is d-stationary for (2.8). Let z = (x, y, w) ∈ Ω be arbitrary.

We then have

0 ≤ θ′(z̄ρ; z − z̄ρ)

= cT (x− x̄ρ ) + dT ( y − ȳρ )+

ρ

∑
i∈Îy

( yi − ȳρi ) +
∑
i∈Îw

( wi − w̄ρi ) +
∑
i∈Î=

min( yi − ȳρi , wi − w̄
ρ
i )


≤ cT (x− x̄ρ ) + dT ( y − ȳρ )+

ρ

∑
i∈Îy

( yi − ȳρi ) +
∑
i∈Îw

( wi − w̄ρi ) +
∑
i∈Ĵ

[ yi − ȳρi ] +
∑
i∈Ĵ c

[wi − w̄ρi ]


for every Ĵ ⊆ Î=. Thus (c) holds.

(c) ⇒ (a). Suppose that z̄ρ is a local minimizer of the LPρ(Ĵ ) for every subset Ĵ of

Î=. Let Ny , {(x, y, w) | yi < wi, i ∈ Îy} and Nw , {(x, y, w) | yi > wi, i ∈ Îw}. Take

N , Ny
⋂
Nw. Let (x, y, w) ∈ N ∩ Ω be arbitrary. By construction of Ny and Nw we

have

min(yi, wi) =


yi if i ∈ Îy

wi if i ∈ Îw.

Let Ĵ ,
{
i ∈ Î= | yi ≤ wi

}
, we then have

min(yi, wi) =


yi if i ∈ Ĵ

wi if i ∈ Ĵ c.
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Hence,

cT x̄ρ + dT ȳρ + ρ
n∑
i=1

min( ȳρi , w̄
ρ
i )

= cT x̄ρ + dT ȳρ + ρ

∑
i∈Îy

ȳρi +
∑
i∈Îw

w̄ρi +
∑
i∈Ĵ

ȳρi +
∑
i∈Ĵ c

w̄ρi



≤ cTx+ dTy + ρ

∑
i∈Îy

yi +
∑
i∈Îw

wi +
∑
i∈Ĵ

yi +
∑
i∈Ĵ c

wi


= cTx+ dTy + ρ

n∑
i=1

min( yi, wi ),

where the inequality follows from the fact that z̄ρ is a local minimizer of LPρ(Ĵ ). �

In the above proposition, the triple (x̄ρ, ȳρ, w̄ρ) is not necessarily feasible to the LPCC

(1.1). If it is, then it is a local minimizer of the LPCC; moreover, (x̄ρ, ȳρ, w̄ρ) remains

locally minimizing for (2.8) for all ρ sufficiently large. The following result clarifies these

assertions.

Proposition 2.1.4. Let z̄ , (x̄, ȳ, w̄) ∈ Ω be given. The following statements are

equivalent.

(a): z̄ satisfies min(ȳ, w̄) = 0 and is a local minimizer of (2.8) for some ρ > 0.

(b): z̄ is a local minimizer of the LPCC (1.1).

(c): z̄ satisfies min(ȳ, w̄) = 0 and there exists ρ̄ > 0 such that z̄ is a local minimizer of

(2.8) for all ρ ≥ ρ̄.
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Proof. (a) ⇒ (b). Let (x, y, w) be an arbitrary triple feasible to (1.1) that is sufficiently

close to (x̄, ȳ, w̄). We then have

cTx+ dTy = cTx+ dTy + ρ

n∑
i=1

min( yi, wi )

≥ cT x̄+ dT ȳ + ρ

n∑
i=1

min( ȳi, w̄i ) = cT x̄+ dT ȳ,

where the inequality holds by the local minimizing property of z̄ with respect to (2.8).

(b) ⇒ (c). By way of contradiction, suppose that z̄ is not a local minimizer of (2.8)

for a sequence of positive scalars {ρk} tending to infinity. Proposition 2.1.3 then implies

that for each k there exists Ĵk ⊆ Î= so that z̄ is not a minimizer of the LPρk(Ĵk). Note

that Î= = I0(ȳ, w̄) since z̄ is feasible to the LPCC. Because there are only finitely many

subsets of I0(ȳ, w̄), we may assume, without loss of generality, that Ĵk = J for all k for

some J ⊆ I0(ȳ, w̄). Since z̄ is a local minimizer of the LPCC, Proposition 2.1.2 implies

that z̄ is a B-stationary point, and therefore a minimizer of the LP(J ). Note that LPρk(J )

is a standard penalty formulation of LP(J ). Therefore z̄ is also a minimizer to LPρk(J )

for sufficiently large ρk, leading to a contradiction.

(c) ⇒ (a). This is obvious. �

2.1.4.2. Criticality and weak stationarity. Among many DC decompositions (2.5)

of the piecewise linear DC objective θ PL, we employ the one that is given by fPL
1 (z) ,

cTx + dTy and fPL
2 (z) ,

n∑
i=1

max(−yi,−wi). With this decomposition, we have the

following result which re-affirms that criticality defined for this DC formulation is weaker

than d-stationarity for the LPCC. Recall that criticality in this context means: ∂fPL
2 (z∗) ∩(

∂fPL
1 (z∗) +N (z∗; Ω)

)
6= ∅.
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Proposition 2.1.5. Let ρ > 0 and a triple z̄ρ , (x̄ρ, ȳρ, w̄ρ) ∈ Ω be given. The

following three statements are equivalent with respect to the DC decomposition (fPL
1 , fPL

2 )

of θPL:

(a) z̄ρ is a critical point of the DC program (2.8);

(b) for every (x, y, w) ∈ Ω,

cT (x− x̄ρ ) + dT ( y − ȳρ )+

ρ

∑
i∈Îy

( yi − ȳρi ) +
∑
i∈Îw

( wi − w̄ρi ) +
∑
i∈Î=

max( yi − ȳρi , wi − w̄
ρ
i )

 ≥ 0;

(c) z̄ρ is an optimal solution of the following convex piecewise linear program:

minimize
(x,y,w)∈Ω

cTx+ dTy + ρ

∑
i∈Îy

yi +
∑
i∈Îw

wi +
∑
i∈Î=

max(yi, wi)

 .
Moreover, if z̄ρ is critical to (2.8) and feasible to the LPCC (1.1), then z̄ρ is a weakly

stationary solution of (1.1).

Proof. By definition, z̄ρ is a critical point of the DC program (2.8) if and only if there exists

(0, ã, b̃) in ∂fPL
2 (z̄ρ) such that (0, ã, b̃) ∈ ∂fPL

1 (z̄ρ) +N (z̄ρ; Ω). With (a, b) , ρ−1 (ã, b̃), this

implies that z̄ρ is an optimal solution of the linear program:

minimize
(x,y,w)∈Ω

cTx+ dTy − ρ
[
aTy + bTw

]
.

By the definition of the separable function fPL
2 , it is then not difficult to see that z̄ρ is

a critical point of (2.8) if and only if there exist ξi ∈ [0, 1] for i ∈ Î= such that z̄ρ is an
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optimal solution of the linear program:

minimize
(x,y,w)∈Ω

cTx+ dTy + ρ

∑
i∈Îy

yi +
∑
i∈Îw

wi +
∑
i∈Î=

[ ξi yi + ( 1− ξi )wi ]

 .

Based on this equivalence, we can now complete the proof of the proposition. Clearly

statements (b) and (c) are equivalent. Suppose that (a) holds. Let ξi ∈ [0, 1] for i ∈ Î= be

as given above. We then have for any (x, y, w) ∈ Ω

cTx+ dTy + ρ

∑
i∈Îy

yi +
∑
i∈Îw

wi +
∑
i∈Î=

max(yi, wi)



≥ cTx+ dTy + ρ

∑
i∈Îy

yi +
∑
i∈Îw

wi +
∑
i∈Î=

[ ξi yi + ( 1− ξi )wi ]


≥ cT x̄ρ + dT ȳρ + ρ

∑
i∈Îy

ȳρi +
∑
i∈Îw

w̄ρi +
∑
i∈Î=

[ ξi ȳ
ρ
i + ( 1− ξi ) w̄ρi ]


= cT x̄ρ + dT ȳρ + ρ

∑
i∈Îy

ȳρi +
∑
i∈Îw

w̄ρi +
∑
i∈Î=

max ( ȳρi , w̄
ρ
i )

 .
Thus (c) holds. Conversely, suppose that (c) holds. If θ̄(x, y, w) denotes the objective

function in the LP in part (c), we then have 0 ∈ ∂θ̄(z̄ρ) +N (z̄ρ; Ω). Since ∂max(s, t) =

{(λ, 1− λ) | λ ∈ [0, 1]} at a pair (s, t) with s = t, statement (a) follows readily from the

subdifferential characterization of optimality z̄ to the LP in part (c). Therefore statements

(a), (b), and (c) are equivalent.

To complete the proof of the proposition, suppose that z̄ρ is critical to (2.8) and feasible

to the LPCC (1.1). Let (x, y, w) be a feasible triple to the restricted LP (RsLP) at z̄ρ. We
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then have from (c) that

cTx+ dTy = cTx+ dTy + ρ

∑
i∈Îy

yi +
∑
i∈Îw

wi +
∑
i∈Î=

max(yi, wi)



≥ cT x̄ρ + dT ȳρ + ρ

∑
i∈Îy

ȳρi +
∑
i∈Îw

w̄ρi +
∑
i∈Î=

max(ȳρi , w̄
ρ
i )


= cT x̄ρ + dT ȳρ,

establishing that z̄ρ is an optimal solution of RsLP. �

2.1.4.3. The DCA applied to (2.8). In the application of the DCA to (2.8), the

subproblem (2.6) becomes the following LP, which we will denote as LP(yk, wk, ξk):

(2.11) min
(x,y,w)∈Ω

cTx+ dTy + ρ

∑
i∈Ĵ ky

yi +
∑
i∈Ĵ kw

wi +
∑
i∈Ĵ k=

(
ξki yi + (1− ξki )wi

) ,
where

(2.12) Ĵ k
y , Îy(yk, wk), Ĵ k

w , Îw(yk, wk), Ĵ k
= , Î=(yk, wk),

and ξi ∈ [0, 1] indicates which particular subgradient of each max-function in fPL
2 is chosen

at a non-differentiable pair (yi, wi). We note that the current iterate (xk, yk, wk) enters

only in the partition of the variable indices (2.12), and that the absolute values of the

variables do not matter. From this point of view, we may reinterpret the DCA as an

active-set method, in which the algorithm solves LPs corresponding to different guesses of

the optimal active set, or piece, of the LPCC. If we assume that ξi is chosen only from

a finite set Ξ, then this observation shows that the DC algorithm will terminate after a
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finite number of iterations, because there exist only a finite number of possible constraint

partitions Ĵ k
y , Ĵ k

w , Ĵ k
=, and the objective function is strictly monotonically decreasing. In

our implementation, we restrict the choice of ξi’s to be in the finite set Ξ =
{

0, 1
2
, 1
}

.

The following proposition shows that the final iterates exhibit stationarity properties

for the LPCC.

Proposition 2.1.6. Assume that the LPCC is bounded below and that ξki in (2.11)

is chosen from a finite set Ξ ⊆ [0, 1]. Then the DC algorithm, with termination tolerance

εtol = 0, will terminate after a finite number of iterations. If zk at termination is feasible

to the LPCC (1.1), then zk is a weakly stationary point.

Proof. As a consequence of the DCA, we already argued that the algorithm terminates

after a finite number of iterations. The second assertion of the proposition follows from

Proposition 2.1.5. �

Transitioning to the next two subsections where the penalty function φ is differentiable,

we point out that the concept of a critical point of (2.5) coincides with that of a conventional

stationary solution when the objective function is differentiable. In this case, we will use

the latter terminology which involves elementary derivatives.

2.1.5. A bilinear penalty function in (y, w)

We next consider the bilinear penalty function:

(2.13) φBL(y, w) , yTw



38

that leads to the following penalized bilinear programming formulation of the LPCC (1.1):

for ρ > 0,

(2.14) minimize
z,(x,y,w)∈Ω

θBL(z) , cTx+ dTy + ρ

n∑
i=1

yiwi.

Since the penalty function φBL(y, w) is differentiable, the stationary solutions of the

(nonconvex) program (2.14) follow the standard definition; namely, z̄ ∈ Ω is stationary

if and only if (z − z̄)T∇θBL(z̄) ≥ 0 for all z ∈ Ω. The following result relates such a

stationary solution, if feasible to the LPCC (1.1), to a strongly stationary solution of the

LPCC.

Proposition 2.1.7. Let z̄ , (x̄, ȳ, w̄) ∈ Ω be given. The following two statements

hold:

(a): If z̄ is stationary for (2.14) for some ρ > 0 and is feasible to the LPCC (1.1), then

(x̄, ȳ, w̄) is a strongly stationary point for (1.1).

(b): Conversely, if z̄ is a strongly stationary point for (1.1), then z̄ is a stationary point

for (2.14) for all ρ > 0 sufficiently large.
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Proof. Let z = (x, y, w) ∈ Ω be a feasible point for the relaxed LP (RxLP). The

stationarity of z̄ for (2.14) then yields

0 ≤ (z − z̄)T∇θBL(z̄)

= cT (x− x̄ ) + dT ( y − ȳ ) + ρ
n∑
i=1

[ w̄i ( yi − ȳi ) + ȳi (wi − w̄i ) ]

= cT (x− x̄ ) + dT ( y − ȳ ) + ρ
∑
i∈Îy

w̄i yi + ρ
∑
i∈Îw

ȳiwi,

= cT (x− x̄ ) + dT ( y − ȳ ).

The second equality is justified since ȳ and w̄ are complementary. The last equality follows

from the fact that Îy = Iy(ȳ, w̄) and Îw = Iw(ȳ, w̄), given their definitions in (2.1) and

(2.10), and because (x, y, w) is feasible to the LP (RxLP). Hence z̄ is a minimizer of (RxLP)

and (a) holds.

To prove (b), suppose (x̄, ȳ, w̄) is a strongly stationary point for (1.1). Let (λ̄, µy, µw)

satisfy (2.2) along with the nonnegativity of µwi and µyi for all i ∈ I0(ȳ, w̄). It remains to

show that a multiplier µ̄ exists such that

(2.15)

0 = c− AT λ̄−MT µ̄

0 ≤ ȳ ⊥ d+ ρ w̄ −BT λ̄−NT µ̄ ≥ 0

0 ≤ w̄ ⊥ ρ ȳ + µ̄ ≥ 0

0 ≤ λ̄ ⊥ Ax̄+Bȳ − f ≥ 0.
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We claim that µ̄ , µw does the job. Since (2.2) gives d = BT λ̄+NTµw + µy, it suffices to

show that ȳ ⊥ µy + ρw̄ ≥ 0 and w̄ ⊥ µw + ρȳ ≥ 0 for all ρ > 0 sufficiently large. Defining

ρ̄ , max

{
0,

{
−µ

y
i

w̄i
| w̄i > 0

}
,

{
−µ

w
i

ȳi
| ȳi > 0

}}

we see that both µy +ρw̄ and µw +ρȳ are nonnegative for ρ > ρ̄. Lastly, the remaining two

orthogonality conditions ȳ ⊥ µy + ρw̄ and w̄ ⊥ µw + ρȳ follow from the strong stationarity

conditions of (x̄, ȳ, w̄). �

While Proposition 2.1.4 has shown that the local minimizers of the penalized piecewise

linear program (2.8) that are feasible to (1.1) are the same as the local minimizers of the

LPCC (1.1), this equivalence of such minimizers between (2.14) and (1.1) is not addressed

by Proposition 2.1.7. Borrowing an example from (Fang et al., 2012; Scheel and Scholtes,

2000) we show that a local (or even global) minimizer of (1.1) may not be obtainable from

solutions of the bilinear penalty formulation for any fixed ρ > 0; thus, there are solutions

to the original LPCC that are “elusive” from the penalized bilinear program.

Example 2.1.8. Consider

minimize
(x,y,w)∈R3

−x+ y + w

subject to −x+ 4y ≥ 0

−x+ 4w ≥ 0

and 0 ≤ y ⊥ w ≥ 0.
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It is not difficult to see that (x, y, w) = (0, 0, 0) is a global and therefore local minimizer

for this LPCC. Consider the penalized problem

minimize
(x,y,w)∈R3

−x+ y + w + ρ yw

subject to −x+ 4y ≥ 0

−x+ 4w ≥ 0

and y, w ≥ 0

for ρ > 0. With y = w = x/4, the objective function is equal to −x/2 + ρx2/16 which

is negative when 0 < x < 8/ρ. Thus (x, y, w) = (0, 0, 0) is not locally minimizing the

penalized bilinear program for any ρ > 0. �

In (Le Thi and Dinh, 2011), the bilinear function φBL is written as a DC function by

adding and subtracting the norm of the vectors y and w:

(2.16) φBL(y, w) , yTw +
γ

2

(
‖y‖2

2 + ‖w‖2
2

)︸ ︷︷ ︸
, φBL1

+ (y, w)

− γ
2

(
‖y‖2

2 + ‖w‖2
2

)︸ ︷︷ ︸
, φBL1

− (y, w)

,

where φBL1
+ is convex if γ > 1. This results in the DC program (2.5) having fBL1

1 (z) ,

cTx + dTy + ρφBL1
+ (y, w) and fBL1

2 (z) , ρφBL1
− (y, w). The subproblem (2.6) in the DCA

applied to the resulting penalized DC program is a convex quadratic program:

(2.17) minimize
(x,y,w)∈Ω

cTx+ dTy + ρ
[
yTw +

γ

2

(
‖ y − yk ‖2

2 + ‖w − wk ‖2
2

) ]
.
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In addition, we propose an alternative DC representation of the bilinear function φBL:

(2.18) φBL(y, w) =
1

4
‖y + w‖2

2︸ ︷︷ ︸
, φBL2

+ (y, w)

− 1

4
‖y − w‖2

2︸ ︷︷ ︸
, φBL2

− (y, w)

.

This DC decomposition has been used in (Mitchell et al., 2012) albeit not as a DC objective.

The advantage of the DC pair (φBL2
+ , φBL2

− ) is that it does not depend on a parameter γ

that might need to be adjusted for good performance. The subproblem (2.6) in the DCA

applied to the resulting penalized DC program is the following convex quadratic program:

(2.19) minimize
(x,y,w)∈Ω

cTx+ dTy +
ρ

4
‖y + w‖2

2 −
ρ

2

(
yk − wk

)T
(y − w) ,

which is different from (2.17). From Proposition 2.1.7, we may deduce that the DCA

applied to the penalized bilinear formulation (2.8) for a given ρ > 0 will compute a

strongly stationary solution of the LPCC (1.1) if the computed solution satisfies the

complementarity condition.

2.1.6. Quadratic penalty function in (x, y)

An equivalent formulation of the LPCC (1.1) is obtained by eliminating the variable w.

This leads to the following formulation:

minimize
x,y

cTx+ dTy

subject to Ax+By ≥ f

and 0 ≤ y ⊥ Mx+Ny + q ≥ 0.
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Using the penalty function

φ−w(x, y) , yT (Mx+Ny + q) = qTy + 1
2

 x

y


T  0 MT

M N +NT


︸ ︷︷ ︸

, D

 x

y

 ,

where D is a symmetric indefinite matrix, we obtain the formulation

(2.20) minimize
(x,y)∈Ωxy

cTx+ dTy + ρ φ−w(x, y)

with Ωxy , {(x, y) ∈ Rt×n | Ax + By ≥ f, Mx + Ny + q ≥ 0, y ≥ 0}. Similar to

Proposition 2.1.7, we have the relationship between stationary points.

Proposition 2.1.9. Let (x̄, ȳ) ∈ Ωxy be given. The following two statements hold:

(a): Suppose (x̄, ȳ) is a stationary point for (2.20) and let w̄ , q +Mx̄+Nȳ. If (x̄, ȳ, w̄)

is a feasible solution of the LPCC (1.1) for some ρ > 0, then (x̄, ȳ, w̄) is a strongly

stationary solution for (1.1).

(b): Conversely, if (x̄, ȳ, w̄) is a strongly stationary point for (1.1), then (x̄, ȳ) is stationary

for (2.20) for all ρ > 0 sufficiently large.
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Proof. (a) If (x̄, ȳ) ∈ Ωxy is a stationary point for (2.20), then constraint multipliers λ̄

and µ̄ exist such that

(2.21)

0 = c− AT λ̄−MT ( µ̄− ρ ȳ )

0 ≤ ȳ ⊥ d+ ρ [ q +Mx̄+Nȳ ]−BT λ̄−NT ( µ̄− ρ ȳ ) ≥ 0

0 ≤ λ̄ ⊥ Ax̄+Bȳ − f ≥ 0

0 ≤ µ̄ ⊥ Mx̄+Nȳ + q ≥ 0.

By letting µw , µ̄− ρȳ and µy , d−BT λ̄−NTµw, we now show that (2.2) holds. The

first two conditions in (2.21) can be written as

c = AT λ̄+MTµw

d = BT λ̄+NTµw + µy

0 ≤ ȳ ⊥ ρ w̄ + µy ≥ 0.

Because ȳ and w̄ are feasible for the LPCC (1.1), we have ȳ ◦ w̄ = 0, and hence ȳ ◦ µy =

ȳ ◦ (ρ w̄ + µy) = 0. Furthermore, since w̄i = 0 for i ∈ I0(ȳ, w̄), we also have µyi ≥ 0 for

i ∈ I0(ȳ, w̄) from the last line above. Similarly, because ȳ ◦ w̄ = 0 from (1.1), conditions

(2.21) imply µw ◦ w̄ = µ̄ ◦ (Mx̄+Nȳ + q ) = 0. Finally, since ȳi = 0 for i ∈ I0(ȳ, w̄), we

also have µwi = µ̄i ≥ 0 for i ∈ I0(ȳ, w̄) by the definition of µw.

(b) Conversely, suppose (x̄, ȳ) is strongly stationary for (1.1). Let (λ̄, µy, µw) satisfy

(2.2) along with the nonnegativity of µwi and µyi for all i ∈ I0(ȳ, w̄). We claim that by

defining µ̄ , µw + ρȳ, (2.21) holds for all ρ > 0 sufficiently large. In turn, it suffices to

show the second and fourth complementarity conditions in (2.21) for all ρ > 0 sufficiently
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large. Since d = BT λ̄+NTµw + µy, we have

d+ ρ (q +Mx̄+Nȳ)−BT λ̄−NT (µ̄− ρ ȳ) = ρ (q +Mx̄+Nȳ) + µy = ρ w̄ + µy;

hence the second complementarity condition in (2.21) holds for all ρ > 0 because ȳ and

w̄ are feasible for the LPCC (1.1) and orthogonality of y and µy comes from stationarity.

For the fourth complementarity condition to hold, choose ρ > 0 sufficiently large so that

µwi + ρȳi ≥ 0 if ȳi > 0. For the remaining indices with ȳi = 0 we have two cases: (i) If

w̄i > 0, then µ̄i = µwi = 0 by complementarity; (ii) if w̄i = 0, then i ∈= I0(ȳ, w̄) and

µ̄i = µwi ≥ 0, because (x̄, ȳ) is strongly stationary. �

The penalty function φ−w can be rewritten as DC function

(2.22) φ−w(x, y) = φ−w+ (x, y)− φ−w− (x, y),

where

φ−w+ (x, y) =

 x

y


T

D

 x

y

+ 2qTy + γ
(
‖x‖2

2 + ‖y‖2
2

)
and

φ−w− (x, y) =
γ

2

(
‖x‖2

2 + ‖y‖2
2

)
.

The function φ−w+ is convex if γ is larger than the absolute value of smallest eigenvalue of

the symmetric indefinite matrix D. The resulting subproblems in DCA are of the form:

(2.23) minimize
(x,y)∈Ωxy

{
cTx+ dTy +

ρ

2
φ−w+ (x, y)− ρ γ

[
( yk )Ty + (xk )Tx

] }
.
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In summary, while the theoretical properties of the quadratic penalty φ−w without the

w-variable are the same as those of the bilinear penalty φBL, the respective subproblems

in the DCA differ, and a different sequence of iterates is generated.

2.2. Enhancements of the DCA

The straightforward application of the DCA to the penalty formulations exhibits some

inefficiencies. In the case of the piecewise linear function (Section 2.1.4.1), the method

might terminate at a point that is weakly stationary but not strongly stationary and has

an inferior objective value. When a quadratic penalty function (Sections 2.1.5 and 2.1.6) is

used, we observed that the method could suffer from the slow (linear) convergence inherent

to first-order methods, because the concave part of the DC function is approximated by

a linear function. In what follows, we propose modifications to address these specific

shortcomings.

2.2.1. Improved DCA for the piecewise linear penalty

In subproblem (2.11) with the piecewise linear penalty function, a parameter ξki ∈ [0, 1]

has to be chosen for i ∈ J k
=. To avoid any bias for either one of the two complementary

variables, we choose ξki = 1
2

in the implementation unless otherwise mentioned. However,

we noticed that in some instances improving directions existed at the points at which

the DCA terminated and that were missed by the method. In the following example, the

LP subproblem (2.11) produces a zero step at an iterate that is not a strongly stationary

point for the LPCC.
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Example 2.2.1. Consider the problem

minimize
x,y,w

−x+ 2y

subject to −x ≥ −10

−y ≥ −10

x− w = 0

and 0 ≤ y ⊥ w ≥ 0.

The unique strongly stationary point of this problem lies in z∗ = (x∗, y∗, w∗) = (10, 0, 10).

Applying the DCA for the piecewise linear penalty formulation, with starting point

(x, y, w) = (5, 10, 5) and penalization parameter ρ > 2, the first linear subproblem solved

has a negative objective gradient equal to d0. Therefore, the DCA will reach the point

(0, 0, 0) at the first iteration. If, at the second subproblem, the choice is ξ2 = (1
2
, 1

2
), the

negative gradient becomes d1 and, hence, the solution will not move and the method will

stop at this weakly stationary point. Figure 2.1 illustrates how these two iterates are

produced.

However, if a different element of the subdifferential ∂{−min(yi, wi)}, corresponding

to ξ2 = (0, 1), is chosen, the DC subproblem produces z∗ as the next iterate, and the

algorithm terminates at a strongly stationary point. �

The following lemma shows that, by choosing ξi ∈ {0, 1} appropriately, the DCA will

escape weakly stationary points that are not locally optimal.

Lemma 2.2.2. Suppose the DCA applied to (2.8) terminates in a weakly stationary

point z∗ = (x∗, y∗, w∗) that is not a local minimum for the LPCC. Then there exists a
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w(= x)

y

(−ρ, 0)

d0 (1,−2)

z0 = (5, 10)

z∗ = (10, 0)
w(= x)

y

−( ρ
2
, ρ
2

)
d1

(1,−2)

z1 = (0, 0) z∗ = (10, 0)

Figure 2.1. DCA for the piecewise linear penalty function converges to a
weakly stationary point.

subset J ⊆ I0(y
∗, w∗) so that the DCA continues with a non-zero step if it is resumed

with ξi = 1 for i ∈ J and ξi = 0 for i ∈ I0(y∗, w∗) \ J .

Proof. If z∗ = (x∗, y∗, w∗) is not a local minima for the LPCC then, by Proposition

(2.1.2), it is not B-stationary. That is, there exists a subset J ⊆ I0(y∗, w∗) such that z∗ is

not a solution for LP(J ). Hence, there exists a decreasing direction δ = (δx, δy, δw) ∈ Ω0

such that cT δx + dT δy < 0 and

δyi = 0 i ∈ Iy(y∗, w∗)

δwi = 0 i ∈ Iw(y∗, w∗)

δyi = 0 ≤ δwi , i ∈ J

and δyi ≥ 0 = δwi , i ∈ I0(y∗, w∗) \ J ,
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where Ω0 = { (x, y, w) ∈ Rt × R2n | Ax+By ≥ 0, Mx+Ny = w }. Let ξi = 1 for

i ∈ J and ξi = 0 for i ∈ I0(y
∗, w∗) \ J . The resulting subproblem in the DCA is

LPρ(J ), defined in (2.9). Since z∗ + αδ is feasible for LPρ(J ) for a sufficiently small

α > 0 and cTx∗ + dTy∗ + ρy∗Tw∗ = cTx∗ + dTy∗ > cT (x∗ + αδx) + dT (y∗ + αδy) =

cT (x∗ + αδx) + dT (y∗ + αδy) + (y∗ + αδy)T (w∗ + αδw), we have that z∗ is not an optimal

solution of LPρ(J ). Therefore the DCA reaches a new iterate zk+1 with better objective

function than z∗, and the method continues. �

Finding the subset J in Lemma 2.2.2 to escape a non-optimal weakly stationary

point is a combinatorial problem with worst-case exponential complexity. To generate a

candidate set J quickly, we employ a heuristic that utilizes the multipliers µ̄y,k and µ̄w,k

in the LP subproblem (2.11) for the non-negativity restrictions of y and w, respectively.

In order to recover the quantities that correspond to the multipliers µy and µw in the

stationarity conditions (2.2) for the LPCC, we need to subtract the influence of the penalty

term and compute for each index i ∈ I0(yk+1, wk+1)

µy,ki = µ̄y,ki − ρ µw,ki = µ̄w,ki if i ∈ Ĵ k
y ,

µy,ki = µ̄y,ki µw,ki = µ̄w,ki − ρ if i ∈ Ĵ k
w ,

µy,ki = µ̄y,ki − ρξki µw,ki = µ̄w,ki − ρ(1− ξki ) if i ∈ Ĵ k
=.

If zk+1 = (xk+1, yk+1, wk+1) is feasible for the LPCC (1.1) and µy,ki ≥ 0 and µw,ki ≥ 0 for all

i ∈ I0(yk+1, wk+1), then zk+1 is a strongly stationary point for the LPCC (1.1). Otherwise,

we use the adjusted multipliers to choose the subgradient to restart the DCA: For each
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i ∈ I0(yk+1, wk+1) we set

(2.24) ξk+1
i =



1 if µy,ki < µw,ki − εξ

1
2

if
∣∣∣µy,ki − µw,ki

∣∣∣ ≤ εξ

0 if µy,ki > µw,ki + εξ

and ξk+1
i = 1

2
if i ∈ Ĵ k+1

= \ I0(yk+1, wk+1). This choice of ξk+1
i is within the specification

of the DCA and so the convergence result, Proposition 2.1.6, remains valid for this version

of the method. The small tolerance εξ (chosen to be 10−8 in our experiments) accounts

for potential numerical error of the subproblem solution. If the resulting step reduces the

objective function, we resume the regular DCA. Otherwise, if the resulting step does not

reduce the objective function, in our implementation, we terminate the algorithm at the

weakly stationary point instead of trying to generate another candidate set J , based on

some other heuristic. However, for the test problems in Section 2.3, we found that the

simple heuristic above was always able to escape a non-optimal point.

2.2.2. Improved DCA for the quadratic penalty function in (y, w)

In the standard DCA with the quadratic penalty functions, the nonlinear concave part of

the quadratic penalty problem is approximated by a linear function. We observed that

this can lead to slow convergence if the approximation is applied straightforwardly to the

given quadratic function. To accelerate the method, the improved DCA described next

fixes variables to zero for which complementarity has already been achieved, and deletes

the penalty terms for those components in the subproblem objective. In the extreme case,

when one variable in all complementarities has been fixed, the subproblem becomes an LP,
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and the next iterate jumps immediately to the optimal solution in that piece. This saves

many iterations compared to the original method whose convergence may be slowed by

the penalty term. Even when not all complementarities have been fixed, the enhanced

version has to resolve fewer complementarities with a linear approximation of the quadratic

penalty function than the original version, and faster convergence can be expected.

We note that the subproblems (2.17) and (2.19) can be rewritten in a unified form

with each complementarity having its own quadratic penalty function:

min
(x,y,w)∈Ω

cTx+ dTy + ρ
n∑
i=1

ψki (yi, wi).

By construction of the DC subproblem (2.6), we have that the gradient of the original DC

function and that of its convex approximation coincide at the current iterate; i.e.

(2.25) ∇ψki (yki , w
k
i ) = ∇φi(yki , wki ) =

wki
yki


where φi(yi, wi) = yi · wi. In our proposed variation of the DCA, we maintain the set

Fky of indices i for which yki is fixed at zero in iteration k. The index set Fkw is defined

analogously for wk, and we let Fk = Fky ∪ Fkw. These sets try to predict which sides of

the complementarities are active (zero) at the solution. The modified subproblem that

delivers the next iterate is then defined as

(2.26)

minimize
(x,y,w)∈Ω

cTx+ dTy + ρ
∑
i 6∈Fk

ψki (yi, wi)

subject to yi = 0 for i ∈ Fky

and wi = 0 for i ∈ Fkw.
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Note that the more variables become fixed in Fk, the fewer free variables there are in the

subproblem, leading to a reduction in computation time. The sets Fky and Fkw are updated

throughout the course of the algorithm. An index i enters the set Fk+1
y , if i 6∈ Fky and

yk+1
i = 0; i.e., the variable yi has just become zero. The update rule for w is similar.

We must also account for the possibility that our prediction is incorrect and a variable

has to be released because it might be nonzero at the optimal solution. Recall that,

ultimately, we want to solve the penalty formulation (2.3) of the LPCC with φ(y, w) =

φBL(y, w) = yTw defined in (2.13). The first-order optimality conditions for (2.14) are

(2.27)

ATλf +MTλq = c

BTλf +NTλq + µy = d+ ρw

−λq + µw = ρ y

0 ≤ λf ⊥ Ax+By − f ≥ 0

0 ≤ y ⊥ µy ≥ 0

0 ≤ w ⊥ µw ≥ 0

(x, y, w) ∈ Ω.
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On the other hand, the first-order optimality conditions for (2.26) can be written as

(2.28)

ATλf +MTλq = c

BTλf +NTλq + µ̄y = d+
ρ

2

∑
i 6∈Fk
∇yψ

k
i (yi, wi)ei

−λq + µ̄w =
ρ

2

∑
i 6∈Fk
∇wψ

k
i (yi, wi)ei

0 ≤ λf ⊥ Ax+By − f ≥ 0

y ◦ µ̄y = 0

w ◦ µ̄w = 0

yi = 0 for i ∈ Fky

wi = 0 for i ∈ Fkw

µ̄y ≥ 0 for i /∈ Fky

µ̄w ≥ 0 for i /∈ Fkw

(x, y, w) ∈ Ω.

where ei ∈ Rn denotes the ith coordinate vector.

Suppose that the new iteratate (xk+1, yk+1, wk+1) of our variation of the DCA, computed

as the optimal solution of the subproblem (2.26), is identical to the current iterate

(xk, yk, wk). Usually, the method would terminate now. To verify that this is indeed a

minimizer for the penalty function (2.14) without the restrictions imposed by the sets Fky

and Fkw, let (xk+1, yk+1, wk+1, λf , λq, µ̄y, µ̄w) be a primal-dual solution of the subproblem
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(2.26) satisfying the optimality conditions (2.28), and define

µyi = µ̄yi if i 6∈ Fky µyi = µ̄yi + ρwk+1
i if i ∈ Fky

µwi = µ̄wi if i 6∈ Fkw µwi = µ̄wi + ρ yk+1
i if i ∈ Fkw.

Using observation (2.25), it is easy to see that then (xk+1, yk+1, wk+1, λf , λq, µy, µw) satisfies

the first-order optimality conditions (2.27) for the penalty problem (2.3), as long as

(2.29) µyi ≥ 0 if i ∈ Fky and µwi ≥ 0 if i ∈ Fkw.

In that case, our method terminates at a local minimizer of the penalty function. If

condition (2.29) does not hold, then there is a good chance that a multiplier for a fixed

variable in Fky or Fkw would have a negative sign at the solution. The variable should

therefore not be forced to be zero. We use this observation to decide when to release a

variable from the sets Fky and Fkw of fixed components. This idea is implemented in Step 7

of the overall method summarized in Algorithm 2.

2.3. Computational Results

This section explores the practical performance of the DC decompositions described

earlier for three different problem sets. The results confirm that the enhancements

proposed in Section 2.2 contribute in one of two ways for the basic DCA applied to

these decompositions: (a) for the piecewise linear penalty function, solutions with better

objective values are found, or (b) for the bilinear penalty function, termination occurs

faster, thus speeding up the algorithm. In short, the enhanced DC methods provide a

competitive option for solving LPCCs.
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Algorithm 2 Accelerated DCA for the quadratic penalty function in (y, w)

1: Choose termination tolerance εtol > 0.

2: Let (x1, y1, w1) ∈ Ω, k ← 0, F1
y = ∅, and F1

w = ∅.

3: repeat

4: Set k ← k + 1.

5: Solve subproblem (2.26).

6: Let (xk+1, yk+1, wk+1) be an optimal solution of (2.26), and let µ̄yi and µ̄wi be the

multipliers in (2.28).

7: Update the set of fixed variables:

Fk+1
y =

{
i 6∈ Fky : yk+1

i = 0
}
∪
{
i ∈ Fky : µ̄yi + ρwk+1

i ≥ 0
}

Fk+1
w =

{
i 6∈ Fkw : wk+1

i = 0
}
∪
{
i ∈ Fkw : µ̄wi + ρ yk+1

i ≥ 0
}

8: until termination criteria satisfied

9: Return (xk+1, yk+1, wk+1).

The experiments were performed on a Linux workstation with 3.10GHz Xeon processors

using 20 cores (40 cores hyperthreaded) and 256GB RAM. The DCA and its enhancements

were implemented in MATLAB (R2014a). To compare the performance of our methods with

efficient alternatives, we solved all instances also with the filter software, a sophisticated

implementation of an active-set SQP method for nonlinear programs with special features

to solve MPCCs (Fletcher* and Leyffer, 2004; Fletcher and Leyffer, 2002). filter was

called from AMPL (Fourer et al., 1990), with AMPL’s presolve disabled. We have

considered the knitro nonlinear programming solver which has the capability to handle

complementarity constraints with a penalty function (Leyffer et al., 2006); but we do not

describe its performance here since it was unable to solve many of the test problems. All

these approaches only attempt to find local optima. To assess the solution quality, we also
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consider the MILP reformulation of the LPCC,

(2.30)

minimize
x,y,w,z

cTx+ dTy

subject to Ax+By ≥ f

Mx+Ny + q = w

0 ≤ y ≤ uy ◦ z

0 ≤ w ≤ uw ◦ (1− z)

and z ∈ {0, 1}n,

that can compute the global optimum of the instances. Here, uy and uw are explicit upper

bounds for y and w. In the case where such upper bounds were not explicitly available, a

large value (1,000) was used. A time limit of 900 seconds (wall clock time) was imposed

on the MILP solver, using 32 threads. This corresponds roughly to up to 8 hours of

CPU time. If no optimal solution was found after this time, the solver returned the best

incumbent. All LPs and MILPs in our experiments were solved with cplex 12.6.2 using

default settings.

Three sets of problems were tested: (a) Linear Complementarity Problems (LCP)

instances from (Le Thi and Dinh, 2011) (Section 2.3.1), (b) linearizations of problems

from the MacMPEC library (Leyffer, 2000) (Section 2.3.2), and (c) random instances of

the inverse quadratic problem (Section 2.3.3). For easiness of notation, decompositions

(2.8), (2.16), (2.18), and (2.22) are abbreviated as PL, BL1, BL2, and B-w, respectively.

For each decomposition, two different starting points were tried. The first one, denoted

by E, sets y = w = 1, and the other, called R, uses the solution to the LP relaxation of
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the LPCC, which is defined as (2.3) with ρ = 0. Note that the choice of the initial value

of x is irrelevant, because it does not appear in f2(z) of the decomposition (2.4) and has

no effect on the subproblem (2.6). Finally, enhanced methods are marked with a star

(*). For example, BL2-E* refers to the enhanced DC approach based on decomposition

(2.18), with starting point on y = w = 1. For decomposition (2.16), the values for γ are

γ1 = 1.01 and γ2 = 2. Decomposition (2.22) uses γ = max{0,−λmin}+ 0.01, where λmin is

the smallest eigenvalue of matrix D defined in Section 2.1.6.

The implemented strategy for the penalization parameter ρ is given in Algorithm 3. It

starts with a small value (namely, 1 in our experiments) and solves the penalty problem

(2.3) with a termination tolerance of εtol = 10−8. If the solution is already considered

complementary, i.e. the infeasibility measure V⊥(y, w) , max
i
{min{yi, wi}} is below a

tolerance of ε⊥ = 10−8, increasing ρ would have no effect (see Propositions 2.1.4, 2.1.7, and

2.1.9), and therefore we stop in Step 4. Otherwise, we increase ρ by a constant factor (in

our case, 10) and solve the DC problem with the new ρ. If ρ reaches a maximum allowed

value of 109, the algorithm terminates in Step 9.

We distinguish the following outcomes of the algorithm. Counting one subproblem

solution as one iteration, we terminate with “Maximum number of iterations reached”

when the iteration limit of 100 subproblem solves is exceeded. The algorithm stops with

“Successful termination” if Algorithm 3 terminates because the complementarity tolerance

in Step 4 is satisfied. However, there are also cases in which Algorithm 3 terminates

because ρ exceeded ρ̄ in Step 9, which we label as “Maximum value of penalty parameter

reached.” The latter case deserves closer examination. It is the expected outcome when
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Algorithm 3 Overall algorithm with increasing penalty parameter

1: Choose starting penalization parameter ρ > 0, increase factor π > 1, upper bound ρ̄,

termination tolerance εtol > 0, and complementarity tolerance ε⊥ > 0.

2: repeat

3: Solve DC problem (2.3) using the DC algorithm with current ρ and tolerance εtol.

Obtain solution (x, y, w) ∈ Ω.

4: if V⊥(y, w) ≤ ε⊥ then

5: Exit loop

6: else

7: Update ρ := πρ

8: until ρ ≥ ρ̄

9: Return (x, y, w).

the problem is (locally) infeasible. However, we frequently also observed the following

situation in our experiments: The inner DC algorithm in Step 3 of Algorithm 3 terminates

because the penalized objective function is not changing by more than εtol = 10−8 between

iterations, but the feasibility test in Step 4 is not satisfied, even though V⊥(y, w) is quite

small and it appears that the iterates are close to a stationary point. The method then

repeatedly increases ρ, taking only one step per penalty parameter value, until ρ reaches

its limit. We will examine this situation in more detail in Section 2.3.2. For now, we

will count a run as converged, if the method does not run out of iterations, and if the

infeasibility measure V⊥(y, w) is at most εfeas, where εfeas = 10−5 unless otherwise specified.
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2.3.1. Linear complementarity problem instances

The LCP consists in finding a vector x ∈ Rn which satisfies

0 ≤ x ⊥ Ãx− b̃ ≥ 0,

where Ã ∈ Rn×n and b̃ ∈ Rn are given. We reformulate the LCP as an LPCC by setting

c, d,M,A,B and f to zero and letting N = Ã and q = −b̃. Notice that this is a feasibility

problem, so reaching strongly stationary points here has no special meaning. Therefore,

results for the enhanced piecewise linear penalty function are not reported. In (Le Thi

and Dinh, 2011), the authors proposed the solution of LCPs with the DC algorithm,

decomposing different penalization functions for the complementarity term similar to those

discussed here. Their methods DCA1, DCA2, and DCA4, correspond to B-w, PL, and

BL1. The reference also contains a further penalty formulation, DCA3, which was shown

therein not to perform well and so we did not include it in our approach for solving LPCCs.

In this first set of numerical experiments, we solved each of the twelve LCP instances

given in (Le Thi and Dinh, 2011). The first six problems have dimensions n ∈ {2, 3, 4}.

The remaining instances are scalable, and we chose n = 1, 000, the largest size reported in

this reference. Only the starting point E was used, since the LP relaxation is meaningless

when no objective is given.

Similar to Le Thi and Dinh (2011), most methods solve all the instances. The only

exception is BL2-E in test case 5, where the final infeasibility is violated only slightly

with 1.2 · 10−5 > εfeas. Table 2.1 displays the geometric averages of CPU times and

iterations for all methods aggregated over the six scalable problems. We used geometric
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Table 2.1. Geometric averages of computation times (in seconds) and it-
erations for the large LCP instances, including the original (“Orig”) and
enhanced (“Enhcd”) variants of the bilinear decompositions.

Average Average
time iterations

Method Orig Enhcd Orig Enhcd
PL-E 0.068 - 2.000 -
BL1-E-γ=1.01 4.906 1.099 8.497 3.533
BL1-E-γ=2 6.539 1.369 11.671 4.451
BL2-E 2.156 0.607 6.094 2.289
B-w-E 0.450 - 2.140 -
MILP 0.164 - - -
filter 0.281 - - -

averages because these are less biased towards the more time-consuming instances than

the arithmetic averages. We excluded the small instances because their solution time was

considered negligible (less than 0.15 seconds).

The piecewise linear method is clearly the fastest by an order of magnitude, because

it requires only two LP solutions per problem. The B-w version also does well, with

computation times comparable to the MILP formulation and the filter solver. Similar

observations were made in (Le Thi and Dinh, 2011). Enhancements on the bilinear

penalties reduce time and iterations by 70–78% and 58–63%, respectively. Note that

relative decrease in computation time is larger than that in iteration count. This confirms

the hypothesis in Section 2.2.2 that the fixing of the variables in the enhancement for

the bilinear penalty function not only speeds up convergence, but also leads to smaller

subproblems that can be solved more quickly. Nevertheless, the BL variants still require

one to two orders of magnitude more computation time than the PL variants for these

LCP instances.
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2.3.2. MacMPEC library

The MacMPEC library (Leyffer, 2000) contains a collection of MPCCs, from which we

constructed LPCC instances by linearizing the objective function and constraints around

the origin. The original upper and lower variable bounds were kept, and set to 1,000 where

no bounds were defined. A total of 128 instances were created. In order to select instances

that are guaranteed to be feasible, we first solved the MILP formulations and identified 96

instances in which the MILP solver found a feasible point within a maximum time limit of

900 wall clock seconds. Thirteen of these 96 instances have complementarity dimension

greater than 100.

Table 2.2 shows the number of instances that reach the different outcomes for each

method. We note that the piecewise linear decomposition never exceeds the iteration limit,

and that the enhancement for the bilinear decompositions helps to reduce the number of

iterations and allows more instances to be solved within the limit. First we consider the

quality of the returned final iterates in terms of feasibility. As mentioned at the end of

the introduction of Section 2.3, the bilinear methods terminate when the progress in the

penalty function becomes very small (below εtol = 10−8), but this does not imply that

complementarity variables that are zero at a solution are very small as well. For example,

consider a complementary pair with yi = wi = 10−4. The corresponding penalty term is

yi · wi = 10−8, but the feasibility violation is V⊥(yi, wi) = 10−4. Therefore, the choice of

the feasibility tolerance εfeas is very crucial when deciding which final iterates constitute a

successful run of a method in our statistics. In Table 2.2 we see that the number of runs

that are counted as successful increases significantly with εfeas for the bilinear methods,
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whereas it has very little effect for the piecewise linear methods. This demonstrates that

the bilinear versions are less capable of resolving complementarities to high accuracy. One

may argue that a much tighter tolerance εtol for the DCA should be chosen, but most likely

this will lead to numerical difficulties since the subproblems are solved only up to a certain

tolerance as well (cplex has a default tolerance of 10−6). We also observe, however, that

the enhancement for the bilinear versions, which relies on fixing variables to 0 exactly,

clearly improves this aspect of the solutions. Given the observations in Table 2.2, we chose

the feasibility tolerance εfeas = 10−5 for all our statistics.

Next we examine the relative performance of the methods in terms of objective function

values, first among only the DC methods. Again, we see that the enhancements for the

bilinear methods lead to a significant improvement in solution quality. The enhancement

for the piecewise linear method has less of an effect. We also observe that, for this problem

set, the unbiased E starting point typically leads to better solutions than the one based

on the LP relaxation, and that the perturbation parameter γ1 = 1.01 appears to be the

better choice for the BL1 variants. The B-w variant, missing an enhanced version, does

not perform well. Finally, we assess the solution quality compared to the global optima

(obtained by the MILP solver) and relative to the filter code. The “E*” variants find the

global solution in 70-77% of the instances. Overall, among the DC methods, PL-E* and

BL2-E* are the more effective variants for this problem set in terms of solution quality. A

comparison with the filter code shows that this MPCC solver finds a better solution

than the best DC variants more often than not.
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Table 2.2. Number of problems with specific outcomes. “Max iter”: Maxi-
mum number of iterations exceeded (excluded from remaining statistics);
“εfeas =”: Returned iterate satisfies V⊥ ≤ εfeas; “Best DC”: as good as best DC
method; “Global found”: Global solution found; “filter better”: Number
of instances in which filter objective is better; “filter worse”: Number
of instances in which filter objective is worse.

Max εfeas = εfeas = εfeas = Best Global filter filter
Method iter 10−8 10−5 10−2 DC found worse better

PL-E 0 83 83 85 73 71 12 24
PL-R 0 72 72 78 68 66 7 28
PL-E* 0 83 83 85 76 74 12 21
PL-R* 0 72 72 78 68 66 7 28
BL1-E-γ1 11 39 58 83 33 32 3 59
BL1-R-γ1 6 32 47 85 22 21 6 67
BL1-E*-γ1 2 82 83 91 76 73 8 17
BL1-R*-γ1 2 75 75 89 66 63 9 28
BL1-E-γ2 13 24 42 74 30 30 3 64
BL1-R-γ2 7 21 40 80 19 19 6 71
BL1-E*-γ2 2 66 76 85 70 67 5 23
BL1-R*-γ2 3 72 73 85 64 61 9 32
BL2-E 10 45 66 83 43 41 8 55
BL2-R 9 42 62 84 35 33 7 64
BL2-E* 1 81 84 92 77 74 11 17
BL2-R* 2 77 78 91 71 68 12 26
B-w-E 58 28 28 30 27 27 3 65
B-w-R 31 46 46 50 45 45 5 46
filter - 79 92 95 - 76 - -

Table 2.3 compares the geometric averages of computation time and iterations between

original and enhanced methods. We only included the 52 instances where at least one

method took over 1 second of wall clock time to solve. For each method, averages are

computed over all runs with successful outcomes. Comparing original and improved

versions, we again observe that the enhancement for the BL methods leads to a significant

reduction in computation time and iteration count. As expected, the PL methods increase

the times slightly when the improvement is enabled, because it is based on continuing
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the DCA with additional iterations that use different choices of the subgradients. We see

that the average computation time for PL methods is slightly higher than that of MILP

and filter, and the enhanced BL variants take 5-8 times as long as the PL versions. We

also see that for these problems, the average number of iteration is around 3 for the PL

methods, and 5-7 for the well-performing BL variants.

Table 2.3. Geometric averages of computation times (in seconds) and itera-
tions for MacMPEC instances, including the original (“Orig”) and enhanced
(“Enhcd”) variants of the decompositions. The number of instances with
successful outcomes is given in the last columns.

Average time Average iterations Successful
Method Orig Enhcd Orig Enhcd Orig Enhcd
PL-E 0.031 0.032 2.768 3.268 46 46
PL-R 0.025 0.028 2.631 2.857 41 41
BL1-E-γ1 0.552 0.140 16.784 5.026 29 45
BL1-R-γ1 0.436 0.147 14.443 5.653 28 42
BL1-E-γ2 0.739 0.153 23.449 5.912 21 42
BL1-R-γ2 0.539 0.202 21.769 7.378 24 40
BL2-E 0.449 0.121 13.721 4.448 33 45
BL2-R 0.356 0.114 11.898 4.610 31 41
MILP 0.022 - - - 52 -
filter 0.019 - - - 52 -

2.3.3. Medium-scale inverse QP instances

Consider the convex quadratic program (QP):

(2.31)
minimize

y

1
2
yTQy + cTy

subject to Ay ≥ b,

where Q ∈ Rn×n is symmetric positive definite, A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. For

given matrices Q and A, the inverse convex quadratic problem, as described in (Hu et al.,
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2012b), consists in finding vectors x, b, and c that solve the forward problem (2.31) and

are the least deviated from some given vectors x̄, b̄, and c̄; that is (x, b, c) solves

minimize
x,b,c

∥∥(x, b, c)− (x̄, b̄, c̄)
∥∥

1

subject to


x ∈ arg min

y

1
2
yTQy + cTy

subject to Ay ≥ b.

By stating the KKT conditions in the second-level problem and reformulating the `1-norm

with slack variables, we obtain the LPCC

(2.32)

minimize
x,b,c,zx,zb,zc,λ

n∑
i=1

zxi +
m∑
j=1

zbj +
n∑
i=1

zci

subject to Qx+ c− ATλ = 0

and

−zx ≤ x− x̄ ≤ zx, −ux ≤ x ≤ ux

−zb ≤ b− b̄ ≤ zb, −ub ≤ b ≤ ub

−zc ≤ c− c̄ ≤ zc, −uc ≤ c ≤ uc

0 ≤ λ ⊥ Ax− b ≥ 0, λ ≤ uλ

For our experiments, feasible random inverse QP instances were generated in MATLAB

with the following procedure, given dimensions m and n, and a sparsity level s. The

parameter s was chosen so that, on average, every matrix had at most 10 non-zero elements.

We include explicit bounds ux, ub, uc, and uλ to compare with the MILP formulation.
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1: Generate a sparse random symmetric positive definite matrix Q ∈ Rn×n and a

sparse matrix A in Rm×n, using the MATLAB commands sprandsym(n, s, 0.5, 1)

and sprand(m,n, s).

2: Generate a random vector x ∈ Rn with components following a normal distribution

N(0, 1).

3: Generate vectors λ̃ and w̃ ∈ Rm uniformly at random between 0 and 10.

4: Generate a random binary vector v ∈ {0, 1}m and set λ = λ̃◦v and w = w̃◦ (1−v),

so that λ ⊥ w.

5: Define b , Ax− w and c , ATλ−Qx.

6: Perturb x, b and c with normally distributed N(0, 1) noise to obtain vectors x̄, b̄

and c̄.

7: Set upper bounds ux , 10 max{|xi|}, ub , 10 max{|bi|}, uc , 10 max{|ci|}, uλ ,

10 max{|λi|}.

By construction, vectors x, b, c, and λ are feasible to (2.32). A total of 120 instances

were generated with complementarity dimension m equal to 10, 25, 50, 100, 250, and 500,

and 20 instances per size. Dimension n was chosen as 0.75 ×m. The experiments are

summarized in Table 2.4 and Figure 2.6. In terms of the robustness of the methods, the

final columns in Table 2.4 show once again that the enhancements for the BL methods

are essential for good performance. We also see that the PL variants are successful in all

instances. Since decomposition B-w showed poor results on these instances (solving less

than 25% of them), it is not included in these statistics.



67

Table 2.4. Computation times on Inverse QP instances. For each method
and problems size, the arithmetic averages of the computation times (in
seconds) are given. The numbers within the parentheses list the number
of successfully solved problems over which the averages are taken. The
“It” column displays the number of instances in which a method ran out
of iterations, and the “Inf” column the number of problems in which the
complementarity violation is not below ε⊥ = 10−5.

Method m = 10 m = 25 m = 50 m = 100 m = 250 m = 500 It Inf

PL-E 0.03 (20) 0.04 (20) 0.05 (20) 0.1 (20) 0.64 (20) 5.17 (20) 0 0
PL-R 0.03 (20) 0.03 (20) 0.04 (20) 0.08 (20) 0.45 (20) 3.81 (20) 0 0
PL-E* 0.03 (20) 0.05 (20) 0.07 (20) 0.12 (20) 0.72 (20) 6.60 (20) 0 0
PL-R* 0.03 (20) 0.04 (20) 0.05 (20) 0.11 (20) 0.53 (20) 5.87 (20) 0 0
BL1-E-γ1 1.61 (17) 2.26 ( 3) - - - - 95 5
BL1-R-γ1 0.80 (16) 1.60 ( 9) - - - - 87 8
BL1-E*-γ1 0.18 (20) 0.32 (19) 0.65 (20) 2.28 (18) 7.62 (18) 22.99 (20) 0 5
BL1-R*-γ1 0.14 (20) 0.24 (19) 0.62 (20) 2.09 (19) 6.33 (18) 20.88 (20) 0 4
BL1-E-γ2 1.69 ( 6) - - - - - 113 1
BL1-R-γ2 1.27 (14) 1.70 ( 4) - - - - 99 3
BL1-E*-γ2 0.27 (20) 0.51 (19) 1.06 (20) 3.46 (18) 12.3 (19) 32.63 (17) 3 4
BL1-R*-γ2 0.16 (20) 0.36 (19) 0.91 (20) 3.09 (19) 9.57 (20) 29.88 (19) 1 2
BL2-E 0.99 (20) 1.60 (11) 2.78 ( 8) 6.62 ( 4) - - 71 6
BL2-R 0.69 (18) 1.06 (10) 2.50 ( 8) - - - 75 9
BL2-E* 0.16 (20) 0.28 (19) 0.51 (20) 1.60 (19) 6.58 (20) 18.64 (20) 0 2
BL2-R* 0.11 (20) 0.21 (20) 0.36 (20) 1.43 (18) 4.79 (20) 15.11 (19) 0 3
MILP 0.17 (20) 0.49 (20) 0.87 (20) 147.16 (20) 904.38 (20) 900.58 (20) 0 0
filter 0.01 (20) 0.03 (20) 0.23 (20) 1.35 (20) 44.59 (20) 547.96 (20) 0 0

The plots in Figure 2.6 compare solution quality obtained by the various methods.

The performance measure per instance is calculated as a ratio between the objective value

of each method and the best solution among all methods in Table 2.4. If a method failed

on an instance, its ratio is considered infinite. The profiles in the graphs count how many

instances have a performance measure below a threshold, given on the x-axis. Note that

the x-axis scale differs from one plot to another. Plot 2.2 illustrates that the enhancement

for the PL methods shifts the curves upwards, implying that solution quality improves.

In fact, the number of cases in which the method terminates at a point that is proven
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Figure 2.6. Inverse QP Performance Profiles.

to be strongly stationary increases from 28 (31) to 116 (115) out of 120 for the E (R)

starting point. This demonstrates the effectiveness of the procedure in Section 2.2.1 that

aims at escaping non-strongly stationary points by choosing different subgradients. The
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best performing method is PL-E*, which solves 100 problems with an objective value

within 3% of the best solution, and 114 within 10%. Plots 2.3 and 2.4 confirm that the

enhancement for the bilinear methods increases robustness. Using the optimal solution of

the LP relaxation as starting point provides better objective values. The choice of the

perturbation parameter γ appears to be less relevant. Plot 2.5 compares the best methods

of the three previous plots with the MILP and filter solutions. The former finds the best

solution in 98 cases and the latter in 74. filter, MILP, BL1-R*-γ1, BL2-R* and PL-E*

solve 110, 103, 96, 95, 69 of the problems within 1% of the best solution, and 117, 119, 110,

110, 107 of the problems within 5%, respectively. This demonstrates the competitiveness

of the DC approach in terms of solution quality.

Although the MILP formulation and the filter solver provide slightly better solution

quality, Table 2.4 considers a different perspective. Even for the largest case m = 500,

the PL variants solve the instances in an average of 6.6 seconds, and the enhanced BL

methods within 32 seconds. In contrast, filter requires on average almost 10 minutes.

Even more dramatically, the cplex solver runs out of the wall clock time limit of 15

min in all instances using 32 cores, while the other approaches run on only a single core.

This shows a very clear advantage of the DC approach, particularly since there is only a

relatively small loss in solution quality.

2.3.4. Large-scale inverse QP instances

Our final set of experiments considers large-scale instances of the inverse QP problem

with up to 5,000 complementarity constraints. We compare the relative performance of

the best methods identified in the previous section. The filter solver was not able to
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solve any instance of that size, and the MILP formulation was not attempted because

already the m = 500 instances ran out of time on 32 cores. Table 2.5 shows the average

computation time (in seconds) and solution quality, defined as the ratio of the objective

value of a method over the best objective value, taken over the successfully solved instances

(given in the “#” columns). Whenever BL2-R* solves an instance, it obtains the best

objective value. The largest deviation from the best solution among all instances is 7%,

11%, 6%, and 7% for PL-E*, PL-R*, BL1-R*-γ1, BL1-R*-γ2, respectively. Again, only the

PL variants solve all of the instances to the desired level of feasbility. Considering solution

time, even the largest instances are solved within at most 1 hour on average. The slowest

successful run was BL1-R*-γ2 for one m = 5, 000 instance with 66 minutes. In contrast to

the smaller instances in the previous section, the computation times for the PL variants,

which require only LP solves, is no longer shorter than those for the BL methods, which

require the solution of QPs. This is likely due to the different scalability of the simplex LP

solver and the interior point QP solver, which are the default methods in cplex. Overall,

variant BL2 based on the newly proposed decomposition of the bilinear penalty function

is the most successful option in this test set.

Table 2.5. Computation time and solution quality for large-scale inverse QP instances.

Method
m = 1, 000 m = 2, 500 m = 5, 000

Avg
time

Avg
ratio

#
Avg
time

Avg
ratio

#
Avg
time

Avg
ratio

#

PL-E* 23.72 1.02 5 316.88 1.02 5 3101.21 1.01 5
PL-R* 27.85 1.03 5 279.48 1.04 5 2875.57 1.02 5
BL1-R*-γ1 48.37 1.01 5 384.30 1.02 5 2577.43 1.00 2
BL1-R*-γ2 77.14 1.02 5 472.40 1.01 2 3452.60 1.00 3
BL2-R* 41.03 1.00 5 315.85 1.00 5 2156.08 1.00 4
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2.4. Conclusions and Further Research

We examined four different DC decompositions of penalty function reformulations for

LPCCs. Three of these correspond to decompositions previously proposed in (Le Thi and

Dinh, 2011) for solving LCPs. We established relationships between the stationary points

and local minima of the LPCCs and those of the penalty problems. Numerical experiments

demonstrate that the proposed improvement of the piecewise linear penalty variation

can significantly improve the solution quality by escaping non-strongly stationary points.

Similarly, the enhancement of the bilinear penalty variant is shown to reduce the number

of iterations significantly. Overall, the DC algorithm and its enhancements are competitive

in terms of objective function values compared to state-of-the-art solvers, and are the only

option for the large-scale test problems examined here. With these encouraging results of

the DC approach for solving LPCCs, further research is warranted to study the application

of this approach to MPCCs with DC objectives and linear complementarity constraints.
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CHAPTER 3

Global Optima for Linear Programs with Complementarity

Constraints

3.1. Logical Benders Approach for Globally solving Linear Programs with

Complementarity Constraints

3.1.1. Introduction

This chapter focuses on the global solution of Linear Programs with Complementarity

Constraints (LPCC) in its general form

(3.1)

minimize
x, y, w

gTx

subject to AIx+BIy + CIw ≤ bI

AEx+BEy + CEw = bE

0 ≤ y ⊥ w ≥ 0

where x ∈ Rnx , y, w ∈ Rnc , bI ∈ RkI and bE ∈ RkE . Dimensions for matrices AI , BI , CI ,

AE, BE and CE are defined accordingly. Notice that the objective function only depends

on the variable x. This is not restrictive in the formulation since any dependence on y

and/or w can be taken into account within the equality constraints.

By global solution of the LPCC we mean certifying the problem is in one of its three

possible states: infeasible, unbounded below or having a finite optimal solution. If both y
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and w have bounded feasible regions, then it is well known that (3.1) can be reformulated

as an MILP, by setting diagonal matrices My and Mw and a binary vector p ∈ {0, 1}nc

representing either side of the complementarity piece.

(3.2)

minimize
x, y, w

gTx

subject to AIx+BIy + CIw ≤ bI

AEx+BEy + CEw = bE

w ≥Mwp

y ≥My(1− p)

y, w ≥ 0.

The main challenge with this formulation is the computation of valid bounds to obtain

the diagonal values of matrices My and Mw. Furthermore, if either y or w is not bounded

then this reformulation cannot be applied.

While there have been significant advances on computational methods based on non-

linear programming (NLP) to solve MPCCs, their main focus is to find some type of

stationary point in an efficient manner. Solvers such as FILTER Fletcher et al. (2002) and

KNITRO Byrd et al. (2006), based on sequential quadratic programming and interior point

methods, respectively, are capable of finding solutions very quickly, but have no guarantees

on the quality of the computed solution. Since an LPCC can be interpreted as a disjunctive

linear optimization problem, global solution methods are mainly based on enumeration

schemes. Therefore, many integer programming based approaches have been tested on
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LPCC, combining essentially branch-and-bound and cutting plane methods (see (Bard and

Moore, 1990; Jeroslow, 1978; Ibaraki, 1971, 1973; Yu, 2011; Yu et al., 2018)). Based on the

works of Hooker and Ottosson (Hooker and Ottosson, 2003), a logical Benders approach

was developed for LPCCs (Hu et al., 2008) and later extended to Q(uadratic)PCC (Bai

et al., 2013), where the complementarity pieces are described by binary variables, and later

discarded for exploration via a logical Benders cut generation scheme. Although originally

stated as an extension to these logical Benders based approaches, the method presented in

this chapter is also closely related to branch-and-bound as it will be described in the next

section. The main contributions of this chapter are providing an interpretation for logical

Benders as a reversed version of branch-and-bound methods, and taking advantage of this

relationship to develop a more efficient and robust way of selecting and discarding pieces

within the logical Benders framework. We also complement the Benders cut generation

scheme with an `1-norm minimization problem to speed up the process.

3.1.2. Problem statement

For the remainder of this chapter, the following set is defined ΩP := {(x, y, w)|AIx+BIy+

CIw ≤ bI ; AEx + BEy + CEw = bE; y, w ≥ 0}, which represents the feasible region of

(3.1) without the complementarity constraint.

The general idea of the algorithm presented in this chapter follows the one exposed by

Hu et al. (2008). A master problem selects different complementarity pieces which are

solved to optimality and the corresponding solution is stored as the incumbent if it is the

best one found so far. Pieces are discarded by means of a cut generation method in the

master problem. The method ends when all pieces have been explored or discarded. In
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the following subsection we describe the general idea. For further details please refer to

(Hu et al., 2008).

3.1.3. Logical Benders Decomposition

LetN := {1, . . . , nc}. Given a partition (Iw, Iy) ⊆ N , a complementarity piece for problem

(3.1) defined by Iw and Iy is a subset of its feasible region with the added restrictions

wi ≤ 0, i ∈ Iw and yi ≤ 0, i ∈ Iy. Notice that since (Iw, Iy) is a partition, we have

wTy = 0. In our setting, these partitions will be described by a binary vector p ∈ {0, 1}nc

in the following way:

(3.3)

φP (p) = minimize
(x, y, w)∈ΩP

gTx

subject to wi ≤ 0, i : pi = 0 (λwi )

yj ≤ 0, j : pj = 1 (λyj )

where the symbol in parenthesis represents the dual variables. In this case Iw = Īw(p) :=

{i : pi = 0} and Iy = Īy(p) := {i : pi = 1}. It is clear that for any vector (x, y, w) feasible

in (3.1) there exists a binary vector p such that (x, y, w) is also feasible in (3.3). By

convention we assume that φP (p) =∞ if (3.3) is infeasible. Therefore, (3.1) is equivalent

to

(3.4) minimize
p∈{0,1}nc

φP (p).

Instead of exploring all 2nc possible pieces explicitly, we maintain a master problem

that keeps track of all the pieces that still need to be explored. We denote the state of the
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master problem by a set C that consists of pairs (Iw, Iy) of disjoint subsets Iw and Iy of

N . Then the set of pieces p that still have to be explored is given by

(3.5) F =

{
p ∈ {0, 1}nc :

∑
i∈Iw

pi +
∑
i∈Iy

(1− pi) ≥ 1 for all (Iw, Iy) ∈ C

}
.

We refer to an inequality in the above definition as a “cut” in the master problem, and

use the corresponding sets Iw and Iy to denote the cut. For example, once (3.3) has been

solved for a given piece p, we could add the cut defined by Iw = Īw(p) and Iy = Īy(p) to C.

In this way, the piece p is no longer in the set of unexplored pieces F . If Iw ⊆ Īw(p) and

Iy ⊆ Iy(p) is not a partition of N , also other pieces will be removed by the corresponding

cut. Clearly, the fewer elements are in Iw and Iy (i.e., the sparser the cut is), the more

elements are removed from F . Section 3.3.2 discusses techniques for computing sparse

cuts.

3.1.3.1. Algorithm Outline. In each iteration of the logical Benders algorithm, a piece

p is chosen from F . Then the subproblem (3.3) corresponding to p is solved, and based on

the outcome a new cut Iw ⊆ Īw(p) and Iy ⊆ Īy(p) is added to C. This cut will certainly

remove the just-explored piece p from F . If (3.3) is feasible, we also obtain a feasible point

for the original problem. The algorithm keeps the best feasible point encountered so far as

the incumbent, together with its optimal objective value U , which is an upper bound for

the optimal objective value of (3.1).

Since there are only finitely many pieces, F must eventually become empty. All pieces

have been (implicitly) explored and the algorithm terminates. The current incumbent is

an optimal solution for (3.1). If no incumbent has been found, the original problem is

infeasible. And if during any iteration (3.3) is unbounded below, (3.1) is unbounded.
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3.1.3.2. Cut generation. For a given piece p, we can define a relaxation indexed by

Iw ⊆ Īw(p) and Iy ⊆ Īy(p).

(3.6)

φP (Iw, Iy) = minimize
(x, y, w)∈ΩP

gTx

subject to wi ≤ 0 for i ∈ Iw (λwi )

yj ≤ 0 for i ∈ Iy (λyj )

Again, we define φP (Iw, Iy) = ∞ if (3.6) is infeasible. Because (3.6) is a relaxation of

(3.3), we have φP (Iw, Iy) ≤ φP (p). Note that (3.6) is also a relaxation of (3.3) for any

other p̂ such that Iw ⊆ Īw(p̂) and Iy ⊆ Īy(p̂), and therefore φP (Iw, Iy) ≤ φP (p̂).

Now suppose that U is the objective value for the current incumbent and therefore an

upper bound on the optimal objective function. In our search for a better incumbent, we

need to find a piece p̂ so that φP (p̂) < U . Consequently, if φP (Iw, Iy) ≥ U , all pieces p̂

with Iw ⊆ Īw(p̂) and Iy ⊆ Īy(p̂) cannot contain a better incumbent, and we can exclude

them all from F . This is done by adding the cut (Iw, Iy) to C.
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To find suitable subsets Iw and Iy, let us consider the dual to (3.3):

(3.7)

φD(Iw, Iy) = maximize
µI , µE , λw, λy

−bTI µI + bTEµE

subject to −ATI µI + ATEµE = g

−BT
I µI +BT

EµE − λy ≤ 0

−CT
I µI + CT

EµE − λw ≤ 0

∑
i 6∈Iw λ

w
i +

∑
i 6∈Iy λ

y
i = 0

µI , λ
w, λy ≥ 0,

In (3.6), there are constraints on wi for i ∈ Iw, and the dual should contain only the

corresponding multipliers λwi . To simplify the notation, the multipliers for w ≤ 0 have

been extended to a full vector λw ∈ Rnc , and λy is similarly defined. The constraint∑
i 6∈Iw λ

w
i +

∑
i 6∈Iy λ

y
i = 0 makes sure that the newly introduced components of λw and λy

must be zero, so that (3.7) is indeed the dual of (3.6).
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Assuming the primal problem has a finite optimal solution, we have φP (Iw, Iy) =

φD(Iw, Iy). It is then clear that (Iw, Iy) defines a valid cut if φD(Iw, Iy) ≥ U , or, equiva-

lently, the set

(3.8) ΩD(Iw, Iy) :=



(µI , µE, λ
w, λy) :

−bTI µI + bTEµE ≥ U

ATI µI + ATEµE = g

−BT
I µI +BT

EµE − λy ≤ 0

−CT
I µI + CT

EµE − λw ≤ 0∑
i 6∈Iw λ

w
i +

∑
i 6∈Iy λ

y
i = 0

µI , λ
w, λy ≥ 0


is not empty.

In (Hu et al., 2008), the following procedure was suggested to obtain a valid cut: Given

a piece p, solve the primal (3.3). If it is feasible, let (µI , µE, λ
w, λy) be a dual optimal

solution (with λw and λy properly extended). Now define Iw = {i ∈ Īw(p) : λwi > 0}

and Iy = {i ∈ Īy(p) : λyi > 0}. Then it is easy to see that (µI , µE, λ
w, λy) ∈ ΩD(Iw, Iy)

and therefore (Iw, Iy) defines a valid cut. If the optimal solution in (3.3) is not strictly

complementary, then this procedure produces a cut that removes more than just p from

F . Note that this implies that the relaxation φP (Iw, Iy) ≥ U .

Bai et al. (2013) discuss a procedure to sparsify the cut further. They choose subsets

Ĩw ⊆ Iw and Ĩy ⊆ Iy and solve the relaxed primal (3.6) to get φP (Ĩw, Ĩy). If φP (Ĩw, Ĩy) ≥ U ,

we can set (Iw, Iy) ← (Ĩw, Ĩy), which is also a valid cut. This can be repeated until

φP (Ĩw, Ĩy) < U .
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We can proceed similarly if the primal problem is infeasible. In this case, the dual

must have an unbounded ray that can be found by solving the homogeneous version of

(3.7):

(3.9)

φD0(I
w, Iy) = maximize

µI , µE , λw, λy
−bTI µI + bTEµE

subject to −ATI µI + ATEµE = 0

−BT
I µI +BT

EµE − λy ≤ 0

−CT
I µI + CT

EµE − λw ≤ 0

∑
i 6∈Iw λ

w
i +

∑
i 6∈Iy λ

y
i = 0

µI , λ
w, λy ≥ 0.

We will denote ΩD0 to the set ΩD with g = 0 and the constraint −bTI µI + bTEµE ≥ U

replaced by −bTI µI + bTEµE = 1. As before, the generated cut (Iw, Iy) guarantees that any

piece removed by it will also be infeasible.

If the constraints for φP (Iw, Iy) (resp. φD(Iw, Iy)) define an infeasible set then it will

be understood that φP (Iw, Iy) =∞ (resp. φD(Iw, Iy) = −∞).

If at any point during the algorithm we find that a primal piece is unbounded then

(3.1) is also unbounded, so there is no more exploration required.

Initially the master problem feasible set F is {0, 1}nc and the upper bound U =∞. A

candidate complementarity piece p is selected. If φD0(p) =∞, a suitable cut obtained from

(3.9) is added to F . Otherwise if φP (p) = −∞ then the master problem is unbounded and

the method stops. Finally, if φP (p) < U then the bound is updated (U = φP (p)) and a

cut obtained from (3.7) is added. The process continues until F becomes infeasible. At



81

Algorithm 4 Logical Benders on LPCC

1: Let F = {0, 1}nc , U =∞

2: while F 6= ∅ do

3: Select a piece p ∈ F . Let Iw = Īw(p) and Iy = Īy(p)

4: Solve (3.9)

5: if φD0(I
w, Iy) =∞ then

6: Add cut (Iw, Iy) to C

7: else

8: Solve (3.6)

9: if φP (Iw, Iy) = −∞ then

10: STOP; problem unbounded.

11: else

12: if φP (Iw, Iy) < U then

13: Update U = φP (Iw, Iy).

14: Store x∗ = x̂, y∗ = ŷ and w∗ = ŵ.

15: Add cut (Iw, Iy) to C.

16: Return (x∗, y∗, w∗) as optimal solution or output infeasible or unbounded.

that moment the algorithm returns the current incumbent. These steps are summarized

in Algorithm 4.

3.1.4. Contributions of this work

There are two key drivers of the performance of this method: The selection of the candidate

piece p and the strength (sparsity) of the generated cuts. Notice that both steps are linked,

the generated cut depends on the selected piece and this selection depends on cuts that

have already been generated.



82

In the methods that have been proposed in the past (Hu et al., 2008; Bai et al., 2013),

the piece selection and the sparsification procedures were independent of each other. In

fact, the candidate piece was chosen just as any p ∈ F , without giving any preferences of

one over another.

The contribution of this chapter is that we consider the logical Benders algorithm from

a different point of view, namely as a procedure that operates on a branch-and-bound

tree (in reverse order compared to regular branch-and-bound methods). We describe this

observation in the Section 3.2, and then put everything together in Section 3.3.

3.2. Interpretation within Branch-and-Bound Framework

3.2.1. Branch-and-Bound Trees

One well-known approach for solving MPCCs is based on branch-and-bound (B&B),

introduced by Bard and Moore (1990). Efficient implementations of this framework include

many enhancements, such as cutting planes and pseudo-cost branching (Yu, 2011; Yu

et al., 2018). Here, we describe the basic B&B method with the purpose of interpreting

the logical Benders algorithm as one that operates on a B&B tree. This will allow us

to derive new piece selection and cut sparsification methods. The B&B method for

LPCCs solves a collection of subproblems of the form (3.6), where Iw and Iy are disjoints

subsets of N . These subproblems correspond to nodes, denoted as [Iw, Iy], in a binary

enumeration tree (In our notation, we distinguish between cuts (Iw, Iy) and nodes [Iw, Iy]

by their parenthesis). The root node of such a tree corresponds to the subproblem

described by Iw = Iy = ∅, i.e., none of the components of y and w are required to

be complementary. Each node [Iw, Iy] with Iw ∪ Iy 6= N has two children. They are
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obtained by choosing a complementarity j ∈ N \ (Iw ∪ Iy) that has not yet been fixed

and by making [Iw ∪ {j}, Iy] and [Iw, Iy ∪ {j}] the index sets defining the children. We

call j the branching complementarity. Different trees are obtained by choosing different

branching complementarities at the nodes. Overall, there are Πnc
i=0(nc − i)2i possible trees

T corresponding to (3.1) (Although, in the regular B&B method, the full tree never needs

to be completely constructed, since subtrees are eliminated from the search once it is

clear that they cannot contain the optimal solution). The nodes on the last level with

Iw ∪ Iy = N are called leaves. Here, all complementarity constraints have been fixed to

one of the two sides. If a leaf is feasible, its optimal solutions are feasible for the original

problem (3.1). Therefore, each leaf corresponds to a piece p in (3.1) and vice versa, with

Iw = Īw(p) and Iy = Īy(p).

Since a child node [Ĩw, Ĩy] is obtained by fixing a complementarity constraint to one

of the two sides, its feasible region cannot be larger than that of its parent [Iw, Iy]. As a

consequence, φP (Ĩw, Ĩy) ≥ φP (Iw, Iy). This includes the case in which subproblems are

infeasible and a quantity in that relationship is ∞.

Given a node [Iwa , I
y
a ] and one of its descendants [Iwd , I

y
d ] in a particular tree, we denote

the path P from [Iwd , I
y
d ] to [Iwa , I

y
a ] by j1 → j2 → j3 → . . .→ jL, where jl are the branching

complementarities that were added to obtain a child node from its parent. The indices

are listed in order from the descendant to the ancestor; for example, jL represents the

branching from node [Iwa , I
y
a ].

3.2.1.1. Branch-and-Bound Algorithm. The B&B method constructs a tree during

the course of the algorithm. It maintains a list of open nodes that have yet to be explored.

At the beginning, this list is initialized with the root node. The root node corresponds to
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the subproblem described by Iw = Iy = ∅, i.e., none of the components of y and w are

required to be complementary. Its optimal value φP (∅, ∅) provides a lower bound on the

optimal objective of the original problem (3.1). The method also stores an incumbent,

which is a point that is feasible for the original problem (3.1) with the lowest objective

value, call it U , found so far. Clearly, U is an upper bound for the optimal objective value

of (3.1). At the beginning, no incumbent is available, and we set U ←∞.

In each iteration of the rudimentary B&B algorithm, an open node [Iw, Iy] is chosen

and the corresponding subproblem (3.6) is solved. There are four possible outcomes that

determine the next step of the algorithm:

(1) If (3.6) is feasible and φP (Iw, Iy) ≥ U , all descendants [Iwd , I
y
d ] of this node must

also have φP (Iwd , I
y
d ) ≥ U . Consequently, no feasible point for (3.1) can be found

among the descendants of [Iw, Iy] with a better objective value than U .

(2) If [Iw, Iy] is infeasible, also all its descendants must be infeasible, and again no

better incumbent for (3.1) can be found below [Iw, Iy].

(3) If (3.6) is feasible and its computed optimal solution is feasible for the original

problem (3.1) and φP (Iw, Iy) < U , then the optimal solution of the subproblem,

if it is finite, provides a new incumbent. The incumbent and the corresponding

upper bound U are updated.

(4) If (3.6) is feasible but its computed optimal solution is not feasible for the

original problem (3.1), then the set of complementarities that has not been

fixed, N \ (Iw ∪ Iy), must be non-empty. The algorithm then chooses a branching

complementarity j ∈ N\(Iw∪Iy) and adds the corresponding children [Iw∪{j}, Iy]

and [Iw, Iy ∪ {j}] to the list of open nodes.
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In the cases 1–3, there is no need to explore descendants of the current node, since no

feasible solution better than the incumbent can be found in that part of the tree. In that

case, we call the current node a fathomed node. The B&B algorithm does not explicitly

construct the part of the tree below a fathomed node.

The algorithm terminates once the list of open nodes becomes empty. The current

incumbent is the optimal solution of (3.1). If no incumbent was found during the search,

the original problem is infeasible. Since there is only a finite number of possible open nodes

and no node can become an open node twice, the algorithm is guaranteed to terminate in

a finite number of iterations.

3.2.1.2. Proving Optimality. For simplicity we will assume in the following that the

optimal point is available as incumbent and that the purpose of the algorithm is to confirm

its optimality. This is reasonable in a practical setting if we first solve a big-M formulation

of (3.1), namely

(3.10)

minimize
(x, y, w)∈ΩP , p∈{0,1}nc

gTx

subject to wj ≤ Mpj for j ∈ N

yj ≤ M(1− pj) for j ∈ N ,

for a finite M > 0 with an MILP algorithm. In this manner, we can use powerful off-the-

shelf MILP solver implementations. Ideally, we would like to choose M large enough so

that the optimal solution for (3.1) is not excluded. However, often such a value is not

known a priori, and choosing a very large value for M renders the MILP formulation more

difficult to solve, since its integer relaxation becomes weak.
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Often, the optimal solution of (3.10) is optimal for the original problem (3.1), and

what remains is to prove that it is indeed optimal. To this end, we follow the approach

proposed by Bai et al. (2013) and define an “outer problem” that consists of the original

problem (3.1) with the added linear constraint

∑
j∈N

wj +
∑
j∈N

yj ≥M.

The union of the feasible set of the outer problem and that of the big-M MILP (3.10)

(projected onto the (x, y, w) space) includes the feasible set of the original problem (3.1).

Therefore, the best among the optimal solutions of the two problems is guaranteed to be

the optimal solution of (3.1).

Solving the outer problem is the context in which the logical Benders algorithm can be

applied. For the remainder of this section we assume that the optimal objective function

value U for (3.1) is known. In case U is not optimal, the algorithm is still able to determine

the optimal solution.

3.2.1.3. Logical Benders within Branch-and-Bound Tree. We now give an inter-

pretation of the logical Benders algorithm using the concept of B&B trees.

Let T be a fixed B&B tree as defined in Section 3.2.1, that is, all braching decisions are

predetermined all the way to all leaves, and let U be the optimal objective value of (3.1).

We assume that the root node relaxation has a value worse than the upper bound, i.e.,

φP (∅, ∅) < U . Otherwise, we can terminate the procedure immediately, since φP (∅, ∅) is

always a lower bound on the optimal objective value. If φP (∅, ∅) ≥ U , we can immediately

conclude that U is optimal.
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Inspired by the terminology of the basic B&B algorithm described in Section 3.2.1.1,

we call a node [Iw, Iy] in T a fathomed node if φP (Iw, Iy) ≥ U and φP (Ĩw, Ĩy) < U for

its parent [Ĩw, Ĩy]. A fathomed node is one for which the basic B&B algorithm would

encounter one of the cases 1 or 2. The B&B algorithm would not explore the subtree

below a fathomed node. On the other hand, the B&B algorithm would create children for

any node [Îw, Îy] above a fathomed node since no definite conclusion about the subtree

below [Îw, Îy] can be drawn based on the optimal solution of [Îw, Îy] alone. Therefore,

the fathomed nodes in a fixed tree T is the minimal set of nodes that must be solved

at some point in order to prove that U is indeed the optimal objective value. Note that

fathomed nodes depend exclusively on the structure of the tree T , and are independent of

any algorithm.

Note that case 3 cannot occur since we assume that U is the optimal objective value.

Also, the tree T with predetermined branching might not correspond to one that would

be generated by the B&B algorithm. This is the case, for example, when child nodes

are obtained by branching on a complementarity j for which the optimal solution of the

parent is already complementary. To avoid unnecessary work, the B&B algorithm only

chooses branching complementarities for which the corresponding optimal values of the

current node are not complementary, see case 4. In our context of interpreting the logical

Benders method using a B&B tree, however, we permit this situation.

As described next, while the B&B algorithm is finding the fathomed nodes “from

above” by branching from the root node to the fathomed nodes, we can interpret the

logical Benders algorithm as a method that finds the fathomed nodes “from below”.
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Algorithm 5 Find Fathomed Node

1: Input: Piece p ∈ {0, 1}nc , path P from the leaf [Iw(p), Iy(p)] to the root node.

2: Let j1 ← j2 ← . . .← jnc be the nodes along path P .

3: Set [Iw, Iy] = [Iw(p), Iw(p)]

4: for l = 1, 2, 3, . . . , nc − 1 do

5: Set [Ĩw, Ĩy] = [Iw \ {jl}, Iy \ {jl}]. ([Ĩw, Ĩy] is the parent of [Iw, Iy])

6: Solve (3.6) for [Ĩw, Ĩy]

7: if φP (Ĩw, Ĩy) < U then

8: Break (leave for loop)

9: Set [Iw, Iy]← [Ĩw, Ĩy]

10: end for

11: Return (Iw, Iy) as cut that identifies a fathomed node.

Consider a fixed tree T . The logical Benders algorithm starts with an empty set of

cuts C = ∅, and therefore F = {0, 1}nc . It then chooses a piece p ∈ F , which corresponds

to a leaf in the B&B tree. We now want to generate a cut (Iw, Iy) so that

(3.11)
∑
i∈Iw

pi +
∑
i∈Iy

(1− pi) ≥ 1

excludes p as well as many other pieces, if possible. In our set notation, (3.11) is satisfied

and the leaf [Jw, Jy] = [Iw(p), Iy(p)] corresponding to piece p is removed from F by the

cut (Iw, Iy) if and only if

(3.12) Iw ⊆ Jw and Iy ⊆ Jy.

One way to generate a cut consistent with the tree T is presented in Algorithm 5.
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Starting from the leaf corresponding to the piece p, this procedure works itself upwards

in the tree. It continues along the path to the root until the parent [Ĩw, Ĩy] of the current

node [Iw, Iy] has a value φP (Ĩw, Ĩy) < U . In that case, [Iw, Iy] must be a fathomed node.

To express the fact that no solution better than U can be found in any of the leafs (or

pieces) below [Iw, Iy], we add the corresponding cut (Iw, Iy) to the master problem, so

C ← C ∪ {(Iw, Iy)}.

We now repeat this for the next iteration of the logical Benders decomposition, starting

from any piece p ∈ F that has not yet been discarded by a cut. In the tree, this corresponds

to any leaf that is not below a fathomed node. The algorithm above will again produce a

new fathomed node that is added as a cut to the master problem. In this way, we will

eventually discover all fathomed nodes in the tree. At that point, the feasible set F of the

master problem will become empty, and the method concludes.

3.2.1.4. Minimal Cuts. In Section 3.1.3.2 we discussed the idea of sparsification. Given

a valid cut (Iw, Iy), i.e., φP (Iw, Iy) ≥ U , it might be possible to find smaller sets Ĩw ⊆ Iw

and Ĩy ⊆ Iy with φP (Ĩw, Ĩy) ≥ U , so that (Ĩw, Ĩy) still defines a valid cut. Such a sparser

cut is preferable, since it excludes more pieces from F , as can be seen from (3.11).

The hierarchy of cut sparsification defines a partial order, and we call the induced

minimal elements minimal cuts. Within the algorithm described in the previous section,

we can augment Algorithm 5 so that the procedure continues after the fathomed node has

been found, see Algorithm 6. Whenever it turns out that removing a complementarity

from the cut results in an invalid cut, it is simply added back, after which the search

continues further along the path.
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Algorithm 6 Cut Sparsification

1: Input: Piece p ∈ {0, 1}nc , path P from the leaf [Iw(p), Iy(p)] to the root node.

2: Let j1 ← j2 ← . . .← jnc be the nodes along path P .

3: Set [Iw, Iy] = [Iw(p), Iw(p)]

4: for l = 1, 2, 3, . . . , nc do

5: Set [Ĩw, Ĩy] = [Iw \ {jl}, Iy \ {jl}]. ([Ĩw, Ĩy] is the parent of [Iw, Iy])

6: Solve (3.6) for [Ĩw, Ĩy]

7: if φP (Ĩw, Ĩy) ≥ U then

8: Set [Iw, Iy]← [Ĩw, Ĩy]

9: end for

10: Return (Iw, Iy) as minimal cut.

Clearly this procedure results in a minimal cut. It is important to note that the order

in which the complementarities are released, i.e., the path (or tree), determines which

particular minimal cut is found.

The set of minimal cuts does not depend on the choice of a particular tree, it is defined

by the problem statement together with the upper bound U . Consider a minimal cut

(Iw, Iy). We can now construct a tree in which [Iw, Iy] is a fathomed node, simply by

choosing the complementarities in Iw ∪ Iy as the branching decisions from the root node

to [Iw, Iy]. On the other hand, given the index sets Iw and Iy from the minimal cut, in a

different given tree T̃ , there might not be a node [Iw, Iy] with the same index sets. In that

case, the cut given by (Iw, Iy) might correspond to more than one fathomed node in T̃ ,

each one has a path to the root that includes all of the complementarities Iw ∪ Iy. In fact,

given a set of minimal cuts {Iwk , I
y
k}Kk=1, there might not exist a tree T in which those cuts

correspond to nodes of the form [Iwk , I
y
k ]. We illustrate this observations with an example:
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Example 3.2.1. Consider the following LPCC:

(3.13)

minimize −2x1 − x2 − x3

subject to xi ≤ 4 i = 1, 2, 3

xi = yi i = 1, 2, 3

∑
k 6=i xk − 3xi + 6 = wi i = 1, 2, 3

0 ≤ y ⊥ w ≥ 0

and the set of cuts (Iw1 , I
y
1 ) = (∅, {1}), (Iw2 , I

y
2 ) = (∅, {2}) and (Iw3 , I

y
3 ) = ({1, 2, 3}, ∅). One

solution to this problem is x1 = x2 = y1 = y2 = 3 and w3 = 12 with all other variables

set to zero. The optimal value of the LPCC is U = −9 and that of the relaxation is

φP (∅, ∅) = −16. We have φP (Iw1 , I
y
1 ) = −6 and φP (Iw2 , I

y
2 ) = −9, hence (Iw1 , I

y
1 ) and

(Iw2 , I
y
2 ) are minimal cuts. We also have φP (Iw3 , I

y
3 ) =∞ (infeasible) and φP ({1, 2}, ∅) =

−14, φP ({1, 3}, ∅) = −14 and φP ({2, 3}, ∅) = −12, so (Iw3 , I
y
3 ) is also minimal.

Let T be any B&B tree for this problem. If the first branching complementarity was

component 1, then the node [∅, {2}] corresponding to cut (Iw2 , I
y
2 ) does not exist. We can

follow the same reasoning for any other first branching complementarity. Therefore, for

every tree there exists at least one of these minimal cuts which does not correspond to a

node.

3.2.1.5. Nodes in a Branch-and-Bound Tree. Let T be a fixed tree, and C =

{(Iwk , I
y
k ) : k = 1, . . . , K} be a set of cuts. We can subdivide the nodes of T into

three different classes. Let [Jw, Jy] be a node in T .
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• We say that node [Jw, Jy] is discarded if there exists a cut (Iwk , I
y
k ) ∈ C so that

Iwk ⊆ Jw and Iyk ⊆ Jy with at least one of the two inclusions being strict. In this

case, the node [Jw, Jy] lies below a fathomed node identified by (Iwk , I
y
k ). All the

leaves in the subtree below [Jw, Jy] correspond to pieces that are already excluded

in F .

• We say that node [Jw, Jy] is explored if there exists a fathomed node corresponding

to some cut (Iwk , I
y
k ) ∈ C so that [Jw, Jy] is on the path from the fathomed node

to the root node. In particular, fathomed nodes are explored.

• We say that node [Jw, Jy] is unexplored if it is not discarded or explored. In this

case, [Jw, Jy] does not lie below a fathomed node or on the path to a fathomed node

identified by any of the cuts. All the leaves in the subtree below an unexplored

node correspond to pieces that are still in the set F . An unexplored node has the

potential to be a fathomed node, and finding a minimal cut identifying it would

remove all such pieces from F .

Furthermore, we will call an unexplored node an open node, if its parent is explored.

Among the unexplored nodes, open nodes have the potential to generate cuts that remove

the most pieces (leaves) in that part of the tree if they turn out to be fathomed nodes.

Let us demonstrate this in an example.

Example(Cont). Using the same problem as in Example 3.2.1, consider the tree

in Figure 3.1 with the cuts (Iw1 , I
y
1 ) and (Iw2 , I

y
2 ). The fathomed nodes corresponding to

these cuts are 3 and 5, which correspond to [Jw1 , J
y
1 ] = [∅, {1}] and [Jw2 , J

y
2 ] = [{1}, {2}],

respectively, according to our notation. Notice that [Jw1 , J
y
1 ] = [Iw1 , I

y
1 ], but node [Iw2 , I

y
2 ]

does not exist in this tree.
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Nodes 8,9,...,15 are discarded nodes, while nodes 1,2,3 and 5 are explored nodes. Node

4,6 and 7 are unexplored nodes and therefore 4 is the only open node.

1

2 3

4 5 8 9

6 7 10 11 12 13 14 15

p1 = 0

p2 = 0

p3 = 0

p1 = 1

p3 = 0p2 = 1 p3 = 1

p3 = 1 p3 = 0 p3 = 1 p2 = 0 p2 = 1 p2 = 0 p2 = 1

Figure 3.1. Classes of nodes in a B&B tree

Now, if we consider the tree in Figure 3.2 the fathomed nodes correspond to 5, 7, 9

and 13 and the open nodes are 6 and 12.

1

2 3

4 5 8 9

6 7 10 11 12 13 14 15

p3 = 0 p3 = 1

p2 = 0

p1 = 0

p1 = 0p2 = 1 p1 = 1

p1 = 1 p1 = 0 p1 = 1 p2 = 0 p2 = 1 p2 = 0 p2 = 1

Figure 3.2. Classes of nodes in a B&B tree

3.2.1.6. Constructing a Tree. The initial version of the B&B-based logical Benders

algorithm described in Section 3.2.1.3 assumed that the tree T was given and fixed
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throughout the procedure. Clearly, the amount of work, when measured in the number of

(master problem) iterations, depends on the choice of the tree, and in particular on the

number of fathomed nodes in that tree, since the algorithm can only terminate when they

have all been identified.

We are usually not given a tree a priori that results in good performance for a given

problem. The algorithm we propose here is related to the idea of information-based

branching introduced in (Karzan et al., 2009). In their paper, the authors partially solve

an IP problem via branch-and-bound, until a certain number of nodes are fathomed. Those

nodes are identified with logical cuts, in a similar way as explained in Section (3.2.1).

Then they resolve the problem, exploring different branching decisions by assigning, and

comparing, several types of weights to components appearing in these cuts, which define

the priority in the branching. Our approach follows the same spirit, but in a dynamic way.

It constructs a ”working tree” as a preliminary choice of the final tree in each iteration,

taking into account the cuts that have been generated so far. It picks a new piece p, and

then executes the cut sparsification Algorithm 6 to generate a new cut. It is important to

note that this tree is never assembled explicitly, it is only a conceptual device that helps

us to identify the input for Algorithm 6, i.e., the piece p and the path P .

Our algorithm for choosing p and P has two steps. It first (virtually) constructs a

working tree and finds an open node in that tree, and then chooses a piece (or leaf) under

the open node. For this, the working tree only needs to be defined up to the open and

fathomed nodes. Algorithm 7 gives the framework for recursively defining a working tree.

The choice of the branching variable j is guided by the following observations.
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Algorithm 7 Procedure for generating working tree

T = Tree formation({(Iwk , I
y
k )}Kk=1, [Jw, Jy])

INPUT: Cuts {(Iwk , I
y
k )}Kk=1. Root node [Jw, Jy] of subtree to be constructed.

1: if K = 0 then

2: Label [Jw, Jy] as open node. return.

3: if Iwk ⊆ Jw and Iyk ⊆ Jy for some k then . A cut is violated

4: Label [Jw, Jy] as fathomed node. return.

5: Label [Jw, Jy] as explored node.

6: Ñ = {i ∈ N : i ∈ (Iwk ∪ I
y
k ) \ (Jw ∪ Jy) for some k = 1, . . . , K}.

7: if (Strategy 1) then

8: vi := #{(Iwk , I
y
k ) : i ∈ Iwk ∪ I

y
k for some k = 1, . . . , K} for all i ∈ Ñ

9: Select j ∈ argmaxi∈Ñ{vi}.

10: else (Strategy 2)

11: Let sk = #{(Iwk ∪ I
y
k ) \ (Jwk ∪ J

y
k )} for all k.

12: Let s̄ = argmink{sk}.

13: vi := #{(Iwk , I
y
k ) : i ∈ Iwk ∪ I

y
k and sk = s̄ for some k = 1, . . . , K} for all i ∈ Ñ

14: Select j ∈ argmaxi∈Ñ{vi}.

15: Iw := {(Iwk , I
y
k ) : j ∈ Iyk , k = 1, . . . , K}.

16: Iy := {(Iwk , I
y
k ) : j ∈ Iwk , k = 1, . . . , K}.

17: if #Iw < #Iy then

18: Construct subtree for w-child: Call Tree formation(Iw, [Jw ∪ {j}, Jy]).

19: Construct subtree for y-child: Call Tree formation(Iy, [Jw, Jy ∪ {j}]).

20: else

21: Construct subtree for y-child: Call Tree formation(Iy, [Jw, Jy ∪ {j}]).

22: Construct subtree for w-child: Call Tree formation(Iw, [Jw ∪ {j}, Jy]).

23: return.
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(1) An open node [Jw, Jy] has the potential to become a fathomed node, namely

when φP (Jw, Jy) ≥ U . In that case, a single iteration of the algorithm suffices

to generate a cut to remove all leafs under [Jy, Jw]. So, in the most optimistic

outcome, the remaining number of iterations is equal to the number of open nodes

in the current B&B tree. Therefore, we aim at constructing a working tree with a

small number of open nodes.

(2) For every open node there is a fathomed node at the same or lower level since

its parent is explored. We therefore would like to generate a tree in which the

fathomed nodes are high up in the tree. This way, if the open node can be

immediately fathomed, the higher in the tree, the sparser it will be.

(3) The fathomed nodes that are identified by a given cut of cardinality l are at least

l levels down. Therefore, in the best case possible, all fathomed nodes should be

on the same level as the cardinality of the cut they are represented with.

(4) A complementarity that appears in no cut should not be chosen for branching.

Otherwise, all fathomed and open nodes would be pushed down by one level,

counteracting the goal described in observation (2) above.

Algorithm 7 proceeds recursively from the root node, calling itself for the generation

of the subtrees after branching on a complementarity. At the beginning it is called with

the root node and all available cuts, i.e., Tree formation({(Iwk , I
y
k )}Kk=1, [∅, ∅]). The

recursion is set up in a way so that only cuts are passed to the next level that are still

relevant for the generation of the subtree rooted at the incoming node, in the sense that

they could lead to a fathomed node. If no such cuts are available, the current node is

marked as open in Step 2. On the other hand, if there is a cut that is violated by the
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incoming node (see also (3.12)), then the incoming node is marked as fathomed. If neither

of those conditions are met, a branching complementarity needs to be chosen among those

that have not yet been branched on (in the set Ñ ).

We explore two different branching strategies. Strategy 1 chooses a complementarity

that appears in most of the cuts that are still relevant. In this way, we hope to keep the

level of the deepest fathomed node small, see observation 3 above.

The second strategy is based on the following observation: Suppose that there is a cut

that includes only one complementarity that has not yet been branched on. Choosing

this complementarity for branching would create one child node that can immediately

be fathomed, and we effectively reduced the complexity of the remaining subtree by

one complementarity in one shot. This observation motivates us to give priority to the

sparsest cuts, i.e., those that include the smallest number s̄ of remaining complementarities.

Steps 11–12 choose one of the complementarities that appears most often in the sparsest

cuts. In both strategies, if more than one complementarity satisfies the criteria above, then

we choose the one that appears first in a fixed priority list. In our implementation, this list

starts as the components, sorted in a descending order according to their complementarity

violation, obtained from solving the root node. The list is updated as the tree becomes

constructed along the path from the root to last chosen leaf.

Before calling the algorithm recursively to generate the subtree corresponding to the

new child nodes, Steps 15 and 16 remove the cuts that are irrelevant in the respective

subtree. Finally, the subtrees are generated.

3.2.1.7. Choosing an open node. Now that we specified how we define the working

tree based on the cuts in a given iteration, we need to choose one of its open nodes in
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order to generate a new cut. We do this by executing a variation of the tree generation

algorithm in the previous section.

In Algorithm 7, we set up the recursion in steps 17–22 so that the subtree with the

fewest remaining cuts is generated first. While this makes no difference for the final

working tree that is formed, it determines the order in which we encounter the open nodes.

Since fewer cuts typically lead to subtrees in which the fathomed and open nodes are closer

to its root, we are likely to find an open node quickly that is high up in the tree and has

the potential to result in a sparse cut. The search procedure executes Algorithm (7) and

returns the first open node that it encounters. Since the order of exploration prioritizes

smaller subtrees, this depth-first search is likely to find an open node quickly, close to the

root.

3.2.1.8. Choosing a piece. Once an open node [Jw, Jy] has been determined, the

algorithm requires a piece p and a path P as input for the cut generation procedure in

Algorithm 6. To be consistent with the current working tree, the path between [Jw, Jy]

and the root node is chosen according to the working tree determined by Algorithm 7. It

remains to choose a leaf corresponding to p that lies below [Jw, Jy], and the path between

that leaf and [Jw, Jy].

Our choice is guided by the observation that Algorithm 6 removes a complementarity

whenever φP (Ĩw, Ĩy) ≥ U , where (Ĩw, Ĩy) is the current trial cut in Algorithm 6. This

suggests that it is beneficial to choose a leaf p that has a large value of φP or is infeasible.

To determine such a piece, we solve the relaxation (3.6) corresponding to φP (Jw, Jy).

If φP (Jw, Jy) ≥ U , then the open node [Jw, Jy] is actually a fathomed node, and we can

generate a cut corresponding to it. Formally, we choose any piece p below [Jw, Jy] and
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any path from that piece to [Jw, Jy]. The first iterations of Algorithm 6 will then remove

all complementarities jl that are not in Jw ∪ Jy. In practice, we start Algorithm 6 from

(Iw, Iy) = (Jw, Jy) and avoid the unnecessary steps.

If φP (Jw, Jy) < U , then the relaxation for [Jw, Jy] must be feasible and has an optimal

solution (x̃, w̃, ỹ). We set, for all i ∈ N \ (Jw ∪ Jy) (i.e., all complementarities that have

not yet been branched on) ri = min{w̃i, ỹi} and order them in decreasing order. We now

choose the complementarities in that order, pick the w-branch toward the leaf if wi > yi

and the y-branch otherwise. If there is a tie and wi = yi > 0, we pick from the pre-chosen

order, and if there is a tie with wi = yi = 0, we choose the side with the larger multiplier.

This gives us the path and the leaf p.

3.3. Variations of the Logical Benders Algorithm

Recall that the logical Benders algorithm consists of two basic steps: Choose a piece

p ∈ F , and generate a cut (Iw, Iy) that excludes p from F . For each of them, we consider

different options, and we will compare their numerical performance in Section 3.4

3.3.1. Piece Selection

In (Bai et al., 2013), the authors found the new piece to explore using a black-box

satisfiability problem (SAT) solver, part of the SIMULINK packages available in MATLAB.

This approach has the disadvantage that it blindly selects a piece satisfying all cuts without

considering the implicit information embedded in these cuts. The method proposed in

Section 3.2.1.8 offers an alternative. Because it is based on a working tree it can choose a

piece (or leaf) that has the potential to lead to a cut that is quite sparse. More importantly,
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this procedure generates cuts that are consistent with the existing cuts in the sense that it

removes potentially many additional pieces from F instead of being redundant. We will

refer to the piece selection procedure described in Section 3.2.1.8 as the “tree-guided piece

selection”.

3.3.2. Generation of Sparse Cuts

In this section we describe and discuss three different approaches to obtain sparse cuts

which allow us to remove pieces that need not be explored. Cuts are constructed in a way

such that any piece p removed by it is guaranteed to satisfy φP (p) ≥ U . Recall that a cut

is an inequality determined by two disjoint subsets Iw, Iy ⊆ {1, . . . , nc} of the form

(3.14)
∑
i∈Iw

pi +
∑
i∈Iy

(1− pi) ≥ 1,

hence sparsifying a cut translates into finding smaller sets Īw and Īy with a certificate

that the primal relaxation φP (Īw, Īy) ≥ U .

The first approach, already introduced in Section 3.2.1.7, evaluates primal relaxations

in a sequential order given by a “virtual” B&B tree. The second one, formulates an

`1-norm minimization problem over the dual feasible region of the explored piece. Finally,

we propose a third alternative that combines the advantages of the first two options. A

detailed description of the methods follows.

3.3.2.1. Sequential Procedure. The general steps for the second sparsification method

have been described in Algorithm 6. Given a piece p and a predefined order of indices

j1 → j2 → j3 → . . . → jnc , we sequentially solve relaxations of this piece following the

order. Let us illustrate this procedure through an example.
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Example(Cont). Using the same problem as in example (3.2.1)

(3.15)

minimize −2x1 − x2 − x3

subject to xi ≤ 4 i = 1, 2, 3

xi = yi i = 1, 2, 3

∑
k 6=i xk − 3xi + 6 = wi i = 1, 2, 3

0 ≤ y ⊥ w ≥ 0,

suppose we are given piece p = (1, 0, 0), that is Iw = {2, 3} and Iy = {1}, and the path

from leaf to root is given by 3 → 2 → 1. We are also given the optimal upper bound

U = −9. Notice that φP (p) = −6, so the piece could be immediately removed with the cut

(Iw, Iy), but this cut will remove only p and no other piece. The sequential sparsification

procedure checks if we can do better. It first tries the relaxation φP ({2}, {1}), which has a

value of −6, so now we found a better cut. It then continues with φP (∅, {1}), again with a

value of −6, so the cut has been sparsified even further. It ends by trying out φP (∅, ∅) (i.e.,

the full relaxation) with a value of −16. This means that complementarity y1 = 0 cannot

be relaxed so index i = 1 remains on Iy. The final cut is therefore (∅, {1}). If we were

given the piece p = (0, 0, 1), with same path 3→ 2→ 1, the obtained cut will be (∅, {3})

due to symmetry of this example problem. This example is depicted in Figure 3.3. Dashed

and bold lines represent accepted and rejected relaxations of complementarities, respectively.

Bold circles correspond to fathomed nodes. Everything grayed out are nodes and branches

not observed yet.

Clearly, by construction, every cut (Iw, Iy) obtained from this procedure is minimal.
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Figure 3.3. Sequential sparsification in a B&B tree

This method can take advantage of a situation in which the tree-guided piece selection

finds an open node [Iw, Iy] with φP (Iw, Iy) ≥ U . It is clear that Algorithm 6 removes

all indices along the path from the leaf to [Iw, Iy], and so we save iterations by running

Algorithm 6 with an abbreviated path that starts at [Iw, Iy] instead of the leaf.

As mentioned earlier, this method guarantees that the resulting cut (Iw, Iy) is minimal,

but it could happen that node [Iw, Iy] does not exist in the current working tree, which

can be interpreted as if some branching decisions in the tree were not necessary, and hence

some fathomed nodes appear in levels lower than desired. This motivates the procedure

for the tree to be updated in every iteration, so that fathomed nodes (and consequently

open nodes) might be moved higher in the tree.

3.3.2.2. `1-norm Minimization. Let us first assume that a feasible piece p has been

selected from F by the piece selection procedure. As mentioned in Section 3.1.3.2, cuts

are closely related to the dual variables λw and λy in (3.7). A valid cut is obtained with

Iw = {i : λwi > 0} and Iy = {i : λyi > 0}. Hence, and alternative to find sparse cuts is to
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solve the following linear program:

(3.16) minimize
(µI , µE , λw, λy)∈ΩD(Īw,Īy)

∑
i∈Īw

λwi +
∑
i∈Īy

λyi ,

where Īw = Īw(p) and Īy = Īy(p). A solution (λ̂y, λ̂w) of this problem provides a valid cut

(Îw, Îy) with Iy := {i : λ̂yi > 0} and Iw := {i : λ̂wi > 0}, and it corresponding relaxation

has a value greater or equal than U . This condition is forced in the −bTI µI + bTEµE ≥ U

constraint, in the description of ΩD(Iw, Iy). The objective function is interpreted as the

`1-norm of variables λw and λy which intends to steer their components towards zero. In

a strict sense, to find a sparsest solution we should be using the `0-norm instead in the

objective, but then problem (3.16) becomes highly non-convex. Following (Candes et al.,

2008), we enhance the solution of (3.16) with an iterative re-weighting scheme. Given a

set of initial weights ω0 ∈ R|I
w|

+ and γ0 ∈ R|I
y |

+ , we set the iteration counter k = 0 and

solve the problem

(3.17) minimize
(µI , µE , λw, λy)∈ΩD(Iw,Iy)

∑
i∈Iw

ωki λ
w
i +

∑
i∈Iy

γki λ
y
i ,

and with the optimal solution (µ̂kI , µ̂
k
E, (λ̂

w)k, (λ̂y)k) of (3.17) we update the weights

ωk+1
i = 1

max{ε,(λ̂w)ki }
and γk+1

i = 1

max{ε,(λ̂y)ki }
, set k = k + 1 and resolve. The ε parameter

serves to ensure the weights are well defined in the circumstance and λ becomes zero In

our implementations, ε was set to 10−6. This iterative procedure gives a variable which

was close to zero in one iteration a larger weight in the next one and therefore it is more

likely to be pushed to zero. The method ends when two consecutive iterates are equal.

This procedure can be interpreted, as explained in (Candes et al., 2008), as sequentially
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minimizing linearizations of
∑

i log(λi) over ΩD and, hence, the closer to zero a variable is,

the steepest its slope becomes. In our experiments, this procedure converges very quickly,

requiring no more than 6 iterations even in the largest instances.

Under the circumstance that the tree-guided piece selection finds an open node [Iw, Iy]

with φP (Iw, Iy) ≥ U , we start the procedure directly with the index sets Iw and Iy,

provided the corresponding relaxation ΩD(Iw, Iy) is feasible.

Now consider the case in which the primal of the selected piece p ∈ F is infeasible. In

case the dual problem (3.7) is feasible, we can still follow the procedure above. However, if

(3.7) is infeasible, we formulate the `1-norm minimization problem over the homogenized

set ΩD0(I
w, Iy). Once the weighted iterative heuristic finishes in an unbounded ray

(µ̂I , µ̂E, λ̂
w, λ̂y), we check whether the corresponding primal relaxation became feasible. If

not we set Iy = {i : λ̂yi > 0} and Iw = {i : λ̂wi > 0} as the index sets of the newly found

sparse cut. Otherwise, we continue the `1-norm minimization on the corresponding dual

of the relaxed primal.

Although this method has the nice feature that it requires the solutions of just a few

LPs, it has no guarantees that it will produce a minimal cut. Consider the following very

simple example:

(3.18)

minλ λ1 + λ2

subject to λ1 + 2λ2 ≥ 3

2λ1 + λ2 ≥ 3

λ ≥ 0.
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If the initial weights are set to one, the procedure will converge in the second iteration to

(1, 1), although the sparsest solutions are (3, 0) and (0, 3).

This gives way for a third procedure to generate sparse cuts: the Hybrid method.

3.3.2.3. Hybrid method. Both presented sparsification procedures have their own sets

of advantages and downsides. The `1-norm minimization approach finds cuts quickly by

iteratively solving linear programs, which can even be hot-started in a primal simplex

algorithm since the feasible region does not change. But there is no guarantee that the

resulting cuts are minimal. On the other hand, the sequential procedure finds minimal cuts,

but it requires nc LP solves, making it too costly as the dimension of the complementarities

increases, even if solved with the dual simplex method to use hot starts as we did in our

implementation.

We can exploit the advantages of both methods in a hybrid sparsification procedure.

The approach consists of two steps: (1) the `1-norm minimization sparsification routine is

called to compute a cut (Iw, Iy) given by Iw := {i : λ̂wi > 0} and Iy := {i : λ̂yi > 0}, where

λ̂w and λ̂y are the outputs of the iterative re-weighting scheme, and (2) the sequential

sparsification steps along the path P are executed, assuming that the complementarities

in Iw ∪ Iy can be directly removed in Algorithm 6 without computations.

The underlying idea is that the `1-norm minimization already removes many comple-

mentarities from the cut, so that the sequential procedure does not need to go through all

components from the leaf to the root. A formal outline of the procedure is described in

Algorithm 8
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Algorithm 8 Hybrid Sparsification

1: Input: Piece p ∈ {0, 1}nc , a path P .

2: Set (Iw, Iy) = (Iw(p), Iw(p))

3: Solve problem (3.17) to obtain solution (λ̂w, λ̂y). . Solving (3.17)

4: Set Iw := {i : λ̂wi > 0} and Iy := {i : λ̂yi > 0}.

5: Let j1 ← j2 ← . . .← jL be the subset of the path P , such that {ji}Li=1 = Iw ∪ Iy.

6: for l = 1, 2, 3, . . . , L do

7: Set (Ĩw, Ĩy) = (Iw \ {jl}, Iy \ {jl}). ((Ĩw, Ĩy) is the parent of (Iw, Iy))

8: Solve (3.6) for (Ĩw, Ĩy)

9: if φP (Ĩw, Ĩy) ≥ U then

10: Set (Iw, Iy)← (Ĩw, Ĩy)

11: end for

12: Return (Iw, Iy) as minimal cut.

3.3.3. Remarks

We finish this section by pointing out some observations regarding the power of the

presented cut sparsification procedures.

• Throughout most of this chapter, as stated in section 3.2.1.2, we assumed we are

given the optimal value U of the LPCC and that the logical Benders algorithm is

used to certify optimality. It is only in this setting where we can claim that the

cuts generated by the sequential or hybrid methods are actually minimal cuts,

where minimality is considered with respect to the actual optimal value of (3.1).

This is clear by how these methods were designed. Under the circumstance that

the provided incumbent is not the optimal solution, the methods described in the

previous sections can be adopted. The only difference is that the upper bound
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needs to be updated whenever a piece p ∈ F is selected such that φP (p) < U .

Whenever these updates occur the cuts generated so far could potentially be

sparsified further, by replacing the newly found incumbent as value to be comparing

against, in ΩD and Algorithm 6. Keep in mind, though, that if resparsification of

a cut is called, for example, in the sequential or hybrid method, the path from

leaf to root (or subset of the path, to be more precise) to be considered will be

from the most recent “virtual” tree and not the one used when the corresponding

cut was generated. In this chapter, we do not consider resparsification and its

effectiveness remains to be investigated later.

• If the tree T is fixed throughout the whole algorithm, that is, the sequences of

branching decisions from every leaf to the root do not change, then the order in

which the pieces (leaves) are selected in the procedure is irrelevant. The set of

cuts at the end of the method is independent of this selection.

3.4. Numerical Results

This section contains various numerical experiments in order to show the effectiveness

and robustness of the proposed method. We solved instances with complementarity

dimension nc ranging from 25 to 1,000 and compared three different variants of the logical

Benders methods: (1) selection a piece p ∈ F via the black-box SAT solver combined

with splitting sparsification (“Splitting”), (2) Tree-guided piece selection with `1-norm

sparsification (“`1”), and (3) Tree-guided piece selection with hybrid cut generation

procedures (“Hybrid”).
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By “Splitting” sparsification we refer to the method introduced in Bai et al. (2013).

An initial cut (Iw, Iy) is obtained from the optimal solution of the dual piece (3.7), as

described in section 3.1.3.2. The dual vectors, λy and λw, are sorted in descending order

and the top half of the non-zero components of each vector are selected to form two sets

Ĩw and Ĩy. If φP (Ĩw, Ĩy) ≥ U , then Iw := Ĩw and Iy := Ĩy and the sparsification method

continues. Otherwise, the returned cut is (Iw, Iy).

As for the tree guided piece selection, it is set up so that if the open node [Iw, Iy] is

“fathomable”, meaning that its primal value lies above U , we follow Algorithm 5. That is,

we keep the cut (Iw, Iy).

The tested instances were generated following the steps described in Hu et al. (2008).

In their paper they used a slightly different structured LPCC, namely

(3.19)

minimize
x≥0,y

cTx+ dTy

subject to Ax+By >= f

0 ≤ y ⊥ q +Nx+My ≥ 0.

The procedure to generate instances is described below. After generating instances of this

type, converting to the structure of (3.1) is straightforward.

Instance Generator1

INPUT: Dimensions n, m and k, for x, y and f , respectively. Density value s.

OUTPUT: Matrices c, d, A, B, f , M , N and q.

1: Generate x ∼ Nn(0, 1). Set x = |x|.

2: Generate y ∼ Nm(0, 1). Set yi = 0 if yi < 0.
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3: Generate c ∼ Un(0, 1) and d ∼ Um(1, 3)

4: Generate A ∼ Uk×n(0, 1) and B ∼ Uk×m(0, 1) with density s.

5: Generate r ∼ DU({0, 1, . . . ,m})

6: Let sM = 2000−m
m2

7: Generate E ∼ Ur×(m−r)(−1, 1) with density sM .

8: Generate d1 ∼ Ur(0, 2) and d2 ∼ Um−r(0, 2).

9: Let D1 = diag(d1) and D2 = diag(d2).

10: Let M =

 D1 E

−E D2


11: Generate N ∼ Um×n(−1, 1).

12: Generate q ∼ Um(−20,−10)

13: Let f = Ax+By − |ε|, with ε ∼ Nk(0, 1).

The dimensions of our test instances follow the same patterns as in Hu et al. (2008):

[n,m, k] = [100, 100, 90], [300, 300, 200] and [500, 500, 450]. For the largest test set we

chose [n,m, k] = [1000, 1000, 200].

During our experiments we noticed some patterns which seemed to make a problem

harder or easier. For example, if coupling constraints were present (i.e. B 6= 0), the

method required more iterations on average to be solved, for the same dimension numbers.

Therefore, as part of our examination, we consider both the cases with and without coupling

constraints (by either setting B ∼ Uk×m(0, 1) or B = 0 in the Instance Generator).

1Notation: Nn(0, 1), refers to n draws from a standard normal distribution; Un(a, b), n draws from a
uniform distribution in the (a, b) interval, andDU({a1, . . . , am}), a uniform draw from the set {a1, . . . , am}.
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As explained in Section 3.2.1.2, we obtain a candidate optimal solution by solving

problem (3.10) first and then attempt to provide a certificate of optimality by solving the

“outer problem”. In this setting, we can immediately terminate if the solution of (3.10)

has an optimal solution lower than the outer relaxation. Therefore, we chose the big-M

parameter in (3.10) in a way such that the outer relaxation still provides a strict lower

bound to the optimal solution of (3.10).

The algorithms were coded in MATLAB R2016a, with calls to CPLEX 12.6 to solve all

MILP and LP problems. The experiments were run on a Windows 10 64-bit machine with

Intel(R) Core(TM) @2.7GHz and 16.0 Gb RAM. For a fair comparison, all experiments

were run with a single thread.

We compare the number of main iterations (number of times a piece p ∈ F is selected)

and total CPU time required by the different variants of the logical Benders method. It

is important to point out that CPU time must not be taken too seriously, since it is not

clear if hot-starts, in the MATLAB/CPLEX inter-phase, works as efficient as it could. We

are not reporting the CPU time it takes to solve the big-M formulation (3.10) described

in Section 3.2.1.2, since that time is the same for every method. Additionally the total

number of simplex iterations is provided. We consider the number of main iterations as a

reflection of the quality of both the pieces selected and the cut generated, so it is our main

metric to observe. Still, generating strong cuts and finding strong new pieces to explore

comes at the expense of CPU time. We complement the tables with charts to give a visual

representation of the trade-offs between runtime and number of iterations. We analyze

the experiments from smallest to largest. Unless otherwise noted, the instances include

coupling constraints.
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The two first sets of instances (nc = 25 and nc = 50) are using a big-M value equal

to 10, and its metrics are shown in tables 3.1 and 3.2, and figures 3.4 and 3.5. We see

that for nc = 25, all instances are solved within 1 second. Notice though that the number

of main iterations is always the smallest for the hybrid approach. This is an expected

(and desired) behavior among all instances and sizes that we will observe, since the hybrid

method is built so that generated cuts are as sparse as they can get, and so they translate

into requiring less cuts to explore or discard all pieces.

On instances of size 50, we observed that some instances (instances 3, 8, 9 and 10)

did not finish within a 3 hour threshold, for the SAT-Splitting combination, represented

by the dashed gray line in the plots. Therefore, we incorporated an alternative method

consisting of the tree-guided piece selection replacing the SAT solver, alongside the Splitting

sparsification. This method is represented by the continuous yellow line and will be further

on referred to as “Splitting” (i.e. we no longer select a piece p ∈ F with the SAT solver

for larger complementarity dimensions). It can still be seen that Hybrid seems to be the

dominating method in most of the instances, in terms of number of main iterations and

time.

At a first glance, switching the piece selection method should not make any difference,

but it actually does. The main advantage the tree-guided method has over SAT is that it

checks whether the recently found open node can be fathomed immediately. In that case,

no piece is selected and a cut is immediately generated, removing every single leaf under

this node from subsequent piece selections. In the SAT selection case, a piece must be

chosen every time, and the sparsification method (any sparsification method whatsoever)

might fail to identify the same cut, and could therefore not remove all leaves as in the
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tree-guided case. This way, the overall algorithm will require more iterations to explore

the full set of complementarity pieces. We observed in our experiments that, on instances

where the number of iterations of SAT piece selection differed from Tree-guided by a

large margin, both with Splitting sparsification, the percentage of iterations where the

encountered open node was fathomable was greater than 70%.

We noticed also that instance 3 was a “hard” problem to solve. Apparently the culprit

of this problem being hard lies on the fact that the incumbent found while solving the

MILP (3.10) was not optimal for the original problem (3.1), meaning that the upper bound

had to be updated during the procedure which implied some cuts were not necessarily

minimal. This was also observed in the larger instances: whenever the MILP (3.10) did

not return the optimal value for (3.1), the Splitting method had trouble solving it. Finally,

it is worth mentioning some anomalies that we observed in these experiments. Although

SAT-Splitting did not solve 4 out of 10 instances of size nc = 50, in the remaining ones it

showed small CPU times. Contrary to our intuition, on instances 1, 4 and 7, it showed

higher number of iterations, but less CPU time than the Splitting (with tree-guided piece

selection). When we checked the CPU times at a lower level, we noticed that most of the

time differences were concentrated in the sparsification procedure, rather than in the piece

selection process.

For the next two instances (sizes nc = 100 and nc = 300), we increased the value of the

big-M parameter to 100. Here we start observing the actual effectiveness of our proposed

cut generation methods compared to the Splitting method. The graphs on Figure 3.6

illustrate how the Splitting method struggles to maintain the number of main iterations

low for some instances with 100 complementarities. This becomes more evident in Figure
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Table 3.1. Metrics for 25 complementarities

Instance
Main iterations CPU times (s) Simplex Iterations

Hybrid Splitting `1 Hybrid Splitting `1 Hybrid Splitting `1
1 8 13 12 1.38 0.17 0.82 404 576 245
2 3 3 3 0.33 0.04 0.20 116 141 108
3 1 1 1 0.08 0.01 0.06 77 36 77
4 4 9 6 0.32 0.07 0.30 299 689 174
5 7 6 7 0.59 0.04 0.41 340 246 220
6 14 30 19 1.16 0.23 1.57 1202 3433 1025
7 3 3 3 0.21 0.01 0.21 239 178 181
8 2 5 2 0.13 0.07 0.09 127 309 121
9 2 3 2 0.13 0.02 0.13 113 158 108
10 2 4 2 0.12 0.02 0.11 109 109 100

Figure 3.4. Number of iterations and CPU times for problems with 25 complementarities
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Table 3.2. Metrics for 50 complementarities

Instance
Main iterations CPU times (s) Simplex Iterations

Hybrid Splitting `1 Hybrid Splitting `1 Hybrid Splitting `1
1 5 6 5 0.37 0.67 0.34 821 408 642
2 8 8 9 0.66 0.83 0.66 1646 780 1172
3 25 163 25 3.70 107.11 3.18 6705 6620 4032
4 16 17 15 1.54 1.96 1.23 2048 1119 1867
5 24 12 35 2.70 1.24 5.41 4341 1329 2801
6 7 9 7 0.52 0.73 0.40 906 606 664
7 8 9 8 0.44 0.62 0.49 771 367 623
8 17 19 22 1.37 1.93 2.05 3330 1620 2363
9 17 29 59 1.45 3.76 18.29 3289 1808 2168
10 12 16 30 0.96 1.63 3.82 2437 1182 1629
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Figure 3.5. Number of iterations and CPU times for problems with 50 complementarities
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3.7, where the Splitting method fails to certify the optimal solution within 500 iterations

in two instances, whereas both Hybrid and `1 manage to keep this metric below 50. As in

the smaller dimensions, the difficult instances were those in which the starting incumbent

was not the global optimum. An intuitive reason is that Hybrid is more capable of dealing

with non-optimal incumbents, since it treats each complementarity component individually.

On the contrary, Splitting rejects a split if it lies below the incumbent (so the higher the

incumbent, the more likely the rejection is), and therefore it could fail to find a cut slightly

less sparse than the one obtained by accepting the split. We also see that Hybrid does

not provide any extra benefit compared to `1 in terms of iterations as they differ by at

most one. This could mean that `1 already found minimal cuts and, hence, calling the

sequential procedure was unnecessary. We verified the generated cuts on each iteration

and saw that the difference on sparsity level between Hybrid and `1 was no larger than 2.

With respect to CPU times, on the instances where all methods perform on par (in terms

of iterations), Splitting is always the fastest among all three. This is expected, since in

the “worst” case it only requires log(nc)
log(2)

LP solves, per iteration. 2

2We write “worst” within quotes because if this case happens, the cut would have sparsity at most 2, i.e.,
very sparse.
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Table 3.3. Metrics for 100 complementarities

Instance
Main iterations CPU times (s) Simplex Iterations

Hybrid Splitting `1 Hybrid Splitting `1 Hybrid Splitting `1
1 8 10 8 0.40 0.30 0.58 3408 2219 2294
2 5 9 5 0.19 0.20 0.21 1539 863 1271
3 2 2 2 0.07 0.09 0.07 542 256 534
4 8 19 8 0.52 0.74 0.42 5066 4128 3663
5 5 6 6 0.18 0.16 0.22 1577 699 1197
6 4 4 4 0.13 0.07 0.10 806 350 617
7 7 7 7 0.19 0.15 0.16 1388 613 1113
8 11 20 11 0.37 0.49 0.34 2669 2048 1946
9 6 26 6 0.30 0.73 0.23 3299 3637 2492
10 13 90 13 0.52 7.08 0.44 4527 4130 2890

Figure 3.6. Number of iterations and CPU times for problems with 100 complementarities
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Table 3.4. Metrics for 300 complementarities

Instance
Main iterations CPU times (s) Simplex Iterations

Hybrid Splitting `1 Hybrid Splitting `1 Hybrid Splitting `1
1 8 22 9 2.72 0.56 2.95 15019 13400 11233
2 14 32 14 3.67 0.91 4.5 18400 20327 12413
3 13 15 14 5.13 0.72 2.99 32256 14742 25223
4 43 774 44 10.39 0.92 963.57 58607 62231 37107
5 5 5 5 1.52 0.44 1.01 8591 3500 6811
6 32 956 31 8.66 0.9 937.55 53802 71741 34494
7 5 5 5 1.26 0.15 0.75 8486 3218 6566
8 6 7 6 1.57 0.45 1.06 8987 4464 6355
9 10 10 10 2.6 0.59 1.56 14715 6100 11599
10 9 20 9 2.88 0.75 2.54 16457 11787 11388
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Figure 3.7. Number of iterations and CPU times for problems with 300 complementarities
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For the two final sets of instances, the big-M value was set to 1,000. Again we observe

the same pattern as before for the nc = 500 case (Table 3.5 and Figure 3.8). That is,

instances where the incumbent was not globally optimal lead to a drastic increase of

iterations for the Splitting method (instances 1, 4 and 7). Hybrid and `1 still dominate

Splitting across every instance in terms of iterations, and this dominance is reversed when

it comes to CPU times, over instances where the solution was found by the MILP 3.10.

The last set of instances, with 1,000 complementarities, did not have coupling con-

straints. We removed them from the problem, since otherwise no method was able to

certify optimality within a 3 hour frame. Once removed, the MILP managed to find the

optimal solution on all tested instances. This is reflected in the fact that the worst case in

terms of number of iterations does not exceed 100, as opposed to the worst cases of the

instances with nc = 500, which went up to 300 or higher. This situation clearly benefits

the splitting method since it dominates all but one instance in CPU time. Similar to most

of the instances from nc = 100 going up, Hybrid does not seem to provide any benefit over

`1, and both still have the least number of iterations.
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Table 3.5. Metrics for 500 complementarities

Instance
Master Problem solves CPU times (s) Simplex Iterations
Hybrid Splitting `1 Hybrid Splitting `1 Hybrid Splitting `1

1 15 779 19 18.23 666.03 19.87 62248 237100 61179
2 3 3 3 5.71 2.62 4.77 18716 7005 16586
3 24 38 24 31.13 12.17 23.28 87553 33059 73341
4 32 436 36 48.16 176.53 37.79 132792 132965 127914
5 9 39 9 8.74 13.92 6.79 25065 38018 21385
6 5 5 5 7.73 2.91 5.59 21829 8500 21079
7 36 352 36 21.90 145.16 17.44 63170 65090 50046
8 16 16 16 7.69 3.11 6.69 23432 8973 20947
9 16 24 15 25.28 15.00 19.16 87414 50092 68912
10 16 21 16 20.26 10.22 18.95 74530 32813 65303

Figure 3.8. Number of iterations and CPU times for problems with 500 complementarities
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Table 3.6. Metrics for 1,000 complementarities

Instance
Master Problem solves CPU times (s) Simplex Iterations
Hybrid Splitting `1 Hybrid Splitting `1 Hybrid Splitting `1

1 27 27 34 749.52 368.42 663.94 149942 68631 127612
2 5 5 7 241.65 142.6 249.7 52276 31915 46253
3 23 23 31 490.41 372.29 424.92 93523 61562 78646
4 10 10 79 362.85 471.6 322.66 77212 78384 68079
5 2 2 2 100.01 49.67 103.19 22888 11156 21650
6 2 2 2 75.68 52.62 103.46 22606 10679 21660
7 14 14 14 201.1 98.4 173.3 36638 16783 33025
8 4 4 4 170.42 71.71 152.72 32888 15603 32323
9 14 14 25 461.24 231.38 394.66 90894 46970 78922
10 6 6 6 263.82 100.32 217.81 46178 21848 43533
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Figure 3.9. Number of iterations and CPU times for problems with 1,000
complementarities
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3.5. Conclusions and Future Research

We introduced a different interpretation to the logical Benders approach for solving

LPCCs from the perspective of branch-and-bound methods and exploited this relationship

to provide a new way to select pieces and generate cuts. Numerical results showed that

this method is more robust in the sense of keeping a consistent number of iterations

along instances of the same size, even when the optimal solution is not provided, but at

the expense of more time spent in the sparsification process. We also showed that the

tree-guided approach for the piece selection outperforms the black-box SAT solver, which

indicates that piece selection is indeed an important driver for the performance of logical

Benders.

Future research considers the extension of this branch-and-bound framework to Binary

Constrained Quadratic Programs with Linear Complementarity Constraints (BCQPCCs).

Some preliminary ideas are given next.
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3.5.1. Binary Constrained Quadratic Programs with Linear Complementarity

Constraints

The straightforward way to convey binary variables via complementarities is by writing a

constraint of the form

0 ≤ z ⊥ 111− z ≥ 0

and treat it as an additional set of complementarities, but this is a very inefficient

formulation. An alternative to this is explained below.

To keep the same format of (3.3), we split the variable y = (yc, yb) and the piece (pc, pb)

to represent the complementarity and binary pieces. We define the complementarity and

binary sets, Iw := Īw(pc), Iy := Īy(pc), I0 = Ī0(pb) := {i : pbi = 0} and I1 = Ī1(pb) := {i :

pbi = 1}, in a similar way: The extension to BCQPCCs of each piece can then be written
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as follows.

(3.20)

φP (p) = minimize
x, y, w

gTx+ 1
2
xTQx

subject to AIx+Bc
Iy
c +Bb

Iy
b + CIw ≤ bI (µI)

AEx+Bc
Ey

c +Bb
Ey

b + CEw = bE (µE)

wi ≤ 0, i ∈ Iw (λwi )

yci ≤ 0, i ∈ Iy (λyj )

yb ≤ 111 (λb)

ybi ≤ 0, i ∈ I0 (λ0
i )

−ybi ≤ −1, i ∈ I1 (λ1
i )

w, y ≥ 0.

With a similar argument as in section 3.1.3 we can construct a cut (I0, I1, Iw, Iy) of the

form:

(3.21)
∑
i∈Iw

pci +
∑
i∈Iy

(1− pci) +
∑
i∈I0

pbi +
∑
i∈I1

(1− pbi) ≥ 1.

If the primal was infeasible, we already discussed that the homogenized dual must be

unbounded with λw and λy extended with zeros as in (3.9). We can replicate this with λ0
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and λ1.

(3.22)

φD0(p) = maximize
µI , µE , λw, λy , λ0, λ1

−bTI µI + bTEµE + 1Tλ1 − 1Tλb

subject to −ATI µI + ATEµE = 0

−Bc
I
TµI +Bc

E
TµE − λy ≤ 0

−Bb
I
T
µI +Bb

E
T
µE − λb − λ0 + λ1 ≤ 0

−CT
I µI + CT

EµE − λw ≤ 0

(pc)Tλw + (1− pc)Tλy = 0

(pb)Tλ0 + (1− pb)Tλ1 = 0

µI , λ
w, λy, λb, λ0, λ1 ≥ 0

The sixth constraint implies 1Tλ1 = (pb)T (λ1 − λ0), therefore, an unbounded ray

(µ̂I , µ̂E, λ̂
w, λ̂y, λ̂0, λ̂1, λ̂b) implies

(3.23) bTEµ̂E − bTI µ̂I − 1T λ̂b + (pb)T (λ̂1 − λ̂0) > 0,

Hence any binary variable pb which violates

(3.24) bTEµ̂E − bTI µ̂I − 1T λ̂b + (λ̂1 − λ̂0)Tpb ≤ 0
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will have an infeasible primal problem. Inequality (3.21) can be rearranged in the following

way. Let us define

r̂ := bTEµ̂E − bTI µ̂I − 1T λ̂b(3.25)

ĝ := max
{
−λ̂1 + λ̂0, 0

}
(3.26)

ĥ := max
{
λ̂1 − λ̂0, 0

}
(3.27)

So, (3.24) can be rewritten as

(3.28) r̂ ≤ ĝTpb − ĥTpb

If we add 1T ĥ on both sides and noticing the resulting left hand side is positive due to

(3.23), then (3.24) ends up being

(3.29) 1 ≤
(

ĝ

r̂ + 1T ĥ

)T
pb +

(
ĥ

r̂ + 1T ĥ

)T

(1− pb).

By defining ḡ := min
{

ĝ

r̂+1T ĥ
, 1
}

and h̄ := min
{

ĥ

r̂+1T ĥ
, 1
}

, this cut can be strengthened

further:

(3.30) 1 ≤ ḡTpb + h̄T (1− pb).

Therefore, the combined cut to remove pc and pb is

(3.31)
∑
i∈Iw

pci +
∑
i∈Iy

(1− pci) +
∑
i∈I0

ḡip
b
i +
∑
i∈I1

h̄i(1− pbi) ≥ 1.
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A nice feature of this new cut is that the sums keeps the same structure as the original

cuts, so sparsification still consists on finding subsets of I0, I1, Iw and Iy such that the

primal relaxation lies above the current incumbent.

A similar argument and computation can be done when the primal has a finite optimal

solution which lies strictly above the upper bound U . We can add a constraint which

forces the linearization of the objective to be smaller than U , making the new primal

infeasible. We can therefore proceed in the same way as with the homogenized dual to

create the cut.

To fit the BCQPCC in our logical Benders/B& B framework two main questions need

to be addressed.

(1) How to modify the piece selection method to capture the strengthened cuts. Since

these new cuts have weights smaller than one, the relationship between fathomed

nodes and cuts is not as clear as in Section 3.2.1.3. It seems that Algorithm 7

should still work with a slight modification on steps 15 and 16, where the index

sets are updated.

(2) How to modify the `1-norm formulation (3.16) to include the constraint which

forces the quadratic objective to be greater than the incumbent. Notice that now

this formulation will have a quadratic constraint, so now performing the iterative

procedure is not as efficient as when the objective was linear. One idea is to force

the linearization of the quadratic objective around the optimal primal solution to

be greater than the incumbent. Although this constraint is weaker than using the

quadratic term, it recovers the `1-norm formulation with only linear constraints.
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Since this linearization makes the primal infeasible, we can always start solving

the homogenized formulation of (3.16).
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CHAPTER 4

Stochastic Linear Programs with Complementarity Constraints

4.1. A Global-Local Method for Stochastic Linear Bilevel Programs with

Applications on the Network Newsvendor Problem

4.1.1. Introduction

This chapter presents a numerical study of a global-local algorithm to solve Stochastic

Linear Bilevel Problems (SLBLP) of the form

(4.1)

min
x,y

cTx+ Eξ[dTyξ]

s.t. x ∈ X

yξ ∈ arg min
z
{hT z : z ∈ C(x, ξ)}, ξ ∈ Ω,

where x ∈ Rs
+, yξ ∈ Rds

+ , for all ξ ∈ Ω and Ω represents the sample space of the (continuous)

random variable ξ. The sets X and C(x, ξ) are assumed to be polyhedra for every x and

ξ. We specifically consider the Bilevel Network Newsvendor problem, an extension to

the classical inventory problem. By reformulating (4.1) as a Stochastic Mathematical

Program with Complementarity Constraints (SMPCC), the structure of the algorithm can

be divided in two parts: (1) obtain an initial candidate solution x by globally solving a

small, subsampled version of the SMPCC, (2) steer x towards good approximations of

global solutions on a much larger sample.
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We start this chapter with a review of bilevel programs, mathematical programs with

equilibrium constraints, and mathematical programs with complementarity constraints,

and their corresponding linear and stochastic versions.

4.1.1.1. Overview. Bilevel programming problems (BLP) are hierarchical mathematical

problems with two distinctive variables, x and y, where the vector y is to be chosen as an

optimal solution y = y(x) of an optimization problem parametrized in x, that is,

(4.2) min
x,y
{F (x, y) : G(x, y) ≤ 0, y ∈ Ψ(x), x ∈ Rnx}

where

(4.3) Ψ(x) = arg min
y
{f(x, y) : g(x, y) ≤ 0, y ∈ Rny}.

Problems (4.2) and (4.3) are known as the leader’s and the follower’s problems, respectively.

We will refer to the problem defining Ψ as the inner level problem, and to (4.2) as the

outer level problem. The feasible region of the inner level problem, for any given x, will

be denoted C(x) := {y ∈ Rny : g(x, y) ≤ 0}.

Bilevel programs have many applications in several fields, for example, transportation,

economics, energy systems. For a complete review of applications, please refer to (Dempe,

2003). Bilevel programs are a particular case of the more general Mathematical Programs

with Equilibrium Constraints (MPEC), where the feasible region for y is expressed through

a variational inequality; that is, the point-to-set mapping is defined as Ψ(x) := {y ∈

C(x), HT (x, y)(y − ŷ) ≥ 0, for all ŷ ∈ C(x)}. In the situation where the mapping H

corresponds to a gradient of some C1 function, that is, H = ∇yf , then the MPEC is

equivalent to a BLP.
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If the inner level problem presents suitable constraint qualifications, we can state the first

order optimality conditions which leads to a Mathematical Program with Complementarity

Constraints (MPCC). In that case, Ψ(x) := {(y, µ) : ∇yf(x, y) + µT∇yg(x, y) = 0, µ ≥

0, g(x, y) ≤ 0, µTg(x, y) = 0}. Notice that now Ψ(x) consists of both primal and dual

variables y and µ of the inner level problem. It is important to emphasize the need

for constraint qualifications when formulating a BLP as an MPCC, since it is not true,

opposed to the MPEC case, that BLP is a particular case of MPCC. In (Dempe and

Dutta, 2012), the authors show an example where the only (global) solution to a BLP

cannot be obtained by solving its MPCC counterpart. The culprit of this discordance is,

precisely, the lack of constraint qualifications in the inner level problem at the optimal

x. When dealing with linear bilevel problems (LBLP), i.e., F,G, f and g are linear, then

LBLP can indeed be formulated as a Linear Program with Complementarity Constraints

(LPCC). This relationships between different programs allows us to justify the method to

be presented. In what follows, we will assume all functions are affine linear and that H is

the gradient mapping of f in the MPEC characterization (its corresponding problem is

denoted LPEC).

Allowing uncertainty in the parameters defining functions F,G, f and g, we obtain an

SLBLP. The setting of the stochastic version we are interested in is the one expressed

in (4.1). The structure of this SLBLP has here-and-now outer level and wait-and-see

inner level decisions. This means, from a leader-follower perspective, that the followers

make their decision with full information, i.e., they know the value of both x and ξ, while

the leader must make her decision before the realization of the random variable. Any

optimal solution (x, y) of this problem is known as an equilibrium, meaning that no agent
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can benefit by unilaterally changing her decision. From now on, the prefix “S” on every

acronym will stand for “Stochastic”.

Many of the theoretical results for SLBLP are analyzed through SLPECs. These were

first introduced by (Patriksson and Wynter, 1999), where the authors provide a simple

chart which illustrates equivalences, generalizations and particular cases, between the

problems mentioned above. We replicate this chart below as a visual aid. The relationship

A ⊂ B implies that A is a special case of B.

[LPCC] ⊂ [SLPCC]
∪ ∪

[SBLP] ⊃ [BLP] ⊃ [LBLP] ⊂ [SLBLP]
∩ ∩ ∩ ∩

[SMPEC] ⊃ [MPEC] ⊃ [LPEC] ⊂ [SLPEC]

In the same paper, conditions for the existence of optimal solutions of SMPECs were

stated in the absence of outer level coupling constraints (i.e. G(x, y) := G(x)). Later,

in Evgrafov and Patriksson (2004), these conditions were generalized to SMPECs with

coupling constraints, and imposing measurability assumptions on the uncertain parameters.

The standard approach to solve stochastic problems is to perform a finite, but large,

number of draws from Ω and replace the (continuous) expectation with a sample average.

This is known as the Sample Average Aproximation (SAA). In the works of (Shapiro, 2006;

Shapiro and Xu, 2008) and (Xu and Jane, 2011), convergence results were stated with

regards to stationary points of the SAA to the set of stationary points of the true SMPEC.

In Shapiro (2006) and Xu and Jane (2011), the results are for here-and-now formulations,

while in Shapiro and Xu (2008), the authors prove them for the inner level wait-and-see

version. In this last paper, results over the rate of convergence of the optimal values are

also stated. These convergence results motivate the numerical experiments presented in
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this chapter. Namely, that it is justified to search for local optima of the SAA formulations

since they should be, for a sufficiently large sample, close to some local solution of the

original SLPEC. In the following section we describe the standard methods to solve these

kinds of problem and introduce the method we use in our experiments.

4.2. Solving SLBLP via SLPCC

For the remaining of this chapter we will assume that C(x, ξ) := {y : Ay ≤ bξ−Bx, y ≥

0}, where A ∈ Rk×ny , B ∈ Rk×nx , and bξ ∈ Rk is a vector dependent on the random

variable ξ. That is, the outer level variable x and ξ only have an effect on the right-hand

side of the inner level polyhedron. Under the circumstance that the inner level problem

has multiple solutions, two different formulations are usually implemented: “Optimistic”

where the inner level solution chosen is the one that benefits the leader the most, and

“Pessimistic”, where the worst possible option for the leader is selected. The work presented

in this chapter assumes the optimistic setting. We can equivalently write the primal-

dual optimality conditions for linear programs on every scenario to obtain the following

reformulation as an SLPCC.

(4.4)

min
x,y,µ

cTx+ Eξ[dTyξ]

s.t. x ∈ X

0 ≤ µξ ⊥ bξ − Ayξ −Bx ≥ 0

0 ≤ yξ ⊥ h+ ATµξ ≥ 0

 ξ ∈ Ω,

where µξ corresponds to the dual vector of the lower level subproblem.
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Several efforts have been made towards solving general stochastic MPCCs. In their

paper, Lin and Fukushima (2005) present a regularization method for a here-and-now

SLPCC, assuming the random variables have a discrete support, where the authors replace

the complementarity condition by a smooth approximation parameterized by ε. They

prove that as ε approaches zero, the accumulation points of the solutions are feasible

for the SLPCC. Moreover, if constraint qualifications are satisfied in the limit point (not

considering the complementarity constraints), then it is strongly stationary. Moving to

the continuous random variable case, Xu (2006) provides convergence results for methods

which combine smoothings of NCP functions and an implicit function y(x) to represent

the complementarities as a system of non-linear equations. They show that the solutions

to these smooth reformulations converge to a stationary point of the SMPCC when

the smoothing paramenter goes to zero. Birbil et al. (2006) outline a set of sufficient

conditions for which (weakly, C, strongly)-stationary points of the SAA version of the

MPCC gets almost-sure convergence to (weakly, C, strongly)-stationary points of its

stochastic counterpart. In (Lin et al., 2009), the authors extend the previously mentioned

results, for SAA convergence and implicit smoothing, to wait-and-see formulations. A

detailed survey of these findings can be found on (Lin and Fukushima, 2010).

When derived from an LBLP, the SLPCC can be reformulated as a mixed-integer LP

(MILP), by incorporating a binary variable zi for each complementarity component i and

a sufficiently large parameter M . Usually the value of M is not known before-hand, so

the selection of this big-M needs to be done carefully. It must be large enough so it does

not rule out optimal solutions of the inner level problem, but not too large so it may lead

to computational difficulties. Although solving the MILP formulation guarantees finding
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a global solution to the SLPCC, doing so is prohibitively expensive when the number of

scenarios is even moderately large. Hence, the alternative is to look for good local optimal

solutions which is already a challenging problem due to the highly non-convex structure of

the feasible region.

Besides the implicit smoothing techniques mentioned earlier, several other methods

for finding local solutions of MPCCs have been developed. To mention a few, we can

identify those which solve the problem directly with a sequential quadratic programming

(SQP) approach (Fletcher* and Leyffer, 2004; Fletcher et al., 2006). There are also some

works which attempt to solve the LPCC via interior point methods, such as (Leyffer et al.,

2006), which are generally more efficient for large scale problems. Drifting from these two

classical approaches for non-linear programming, we can identify: (1) (Leyffer and Munson,

2007), which combines a linearization of the MPCC to search for descent directions, and a

filter method. The authors prove the method to be globally convergent to B-stationary

points that, as seen in Chapter 2, Proposition 2.1.2, coincide with local optima in LPCCs,

(2) (Fang et al., 2012), a simplex-like method generalized to LPCCs, where the pivoting

conditions guarantee that the iterates always remain feasible. They also show a way to deal

with degeneracy and present a procedure to avoid cycling when the iterate is B-stationary,

but not strongly stationary. Finally, Jara-Moroni et al. (2016) solve the LPCC by means

of the difference-of-convex algorithm (DCA) and propose enhancements to each presented

decomposition, as described in Chapter 2. One important feature of the enhancement of

the piece-wise linear decomposition is the clever selection of subgradients of the concave

part when non-strict complementarities are present. This selection allowed the method to

escape weakly stationary points efficiently.
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4.2.1. A Global-Local Method

As mentioned in Section 4.1.1.1, the standard approach to solve SLPCC is via the SAA,

that is, a large, finite sample ΩN := {ξ1, . . . , ξN} is drawn from Ω, and the discretized

SLPCC is solved,

(4.5)

min
x,y,µ

cTx+
1

N

N∑
i=1

[dTyξi ]

s.t. x ∈ X

0 ≤ µξi ⊥ bξi − Ayξi −Bx ≥ 0

0 ≤ yξi ⊥ h+ ATµξi ≥ 0

 i = 1, . . . , N.

We will refer to this problem as the SAA-LPCC. It was also mentioned that stationary

points of this SAA-LPCC get closer to the stationary points of the original stochastic

problem as the sample size N grows larger, but solving such a large problem is hard. Our

global-local method consists of drawing a subsample Ωn ⊂ ΩN , of size n << N sufficiently

small so that we can solve to global optimality a smaller SLPCC discretized according

to the subsample Ωn. This smaller SLPCC will be referred to as SS-LPCC (SS, as in

subsample). It provides an outer level candidate decision x, for which we can compute

optimal solutions (yξ, µξ), of the inner level problem, for every scenario ξ ∈ ΩN . This

vector (x, (yξ, µξ)ξ∈ΩN ) can be used as the starting point for the local solver (e.g. the

DCA) for (4.5), with the intention that it finds a good approximation for global optima.

Under the circumstance that the big-M of the MILP formulation is not known, we

could use any of several other methods to compute global solutions. Bard and Moore

(1990) suggest a branch-and-bound procedure, where the branching is performed on the
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complementarities. This idea is later extended in Yu (2011) and Yu et al. (2018) to a branch-

and-cut scheme. The authors also provide an extensive review of different complementarity

branching strategies, based on traditional strategies from the IP literature. Other methods

rely on cut generation techniques, for example, Hu et al. (2008) and its extension described

in Chapter 3, both based in a logical Benders framework. This approach has also been

studied for Q(uadratic)PCCs in Bai et al. (2013).

4.3. The Network Newsvendor Problem

In this section we introduce the problem used for our numerical experiments. It is

an extension of the classical inventory problem, known as the newsvendor problem, to

multiple vendors and sources of demand. Later in this chapter we present the “alternating

weights” technique tailored for this problem.

Consider a set of s store nodes, S, and a set of d demand nodes, D, spread in a

2-dimensional plane. For each store the inventory level must be chosen for a specific

product for which demand is uncertain. Once the inventory is decided, demand reveals

itself at the demand nodes and must be satisfied either by the supply on any of the s

stores, or by a competing company with unlimited supply. This problem will be denoted

as the Network Newsvendor Problem (NNP). It can be viewed as a second step of the

well known capacitated facility location problem where a set of locations has already been

chosen and the remaining decision is the capacity on each of these selected locations. As

in the traditional newsvendor problem, there is a cost associated to purchasing a unit of

the product (adding it to the inventory) and a price related to the selling of it.
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In the bilevel formulation of this problem, the leader acts as the agent making the

decision about the inventory level of each store. The follower is a fictitious aggregate

customer who solves a transportation problem between customers and facilities to satisfy

demand at a minimum cost. Each unit of capacity added to a store j ∈ S incurs a cost

of cj. If a unit of the product is sold from facility j, the leader gains a unit revenue of

rj. The shipping cost to send one unit from facility j to customer i ∈ D is given by cij

and the demand of customer i, which we will assume to be stochastic, is given by ξi. We

distinguish the unit capacity cost cj from the shipping cost cij by the number of subscripts

utilized. We assume that the values of ξi are independent and uniformly distributed within

a closed bounded interval Ωi, and hence Ω =
∏

i∈D Ωi. The decision of the inventory level

on location j is represented by a non-negative continuous variable xj. The number of

products that customer i buys in store j is a non-negative continuous variable yij. The

fictitious customer at demand location i also has the option to buy from competing supplier

at a cost ρi. The corresponding amount is denoted wi. The mathematical formulation of

the inner problem for fixed x and scenario ξ is therefore:

(4.6)

miny,w
∑
i∈D
j∈S

(cij + rj)yij +
∑
i∈D

ρiwi

s.t.
∑
j∈S

yij + wi ≥ ξi, i ∈ D

∑
i∈D

yij ≤ xj, j ∈ S

y, w ≥ 0.
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The overall bilevel NNP formulation is as follows:

(4.7)

min
x,y,w

∑
j∈S

cjxj − Eξ

∑
i∈D
j∈S

rjy
ξ
ij


s.t. 0 ≤ xj, j ∈ S

yξ ∈ arg miny,w
∑
i∈D
j∈S

(cij + rj)yij +
∑
i∈D

ρiwi

s.t.
∑
j∈S

yij + wi ≥ ξi, i ∈ D

∑
i∈D

yij ≤ xj, j ∈ S

y, w ≥ 0


ξ ∈ Ω.

The first constraint of the inner problem requires demand to be satisfied for all customers,

and the second ensures that a facility cannot sell more units than what is in its inventory.

Notice that adding w as a variable makes the subproblem feasible regardless of the upper

level decision x and the scenario ξ. Also, since the competing supplier has unlimited

supply, the variable yij will always be zero whenever ρi < cij + rj, for candidate stores

j ∈ S. Writing the KKT conditions on the lower level problems leads to the following
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SLPCC:

(4.8)

min
x,y,w,z

∑
j∈S

cjxj − Eξ

∑
i∈D
j∈S

rjy
ξ
ij


s.t. 0 ≤ xj, j ∈ S

0 ≤
∑
j∈S

yξij − ξi + wξi ⊥ λξi ≥ 0 i ∈ D

0 ≤ xj −
∑
i∈D

yξij ⊥ µξj ≥ 0 j ∈ S

0 ≤ cij + rj − λξi + µξj ⊥ yξij ≥ 0 i ∈ D, j ∈ S

0 ≤ ρi − λξi ⊥ wξi ≥ 0 i ∈ D


ξ ∈ Ω.

We can reduce the number of complementarities by observing, via a simple computation,

that any feasible point to (4.8) necessarily satisfies
∑

j∈B y
ξ
ij + wξi = ξi. Therefore, we can

replace the first block of complementarity constraints by these equations, for all i, keeping

the λξi ≥ 0 constraint.

Suppose we have drawn a large sample ΩN from Ω and that we are now solving this

deterministic, but large LPCC. We have also drawn a subsample Ωn ⊂ ΩN for which

the corresponding LPCC is solved to global optimality. As mentioned in the previous

section, this problem can be reformulated as an MILP by incorporating a sufficiently large

parameter M , but numerical issues may arise if it is set to high. Fortunately, the NNP

allows for explicit bounds when the support Ω is bounded. It is easy to show that the lower

level problem always admits at least one optimal solution within the following bounds:

• λξi ≤ ρi, for all i ∈ D.

• yξij, w
ξ
i ≤MΩ :=

∑
i∈D (maxξ∈Ωi ξ), for all i ∈ D.
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• µξj ≤Mρ := maxi∈D ρi, for all j ∈ B.

In fact, the first bound corresponds to the last constraint in (4.8). The second bound

is direct from the fact that the customers will never purchase beyond the maximum

possible demand scenario. The third one can be derived by looking at the third and fourth

constraints of (4.8). These bounds are not necessarily tight, except for the first one which

is achieved whenever wξi > 0.

After obtaining the upper level decision x, from the global solution of the SS-LPCC, we

construct the full vector
(
yξ, wξ, λξ, µξ

)
ξ∈ΩN

, by solving the transportation problem (4.6) for

every scenario ξ ∈ ΩN . By construction, it is clear that the vector
(
x, (yξ, wξ, λξ, µξ)ξ∈ΩN

)
is feasible for 4.8. This full vector becomes the starting point for the local solver.

We created two instances of the NNP, with d = 30 and d = 50. Both instances have

b = 4. Nodes are distributed in a [0, 1]× [0, 1] box by first partitioning the space into 4

equal squares, forming a 2× 2 grid. Store nodes are located in the center of each square.

Demand nodes are distributed randomly following a Latin Hypercube Sampling. Costs

cij represent the euclidean distance between demand i and store j. Upper level costs

and revenues are generated uniformly at random in the [3.5, 4.5] and [4.8, 5.2] intervals,

respectively. The parameter ρi is selected such that every store has at least one demand

node willing to buy from them, that is, for every j ∈ S, there exists i ∈ D such that

cij + rj ≤ ρi. When solving the SS-LPCC we choose the corresponding big-M as defined

above. The means θi of the demand on each node i are drawn uniformly at random between

50 and 100. The scenarios are then generated by drawing ξi ∼ U((1 − α)θi, (1 + α)θi),

independently, for each i, where α equals 0.1 in the d = 30 instance and 0.25 when d = 50.
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The global solutions of the subsamples were solved in CPLEX and the local solver

used was the DCA method with the piece-wise linear penalty function, with the reduced

costs enhancement, as described in Chapter 2, Section 2.2.1. Experiments were run on a

Linux Cluster with five 20-core 2.4GHz Intel Xeon processors and 4 x 256GB RAM. All

runs used a single thread, and we set a time limit of 5 hours for the global solves and 2

hours for the DCA solves.

The box plots in Figures 4.1 and 4.2 show the percentage improvement of the solution

obtained with the DCA, for different SAA sample sizes N = 100, 200, 300 and 500, as

compared to the objective value of the starting points, on the SAA-LPCC, found by

globally solving the SS-LPCCs of sizes n = 5, 10, 15, 20, 30, 40, over 10 runs for each size.

We can see that there is very little improvement, if any, on all experiments.

Figure 4.1. Box plot for percentage improvement, N = 100 and N = 200

The reason is that the starting solution is already very close to some strongly stationary

point, which then the DCA method finds and is unable to escape from. The key observation

which motivated the enhancement presented in the next section is that the inner level

problem tends to show degeneracy in their solutions for some scenarios, that is, the number

of non-zero allocations, on variables y and w, is less than s + d − 1. If those solutions
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Figure 4.2. Box plot for percentage improvement, N = 300 and N = 500

were unique1, it implies that the corresponding dual has multiple solutions. Therefore,

there is a chance the strongly stationary point found by the DCA had the “incorrect” dual

variables chosen. We start the presentation of the “alternating weights” technique with an

example to explain what we mean by labeling a solution as incorrect.

4.3.1. Alternating Weights Technique

Consider the following toy example of an NNP that we will use to motivate the “alternating

weights” technique. There are 4 demand nodes and 2 stores, with shipping costs cij set as

shown in Figure 4.3. The unit cost cj and revenue rj are 0.2 and 0.5, respectively. The

threshold parameter ρi is the same for all demand nodes and equal to 3.5. Hence, the arcs

not shown in the graph can be interpreted as satisfying cij + rj > ρi and will never be

used by the customers.

Suppose only two scenarios are possible: ξ1 = (20, 20, 10, 30) and ξ2 = (5, 5, 30, 20)

and assume scenario 2 is drawn in the SS-LPCC to be solved to global optimality. In

this scenario, the global optimum for the upper level decision maker is to set x1 = 40

1This might still happen if the solution is not unique, but is no longer a necessary condition
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Figure 4.3. Toy example for NNP

and x2 = 20 with the optimal assignments of the inner transportation problem being

y2
11 = y2

21 = 5, y2
31 = 30 and y2

42 = 20. Keeping x fixed, the optimal assignment under

scenario 1 is y1
11 = y1

21 = y1
42 = 20 and w3 = w4 = 10. This gives an objective value of −18.

Giving this solution as a starting point for the local solver (DCA), we obtain a different

upper level point, namely x = (40, 30). This decision, together with the corresponding

optimal lower level assignment gives an objective value of −18.5. Under this circumstance,

demand from scenario 2 is always fulfilled by the upper level supply, but in scenario 1 some

part of the demand, more precisely 10 units from node 3, is purchased from the competing

supplier because the upper level agent does not have sufficient supply. Notice that the

optimal solution of each scenario is degenerate, since the number of non-zero optimal

variables is 4 < 5 = s + d − 1. Also, these solutions are unique. These two properties

combined imply that the dual of the inner level problem, for each scenario, has multiple

solutions. Furthermore, this solution is a local optima in the SAA-LPCC problem.
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The global optimal solutions of the SAA-LPCC, in the outer level variables, is the

convex hull of the vectors (50, 30) and (40, 40). If either x1 = 40 or x2 = 30 is increased to

capture more demand, then the overall cost would decrease, leading to a better solution.

Let us recall the optimality conditions of the inner problem

∑
j∈S

yξij + wξi = ξi i ∈ D(4.9a)

λξi ≥ 0 i ∈ D(4.9b)

0 ≤ xj −
∑
i∈D

yξij ⊥ µξj ≥ 0 j ∈ S(4.9c)

0 ≤ cij + rj − λξi + µξj ⊥ yξij ≥ 0 i ∈ D, j ∈ S(4.9d)

0 ≤ ρi − λξi ⊥ wξi ≥ 0 i ∈ D.(4.9e)

In order to give incentives to increase, for example x2, from 30 to 40, two things should

happen so the new solution is still feasible: (1) the scenarios where x2 will be overstocking

should have the corresponding µ2 = 0, since the left-hand side of complementarity (4.9c)

would be inactive, and (2) the left-hand side of (4.9d) should be set to zero, to allow y32

to increase.

A similar argument may be done if the desire is to reduce inventory xj in some store j.

In this case, the idea would be to increase some λi to activate the left-hand side of 4.9e so

wi may be released (reducing supply can be viewed as allowing part of the demand, on

some scenarios, to be purchased from the competition).

The alternating weights technique consists on iteratively solving weighted modifications

of (4.8) which encourages dual variables to shift up or down, resulting in non-strict
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complementaries that permit the DCA method to choose the corresponding piece where

the LPCC can benefit the most. In the general NNP case, let (x0, y0, w0, λ0, µ0) be the

solution found by the local solver and K be the feasible region of (4.8). The alternating

weights method creates a new set of iterates by sequentially solving

(4.10) (xk+1, yk+1, wk+1, λk+1, µk+1) ∈ arg min
(x,y,w,λ,µ)∈K

∑
j∈S

cjxj − Eξ

∑
i∈D
j∈S

rjy
ξ
ij

+ fk(µ, λ),

where fk(µ, λ) is a penalty term defined as

(4.11) fk(µ, λ) =


ζ
∑

ξ∈ΩN

j∈S
µξj if k is odd

−ζ
∑

ξ∈ΩN

i∈D
λξi if k is even

,

with the penalty parameter ζ set to a value big enough to steer µ towards zero (or λ to

ρ). In theory, any value for ζ would work, but in practice it needs to be larger than the

LP solver tolerance. On the other hand, ζ must also be small enough so that it does not

counteract the actual cost parameters of the problem, c and r. It is understood that the

solution of problem (4.10) uses (xk, yk, wk, λk, µk) as the starting point for the DCA and

that the argmin refers to the local solution of the modified problem, provided by the DCA.

The method stops when for some k, (xk, yk) = (xk+1, yk+1).

In the toy example, when setting ζ = 10−5, the dual variable of the second store

on scenario 1, µ1
2, is pushed to zero, allowing x2, in complementarity (4.9c), to increase

up to 40. The variables λ1 for demand nodes 3 and 4 adjust themselves to maintain

complementarity of (4.9d). This change in λ is not surprising. Recall that the dual

objective function of the inner level problem is
∑

i∈D ξiλi −
∑

j∈S xjµj, hence, in order to
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keep the objective value constant, because we are looking for the “correct” dual optimal

solution, a decrease in µj implies a decrease in some λ’s (provided that xj 6= 0).

In the second iteration, when penalizing λ in fk in (4.10), the dual variables change

again, but the primal remains the same so the method stops. We end up in the globally

optimal solution x = (40, 40).

4.3.2. Numerical Results

4.3.2.1. Case d=30, s=4. We now present the numerical experiments of this chapter.

We start with the instance where d = 30 and we set the parameter α to 0.1. We globally

solved SS-LPCCs with subsample size n = 5, 10, 15, 20, 25, 30 and 40. We will denote the

optimal solution and value of these problems as xng and zng . In a similar manner, we will

denote by xNn and zNn the local solution and objective value, respectively, found by the

DCA with the alternating weights technique described in Section 4.3.1, in the SAA-LPCC

with N scenarios, starting from xng . The selected sizes for N are 100, 200, 300 and 500.

Finally, (and) since we are interested in the “real” objective value for the (continuous)

stochastic bilevel program, we compute a proxy for this objective value by drawing 40,000

samples, solving the inner level problem on each scenario and computing the sample mean

(essentially evaluating the objective value on an SAA-LPCC with N = 40, 000). In our

experiments 40,000 samples was large enough so that the obtained objective value had a

very small variance as computed over 10 runs. We will denote by z̄n and z̄Nn the proxy for

the stochastic objective value of xng and xNn , respectively. We also compute a “nominal”

value obtained by solving the single scenario deterministic LBLP where the demand for

node i is given by the mean demand, θi. This value is labeled znom.
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Notice that since we are solving for the optimistic formulation, to evaluate the true

stochastic objective value the inner level problem for each scenario is solved twice. First to

obtain an optimal value zξ for scenario ξ, and then to choose the solution which benefits

the leader the most. That is, adding a restriction which forces the inner objective value to

be less or equal to zξ, and replacing the inner objective function, with the outer objective

which depends on y (i.e.
∑

i∈D
j∈S

rjyij).

Table 4.1 shows the average and standard deviation, across 20 runs, of three metrics

related to the computation of the local solutions xNn for all combinations of n and N : (1)

Obj, which represents the percentage improvement of z̄Nn over znom. It is computed as∣∣∣ z̄Nn −znomznom

∣∣∣. (2) Iters, which represents the number of “major” iterations of the alternating

weights method. This means, the number of alternations between adding weights to µ and

λ, and (3) total CPU time taken from the subsampled solution to the SAA-LPCC solution.

That is, the time taken for the MILP solver is not considered in this table. We observe

that CPU times and Iters increase with N . This is expected, since the dimension of the

complementarities is O(dsN) and, hence, grows linearly with the number of scenarios.

Also, the larger the subsample size n, the better the prediction for an optimal outer level

decision, which makes the DCA require less effort to find a good local solution, and explains

why Iters and CPU time decrease as n increases. For the same reason, the percentage

improvement gets better as n increases. A final interesting observation is that, although

solved only locally, the percentage improvement also increases with N . That means the

DCA makes efficient use of the larger samples to reach better candidate solutions to the

stochastic problem.
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Table 4.1. Average and standard deviation (in parenthesis) of major itera-
tions, CPU time and percentage improvement of zNn over nominal value

n Avg (Std Dev)
N

100 200 300 500

5
Obj (%) 3.03 (0.22) 3.05 (0.22) 3.06 (0.22) 3.06 (0.22)
Iters 9.40 (4.51) 11.20 (5.28) 14.10 (6.77) 16.80 (7.12)
CPU time (s) 15.00 (7.34) 64.25 (27.55) 160.81 (53.53) 597.21 (246.83)

10
Obj (%) 3.09 (0.21) 3.12 (0.20) 3.13 (0.20) 3.13 (0.20)
Iters 9.30 (4.36) 12.10 (5.10) 14.25 (4.68) 17.70 (5.89)
CPU time (s) 13.90 (5.14) 63.10 (16.25) 157.32 (47.89) 564.71 (178.18)

15
Obj (%) 3.15 (0.18) 3.18 (0.18) 3.19 (0.18) 3.19 (0.18)
Iters 9.40 (3.25) 12.30 (4.51) 14.15 (4.62) 17.55 (5.82)
CPU time (s) 12.71 (4.37) 58.55 (18.45) 146.85 (42.44) 525.15 (186.64)

20
Obj (%) 3.20 (0.13) 3.22 (0.13) 3.23 (0.13) 3.24 (0.13)
Iters 8.05 (3.02) 12.15 (4.82) 14.45 (5.24) 17.35 (5.01)
CPU time (s) 11.37 (4.47) 54.08 (17.91) 135.81 (39.72) 479.35 (137.29)

25
Obj (%) 3.22 (0.10) 3.25 (0.09) 3.26 (0.09) 3.26 (0.09)
Iters 6.65 (2.57) 10.80 (3.43) 12.90 (4.56) 14.85 (5.14)
CPU time (s) 9.49 (4.20) 47.73 (14.87) 117.52 (44.57) 405.98 (151.35)

30
Obj (%) 3.20 (0.13) 3.23 (0.13) 3.23 (0.13) 3.24 (0.13)
Iters 6.15 (2.48) 9.40 (3.57) 11.30 (4.57) 13.85 (5.62)
CPU time (s) 8.48 (4.32) 40.27 (19.29) 99.81 (45.76) 353.49 (165.34)

40
Obj (%) 3.24 (0.04) 3.27 (0.02) 3.28 (0.02) 3.28 (0.01)
Iters 5.95 (3.06) 10.60 (4.04) 11.10 (4.97) 14.50 (5.17)
CPU time (s) 6.56 (4.60) 40.45 (19.69) 96.82 (47.88) 355.62 (169.47)

Table 4.1 suggests that in order to achieve a larger improvement to nominal percentage

gap, we should be globally solving for larger subsamples (increases in this metric are much

more significant by moving vertically in the table, rather than horizontally), but increasing

n also results in increasing CPU time for the subsampled LPCC. Table 4.2 shows the mean,

median, minimum, maximum and standard deviation for CPU time taken to solve the

subsampled LPCC for different number of scenarios n. To speed up this MILP solver, we

first found the global solution for n = 5 and then provided that solution as an incumbent

for the remaining scenario sizes. We see that the time to solve up to 40 subsamples (which
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leads to ∼ 3.27% improvement) could take almost up to two hours, while solving for half

the number of subsamples (20), it would take less than a tenth of that time (and would

lead to a respectable 3.23% improvement).

Table 4.2. Mean, median and standard deviation of CPU time to find xng

CPU Time (s) 5 10 15 20 25 30 40
Mean 2.92 19.59 74.62 173.90 426.33 666.51 1930.50
Median 2.69 19.76 63.60 151.95 310.16 469.92 1350.53
Std Dev 2.36 10.44 44.99 103.82 375.53 598.78 1681.32
Min 0.36 1.23 8.52 56.10 74.41 143.05 186.97
Max 11.65 38.52 188.17 401.29 1615.09 2580.44 6303.59

We also want to assess how the subsampled solution xng compares to our SAA solution

xNn in the stochastic LPCC. Figure 4.4 superimposes two box plots, representing z̄n (orange

box) and z̄500
n (blue box). We can see that starting from a subsample of size 20, the value

of z̄500
n already settles. This could be an indication that we actually reached the global

optimum, or that starting from a subsample of size 20, we always reach a same local

solution. To get a sense out of this last statement, we run the MILP solver to globally solve

an LPCC with a sample of 500 scenarios. Since we were only interested in the objective

value, we let it run for 12 hours on 4 threads, providing x500
20 and z500

20 as an incumbent. We

found out that whenever the MILP did not find a global solution within this time limit,

the percentage improvement over nominal for the best lower bound found in the process,

it barely represented a 0.001% difference with the ones shown in the plot. Therefore, we

did actually find a (close to) global solution.

4.3.2.2. Case d=50, s=4. We now focus on the larger instance, with 50 demand nodes

and 4 stores. As we said earlier, the number of complementarities is of the order of dsN ,

hence we are aiming to find close to global solutions of LPCCs up to a considerably large
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Figure 4.4. Global vs Local solutions for different subsamples (d = 30)

scale. To get a sense of this, when solving for N = 500, this means around 100, 000

complementarities.

For this experiment we set α to 0.25, resulting in a significant increase of the variance

of the random demand. We report similar tables as in the d = 30 case, starting with

the MILP solving times. Again, we first solved globally for a subsample n = 5 and

provided the solution as an incumbent for the larger subsamples. In this occasion, we ran

the MILP solver with 4 threads over a time period of 12 hours (an equivalent 2 days if

single-threaded). Table 4.3 shows the same statistics as before, but only among the runs,

out of 20, which managed to find (or, more precisely, certify) a global optimum. We add a

last line to the table with the information about how many runs, per subsample, did not

run out of time. We observe that for subsample size 30 and larger very few of the runs
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actually found (with a certificate) a global solution. In these situations, we still continue

the experiment with the incumbent found when the time limit was reached.

Table 4.3. Statistics for CPU time to find xng

CPU Time 5 10 15 20 25 30 40
Mean 75.05 252.90 1,593.80 8,677.84 22,037.93 22,633.69 36,656.62
Std Dev 55.88 460.29 2,364.44 6,988.59 13,236.34 5,751.74 -
Min 17.04 9.72 0,064.28 1,197.11 2,252.78 14,194.45 36,656.62
Max 265.07 1,868.84 9,240.53 24,838.74 38,554.15 30,059.78 36,656.62
Solved 20 20 20 18 14 6 1

As in the previous instance, Table 4.4 shows that the metrics Iters and CPU time

increase with N and decrease with n. This is still expected, regardless of whether

the subsample was solved to global optimality or not. The metric that indeed gets

affected by not globally solving the subsampled problem within the time limit is the

percentage improvement from the nominal value (Obj). What we observe is that this

metric increases up to n = 20 and then decreases drastically. It even drops below the

percentage improvement obtained from xN5 . This is an interesting observation considering

that x5
g was the initial incumbent to solve larger subsample sizes. This could be due to

the larger subsample not being solved to global optimality. We also notice that there is

barely any improvement from z500
n to z800

n , for any n, which basically implies that a stable

local solution was found, in the sense that more samples do not allow it to escape.

Now we move to the box plot comparisons, z̄n versus z̄500
n (as compared to the nominal

value), illustrated in Figure 4.5. Here we see that the local solutions found, opposed to the

d = 30 case, show a wide and similar spread regardless of the subsample size. To verify if

this was due to N = 500 being still too small, we also computed the local solutions for

N = 800, and saw that the results were practically the same as in N = 500. This can
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Table 4.4. Average and Standard Deviation of major iterations, CPU time
and percentage improvement of z̄Nn over nominal value

n
Avg N
(Std Dev) 200 300 500 800

5
Obj (%) 1.57 (0.11) 1.59 (0.11) 1.60 (0.10) 1.61 (0.10)
Iters 17.55 (11.02) 21.10 (13.01) 21.85 (11.84) 28.26 (15.03)
CPU time (s) 221.02 (123.01) 567.47 (316.48) 1,347.21 (952.84) 3,915.09 (1,615.50)

10
Obj (%) 1.60 (0.19) 1.60 (0.19) 1.61 (0.19) 1.61 (0.19)
Iters 17.20 (9.90) 19.95 (11.10) 22.15 (10.27) 27.05 (11.39)
CPU time (s) 157.54 (56.84) 377.22 (135.50) 954.77 (418.65) 3,218.03 (1,267.77)

15
Obj (%) 1.61 (0.11) 1.62 (0.11) 1.63 (0.10) 1.63 (0.10)
Iters 13.15 (4.49) 16.15 (8.45) 20.75 (8.61) 25.60 (9.36)
CPU time (s) 108.32 (55.36) 273.40 (147.50) 678.83 (431.53) 2,490.90 (1,236.79)

20
Obj (%) 1.63 (0.11) 1.65 (0.10) 1.66 (0.09) 1.66 (0.09)
Iters 16.15 (8.76) 19.95 (9.27) 22.35 (8.18) 25.45 (11.72)
CPU time (s) 126.24 (64.51) 334.56 (183.62) 884.33 (518.60) 2,821.07 (1,459.08)

25
Obj (%) 1.62 (0.18) 1.63 (0.18) 1.63 (0.18) 1.63 (0.18)
Iters 15.80 (7.99) 18.25 (10.50) 19.20 (7.33) 20.65 (8.42)
CPU time (s) 91.43 (46.62) 220.88 (114.95) 561.87 (283.65) 1,847.44 (837.18)

30
Obj (%) 1.57 (0.10) 1.58 (0.11) 1.59 (0.09) 1.59 (0.09)
Iters 15.40 (9.73) 16.50 (8.45) 18.60 (8.77) 23.25 (12.20)
CPU time (s) 99.70 (48.99) 225.94 (112.85) 528.87 (306.21) 1,825.84 (827.60)

40
Obj (%) 1.55 (0.09) 1.57 (0.09) 1.55 (0.17) 1.55 (0.17)
Iters 19.60 (14.45) 20.50 (12.97) 21.70 (10.67) 29.15 (15.84)
CPU time (s) 93.73 (106.16) 197.02 (205.28) 525.71 (392.24) 1,467.14 (1,192.52)

be confirmed from Table 4.3 as well. We come to the conclusion that depending on the

subsample, the method ended in different local solutions, and therefore a global solution

is not reached. This, again, occurs as opposed to Table 4.4 where the local solutions

stabilized very close to the global optimum. Another interesting observation is that even

for subsamples that were not solved to global optimality, the local method managed to

bring the percentage improvement close to or even surpassing the 1.6% threshold, in

average. Similar to d = 30, results indicate that a safe approach would be to solve globally

for 10-15 subsamples and then local for 500, in order to balance total CPU time and

percentage improvement.
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Figure 4.5. Global vs Local solutions for different subsamples (d = 50)

We finish this section by mentioning that we tried the alternating weights technique

starting with λ, instead of µ, but saw no significant differences and therefore those findings

are not reported.

4.3.3. Conclusions and Future Research

We presented an efficient method to find good approximations of global solutions for

the bilevel network newsvendor problem, which takes advantage of primal degeneracy in

the lower level optimal solutions. The method relied on a good guess for the outer level

decision variable provided by a subsampled LPCC which was solved to global optimality.

We used the DCA approach on the presented alternating weights technique to drive the

given starting point to improved local optima in a larger sample. With this approach we
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were able to find better solutions of the actual stochastic problem in considerably less time

than its global solver counterparts.

As part of a future research, we intend to incorporate the location of the stores as an

upper level decision. We describe the bilevel capacitated facility location problem below,

and outline initial findings and observations.

4.3.3.1. From Network Newsvendor to Facility Location. A natural extension we

would like to explore is the bilevel formulation of the Capacitated Facility Location Problem

(CFLP), where now the upper level agent is also involved in the decision of which stores to

open, given a set of potential locations, under a fixed cost. Once the stores are open, she

needs to decide how much inventory to put on each store in order to minimize total costs

generated from the fixed and unit costs, considering that revenue comes from a lower level

transportation problem, just like in the Network Newsvendor problem.

The essential difference between NNP and CFLP is the existence of a binary variable

z ∈ {0, 1}s which represents whether a store should be open on any location j ∈ S. The

objective function of the CFLP is the same as in 4.7 with an extra term
∑

j∈S qjzj , where qj

is the fixed cost incurred if location j is chosen to open a store. In terms of the constraints,

all constraints of 4.7 remain the same, but we need to add a constraint to represent that

no inventory should be put in a non-selected location, that is, xj ≤ Mzj, where M is a

sufficiently large number, similar to MΩ described before.

Adding the binary variables represents an extra challenge, since the method presented

in this chapter only considers continuous variables (in fact, the DCA approach requires that

the feasible set of each subproblem is convex). Therefore, we have the need to reformulate

the problem accordingly. One straight-forward way to do this is to add, for each j ∈ S,
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the following complementarity constraint

(4.12) 0 ≤ zj ⊥ 1− zj ≥ 0,

but this would not fit into our setting, since it does not allow for non-strict complementar-

ities. In particular, the piece-wise linear penalty function of the DCA approach would be

incapable of switching values for z, without becoming infeasible. We can instead treat the

cost function for each location j ∈ S as a complementarity. Notice that there is a clear

relationship between xj and zj, namely xj > 0 ⇐⇒ zj = 1. Therefore, the cost fj(xj) is

given by

(4.13) fj(xj) =

 0 if xj = 0

qj + cjxj if xj > 0.

If we plot this function we obtain the graph on the left of Figure 4.6. Alternatively, we can

represent this relationship as “either xj = 0 or qj + cjxj − fj = 0” which is depicted on the

right graph of Figure 4.6 (considering also the non-negativity of xj and that fj ≤ qj + cjxj).

The final reformulation for the full sampled LPCC is then

xj

fj

(0, 0)

fj = qj + cjxj

xj

fj

qj + cjxj − fj = 0

xj = 0

Figure 4.6. Cost representation: Left, fj as a function of xj; Right, as a complementarity
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(4.14)

min
x,y,w,f

∑
j∈S

fj − Eξ

∑
i∈D
j∈S

rjy
ξ
ij


s.t. 0 ≤ qj + cjxj − fj ⊥ xj ≥ 0 j ∈ S

0 =
∑
j∈S

yξij − ξi + wξi , λξi ≥ 0 i ∈ D

0 ≤ xj −
∑
i∈D

yξij ⊥ µξj ≥ 0 j ∈ S

0 ≤ cij + rj − λξi + µξj ⊥ yξij ≥ 0 i ∈ D, j ∈ S

0 ≤ ρi − λξi ⊥ wξi ≥ 0 i ∈ D


ξ ∈ Ω.

Some observations are worth mentioning for this formulation. Notice that if a feasible

point of (4.14) satisfies xj = 0 for some j ∈ S, then the objective function guarantees that

fj = 0 as well. Hence, this complementarity representation of fj(xj) coincides with (4.13)

and, therefore, the set of local minima in both formulations is the same.

The main concern with regards to the bilevel CFLP is whether the alternating weights

technique is able to capture, for instance, the need of opening a closed facility or vice-versa.

4.3.3.2. Degeneracy on Inner Level Problems. The alternating weights technique

works nicely in the NNP since the lower level problem presented multiple dual solutions

(primal degeneracy) in many of its scenarios, a common situation when dealing with

network problems. This leads us to believe that in general bilevel problems with inner

level network problems, the method should perform well. As an extended research project

we would like to test this method on further bilevel formulations for applications related

to transportation or energy systems, where network models fit naturally.
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