
NORTHWESTERN UNIVERSITY

Inspecting and Directing Neural Language Models

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

Thanapon Noraset

EVANSTON, ILLINOIS

June 2018

2

© Copyright by Thanapon Noraset 2018

All Rights Reserved

3

ABSTRACT

Inspecting and Directing Neural Language Models

Thanapon Noraset

The ability of a machine to synthesize textual output in a form of human language is a

long-standing goal in a field of artificial intelligence and has wide-range of applications such

as spell correction, speech recognition, machine translation, abstractive summarization,

etc. The statistical approach to enable such ability mainly involves defining representa-

tions of textual inputs and computation of likelihood of the outputs text sequence. With

the recent advancement in a neural network or deep learning research, machine learning

models can construct general vector representations of words, also known as word embed-

dings, that are useful for many natural language processing tasks. Furthermore, neural

language models can accurately assign a probability to a sequence of text, and become

a default choice of researchers and developers. One of the key advantages of these deep

learning models is that they require little to none human heuristics in feature engineering,

and instead, are optimized using a large amount of data.

4

Despite the performance improvement and convenience of the neural language models,

they lack a useful property found in the previous statistical model such as an n-gram lan-

guage model – the parameters of neural language models are not directly interpretable.

This leads to a set of challenges when using such models. For instance, the word embed-

dings do not directly convey what information is captured, hence which semantic gaps

exist in the embeddings is uncertain. Furthermore, the likelihoods of a sequence of text

are defined by a series of non-linear functions, making the behavior of the models, even

for a short phrase, difficult to ascertain or change to the desired direction.

This dissertation addresses these two shortcomings by exploiting the models’ ability

to generate interpretable text. First, we propose a more transparent view of the infor-

mation captured by a word embedding, and introduce the Definition Modeling, the task

of generating a definition for a given word and its embedding. Second, we study an

explicit approach to adjust the model’s behavior, and present Dynamic KL Regulariza-

tion, a method for training neural language models to follow a given set of statistical

constraints. Finally, we explore efficient solutions to a fundamental, yet lacking the ca-

pability of the start-of-the-art neural language model: accurately computing a likelihood

of a short phrase that it will produce.

5

Acknowledgements

This dissertation was possible with the support of several people. I would like to

express my sincere gratitude to all of them.

First and foremost, I would like to thank my advisors, Prof. Doug Downey for his

invaluable teaching and guidance. I greatly appreciated our weekly meetings, they were

full of thought-provoking research challenges and helpful directions when needed. He

patiently listened to my ideas, asked critical questions, and extracted the essence. His

positive thinking and excitement were always encouraging. Most importantly, during my

time in graduate school, Prof. Downey had trained me to think like a researcher.

I thank my dissertation committees, Prof. Larry Birnbaum and Prof. Klinton Bicknell.

Our conversations were inspirational and helpful. Their valuable feedbacks and questions

helped shape my research. Thanks to Prof. Birnbaum who regularly stopped by and

discussed ideas, one of which had turned into the starting point of this dissertation. I am

thankful for Prof. Bicknell who had inspired me to think more critically about language

and see research challenges from the linguistics point of view.

For the most of my Ph.D. study, I was supported by the Faculty of Information

and Communication Technology, Mahidol University. I would like to sincerely thank the

broad of administration and the supporting staffs who effortlessly helped me stay focus

and motivated on my research. I also would like to thank the staffs in the Office of

6

Educational Affairs, Royal Thai Embassy who reduced the stress of living in the United

States.

There are many friends and collaborators that made my graduation possible. I would

like to thank Chandra Sekhar Bhagavatula who have collaborated with me on many

projects, and our first project led me to work with Prof. Downey. I would like to es-

pecially thank the CogSys Loop commuters including Chandra, Chen Liang, and Subu

Kandaswamy for the countless conversations. I have learned much from them, not to

mention political opinions and cultural exchange. I am grateful for the contributions of

friends in my research group – especially Rony Mohammed Alam, David Demeter, and

Zheng Yuan. Zheng was also my exercise buddy for both physical and mental strength.

Besides, I got to know many people and become friends who have made my experience

at Northwestern University so pleasant. Thanks to my office neighbors: Joe Blass, Max

Crouse, Clifton McFate, Irina Rabkina, Ethan Robison, and Bryan Head. We frequently

discussed ideas and had fun conversations. Thanks to German Espinosa, Ettore Trainiti

who always worried about me not having enough fun. I was fortunate enough to be part

of the AI Journal Club from the very beginning. For this, I thank Scott Cambo whose

leadership brought together many people from different departments to share ideas. I am

thankful for my close friend Cheng Xing Yuan who had been my awesome roommate for

many years.

Finally, I thank my family for all their everlastingly support and encouragement.

7

Table of Contents

ABSTRACT 3

Acknowledgements 5

Table of Contents 7

List of Tables 9

List of Figures 11

Chapter 1. Introduction 12

1.1. Neural Language Models 13

1.2. Contributions and Outline 14

Chapter 2. Defining Word Representations in Natural Language 17

2.1. Introduction 18

2.2. Dictionary Definitions 20

2.3. Definition Models 23

2.4. Experiments and Results 28

2.5. Discussion 33

2.6. Related Work 37

2.7. Conclusion 38

8

Chapter 3. Controlling Neural Language Model Behavior 40

3.1. Introduction 41

3.2. Dynamic KL Regularization 44

3.3. Experiments and Results 50

3.4. Discussion 57

3.5. Related Work 61

3.6. Conclusion 63

Chapter 4. Estimating Probabilities of Short Phrases Without Context 64

4.1. Introduction 64

4.2. Marginal Estimation 66

4.3. Experiments and Results 71

4.4. Conclusion 75

Chapter 5. Conclusion and Future Work 77

References 81

9

List of Tables

2.1 Selected examples of generated definitions. 17

2.2 Basic statistics of the common word definitions corpus. 22

2.3 Structures of dictionary definitions. 22

2.4 Perplexity evaluated on dictionary entries. 30

2.5 BLEU scores of the generated definitions. 32

2.6 Model performance on dictionary lookup tasks 33

2.7 Manually rank scores of definitions. 34

2.8 Selected examples of generated definitions from different models. 35

2.9 Error types and examples. 36

3.1 Baseline comparison on repetition constraints 53

3.2 Baseline comparison on bigram constraints 54

3.3 Results of large corpus statistics experiments 55

3.4 Results of repetition reduction experiments 56

3.5 Results of conflicting statistics experiments 60

4.1 Errors of different approaches to estimate marginal probabilities. 73

4.2 Perplexity of models trained for the marginal estimation. 74

10

4.3 Marginal probability errors and variances of trace-based approaches 75

11

List of Figures

2.1 General structure of a dictionary definition. 20

2.2 Architecture of the gated definition model. 26

2.3 Average gate activations for tokens in definitions. 34

3.1 Examples of local and global measures. 42

3.2 Examples of repetitions generated RNN-based models. 43

3.3 Overview of training RNNLM with dynamic KL regularization. 48

3.4 Percent of duplicate n-grams within a definition 58

3.5 Examples of definitions that the approach improves 59

12

CHAPTER 1

Introduction

A machine that reads input and produces output in natural languages, similar to

how humans communicate, has been a long standing subject of research in the field of

artificial intelligence. In term of applications, such capability provides a natural way

for us to interact with a machine, after all, languages are the main method of human

communication. Despite being a structured and conventional way of communication,

human languages are difficult to express explicitly in a form that a machine can understand

due to their flexibility and ambiguity. This leads to statistical approaches that learn a

model of a language from a textual data. Indeed, a statistical language model is a key

component for many natural language applications, especially ones that synthesize the

output in natural language. Examples include spell correction [28, 102, 108], speech

recognition [20, 22, 61, 73], machine translation [5, 11, 96, 106], image captioning [39,

109], conversation agent [50, 78, 85], etc.

A statistical language model provides a relative likelihood of different pieces of text.

For example, it is useful to a speech recognition system to know that “this is nice” is

more likely than “thesis an ice” in a everyday spoken language. Specifically, the lan-

guage modeling is a task of assigning a probability distribution over sequences of words

(or other units), a fundamental task in a field of natural language processing (NLP). A

statistical language model mainly involve defining representation of words and computa-

tion of a likelihood of a sequence of words [5, 80]. Traditionally, we would model the

13

joint distribution between words in a sequence (words are represented as discrete vari-

ables). n-gram language models had been a state-of-the-art model for decades [16, 29].

However, we still have the data sparsity problem because the training data only contain

a few possible sequences.

1.1. Neural Language Models

To overcome the data sparsity problem, researchers (1) change the discrete represen-

tation of words into continuous feature vectors, and (2) express the joint distribution as

a function of the feature vectors. The models learn the word representations (feature vec-

tors) and the probability function simultaneously from a training data [5, 61, 63]. When

underlying model is neural network, we refer to this model as a neural language model.

With the recent advancement in neural network or deep learning research, the main

approaches to model language have been dominated by neural language models. Not only

they have been the state-of-the-art performance in assigning probability to sequences of

words [37, 54, 61, 112], the word embeddings are also useful for other NLP applications

[60, 71]. For this reason, they become a default choice for natural language processing

researches and applications [21, 35, 93].

Despite the performance improvement and convenience of the neural language models,

they lack a useful property found in previous statistical model such as an n-gram language

model – the parameters of neural language models are not directly interpretable. An n-

gram language model has a symbolic representation of words, and explicitly store the

likelihood of a phrase (n-gram) as the parameters (i.e. P (nice|this is) = 8.43× 10−4).

The computation of a likelihood of a sequence is a straightforward application of the chain

14

rule of probability:

P (this is nice) = P (this)P (is|this)P (nice|this is)

While generalization techniques such as Kneser-Ney smoothing [45] or Katz backoff [41]

add complexity to the model, we can still trace and understand how a model arrives at

an output.

On the other hands, information about words and probability function of neural lan-

guage models are distributed into, often, hundred millions of continuous variables. This

leads to a set of challenges when using such models. In this dissertation, we propose novel

solutions to two of the shortcomings:

(1) The word embeddings do not directly convey what information being captured,

hence which semantic gaps exist in the embeddings is uncertain.

(2) The likelihoods of a sequence of text is defined by a series of non-linear functions,

making behavior of the models, even for a short phrase, difficult to ascertain or

change to desired direction.

1.2. Contributions and Outline

The common theme in this dissertation is to provide novel insights and methods to

tackle the opacity of neural language models. We formulate the contributions in this work

as follows.

Defining word representations in natural language: In chapter 2 and Noraset et

al., 2017 [68], we introduce Definition Modeling, the task of generating a definition for a

given word and its embedding. Dictionary definitions of words, such as

15

robot: a machine capable of carrying out a complex

series of actions automatically, especially one

programmable by a computer.

are a more direct and transparent representation of the embeddings’ semantics. We

present several definition model architectures based on recurrent neural networks, and

evaluate them on two tasks: generating plausible definitions and dictionary lookup (both

forward and reverse).

We show that, with the right architecture, it is possible to generate an interpretable

definition of a word embedding. A model that controls dependencies between the word

being defined and the definition words performs significantly better, and that a character-

level information can complement word-level embeddings. Not only this model can gen-

erate better definitions, it also reveals some internal process underlying the model’s be-

havior. Additionally, the errors made by a definition model provide insight into the

shortcomings of both word embeddings and recurrent neural network language models.

In particular, the most apparent errors are not of semantics missing from the embed-

dings, but rather abnormal phrases being generated by all models in the experiments such

as repetition of phrases. This leads us to the following research objective.

Controlling neural language model behavior: In chapter 3 and Noraset et al.,

2018 [67], we introduce Dynamic KL Regularization, a method to subject the textual

output generated by a recurrent neural network language model to a set of interpretable

constraints. For example, we can specify when training the model that it should generate

more of “mr. dog” and less of “mr. president”, i.e. changing behavior of the model

during generation.

16

We demonstrate how an explicitly stated n-gram distribution can be used as a set

of soft constraints to direct the language model behavior during the generation without

sacrificing its accuracy in assigning probability to sequences of words. The results show

that Dynamic KL Regularization is successful at reducing word-level repetition (a common

problematic behavior). It also improves model generalizability by incorporating statistical

constraints are n-gram statistics taken from a large corpus.

The statistical constraints are defined over aggregate model behavior, rather than

model parameters, and the proposed method is dynamically updated as training proceeds,

based on the output generated by the model. While effective, it is highly computational

intensive. Can we infer the model behavior efficiently i.e. n-gram probabilities without

generating large amount of text?

Estimating probabilities of short phrases without context: In chapter 4, we dis-

cuss how to compute a probability that a recurrent neural network model assigns to a

short sequence of text, when the preceding context is absent. This simple, yet lacking

capability of the start-of-the-art neural language models is useful for (1) estimating how

likely a phrase to occur in a corpus regardless of context, and (2) characterizing model

behavior so that we can make an informed change.

We experiment with many techniques to estimate the context-independent the prob-

ability of phrases. We demonstrate that a simple method of altering the training to

occasionally reset the context information is remarkably effective and efficient comparing

to other approaches.

17

CHAPTER 2

Defining Word Representations in Natural Language

How can we use word embeddings to define their corresponding words in natural

language? In this chapter, we explore this question, and show that it is possible for a

neural language model to learn to synthesize human-readable dictionary definitions from

word embeddings (some shown in Table 2.1). Finally, we discuss insights of the results.1

Table 2.1. Selected examples of generated definitions. The words being
defined here are not in the training data. Table shows both good output
definitions (top) and output definitions with minor a mistake.

Word Generated definition
brawler a person who fights
butterfish a marine fish of the atlantic coast
continually in a constant manner
creek a narrow stream of water
feminine having the character of a woman
juvenility the quality of being childish
mathematical of or pertaining to the science of mathematics
negotiate to make a contract or agreement
prance to walk in a lofty manner
resent to have a feeling of anger or dislike
similar having the same qualities
valueless not useful
accused to make a false or unethical declaration of
adorable having the qualities of a child
hello a song
inward not directed to the center
precise to make a precise effort

1The main contributions in this chapter were first described and published in Definition Modeling: Learn-
ing to define word embeddings in natural language [68].

18

2.1. Introduction

Word embeddings, are a key component in many natural language processing (NLP)

models [93, 35]. Several neural network techniques have been introduced to learn high-

quality word embeddings from unlabeled textual data [71, 60, 110]. Embeddings have

been shown to capture lexical syntax and semantics. For example, it is well-known that

nearby embeddings are more likely to represent synonymous words [46] or words in the

same class [25]. More recently, the vector offsets between embeddings have been shown

to reflect analogical relations [58]. However, tasks such as word similarity and analogy

only evaluate an embedding’s lexical information indirectly.

In this work, we study whether word embeddings can be used to generate natural

language definitions of their corresponding words. Dictionary definitions serve as direct

and explicit statements of word meaning. Thus, compared to the word similarity and

analogical relation tasks, definition generation can be considered a more transparent view

of the syntax and semantics captured by an embedding. We introduce definition modeling:

the task of estimating the probability of a textual definition, given a word being defined

and its embedding. Specifically, for a given set of word embeddings, a definition model

is trained on a corpus of word and definition pairs. The models are then tested on how

well they model definitions for words not seen during the training, based on each word’s

embedding.

The definition models studied in this work are based on recurrent neural network

(RNN) models [26, 34]. RNN models have established a new state-of-the-art performance

on many sequence prediction and natural language generation tasks [17, 39, 89, 99]. An

important characteristic of dictionary definitions is that only a subset of the words in the

19

definition depend strongly on the word being defined. For example, the word “woman”

in the definition of “feminine” in Table 2.1 depends on the word being defined than the

rest. To capture the varying degree of dependency, we introduce a gated update function

that is trained to control information of the word being defined used for generating each

definition word. Furthermore, since the morphemes of the word being defined plays a vital

role in the definition, we experiment with a character-level convolutional neural network

(CNN) to test whether it can provide complementary information to the word embeddings

[42, 47]. Our best model can generate fluent and accurate definitions as shown in Table

2.1. We note that none of the definitions in the table exactly match any definition seen

during training.

Our contributions are as follows: (1) We introduce the definition modeling task, and

present a probabilistic model for the task based on RNN language models. (2) In ex-

periments with different model architectures and word features, we show that the gate

function improves the perplexity of a RNN language model on definition modeling task

by ∼10%, and the character-level CNN further improves the perplexity by ∼5%. (3)

We also show that the definition models can be use to perform the reverse dictionary

task studied in previous work, in which the goal is to match a given definition to its

corresponding word. Our model achieves an 11.8% absolute gain in accuracy compared to

previous state-of-the-art by Hill et al. 2016 [32]. (4) Finally, our error analysis shows that

a well-trained set of word embeddings pays significant role in the quality of the generated

definitions, and some of error types suggest shortcomings of the information encoded in

the word embeddings.

20

activity: state of being active

general classword being defined what makes it distinct

Figure 2.1. A dictionary definition usually consists of a class and a differentiae.

2.2. Dictionary Definitions

In this section, we first investigate definition content and structure through a study

of existing dictionaries. We then describe our new data set, and define our tasks and

metrics.

2.2.1. Definition Content and Structure

In existing dictionaries, individual definitions are often comprised of genus and differentiae

[19, 65]. The genus is a generalized class of the word being defined, and the differentiae

is what makes the word distinct from others in the same class. For instance,

Phosphorescent: emitting light without appreciable heat as

by slow oxidation of phosphorous

“emitting light” is a genus, and “without applicable heat ...” is a differentiae.

Furthermore, definitions tend to include common patterns such as “the act of ...”

or “one who has ...” [53]. However, the patterns and styles are often unique to each

dictionary.

The genus + differentiae (G+D) structure is not the only pattern for definitions. For

example, the entry below exhibits distinct structures.

Eradication: the act of plucking up by the roots; a rooting

out; extirpation; utter destruction

21

This set of definitions includes a synonym (“extirpation”), a reverse of the G+D struc-

ture (“utter destruction”), and an uncategorized structure (“a rooting out”).

2.2.2. Corpus: Preprocessing and Analysis

Dictionary corpora are available in a digital format, but are designed for human consump-

tion and require preprocessing before they can be utilized for machine learning. Dictio-

naries contain non-definitional text to aid human readers, e.g. the entry for “gradient”

in Wordnik2 contains fields (“Mathematics”) and example usage (“as, the gradient

line of a railroad.”). Further, many entries contain multiple definitions, usually (but

not always) separated by “;”.

We desire a corpus in which each entry contains only a word being defined and a single

definition. We parse dictionary entries from GCIDE3 and pre-process WordNet’s glosses,

and the fields and usage are removed. The parsers and preprocessing scripts can be found

at https://github.com/northanapon/dict-definition.

To create a corpus of reasonable size for machine learning experiments, we sample

around 20k words from the 50k most frequent words in the Google Web 1T corpus [10],

removing function words. In addition, we limit the number of entries for each word in a

dictionary to three before the splitting by “;” (so that each word being defined may repeat

multiple times in our corpus). After cleaning and pruning, the corpus has a vocabulary

size of 29k. Other corpus statistics are shown in Table 2.2.

We analyze the underlying structure of the definitions in the corpus by manually

labeling each definition with one of four structures: G+D, D+G, Syn (synonym), and

2https://www.wordnik.com/words/gradient
3http://gcide.gnu.org.ua/

22

Table 2.2. Basic statistics of the common word definitions corpus. Splits
are mutually exclusive in the words being defined.

Split train valid test
#Words 20,298 1,127 1,129
#Entries 146,486 8,087 8,352
#Tokens 1,406,440 77,948 79,699

Avg length 6.60 6.64 6.54

Misc. In total, we examine 680 definitions from 100 randomly selected words. The

results are shown in Table 2.3. We reaffirm earlier studies showing that the G+D structure

dominates in both dictionaries. However, other structures are also present, highlighting

the challenge inherent in the dictionary modeling task. Further, we observe that the

genus term is sometimes general (e.g., “one” or “that”), and other times specific (e.g.

“an advocate”).

Table 2.3. The number of manually labeled structures of dictionary def-
initions in WordNet (WN) and GCIDE (GC). G+D is genus followed by
differentiae, and D+G is the reverse. Syn is a synonym.

Label WN GC Example
G+D 85% 50% laminate: to divide into thin plates
D+G 7% 9% fawn: a young deer
Syn 1% 32% activity: energy

Misc. 4% 8% diagonally: in a diagonal direction
Error 3% 1% absolutely: used as intensifiers
Total 256 424

2.2.3. Dictionary Definition Tasks

In the definition modeling (DM) task, we are given an input word w∗, and output the

likelihood of any given text D being a definition of the input word. In other words, we es-

timate P (D|w∗). We assume our definition model has access to a set of word embeddings,

23

estimated from some corpus other than the definition corpus used to train the definition

model.

DM is a special case of language modeling, and as in language modeling the perfor-

mance of a definition model can be measured by using the perplexity of a test corpus.

Lower perplexity suggests that the model is more accurate at capturing the definition

structures and the semantics of the word being defined.

Besides perplexity measurement, there are other tasks that we can use to further

evaluate a dictionary definition model including definition generation, and the reverse

and forward dictionary tasks. In definition generation, the model produces a definition

of a test word. In our experiments, we evaluate generated definitions using both manual

examination and BLEU score, an automated metric for generated text [15, 69]. The

reverse and forward dictionary tasks are ranking tasks, in which the definition model

ranks a set of test words based on how likely they are to correspond to a given definition

(the reverse dictionary task) or ranks a set of test definitions for a given word (the forward

dictionary task) [32]. A dictionary definition model achieves this by using the predicted

likelihood P (D|w∗) as a ranking score.

2.3. Definition Models

The goal of a definition model is to predict the probability of a definition (D =

[w1, ..., wT]) given a word being defined w∗. Our model assumes that the probability of

generating the tth word wt of a definition text depends on both the previous words and the

word being defined (Equation 2.1). The probability distribution is usually approximated

24

by a softmax function (Equation 2.2)

p(D|w∗) =
T∏
t=1

p(wt|w1, .., wt−1, w
∗)(2.1)

p(wt = j|w1, .., wt−1, w
∗) ∝ exp(θjoht/τ)(2.2)

where θjo is parameters associated with word j, ht is a vector summarizing inputs so far at

token t, and τ is a hyper-parameter for temperature, set to be 1 unless specified. Note that

in our expression, the word being defined w∗ is present at all time steps as an additional

conditioning variable.

The definition models explored in this work are based on a recurrent neural network

language model (RNNLM) [61]. To recall, an RNNLM is comprised of RNN units, where

each unit reads one word wt at every time step t and outputs a hidden representation ht

for Equation 2.2.

(2.3) ht = g(wt−1, ht−1, w
∗)

where g is a recurrent nonlinear function, wt is represented by the embedding of the word,

and w∗ is likewise the embedding (and other features) of the word being defined.

2.3.1. Model Architectures

A natural method to condition an RNN language model is to provide the network with the

word being defined at the first step, as a form of “seed” information. The seed approach

has been shown to be effective in RNNs for other tasks [38, 39]. Here, we follow the

simple method of Sutskever et al., 2011 [88], in which the seed is added at the beginning

25

of the text. In our case, the word being defined is added to the beginning of the definition.

Note that we ignore the predicted probability distribution of the seed itself at test time.

Gated-update Model. Section 2.2 shows that definitions exhibit common patterns.

We hypothesize that the word being defined should be given relatively more important

for portions of the definition that carry semantic information, and less so for patterns or

structures comprised of function and stop words. Further, Wen et al., 2015 [100] show

that providing constant seed input at each time step can worsen the overall performance

of spoken dialog generators.

Thus, inspired by the GRU update gate [17], we update the output of the recurrent

unit with GRU-like update function as:

zt = σ(Wz[w∗;ht] + bz)(2.4)

rt = σ(Wr[w∗;ht] + br)(2.5)

h̃t = tanh(Wh[(rt � w∗);ht] + bh)(2.6)

h′t = (1− zt)� ht + zt � h̃t(2.7)

where σ is the sigmoid function, [a; b] denotes vector concatenation, and � denotes

element-wise multiplication. ht from Equation 2.3 is updated as given in Equation

2.7. At each time step, zt is an update gate controlling how much the output from RNN

unit changes, and rt is a reset gate controlling how much information from the word being

defined is allowed (Figure 2.2). We name this model Gated (G).

Alternative Models. In the rest of this subsection, we present three baseline model

architectures that remove portions of Gated. In our experiments, we will compare the

26

w*

wt-1

ht-1

ht h’t P(Wt | h’t)

LSTM

Gate

Soft-
max

Figure 2.2. Architecture of the gated definition model. The gate unit con-
trols influence of the word being defined.

performance of Gated against the baselines in order to measure the contribution of each

portion of our architecture. First, we reduce the model into a standard RNNLM, where

(2.8) h′t = ht = g(wt−1, ht−1)

The standard model only receives information about the word being defined, w∗, at the

first step (from the seed). We refer to this baseline as Seed (S).

A straightforward way to incorporate the word being defined throughout the definition

is simply to provide its embedding w∗ as a constant input at every time step [57]. We

refer to this model as Input (I):

(2.9) h′t = ht = g([w∗;wt−1], ht−1)

Alternatively, the model could utilize w∗ to update the hidden representation from the

RNN unit, named Hidden (H). The update function for Hidden is:

(2.10) h′t = tanh(Wh[w∗;ht] + bh)

27

whereWh is a weight matrix, and bh is the bias. In Hidden we update ht from Equation2.3

using Equation 2.10. This is similar to the GRU-like architecture in Equation 2.7 without

the gates (i.e. rt and zt are always vectors of 1s).

2.3.2. Other Features

In addition to model architectures, we explore whether other word features derived from

the word being defined can provide complementary information to the word embeddings.

We focus on two different features: affixes, and hypernym embeddings. To add these

features within DM, we simply concatenate the embedding w∗ with the additional feature

vectors.

Affixes. Many words in English and other languages consist of composed morphemes.

For example, a word “capitalist” contains a root word “capital” and a suffix “-ist”.

A model that knows the semantics of a given root word, along with knowledge of how

affixes modify meaning, could accurately define any morphological variants of the root

word. However, automatically decomposing words into morphemes and deducing the

semantics of affixes is not trivial.

We attempt to capture prefixes and suffixes in a word by using character-level infor-

mation. We employ a character-level convolution network to detect affixes. Specifically,

the word being defined is represented as a sequence of characters with one-hot encoding.

A padding character is added to the left and the right to indicate the start and end of the

word. We then apply multiple kernels of varied lengths on the character sequence, and

use max pooling to create the final features [42]. We hypothesize that the convolution

28

input, denoted as CH, will allow the model to identify regularities in how affixes alter the

meanings of words.

Hypernym Embeddings. As we discuss in Section 2.2, dictionary definitions often fol-

low a structure of genus + differentiae. We attempt to exploit this structure by providing

the model with knowledge of the proper genus, drawn from a database of Hypernym rela-

tions. In particular, we obtain the hypernyms from WebIsA database [84] which employs

Hearst-like patterns [31] to extract hypernym relations from the Web. We then provide

an additional input vector, referred to as HE, to the model that is equal to the weighted

sum of the top k hypernyms in the database for the word being defined. In our experi-

ments k = 5 and the weight is linearly proportional to the frequency in the resource. For

example, the top 5 hypernyms and frequencies for “fawn” are “color”:149, “deer”:135,

“animal”: 132.0, “wildlife”:82.0, “young”: 68.0.

2.4. Experiments and Results

We now present our experiments evaluating our definition models. We train multiple

model architectures using the train set and evaluate the model using the test set on all of

the three tasks described in Section 2.2.3. We use the valid set to search for the learning

hyper-parameters. Note that the words being defined are mutually exclusive across the

three sets, and thus our experiments evaluate how well the models generalize to new

words, rather than to additional definitions or senses of the same words.

All of the models utilize the same set of fixed, pre-trained word embeddings from

the Word2Vec project,4 and a 2-layer LSTM network as an RNN component [34]. The

embedding and LSTM hidden layers have 300 units each. For the affix detector, the
4https://code.google.com/archive/p/word2vec/

29

character-level CNN has kernels of length 2-6 and size {10, 30, 40, 40, 40} with a stride

of 1. During training, we maximize the log-likelihood objective using Adam, a variation

of stochastic gradient decent [43]. The learning rate is 0.001, and the training stops after

4 consecutive epochs of no significant improvement in the validation performance. The

source code and dataset for our experiment can be found at https://github.com/websail-

nu/torch-defseq.

2.4.1. Definition Modeling

First, we compare our different methods for utilizing the word being defined within the

models. The results are shown in the first section of Table 2.4. We see that the gated

update (S+G) improves the performance of the Seed, while the other architectures (S+I

and S+H) do not. The results are consistent with our hypothesis that the word being

defined is more relevant to some words in the definition than to others, and the gate

update can identify this. We explore the behavior of the gate further in Section 2.5.

Next, we evaluate the contribution of the linguistic features. We see that the af-

fixes (S+G+CH) further improves the model, suggesting that character-level information

can complement word embeddings learned from context. Perhaps surprisingly, the hy-

pernym embeddings (S+G+CH+HE) have an unclear contribution to the performance.

We suspect that the average of multiple embeddings of the hypernym words may be a

poor representation the genus in a definition. More sophisticated methods for harnessing

hypernyms are an item of future work.

30

Table 2.4. Perplexity evaluated on dictionary entries in the test set (lower is better).

Model #Params Perplexity
Seed 10.2m 56.350
S+I 10.6m 57.372
S+H 10.4m 58.147
S+G 10.8m 50.949
S+G+CH 11.1m 48.566
S+G+CH+HE 11.7m 48.168

2.4.2. Definition Generation

In this experiment, we evaluate the quality of the definitions generated by our models.

We compute BLEU score between the output definitions and the dictionary definitions

to measure the quality of the generation. The decoding algorithm is simply sampling a

token at a time from the model’s predicted probability distribution of words. We sample

40 definitions for each word being defined, using a temperature (τ in Equation 2.2)

that is close to a greedy algorithm (0.05 or 0.1, selected from the valid set) and report

the average BLEU score. For help in interpreting the BLEU scores, we also report the

scores for three baseline methods that output definitions found in the training or test

set. The first baseline, Inter, returns the definition of the test set word from the other

dictionary. Its score thus reflects that of a definition that is semantically correct, but

differs stylistically from the target dictionary. The other baselines (NE-WN and NE-GC)

return the definition from the training set for the embedding nearest to that of the word

being defined. In case of a word having multiple definitions, we micro-average BLEU

scores before averaging an overall score.

Table 2.5 shows the BLEU scores of the generated definitions given different reference

dictionaries. AVG and Merge in the table are two ways of aggregating the BLEU score.

31

AVG averages the BLEU scores by using each dictionary as the ground truth. The Merge

computes score by using union of the two dictionaries. First, we can see that the baselines

have low BLEU scores when evaluated on definitions from the other dictionary (Inter and

NE-). This shows that different dictionaries use different styles. However, despite the fact

that our best model S+G+CH is unaware of which dictionary it is evaluated against, it

generates definitions that strike a balance between both dictionaries, and achieves higher

BLEU scores overall. As in the earlier experiments, the Gated model improves the most

over the Seed model. In addition, the affixes further improves the performance while the

contribution of the hypernym embeddings is unclear on this task.

It is worth noting that many generated definitions contain a repeating pattern (i.e. “a

metal, or other materials, or other materials”). We take the definitions from

the language model (Seed) and our full system (S+G+CH+HE), and clean the definitions

by retaining only one copy of the repeated phrases. We also only output the most likely

definition for each word. The BLEU score increases by 2 (Seed* and S+G+CH+HE*).

We discuss about further analysis and common error types in Section 2.5.

2.4.3. Reverse and Forward Dictionary

In the dictionary tasks, the models are evaluated by how well they rank words for given

definitions (RVD) or definitions for words (FWD). We compare against models from

previous work on the reverse dictionary task [32]. The previous models read a definition

and output an embedding, then use cosine similarity between the output embedding and

the word embedding as a ranking score. There are two ways to compose the output

embedding: BOW w2v cosine uses vector addition and linear projection, and RNN w2v

32

Table 2.5. Equally-weighted BLEU scores for up to 4-grams, on definitions
evaluated using different reference dictionaries (results are not comparable
between columns).

Model GC WN Avg Merged
Inter 27.90 21.15 - -
NE 29.56 21.42 25.49 34.51
NE-WN 22.70 27.42 25.06 32.16
NE-GC 33.22 17.77 25.49 35.45
Seed 26.69 22.46 24.58 30.46
S+I 28.44 21.77 25.10 31.58
S+H 27.43 18.82 23.13 29.66
S+G 30.86 23.15 27.01 34.72
S+G+CH 31.12 24.11 27.62 35.78
S+G+CH+HE 31.10 23.81 27.46 35.28
Additional experiments
Seed* 27.24 22.78 25.01 31.15
S+G+CH+HE* 33.39 25.91 29.65 38.35
Random Emb 22.09 20.05 21.07 24.77

cosine uses a single-layer LSTM with 512 hidden units. We use two standard metrics for

ranked results, accuracy at top k and R-Precision (i.e. precision of the top R where R is

the number of correct definitions for the test word).

Table 2.6 shows that our models perform well on the dictionary tasks, even though

they are trained to optimize a distinct objective (definition likelihood). However, we note

that our models have more parameters than those from previous work. Furthermore, we

find that RNN w2v cosine performs better than BOW w2v cosine, which differs from the

previous work. The differences may arise from our distinct preprocessing described in

Section 2.2, i.e. redundant definitions are split into multiple definitions. We omit the

information retrieval approach baseline because it is not obvious how to search for unseen

words in the test set.

33

Table 2.6. Model performance on Reverse (RVD) and Forward (FWD) Dic-
tionary tasks.

Model #Params RVD FWD
@1 @10 R-Prec

BOW w2v cosine 0.09m 0.106 0.316 -
RNN w2v cosine 1.82m 0.190 0.452 -
Seed 10.2m 0.175 0.465 0.163
S+I 10.6m 0.187 0.492 0.169
S+H 10.4m 0.286 0.573 0.282
S+G 10.8m 0.293 0.581 0.282
S+G+CH 11.1m 0.307 0.600 0.298
S+G+CH+HE 11.7m 0.308 0.608 0.304

2.5. Discussion

In this section, we discuss our analysis of the generated definitions. We first present

a qualitative evaluation, followed by an analysis on how the models behave. Finally,

we discuss error types of the generated definitions and how it might reflect information

captured in the word embeddings.

2.5.1. Qualitative Evaluation and Analysis

First, we perform a qualitative evaluation of the models’ output by asking 6 participants to

rank a set of definitions of 50 words sampled from the test set. For each word w, we provide

in random order: a ground-truth definition for w (Dictionary), a ground-truth definition of

the word w′ whose embedding is nearest to that of w (NE), the standard language model

(Seed*), and our full system (S+G+CH+HE*). Inter-annotator agreement was strong

(almost all inter-annotator correlations were above 0.6). Table 2.7 shows that definitions

from the S+G+CH+HE* are ranked second after the dictionary definitions, on average.

The advantage of S+G+CH+HE* over Seed* is statistically significant (p < 0.002, t-test),

34

and the difference between S+G+CH+HE* is and NE is borderline significant (p < 0.06,

t-test).

Table 2.7. Percentage of times a definition is manually ranked in each po-
sition (@k), and average rank (Avg).

Choices @1 @2 @3 @4 Avg
Dictionary 58.3 21.9 7.72 10.1 1.64
NE 16.3 22.8 27.85 37.0 2.75
Seed* 6.8 23.5 35.23 35.1 2.92
S+G+CH+HE* 18.7 31.8 29.19 17.8 2.41

All of our results suggest that the gate-based models are more effective. We investigate

this advantage by plotting the average gate activation (z and r in Equation 2.4 and 2.5)

in Figure 2.3. The r gate is split into 3 parts corresponding to the embedding, character

information, and the hypernym embedding. The figure shows that the gate makes the

output distribution more dependent on the word being defined when predicting content

words, and less so for function words. The hypernym embedding does not contribute to

the performance and its gate activation is relatively constant. Additional examples can

be found in the supplementary material.

Figure 2.3. Average gate activations for tokens of two definitions (omitting
seed). The model utilizes the word being defined more for predicting content
words than for function words.

35

Finally, we present a comparison of definitions generated from different models to

gain a better understanding of the models. Table 2.8 shows the definitions of three words

from Table 2.1. The Random Embedding method does not generate good definitions. The

nearest embedding method NE returns a similar definition, but often makes important

errors (e.g., “feminine” vs “masculine”). The models using the gated update function

generate better definitions, and the character-level information is often informative for

selecting content words (e.g. “mathematics” in “mathematical”).

Table 2.8. Selected examples of generated definitions from different models.
We sample 40 definitions for each word and rank them by the predicted
likelihood. Only the top-ranked definitions are shown in this table.

Model creek feminine mathematical
Random Emb to make a loud noise to make a mess of of or pertaining to

the middle
NE any of numerous

bright translucent
organic pigments

a gender that refers
chiefly but not ex-
clusively to males or
to objects classified
as male

of or pertaining to
algebra

Seed a small stream of
water

of or pertaining to
the fox

of or pertaining to
the science of alge-
bra

S+I a small stream of
water

of or pertaining to
the human body

of or relating to or
based in a system

S+H a stream of water of or relating to or
characteristic of the
nature of the body

of or relating to or
characteristic of the
science

S+G a narrow stream of
water

having the nature of
a woman

of or pertaining to
the science

S+G+CH a narrow stream of
water

having the qualities
of a woman

of or relating to the
science of mathe-
matics

S+G+CH+HE a narrow stream of
water

having the charac-
ter of a woman

of or pertaining to
the science of math-
ematics

36

2.5.2. Error Analysis

In our manual error analysis of 200 labeled definitions. We find that 140 of them contain

some degree of error. Table 2.9 shows the primary error types, with examples. Types

(1) to (3) are fluency problems, and likely stem from the definition model, rather than

shortcomings in the embeddings.
Table 2.9. Error types and examples.

Word Definition
(1) Redundancy and overusing common phrases: 4.28%
propane a volatile flammable gas that is used to burn gas
(2) Self-reference: 7.14%
precise to make a precise effort
(3) Wrong part-of-speech: 4.29%
accused to make a false or unethical declaration of
(4) Under-specified: 30.00%
captain a person who is a member of a ship
(5) Opposite: 8.57%
inward not directed to the center
(6) Close semantics: 22.86%
adorable having the qualities of a child
(7) Incorrect: 32.14%
incase to make a sudden or imperfect sound

We believe the other error types stem more from semantic gaps in the embeddings

than from limitations in the definition model. Our reasons for placing the blame on

the embeddings rather than the definition model itself are twofold. First, we perform an

ablation study in which we train S+G+CH using randomized embeddings, rather than the

learned Word2Vec ones. The performance of the model is significantly worsened (the test

perplexity is 100.43, and the BLEU scores are shown in Table 2.5), which shows that the

good performance of our definition models is in significant measure due to the embeddings.

Secondly, the error types (4) - (6) are plausible shortcomings of embeddings, some of

37

which have been reported in the literature. These erroneous definitions are partially

correct (often the correct part of speech), but are missing details that may not appear in

contexts of the word due to reporting bias [30]. For example, the word “captain” often

appears near the word “ship”, but the role (as a leader) is frequently implicit. Likewise,

embeddings are well-known to struggle in capturing antonym relations [1], which helps

explain the opposite definitions output by our model.

2.6. Related Work

The goal of this work is to investigate RNN-based models that learns to synthesize

dictionary definitions from word embeddings. In NLP community, dictionary corpora have

been utilized extensively. However, to the best of our knowledge none of the previous work

has attempted to create a generative model of definitions.

Early work focused on extracting semantic information from the dictionary definitions.

For example, Chodorow, 1985 [19], and Klavans and Whitman, 2001 [44] constructed a

taxonomy of words from dictionaries. Dolan et al., 1993 [24] and Vanderwende et al.,

2005 [95] extracting semantic representations from the dictionary definitions, to populate

a lexical knowledge base. Rather than extracting information from the definitions, we

are using the definitions as a training data to reveal encoded information in the word

embeddings.

Recently, dictionary definitions have been used to learn such word embeddings. For

example, Wang et al., 2015 [98] used words in definition text as a form of “context” words

for the Word2Vec algorithm [59]. Hill et al. 2016 [32] use dictionary definitions to model

compositionality, and evaluate the models with the reverse dictionary task. While these

38

works learn word or phrase embeddings from definitions, we only focus on generating

definitions from existing (fixed) embeddings. Nonetheless, experiments show that our

models outperform those of Hill et al., 2016 [32] on the reverse dictionary task.

Our work employs embedding models for natural language generation. A similar

approach has been taken in a variety of recent work on tasks distinct from ours. Dinu

and Baroni, 2014 [23] present a method that uses embeddings to map individual words

to longer phrases denoting the same meaning. Likewise, Li et al., 2015 [48] study how to

encode a paragraph or document as an embedding, and reconstruct the original text from

the encoding. Other recent work such as the image caption generation [39] and spoken

dialog generation [99] are also related to our work, in that a sequence of words is generated

from a single input vector. Our model architectures are inspired by sequence-to-sequence

models [17, 89], but definition modeling is distinct, as it is a word-to-sequence task.

2.7. Conclusion

In this chapter, we introduce the definition modeling task, and investigate whether

word embeddings can be used to generate definitions of the corresponding words. We

evaluate different architectures based on a RNN language model on definition generation

and the reverse and forward dictionary tasks. We find the gated update function that

controls the influence of the word being defined on the model at each time step improves

accuracy, and that a character-level convolutional layer further improves performance.

Our error analysis shows a well-trained set of word embeddings is crucial to the models,

and that some failure modes of the generated definitions provide insight into shortcomings

of the word embeddings.

39

The natural next step is to investigate whether definition models can be utilized to

improve word embeddings or standard language models. This might involve extending the

model to handle polysemy and context-dependent embeddings. We have seen a few work

in this direction [91, 66, 8]. However, as we discuss in section 2.4.2, the most apparent

errors are not of semantic errors, but of fluency issues (e.g. repetitions). This leads us to

the next chapter of this dissertation.

40

CHAPTER 3

Controlling Neural Language Model Behavior

Often, we would like to subject the text generated by a recurrent neural network

language model (RNNLM) to constraints, in order to overcome systemic errors (e.g. word

repetition discussed in the previous chapter) or achieve application-specific goals (e.g.

more positive sentiment). In this chapter, we present a method for training RNNLMs to

simultaneously optimize likelihood and follow a given set of statistical constraints on text

generation.1

The problem is challenging because the statistical constraints are defined over ag-

gregate model behavior, rather than model parameters, meaning that a straightforward

parameter regularization approach is insufficient. We solve this problem using a dynamic

regularizer that updates as training proceeds, based on the generative behavior of the

RNNLMs. Our experiments show that the dynamic regularizer outperforms both generic

training and a static regularization baseline. The approach is successful at improving

word-level repetition statistics by a factor of four in RNNLMs on a definition model-

ing task. It also improves model perplexity when the statistical constraints are n-gram

statistics taken from a large corpus.

1The main contributions in this chapter were first described and published in Controlling Global Statistics
in Recurrent Neural Network Text Generation [67].

41

3.1. Introduction

Recurrent neural network language models are a critical component of many natural

language generation tasks such as machine translation, summarization, automated con-

versation, and caption generation [2, 40, 49, 82, 89]. The models are trained to maximize

the likelihood of a training corpus, and evaluated on the likelihood they assign to a held-

out test corpus (measured in terms of perplexity). RNNLMs, and in particular Long

Short-term Memory Networks (LSTM) [34], have provided dramatic improvements in the

perplexities of language models in recent years [37, 54].

However, while RNNLMs optimize well on the perplexity metric, when we utilize

the models to generate text we often wish to encourage the models to obey additional

statistical constraints. For example, one way in which RNNLM text generators tend to

fail is by repeating the same words or phrases too often, leading to nonsensical output [68,

70, 83]. Can we learn a low-perplexity model that avoids this failure mode? Likewise,

we may want to adjust our model’s output distribution to not reflect undesirable biases

in our training corpus, or to utilize a different style, such as shorter sentences or more

positive sentiment.

In this work, we present a regularization technique that allows modelers to specify

additional soft constraints on language models during the training. For example, the con-

straints might encourage the model to repeat words less often, or to use shorter sentences,

etc. The constraints are stated as a reference distribution that gives target marginal prob-

ability values for events in the text (e.g., the probability that a certain word will repeat

consecutively). The regularizer encourages the global statistics of the model to match the

reference distribution. Implementing the regularizer in RNNLMs is challenging because

42

New Orleans is the largest city in ___ P(Louisiana) Freq.

BLEU
0.5

3e-2 and the u.s. 320

the u.s. and the u.s. 140

japan and the u.s. 50 all outputs

intelligence artificielle =>

 artificial intelligent

Local Global

Figure 3.1. Global statistics such as n-gram frequency measures overall be-
havior of a model while local metrics measures performance per instance.

the marginal output probabilities of an RNNLM do not correspond directly to parameters

of the model (as they do in simpler n-gram models), and instead must be inferred. In

this work, we solve this problem by computing estimates of the model’s marginals from

a sample of generated text, which is continually updated as training proceeds. We then

use the estimates during training to encourage the model to generate text that matches

the reference distribution by minimizing the KL-divergence. We refer to this method as

Dynamic KL Regularization.

To evaluate our approach, we experiment with two types of constraints in RNNLMs.

The first type aims to reduce local repetition. Local repetition is a long-standing issue with

RNNLMs: the models disproportionately repeat the same word within a short window (see

Figure 3.2). The problem becomes particularly acute when we ask the RNN to generate

its estimate of the high-likelihood text for a given input. We show how using dynamic

KL regularization to encourage the RNNLM to exhibit a similar repetition profile to

the training data can reduce repetition with little harm to perplexity. The second type

of constraints attempt to match n-gram statistics from a reference corpus. Training an

RNNLM on even tens of millions of tokens can be computationally costly, but often we can

readily acquire n-gram statistics over even billions of tokens. We show how dynamic KL

43

regularization can be used to incorporate large-corpus statistics that improve an RNNLM

trained on a smaller corpus from the same distribution.

Sampled text from PTB model
... between the u.s. and the u.s. and <unk> agencies ...
... closed higher in paris paris paris paris and zurich ...

... the exxon aerospace and aerospace firm is n’t ...
Sampled text from WordNet model

samurai: a Japanese Japanese Japanese Japanese warrior
vintner: a person who wine wine
papal: associated with or associated with or belonging to the papacy

Figure 3.2. Examples of repetitions generated by recurrent neural network
language models trained with PTB text and the definition model trained
with WordNet definitions.

The rest of the chapter proceeds as follows. We first derive our regularizer from the KL-

divergence between the reference distribution and the model distribution. We then present

dynamic KL regularization, an approximation to our regularizer that is differentiable

and uses estimates of marginal probabilities from text generated by the model. Our

experiments compare dynamic KL regularization with three baselines, and show that

the proposed regularization is better at matching repetition and n-gram statistics on the

Penn Treebank dataset. Furthermore, we show how our method can use statistics from the

larger WikiText-103 corpus [56] to improve an RNNLM trained on a more tractable small

corpus from the same distribution (WikiText-2). Finally, in the last set of experiments is

an application of our approach to reduce repetition for a conditional language generation

task. We choose definition modeling as a benchmark (see the previous chapter for detail).

We find that dynamic KL regularization improves repetition statistics by a factor of four,

and also improves BLEU score [15, 69]. Finally, we provide analysis, review related work,

and conclude.

44

3.2. Dynamic KL Regularization

Our goal is to train a recurrent neural network language model such that the global

statistics of its generated text are similar to a specified set of statistical soft constraints.

Each constraint applies to the marginal probability P (w, c), where w is a word and c

is a condition – an event specified over the context up to and including the word. For

each constraint, we specify two quantities, P0(c) and P0(w|c) to be defined as a constraint

P0(w, c) = P0(w|c)P0(c). As a simple example, if we wish to constrain the probability of

“the dog”, we would define P0(wi = dog|wi−1 = the) and P0(w = the). The distribution

P0(W , C) is denoted as the reference distribution, where W is a vocabulary set and C is

a set of conditioning events.

Recall that an RNNLM defines a probability distribution over words conditioned on

previous words as the following:

Pθ(wt|w1:t−1) = Pθ(wt|ht; τ) ∝ exp(θ(i)
o ht/τ)(3.1)

ht = g(ht−1, wt−1; θ)(3.2)

where w1:t−1 is a sequence of previous words, τ is a temperature (1.0 unless specified), θ

denotes the parameters of the model, θ(i)
o ⊂ θ is a set of weights associated with output

word i, and g(·) is a recurrent function such as an GRU or LSTM unit [18, 34]. When

training on a sequence of ground truth tokens, RNNLMs are optimized to maximize the

log likelihood of all tokens in the training data, or equivalently to maximize the summed

log likelihood of each token given the previous ones.

45

Our goal is to train an RNNLM to generate text with statistics similar to the reference

distribution, while simultaneously achieving high likelihood on the training data. In

principle, matching the reference distribution entails minimizing the KL-divergence from

the reference distribution P0 to the model distribution Pθ. Specifically, we would like to

minimize the KL-divergence as the following:

R(θ, P0) = E
c∼Pθ(C)

[DKL(Pθ(W|c)||P0(W|c)] +DKL(Pθ(C)||P0(C))(3.3)

The first term of R defines a divergence between the model and the reference conditional

distribution of words, and the second term defines the same measure for the distribution

of the conditioning events. Since we are minimizing log-likelihood of the training data, we

decide to minimize R(θ, P0) using conditioning events with respect to the training data.

Our loss function is then:

L(θ) =
T∑
t=1
−logPθ(wt|ht) + αR(wt−l:t)(3.4)

R(wt−l:t; θ, P0) =
∑
ct∈Kt

DKL(Pθ(W|ct)||P0(W|ct)) +DKL(Pθ(C)||P0(C))(3.5)

where Kt ⊂ C is a set of conditioning events occurring in a truncated sequence wt−l:t (i.e.

{wt−1 = the} in our example). α is a weight that controls how strongly the objective

favors matching the reference distribution versus maximizing the log likelihood of the

training corpus. The sequence is truncated because we only need as many previous tokens

as the conditions require. Furthermore, when training with truncated back-propagation

through time, we omit any event occurring before the current training sequence.

46

However, the loss function in Equation 3.5 is challenging to compute exactly. In a

classical n-gram model, obtaining a marginal distribution (i.e. Pθ(W|c) or Pθ(C)) would

be straightforward. These quantities are parameters of an n-gram model. However, in

state-of-the-art RNNLM language models, the situation is more complex. An advantage

of RNNLMs is that their output distributions incorporate arbitrarily long context, via the

hidden state. But, this makes it difficult to infer marginal probabilities, because doing so

requires summing over all possible preceding contexts.

On the other hand, given a sufficiently large corpus of text generated by an RNNLM,

we can easily estimate the model’s marginal probabilities by counting. This sampling-

based approach has the added benefit that our estimates reflect the model’s actual behav-

ior during inference – i.e. the estimates account for exposure bias, the fact that models

are never exposed to their own generated text at training time, only at inference time

[4, 74]. However, we need to sample output from the model to accumulate a large body

of generated text, and perform maximum-likelihood estimation over the text (counting)

to obtain accurate statistics. This process makes Equation 3.5 not differentiable and

prohibits gradient-based training algorithms.

We propose an approach based on an approximation of the KL-divergence computed

in Equation 3.5 by dynamically updating an estimate of the model’s long-run inference

behavior during the training. Specifically, we use maximum-likelihood estimate P̂θ of the

marginal probabilities under the model from its generated text, and compute the KL-

divergence terms in Equation 3.5 using both of these marginals and the model’s current

47

prediction at each time step t:

D̂KL(Pθ(C)||P0(C)) =
∑
c∈C

Pθ(c|ht−l:t)log
P̂θ(c)
P0(c)

(3.6)

D̂KL(Pθ(W|ct)||P0(W|ct)) =
∑
w∈W

Pθ(w|ht)log
P̂θ(w|ct)
P0(w|ct)

(3.7)

Intuitively, Equation 3.6 and 3.7 minimize expected log-likelihood ratio between the

model’s estimate and the reference distribution – decreasing the current predicted prob-

ability if the log ratio is positive (i.e. if we over-generate) and increasing the predicted

probability if the log ratio is negative. In other words, the log-likelihood ratio is a constant

(non-differentiable) providing feedback to the model current prediction (differentiable).

Of course, the model’s marginal probabilities will change as training proceeds. Thus,

as we train, we sample new sequences from the model, dynamically updating the log-

likelihood ratio. We label this as dynamic. However, we need a large sample size

to accurately estimate the model’s marginals (P̂θ). To efficiently compute the model’s

marginals, we keep a fixed-size pool of the generated text. As training proceeds, we

generate a small portion of the text to replace the oldest tokens, and update the model’s

marginals every few steps (Figure 3.3).

3.2.1. Alternate approaches

As discussed above, we infer marginal probabilities of the model by using overall statistics

from the model output text. Thus the regularization requires only the aggregated statistics

to match the reference distribution. On the other hand, one might argue that similar effect

can be achieved by encouraging the model prediction to match the reference distribution

48

Labeled
token

Training text Aggregated
output text

Model distribution

Reference distribution

Context
tokens

Generated
tokens

P(W)

Updates
Updates

RNNLMMLE KLD

Figure 3.3. Dynamic KL regularization computes statistics from the
model’s generated output and adjusts the model parameters according to
the divergence between the desired statistics and the model statistics.

(for every context). To justify our choice to sample, we compare against a baseline

that uses the current model’s output distribution directly for the regularization. This is

equivalent to replacing P̂θ in Equation 3.6 and 3.7 with Pθ. We refer to this alternative

as static, as opposed to dynamically updating statistics from the generated text.

We define our soft constraints as a joint probability of a condition and a word event –

but in some settings, we may not need to regularize the conditions themselves, only the

word event. For example, we may simply want to increase the frequency of “mr. robot”,

regardless of how many times the model generates the first condition token “mr.”. Further,

in some cases, computing the probability of the conditioning events from the model might

not be straightforward or computationally expensive as Equation 3.6 requires probability

distribution over conditioning events. This leads us to another alternate approach that

constrains only the conditional probability P (W|c). That is, we remove the KL-divergence

term of the conditioning event distribution (the last term of Equation 3.5). We refer to

this modified regularization as dynamic-P (C).

49

3.2.2. Examples of statistical constraints

Local repetition statistics. A common problem in generated text from RNNLMs is

local repetition, where the same substring repeats multiple times in a short output text.

For example, one definition of “fairness” sampled from an unregularized definition model

is “the property of being fair and fair.” As our first type of soft constraints, we

regularize the model such that the probability of words appearing again within a window

of tokens is close to that in a given reference text corpus. To construct the constraints,

for each k ∈ {1, 2, 3} we define a conditioning event to be that some word repeats after k

tokens, i.e. C = {wi−k = wi : k ∈ {1, 2, 3}}. We compute the marginal probabilities as:

P (ck) =
∑
w∈W

Nr(w, k)/|W|(3.8)

P (w|ck) =Nr(w, k)/
∑
w′∈W

Nr(w′, k)(3.9)

where Nr(w, k) is the number of times w re-occurs after k tokens. For example, a proba-

bility of “the” repeats after 2 tokens is freq(the ∗ ∗ the)/∑w freq(w ∗ ∗w). We apply

Witten-Bell estimate [16] to smooth the distribution to allow a query for unobserved

events of both model’s and reference marginals. During the training time, the model

probability of the conditioning event is then the current probability of previous k words:

(3.10) Pθ(ck|ht−l:t) = Pθ(wt−k|ht)

Using n-gram statistics. Another type of the soft constraints is the n-gram distribution

where the set of conditioning events is phrases of length n − 1. These constraints can

correct disproportionate n-gram frequencies in the generated text, and can also be used to

50

incorporate statistics from a larger corpus. The marginal probabilities for a conditioning

phrase c = w′1:n−1 are then:

P (c) = P (w′1:n−1)(3.11)

P (w|c) = P (wi = w|wi−n:i−1 = w′1:n−1)(3.12)

From the reference or sampled text, we obtain these marginal probabilities using Kneser-

Ney n-gram language models [45]. During training time, the model probability of the

conditioning event is simply the current output probability:

(3.13) Pθ(c|ht−l:t) =
n−1∏
k=0

Pθ(wt−k|ht−k)

For simplicity of the experiments, we use only bigram constraints in this work.

3.3. Experiments and Results

We now present our experiments evaluating dynamic KL regularization. We begin by

providing a comparison between baselines and our regularization on a common benchmark

for language modeling, a preprocessed version of Penn Treebank (PTB).2 Then, we present

our results on practical usage of the regularization on two other datasets for language

modeling (WikiText) [56] and the definition modeling trained with definitions of lemmas

in WordNet [62].

For language models, we use a 2-layer LSTM with 650 hidden units. The embeddings

and output logit weights are tied and have 650 units. We adopt the training hyper-

parameters from Zaremba et al 2015 [112]. Specifically, we use stochastic gradient descent
2http://www.fit.vutbr.cz/ imikolov/rnnlm

51

with the standard dropout rate of 50%. The initial learning rate is 1.0, with a constant

decay rate of 0.8 starting at the 6th epoch. Perplexity validation stops significantly im-

proving after around 20 epochs. For definition models, we use the same settings described

in the previous chapter. Since a model will generate a uniform distribution before any

training, we pre-trained all models for 5 epochs before applying the regularization to save

training time.

As for hyper-parameters for the regularization, we did a limited exploration and use

the following settings throughout the experiments. The weight α on the regularization is

set to be 1.0 for repetition constraints and 0.5 for bigram constraints. In addition, the

log-likelihood ratio in the approximated KL-divergence (Equation 3.6 and 3.7) is clipped

at -2.0 to 2.0. This helps reduce variance from the reference distribution and the model’s

distribution from the generated text. Finally, text is generated every 100 steps to update

the model’s marginal distribution in an amount equal to 10% of the reference text. The

implementation is publicly available.3

3.3.1. Reducing Sampling Variance

We need a large generated text to infer the model global behavior, but the parameters

of the model is also updated during training. Generating a reasonable-size text every

time the model is updated is not only computationally intensive, but also introduces high

variance to the statistics. We could intermittently generate a small piece of text and add

it to a single pool while keep a moving average of the statistics. However, this creates a

feedback-control loop between the statistics and the regularization because the estimate of

3https://github.com/northanapon/seqmodel/tree/aaai18

52

statistics is highly correlated with the regularization. For example, the regularizer could

try to match probability of “robot” by overly increasing it, and the model generated too

many “robot” for that small piece of text. Then the regularizer would heavily decrease

the probability more than it should.

In order to cope with this, we adopt techniques from reinforcement learning literature

[64]. First we keep a fixed-size history of generated texts, this can be 25-50 pieces (each

100 to 200 thousands tokens). After a few training updates, we replace the oldest entry

with a newly generated one (this can be done asynchronously along with the training).

To get a new global statistics, we combine the recently generated text with text entries

randomly drawn from the history. Finally we add the new estimate to current moving

average to lower its variance and create a momentum effect.

3.3.2. Baseline Comparison

In the first set of experiments, we compare our regularization with standard (unregular-

ized) training on language modeling using Penn Treebank (PTB). We present all com-

parisons with both repetition constraints where k = 1, 2 and 3, and bigram constraints

discussed in the previous section. The statistical constraints are computed from the train-

ing data of PTB.

To measure performance, we compute total absolute frequencies mismatch between

the reference text and the generated text:

∑
w,c∈W,C

|N0(w, c)−Nθ(w, c)|

53

where N(w, c) is the frequency of an event w, c in the reference corpus (N0) or generated

text (Nθ). This error measure shows how much a model’s generated text differs from the

reference distribution.

First, we present our results on repetition constraints. Table 3.1 shows the total

mismatch of words repeated after k tokens. We can see that dynamic can reduce the

number of mismatches in word repetition significantly compared to unregularized (by

more than 50%) at all k, and dynamic−P (C) has essentially the same error, while static

does not work well. This suggests that we do need to sample to estimate the marginals

from the model. Interestingly, the mismatch of static is due to under-repetition. Finally,

we can see that the regularization has only a slight impact on the test perplexity.

Table 3.1. Performance of models trained using PTB and regularized with
word repetition statistics. Dynamic KL regularization significantly reduce
the mismatch in word repetition comparing to training without the reg-
ularization. In parentheses, percentage changes are computed relative to
unregularized.

Test Absolute frequency mismatch
PPL k=1 k=2 k=3

unregularized 77.6 7.07k % 6.25k % 8.30k %
dynamic 78.3 3.00k (58%) 2.91k (53%) 3.89k (53%)
dynamic−P (C) 78.3 2.99k (58%) 3.11k (50%) 4.67k (44%)
static 79.9 8.08k 14% 6.20k (1%) 8.44k 2%

For bigram constraints, we measure absolute error in terms of the frequency mismatch

of unigrams and bigrams. The result in Table 3.2 shows that dynamic has the lowest

error, but the reduction from unregularized is less than what we observed in the previous

experiments (a 23% and 7% reduction). This could be due to the larger number of

constraints we specify (∼ 100k vs. only 200, after filtering out singletons). Again,

dynamic-P (C) works slightly less well than dynamic, and static does not work.

54

Table 3.2. Performance of models trained using PTB and regularized with
bigram statistics. A model trained with dynamic KL regularization has
similar perplexity, and generates text with unigram and bigram frequency
closer to the training corpus than an unregularized model.

Test Absolute frequency mismatch
PPL unigram bigram

unregularized 77.6 163k % 673k %
dynamic 77.8 125k (23%) 623k (7%)
dynamic−P (C) 77.7 147k (9%) 640k (5%)
static 79.8 157k (4%) 754k 12%

3.3.3. Larger corpus statistics

We now demonstrate how to use bigram statistics from a larger corpus to regularize a

model trained on a similar, but smaller corpus. For this, we choose WikiText corpora con-

taining WikiText-103 (large) and WikiText-2 (small). Note that WikiText-103 training

data does not contain Wikipedia articles that overlap with validation and testing data

on WikiText-2. Since WikiText-103 has a much larger vocabulary size, when comput-

ing bigram constraints, we use vocabulary from WikiText-2 and set out-of-vocab words

to the unknown symbol. The results in Table 3.3 shows dynamic-103 model has better

perplexity than unregularized and dynamic-2 models.

Since the reference corpora differ in this experiment, our mismatch measure from the

previous experiments is not meaningful. Instead, we measure the KL-divergence of the

unigram and bigram distributions to evaluate the efficacy of our constraints. Table 3.3

shows the KL-divergence from the generated texts to WikiText-103’s training data. The

dynamic-103 model is exposed to bigram statistics from WikiText-103, and has the lowest

KL-divergence among the generated texts.

55

Table 3.3. Performance of models trained using WikiText-2, regularized
using statistics of the training data from Wikitext-2 and WikiText-103 re-
spectively.

Test KL-divergence
PPL unigram bigram

unregularized 91.6 0.121 % 1.785 %
dynamic-2 91.4 0.111 (8%) 1.733 (3%)
dynamic-103 86.8 0.072 (40%) 1.586 (11%)

3.3.4. Definition generation

Finally, we evaluate our method on a definition modeling. Definition modeling serves

as a benchmark for a simple conditional language generation task. Certain sequence-to-

sequence models have an existing solution to repetition by encouraging models to attend

to different positions of an input sequence [56, 92]. However, this approach cannot be

applied in word-to-sequence models, as there is only one input token.

We take all lemma definitions from WordNet and split into training, validating, and

testing data. We experiment with repetition constraints from the training data. A com-

mon use case of a language generation model is to find a high likelihood sequence. To test

whether the proposed regularizer holds up in this setting, we use the greedy algorithm to

generate a definition for each word in the training data and compare the absolute repeti-

tion frequency mismatch, as in our first set of experiments. Note that the test perplexities

are always computed under normal temperature. We compute BLEU score as a measure

of output definition quality in the Greedy setting. We omit BLEU scores from the Sample

setting, because sampled text under a model’s distribution is often not a high likelihood

sequence that we would compare with the reference texts.

56

Table 3.4 shows the results of the repetition constraints experiment. Consistent with

the baseline comparison, dynamic has lower mismatch compared to unregularized. Again,

the perplexity is similar between the two models. The repetition problem becomes more

severe when the text is being generated greedily. In the later part of the table, we can

see that mismatch of repetitions increases for both unregularized and dynamic. However,

dynamic still has much lower mismatch, especially for tokens that repeat immediately. In

addition, dynamic results in an increase in BLEU score from unregularized.

Table 3.4. Performance of models training using WordNet definitions and
regularized with word repetition statistics. Top: A model trained with our
regularization maintains the same perplexity, but generate significantly less
repetition. Bottom: The definitions are greedily generated from the same
models with one additional model. The regularized model generates less
repetition under low temperature and has slightly improved BLEU score. In
addition, regularized with statistics from low temperature results in similar
performance.

Test Test Absolute frequency mismatch
PPL BLEU k=1 k=2 k=3

Sample Generation
unregularized 48.0 N/A 1.74k % 4.78k % 4.28k %
dynamic 48.0 N/A 0.41k (76%) 2.99k (37%) 2.33k (46%)

Greedy Generation
unregularized 48.0 18.5 10.73k % 34.96k % 36.90k %
dynamic 48.0 19.1 0.72k (93%) 13.70k (61%) 14.37k (61%)
dynamic-greedy 48.8 18.9 0.69k (94%) 11.16k (68%) 8.87k (76%)

Dynamic KL regularization can also be adapted to specify constraints over greedily

generated text, rather than sampled text. To test this, we trained another model with the

same repetition constraints as dynamic, but that generates in a near-greedy mode (with

temperature of 0.1) during training. As shown in the last row of the table, dynamic-greedy

57

can drive the repetition mismatch during the greedy generation further down with slightly

worse perplexity (under the usual distribution, τ = 1.0) and BLEU score.

3.4. Discussion

In this section, we discuss and analyze dynamic KL regularization. We discuss common

types of local repetition of the generated definitions and show a few examples that the

regularizer solves. Then, we note on the computation cost associated with the regularizer.

Finally, we present a preliminary experiment where we have a small set of constraints that

conflict with the training data.

3.4.1. Local repetition and n-gram duplication

The results in Table 3.4 show a total reduction of repeated words in local context windows.

We find this indirectly also reduces the number of duplicate n-grams within a definition.

Figure 3.4 shows percentage of n-gram duplicate within a definition from the test data

generated greedily from the models. We can see that models trained with the regularizer

generate definitions with fewer duplicate n-grams. Note that some part of the reduction

is due to the generated definitions being shorter (8.6 vs 8.0 tokens per output sequence).

For further qualitative analysis, we identify common cases of local repetition and pro-

vide examples of improvement in the regularized model as shown in Figure 3.5. We notice

that the most common cases of local repetition come after a conjunction, especially “or”.

This could be due to the fact that a word that follows a conjunction like “or” or “and”

often has a meaning similar to the word before the conjunction, and thus the model’s

58

1-grams 2-grams 3-grams 4-grams

unregularized

test data

dynamic

dynamic w/
greedy statistics

0

5

10

15

20

25

Figure 3.4. Percent of duplicate n-grams within a definition in test data and
definitions generated greedily from models. Reduction in local repetition
also reduces n-gram duplication in output sequences.

hidden states are often similar on either side of the conjunction, increasing the proba-

bility of repetition. Another category of local repetition is an error where words, often

adjectives, repeat immediately. Interestingly, in this case the unregularized model ends

the repetition with a related word after a few repeated tokens. The immediate repeti-

tion case is also where regularization has the most positive impact (see Table 3.4, k=1).

The final common repetition type is repeating common phrases, which typically occurs

in erroneous definitions — this kind of repetition often results in a sequence reaching a

maximum length threshold before generating any content words.

3.4.2. Computational cost

The proposed regularization incurs additional computation to estimate the marginal dis-

tribution (generating text) and matching constraints in the running text from the training

data. These increased training times are directly proportional to the amount of sampled

text generated and the number of soft constraints. With our serial implementation, the

59

Word Generated definition
Repeat after conjunctions (most common)
develop make a new or new or new

make a new or more
safe free from danger or danger

free from danger
alleviation the act of relieving or ... or relieving the body or ... or body

the act of relieving something
cut a cut of wood or wood or metal or plastic or plastic or ... or plastic

a cut of wood or metal
Repeat immediately
lessen make less less less significant

make less desirable
slim having a thin thin thin thin thin coat

having a slim or thin shape
brindle a smooth brown brown brown color

a smooth brown coat of the color of a dog
samurai a Japanese Japanese Japanese Japanese warrior

a Japanese warrior
Repeat common phrases
telluric of or relating to or characteristic of or ... or characteristic of a comet

of or relating to the earth
papal associated with or associated with or belonging to the papacy

of or relating to or characteristic of a pope
fatuous marked by or ... or marked by or characterized by or ... or characterized

by
having or showing a lack of pretensions

Figure 3.5. Examples of common cases that the regularized model reduces
local repetition from definitions generated greedily. Each word shows defini-
tions from unregularized (upper) and regularized (lower) model respectively.
“...” indicates a phrase repeating a few times.

training time for the regularized models is approximately two to five times longer than

their unregularized counterparts. However, we believe that the additional processes can

be done in parallel to the model training.

60

3.4.3. Conflicting statistics

Most of our experiments use a reference distribution from either the training data itself,

or a closely similar distribution. But, we may desire a much different distribution instead.

What happens if the constraints conflict dramatically with the training data? We pro-

vide a preliminary experiment on a small, artificial set of constraints in order to reveal

the effect of the regularizer in such a situation. We create imputed constraints by artifi-

cially increasing the probability of “san francisco” and “mr. robot”, and decreasing

the probability of “new york” from the PTB training data. Hence, the conditioning

constraint is the modified unigram probability of {“new”, “san”, “mr.”}, and the con-

ditional constraints include modified probability of “york”, “francisco”, and “robot”

given “new”, “san”, and “mr.” respectively.

Table 3.5. Frequencies of “new york”, “san francisco”, and “mr.
robot” on different texts. The reference text has manually modified fre-
quencies of the bigrams. Text generated from the regularized model has
frequency profile closer to the reference text.

Method NY SF MR.R
Training 946 249 0
Reference 455 740 2,136
unregularized 988 215 0
dynamic 792 450 1,089

As we can see in Table 3.5, the regularizer can manipulate the frequencies of target

bigrams to some certain extent, even though the constraints conflict significantly with the

training data. Below are two excerpts of text generated by the regularized model:

• “...grower who has gotten out of san francisco on

wall street ’s very heavy...”

61

• “...mr. robot noted that the underlying supply of

american companies helped...”

3.5. Related Work

A common technique for enforcing a set of pre-defined constraints on a probabilistic

model is to modify the model’s prediction to follow set of declarative rules. For example,

Roth and Yih, 2005 [81] add integer linear programming during the inference of CRF

model to incorporate constraints. Chang et al., 2008 [12] proposed Constrained Condi-

tional Model to eliminate predicted labels that violate constraints during both training

and inference. In recent neural network models, an output mask is often applied to zero-

out probabilities of invalid labels [51, 103]. For instance, Paulas et al., 2017 [70] masks

the probability of a word that will lead to duplicate trigrams during the text generation

(with beam search). Distinct from this direction, this work focuses on training a model

to obey soft statistical constraints, which are not applied during inference.

Our goal is to regularize an RNNLM’s output distribution during training such that

the global statistics of the generated text are relatively close to a given set of statisti-

cal constraints. This is a very different objective from recent regularization techniques,

which are aimed at solving overfitting. For example, variations of dropout regularization

randomly mask out activations or parameters of the model to be zero [87, 27, 97] and

they have been successfully applied to train RNNLMs [55, 112]. Data noising techniques

modify the input words directly. This can involve simply randomly dropping off input

words [9], or using smoothing and back-off techniques from n-gram language modeling to

compute the probability of the noise words [107].

62

The regularization investigated in this work can be viewed as a label regularization or

label smoothing technique where the output distribution of a model is trained to match a

reference distribution. This technique encourages the model to be less confident, and so

less overfitted [33, 75, 90]. On the other hand, Mann and McCallum, 2007 [52] proposed

expectation regularization to augment the training with unlabeled data by encouraging

model predictions on the unlabeled data to match human-provided label priors. In lan-

guage modeling, however, label smoothing techniques have not been widely explored.

Rosenfeld, 1996 [79] applied the maximum entropy principle to train n-gram language

models. Recently, Pereyra et al., 2017 [72] uses the same principle to penalize overcon-

fident predictions of RNNLMs. They minimize KL-divergence from the uniform distri-

bution to the model output distribution: DKL(Pθ||u). Extending the previous work, we

explore two different non-uniform reference distributions, and introduce a substantially

more powerful context-dependent label smoothing technique. Label smoothing can be

seen as a static KL regularizer, and we show how our novel dynamic KL regularization

performs better than static approaches on our tasks.

Improving the overall quality of the generated text from RNNLMs has been a popular

direction in recent research. A general approach is to solve the exposure bias by letting

the models consume some of its own output predictions during training. This includes

scheduled sampling [4] and beam-search optimization [105]. Many works apply the RE-

INFORCE algorithm [104] to directly optimize a sequence-level score, which is often the

final evaluation metric such as BLEU or ROUGE score [3, 70, 74, 76]. While BLEU and

ROUGE score use n-gram matching similar to our proposed regularization with n-gram

constraints (i.e. bigrams), they are locally defined per output sequence and might not

63

capture global statistics. In generative adversarial network training, the score is the out-

put prediction of a synchronously trained discriminator [13, 111]. On the other hand, we

use count-based statistics which can be computed more efficiently. It is worth noting that

our dynamic KL regularization can be used alongside these approaches.

3.6. Conclusion

We investigated how to train RNNLMs to follow a set of soft constraints from a refer-

ence distribution. We presented dynamic KL regularization, which encourages an RNNLM

to match a reference distribution by adjusting the regularizer as training proceeds, based

on sampling the model’s generated text. We experimented with two types of soft con-

straints, one for repetition and the other for bigram distributions. Our approach is shown

to lower the mismatch in repetition frequency between generated and reference text. This

results in a factor of four improvement in local repetition in a definition modeling task.

In addition, dynamic KL regularization can utilize the bigram distribution from a large

corpus to decrease the perplexity of a language model trained on a smaller corpus.

One drawback from dynamic KL regularizer is the computational cost associated with

generating output text, but this is caused by a limitation of RNNLMs. The marginal

probability that a model will generate a phrase is not explicitly stated in the model’s

parameters, unlike n-gram language models. In the next chapter, we explore a way to

efficiently estimate the marginal probability.

64

CHAPTER 4

Estimating Probabilities of Short Phrases Without Context

Recurrent neural networks are the standard-bearer for language modeling. However,

recurrent neural network language models (RNNLMs) only estimate probabilities for com-

plete sequences of text, whereas some applications require context-independent phrase

probabilities instead. In this chapter, we study how to compute an RNN’s marginal

probability: the probability that the model assigns to a short sequence of text, when the

preceding context is absent.

We introduce a simple method of altering the RNNLM training to occasionally reset

to a special start state used for marginal queries, and demonstrate that this technique is

remarkably effective compared to other baselines.

4.1. Introduction

Typically, RNNLMs are trained on complete sequences (e.g., a sentence or an utter-

ance), or long sequences (e.g. several documents), and used in the same fashion during

applications or testing. One of the advantages of recurrent neural networks is that they

do not use a certain size of context, and the history information can cycle inside these

network for long time [7, 61]. Thus, they cannot accurately estimate the probability of

the sequence without a full preceding context i.e. marginal probability of a short sequence.

This simple, yet lacking capability is useful for wide range of applications. For example,

we can detect context-independent abnormal phrases during the generation of RNNLMs.

65

More accurate n-gram probabilities could also aid techniques that use phrase occurrence

counts for information extraction and assessment [6, 86]. In this work, we are interested

in estimating how likely a phrase will be generated by an RNNLM without actually

generating large amount of text (used in previous chapter). That is, we would like to

characterize the model behavior so that we can make an informed change. This can be

used to regularize the output text of an RNNLM as in the previous chapter or to efficiently

train an RNNLM with n-gram statistics [14].

Estimating marginals from an RNN is challenging because unlike an n-gram language

model, an RNNLM does not explicitly store marginal probabilities as its parameters. In-

stead, previous words are recurrently combined with the RNN’s hidden state to produce

a new state, which is used to compute a probability distribution of the next word. When

the preceding context is absent, however, the starting state is also missing. In order to

compute the marginal probability, in principle we must marginalize over all possible pre-

vious contexts or all continuous-vector states. Both options pose a severe computational

challenge.

In this work, we study how to efficiently compute marginal probabilities from an

RNNLM. We first discuss several approaches that can be used to estimate the marginal

probabilities. This includes our proposed approach by randomly reseting its state during

the training, and an importance sampling. Then, we present our experiments and compare

results using log likelihood ratios between predicted marginal probabilities and the actual

sequence frequency (both training and generated).

66

4.2. Marginal Estimation

The goal of the marginal estimation is to determine likelihood of a short phrase where

the preceding context is absent; we refer to this likelihood as marginal probability. For

recurrent neural network language models (RNNLM), computing marginal probabilities is

challenging because an RNNLM is designed to capture an arbitrarily long dependency in

the states, and assumes a single, specific initial state. Evaluating an RNN on a randomly

drawn n-gram from a corpus will usually result in underestimation of the n-gram likeli-

hood, because the model starting state is not appropriate for the n-gram. In this section,

we discuss the problem in detail and present approaches investigated in this work.

4.2.1. Problem settings

Recall that, an RNNLM defines a probability distribution over words conditioned on

previous words as the following [61]:

P (w1:T) =
T∏
t=1

P (wt|w1:t−1)(4.1)

P (wt|w1:t−1) = P (wt|ht) ∝ exp(θ(w)
o ht)(4.2)

ht = g(ht−1, wt−1)(4.3)

where w1:t−1 is a sequence of previous words, θwo denotes the output weights of a word w,

and g(·) is a recurrent function such as an LSTM or GRU unit [18, 34]. An initial state,

h1 is needed to start the recurrent function g(h1, w1), and also defines the probability

distribution of the first word P (w1|h1). In a normal language model setting, we compute

h1 using a special symbol (“<s>”), and a special starting state h0 (usually set to be a

67

vector of zeros ~0), e.g.

P (of the) = P (of|h1 = g(~0, <s>))P (the|h2 = g(h1, the))

The effect of this initial setting is noticeably reflected in low likelihoods of the first few

tokens during the evaluation. For instance, P (of the) is likely to be underestimated

because “of the” does not usually start a sentence even though it is a common phrase.

This becomes problematic when an application requires likelihoods of short phrases.

For the marginal probability, we would like to compute the likelihood of standalone

phrases where we do not assume the starting symbol (w0), and we marginalize out the

preceding context. For brevity, we name the RNN’s first effective state as z ∈ Rd, a vector

of random variables representing the RNN initial state, and w1:T be a short sequence of

text. The marginal probability is defined as:

p(w1:T) =
∫
p(w1:T |z)p(z)dz(4.4)

The integral form of the marginal probability is intractable and requires an unknown den-

sity estimator of the state, p(z). In this work, we explore many approaches to approximate

the marginal probability.

4.2.2. Fixed-point approaches

A simple approach is to use a single point as an initial state, named zψ. We can either

train this vector or simply set it to a zero vector. Then the marginal probability in

Equation 4.4 can be estimated with a single run i.e. p(zψ) = 1.0 and p(z) = 0.0 if z 6= zψ.

68

The computation is reduced to be as follow:

P (w1:T) = P (w1|zψ)
T∏
t=2

P (wt|ht)(4.5)

where h2 = g(zψ, w1) and the rest of the state process as usual ht = g(ht−1, wt−1). In this

subsection, we discuss how to train an RNNLM such that its output likelihoods are more

accurate for the marginal estimation.

As we previously discussed, our fixed-point state, zψ, is not a suitable starting state

of all n-grams, so we need to train an RNNLM to adapt to this state. One way to do

this is to increase the use of zψ as a context-independent starting state. To achieve this,

we slightly modify the training algorithm of RNNs (truncated back-propagation through

time) [101]. We randomly reset the states to zψ when computing a new state during the

training of RNNLM (similar to Melis et al., 2017 [54]). This implies that zψ is trained to

maximize the likelihood of different subsequent texts of different lengths, and thus is an

approximately “good” starting point for any sequence. A new state is computed during

the training as follows:

r ∼ Bern(ρ)(4.6)

ht = rzψ + (1− r)g(ht−1, wt−1)(4.7)

where ρ is a hyper-parameter for the probability of resetting a state, and r ∈ {0, 1} is

a scalar acting as a hard selector. Larger ρ means more training with zψ, but it could

disrupt the long-term dependency information captured in the state. In this work, we

keep ρ relatively small at 0.05 and 0.10.

69

In addition to the random reset, we introduce a unigram regularization to improve

the accuracy of the marginal estimation. We can see from Equation 4.5 that zψ is used to

predict the probability distribution of the first token, which should be unigram distribution

(the probability of any word occurs without a context). To get this desired behavior,

we propose a regularization to maximize likelihood of each token in the training data

independently, we call this unigram regularizer:

Lu = E
w∼data

[−logp(w|zψ)](4.8)

This is added to the training objective of RNNLMs. During an evaluation, zψ is the initial

state to predict a probability of the first token, and we do not use zψ afterward (no reset).

4.2.3. Trace-based approaches

Instead of using a single point, we can sample for starting states. That is, the integral form

of the marginal probability in Equation 4.4 can also be approximated by sampling. In this

regime, we assume that there is a source of samples which asymptotically approaches the

true distribution of the RNN states as the number of samples grows. In this subsection,

we discuss a sampling approach to the marginal estimation based on a collection of RNN

states during an evaluation, called a trace.

Given a corpus of text, a trace of an RNNLM is the corresponding list of RNN states,

H(tr) = (h(tr)
1 , h

(tr)
2 , ..., h

(tr)
M), produced when evaluating the corpus. We can estimate the

marginal probability by sampling the initial state z from H as follow:

P (w1:T) = Ez∼H(tr)

[
P (w1|z)

T∏
t=2

p(wt|ht)
]

(4.9)

70

where h2 = g(zψ, w1) and ht = g(ht−1, wt−1) for t > 2 (i.e. the following states are the

deterministic output of the RNN function). one way to produce a marginal estimate is

to run the model forward on the query (i.e. w1:T) several times, starting from each state

in the trace and averaging the results. Given a large trace this may produce accurate

estimates, but it is intractably expensive and also wasteful, since in general there are very

few states in the trace that yield a high likelihood for a sequence.

To reduce the number of times we run the model on the query, we use importance

sampling over the trace. We define a distribution based on a trained encoder that takes an

n-gram query and output a state “near” the starting state(s) of the query, zχ = qχ(w1:T).

Specifically, we define a sampling weight for a state in the trace proportional to the dot

product of the state and result of the encoder zχ:

(4.10) P (h(tr)|w1:T) = exp(zχh(tr))∑
h′(tr)∈H(tr) exp(zχh′(tr))

This distribution is biased to toward states that are likely to precede the query w1:T . Then

we estimate the marginal probability as the following:

(4.11) P (w1:T) = E
z∼P (h(tr)|w1:T)

[
p(z|prior)
p(z|w1:T) P (w1|z)

T∏
t=2

p(wt|ht)
]

Here the choice of p(z1|prior) is a uniform distribution over the states in the trace, and

qχ(w1:T) is a trained RNN with its input reversed, and zχ is the final output state of qχ.

To train qχ, we randomly draw a substring wi:i+n of random length from the trace, and

minimize the mean-squared difference between zχ and h(tr)
i .

71

4.3. Experiments and Results

4.3.1. Experiment Settings

We experiment with a standard LSTM language model [112] over 2 datasets: Penn Tree-

bank (PTB) [61] for a small-size model and WikiText-2 (WT-2) [56] for a medium-size

model. Our RNNLMs are 2-layer LSTMs with state sizes of 200 and 650 for small and

medium respectively. The embedding size is set to be the same as the state size and tied

with the output logit weight [36, 112]. For optimization, all of the models are trained

with Adam [43] for 20 epochs (small) and 30 epochs (medium) with learning rate starting

from 0.003 and decaying by 0.85 every epoch. In addition, we clip the cell state of the

LSTM units to [−1, 1] The medium-size model is trained with dropout rate of 0.5, and

the small model is trained without dropout [87]. The final parameter set is then chosen

as the one minimizing validation set loss.

The model and training of the query model (qχ(w1:T)) used in the importance sampling

approach are similar to the RNNLMs. Since each state LSTM cell contains a cell state,

c and an output state, h, our full state consists of four vectors (not independent). In our

experiment, we predict the query state, zχ, to match the output state of the last layer,

rather than the full state.

4.3.2. Marginal Estimation

To evaluate the approaches, we compare our methods’ marginal estimates with the mar-

ginal probabilities from the actual model generation. For each model, we generate around

1 million and 2.1 million tokens for PTB and WT-2 models respectively, and exclude

72

n-grams with frequency less than 10 from our evaluation to reduce noise from the gener-

ation. We then use the marginal probability computed from the generation as the target,

and measure the performance using the absolute value of the log ratio (lower is better):

(4.12) error(w1:T) =
∣∣∣logPcount(w1:T)− logPest(w1:T)

∣∣∣
This evaluation measure gives equal importance to every n-gram regardless of its fre-

quency. To show how performance varies depending on the query, we present results

aggregated in two different ways, by n-gram length and frequency bucket.

Table 4.1 shows the error of the different marginal probability estimation approaches.

Our baselines includesKN-5: a Kneser-Ney 5-gram language model [45], Zero: an RNNLM

using the zero vector as a starting state, and Rand: a trace-based approach using ran-

domly selected trace states as a staring state. The 5-gram language models are trained

using the training sets. Reset is similar to Zero but the model is trained with resetting

and unigram regularization as described in Section 4.2.2. The reset rates are 0.1 and

0.05 for PTB and WT-2 model respectively. The results with trainable starting state are

similar to using a fixed zero starting state, and are omitted. Finally, IW indicates the

importance sampling approach described in Section 4.2.3. We do not observe a signifi-

cant difference when using the trace from the generated text and the training text. Thus,

we only experiment with the trace states using the corresponding training corpus (lower

computational overhead).

The results show that despite its simplicity and efficiency, Reset predicts marginal

probabilities closest to the count-based marginal probabilities from the generated text.

73

Table 4.1. Average absolute log ratio between the marginal probabilities
from generation and models’ estimates (KN-5, Zero, Rand, Reset, IW). The
“Total” column shows the approximate number of n-grams being averaged.
Reset has the lowest error across almost all groups.

PTB (small-size model)
Length KN-5 Zero Rand Reset IW Total

1 0.651 1.304 0.514 0.280 0.444 6.6k
2 1.001 4.641 0.755 0.400 0.538 10.7k
3 1.837 6.654 0.940 0.407 0.611 4k
4 2.647 7.810 1.486 0.414 0.733 1.1k
5 3.214 8.682 2.315 0.455 0.989 0.3k

Freq. KN-5 Zero Rand Reset IW Total
10 - 20 1.222 4.562 0.820 0.462 0.574 12k
20 - 50 1.147 4.184 0.769 0.312 0.525 6.7k

50 - 100 1.043 3.484 0.721 0.202 0.497 2.2k
10 - 500 1.019 3.234 0.664 0.185 0.451 1.7k
500 - inf 0.889 4.192 0.474 0.124 0.385 0.3k

WT-2 (medium-size model)
Length KN-5 Zero Rand Reset IW Total

1 0.835 1.053 1.072 0.314 0.781 9.4k
2 1.527 3.847 1.353 0.519 0.831 23.6k
3 2.502 5.373 1.748 0.631 0.837 14.5k
4 3.355 6.728 2.457 0.792 0.832 4.6k
5 4.428 7.585 3.414 0.952 0.913 1.2k

Freq. KN-5 Zero Rand Reset IW Total
10 - 20 2.017 4.373 1.640 0.598 0.866 27.9k
20 - 50 1.831 3.985 1.537 0.505 0.814 15.6k

50 - 100 1.707 3.573 1.423 0.410 0.746 5.1k
10 - 500 1.563 3.357 1.253 0.340 0.723 3.9k
500 - inf 1.462 3.833 0.989 0.244 0.634 0.7k

The errors are significantly lower than the baselines (KN-5, Zero, and Rand) and im-

portance sampling IW. The marginal probabilities of Rand and IW are average of 100

sampled states (the errors presented here are average of 30 trials). This means IW re-

quires significantly more computation than the other approaches during the inference, but

the errors are higher than Reset.

74

4.3.3. Perplexity and Reset

While IW is not as accurate and efficient, it might be suitable when we do not want to train

another RNNLM with the state reseting and unigram regularization (Reset). We present

the impact on perplexity of the state reset and unigram regularization. Table 4.2 shows

the test perplexity of each model. We can see that the reset and unigram regularization

(Reset) tends to slightly worsen the test perplexity comparing to the standard training.

Since WT-2 dataset is split by articles, the distribution of words can be different between

training, validating, and testing sets. We think that the unigram regularization is likely

the cause of this minor discrepancy.

Table 4.2. Perplexity evaluated on the test sets. Overall, the reset and
unigram regularization (Reset) has a negative impact on the perplexity.

PTB WT-2
Reset+Unigram No Yes No Yes
Small 117.3 112.6 135.6 141.2
Medium 92.7 94.9 105.9 108.2

4.3.4. Lowering number of samples

The computational cost of the importance sampling method linearly grows with the num-

ber of samples. We experiment with lower number of samples and present the errors and

variances. Table 4.3 shows the error of the marginal probabilities estimated using 100,

20, and 1 samples and compare with the random sampling (100 samples). We run the

experiment 30 times and present means and variances of the errors. The variances are

computed from the 30 trials of each n-gram and, in the table, are the mean variance of

n-grams in each group. As expected, higher number of samples leads to more accurate

75

marginal estimation and lower variance. Interestingly the importance sampling with 20

samples outperforms the random sampling with 100 samples.

Table 4.3. Marginal probability errors and variances (in parentheses) of the
trace-based approaches. The results are obtained from 30 trials of WT-2
experiments.

Length Rand-100 IW-100 IW-20 IW-1

1 1.072 (0.398) 0.781 (0.144) 1.000 (0.343) 2.634 (3.905)
2 1.353 (0.450) 0.831 (0.155) 0.955 (0.346) 2.480 (3.147)
3 1.748 (0.551) 0.837 (0.164) 0.955 (0.361) 2.635 (3.422)
4 2.457 (0.843) 0.832 (0.186) 0.948 (0.412) 2.866 (4.204)
5 3.414 (1.256) 0.913 (0.226) 1.018 (0.552) 3.087 (5.742)

Freq. Rand-100 IW-100 IW-20 IW-1

10 - 20 1.640 (0.541) 0.866 (0.172) 1.002 (0.385) 2.698 (3.702)
20 - 50 1.537 (0.522) 0.814 (0.158) 0.952 (0.358) 2.572 (3.476)

50 - 100 1.423 (0.498) 0.746 (0.136) 0.888 (0.306) 2.422 (3.160)
10 - 500 1.253 (0.414) 0.723 (0.117) 0.874 (0.280) 2.302 (2.879)
500 - inf 0.989 (0.385) 0.634 (0.085) 0.786 (0.239) 2.002 (2.265)

4.4. Conclusion

In this chapter, we evaluate approaches to compute n-gram marginal probability from

a RNNLM, including n-gram language modeling, using fixed-point starting state, and

importance sampling. Our target marginal probabilities are from the generated text from

the RNNLM. We find that the fixed-point approach predicts the marginal probabilities

closest to the target when the RNNLM is trained with state reseting and unigram reg-

ularization. The importance sampling comes in second, and is suitable when we do not

want to train another RNNLM.

For future work, we would like to extend this work in two directions. First, we would

like to evaluate our approaches in applications. This includes directly using the marginal

probabilities (i.e. during generation), and using them to train or regularize a RNNLM.

76

Another direction is that we would like to continue improving the marginal estimation:

experimenting with other recent density estimation models such as autoregressive models

[94] or normalizing flows [77].

77

CHAPTER 5

Conclusion and Future Work

In this dissertation, we introduced methods that improve usability of neural language

models. Our work centered around the strength of current deep learning models, the

information is learned in distributed fashion, which gives rise to new challenges that we

addressed. We discussed and proposed novel solutions to reveal the information captured

by the model representations of words, and to inspect and direct overall generative be-

havior of the model. In this chapter, we conclude this dissertation, and discuss remaining

challenges and future work to address them.

Chapter 2. tackled the problem of interpretability of word embeddings by harnessing the

generation quality of recurrent neural network language models (RNNLMs) and definitions

of words from dictionaries. We introduced a new task of estimating the probability of a

textual definition given a word being defined and its embedding, definition modeling. A

definition model is a type of neural language model and can be used to match words and

definitions and, more interestingly, generate a definition given an embedding.

We showed that a definition model that can (learn to) control the influence of word

being defined over words in a definition performs best. In addition, we found that adding

character-level information to word embeddings further improves the performance. Fi-

nally, based on our analysis, we think that the popular word embeddings (Google news

78

Word2Vec1) tend to over simplify the semantics of words and bias toward context words.

For example, a generated definition of “adorable” is “having the qualities of a

child” where “child” is often described as “adorable” (Figure 2.9).

The results highlighted a few limitations of current neural language models. First,

words can have multiple meanings, whether we decide to have multiple embeddings for a

word or use context-specific embedding, a neural language model should handle polysemy

properly, especially when learning the representations. Second, RNNLMs tend to repeat

phrases or generate abnormal phrases. In this situation, researchers including us resort

to manually craft an ad-hoc process to prevent or clean such mistakes.

Chapter 3. investigated the latter limitation above: training an RNNLM to behave as

we desire. We introduced a method that encourage an RNNLM to generate text that

follows a pre-defined constraints during the training. We use n-gram distribution as a

way to specify the constraints. While n-gram distributions are not easily consumed by

human, they are still interpretable and can be efficiently computed from a corpus of text.

However, they are not easily queries from an RNNLM due to its distributed parameters.

We presented dynamic KL regularization to overcome this challenge. The regulariza-

tion dynamically estimates n-gram distributions from the current output generated text

of the model, thus it can accurately adjust the model behavior. We experimented and

showed that an RNNLM trained with the proposed method behaviors more similar to

our bigram distribution (improving generalizability) and repetition distribution (reducing

repeated phrases). The interesting finding worth highlighting is that the perplexities of a

1https://code.google.com/archive/p/word2vec

79

model trained with and without dynamic KL regularization are similar, while they behave

drastically different.

While we explore word-level soft constraints in this work, dynamic KL regularization

can be extended to incorporate higher-level constraints such as syntactic or semantic

information. This could aid human in term of creating the statistical constraints to train

the models. We believe that the future direction should focus on encouraging RNNLMs

to generate text with a particular sentiment, writing style, reading level, and so on.

However, this also means computing a more complicated statistics of the model behavior.

In particular, we have to generate large amount of text to have sufficient statistics of

n-grams in our experiments (up to 4-gram).

Chapter 4. directly addressed, but not limited to, the drawback of the dynamic KL

regularization. In general, we explore methods to compute how likely an RNNLM will

generate a phrase regardless of context i.e. the probability of the context-independent

phrase from an RNNLM. The challenge here is that RNNLMs are trained to estimate

probabilities for complete sequences, and their parameters do not explicitly state their

behavior.

We presented empirical results of several methods for marginal estimation: predicting

probability of short phrases without preceding context, and introduced a modification

to the training of an RNNLM such that its marginal estimates are more accurate. We

showed that our proposed method can efficiently predict the marginal probabilities closest

to the statistics from the model generated text. The proposed method requires training

a new RNNLM. If this is not desired, we also introduced a method based on importance

sampling which outperforms the baseline approaches.

80

While we found successful methods that are several times more accurate than the

baselines, we have not yet tested its usefulness in an application setting. Applying it

to dynamic KL regularization is a our immediate future work direction. On another

direction, we would like to further improve the accuracy of the marginal estimation. This

could involve bringing a structure to the hidden states of RNNLMs, so that we have a

better understanding of its properties.

I hope this dissertation can encourage researchers to tackle the discussed limitations and

improve upon my work. I believe it is necessary to make progress toward bringing both

machine learning models and humans to a common ground.

81

References

[1] L. Argerich, J. Torré Zaffaroni, and M. J Cano. “Hash2Vec, Feature Hashing for
Word Embeddings”. In: ArXiv e-prints (Aug. 2016). arXiv: 1608.08940 [cs.CL].

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine Trans-
lation by Jointly Learning to Align and Translate”. In: Proceedings of 3rd Interna-
tional Conference on Learning Representations. 2014.

[3] D. Bahdanau et al. “An Actor-Critic Algorithm for Sequence Prediction”. In: ArXiv
e-prints arXiv:1607.07086v3 [cs.LG] (July 2016). arXiv: 1607.07086 [cs.LG].

[4] Samy Bengio et al. “Scheduled Sampling for Sequence Prediction with Recurrent
Neural Networks”. In: Advances in Neural Information Processing Systems 28. Cur-
ran Associates, Inc., 2015, pp. 1171–1179. url: http://papers.nips.cc/paper/
5956 - scheduled - sampling - for - sequence - prediction - with - recurrent -
neural-networks.pdf.

[5] Yoshua Bengio et al. “A Neural Probabilistic Language Model”. In: J. Mach. Learn.
Res. 3 (Mar. 2003), pp. 1137–1155. issn: 1532-4435. url: http://dl.acm.org/
citation.cfm?id=944919.944966 (visited on 11/24/2014).

[6] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. “TextJoiner:
On-demand Information Extraction with Multi-Pattern Queries”. In: 2014 Work-
shop on Automated Knowledge Base Construction. 2014.

[7] Mikael Boden. “A guide to recurrent neural networks and backpropagation”. In:
().

[8] Tom Bosc and Pascal Vincent. “Learning Word Embeddings from Dictionary Defi-
nitions Only”. In:Workshop on Meta-Learning (MetaLearn 2017). 2017. url: http:
//metalearning.ml/papers/metalearn17_bosc.pdf.

[9] Samuel R. Bowman et al. “Generating Sentences from a Continuous Space”. In:
Proceedings of The 20th SIGNLL Conference on Computational Natural Language

http://arxiv.org/abs/1608.08940
http://arxiv.org/abs/1607.07086
http://papers.nips.cc/paper/5956-scheduled-sampling-for-sequence-prediction-with-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/5956-scheduled-sampling-for-sequence-prediction-with-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/5956-scheduled-sampling-for-sequence-prediction-with-recurrent-neural-networks.pdf
http://dl.acm.org/citation.cfm?id=944919.944966
http://dl.acm.org/citation.cfm?id=944919.944966
http://metalearning.ml/papers/metalearn17_bosc.pdf
http://metalearning.ml/papers/metalearn17_bosc.pdf

82

Learning. Berlin, Germany: Association for Computational Linguistics, Aug. 2016,
pp. 10–21. url: http://www.aclweb.org/anthology/K16-1002.

[10] Thorsten Brants and Alex Franz. “Web 1T 5-gram, ver. 1”. In: LDC2006T13
(2006).

[11] Peter F. Brown et al. “A Statistical Approach to Machine Translation”. In: Comput.
Linguist. 16.2 (June 1990), pp. 79–85. issn: 0891-2017. url: http://dl.acm.
org/citation.cfm?id=92858.92860 (visited on 04/03/2018).

[12] Ming-Wei Chang et al. “Learning and Inference with Constraints”. In: Proceed-
ings of the 23rd National Conference on Artificial Intelligence. AAAI’08. Chicago,
Illinois: AAAI Press, 2008, pp. 1513–1518. isbn: 978-1-57735-368-3. url: http:
//dl.acm.org/citation.cfm?id=1620270.1620322.

[13] T. Che et al. “Maximum-Likelihood Augmented Discrete Generative Adversarial
Networks”. In: ArXiv e-prints arXiv:1702.07983v1 [cs.AI] (Feb. 2017). arXiv: 1702.
07983 [cs.AI].

[14] Ciprian Chelba, Mohammad Norouzi, and Samy Bengio. “N-gram Language Mod-
eling using Recurrent Neural Network Estimation”. In: arXiv:1703.10724 [cs] (Mar.
2017). arXiv: 1703.10724. url: http://arxiv.org/abs/1703.10724.

[15] Boxing Chen and Colin Cherry. “A Systematic Comparison of Smoothing Tech-
niques for Sentence-Level BLEU”. In: Proceedings of the Ninth Workshop on Sta-
tistical Machine Translation. Baltimore, Maryland, USA: Association for Compu-
tational Linguistics, June 2014, pp. 362–367. url: http://www.aclweb.org/
anthology/W/W14/W14-3346.

[16] Stanley F. Chen and Joshua Goodman. “An Empirical Study of Smoothing Tech-
niques for Language Modeling”. In: Proceedings of the 34th Annual Meeting of
the Association for Computational Linguistics. Santa Cruz, California, USA: As-
sociation for Computational Linguistics, June 1996, pp. 310–318. doi: 10.3115/
981863.981904. url: http://www.aclweb.org/anthology/P96-1041.

[17] Kyunghyun Cho et al. “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation”. In: EMNLP 2014. Doha, Qatar: As-
sociation for Computational Linguistics, Oct. 2014, pp. 1724–1734. url: http:
//www.aclweb.org/anthology/D14-1179.

[18] Kyunghyun Cho et al. “On the Properties of Neural Machine Translation: Encoder–
Decoder Approaches”. In: Proceedings of SSST-8, Eighth Workshop on Syntax,

http://www.aclweb.org/anthology/K16-1002
http://dl.acm.org/citation.cfm?id=92858.92860
http://dl.acm.org/citation.cfm?id=92858.92860
http://dl.acm.org/citation.cfm?id=1620270.1620322
http://dl.acm.org/citation.cfm?id=1620270.1620322
http://arxiv.org/abs/1702.07983
http://arxiv.org/abs/1702.07983
http://arxiv.org/abs/1703.10724
http://www.aclweb.org/anthology/W/W14/W14-3346
http://www.aclweb.org/anthology/W/W14/W14-3346
https://doi.org/10.3115/981863.981904
https://doi.org/10.3115/981863.981904
http://www.aclweb.org/anthology/P96-1041
http://www.aclweb.org/anthology/D14-1179
http://www.aclweb.org/anthology/D14-1179

83

Semantics and Structure in Statistical Translation. Doha, Qatar: Association for
Computational Linguistics, 2014, pp. 103–111. url: http://www.aclweb.org/
anthology/W14-4012.

[19] Martin S Chodorow, Roy J Byrd, and George E Heidorn. “Extracting semantic
hierarchies from a large on-line dictionary”. In: ACL 1985. Association for Compu-
tational Linguistics. 1985, pp. 299–304.

[20] Jan Chorowski et al. “Attention-Based Models for Speech Recognition”. In: arXiv:
1506.07503 [cs, stat] (June 2015). arXiv: 1506.07503. url: http://arxiv.org/
abs/1506.07503 (visited on 04/07/2016).

[21] Ronan Collobert et al. “Natural Language Processing (Almost) from Scratch”. In:
J. Mach. Learn. Res. 12 (Nov. 2011), pp. 2493–2537. issn: 1532-4435. url: http:
//dl.acm.org/citation.cfm?id=1953048.2078186 (visited on 11/24/2014).

[22] George E Dahl et al. “Context-dependent pre-trained deep neural networks for
large-vocabulary speech recognition”. In: IEEE Transactions on audio, speech, and
language processing 20.1 (2012), pp. 30–42.

[23] Georgiana Dinu and Marco Baroni. “How to make words with vectors: Phrase
generation in distributional semantics”. In: ACL 2014. Baltimore, Maryland: As-
sociation for Computational Linguistics, June 2014, pp. 624–633. url: http://
www.aclweb.org/anthology/P14-1059.

[24] William Dolan, Lucy Vanderwende, and Stephen D Richardson. “Automatically
deriving structured knowledge bases from on-line dictionaries”. In: PACLING 1993.
1993, pp. 5–14.

[25] Doug Downey, Stefan Schoenmackers, and Oren Etzioni. “Sparse information ex-
traction: Unsupervised language models to the rescue”. In: ACL 2007. Vol. 45. 1.
2007, p. 696.

[26] Jeffrey L. Elman. “Finding structure in time”. In: Cognitive Science 14.2 (1990),
pp. 179–211.

[27] Yarin Gal and Zoubin Ghahramani. “A Theoretically Grounded Application of
Dropout in Recurrent Neural Networks”. In: Advances in Neural Information Pro-
cessing Systems 29. Curran Associates, Inc., 2016, pp. 1019–1027. url: http :
//papers.nips.cc/paper/6241-a-theoretically-grounded-application-
of-dropout-in-recurrent-neural-networks.pdf.

http://www.aclweb.org/anthology/W14-4012
http://www.aclweb.org/anthology/W14-4012
http://arxiv.org/abs/1506.07503
http://arxiv.org/abs/1506.07503
http://dl.acm.org/citation.cfm?id=1953048.2078186
http://dl.acm.org/citation.cfm?id=1953048.2078186
http://www.aclweb.org/anthology/P14-1059
http://www.aclweb.org/anthology/P14-1059
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf

84

[28] Andrew R. Golding and Dan Roth. “A Winnow-Based Approach to Context-
Sensitive Spelling Correction”. In: Machine Learning 34.1 (Feb. 1999), pp. 107–
130. issn: 1573-0565. doi: 10.1023/A:1007545901558. url: https://doi.org/
10.1023/A:1007545901558.

[29] Joshua Goodman. “A Bit of Progress in Language Modeling”. In: arXiv:cs/0108005
(Aug. 2001). arXiv: cs/0108005. url: http : / / arxiv . org / abs / cs / 0108005
(visited on 03/17/2018).

[30] Jonathan Gordon and Benjamin Van Durme. “Reporting bias and knowledge ac-
quisition”. In: AKBC workshop, 2013. 2013.

[31] Marti A. Hearst. “Automatic Acquisition of Hyponyms from Large Text Corpora”.
In: COLING 1992. Stroudsburg, PA, USA: Association for Computational Linguis-
tics, 1992, pp. 539–545. doi: 10.3115/992133.992154. url: http://dx.doi.
org/10.3115/992133.992154 (visited on 06/01/2016).

[32] Felix Hill et al. “Learning to Understand Phrases by Embedding the Dictionary”.
In: TACL 2016 4 (2016), pp. 17–30. issn: 2307-387X. url: https://tacl2013.
cs.columbia.edu/ojs/index.php/tacl/article/view/711.

[33] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the Knowledge in a
Neural Network”. In: Deep Learning and Representation Learning Workshop: NIPS
2014. 2014.

[34] Sepp Hochreiter and Jurgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Computation 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi: 10.1162/
neco.1997.9.8.1735.

[35] Fei Huang et al. “Learning representations for weakly supervised natural language
processing tasks”. In: Computational Linguistics 40.1 (2014), pp. 85–120.

[36] Hakan Inan, Khashayar Khosravi, and Richard Socher. “Tying Word Vectors and
Word Classifiers: A Loss Framework for Language Modeling”. In: arXiv:1611.01462
[cs, stat] (Nov. 2016). arXiv: 1611.01462. url: http://arxiv.org/abs/1611.
01462 (visited on 04/10/2017).

[37] R. Jozefowicz et al. “Exploring the Limits of Language Modeling”. In: ArXiv e-
prints arXiv:1602.02410v2 [cs.CL] (Feb. 2016). arXiv: 1602.02410 [cs.CL].

https://doi.org/10.1023/A:1007545901558
https://doi.org/10.1023/A:1007545901558
https://doi.org/10.1023/A:1007545901558
http://arxiv.org/abs/cs/0108005
https://doi.org/10.3115/992133.992154
http://dx.doi.org/10.3115/992133.992154
http://dx.doi.org/10.3115/992133.992154
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/711
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/711
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1611.01462
http://arxiv.org/abs/1611.01462
http://arxiv.org/abs/1602.02410

85

[38] Nal Kalchbrenner and Phil Blunsom. “Recurrent Continuous Translation Models”.
In: EMNLP 2013. Seattle, Washington, USA: Association for Computational Lin-
guistics, Oct. 2013, pp. 1700–1709. url: http://www.aclweb.org/anthology/
D13-1176.

[39] Andrej Karpathy and Li Fei-Fei. “Deep Visual-Semantic Alignments for Generating
Image Descriptions”. In: arXiv:1412.2306 [cs] (Dec. 2014). arXiv: 1412.2306. url:
http://arxiv.org/abs/1412.2306 (visited on 10/23/2015).

[40] Andrej Karpathy and Li Fei-Fei. “Deep Visual-Semantic Alignments for Generat-
ing Image Descriptions”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 39 (2015), pp. 664–676.

[41] S. Katz. “Estimation of probabilities from sparse data for the language model
component of a speech recognizer”. In: IEEE Transactions on Acoustics, Speech,
and Signal Processing 35.3 (Mar. 1987), pp. 400–401. issn: 0096-3518. doi: 10.
1109/TASSP.1987.1165125.

[42] Yoon Kim et al. “Character-Aware Neural Language Models”. In: AAAI 2016. 2016.
url: http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12489.

[43] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion”. In: CoRR 2014 abs/1412.6980 (2014). url: http://arxiv.org/abs/1412.
6980.

[44] Judith Klavans and Brian Whitman. “Extracting taxonomic relationships from
on-line definitional sources using LEXING”. In: ACM/IEEE-CS 2001. ACM. 2001,
pp. 257–258.

[45] R. Kneser and H. Ney. “Improved backing-off for M-gram language modeling”. In:
1995 International Conference on Acoustics, Speech, and Signal Processing. Vol. 1.
May 1995, 181–184 vol.1. doi: 10.1109/ICASSP.1995.479394.

[46] Thomas K Landauer and Susan T Dumais. “A solution to Plato’s problem: The
latent semantic analysis theory of acquisition, induction, and representation of
knowledge.” In: Psychological review 104.2 (1997), p. 211.

[47] Yann LeCun et al. “Handwritten Digit Recognition with a Back-Propagation Net-
work”. In: NIPS 1990. Ed. by D. S. Touretzky. Morgan-Kaufmann, 1990, pp. 396–
404.

[48] Jiwei Li, Minh-Thang Luong, and Daniel Jurafsky. “A Hierarchical Neural Autoen-
coder for Paragraphs and Documents”. In: ACL 2015. 2015.

http://www.aclweb.org/anthology/D13-1176
http://www.aclweb.org/anthology/D13-1176
http://arxiv.org/abs/1412.2306
https://doi.org/10.1109/TASSP.1987.1165125
https://doi.org/10.1109/TASSP.1987.1165125
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12489
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/ICASSP.1995.479394

86

[49] Jiwei Li et al. “A Persona-Based Neural Conversation Model”. In: Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Berlin, Germany: Association for Computational Linguistics, Aug.
2016, pp. 994–1003. url: http://www.aclweb.org/anthology/P16-1094.

[50] Jiwei Li et al. “Adversarial Learning for Neural Dialogue Generation”. In: arXiv:
1701.06547 [cs] (Jan. 2017). arXiv: 1701.06547. url: http://arxiv.org/abs/
1701.06547 (visited on 01/24/2017).

[51] Chen Liang et al. “Neural Symbolic Machines: Learning Semantic Parsers on Free-
base with Weak Supervision”. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Vancouver,
Canada: Association for Computational Linguistics, July 2017, pp. 23–33. url:
http://aclweb.org/anthology/P17-1003.

[52] G. Mann and A. McCallum. “Simple, robust, scalable semi-supervised learning via
expectation regularization”. In: Proceedings of the 24th Annual International Con-
ference on Machine Learning (ICML 2007). Ed. by Zoubin Ghahramani. Corvallis,
OR: Omnipress, 2007, pp. 593–600.

[53] Judith Markowitz, Thomas Ahlswede, and Martha Evens. “Semantically significant
patterns in dictionary definitions”. In: ACL 1986. Association for Computational
Linguistics. 1986, pp. 112–119.

[54] G. Melis, C. Dyer, and P. Blunsom. “On the State of the Art of Evaluation in
Neural Language Models”. In: ArXiv e-prints arXiv:1707.05589v2 [cs.CL] (July
2017). arXiv: 1707.05589 [cs.CL].

[55] S. Merity, N. Shirish Keskar, and R. Socher. “Regularizing and Optimizing LSTM
Language Models”. In: ArXiv e-prints arXiv:1708.02182v1 [cs.CL] (Aug. 2017).
arXiv: 1708.02182 [cs.CL].

[56] S. Merity et al. “Pointer Sentinel Mixture Models”. In: ArXiv e-prints arXiv:
1609.07843v1 [cs.CL] (Sept. 2016). arXiv: 1609.07843 [cs.CL].

[57] T. Mikolov and G. Zweig. “Context dependent recurrent neural network language
model”. In: SLT 2012. 2012 IEEE Spoken Language Technology Workshop (SLT).
2012, pp. 234–239. doi: 10.1109/SLT.2012.6424228.

[58] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. “Linguistic Regularities in Con-
tinuous Space Word Representations.” In: HLT-NAACL 2013. The Association
for Computational Linguistics, Aug. 16, 2013, pp. 746–751. url: http://dblp.

http://www.aclweb.org/anthology/P16-1094
http://arxiv.org/abs/1701.06547
http://arxiv.org/abs/1701.06547
http://aclweb.org/anthology/P17-1003
http://arxiv.org/abs/1707.05589
http://arxiv.org/abs/1708.02182
http://arxiv.org/abs/1609.07843
https://doi.org/10.1109/SLT.2012.6424228
http://dblp.uni-trier.de/db/conf/naacl/naacl2013.html#MikolovYZ13

87

uni - trier . de / db / conf / naacl / naacl2013 . html # MikolovYZ13 (visited on
01/19/2014).

[59] Tomas Mikolov et al. “Distributed Representations of Words and Phrases and their
Compositionality”. In: Advances in Neural Information Processing Systems 26. Ed.
by C. J. C. Burges et al. Curran Associates, Inc., 2013. url: http://papers.nips.
cc/paper/5021-distributed-representations-of-words-and-phrases-and-
their-compositionality.pdf.

[60] Tomas Mikolov et al. “Efficient Estimation of Word Representations in Vector
Space”. In: arXiv:1301.3781 [cs] (Jan. 16, 2013). url: http://arxiv.org/abs/
1301.3781 (visited on 04/04/2014).

[61] Tomáš Mikolov et al. “Recurrent Neural Network Based Language Model”. In:
INTERSPEECH 2010. INTERSPEECH-2010. Makuhari, Chiba, Japan, Sept. 26,
2010, pp. 1045–1048.

[62] George A. Miller. “WordNet: A Lexical Database for English”. In: Magazine Com-
munications of the Association for Computing Machinery 38.11 (Nov. 1995), pp. 39–
41. issn: 0001-0782. doi: 10.1145/219717.219748. url: http://doi.acm.org/
10.1145/219717.219748 (visited on 06/01/2016).

[63] A. Mnih and G. Hinton. “Three new graphical models for statistical language mod-
elling”. In: Proceedings of the 24th Annual International Conference on Machine
Learning (ICML 2007). Ed. by Zoubin Ghahramani. 2007, pp. 641–648.

[64] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In:
arXiv:1312.5602 [cs] (Dec. 2013). arXiv: 1312.5602. url: http://arxiv.org/
abs/1312.5602 (visited on 11/29/2016).

[65] Simonetta Montemagni and Lucy Vanderwende. “Structural patterns vs. string
patterns for extracting semantic information from dictionaries”. In: COLING 1992.
Association for Computational Linguistics. 1992, pp. 546–552.

[66] Ke Ni and William Yang Wang. “Learning to Explain Non-Standard English Words
and Phrases”. In: arXiv:1709.09254 [cs] (Sept. 2017). arXiv: 1709.09254. url:
http://arxiv.org/abs/1709.09254.

[67] Thanapon Noraset, David Demeter, and Doug Downey. “Controlling Global Sta-
tistics in Recurrent Neural Network Text Generation”. In: The Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

http://dblp.uni-trier.de/db/conf/naacl/naacl2013.html#MikolovYZ13
http://dblp.uni-trier.de/db/conf/naacl/naacl2013.html#MikolovYZ13
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1145/219717.219748
http://doi.acm.org/10.1145/219717.219748
http://doi.acm.org/10.1145/219717.219748
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1709.09254

88

[68] Thanapon Noraset et al. “Definition Modeling: Learning to Define Word Embed-
dings in Natural Language”. In: The Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence. 2017. url: https://www.aaai.org/ocs/index.
php/AAAI/AAAI17/paper/view/14827.

[69] Kishore Papineni et al. “Bleu: a Method for Automatic Evaluation of Machine
Translation”. In: Proceedings of 40th Annual Meeting of the Association for Com-
putational Linguistics. Philadelphia, Pennsylvania, USA: Association for Compu-
tational Linguistics, July 2002, pp. 311–318. doi: 10.3115/1073083.1073135.
url: http://www.aclweb.org/anthology/P02-1040.

[70] R. Paulus, C. Xiong, and R. Socher. “A Deep Reinforced Model for Abstrac-
tive Summarization”. In: ArXiv e-prints arXiv:1705.04304v3 [cs.CL] (May 2017).
arXiv: 1705.04304 [cs.CL].

[71] Jeffrey Pennington, Richard Socher, and Christopher Manning. “Glove: Global
Vectors for Word Representation”. In: EMNLP 2014. Doha, Qatar: Association for
Computational Linguistics, Oct. 2014, pp. 1532–1543. url: http://www.aclweb.
org/anthology/D14-1162.

[72] Gabriel Pereyra et al. “Regularizing Neural Networks by Penalizing Confident Out-
put Distributions”. In: Proceedings of 5th International Conference on Learning
Representations. 2017.

[73] Lawrence R Rabiner and Biing-Hwang Juang. Fundamentals of speech recognition.
Vol. 14. PTR Prentice Hall Englewood Cliffs, 1993.

[74] M. Ranzato et al. “Sequence Level Training with Recurrent Neural Networks”.
In: ArXiv e-prints arXiv:1511.06732v7 [cs.LG] (Nov. 2015). arXiv: 1511.06732
[cs.LG].

[75] S. Reed et al. “Training Deep Neural Networks on Noisy Labels with Bootstrap-
ping”. In: ArXiv e-prints arXiv:1412.6596v3 [cs.CV] (Dec. 2014). arXiv: 1412.6596
[cs.CV].

[76] Steven J. Rennie et al. “Self-Critical Sequence Training for Image Captioning”. In:
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July
2017.

[77] Danilo Jimenez Rezende and Shakir Mohamed. “Variational Inference with Nor-
malizing Flows”. In: arXiv:1505.05770 [cs, stat] (May 2015). arXiv: 1505.05770.
url: http://arxiv.org/abs/1505.05770 (visited on 01/31/2018).

https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14827
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14827
https://doi.org/10.3115/1073083.1073135
http://www.aclweb.org/anthology/P02-1040
http://arxiv.org/abs/1705.04304
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1412.6596
http://arxiv.org/abs/1412.6596
http://arxiv.org/abs/1505.05770

89

[78] Alan Ritter, Colin Cherry, and William B. Dolan. “Data-Driven Response Genera-
tion in Social Media”. In: Proceedings of the 2011 Conference on Empirical Methods
in Natural Language Processing. Edinburgh, Scotland, UK.: Association for Com-
putational Linguistics, July 2011, pp. 583–593. url: http://www.aclweb.org/
anthology/D11-1054.

[79] Ronald Rosenfeld. “A maximum entropy approach to adaptive statistical lan-
guage modelling”. In: Computer Speech & Language 10.3 (July 1, 1996), pp. 187–
228. issn: 0885-2308. doi: 10 . 1006 / csla . 1996 . 0011. url: http : / / www .
sciencedirect.com/science/article/pii/S088523089690011X.

[80] Ronald Rosenfeld. “Two decades of statistical language modeling: Where do we go
from here?” In: Proceedings of the IEEE 88.8 (2000), pp. 1270–1278.

[81] Dan Roth and Wen-tau Yih. “Integer Linear Programming Inference for Condi-
tional Random Fields”. In: Proceedings of the 22Nd International Conference on
Machine Learning. ICML ’05. Bonn, Germany: ACM, 2005, pp. 736–743. isbn:
1-59593-180-5. doi: 10.1145/1102351.1102444. url: http://doi.acm.org/10.
1145/1102351.1102444.

[82] Alexander M. Rush, Sumit Chopra, and Jason Weston. “A Neural Attention Model
for Abstractive Sentence Summarization”. In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing. Lisbon, Portugal: Asso-
ciation for Computational Linguistics, Sept. 2015, pp. 379–389. url: http://
aclweb.org/anthology/D15-1044.

[83] Abigail See, Peter J. Liu, and Christopher D. Manning. “Get To The Point: Sum-
marization with Pointer-Generator Networks”. In: Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers). Vancouver, Canada: Association for Computational Linguistics, July 2017,
pp. 1073–1083. url: http://aclweb.org/anthology/P17-1099.

[84] Julian Seitner et al. “A Large Database of Hypernymy Relations Extracted from
the Web”. In: LREC 2016. 2016.

[85] Iulian Vlad Serban et al. “Generative Deep Neural Networks for Dialogue: A Short
Review”. In: arXiv:1611.06216 [cs] (Nov. 2016). arXiv: 1611.06216. url: http :
//arxiv.org/abs/1611.06216 (visited on 11/21/2016).

[86] Stephen Soderland et al. “The use of Web-based statistics to validate information
extraction”. In: AAAI-04 Workshop on Adaptive Text Extraction and Mining. 2004,
pp. 21–26.

http://www.aclweb.org/anthology/D11-1054
http://www.aclweb.org/anthology/D11-1054
https://doi.org/10.1006/csla.1996.0011
http://www.sciencedirect.com/science/article/pii/S088523089690011X
http://www.sciencedirect.com/science/article/pii/S088523089690011X
https://doi.org/10.1145/1102351.1102444
http://doi.acm.org/10.1145/1102351.1102444
http://doi.acm.org/10.1145/1102351.1102444
http://aclweb.org/anthology/D15-1044
http://aclweb.org/anthology/D15-1044
http://aclweb.org/anthology/P17-1099
http://arxiv.org/abs/1611.06216
http://arxiv.org/abs/1611.06216

90

[87] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting”. In: Journal of Machine Learning Research 15 (2014), pp. 1929–
1958. url: http://jmlr.org/papers/v15/srivastava14a.html (visited on
09/03/2017).

[88] Ilya Sutskever, James Martens, and Geoffrey E Hinton. “Generating text with
recurrent neural networks”. In: ICML 2011. 2011, pp. 1017–1024.

[89] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to Sequence Learning with
Neural Networks”. In: NIPS 2014. Ed. by Z. Ghahramani et al. Curran Associates,
Inc., 2014, pp. 3104–3112. url: http://papers.nips.cc/paper/5346-sequence-
to-sequence-learning-with-neural-networks.pdf.

[90] C. Szegedy et al. “Rethinking the Inception Architecture for Computer Vision”.
In: ArXiv e-prints arXiv:1512.00567v3 [cs.CV] (Dec. 2015). arXiv: 1512.00567
[cs.CV].

[91] Julien Tissier, Christopher Gravier, and Amaury Habrard. “Dict2vec : Learning
Word Embeddings using Lexical Dictionaries”. In: Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language Processing. Copenhagen, Den-
mark: Association for Computational Linguistics, Sept. 2017, pp. 254–263. url:
https://www.aclweb.org/anthology/D17-1024.

[92] Zhaopeng Tu et al. “Modeling Coverage for Neural Machine Translation”. In: Pro-
ceedings of the 54th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers). Berlin, Germany: Association for Computational Lin-
guistics, Aug. 2016, pp. 76–85. url: http://www.aclweb.org/anthology/P16-
1008.

[93] Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio. “Word Representations: A
Simple and General Method for Semi-Supervised Learning”. In: Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics. Uppsala,
Sweden: Association for Computational Linguistics, 2010, pp. 384–394. url: http:
//www.aclweb.org/anthology/P10-1040.

[94] Benigno Uria et al. “Neural Autoregressive Distribution Estimation”. In: arXiv:
1605.02226 [cs] (May 2016). arXiv: 1605.02226. url: http://arxiv.org/abs/
1605.02226 (visited on 03/09/2018).

[95] Lucy Vanderwende et al. “MindNet: an automatically-created lexical resource”. In:
HLT-EMNLP 2005. Oct. 2005. url: http://research.microsoft.com/apps/
pubs/default.aspx?id=75982.

http://jmlr.org/papers/v15/srivastava14a.html
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
https://www.aclweb.org/anthology/D17-1024
http://www.aclweb.org/anthology/P16-1008
http://www.aclweb.org/anthology/P16-1008
http://www.aclweb.org/anthology/P10-1040
http://www.aclweb.org/anthology/P10-1040
http://arxiv.org/abs/1605.02226
http://arxiv.org/abs/1605.02226
http://research.microsoft.com/apps/pubs/default.aspx?id=75982
http://research.microsoft.com/apps/pubs/default.aspx?id=75982

91

[96] Ashish Vaswani et al. “Attention Is All You Need”. In: arXiv:1706.03762 [cs] (June
2017). arXiv: 1706.03762. url: http://arxiv.org/abs/1706.03762.

[97] Li Wan et al. “Regularization of Neural Networks using DropConnect”. In: Proceed-
ings of Machine Learning Research. International Conference on Machine Learning.
Feb. 13, 2013, pp. 1058–1066. url: http://proceedings.mlr.press/v28/wan13.
html (visited on 09/03/2017).

[98] Tong Wang, Abdelrahman Mohamed, and Graeme Hirst. “Learning Lexical Em-
beddings with Syntactic and Lexicographic Knowledge”. In: ACL 2015. Beijing,
China: Association for Computational Linguistics, July 2015, pp. 458–463. url:
http://www.aclweb.org/anthology/P15-2075.

[99] Tsung-Hsien Wen et al. “Semantically Conditioned LSTM-based Natural Language
Generation for Spoken Dialogue Systems”. In: EMNLP 2015. Lisbon, Portugal:
Association for Computational Linguistics, Sept. 2015, pp. 1711–1721. url: http:
//aclweb.org/anthology/D15-1199.

[100] Tsung-Hsien Wen et al. “Stochastic Language Generation in Dialogue using Re-
current Neural Networks with Convolutional Sentence Reranking”. In: SIGDIAL
2015. Prague, Czech Republic: Association for Computational Linguistics, Sept.
2015, pp. 275–284. url: http://aclweb.org/anthology/W15-4639.

[101] Paul J Werbos. “Backpropagation through time: what it does and how to do it”.
In: Proceedings of the IEEE 78.10 (1990), pp. 1550–1560.

[102] Amber Wilcox-O’Hearn, Graeme Hirst, and Alexander Budanitsky. “Real-Word
Spelling Correction with Trigrams: A Reconsideration of the Mays, Damerau,
and Mercer Model”. In: Computational Linguistics and Intelligent Text Process-
ing. Ed. by Alexander Gelbukh. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 605–616. isbn: 978-3-540-78135-6.

[103] Jason D Williams, Kavosh Asadi, and Geoffrey Zweig. “Hybrid Code Networks:
practical and efficient end-to-end dialog control with supervised and reinforcement
learning”. In: Proceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). Vancouver, Canada: Association
for Computational Linguistics, July 2017, pp. 665–677. url: http://aclweb.
org/anthology/P17-1062.

[104] Ronald J Williams. “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning”. In: Machine learning 8.3-4 (1992), pp. 229–256.

http://arxiv.org/abs/1706.03762
http://proceedings.mlr.press/v28/wan13.html
http://proceedings.mlr.press/v28/wan13.html
http://www.aclweb.org/anthology/P15-2075
http://aclweb.org/anthology/D15-1199
http://aclweb.org/anthology/D15-1199
http://aclweb.org/anthology/W15-4639
http://aclweb.org/anthology/P17-1062
http://aclweb.org/anthology/P17-1062

92

[105] Sam Wiseman and Alexander M. Rush. “Sequence-to-Sequence Learning as Beam-
Search Optimization”. In: Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing. Austin, Texas: Association for Computational Lin-
guistics, Nov. 2016, pp. 1296–1306. url: https://aclweb.org/anthology/D16-
1137.

[106] Yonghui Wu et al. “Google’s Neural Machine Translation System: Bridging the
Gap between Human and Machine Translation”. In: arXiv:1609.08144 [cs] (Sept.
2016). arXiv: 1609.08144. url: http://arxiv.org/abs/1609.08144 (visited on
04/03/2018).

[107] Ziang Xie et al. “Data Noising as Smoothing in Neural Network Language Mod-
els”. In: Proceedings of 5th International Conference on Learning Representations.
Mar. 7, 2017.

[108] Ziang Xie et al. “Neural language correction with character-based attention”. In:
arXiv preprint arXiv:1603.09727 (2016).

[109] Kelvin Xu et al. “Show, Attend and Tell: Neural Image Caption Generation with
Visual Attention”. In: ICML. 2015. url: http://arxiv.org/abs/1502.03044.

[110] Dani Yogatama et al. “Learning Word Representations with Hierarchical Sparse
Coding”. In: Proceedings of The 32nd International Conference on Machine Learn-
ing. Vol. 37. ICML ’15. Lille-Euralille, France: Journal of Machine Learning Re-
search, June 1, 2015. url: http : / / jmlr . org / proceedings / papers / v37 /
yogatama15.pdf.

[111] Lantao Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy
Gradient”. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence.
AAAI Press, 2017.

[112] W. Zaremba, I. Sutskever, and O. Vinyals. “Recurrent Neural Network Regular-
ization”. In: ArXiv e-prints arXiv:1409.2329v5 [cs.NE] (Sept. 2014). arXiv: 1409.
2329.

https://aclweb.org/anthology/D16-1137
https://aclweb.org/anthology/D16-1137
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1502.03044
http://jmlr.org/proceedings/papers/v37/yogatama15.pdf
http://jmlr.org/proceedings/papers/v37/yogatama15.pdf
http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1409.2329

	ABSTRACT
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Neural Language Models
	1.2. Contributions and Outline

	Chapter 2. Defining Word Representations in Natural Language
	2.1. Introduction
	2.2. Dictionary Definitions
	2.3. Definition Models
	2.4. Experiments and Results
	2.5. Discussion
	2.6. Related Work
	2.7. Conclusion

	Chapter 3. Controlling Neural Language Model Behavior
	3.1. Introduction
	3.2. Dynamic KL Regularization
	3.3. Experiments and Results
	3.4. Discussion
	3.5. Related Work
	3.6. Conclusion

	Chapter 4. Estimating Probabilities of Short Phrases Without Context
	4.1. Introduction
	4.2. Marginal Estimation
	4.3. Experiments and Results
	4.4. Conclusion

	Chapter 5. Conclusion and Future Work
	References

