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Abstract

Essays in Econometrics

Max Tabord-Meehan

This dissertation studies three distinct problems in econometrics. Chapter 1 proposes an

adaptive randomization procedure for two-stage randomized controlled trials. The method

uses data from a first-wave experiment in order to determine how to stratify in a second wave

of the experiment, where the objective is to minimize the variance of an estimator for the

average treatment effect (ATE). I consider selection from a class of stratified randomization

procedures called stratification trees : these are procedures whose strata can be represented as

decision trees, with differing treatment assignment probabilities across strata. By using the

first wave to estimate a stratification tree, the method simultaneously selects which covari-

ates to use for stratification, how to stratify over these covariates, as well as the assignment

probabilities within these strata. My main result shows that using this randomization pro-

cedure with an appropriate estimator results in an asymptotic variance which minimizes the

variance bound for estimating the ATE, over an optimal stratification of the covariate space.

Moreover, by extending techniques developed in Bugni et al. (2018), the results presented

are able to accommodate a large class of assignment mechanisms within strata, including

stratified block randomization. I also present extensions of the procedure to the setting of

multiple treatments, and to the targeting of subgroup-specific effects. In a simulation study,
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I find that the method is most effective when the response model exhibits some amount of

“sparsity” with respect to the covariates, but can be effective in other contexts as well, as

long as the first-wave sample size used to estimate the stratification tree is not prohibitively

small. The chapter concludes by applying the method to the study in Karlan and Wood

(2017), where I estimate stratification trees using the first wave of their experiment.

Chapter 2 (which is joint work with Eric Mbakop) studies a new statistical decision rule

for the treatment assignment problem. Consider a utilitarian policy maker who must use

sample data to allocate one of two treatments to members of a population, based on their

observable characteristics. In practice, it is often the case that policy makers do not have

full discretion on how these covariates can be used, for legal, ethical or political reasons.

We treat this constrained problem as a statistical decision problem, where we evaluate the

performance of decision rules by their maximum regret. We focus on settings in which the

policy maker may want to select amongst a collection of such constrained classes: examples

we consider include choosing the number of covariates over which to perform best-subset

selection, and model selection when approximating a complicated class via a sieve. We

adapt and extend results from statistical learning to develop a decision rule which we call

the Penalized Welfare Maximization (PWM) rule. We establish an oracle inequality for the

regret of the PWM rule which shows that it is able to perform model selection over the

collection of available classes. We then use this oracle inequality to derive relevant bounds

on maximum regret for PWM. We illustrate the model-selection capabilities of our method

with a small simulation exercise, and conclude by applying our rule to data from the Job

Training Partnership Act (JTPA) study.

Chapter 3 studies inference in the linear model with dyadic data. Dyadic data are

indexed by pairs of “units”, for example trade data between pairs of countries. Because of
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the potential for observations with a unit in common to be correlated, standard inference

procedures may not perform as expected. I establish a range of conditions under which

a t-statistic with the dyadic-robust variance estimator of Fafchamps and Gubert (2007) is

asymptotically normal. Using these theoretical results as a guide, I perform a simulation

exercise to study the validity of the normal approximation, as well as the performance of a

novel finite-sample correction. The chapter concludes with guidelines for applied researchers

wishing to use the dyadic-robust estimator for inference
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CHAPTER 1

Stratification Trees for Adaptive Randomization in Randomized

Controlled Trials

1.1. Introduction to Chapter 1

This chapter proposes an adaptive randomization procedure for two-stage randomized

controlled trials (RCTs). The method uses data from a first-wave experiment in order to

determine how to stratify in a second wave of the experiment, where the objective is to

minimize the variance of an estimator for the average treatment effect (ATE). We consider

selection from a class of stratified randomization procedures which we call stratification

trees: these are procedures whose strata can be represented as decision trees, with differing

treatment assignment probabilities across strata.

Stratified randomization is ubiquitous in randomized experiments. In stratified random-

ization, the space of available covariates is partitioned into finitely many categories (i.e.

strata), and randomization to treatment is performed independently across strata. Stratific-

ation has the ability to decrease the variance of estimators for the ATE through two parallel

channels. The first channel is from ruling out treatment assignments which are potentially

uninformative for estimating the ATE. For example, if we have information on the sex of

individuals in our sample, and outcomes are correlated with sex, then performing strati-

fied randomization over this characteristic can reduce variance (we present an example of

this for the standard difference-in-means estimator in Appendix A.3.1). The second channel

through which stratification can decrease variance is by allowing for differential treatment
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assignment probabilities across strata. For example, if we again consider the setting where

we have information on sex, then it could be the case that for males the outcome under one

treatment varies much more than under the other treatment. As we show in Section 1.3.2,

this can be exploited to reduce variance by assigning treatment according to the Neyman

Allocation, which in this example would assign more males to the more variable treatment.

Our proposed method leverages supervised machine-learning techniques to exploit both of

these channels, by simultaneously selecting which covariates to use for stratification, how to

stratify over these covariates, as well as the optimal assignment probabilities within these

strata, in order to minimize the variance of an estimator for the ATE.

Our main result shows that using our procedure results in an estimator whose asymptotic

variance minimizes the semi-parametric efficiency bound of Hahn (1998), over an “optimal”

stratification of the covariate space, where we restrict ourselves to stratification in a class of

decision trees. A decision tree partitions the covariate space such that the resulting parti-

tion can be interpreted through a series of yes or no questions (see Section 1.2.2 for a formal

definition and some examples). We focus on strata formed by decision trees for several reas-

ons. First, since the resulting partition can be represented as a series of yes or no questions,

it is easy to communicate and interpret, even with many covariates. This feature could be

particularly important in many economic applications, because many RCTs in economics are

undertaken in partnership with external organizations (for example, every RCT described

in (Karlan and Appel, 2016) was undertaken in this way), and thus clear communication of

the experimental design could be crucial. Second, using partitions based on decision trees

gives us theoretical and computational tractability. Third, as we will explain below, using

decision trees allows us to flexibly address the additional goal of minimizing the variance of

estimators for subgroup-specific effects. Lastly, decision trees naturally encompass the type
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of stratifications usually implemented by practitioners. The use of decision trees in statistics

and machine learning goes back at least to the work of Breiman (see Breiman et al., 1984;

Györfi et al., 1996, for classical textbook treatments), and has seen a recent resurgence in

econometrics (examples include Athey and Imbens, 2016; Athey and Wager, 2017).

An important feature of our theoretical results is that we allow for the possibility of

so-called restricted randomization procedures within strata. Restricted randomization pro-

cedures limit the set of potential treatment allocations, in order to force the true treatment

assignment proportions to be close to the desired target proportions (common examples used

in a variety of fields include Antognini and Giovagnoli, 2004; Efron, 1971; Kuznetsova and

Tymofyeyev, 2011; Wei, 1978; Zelen, 1974). Restricted randomization induces dependence

in the assignments within strata, which complicates the analysis of our procedure. By ex-

tending techniques recently developed in Bugni et al. (2018), our results will accommodate

a large class of restricted randomization schemes, including stratified block randomization,

which as we discuss in Example 1.2.5 is a popular method of randomization.

Stratified randomization has additional practical benefits beyond reducing the variance of

ATE estimators. For example, when a researcher wants to analyze subgroup-specific effects,

stratifying on these subgroups serves as a form of pre-analysis registration, and as we will

show, can help reduce the variance of estimators for the subgroup-specific ATEs. It is also

straightforward to implement stratified randomization with multiple treatments. Although

our main set of results apply to estimation of the global ATE in a binary treatment setting,

we also present results that apply to settings with multiple treatments, as well as results for

targeting subgroup-specific treatment effects.

The literature on randomization in RCTs is vast (references in (Athey and Imbens,

2017), (Cox and Reid, 2000), (Glennerster and Takavarasha, 2013), (Pukelsheim, 2006),
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(Rosenberger and Lachin, 2015), and from a Bayesian perspective, (Ryan et al., 2016),

provide an overview). The classical literature on optimal randomization, going back to the

work of Smith (1918), maintains a parametric relationship for the outcomes with respect

to the covariates, and targets efficient estimation of the model parameters. In contrast,

this chapter follows a recent literature which instead maintains a non-parametric model of

potential outcomes, and targets efficient estimation of treatment effects (see Remark 1.2.2

for a discussion about alternative objectives, in particular maximizing population welfare).

This recent literature can be broadly divided into “one-stage” procedures, which do not

use previous experiments to determine how to randomize (examples include Aufenanger,

2017; Barrios, 2014; Kallus, 2018; Kasy, 2016), and “multi-stage” procedures, of which our

method is an example. Multi-stage procedures use the response information from previous

experimental waves to determine how to randomize in subsequent waves of the experiment.

We will call these procedures response-adaptive. Although response adaptive methods require

information from a prior experiment, such settings do arise in economic applications. First,

many social experiments have a pilot phase or multi-stage structure. For example, Simester

et al. (2006), Karlan and Zinman (2008), and Karlan and Wood (2017) all feature a multi-

stage structure, and Karlan and Appel (2016) advocate the use of pilot experiments to

help avoid potential implementation failures when scaling up to the main study. Second,

many research areas have seen a profusion of related experiments which could be used as

a first wave of data in a response-adaptive procedure (see for example the discussion in

the introduction of Hahn et al., 2011). The study of response-adaptive methods to inform

many aspects of experimental design, including how to randomize, has a long history in the

literature on clinical trials, both from a frequentist and Bayesian perspective (see for example
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the references in Cheng et al., 2003; Hu and Rosenberger, 2006; Sverdlov, 2015), as well as

in the literature on bandit problems (see Bubeck et al., 2012).

Two papers which propose response-adaptive randomization methods in a framework

similar to ours are Hahn et al. (2011) and Chambaz et al. (2014). Hahn et al. (2011) develop

a procedure which uses the information from a first-wave experiment in order to compute

the propensity-score that minimizes the asymptotic variance of an ATE estimator, over a

discrete set of covariates (i.e. they stratify the covariate space ex-ante). They then use the

resulting propensity score to assign treatment in a second-wave experiment. In contrast,

our method computes the optimal assignment proportions over a data-driven discretization

of the covariate space. Chambaz et al. (2014) propose a multi-stage procedure which uses

data from previous experimental waves to compute the propensity score that minimizes the

asymptotic variance of an ATE estimator, where the propensity score is constrained to lie in

a class of functions with appropriate entropy restrictions. However, their method requires the

selection of several tuning parameters as well as additional regularity conditions, and their

optimal target depends on these features in a way that may be hard to assess in practice.

Their results are also derived in a framework where the number of experimental waves goes

to infinity, which may not be a useful asymptotic framework for many settings encountered in

economics. Finally, the results in both Hahn et al. (2011) and Chambaz et al. (2014) assume

that assignment was performed completely independently across individuals. In contrast, we

reiterate that our results will accommodate a large class of stratified randomization schemes.

The chapter proceeds as follows: In Section 1.2, we provide a motivating discussion, an

overview of the procedure, and the formal definition of a stratification tree. In Section 1.3,

we present the formal results underlying the method as well as several relevant extensions. In

Section 1.4, we perform a simulation study to assess the performance of our method in finite
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samples. In Section 1.5, we consider an application to the study in Karlan and Wood (2017),

where we estimate stratification trees using the first wave of their experiment. Section 1.6

concludes.

1.2. Preliminaries

In this section we discuss some preliminary concepts and definitions. Section 1.2.1

presents a series of simplified examples which we use to motivate our procedure. Section

1.2.2 establishes the notation and provides the definition of a stratification tree, which is a

central concept of the paper. Section 1.2.3 presents a high-level discussion of the proposed

method.

1.2.1. Motivating Discussion

We present a series of simplified examples which we use to motivate our proposed method.

First we study the problem of optimal experimental assignment without covariates. We work

in a standard potential outcomes framework: let pY p1q, Y p0qq be potential outcomes for a

binary treatment A P t0, 1u, and let the observed outcome Y for an individual be defined as

Y “ Y p1qA` Y p0qp1´ Aq .

Let

ErY paqs “ µa, V arpY paqq “ σ2
a ,

for a P t0, 1u. Our quantity of interest is the average treatment effect

θ :“ µ1 ´ µ0 .
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Suppose we perform an experiment to obtain a size n sample tpYi, Aiqu
n
i“1, where the sampling

process is determined by tpYip1q, Yip0qqu
n
i“1, which are i.i.d, and the treatment assignments

tAiu
n
i“1, where exactly n1 :“ tnπu individuals are randomly assigned to treatment A “ 1, for

some π P p0, 1q (however, we emphasize that our results will accommodate other methods of

randomization). Given this sample, consider estimation of θ through the standard difference-

in-means estimator:

θ̂S :“
1

n1

n
ÿ

i“1

YiAi ´
1

n´ n1

n
ÿ

i“1

Yip1´ Aiq .

It can then be shown that

?
npθ̂S ´ θq

d
ÝÑ Npθ, V1q ,

where

V1 :“
σ2

1

π
`

σ2
0

1´ π
.

In fact, it can be shown that under this randomization scheme V1 is the finite sample variance

of the normalized estimator, but this will not necessarily be true for other randomization

schemes. Our goal is to choose π to minimize the variance of θ̂. Solving this optimization

problem yields the following solution:

π˚ :“
σ1

σ1 ` σ0

.

This allocation is known as the Neyman Allocation, which assigns more individuals to the

treatment which is more variable. Note that when σ2
0 “ σ2

1, so that the variances of the

potential outcomes are equal, the optimal proportion is π˚ “ 0.5, which corresponds to the

standard “balanced” treatment allocation. In general, implementing π˚ is infeasible without

knowledge of σ2
0 and σ2

1. In light of this, if we had prior data tpYj, Ajqu
m
j“1 (either from a

first-wave or a similar prior study), then we could use this data to estimate π˚, and then use
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this estimate to assign treatment in a subsequent wave of the study. The idea of sequentially

updating estimates of unknown population quantities using past observations, in order to

inform experimental design in subsequent stages, underlies many procedures developed in

the literatures on response adaptive experiments and bandit problems, and is the main idea

underpinning our proposed method.

Remark 1.2.1. Although the Neyman Allocation minimizes the variance of the difference-

in-means estimator, it is entirely agnostic on the welfare of the individuals in the experiment

itself. In particular, the Neyman Allocation could assign the majority of individuals in the

experiment to the inferior treatment if that treatment has a much larger variance in outcomes

(see Hu and Rosenberger 2006 for relevant literature in the context of clinical trials, as well

as Narita (2018) for recent work on this issue in econometrics). While this feature of the

Neyman Allocation may introduce ethical or logistical issues in some relevant applications,

in this paper we focus exclusively on the problem of estimating the ATE as accurately as

possible. See Remark 1.2.2 for further discussion on our choice of optimality criterion.

Next we repeat the above exercise with the addition of a discrete covariate S P t1, 2, ..., Ku

over which we stratify. We perform an experiment which produces a sample tpYi, Ai, Siqu
n
i“1,

where the sampling process is determined by i.i.d draws tpYip1q, Yip0q, Siqu
n
i“1 and the treat-

ment assignments tAiu
n
i“1. For this example suppose that the tAiu

n
i“1 are generated as fol-

lows: for each k, exactly n1pkq :“ tnpkqπpkqu individuals are randomly assigned to treatment

A “ 1, with npkq :“
řn
i“1 1tSi “ ku.

Note that when the assignment proportions πpkq are not equal across strata, the difference-

in-means estimator θ̂S is no longer consistent for θ. Hence we consider the following weighted
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estimator of θ:

θ̂C :“
ÿ

k

npkq

n
θ̂pkq ,

where θ̂pkq is the difference-in-means estimator for S “ k:

θ̂pkq :“
1

n1pkq

n
ÿ

i“1

YiAi1tSi “ ku ´
1

npkq ´ n1pkq

n
ÿ

i“1

Yip1´ Aiq1tSi “ ku .

In words, θ̂C is obtained by computing the difference in means for each k and then taking

a weighted average over each of these estimates. Note that when K “ 1 (i.e. when S can

take on one value), this estimator simplifies to the difference-in-means estimator. It can be

shown under appropriate conditions that

?
npθ̂C ´ θq

d
ÝÑ Np0, V2q ,

where

V2 :“
K
ÿ

k“1

P pS “ kq

„ˆ

σ2
0pkq

1´ πpkq
`
σ2

1pkq

πpkq

˙

` pErY p1q ´ Y p0q|S “ ks ´ ErY p1q ´ Y p0qsq2


,

with σ2
dpkq “ ErY pdq2|S “ ks ´ ErY pdq|S “ ks2. The first term in V2 is the weighted

average of the conditional variances of the difference in means estimator for each S “ k.

The second term in V2 arises due to the additional variability in sample sizes for each S “ k.

We note that this variance is the semi-parametric efficiency bound derived by Hahn (1998)

for estimators of the ATE which use the covariate S. Following a similar logic to what was

proposed above without covariates, we could use first-wave data tpYj, Aj, Sjqu
m
j“1 to form a

sample analog of V2, and choose tπ˚pkquKk“1 to minimize this quantity.

Now we introduce the setting that we consider in this paper: suppose we observe cov-

ariates X P X Ă Rd, so that our covariate space is now multi-dimensional with potentially
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continuous components. How could we practically extend the logic of the previous examples

to this setting? A natural solution is to discretize (i.e. stratify) X into K categories (strata),

by specifying a mapping S : X Ñ t1, 2, 3, ..., Ku, with Si :“ SpXiq, and then proceed as in

the above example. As we argued in the introduction, stratified randomization is a popular

technique in practice, and possesses several attractive theoretical and practical properties. In

this paper we propose a method which uses first-wave data to estimate (1) the optimal strat-

ification, and (2) the optimal assignment proportions within these strata. In other words,

given first-wave data tpYj, Aj, Xjqu
m
j“1 from a randomized experiment, where X P X Ă Rd,

we propose a method which selects tπpkquKk“1 and the function Sp¨q, in order to minimize the

variance bound in Hahn (1998). In particular, our proposed solution selects a randomization

procedure amongst the class of what we call stratification trees, which we introduce in the

next section.

Remark 1.2.2. Our focus on the minimization of asymptotic variance is in line with

standard asymptotic optimality results for regular estimators (see for example Theorems

25.20 and 25.21 in Van der Vaart, 1998). However, accurate estimation of the ATE is

not the only objective one could consider when designing an RCT. In particular, we could

instead consider using an ATE estimator to construct a statistical decision rule, with the

goal of maximizing population welfare (see Manski 2009 for a textbook discussion). If, as

in Manski (2004), we evaluate decision rules by their maximum regret, then our optimality

objective would be to design the randomization procedure in order to minimize the maximum

regret of the decision rule. We remark that selecting a randomization procedure to minimize

asymptotic variance may in fact reduce pointwise regret, when paired with an appropriate

decision rule. In particular, Athey and Wager (2017) derive a bound on regret whose constant

scales with the semi-parametrically efficient variance. Our method selects a randomization
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procedure which minimizes this variance, and hence subsequently minimizes the constant in

this bound.

1.2.2. Notation and Definitions

In this section we establish the notation of the paper and define the class of randomization

procedures that we will consider. Let Ai P t0, 1u be a binary variable which denotes the

treatment received by a unit i (we consider the extension to multiple treatments in Section

1.3.2), and let Yi denote the observed outcome. Let Yip1q denote the potential outcome of

unit i under treatment 1 and let Yip0q denote the potential outcome of unit i under treatment

0. The observed experimental outcome for each unit is related to their potential outcomes

through the expression:

Yi “ Yip1qAi ` Yip0qp1´ Aiq .

Let Xi P X Ă Rd denote a vector of observed pre-treatment covariates for unit i. Let Q

denote the distribution of pYip1q, Yip0q, Xiq and assume that tpYip1q, Yip0q, Xiqu
n
i“1 consists

of n i.i.d observations from Q. We restrict Q as follows:

Assumption 1.2.1. Q satisfies the following properties:

‚ Y paq P r´M,M s for some M ă 8, for a P t0, 1u, where the marginal distributions

Y p1q and Y p0q are either continuous or discrete with finite support.

‚ X P X “
Śd

j“1rbj, cjs, for some tbj, cju
d
j“1 finite.

‚ X “ pXC , XDq, where XC P Rd1 for some d1 P t0, 1, 2, ..., du is continuously distrib-

uted with a bounded, strictly positive density. XD P Rd´d1 is discretely distributed

with finite support.

Remark 1.2.3. The restriction that the Y paq are bounded is used several times through-

out the proofs for technical convenience, but it is possible that this assumption could be



23

weakened. In applications it may be the case that XC as defined above may not be continu-

ous on
Ś

jrbj, cjs, but is instead censored at its endpoints; see for example the application

considered in Section 1.5. Our results will continue to hold in this case as well.

Our quantity of interest is the average treatment effect (ATE) given by:

θ “ ErYip1q ´ Yip0qs .

An experiment on our sample produces the following data:

tWiu
n
i“1 :“ tpYi, Ai, Xiqu

n
i“1 ,

whose joint distribution is determined by Q, the potential outcomes expression, and the

randomization procedure. We focus on the class of stratified randomization procedures:

these randomization procedures first stratify according to baseline covariates and then assign

treatment status independently across each of these strata. Moreover, we attempt to make

minimal assumptions on how randomization is performed within strata, in particular we

do not require the treatment assignment within each stratum to be independent across

observations.

We will now describe the structure we impose on the class of possible strata we consider.

For L a positive integer, let K “ 2L and let rKs :“ t1, 2, ..., Ku. Consider a function

S : X Ñ rKs, then tS´1pkquKk“1 forms a partition of X with K strata. For a given positive

integer L, we work in the class Sp¨q P SL of functions whose partitions form tree partitions

of depth L on X , which we now define. Note that the definition is recursive, so we begin

with the definition for a tree partition of depth one:
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Definition 1.2.1. Let Γj Ă rbj, cjs, let Γ “
Śd

j“1 Γj, and let x “ px1, x2, ..., xdq P Γ. A

tree partition of depth one on Γ is a partition of Γ which can be written as

ΓDpj, γq Y ΓUpj, γq ,

where

ΓDpj, γq :“ tx P Γ : xj ď γu ,

ΓUpj, γq :“ tx P Γ : xj ą γu ,

for some j P rds and γ P Γj. We call ΓDpj, γq and ΓUpj, γq leaves (or sometimes terminal

nodes), whenever these are nonempty.

Example 1.2.1. Figure 1.1 presents two different representations of a tree partition of

depth one on r0, 1s2. The first representation we call graphical : it depicts the partition on a

square drawn in the plane. The second depiction we call a tree representation: it illustrates

how to describe a depth one tree partition as a yes or no question. In this case, the question

is “is x1 less than or greater than 0.5?”.

x1

x2

1 2

0.5

1

x1
ď

0.5

2

x
1 ą

0.5

Figure 1.1. Two representations of a tree partition of depth 1 on r0, 1s2.
Graphical representation (left), tree representation (right).

Next we define a tree partition of depth L ą 1 recursively:
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Definition 1.2.2. A tree partition of depth L ą 1 on Γ “
Śd

j“1 Γj is a partition of Γ

which can be written as Γ
pL´1q
D Y Γ

pL´1q
U , where

Γ
pL´1q
D is a tree partition of depth L´ 1 on ΓDpj, γq ,

Γ
pL´1q
U is a tree partition of depth L´ 1 on ΓUpj, γq ,

for some j P rds and γ P Γj. We call Γ
pL´1q
D and Γ

pL´1q
U left and right subtrees, respectively,

whenever these are nonempty.

Example 1.2.2. Figure 1.2 depicts two representations of a tree partition of depth two

on r0, 1s2.

x1

x2

1

2

3 4

0.5 0.9

0.8

1

x 2
ď

0.
8

2

x
2
ą

0.8

x 1
ď

0.
5

3

x 1
ď

0.
9

4

x
1
ą

0.9

x
1 ą

0.5

Figure 1.2. Two representations of a tree partition of depth 2 on r0, 1s2.
Graphical representation (left), tree representation (right).

We focus on strata that form tree partitions for several reasons. First, these types of

strata are easy to represent and interpret, even in higher dimensions, via their tree represent-

ations or as a series of yes or no questions. We argued in the introduction that this could be of

particular importance in economic applications. Second, as we explain in Remark 1.3.4 and

the Appendix, restricting ourselves to tree partitions gives us theoretical and computational
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tractability. In particular, computing an optimal stratification is a difficult discrete optim-

ization problem for which we exploit the tree structure to design an evolutionary algorithm.

Third, the recursive aspect of tree partitions makes the targeting of subgroup-specific effects

convenient, as we show in Section 1.3.2.

For each k P rKs, we define π :“ pπpkqqKk“1 to be the vector of target proportions of units

assigned to treatment 1 in each stratum.

A stratification tree is a pair pS, πq, where Sp¨q forms a tree partition, and π specifies the

target proportions in each stratum. We denote the set of stratification trees of depth L as

TL.

Remark 1.2.4. To be precise, any element T “ pS, πq P TL is equivalent to another

element T 1 “ pS 1, π1q P TL whenever T 1 can be realized as a re-labeling of T . For instance,

if we consider Example 1.2.1 with the labels 1 and 2 reversed, the resulting tree is identical

to the original except for this re-labeling. TL should be understood as the quotient set that

results from this equivalence.

Example 1.2.3. Figure 1.3 depicts a representation of a stratification tree of depth two.

Note that the terminal nodes of the tree have been replaced with labels that specify the

target proportions in each stratum.

πp1q “ 0.3

x 2
ď

0.
8

πp2q “ 0.7

x
2
ą

0.8

x 1
ď

0.5

πp3q “ 0.5

x 1
ď

0.
9

πp4q “ 0.4

x
1
ą

0.9

x
1 ą

0.5

Figure 1.3. Representation of a Stratification Tree of Depth 2
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We further impose that the set of trees cannot have arbitrarily small (nonempty) cells,

nor can they have arbitrarily extreme treatment assignment targets:

Assumption 1.2.2. We constrain the set of stratification trees T “ pS, πq P TL such

that, for some fixed ν ą 0 and δ ą 0, πpkq P rν, 1 ´ νs and P pSpXq “ kq ą δ whenever

S´1pkq ‰ H.

Remark 1.2.5. In what follows, we adopt the following notational convention: if S´1pkq “

H, then ErW |SpXq “ ks “ 0 for any random variable W .

Remark 1.2.6. The depth L of the set of stratification trees will remain fixed but

arbitrary throughout most of the analysis. We return to the question of how to choose L in

Section 1.3.2.

For technical reasons, we will impose one additional restriction on TL. We emphasize

that this assumption is only used to avoid issues which may arise from the potential non-

measurability of certain objects.

Assumption 1.2.3. Let T :L Ă TL be a countable, closed subset of the set of stratification

trees1. We then consider the set of stratification trees restricted to this subset.

Remark 1.2.7. A restriction similar to Assumption 1.2.3 was recently considered in

Kitagawa and Tetenov (2018) in order to avoid measurability issues. Note that, in practice,

restricting the set of stratification trees to a finite grid satisfies Assumption 1.2.3. However,

our results also apply much more generally.

1Here “closed” is with respect to an appropriate topology on TL, see Appendix A.2 for details. It is possible
that Assumption 1.2.3 could be eliminated by using the theory of weak convergence developed by Hoffman-
Jorgensen, see Van der Vaart and Wellner (1996) for a textbook discussion.
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Recall that we are interested in randomization procedures that stratify on baseline co-

variates and then assign treatment status independently across strata. For T “ pS, πq, let

Si :“ SpXiq be the strata label for an individual i. For each T P TL, and given sample of

size n, an experimental assignment is described by a random vector ApnqpT q :“ pAipT qq
n
i“1

for each T P TL. For our purposes a randomization procedure (or randomization scheme) is a

family of such random vectors ApnqpT q for each T “ pS, πq P TL. The only assumptions that

we require on the randomization procedure are that the assignments are exogenous condi-

tional on the strata, and that the assignment proportions converge to the target proportions

asymptotically. Assumptions 1.3.4 and 1.3.5 re-state these conditions formally. Examples

1.2.4 and 1.2.5 illustrate two such randomization schemes which are popular in economics,

and many more schemes have been considered in the the literature on clinical trials: ex-

amples include Efron (1971), Wei (1978), Antognini and Giovagnoli (2004), and Kuznetsova

and Tymofyeyev (2011).

Example 1.2.4. Simple random assignment assigns each individual within stratum k

to treatment via a coin-flip with weight πpkq. Formally, for each T , ApnqpT q is a vector with

independent components such that

P pAipT q “ 1|Si “ kq “ πpkq .

Simple random assignment is theoretically convenient, and features prominently in papers on

adaptive randomization. However, it is considered unattractive in practice because it results

in a “noisy” assignment for a given target πpkq, and hence could be very far off the target

assignment for any given random draw. Moreover, this extra noise increases the finite-sample

variance of ATE estimators relative to other assignment procedures which target πpkq more

directly (see for example the discussion in Kasy, 2013).
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Example 1.2.5. Stratified block randomization (SBR) assigns a fixed proportion πpkq of

individuals within stratum k to treatment 1. Formally, let npkq be the number of units in

stratum k, and let n1pkq be the number of units assigned to treatment 1 in stratum k. In

SBR, n1pkq is given by

n1pkq “ tnpkqπpkqu .

SBR proceeds by randomly assigning n1pkq units to treatment 1 for each k, where all

ˆ

npkq

n1pkq

˙

,

possible assignments are equally likely. This assignment procedure has the attractive feature

that it targets the proportion πpkq as directly as possible. An early discussion of SBR can

be found in Zelen (1974). SBR has recently become a popular method of assignment in

economics (for example, every RCT published in the Quarterly Journal of Economics in

2017 used SBR).

1.2.3. Overview of Procedure

In this section we provide an overview of our procedure, before stating the formal results in

Section 1.3. Recall the setting from the end of Section 1.2.1: given first-wave data, our goal

is to estimate a stratification tree which minimizes the asymptotic variance in a certain class

of ATE estimators, which we now introduce. For a fixed T P TL, consider estimation of the

following equation by OLS:

Yi “
ÿ

k

αpkq1tSi “ ku `
ÿ

k

βpkq1tAi “ 1, Si “ ku ` ui .
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Then our ATE estimator is given by

θ̂pT q “
ÿ

k

npkq

n
β̂pkq ,

where npkq “
ř

i 1tSi “ ku. In words, this estimator takes the difference in means between

treatments within each stratum, and then averages these over the strata. Given appropriate

regularity conditions, the results in Bugni et al. (2018) imply the following result for a fixed

T “ pS, πq P TL:

?
npθ̂pT q ´ θq

d
ÝÑ Np0, V pT qq ,

where

V pT q “
K
ÿ

k“1

P pSpXq “ kq
”

pErY p1q ´ Y p0q|SpXq “ ks ´ ErY p1q ´ Y p0qsq2`

ˆ

σ2
0pkq

1´ πpkq
`
σ2

1pkq

πpkq

˙

ı

,

and

σ2
apkq “ ErY paq2|SpXq “ ks ´ ErY paq|SpXq “ ks2 .

Again we remark that this variance is the semi-parametric efficiency bound of Hahn

(1998) amongst all (regular) estimators that use the strata indicators as covariates. We pro-

pose a two-stage adaptive randomization procedure which asymptotically achieves the min-

imal variance V pT q across all T P TL. In the first stage, we use first-wave data tpYj, Aj, Xjqu
m
j“1

to estimate some “optimal” tree rT which is designed to minimize V pT q. More formally, what

we require is that

|V prT q ´ V ˚|
a.s
ÝÑ 0 ,
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as m Ñ 8, where V ˚ is the minimum of V pT q in TL. We show in Proposition 1.3.1 that a

straightforward way to construct such a rT is to minimize an empirical analog of V pT q:

rTEM P arg min
TPTL

rV pT q ,

where rV p¨q is an empirical analog of V p¨q defined in Appendix A.4. In general, computing

rTEM involves solving a complicated discrete optimization problem. In Appendix A.4, we

describe an evolutionary algorithm that we use to solve this problem. In Section 1.3.2, we

describe a version of this estimator that selects the appropriate depth L via cross-validation.

In the second stage, we perform a randomized experiment using stratified randomization

with ApnqprT q to obtain second-wave data tpYi, Ai, Xiqu
n
i“1. Finally, to analyze the results

of the experiment, we consider the use of two possible estimators. The first estimator we

consider “pools” the first-wave and second-wave data together. To accomplish this, we

stratify on the experimental waves; that is, we append an extra stratum which contains

the first-wave data, indexed by k “ 0, to rT . We call the resulting stratification tree an

“augmented” tree, and denote it by T̂ , (see Example 1.2.6 for an illustration). We then

use all of the available data when estimating the saturated regression. The resulting pooled

estimator is denoted by θ̂pT̂ q. The second estimator we consider uses only the second-wave

data to estimate the ATE. We call this estimator the unpooled estimator and denote it by

θ̂prT q. From now on, we state all of our results for the pooled estimator θ̂pT̂ q, with the

understanding that analogous results hold for the unpooled estimator as well (see Remark

1.3.1 for details).

Example 1.2.6. Figure 1.4 depicts a representation of an augmented tree. First the tree

partitions the first-wave data into its own stratum indexed by k “ 0, and then proceeds as

before.
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Figure 1.4. An Augmented Stratification Tree

Remark 1.2.8. In applications it may also be the case that the first-wave experiment

was itself stratified. It would then be natural to incorporate this stratification into the

specification of the augmented tree T̂ . Analogous results to what we derive in Section 1.3

will hold in this case as well.

From now on, to be concise, we will call data from the first-wave the pilot data, and data

from the second-wave the main data. To summarize, the method proceeds as follows:

OUTLINE OF PROCEDURE

‚ Obtain pilot data pYj, Aj, Xjq
m
j“1.

‚ Use pilot data to construct rT (either rTEM or the cross-validated version rTCV defined

in Section 1.3.2).

‚ Perform a randomized experiment using ApnqprT q (as defined in Section 1.2.2) to

obtain main data pYi, Ai, Xiq
n
i“1.
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‚ Perform inference on the average treatment effect using θ̂pT̂ q, where T̂ is the aug-

mented tree as described above.

In Section 1.3.1, we provide conditions under which

?
Npθ̂pT̂ q ´ θq

d
ÝÑ Np0, V ˚q ,

where N “ m` n, as m,nÑ 8. We also describe a consistent estimator of the asymptotic

variance. In Section 1.3.2, we consider several extensions of the procedure: to multiple

treatments, to the targeting of subgroup-specific effects, as well as to using cross-validation

to select the depth L of the stratification tree.

Remark 1.2.9. It is common practice in the analysis of RCTs to estimate θ by running

OLS on a linear regression with strata fixed effects:

Yi “ βAi `
ÿ

k

δpkq1tSi “ ku ` ui .

If the assignment targets πpkq are not equal across strata, as in this paper, then β̂ is not a

consistent estimator of θ. However, it can be shown that β̂ is consistent when the assignment

targets are equal across strata. Moreover, in the special case where assignment is conducted

using a randomization procedure with “strong balance”, such as SBR, this estimator has

the same limiting distribution as θ̂ (see Bugni et al., 2018, for details). It can be shown

that our results continue to hold with this alternative estimator, as long as the assignment

proportions πpkq are restricted to be equal, and SBR is used as the randomization procedure.
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1.3. Results

In this section we derive the theoretical properties of our estimator. Section 1.3.1 presents

the main result of the paper, that θ̂pT̂ q is asymptotically normal with minimal variance in TL,

and describes a consistent estimator of its asymptotic variance. Section 1.3.2 presents several

extensions: a cross-validation procedure to select the depth L of the stratification tree, as

well as extensions for the targeting of subgroup specific effects and to multiple treatments.

1.3.1. Main Results

In this section we present the main theoretical properties of our method. In particular,

we provide conditions under which θ̂pT̂ q is asymptotically normal with minimal variance in

the class of estimators defined in Section 1.2.3, as well as provide a consistent estimator

of its asymptotic variance. Recall that our goal is to use pilot data in order to estimate

some “optimal” stratification tree rT , and then use this tree to perform the experimental

assignment in a second wave of the experiment. To that end, we assume the existence of

pilot data tWiu
m
i“1 :“ tpYi, Xi, Aiqu

m
i“1, generated from a randomized experiment performed

on a sample from the same population as the main experiment, which we use to construct

rT . Throughout the analysis of this section we consider the following asymptotic framework

for the size of m (the size of the pilot) relative to the size of n (the size of the main study):

Assumption 1.3.1. We consider the following asymptotic framework:

m

N
“ o

ˆ

1
?
N

˙

,

where N “ m` n, as m,nÑ 8.
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Remark 1.3.1. Rate assumptions like Assumption 1.3.1 are only required to study the

properties of the pooled estimator θ̂pT̂ q. The properties of the unpooled estimator θ̂prT q can

be derived under the weaker assumption that m Ñ 8 and n Ñ 8 without any restrictions

on their relative rates. In what follows, we state all of our results for the estimator θ̂pT̂ q

only, with the understanding that analogous results will hold for θ̂prT q under this weaker

assumption.

Remark 1.3.2. The asymptotic framework introduced in Assumption 1.3.1 will ensure

that the asymptotic variance of θ̂pT̂ q is not distorted. However, this asymptotic framework

requires that m{N vanishes quite quickly, which may inaccurately reflect the finite sample

behavior of our estimator in applications where the first wave of the experiment is large

relative to the second: see for example the application considered in Section 1.5, where two

waves of equal size were used. In Remark 1.3.5 we explain how our results would change in

an asymptotic framework where we allow

m

N
“ λ` o

ˆ

1
?
N

˙

,

for 0 ď λ ď 1. See Appendix A.3.2 or details. However, we emphasize here that this

alternative framework does not change the mechanics of the procedure in any way. We also

explore the effect of large pilot samples in the simulation study of Section 1.4.

In all of the results of this section, the depth L of the class of stratification trees is fixed

and specified by the researcher. We return to the question of how to choose L in Section

1.3.2. Given a pilot sample tWiu
m
i“1, we require the following high-level consistency property

for our estimator rT :
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Assumption 1.3.2. The estimator rTm is a σtpWiq
m
i“1u{BpTLq measurable function of the

pilot data2 and satisfies

|V prTmq ´ V
˚
|
a.s
ÝÑ 0 ,

where

V ˚ “ inf
TPTL

V pT q ,

as mÑ 8.

Note that Assumption 1.3.2 does not imply that V ˚ is uniquely minimized at some T P TL

and so we do not make any assumptions about whether or not rT converges to any fixed tree.

In Proposition 1.3.1, we show that a straightforward method to construct such a rT is to

solve the following empirical minimization problem:

rTEM P arg min
TPTL

rV pT q ,

where rV pT q is an empirical analog of V pT q (as defined in Appendix A.4) constructed using

the pilot data. A nice feature of this choice of rT is that it also corresponds to minimizing (an

estimated version of) the finite sample variance of our estimator in the case of SBR. In Section

1.3.2, we consider an alternative construction of rT which uses cross-validation to select the

depth of the tree. We verify Assumption 1.3.2 for rTEM under the following assumption

about the randomization procedure used in the pilot study (although we emphasize that this

assumption is not necessary to establish such a result in general):

Assumption 1.3.3. The pilot experiment was performed using simple random assign-

ment (see Example 1.2.4).

2BpTLq is the Borel-sigma algebra on TL generated by an appropriate topology and σtpWiq
m
i“1u is the sigma-

algebra generated by the pilot data. See the appendix for details.
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Proposition 1.3.1. Let rTEM be a minimizer of the empirical variance. Under Assump-

tions 1.2.1, 1.2.2, 1.2.3, 1.3.1 and 1.3.3, Assumption 1.3.2 is satisfied.

Next, we describe the assumptions we impose on the randomization procedure in the

second-wave experiment. For T “ pS, πq, let Si :“ SpXiq and Spnq :“ pSiq
n
i“1 be the random

vector of stratification labels of the observed data (note that, although Sp¨q is a deterministic

function, Xi is a random variable and hence the resulting composition Si is itself random).

Let ppk;T q :“ P pSi “ kq be the population proportions in each stratum. We require the

following exogeneity assumption:

Assumption 1.3.4. The randomization procedure is such that, for each T “ pS, πq P TL:

“

pYip0q, Yip1q, Xiq
n
i“1 K ApnqpT q

‰

ˇ

ˇ

ˇ

ˇ

Spnq .

This assumption asserts that the randomization procedure can depend on the observables

only through the strata labels.

We also require that the randomization procedure satisfy the following “consistency”

property:

Assumption 1.3.5. The randomization procedure is such that

sup
TPTL

ˇ

ˇ

ˇ

ˇ

n1pk;T q

n
´ πpkqppk;T q

ˇ

ˇ

ˇ

ˇ

p
ÝÑ 0 ,

for each k P rKs. Where

n1pk;T q “
n
ÿ

i“1

1tAipT q “ 1, Si “ ku .

This assumption asserts that the assignment procedure must approach the target pro-

portion asymptotically, and do so in a uniform sense over all stratification trees in TL. Other
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than Assumptions 1.3.4 and 1.3.5, we do not require any additional assumptions about how

assignment is performed within strata. Bugni et al. (2018) make similar assumptions for

a fixed stratification function and show that it is satisfied for a wide range of assignment

procedures, including those introduced in Examples 1.2.4 and 1.2.5. In Proposition 1.3.2

below, we verify that Assumptions 1.3.4 and 1.3.5 hold for stratified block randomization,

which is a common assignment procedure in economic applications.

Proposition 1.3.2. Suppose randomization is performed through SBR (see Example

1.2.5), then Assumptions 1.3.4 and 1.3.5 are satisfied.

Finally, we impose one additional regularity condition on the distribution Q when

pY p0q, Y p1qq are continuous. We impose this assumption because of technical complications

that arise from the fact that the set of minimizers of the population variance V pT q is not

necessarily a singleton:

Assumption 1.3.6. Fix some a and k and suppose Y paq is continuous. Let G be the

family of quantile functions of Y paq|SpXq “ k, for S´1pkq nonempty. Then we assume that

G forms a pointwise equicontinuous family.

Remark 1.3.3. To our knowledge this assumption is non-standard. In Lemma A.5.3 we

show that a sufficient condition for Assumption 1.3.6 to hold is that the quantile functions be

continuous (i.e. that the densities of Y paq|SpXq “ k do not contain “gaps” in their support),

and that the quantile functions vary “continuously” as we vary S P SL.

We now state the main result of the paper: an optimality result for the pooled estimator

θ̂pT̂ q. In Remark 1.3.4 we comment on some of the technical challenges that arise in the

proof of this result.
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Theorem 1.3.1. Given Assumptions 1.2.1, 1.2.2, 1.2.3, 1.3.1, 1.3.2, 1.3.4, 1.3.5, and

1.3.6, we have that
?
Npθ̂pT̂ q ´ θq

d
ÝÑ Np0, V ˚q ,

where N “ m` n, as m,nÑ 8.

Remark 1.3.4. Here we comment on some of the technical challenges that arise in

proving Theorem 3.3.1. First, we develop a theory of convergence for stratification trees

by defining a novel metric on SL based on the Frechet-Nikodym metric, and establish basic

properties about the resulting metric space. In particular, we use this construction to show

that a set of minimizers of V pT q exists given our assumptions, and that rT converges to

this set of minimizers in an appropriate sense. For these results we exploit the properties

of tree partitions for two purposes: First, we frequently exploit the fact that for a fixed

index k P rKs, the class of sets tSp´1qpkq : S P SLu consists of rectangles, and hence forms

a VC class. Second, as explained in Remark 1.2.4, every T P TL is in fact an equivalence

class. Using the structure of tree partitions, we define a canonical representative of T (see

Definition A.2.1) which simplifies our derivations.

Next, because Assumptions 1.3.4 and 1.3.5 impose so little on the dependence structure

of the randomization procedure, standard central limit theorems cannot be applied. When

the stratification is fixed, Bugni et al. (2018) establish asymptotic normality by essentially

re-writing the sampling distribution of the estimator as a partial-sum process. In our setting

the stratification is random, and so to prove our result we generalize their construction in

a way that allows us to re-write the sampling distribution of the estimator as a sequential

empirical process (see Van der Vaart and Wellner, 1996, Section 2.12.1 for a definition). We

then exploit the asymptotic equicontinuity of this process to establish asymptotic normality

(see Lemma A.1.1 for details).
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We finish this subsection by constructing a consistent estimator for the variance V ˚. Let

Npkq :“ m if k “ 0 and Npkq :“ npkq otherwise. Let

pVH “
K
ÿ

k“0

Npkq

N

´

β̂pkq ´ θ̂
¯2

,

and let

pVY “ R1V̂hcR ,

where V̂hc is the robust variance estimator for the parameters in the saturated regression,

and R is following vector with K ` 1 “leading” zeros:

R1 “

„

0, 0, 0, . . . , 0,
Np0q

N
,
Np1q

N
, . . . ,

NpKq

N



.

We obtain the following consistency result:

Theorem 1.3.2. Given Assumptions 1.2.1, 1.2.2, 1.2.3, 1.3.1, 1.3.2, 1.3.4, 1.3.5, and

1.3.6, then

pV pT̂ q
p
ÝÑ V ˚ ,

where

pV pT q “ pVHpT q ` pVY pT q ,

as m,nÑ 8.

Remark 1.3.5. In Appendix A.3.2 we provide results under the “large pilot” asymptotic

framework which we presented in Remark 1.3.2. Here we will briefly preview these results:

under appropriate conditions it can be shown that in this alternative framework,

?
Npθ̂pT̂ q ´ θq

d
ÝÑ Np0, V ˚λ q ,
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where

V ˚λ “ λV0 ` p1´ λqV
˚ ,

and

V0 “
σ2

0p0q

1´ πp0q
`
σ2

1p0q

πp0q
.

In words, we see that the pooled estimator θ̂pT̂ q now has an asymptotic variance which is a

weighted combination of the optimal variance and the variance from estimation in the pilot

experiment, with weights which correspond to their relative sizes.

1.3.2. Extensions

In this section we present some extensions to the main results. First we present a version of

rT whose depth is selected by cross-validation. Second, we explain how to accommodate the

targeting of subgroup-specific effects. Finally, we explain how to extend our method to the

setting with multiple treatments.

1.3.2.1. Cross-validation to select L. In this section we describe a method to select

the depth L via cross-validation. The tradeoff in choosing L can be framed as follows: by

construction, choosing a larger L has the potential to lower the variance of our estimator,

since now we are optimizing in a larger set of trees. On the other hand, choosing a larger

L will make the set of trees more complex, and hence will make the optimal tree harder

to estimate accurately for a given pilot-data sample size. We suggest a procedure to select

L with these two tradeoffs in mind. We proceed by first specifying some maximum upper

bound L̄ on the depth to be considered. For each 0 ď L ď L̄ (where we understand L “ 0

to mean no stratification), define

V ˚L :“ arg min
TPTL

V pT q .
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Note that by construction it is the case that V ˚0 ě V ˚1 ě V ˚2 ě ... ě V ˚
L̄

. Let rTL be the

stratification tree estimated from class TL, then by Assumption 1.3.2, we have that

|V prTLq ´ V
˚
L |

a.s
ÝÑ 0 ,

for each L ď L̄. Despite the fact that rTL asymptotically achieves a (weakly) lower variance

as L grows, it is not clear that, in finite samples, a larger choice of L should be favored,

since we run the risk of estimating the optimal tree poorly (i.e. of overfitting). In order to

protect against this potential for overfitting, we propose a simple cross-validated version of

the stratification tree estimator. The use of cross-validation to estimate decision trees goes

back at least to the work of Breiman (see Breiman et al., 1984). For an overview of the use

of cross-validation methods in statistics in general, see Arlot et al. (2010).

The cross-validation procedure we propose proceeds as follows: let tWiu
m
i“1 be the pilot

data, and for simplicity suppose m is even. Split the pilot sample into two halves and denote

these by D1 :“ tWiu
m{2
i“1 and D2 :“ tWiu

m
m{2`1, respectively. Now for each L, let rT

p1q
L and

rT
p2q
L be stratification trees of depth L estimated on D1 and D2. Let rV p1qp¨q and rV p2qp¨q

be the empirical variances computed on D1 and D2 (where, in the event that a cell in the

tree partition is empty, we assign a value of infinity to the empirical variance). Define the

following cross-validation criterion:

rV CV
L :“

1

2

´

rV p1q
´

rT
p2q
L

¯

` rV p2q
´

rT
p1q
L

¯¯

.

In words, for each L, we estimate a stratification tree on each half of the sample, compute

the empirical variance of these estimates by using the other half of the sample, and then

average the results. Intuitively, as we move from small values of L to large values of L, we

would expect that this cross-validation criterion should generally decrease with L, and then
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eventually increase, in accordance with the tradeoff between tree complexity and estimation

accuracy. We define the cross-validated stratification tree as follows:

rTCV “ rTL̂ ,

with

L̂ “ arg min
L

rV CV
L ,

where in the event of a tie we choose the smallest such L. Hence rTCV is chosen to be the

stratification tree whose depth minimizes the cross-validation criterion rV CV
L . If each rTL is

estimated by minimizing the empirical variance over TL, as described in Sections 1.2.2 and

1.3.1, then we can show that the cross-validated estimator satisfies the consistency property

of Assumption 1.3.2:

Proposition 1.3.3. Under Assumptions 1.2.1, 1.2.2, 1.2.3, 1.3.1 and 1.3.3, Assumption

1.3.2 is satisfied for rTCV “ rTEM
L̂

in the set TL̄, that is,

|V prTCV q ´ V ˚L̄ |
a.s
ÝÑ 0 ,

as mÑ 8.

Remark 1.3.6. Our description of cross-validation above defines what is known as “2-

fold” cross-validation. It is straightforward to extend this to “V -fold” cross-validation, where

the dataset is split into V pieces. Breiman et al. (1984) find that using at least 5 folds is

most effective in their setting (although their cross-validation technique is different from

ours), and in many statistical applications 5 or 10 folds has become the practical standard.

For our purposes, we focus on 2-fold cross validation because of the computational difficulties

we face in solving the optimization problem to compute rTEM .
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In light of Proposition 1.3.3 we see that all of our previous results continue to hold while

using rTCV as our stratification tree. However, Proposition 1.3.3 does not help us conclude

that rTCV should perform any better than rTL̄ in finite samples. Although it is beyond the

scope of this paper to establish such a result, doing so could be an interesting avenue for

future work. Instead, we assess the performance of rTCV via simulation in Section 1.4, and

note that it does indeed seem to protect against overfitting in practice. In Section 1.5, we

use this cross-validation procedure to select the depth of the stratification trees we estimate

for the experiment undertaken in Karlan and Wood (2017).

1.3.2.2. Stratification Trees for Subgroup Targeting. In this subsection we explain

how the method can flexibly accommodate the problem of variance reduction for estimators

of subgroup-specific ATEs, while still minimizing the variance of the unconditional ATE

estimator in a restricted set of trees. It is common practice in RCTs for the strata to be

specified such that they are the subgroups that a researcher is interested in studying (see

for example the recommendations in Glennerster and Takavarasha, 2013). This serves two

purposes: the first is that it enforces a pre-specification of the subgroups of interest, which

guards against ex-post data mining. Second, it allows the researcher to improve the efficiency

of the subgroup specific estimates.

Let S 1 P SL1 be a tree of depth L1 ă L, whose terminal nodes represent the subgroups of

interest. Suppose these nodes are labelled by g “ 1, 2, ..., G, and that P pS 1pXq “ gq ą 0 for

each g. The subgroup-specific ATEs are defined as follows:

θpgq :“ ErY p1q ´ Y p0q|S 1pXq “ gs .

We introduce the following new notation: let TLpS 1q Ă TL be the set of stratification trees

which can be constructed as extensions of S 1. For a given T P TLpS 1q, let KgpT q Ă rKs be
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the set of terminal nodes of T which pass through the node g in S 1 (see Figure 1.5 for an

example).

1

x 1
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0.
5

2

x
1 ą
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Figure 1.5. On the left: a tree S 1 whose nodes represent the subgroups of
interest.

On the right: an extension T P T2pS
1q. Here K1pT q “ t1, 2u,K2pT q “ t3, 4u

Given a tree T P TLpS 1q, a natural estimator of θpgq is then given by

θ̂pgqpT q :“
ÿ

kPKg

npkq

n1pgq
β̂pkq ,

where n1pgq “
řn
i“1 1tS 1pXiq “ gu and β̂pkq are the regression coefficients of the satur-

ated regression over T . It is then straightforward to show using the recursive structure of

stratification trees that choosing T as a solution to the following problem:

V ˚pS 1q :“ min
TPTLpS1q

V pT q ,

will minimize the asymptotic variance of the subgroup specific estimators θ̂pgq, while still

minimizing the variance of the global ATE estimator θ̂ in the restricted set of trees TLpS 1q.

Moreover, to compute a minimizer of V pT q over TLpS 1q, it suffices to compute the optimal

tree for each subgroup, and then append these to S 1 to form the stratification tree. Finally,
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the appropriate analogues to Theorems 3.3.1 and 1.3.2 for the estimators θ̂pgq will also follow

without any additional assumptions.

In Section 1.5 we illustrate the application of this extension to the setting in Karlan

and Wood (2017). In their paper, they study the effect of information about a charity’s

effectiveness on subsequent donations to the charity, and in particular the treatment effect

heterogeneity between large and small prior donors. For this application we specify S 1 to be

a tree of depth 1, whose terminal nodes correspond to the subgroups of large and small prior

donors. We then compute rT for each of these subgroups and append them to S 1 to form

a stratification tree which simultaneously minimizes the variance of the subgroup-specific

estimators, while still minimizing the variance of the global estimator in this restricted class.

1.3.2.3. Extension to Multiple Treatments. Here we consider the extension to multiple

treatments. Let A “ t1, 2, ..., Ju denote the set of possible treatments, where we consider

the treatment A “ 0 as being the “control group”. Let A0 “ AYt0u be the set of treatments

including the control. Our quantities of interest are now given by

θa :“ ErY paq ´ Y p0qs ,

for a P A, so that we consider the set of ATEs of the treatments relative to the control. Let

θ :“ pθaqaPA denote the vector of these ATEs.

The definition of a stratification tree T P TL is extended in the following way: instead of

specifying a collection π “ pπpkqqKk“1 of assignment targets for treatment 1, we specify, for

each k, a vector of assignment targets for all a P A0, so that π “ ptπapkquaPA0q
K
k“1, where

each πapkq P p0, 1q and
ř

aPA0
πapkq “ 1. We also consider the following generalization of our
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estimator: consider estimation of the following equation by OLS

Yi “
ÿ

kPrKs

αpkq1tSi “ ku `
ÿ

aPA

ÿ

kPrKs

βapkq1tAi “ a, Si “ ku ` ui ,

then our estimators are given by

θ̂apT q “
ÿ

k

npkq

n
β̂apkq .

Now, for a fixed T P TL, the results in Bugni et al. (2018) imply that
?
npθ̂pT q ´ θq is

asymptotically multivariate normal with covariance matrix given by:

VpT q :“
ÿ

k

ppk;T q pVHpk;T q ` VY pk;T qq ,

with

VHpk;T q :“ outer rpErY paq ´ Y p0q|SpXq “ ks ´ ErY paq ´ Y p0qsq : a P As ,

VY pk;T q :“
σ2

0pkq

π0pkq
ι|A|ι

1
|A| ` diag

ˆˆ

σ2
apkq

πapkq

˙

: a P A
˙

,

where the notation v :“ pva : a P Aq denotes a column vector, outerpvq :“ vv1, and ιM

is a vector of ones of length M . Note that from the results in Cattaneo (2010), this is the

semi-parametric efficiency bound in the multiple treatment setting for the discretization Sp¨q.

Because we are now dealing with a covariance matrix VpT q as opposed to the scalar

quantity V pT q, we need to be more careful about what criterion we will use to decide on

an optimal T . The literature on experimental design has considered various targets (see

Pukelsheim, 2006, for some examples). In this paper we will consider the following collection

of targets:

V ˚ “ min
TPTL

||VpT q|| ,
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where || ¨ || is some matrix norm. In particular, if we let || ¨ || be the Euclidean operator-

norm, then our criterion is equivalent to minimizing the largest eigenvalue of VpT q, which

coincides with the notion of E -optimality in the study of optimal experimental design in the

linear model (see for example Section 6.4 of Pukelsheim, 2006). Intuitively, if we consider

the limiting normal distribution of our estimator, then any fixed level-surface of its density

forms an ellipsoid in R|A|. Minimizing ||VpT q|| in the Euclidean operator-norm corresponds

to minimizing the longest axis of this ellipsoid.

If we consider the following generalization of the empirical minimization problem:

rTEM “ arg min
TPTL

||rVpT q|| ,

where rVpT q is an empirical analog of VpT q, then analogous results to those presented in

Section 1.3.1 continue to hold in the multiple treatment setting as well, under some additional

regularity conditions (see Appendix A.3.3 for precise statements).

1.4. Simulations

In this section we analyze the finite sample behaviour of our method via a simulation

study. We consider three DGPs in the spirit of the designs considered in Athey and Imbens

(2016). For all three designs, the outcomes are specified as follows:

Yipaq “ κapXiq ` νapXiq ¨ εa,i .

Where the εa,i are i.i.d Np0, 0.1q, and κap¨q, νap¨q are specified individually for each DGP

below. In all cases, Xi P r0, 1s
d, with components independently and identically distributed

as Betap2, 5q. The specifications are given by:
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Model 1: d “ 2, κ0pxq “ 0.2, ν0pxq “ 5,

κ1pxq “ 10x11tx1 ą 0.4u ´ 5x21tx2 ą 0.4u ,

ν1pxq “ 10x11tx1 ą 0.6u ` 5x21tx2 ą 0.6u .

This is a “low-dimensional” design with two covariates. The first covariate is given a higher

weight than the second in the outcome equation for Y p1q.

Model 2: d “ 10, κ0pxq “ 0.5, ν0pxq “ 5,

κ1pxq “
10
ÿ

j“1

p´1qj´110´j`21txj ą 0.4u ,

ν1pxq “
10
ÿ

j“1

10´j`21txj ą 0.6u .

This is a “moderate-dimensional” design with ten covariates. Here the first covariate has

the largest weight in the outcome equation for Y p1q, and the weight of subsequent covariates

decreases quickly.

Model 3: d “ 10, κ0pxq “ 0.2, ν0pxq “ 9,

κ1pxq “
3
ÿ

j“1

p´1qj´110 ¨ 1txj ą 0.4u `
10
ÿ

j“4

p´1qj´15 ¨ 1txj ą 0.4u ,

ν1pxq “
3
ÿ

j“1

10 ¨ 1txj ą 0.6u `
10
ÿ

j“4

5 ¨ 1txj ą 0.6u .

This is a “moderate-dimensional” design with ten covariates. Here the first three covariates

have similar weight in the outcome equation for Y p1q, and the next seven covariates have a

smaller but still significant weight.

In each case, κ0p¨q is calibrated so that the average treatment effect is close to 0.1, and

ν0p¨q is calibrated so that Yip1q and Yip0q have similar unconditional variances (see Appendix
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A.4 for details). In each simulation we test five different methods of stratification, where

we estimate the ATE using the saturated regression estimator described in Section 1.2.3.

In all cases, when we stratify we consider a maximum of 8 strata (which corresponds to a

stratification tree of depth 3). In all cases we use SBR to perform assignment. We consider

the following methods of stratification:

‚ No Stratification: Here we assign the treatment to half the sample, with no strati-

fication.

‚ Ad-hoc: Here we stratify in an “ad-hoc” fashion and then assign treatment to half

the sample in each stratum. To construct the strata we iteratively select a covariate

at random, and stratify on the midpoints of the currently defined strata.

‚ Stratification Tree: Here we split the sample and perform a pilot experiment to

estimate a stratification tree, we then use this tree to assign treatment in the second

wave.

‚ Cross-Validated Tree: Here we estimate a stratification tree as above, while selecting

the depth via cross validation.

‚ Infeasible Optimal Tree: Here we estimate an “optimal” tree by using a large auxili-

ary sample. We then use this to assign treatment to the entire sample (see Appendix

A.4 for further details).

We perform the simulations with a sample size of 5, 000, and consider three different

splits of the total sample for the pilot experiment and main experiment when performing

our method (for all other methods all 5, 000 observations are used in one experiment). For

all cases with a pilot, the pilot experiment was performed using simple random assignment

without stratification. To estimate the stratification trees we minimize an empirical analog

of the asymptotic variance as described in Appendix A.4.
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We assess the performance of the randomization procedures through the following criteria:

the empirical coverage of a 95% confidence interval formed using a normal approximation, the

percentage reduction in average length of the 95% CI relative to no stratification, the power

of a t-test for an ATE of 0, and the percentage reduction in root mean-squared error (RMSE)

relative to no stratification. For each design we perform 5000 Monte Carlo iterations. Table

1.1 presents the simulation results for Model 1.

Sample Size

Stratification Method

Criteria

Pilot Main Coverage %∆Length Power %∆RMSE

100 4900

No Stratification 94.4 0.0 78.6 0.0
Ad-Hoc 94.5 -7.0 83.8 -7.1

Strat. Tree 94.4 0.0 77.1 2.0
CV Tree 94.9 -5.1 81.3 -4.8

Infeasible Tree 94.7 -19.0 91.4 -18.3

500 4500

No Stratification 94.6 0.0 78.3 0.0
Ad-Hoc 94.3 -7.0 83.4 -6.8

Strat. Tree 94.5 -13.5 88.1 -13.1
CV Tree 94.8 -12.9 88.2 -13.2

Infeasible Tree 94.1 -19.0 92.1 -18.3

1500 3500

No Stratification 94.4 0.0 77.4 0.0
Ad-Hoc 94.4 -7.0 82.7 -7.0

Strat. Tree 94.3 -12.0 86.2 -11.5
CV Tree 94.3 -11.7 85.9 -11.9

Infeasible Tree 94.4 -19.0 92.2 -19.6

Table 1.1. Simulation Results for Model 1

In Table 1.1, we see that when the pilot study is small (sample size 100), our method

can perform poorly relative to ad-hoc stratification. However, the CV tree does a good job

of avoiding overfitting, and performs only slightly worse than ad-hoc stratification for this

design. When we consider a medium-sized pilot study (sample size 500), we see that both the

stratification tree and the CV tree outperform ad-hoc stratification. To put these gains in

perspective, the ad-hoc stratification procedure would require 500 additional observations to
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match the performance of the stratification trees, and the no-stratification procedure would

require 1500 additional observations. Finally, when using a large pilot study (sample size

1500), we see a small drop in performance for both trees. This drop in performance can be

explained through the alternative “large-pilot” asymptotic framework that we introduced in

Remark 1.3.5. Summarizing the results of Table 1.1, the CV tree seems to do a good job of

preventing overfitting and in general performs as well or better than the stratification tree in

all three scenarios. Overall, the stratification tree and CV tree display modest gains relative

to ad-hoc stratification in this low-dimensional setting. Next we study the results for Model

2, presented in Table 1.2:

Sample Size

Stratification Method

Criteria

Pilot Main Coverage %∆Length Power %∆RMSE

100 4900

No Stratification 94.1 0.0 46.8 0.0
Ad-Hoc 94.8 -1.8 48.2 -3.7

Strat. Tree 94.4 7.0 42.1 6.5
CV Tree 94.1 -7.7 53.2 -7.7

Infeasible Tree 94.2 -19.6 64.4 -19.5

500 4500

No Stratification 94.2 0.0 46.1 0.0
Ad-Hoc 94.4 -1.8 48.6 -2.1

Strat. Tree 94.5 -12.7 58.0 -13.5
CV Tree 94.5 -14.0 58.1 -13.7

Infeasible Tree 94.3 -19.7 65.0 -19.4

1500 3500

No Stratification 93.9 0.0 46.6 0.0
Ad-Hoc 94 .4 -1.8 49.0 -1.8

Strat. Tree 94.0 -12.4 57.9 -11.7
CV Tree 94.1 -12.1 58.9 -11.9

Infeasible Tree 93.8 -19.7 65.9 -18.6

Table 1.2. Simulation Results for Model 2

In Table 1.2, we see that for a small pilot, we get similar results to Model 1, with the

CV tree again doing a good job of avoiding overfitting. For a medium-sized pilot, both trees

display sizeable gains relative to ad-hoc stratification. To put these gain in perspective, both
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the ad-hoc stratification and the no-stratification procedures would require 1500 additional

observations to match the performance of the stratification trees. To summarize the results

of Table 1.2, we again have that the CV tree performs best across all three specifications.

For small pilots it does a good job of preventing overfitting, and for larger pilots it displays

sizeable gains relative to ad-hoc stratification. Finally, we study the results of Model 3,

presented in Table 1.3.

Sample Size

Stratification Method

Criteria

Pilot Main Coverage %∆Length Power %∆RMSE

100 4900

No Stratification 95.4 0.0 30.9 0.0
Ad-Hoc 95.1 -2.2 31.7 -0.6

Strat. Tree 94.5 16.3 24.2 19.5
CV Tree 94.8 1.0 30.4 2.1

Infeasible Tree 94.6 -7.4 36.0 -5.5

500 4500

No Stratification 95.2 0.0 30.9 0.0
Ad-Hoc 95.4 -2.2 32.2 -4.5

Strat. Tree 94.4 -2.1 32.4 -1.1
CV Tree 95.4 -1.9 31.7 -4.4

Infeasible Tree 95.1 -7.4 35.0 -9.8

1500 3500

No Stratification 94.2 0.0 30.9 0.0
Ad-Hoc 94.8 -2.2 31.9 -3.1

Strat. Tree 94.6 -4.0 32.1 -4.7
CV Tree 94.4 -3.5 32.1 -2.7

Infeasible Tree 95.0 -7.4 35.2 -7.5

Table 1.3. Simulation Results for Model 3

In Table 1.3, we see very poor performance of our method when using a small pilot.

However, as was the case for Models 1 and 2, the CV tree still helps to protect against

overfitting. When moving to the medium and large sized pilots, we see that both trees

perform comparably to ad-hoc stratification. We note that the gains from stratification

in this design are quite small. For example, the no-stratification procedure would require
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only 200 additional observations to match the performance of ad-hoc stratification, and

approximately 500 additional observations to match the performance of the optimal tree.

Overall, we conclude that stratification trees can provide moderate to substantial im-

provements over ad-hoc stratification, with the greatest improvements coming from DGPs

with some amount of “sparsity”, as in Model 2. The cross-validation method seems most

robust to the choice of pilot-study size, however, in general we caution against using the

method with very small pilots.

1.5. An Application

In this section we study the behavior of our method in an application, using the experi-

mental data from Karlan and Wood (2017). First we provide a brief review of the empirical

setting: Karlan and Wood (2017) study how donors to the charity Freedom from Hunger

respond to new information about the charity’s effectiveness. The experiment, which pro-

ceeded in two separate waves corresponding to regularly scheduled fundraising campaigns,

randomly mailed one of two different marketing solicitations to previous donors, with one

solicitation emphasizing the scientific research on FFH’s impact, and the other emphasizing

an emotional appeal to a specific beneficiary of the charity. The outcome of interest was the

amount donated in response to the mailer. Karlan and Wood (2017) found that, although

the effect of the research insert was small and insignificant, there was substantial hetero-

geneity in response to the treatment: for those who had given a large amount of money in

the past, the effect of the research insert was positive, whereas for those who had given a

small amount, the effect was negative. They argue that this evidence is consistent with the

behavioural mechanism proposed by Kahneman (2003), where small prior donors are driven

by a “warm-glow” of giving (akin to Kahneman’s System I decision making), in contrast

to large prior donors, who are driven by altruism (akin to Kahneman’s System II decision
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making). However, the resulting confidence intervals of their estimates are wide, and often

contain zero (see for example Figure 1 in Karlan and Wood, 2017). The covariates available

in the dataset for stratification are as follows:

‚ Total amount donated prior to mailer

‚ Amount of most recent donation prior to mailer (denoted pre gift below)

‚ Amount of largest donation prior to mailer

‚ Number of years as a donor (denoted # years below)

‚ Number of donations per year (denoted freq below)

‚ Average years of education in census tract

‚ Median zipcode income

‚ Prior giving year (either 2004/05 or 2006/07) (denoted p.year below)

As a basis for comparison, Figure 1.6 depicts the stratification used in Karlan and Wood

(2017).
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Figure 1.6. Stratification used in Karlan and Wood (2017)

We estimate two different stratification trees using data from the first wave of the exper-

iment (with a sample size of 10, 869)3, that illustrate stratifications which could have been
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used to assign treatment in the second wave. We compute the trees by minimizing an em-

pirical analog of the variance, as described in Sections 1.2.3 and 1.3.1. The first tree is fully

unconstrained, and hence targets efficient estimation of the unconditional ATE estimator,

while the second tree is constrained in accordance with Section 1.3.2 to efficiently target

estimation of the subgroup-specific effects for large and small prior donors (see below for a

precise definition). In both cases, the depth of the stratification tree was selected using cross

validation as described in Section 1.3.2, with a maximal depth of L̄ “ 5 (which corresponds

to a maximum of 32 strata). When computing our trees, given that some of these covariates

do not have upper bounds a-priori, we impose an upper bound on the allowable range for the

strata to be considered in accordance with Remark 1.2.3 (we set the upper bound as roughly

the 97th percentile in the dataset, although in practice this should be set using historical

data).

Figure 1.7 depicts the unrestricted tree estimated via cross-validation. We see that the

cross-validation procedure selects a tree of depth one, which may suggest that the covariates

available to us for stratification are not especially relevant for decreasing the variance of the

estimator. However, we do see a wide discrepancy in the assignment proportions for the

selected strata. In words, the subgroup of respondents who have been donors for more than

16 years have a larger variance in outcomes when receiving the research mailer than the

control mailer. In contrast the subgroup of respondents who have been donors for less than

16 years have roughly equal variances in outcomes under both treatments.

3Replication data is available by request from Innovations for Poverty Action. Observations with missing
data on median income, average years of education, and those receiving the “story insert” were dropped.
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Figure 1.7. Unrestricted Stratification Tree estimated from Karlan and Wood
(2017) data

Next, we estimate the restricted stratification tree which targets the subgroup-specific

treatment effects for large and small prior donors. We specify a large donor as someone

who’s most recent donation prior to the experiment was larger than $100. We proceed by

estimating each subtree using cross-validation. Figure 1.8 depicts the estimated tree. We see

that the cross-validation procedure selects a stratification tree of depth 1 in the left subtree

and a tree of depth 0 (i.e. no stratification) in the right subtree, which further reinforces

that the covariates we have available may be uninformative for decreasing variance.
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Figure 1.8. Restricted Stratification Tree estimated from Karlan and Wood
(2017) data
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The results of this exercise suggest a potential added benefit from using our method:

when using cross-validation, the depth of the resulting tree could serve as a diagnostic tool

to help assess the potential gains from stratification in a given application. In particular, if

the procedure outputs a very shallow tree given a relatively large sample, this may suggest

that the potential gains from stratification are small. To further assess the potential gains

from stratification in this application, in Appendix A.4 we repeat the simulation exercise of

Section 1.4 with an application-based simulation design, where we treat the sample data as

the true DGP. There we find that using an “optimal” stratification tree of depth 2 results

in an 8% reduction in RMSE and a 6% reduction in CI length relative to no stratification

(using a CV tree with a maximum depth of 2 results in a 3% reduction in RMSE and a

2% reduction in CI length). This again reinforces that the gains from stratification may be

fairly small in this setting.

1.6. Conclusion

In this paper we proposed an adaptive randomization procedure for two-stage randomized

controlled trials, which uses the data from a first-wave experiment to assign treatment in a

second wave of the RCT. Our method uses the first-wave data to estimate a stratification tree:

a stratification of the covariate space into a tree partition along with treatment assignment

probabilities for each of these strata. The main result of the paper showed that using our

procedure results in an estimator with an asymptotic variance which minimizes the semi-

parametric efficiency bound of Hahn (1998), over an optimal stratification of the covariate

space. We also described extensions which accommodate multiple treatments, as well as

to target subgroup-specific effects. In simulations, the method was most effective when the

response model exhibited some amount of “sparsity” with respect to the covariates, but was
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shown to be effective in other contexts as well, as long as the sample size of the pilot being

used to estimate the stratification tree was not prohibitively small.

Going forward, there are several extensions of the paper that we would like to consider.

First, many RCTs are performed as cluster RCTs, that is, where treatment is assigned at a

higher level of aggregation such as a school or city. Extending the results of the paper to this

setting could be a worthwhile next step. Another avenue to consider would be to combine

our randomization procedure with other aspects of the experimental design. For example,

Carneiro et al. (2016) set up a statistical decision problem to optimally select the sample

size, as well as the number of covariates to collect from each participant in the experiment,

given a fixed budget. It may be interesting to embed our randomization procedure into a

similar decision problem. Finally, although our method employs stratified randomization,

we assumed throughout that the experimental sample is an i.i.d sample. Further gains may

be possible by considering a setting where we are able to conduct stratified sampling in the

second wave as well as stratified randomization. To that end, Song and Yu (2014) develop

estimators and semi-parametric efficiency bounds for stratified sampling which may be useful.
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CHAPTER 2

Model Selection for Treatment Choice: Penalized Welfare

Maximization

2.1. Introduction to Chapter 2

This paper develops a new statistical decision rule for the treatment assignment problem.

A major goal of treatment evaluation is to provide policy makers with guidance on how to

assign individuals to treatment, given experimental or quasi-experimental data. Following

the literature inspired by Manski (2004) (a partial list in econometrics includes Armstrong

and Shen, 2015; Athey and Wager, 2017; Bhattacharya and Dupas, 2012; Chamberlain, 2011;

Dehejia, 2005; Hirano and Porter, 2009; Kasy, 2014; Kitagawa and Tetenov, 2018; Kock and

Thyrsgaard, 2017; Schlag, 2007; Stoye, 2009, 2012; Tetenov, 2012), we treat the treatment

assignment problem as a statistical decision problem of maximizing population welfare. Like

many of the above papers, we evaluate our decision rule by its maximum regret.

Often, policy makers have observable characteristics at their disposal on which to base

treatment, however, they may not always have full discretion on how these covariates can

be used. For example, policy makers may face exogenous constraints on how they can use

covariates for legal, ethical, or political reasons. Even in cases where policy makers have

leeway in how they assign treatment, plausible modeling assumptions may imply certain

0(continued from previous page), NASMES 2017, and the Bristol Econometrics Study Group for helpful
comments, as well as Nitish Keskar for help in implementing EWM. This research was supported in part
through the computational resources and staff contributions provided for the Social Sciences Computing
Cluster (SSCC) at Northwestern University. All mistakes are our own.
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restrictions on assignment. Kitagawa and Tetenov (2018) develop what they call the Empir-

ical Welfare Maximization (or EWM) rule, whose primary feature is its ability to solve the

treatment choice problem when exogenous constraints are placed on assignment. EWM will

play an important role in the development of our rule, which we call the Penalized Welfare

Maximization rule (PWM).

The PWM rule is designed to address situations in which the policy maker can choose

amongst a collection of constrained allocations. To be concrete, suppose we have two treat-

ments, and we represent assignment into these treatments by partitioning the covariate space

into two pieces. We can then think of constraints on assignment as constraints on the al-

lowable subsets that we can consider for the partitions. Kitagawa and Tetenov (2018) focus

on deriving bounds on maximum regret of the EWM rule for a fixed class of subsets of

finite VC dimension (see Györfi et al. (1996) for a definition). In this paper, however, we

consider settings where the class of allowable subsets is “large”. We approach the problem

by approximating our class of allowable allocations by a sequence of subclasses of finite VC

dimension. We establish an oracle inequality for the regret of the PWM rule which shows

that it behaves as if we knew the “correct” class to use in the sequence. We then use this

result to derive bounds on the maximum regret of the PWM rule in two empirically relevant

settings.

The first setting that we consider is one where the class of feasible allocations has infinite

VC dimension. In particular, we argue that economic modeling assumptions may sometimes

put restrictions on the unconstrained optimum that naturally generate classes of infinite

VC dimension. For example, plausible assumptions may only impose shape restrictions on

the optimal allocation. To solve the optimal welfare assignment problem in this setting, we

approximate these large classes of feasible allocations by sequences of classes of finite VC
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dimension. The strength of the PWM rule in this setting will then be to provide a data-

driven method by which to select an “appropriate” approximating class. In doing so we will

derive bounds on the maximum regret of the PWM rule for a large set of classes of infinite

VC dimension.

The second setting we consider is one where the class of feasible allocations may have

large VC dimension relative to the sample size. This could arise, for example, if the planner

has many covariates on which to base assignment. As is shown in Kitagawa and Tetenov

(2018), when the constraints placed on assignment are too flexible relative to the sample size

available, the EWM rule may suffer from overfitting, which can result in inflated values of

regret. By the same mechanism that allows PWM to select an appropriate approximating

class in our first application, we can use PWM in order to select amongst simpler subclasses

in this setting as well, in a way that improves the performance of the allocation rule in finite

samples. We illustrate PWM’s ability to reduce regret in a simulation study where the policy

maker has many covariates on which to base treatment assignment, but does not know how

many to use when performing best-subset selection.

The PWM rule is heavily inspired by the literature on model selection in classification:

see for example the seminal work of Vapnik and Chervonenkis (1974), as well as Györfi

et al. (1996), Koltchinskii (2001), Bartlett et al. (2002), Scott and Nowak (2002), Boucheron

et al. (2005), Bartlett (2008), Koltchinskii (2008) among many others. The theoretical

contribution of our paper is to modify and extend some of these tools to the setting of

treatment choice. As pointed out in Kitagawa and Tetenov (2018), there are substantive

differences between classification and treatment choice: observed outcomes are real-valued

in the setting of treatment choice, and only one of the potential outcomes is observed for

any given individual. When we say that we extend these tools, we mean that we prove
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results for settings where the data available to the policy maker is quasi-experimental. As

we will see, in such a setting the policy maker’s objective function contains an estimated

quantity, which is not an issue that arises in the classification problem. In deciding which

tools to extend, we have attempted to strike a balance between ease of use for practitioners,

theoretical appeal, and performance in simulations. The connection between classification

and treatment choice has been explored in various fields, including machine learning, under

the label of policy learning (see Beygelzimer and Langford, 2009; Kallus, 2016; Swaminathan

and Joachims, 2015; Zadrozny, 2003, among others), and in epidemiology under the label of

individualized treatment rules (examples include Qian and Murphy, 2011; Zhao et al., 2012).

Kitagawa and Tetenov (2018) and Athey and Wager (2017) provide a discussion on the link

between these various literatures.

The remainder of the paper is organized as follows. In Section 2.2, we setup the notation

and formally define the problem that the policy maker (i.e. social planner) is attempting

to solve. In Section 2.3, we introduce the PWM rule and present general results about its

maximum regret. In Section 2.4, we perform a small simulation study to highlight PWM’s

ability to reduce regret when performing best-subset selection. In Section 2.5 we derive

bounds on maximum regret of the PWM rule when the planner is constrained to what we

call monotone allocations, and then illustrate these in an application to the JTPA study.

Section 2.6 concludes.

2.2. Setup

Let Yi denote the observed outcome of a unit i, and let Di be a binary variable which

denotes the treatment received by unit i. Let Yip1q denote the potential outcome of unit

i under treatment 1 (which we will refer to as “the treatment”), and let Yip0q denote the

potential outcome of unit i under treatment 0 (which we will refer to as “the control”). The
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observed outcome for each unit is related to their potential outcomes through the expression:

(2.1) Yi “ Yip1qDi ` Yip0qp1´Diq .

Let Xi P X Ă Rdx denote a vector of observed covariates for unit i. Let Q denote the dis-

tribution of pYip0q, Yip1q, Di, Xiq, then we assume that the planner observes a size n random

sample

pYi, Di, Xiq
n
i“1 „ P n ,

where P is jointly determined by Q, and the expression in (2.1). Throughout the paper we

will assume unconfoundedness, i.e.

Assumption 2.2.1. (Unconfoundedness) The distribution Q satisfies:

´

pY p1q, Y p0qq K D
¯

ˇ

ˇ

ˇ

ˇ

X .

This assumption asserts that, once we condition on the observable covariates, the treat-

ment is exogenous. This assumption will hold in a randomized controlled trial (RCT), which

is our primary application of interest, since the treatment is exogenous by construction. This

assumption is sometimes also made (possibly tenuously) in observational studies; it is a key

identifying assumption when using matching or regression estimators in policy evaluation

settings with observational data (Imbens, 2004, provides a review of these techniques, and

discusses the validity of Assumption 2.2.1 in economic applications).

The planner’s goal is to optimally assign the treatment to the population. The objective

function we consider is utilitarian welfare, which is defined by the average of the individual

outcomes in the population:

EQrY p1q1tX P Gu ` Y p0q1tX R Gus ,
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where G Ă X represents the set of covariate values of the individuals assigned to treatment.

The planner is tasked with choosing a treatment allocation G Ă X using the empirical data.

Using Assumption 2.2.1, we can rewrite the welfare criterion as:

EQrY p0qs ` EP

”´ Y D

epXq
´
Y p1´Dq

1´ epXq

¯

1tX P Gu
ı

,

where epXq “ EP rD|Xs is the propensity score. Since the first term of this expression does

not depend on G, we define the planner’s objective function given a choice of treatment

allocation G as:

W pGq :“ EP

”´ Y D

epXq
´
Y p1´Dq

1´ epXq

¯

1tX P Gu
ı

.

Let G be the class of all feasible treatment allocations. Here, we consider the possibility

that the planner may be restricted in what type of allocations she can (or wants to) consider.

These restrictions may arise from legal, ethical, or political considerations, or could arise as

natural constraints from the economic model. Consider the following three examples of G:

Example 2.2.1. G could be the set of all measurable subsets of X . This is the largest

possible class of admissible allocations. It is straightforward to show that the optimal alloc-

ation in this case is as follows: define

τpxq :“ EQrY p1q ´ Y p0q|X “ xs ,

then the optimal allocation is given by

G˚FB :“ tx P X : τpxq ě 0u ,

which assigns an individual with covariate x to treatment or control depending on whether

the conditional average treatment effect at x is non-negative.
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Example 2.2.2. Suppose X Ă R, and consider the class of threshold allocations :

G “ tG : G “ p´8, xs X X or G “ rx,8q X X , for x P X u .

Such a class G would be reasonable, for example, when assigning scholarships to students:

suppose the only covariate available to the planner is a student’s GPA, then it may be school

policy that only threshold-type rules are to be considered.

Example 2.2.3. Let X “ X1ˆX2 Ă R2, and consider the class of monotone allocations :

G “
 

G : G “ tpx1, x2q P X | x2 ě fpx1q for f : X1 Ñ X2 increasingu
(

.

As an example, consider again the setting of assigning scholarships to students (Example

2.2.2), but now suppose that the covariates available to the planner are parental income

(x1) and a student’s GPA (x2). The allocation rules considered in G are such that the GPA

requirement for scholarship eligibility increases with parental income. In fact, even if the

planner is not exogenously constrained to such allocations, this type of shape restriction could

arise naturally from an economic model. Suppose, for instance, that the outcome of interest

depends only on a student’s innate “ability” (which is unobservable) and on whether or not

the student receives the scholarship. Furthermore, suppose that the planner can only use

information on GPA and parental income to assign scholarships, which have a per-unit cost.

Under some modeling assumptions (outlined in Appendix A.3) on the outcome equation,

and the relationship between the distributions of ability, GPA, and parental income, it can

be shown that the optimal allocation is in G. See Appendix A.3 for details.
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Given a feasible class G, we denote the highest attainable welfare by:

W ˚
G :“ sup

GPG
W pGq .

A decision rule is a function Ĝ from the observed data tpYi, Di, Xiqu
n
i“1 into the set of

admissible allocations G. We call the rule that we develop and study in this paper the

Penalized Welfare Maximization (or PWM) rule. As in much of the literature that follows

the work of Manski (2004), we assume that the planner is interested in rules Ĝ that, on

average, are close to the highest attainable welfare. To that end, the criterion by which we

evaluate a decision rule is given by what we call maximum G-regret :

sup
P
EPnrW

˚
G ´W pĜqs .

We note that, in contrast to many papers on statistical treatment rules which employ

maximum-regret criteria, this notion of regret is defined relative to the optimum attained

in G, which is not necessarily the first-best unrestricted optimum (see Example 2.2.1). Kit-

agawa and Tetenov (2018) and Athey and Wager (2017) are recent papers which also focus

on the G-regret criterion.

2.3. Results

In this section, we present the main results of our paper. In Section 2.3.1, we review

the properties of the empirical welfare maximization (EWM) rule of Kitagawa and Tetenov

(2018), which will motivate the PWM rule and serve as an important building block in its

construction. In Section 2.3.2, we define the penalized welfare maximization rule and present

bounds on its maximum G-regret for general penalties. In Section 2.3.3 we illustrate these

results by applying them to some specific penalties. In Section 2.3.4 we present results for a
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modification of the PWM rule for quasi-experimental settings where the propensity score is

not known and must be estimated.

2.3.1. Empirical Welfare Maximization: a Review and Some Motivation

The idea behind the EWM rule is to solve a sample analog of the population welfare max-

imization problem:

ĜEWM P arg max
GPG

WnpGq ,

where

(2.2) WnpGq :“
1

n

n
ÿ

i“1

τi1tXi P Gu :“
1

n

n
ÿ

i“1

”´ YiDi

epXiq
´
Yip1´Diq

1´ epXiq

¯

1tXi P Gu
ı

.

In general this problem could be computationally challenging. However, Kitagawa and

Tetenov (2018) show that solving such a problem is practically feasible for many applic-

ations by formulating it as a Mixed Integer Linear Program (MILP): see Appendix B.3 for

details. Note that to solve this optimization problem, the planner must know the propensity

score ep¨q. This assumption is reasonable if the data comes from a randomized experiment,

but clearly could not be made in a setting where the planner is using observational data.

Kitagawa and Tetenov (2018) derive results for a modified version of the EWM rule where

the propensity score is estimated, which we will review in Section 2.3.4.

To derive their non-asymptotic bounds on the maximum G-regret of the EWM rule,

Kitagawa and Tetenov (2018) make the following additional assumptions, which we will also

require for our results:

Assumption 2.3.1. (Bounded Outcomes and Strict Overlap) The set of distributions

PpM,κq has the following properties:
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‚ There exists some M ă 8 such that the support of the outcome variable Y is

contained in r´M
2
, M

2
s.

‚ There exists some κ P p0, 0.5q such that epxq P rκ, 1´ κs for all x.

The first assumption asserts that the outcome is bounded. Since the implementation of

the EWM rule or the PWM rule does not require that the planner knowsM , and the existence

of some bound on outcomes of interest to economics seems tenable (the assumption holds,

for instance, if the outcome variable is binary), we view this assumption as mild. The second

assumption ensures overlap in the covariate distributions, and is standard when imposing

unconfoundedness. In an RCT, this assumption can be made to hold by design, but may be

violated in settings with observational data.

In order to derive their results, Kitagawa and Tetenov (2018) also make the following

assumption, which we will not require:

Assumption 2.3.2. (Finite VC Dimension)1 : G has finite VC dimension V ă 8.

Such an assumption may or may not be restrictive depending on the application in

question. Consider Example 2.2.2, the class of threshold allocations on R. This class has

VC dimension 2, thus Assumption 2.3.2 holds. On the other hand, it can be shown that the

class of monotone allocations on r0, 1s2 that was introduced in Example 2.2.3 has infinite

VC dimension (see Györfi et al. (1996)).

Given Assumptions 2.3.1 and 2.3.2, Kitagawa and Tetenov (2018) derive the following

non-asymptotic upper bound on the maximum G-regret of the EWM rule:

(2.3) sup
PPPpM,κq

EPnrW
˚
G ´W pĜEWMqs ď C

M

κ

c

V

n
,

1Their results can also be extended to settings where the class of treatment allocations has sufficiently small
bracketing entropy (as in Tsybakov, 2004), or Hamming entropy (as in Athey and Wager, 2017). We will
also not require these types of assumptions.
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for some universal constant C. Moreover, when X has sufficiently “large” support, they

derive the following lower bound: for any decision rule Ĝ,

(2.4) sup
PPPpM,κq

EPnrW
˚
G ´W pĜqs ě RM

c

V ´ 1

n
,

for R a universal constant and for all sufficiently large n. This shows that the rate of

convergence of maximum G-regret implied by (2.3) is the best possible, i.e. that no other

decision rule could achieve a faster rate without imposing additional assumptions.

Remark 2.3.1. Theorem 2.2 in Kitagawa and Tetenov (2018), which establishes (2.4),

has another interesting implication: ifX has “large” support and we do not impose additional

restrictions on the set of distributions PpM,κq, then it is impossible to derive a uniform rate

of convergence of maximum G-regret for any rule, for classes G of infinite VC dimension.

This is in line with the results derived in Stoye (2009), where he shows that in a setting

with a continuous covariate, and for any sample size, flipping a coin to assign individuals

is minimax-regret optimal despite this rule not even being point-wise consistent. Since we

will be interested in classes G of infinite VC dimension, we will revisit this problem later in

Section 2.3.

Remark 2.3.2. As pointed out in Kitagawa and Tetenov (2018), the EWM rule is

not invariant to positive affine transformations of the outcomes, and thus the researcher

could manipulate the treatment rule in settings where they have leeway in how to code the

outcome variable. To deal with this issue they suggest solving a demeaned version of the

welfare maximization problem. In Appendix A.3 we discuss the demeaned version of EWM

and repeat the exercises of Sections 2.4 and 2.5 using a demeaned version of EWM and

PWM.
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2.3.2. Penalized Welfare Maximization: General Results

We now consider a setting where the class G of admissible rules is “large”, but can be

“approximated” by a sequence of less complex subclasses Gk:2

G1 Ď G2 Ď G3 Ď ¨ ¨ ¨ Ď Gk Ď ¨ ¨ ¨ Ď G .

Let Ĝn,k be the EWM rule in the class Gk. Then we can decompose the G-regret of the rule

Ĝn,k as follows:

EPnrW
˚
G ´W pĜn,kqs “ EPnrW

˚
Gk ´W pĜn,kqs `W

˚
G ´W

˚
Gk .

Given this decomposition, we call

EPnrW
˚
Gk ´W pĜn,kqs ,

the estimation error of the rule Ĝn,k in the class Gk, and we call

W ˚
G ´W

˚
Gk ,

the approximation error (or bias) of the class Gk. Note that since the classes tGkuk are

nested, the estimation error (respectively approximation bias) is non-decreasing (resp. non-

increasing) with respect to k. If one has sharp uniform bounds on these errors, then an

appropriate choice of k would be one that minimizes the sum of these bounds. In Theorem

2.3.1, we derive an oracle inequality which shows that PWM selects such a k, in a data-driven

fashion. We use this feature of PWM to derive bounds on maximum regret in two settings

of empirical interest.

2As can be seen from the proofs, the results we present below remain valid even if the sequence tGkuk is not
nested.
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The first setting we consider is one where G has infinite VC dimension (consider Ex-

amples 2.2.1 and 2.2.3). In this setting, performing EWM on the whole class G may be

undesirable (for example, the regret may not converge to zero). Instead, we apply EWM

to an approximating class Gk, and we allow the complexity of the approximating class to

grow as the sample size increases. We present examples of relevant approximating classes

in Examples 2.3.2 and 2.3.3 below. In Corollary 2.3.1 we establish a bound on maximum

regret in this setting.

The second setting that we consider is one where the class G has finite but large VC

dimension relative to the sample size. This situation can arise, for instance, in applications

where the planner has a large set of covariates on which to base treatment, and where the

feasible allocations are threshold allocations (see Example 2.3.1 below). The bound on regret

given by (2.3) increases with the VC dimension V of G, so that EWM tends to “overfit”’ the

data when V is large relative to the sample size. In such a situation, it may be beneficial to

perform EWM in a class G 1 of smaller VC dimension, resulting in a smaller bound on the

estimation error

EPnrW
˚
G1 ´W pĜEWMqs .

However, this will only be useful if it is also the case that

W ˚
G ´W

˚
G1 ,

is small. Hence we face the same tradeoff between estimation and approximation error that

was noted above. In Corollary 2.3.2 we specialize Theorem 2.3.1 to a finite collection of

approximating classes, and then in Corollary 2.3.3 establish a bound on maximum regret for

the PWM rule which shows that it behaves as if we knew the correct class G 1 to use ex-ante,

in the special case where the optimal allocation G˚ P G 1. We then apply these results to
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select the number of covariates over which to perform best-subset selection with threshold

allocations (see Example 2.3.1 below).

We consider the following assumption on our sequence of classes, which we call a sieve

of G:

Assumption 2.3.3. The sequence of classes

G1 Ď G2 Ď G3 Ď ¨ ¨ ¨ Ď Gk Ď ¨ ¨ ¨ Ď G

is such that each class Gk has VC dimension Vk, which is finite.3

We illustrate this with some examples:

Example 2.3.1. Recall the class of threshold allocations introduced in Example 2.2.2.

Let X “ X1 ˆ X2 Ă R2, and define G1
X to be the threshold allocations on X1 and G2

X to be

the threshold allocations on X2. We can now define the set of two-dimensional threshold

allocations on X :

G “ tG Ă X : G “ G1 ˆG2, G1 P G1
X and G2 P G2

Xu .

To make this concrete, suppose that covariates X1 and X2 respectively denote age and

income. Then G contains (for instance) allocations of the type: “receive treatment if age is

above x1 and income is below x2” for some x1 and x2.

With K available covariates, it is straightforward to extend this definition to the class of

K-dimensional threshold allocations. For large K, the VC dimension of G can become large

relative to the sample size, and we may want to base treatment only on a smaller subset

3Kitagawa and Tetenov (2018) additionally assume that their class G is countable so as to avoid potential
measurability concerns. We instead choose not to address these concerns explicitly, as is done in most of the
literature on classification. See Van der Vaart and Wellner (1996) for a discussion of possible resolutions to
this issue.
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of the covariates. This is a variant of the best-subset selection problem, which has been

recently studied in the classification context by Chen and Lee (2016). However, the question

still remains as to how many covariates should be considered (that is, the size of the subset).

An interesting sieve sequence for G is given by the following: let G1,G2,G3 be defined as

G1 “ tH,X u , G2 “ pG1
X b X2q Y pX1 b G2

Xq , G3 “ G ,

where

G1
X b X2 :“ tGˆ X2 : G P G1

Xu, X1 b G2
X :“ tX1 ˆG : G P G2

Xu .

The sequence tGku3k“1 corresponds to the sequence of threshold allocations that use zero,

one and two covariates respectively (that each class Gk has finite VC dimension follows from

the fact a class of threshold allocations in one dimension has finite VC dimension, and that

unions of classes of finite VC dimension have finite VC dimension, see Dudley (1999))4. As

we will illustrate below, PWM will determine in a data-driven way the number of covariates

to use for treatment assignment. We will revisit this example in the simulation study of

Section 2.4.

Example 2.3.2. Recall the class of monotone allocations introduced in Example 2.2.3.

Suppose that X “ r0, 1s2, so that G has infinite VC dimension (see Györfi et al. (1996) for

a proof of this fact). We will construct a useful sieve for G, where we approximate sets in G

with sets that feature monotone, piecewise-linear boundaries. We proceed in three steps.

4Note that in this example, it is actually the case that G2 and G3 have the same VC dimension. This will
not be the case when we move to settings in higher dimensions.



75

First define, for T an integer and 0 ď j ď T , the following function ψT,j : r0, 1s Ñ r0, 1s:

ψT,jpxq “

$

’

’

&

’

’

%

1´ |Tx´ j|, x P r j´1
T
, j`1
T
s X r0, 1s

0, otherwise .

The function ψT,jp¨q is simply a triangular kernel whose base shifts with j and is scaled by

T . For example, ψ4,1p¨q is a triangular kernel with base r0, 0.5s, and ψ8,1p¨q is a triangular

kernel with base r0, 0.25s. Next, using these functions, we define the following classes Sk:

Sk “
!

G : G “ tx “ px1, x2q P X |
T
ÿ

j“0

θjψT,jpx1q ` x2 ě 0u for θj P R, @ 0 ď j ď T
)

,

where T “ 2k´1. These Sk are a special case of what Kitagawa and Tetenov (2018) call

generalized eligibility scores, which, as shown in Dudley (1999), have VC dimension T ` 2.

The intuition behind the class Sk is that it divides the covariate space into treatment and

control such that the boundary is a piecewise linear curve. Note that by construction it is

the case that Sk´1 Ă Sk for every k. Finally, to construct our approximating class Gk, we

will modify the class Sk such that we ensure that the resulting treatment allocations are

monotone.

For T an integer, let DT be the following T ˆ pT ` 1q differentiation matrix :

DT :“

»

—

—

—

—

—

—

—

—

–

´1 1 0 . . . 0 0

0 ´1 1 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . ´1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Then Gk is defined as follows:

Gk “
!

G : G P Sk and DTΘT ě 0 , ΘT “ rθ0 ¨ ¨ ¨ θT s
1
)

,

for T “ 2k´1. Note that the purpose of the constraint DTΘT ě 0 is to ensure that

θk ´ θk´1 ě 0 for all k, which is what imposes monotonicity on the allocations. This

construction, which we borrow from Beresteanu (2004), is useful as it imposes monotonicity

through a linear constraint, which is ideal for our implementation of this sequence in Section

2.5. Proposition 2.5.1 provides a uniform rate at which W ˚
Gk Ñ W ˚

G under some additional

regularity conditions, and Corollary 2.5.1 derives the corresponding bound on maximum G-

regret of the PWM rule. It is important to mention that, under the regularity conditions

we will impose, the class of monotone allocations is an example of a class for which bounds

on maximum G-regret exist for EWM, despite this class having infinite VC dimension (see

Proposition 2.5.2). We will compare the bounds we derive for PWM to these bounds in the

discussion following Corollary 2.5.1. In Section 2.5, we study the use of this sequence of

approximating classes in an application to the JTPA study.

Example 2.3.3. Suppose the planner faces no restrictions on treatment assignment, so

that G is the class of all measurable subsets of X . Recall from Example 2.2.1 that that the

optimal allocation in this case is given by G˚FB. In this setting it may seem natural to employ

the plug-in decision rule:

Ĝplug´in :“ tx : τ̂pxq ě 0u ,

where τ̂p¨q is a non-parametric estimate of τp¨q. Under Assumption 2.2.1 many non-parametric

estimates of τp¨q are well understood. The Penalized Welfare Maximization Rule could

provide an interesting alternative to plug-in rules in this setting by considering a sequence

of classes made of decision trees. Decision trees are popular rules in classification because
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of their natural interpretability. Intuitively, a decision tree recursively partitions the cov-

ariate space in such a way that the resulting decision rule can be understood as a series

of “yes-or-no” questions involving the covariates. Using decision trees for the estimation

of causal effects has recently become a popular idea in econometrics. Although we do not

explore decision trees extensively in this paper, in Appendix A.3 we explain how we could

accommodate them in our framework and relate them to recent work on the use of decision

trees for treatment assignment, as presented in Kallus (2016) and Athey and Wager (2017).

We also provide a preliminary comparison to plug-in decision rules.

Given a sieve tGkuk, let

Ĝn,k :“ arg max
GPGk

WnpGq ,

be the EWM rule in the class Gk. Our goal is to select the appropriate class k˚ in which

to perform EWM. We do this by selecting the class k˚ in the following way: for each class

Gk, suppose we had some (potentially data dependent) measure Cnpkq of the amount of

“overfitting” that results from using the rule Ĝn,k (we will be more precise about the nature

of Cnpkq in a moment). Given such a measure Cnpkq, let ttku
8
k“1 be an increasing sequence

of real numbers, and define the following penalized objective function:

(2.5) Rn,kpGq :“ WnpGq ´ Cnpkq ´

c

tk
n
.

Then the penalized welfare maximization rule Ĝn is defined as follows:

Ĝn :“ Ĝn,k̂˚ ,

where

k̂˚ :“ arg max
k
Rn,kpĜn,kq .
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In words, the PWM rule selects an allocation which maximizes a penalized version of the

empirical welfare, with the penalty for allocations in Gk given by the term Cnpkq (plus the

auxiliary term
a

tk{n).

Remark 2.3.3. Note that the PWM objective function Rn,kp¨q includes the term:
a

tk{n.

This component of the objective is a technical device that is used to ensure that the classes

get penalized at a sufficiently fast rate as k increases. The dependence of the penalty term

on the sequence ttkuk is somewhat undesirable, as it implies that the size of the penalty term

for a given class depends on the location of the class in the sieve, as well as the specific choice

of the sequence ttkuk. Ideally, we would like the penalty term to be completely determined

by the class. This technical device seems´however´unavoidable, and similar terms are

pervasive throughout the literature on model selection in classification: see Koltchinskii

(2001), Bartlett et al. (2002), Boucheron et al. (2005), Koltchinskii (2008). We make three

additional comments regarding this term. First, our results hold for any increasing sequence

ttku
8
k“1, and the choice is reflected explicitly in the bounds that we derive. Second, if

one is only interested in using PWM in settings where the sequence of classes is finite,

then we will show in Corollary 2.3.2 that the
a

tk{n term is not required. Third, from

our simulation results, PWM performs well for the choice tk “ k, and its performance is

essentially unaffected by this term. For simplicity, and unless otherwise specified, we will

present all of our results with this specific choice of tk “ k.

Remark 2.3.4. As noted by Kitagawa and Tetenov (2018), given a sieve tGkuk, one

can use their results to derive uniform (w.r.t PpM,κq) bounds on the estimation error.

If one has in addition uniform bounds on the approximation bias, then one can consider

the decision rule Ĝn,kpnq, where kpnq is constructed to minimize the sum of these bounds.

However, the merit of such an approach would depend on obtaining “good” computable
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bounds for the estimation and approximation error, which may be difficult to do in practice.

For instance, the uniform bounds on the estimation error implied by the results of Kitagawa

and Tetenov (2018) depend on the VC dimension of the classes tGkuk which may be hard to

compute or bound in practice. Furthermore, such a deterministic choice of kpnq may lead

to suboptimal rates if the true DGP satisfies additional regularity conditions which may be

unknown to the econometrician; for instance, if the true DGP belongs to a much smaller

class P 1pM,κq Ď PpM,κq, over which the approximation bias (uniformly) decays at a much

faster rate than on PpM,κq, then the original choice of kpnq will be suboptimal. Given

these challenges, PWM displays two advantages. First, As shown in Theorem 2.3.1 and

Corollary 2.3.1, PWM will perform´in a data-driven way´the optimal tradeoff between the

approximation and estimation error, without relying on explicit bounds for these quantities.

Second, PWM will select the subclass k̂´over which to perform EWM´in a way that adapts

to additional “regularities” that may be satisfied by the true DGP (see Corollary 2.3.1 below).

Before stating our main results about the G-regret of the PWM rule, we first list some

high-level assumptions on the penalty term Cnpkq. In Section 2.3.3, we will provide some

specific examples of penalties that satisfy these assumptions.

Assumption 2.3.4. There exist positive constants c0 and c1 such that Cnpkq satisfies

the following tail inequality for every n, k, and for every ε ą 0:

sup
PPPpM,κq

P n
pWnpĜn,kq ´W pĜn,kq ´ Cnpkq ą εq ď c1e

´2c0nε2 .

We provide some intuition for this assumption. Given an EWM rule Ĝn,k, the value

of the empirical welfare is given by WnpĜn,kq. From the perspective of G-regret, what we

would really like to know is the value of population welfare W pĜn,kq. Although the latter
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quantity is unknown, if we could define the (infeasible) penalty Cnpkq as WnpĜn,kq´W pĜn,kq,

then the penalized objective WnpĜn,kq ´ Cnpkq would be exactly equal to W pĜn,kq. Since

implementing such a Cnpkq is impossible, our assumption requires for our feasible penalty to

be a good (empirical) upper bound on WnpĜn,kq ´W pĜn,kq. We are now ready to state our

main workhorse result: an oracle inequality that chracterizes the G-regret of the PWM rule.

Theorem 2.3.1. Suppose that Assumptions 2.2.1, 2.3.1, 2.3.3 and 2.3.4 hold, and set

tk “ k in (2.5). Then there exist constants ∆ and c0 such that for every P P PpM,κq:

EPnrW
˚
G ´W pĜnqs ď inf

k

”

EPnrCnpkqs `
`

W ˚
G ´W

˚
Gk

˘

`

c

k

n

ı

`

d

logp∆eq

2c0n
.

Theorem 2.3.1 forms the basis of all the results we present in Sections 2.3.2 and 2.3.3. It

says that, at least from the perspective of pointwise (as opposed to maximum) G-regret, the

PWM rule is able to balance the tradeoff between EPnrCnpkqs and the approximation error,

at the cost of adding two additional terms that are Op1{
?
nq. The relative importance of

these terms is hard to quantify at this level of generality, and we will attempt to shed some

light on them, for specific penalties, in Section 2.3.3. Note that this result does not quite

accomplish our initial goal of balancing the estimation and approximation error along our

sieve: it is possible to choose a Cnpkq that satisfies Assumption 2.3.4 for which EPnrCnpkqs is

too large a bound for the estimation error. For this reason, we also impose the requirement

that any penalty we consider should have the following additional property:

Assumption 2.3.5. There exists a positive constant C1 such that, for every n, Cnpkq

satisfies

sup
PPPpM,κq

EPnrCnpkqs ď C1

c

Vk
n
,

where Vk is the V C dimension of Gk.
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This assumption ensures that EPnrCnpkqs is comparable to the estimation error for EWM

derived in (2.3), which was shown to be rate-optimal in (2.4).

The next result we present is a bound on maximum regret for our first setting of interest:

choosing the appropriate approximating class when G has infinite VC dimension. Note that,

as discussed in Remark 2.3.1, a bound on maximum regret may not exist unless we impose

some additional regularity conditions on the family of DGPs under consideration. Hence

we make the additional assumption that we restrict ourselves to a set of distributions Pr

for which there exists a uniform bound on the approximation error. Note however that we

do not assume that the rate of decay of the approximation bias is necessarily known to the

econometrician, thus illustrating the “oracle” nature of our results.:

Assumption 2.3.6. Let Pr be a set of distributions such that

sup
PPPr

W ˚
G ´W

˚
Gk “ Opγkq ,

sup
PPPrXPpM,κq

EPnrCnpkqs “ Opζpk, nqq ,

for a sequence γk Ñ 0, and ζpk, nq non-decreasing in k, ζpk, nq Ñ 0 as nÑ 8.

The first assumption asserts that we have a uniform bound on the approximation error.

As we pointed out in Remark 2.3.1, an assumption of this type is necessary to derive a bound

on maximum regret when the class G has infinite VC dimension. The second assumption is

made to highlight the following possibility: although Assumption 2.3.5 guarantees that we

can satisfy this restriction with ζpk, nq “
a

Vk{n, it is possible that, once we have imposed

that P must lie in Pr, an even tighter bound may exist on Cnpkq. We make this point to

emphasize that PWM will balance the tradeoff between the estimation and approximation
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error according to the tighest possible bounds on EP rCnpKqs and W ˚
G ´W ˚

Gk , regardless of

whether or not we know these bounds for a given application.

Corollary 2.3.1. Under Assumptions 2.2.1, 2.3.1, 2.3.3, 2.3.4, and 2.3.6, we have that

sup
PPPrXPpM,κq

EPnrW
˚
G ´W pĜnqs ď inf

k

”

Opζpk, nqq `Opγkq `

c

k

n

ı

`

d

logp∆eq

2c0n
.

As mentioned in Remark 2.3.4, if tζpk, nquk,n and tγkuk were known, then we could

achieve such a result with a deterministic sequence kpnq. The strength of the PWM rule

then is that we achieve the same behavior for any class G and approximating sequence tGkuk

without having to know these quantities in practice. We will illustrate this result in our

application Section 2.5, in the setting of Example 2.3.2.

The second Corollary we present specializes Theorem 2.3.1 to our second setting of in-

terest: the appropriate selection of a subclass when the VC-dimension of G is finite and

large (or comparable) in magnitude to the sample size (for example, when selecting amongst

many covariates when performing best-subset selection). The result highlights two features

of PWM. First, it shows that by balancing the trade-off between the approximation and

estimation error, PWM can potentially lead to a reduction in regret (relative to EWM)

for values of the sample size that are comparable in magnitude to the VC-dimension of

G. Second, it illustrates how our bound changes when the sieve is finite and we drop the

auxiliary
a

k{n component of our penalty.

Corollary 2.3.2. Suppose that Assumptions 2.2.1, 2.3.1, 2.3.4, 2.3.5, and 2.3.3 hold,

and that GK “ G for some finite K. Furthemore, suppose that in our definition of the penalty
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we omit the term
a

k{n. Then we have that

EPnrW
˚
G ´W pĜnqs ď inf

1ďkďK

”

C1

c

Vk
n
`
`

W ˚
G ´W

˚
Gk

˘

ı

`

d

logpKc1eq

2c0n
.

Note that if the above bound is minimized at k “ K, then the approximation error

W ˚
G ´W ˚

Gk is zero and the resulting bound is comparable to the one derived in (2.3), with

one additional term. In Section 2.3.3 we argue that for specific choices of the penalty term

Cnpkq this additional term is of smaller order than the
a

Vk{n component of the bound.

Our final corollary of Section 2.3.2 considers the particular setting in which the con-

strained optimum W ˚
G over the class G is achieved in Gk0 , for some k0, but that this class

is unknown to the econometrician. The result shows that the resulting upper bound on

maximum regret for PWM is as if we had performed EWM in the appropriate class Gk0 .

Corollary 2.3.3. Suppose that Assumptions 2.2.1, 2.3.1, 2.3.3, 2.3.4, and 2.3.5 hold,

and let Pk Ă PpM,κq be the set of distributions such that G˚ P Gk, then

sup
PPPk

EPnrW
˚
G ´W pĜnqs ď C1

c

Vk
n
`

c

k

n
`

d

logp∆eq

2c0n
.

Furthermore, if tGkuKk“1 is finite, and we do not include the
a

k{n term as discussed in

Remark 2.3.3, then we have that:

sup
PPPk

EPnrW
˚
G ´W pĜnqs ď C1

c

Vk˚

n
`

d

logpKc1eq

2c0n
,

where c0, c1 are as in Assumption 2.3.4.
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2.3.3. Penalized Welfare Maximization: Some Examples of Penalties

This section serves two purposes. First, it illustrates the results of Section 2.3.2 with two

concrete choices for the penalty Cnpkq. Second, the results help quantify the size of the

auxiliary term in the bound of Theorem 2.3.1 for these penalties, so as to address the

concerns presented in the discussion following Theorem 2.3.1. The first penalty we present,

the Rademacher penalty, is theoretically elegant but computationally burdensome. The

second penalty we present, the holdout penalty, is very intuitive and much more tractable in

applications. However, the holdout penalty involves a sample-splitting procedure that some

may find unappealing. Both of the penalties share the property that they do not require

the practitioner to know the VC dimensions Vk of the approximating classes, which we feel

is important to make the method broadly applicable.

2.3.3.1. The Rademacher Penalty. The first penalty we present is very attractive from

a theoretical perspective, but is computationally burdensome. Let Sn :“ tpYi, Di, Xiqu
n
i“1 be

the observed data. Then the Rademacher penalty is given by

Cnpkq “ Eσ

”

sup
GPGk

2

n

n
ÿ

i“1

σiτi1tXi P Gu | Sn

ı

,

where τi is defined as in equation (2.2), and tσ1, ..., σnu are a sequence of i.i.d Rademacher

variables, i.e. they take on the values t´1, 1u, each with probability half.

To clarify the origin of this penalty, recall that Cnpkq must be a good upper bound

on WnpĜn,kq ´ W pĜn,kq, which is the requirement of Assumption 2.3.4. Bounding such

quantities is common in the study of empirical processes, and the usual first step is to use

what is known as symmetrization, which gives the following bound:

EPnrsup
GPG

WnpGq ´W pGqs ď EPn
”

Eσ
“

sup
GPG

2

n

n
ÿ

i“1

σiτi1tXi P Gu | Sn
‰

ı

.



85

It is thus this inequality that inspires the definition of Cnpkq. The concept of Rademacher

complexity5 is pervasive throughout the statistical learning literature (see for example Koltch-

inskii (2001), Bartlett and Mendelson (2002), and Bartlett et al. (2002)). Intuitively, it

measures a notion of complexity that is finer than that of VC dimension, and is at the same

time computable from the data at hand. Furthermore, unlike the holdout penalty introduced

in the next subsection, it allows both the objective function and the penalty to be estimated

with all of the data.

Our first task is to prove that the conditions of Assumptions 2.3.4 and 2.3.5 hold for the

Rademacher penalty:

Lemma 2.3.1. Consider Assumptions 2.2.1, 2.3.1, 2.3.3. Let Cnpkq be the Rademacher

penalty as defined above. Then we have that

P n
pWnpĜn,kq ´W pĜn,kq ´ Cnpkq ą εq ď exp

´

´ 2
´ κ

3M

¯2

nε2
¯

,

and

EPnrCnpkqs ď C
M

κ

c

Vk
n
,

where C is the same universal constant that appears in equation (2.3).

We are thus able to refine Theorem 2.3.1 to the case of the Rademacher penalty.

Proposition 2.3.1. Consider Assumptions 2.2.1, 2.3.1, 2.3.3. Let Cnpkq be the

Rademacher penalty as defined above. Then we have that for every P P PpM,κq:

EPnrW
˚
G ´W pĜnqs ď inf

k

”

EPnrCnpkqs `
`

W ˚
G ´W

˚
Gk

˘

`

c

k

n

ı

` gpM,κq
M

κ

c

1

n
,

5Note that the definition of Rademacher complexity is slightly different than the definition of our penalty.
Here we follow Bartlett et al. (2002) and do not include the absolute value in our definition of the penalty.
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with EPnrCnpkqs ď CM
κ

b

Vk
n

, where C is the same universal constant as that in equation

(2.3) and

gpM,κq :“ 6

d

log
´3
?
e

?
2

M

κ

¯

.

Remark 2.3.5. We can now revisit the discussion following Theorem 2.3.1, about quan-

tifying the size of the constants in the auxiliary term of the bound. In Appendix A.3 we

perform a back-of-the-envelope calculation that provides insight into the size of gpM,κq, and

compares it to the size of the universal constant C derived in Kitagawa and Tetenov (2018).

Despite this penalty being theoretically appealing, implementing it in practical applica-

tions is problematic. The standard approach suggested in the statistical learning literature

is to compute Cnpkq by simulation: first, we repeatedly draw samples of tσiu
n
i“1, then we

solve the problem

max
GPGk

2

n

n
ÿ

i“1

σiτi1tXi P Gu ,

for each draw, and then average the result. Unfortunately, the optimization problem to

be solved in the second step is computationally demanding for most classes Gk of interest,

so that repeatedly solving it for multiple draws of tσiu
n
i“1 is impractical. Moreover, this

procedure must be repeated for each class Gk, which makes it even more prohibitive.

In the next section, we present a penalty that is not only conceptually very simple, but

easy to implement as well.

2.3.3.2. The Holdout Penalty. The second penalty we introduce is motivated by the

following idea: First fix some number ` P p0, 1q such that m :“ np1 ´ `q (for expositional

clarity suppose that m is an integer)6, and let r :“ n ´ m. Given our original sample

Sn “ tpYi, Di, Xiqu
n
i“1, let SEn :“ tpYi, Di, Xiqu

m
i“1 denote what we call the estimating sample,
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and let STn :“ tpYi, Di, Xiqu
n
i“m`1 denote the testing sample. Now, using SEn , compute Ĝm,k

for each k. It seems intuitive that we could get a sense of the efficacy of Ĝm,k by applying

this rule to the subsample STn and computing the empirical welfare WrpĜm,kq. We could

then select the class k that results in the highest empirical welfare WrpĜm,kq.

It turns out this idea can be formalized in our framework by treating it as a PWM-rule

on the estimating sample, with the following penalty: for each EWM rule Ĝm,k estimated

on SEn , let

WmpĜm,kq “
1

m

m
ÿ

i“1

τi1tXi P Ĝm,ku ,

be the empirical welfare of the rule Ĝm,k on SEn and let

WrpĜm,kq “
1

r

n
ÿ

i“m`1

τi1tXi P Ĝm,ku ,

be the empirical welfare of the rule Ĝm,k on STn . We define the holdout penalty to be

Cmpkq :“ WmpĜm,kq ´WrpĜm,kq .

Now, recall that the PWM rule is given by

Ĝm “ arg max
k

«

WmpĜm,kq ´ Cmpkq ´

c

k

m

ff

,

which, given the definition of Cmpkq, simplifies to

Ĝm “ arg max
k

«

WrpĜm,kq ´

c

k

m

ff

.

Hence we see that the PWM rule with the holdout penalty reproduces the intuition presented

above (with the usual addition of the
a

k{m term; see Remark 2.3.3).

6The results would continue to hold if one were to instead define m :“ tnp1´ `qu.
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We check the conditions of Assumptions 2.3.4 and 2.3.5:

Lemma 2.3.2. Assume Assumptions 2.2.1, 2.3.1, 2.3.3. Suppose we have a sample of

size n and recall that m “ np1 ´ `q and r “ n ´ m. Let Cmpkq be the holdout penalty as

defined above. Then we have that

P n
pWmpĜm,kq ´W pĜm,kq ´ Cmpkq ą εq ď exp

´

´ 2
´ κ

M

¯2

n`ε2
¯

,

and

EPnrCmpkqs ď C
M

κ
a

p1´ `q

c

Vk
n
,

where C is the same universal constant that appears in equation (2.3).

With Lemma 2.3.2 established, Theorem 2.3.1 becomes:

Proposition 2.3.2. Assume Assumptions 2.2.1, 2.3.1, 2.3.3. Suppose we have a sample

of size n, and let m “ np1 ´ `q, r “ n ´ m. Let Cmpkq be the holdout penalty as defined

above. Then we have that for every P P PpM,κq:

EPnrW
˚
G ´W pĜmqs ď inf

k

”

EPnrCnpkqs `
`

W ˚
G ´W

˚
Gk

˘

`

c

k

n

ı

` gpM,κ, `q
M

κ
?
`

c

1

n
,

with

EPnrCnpkqs ď C
M

κ
a

p1´ `q

c

Vk
n
,

where C is the same universal constant as that in equation (2.3) and

gpM,κ, `q :“ 2

d

log
´

c

e

2`

M

κ

¯

.

Remark 2.3.6. We can perform the same analysis as we did in Remark 2.3.5. In

doing so we see that the difference between this result and the result in Proposition 2.3.1
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is that sample-splitting introduces distortions into the constant terms through `. Indeed,

the tradeoff between splitting the sample into the estimating sample and testing sample is

reflected in these constants.

As noted in Remark 2.3.6, the bound we derive for the holdout penalty is similar to what

we derive for the Rademacher penalty, but with inflated constants. However, the benefit of

the holdout penalty lies in the fact that it is much more practical to implement. The only

remaining issue with the holdout penalty is how to split the data. Deriving some sort of

data-driven procedure to choose the proportion ` is beyond the scope of our paper, but as a

rule of thumb, we have found that it is much more important to focus on accurate estimation

of the rule Ĝm,k than on the computation of WrpĜm,kq. In other words, we recommend that

the estimating sample SEn be a large proportion of the original sample Sn. Throughout

Sections 2.4 and 2.5, we designate three quarters of the sample as the estimating sample.

2.3.4. Penalized Welfare Maximization: Estimated Propensity Score

In this section we present a modification of the PWM rule where the propensity score is

not known and must be estimated from the data. This situation would arise if the planner

had access to observational data instead of data from a randomized experiment. Before

describing our modification of the PWM rule, we must review results about the corresponding

modification of the EWM rule in Kitagawa and Tetenov (2018). The modification we consider

here is what they call the e-hybrid EWM rule. Recall the EWM objective function as defined

in equation (2.2). To define the e-hybrid EWM rule we modify this objective function by

replacing τi with

τ̂i :“
” YiDi

êpXiq
´
Yip1´Diq

1´ êpXiq

ı

1tεn ď êpXiq ď 1´ εnu ,
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where êp¨q is an estimator of the propensity score, and εn is a trimming parameter such that

εn “ Opn´αq for some α ą 0. The e-hybrid EWM objective function is defined as follows:

W e
npGq :“

1

n

n
ÿ

i“1

τ̂i1tXi P Gu .

In a recent paper, Athey and Wager (2017) argue that more sophisticated estimators of the

welfare objective can improve performance relative to the e-hybrid rule, and derive corres-

ponding bounds on the maximum regret of their procedure that feature smaller constants.

Modifying our method using their techniques would be an interesting direction for future

work.

Since we are now estimating the propensity score, we must impose additional regular-

ity conditions on P to guarantee a uniform rate of convergence. We make a high level

assumption:

Assumption 2.3.7. Given an estimator êp¨q, let Pe be a class of data generating pro-

cesses such that

sup
PPPe

EPn
” 1

n

n
ÿ

i“1

|τ̂i ´ τi|
ı

“ Opφ´1
n q ,

where φn Ñ 8.

Although we do not explore low-level conditions that satisfy this assumption here, Kit-

agawa and Tetenov (2018) do so in their paper. To summarize their results, they show that if

êp¨q is a local polynomial estimator, and that ep¨q and the marginal distribution of X satisfy

some smoothness conditions, then Assumption 2.3.7 is satisfied with φn “ n´
1

n`dx{βe , where

βe is a constant that determines the smoothness of ep¨q.7

Let Ĝe´hybrid be the solution to the e-hybrid problem in a class G of finite VC dimension,

then Kitagawa and Tetenov (2018) derive the following bound on maximum G-regret:

7To be more precise, βe is the degree of the Holder class to which ep¨q must belong.
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(2.6) sup
PPPeXPpM,κq

EPn
”

W ˚
G ´W pĜe´hybridq

ı

ď Opφ´1
n _ n´1{2

q .

With a non-parametric estimator of ep¨q, φn will generally be slower than
?
n and hence

determine the rate of convergence.

We are now ready to present the construction of the corresponding e-hybrid PWM es-

timator. Let G be an arbitrary class of allocations, and let tGkuk be some approximating

sequence for G. Let Ĝe
n,k be the hybrid EWM rule in the class Gk. Let Ce

npkq be our penalty

for the hybrid PWM rule. We now require that the penalty satisfies the following properties:

Assumption 2.3.8. (Assumptions on Ce
npkq)

In addition to making assumptions about Ce
npkq, we assume there exists an “infeasible pen-

alty” C̃npkq with the following properties:

‚ There exist positive constants c0 and c1 such that C̃npkq satisfies the following tail

inequality for every n, k and for every ε ą 0:

sup
PPPeXPpM,κq

P n
pWnpĜ

e
n,kq ´W pĜ

e
n,kq ´ C̃npkq ą εq ď c1e

´2c0nε2

‚ There exists a positive constant C1 such that, for every n, C̃npkq satisfies

sup
PPPeXPpM,κq

EPnrC̃npkqs ď C1

c

Vk
n
,

where Vk is the VC dimension of Gk.

‚ C̃npkq and Ce
npkq are such that

sup
PPPeXPpM,κq

EPn

„

sup
k

ˇ

ˇ

ˇ
Ce
npkq ´ C̃npkq

ˇ

ˇ

ˇ



“ Opφ´1
n q .
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We will provide context for these assumptions. First of all, included in the assumptions

on Ce
npkq is the existence of an object C̃npkq which we call an infeasible penalty. The first

assumption asserts that the infeasible penalty obeys a similar tail inequality to Cnpkq, which

was the penalty when the propensity score was known. The main difference is that C̃npkq

satisfies this assumption with respect to the e-hybrid EWM rule, and not the EWM rule

with a known propensity. What is strange about this condition is that it is as if we were

evaluating the hybrid rule through the empirical objective Wnp¨q, which is the objective

when the propensity score is known. This is our motivation for calling C̃npkq an infeasible

penalty. Luckily, C̃npkq is purely a theoretical device and does not serve a role in the actual

implementation of PWM. We provide an example of such an infeasible penalty in the setting

of the holdout penalty below.

The second assumption is the same as Assumption 2.3.5, but now with respect to the

infeasible penalty C̃npkq. The third assumption simply links the true penalty Ce
npkq to the

infeasible penalty C̃npkq in such a way that both should agree asymptotically and do so at

an appropriate rate.

Given this, we obtain the following analogue to Theorem 2.3.1:

Theorem 2.3.2. Given assumptions 2.2.1, 2.3.1, 2.3.3, 2.3.7 and 2.3.8, there exist

constants ∆ and c0 such that for every P P Pe X PpM,κq:

EPnrW
˚
G ´W pĜ

e
nqs ď inf

k

”

EPnrC̃npkqs `
`

W ˚
G ´W

˚
Gk

˘

`

c

k

n

ı

`Opφ´1
n q `

d

logp∆eq

2c0n
.

As we can see, the only difference between this bound and the bound derived in Theorem

2.3.1 is that there is an additional term of order φ´1
n . This is also the case with the hybrid

EWM estimator, as shown in (2.6).
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Next, we check that the conditions in Assumption 2.3.8 are satisfied with modified ver-

sions of the holdout and Rademacher penalties. First we begin with the holdout penalty.

Recall from Section 2.3.3 that the holdout method split the sample Sn “ tpYi, Di, Xiqu
n
i“1

into the estimating sample SEn “ tpYi, Di, Xiqu
m
i“1 of size m “ np1´`q and the testing sample

STn “ tpYi, Di, Xiqu
n
i“m`1 of size r “ n´m. The holdout penalty was then defined as

Cmpkq “ WmpĜm,kq ´WrpĜm,kq ,

where Wmp¨q was the empirical welfare computed on SEn and Wrp¨q was the empirical welfare

computed on STn .

To define the hybrid holdout penalty, let êEp¨q be the propensity estimated on SEn , and

let êT p¨q be the propensity estimated on STn . Define

W e
mpGq :“

1

m

m
ÿ

i“1

τ̂i
E1tXi P Gu ,

where

τ̂i
E
“

” YiDi

êEpXiq
´
Yip1´Diq

1´ êEpXiq

ı

1tεn ď êEpXiq ď 1´ εnu .

Define W e
r pGq on the testing sample analogously. Letting Ĝe

m,k be the hybrid EWM rule

computed on the estimating sample in the class Gk, the hybrid holdout penalty is defined as:

Ce
mpkq :“ W e

mpĜ
e
m,kq ´W

e
r pĜ

e
m,kq .

We can now check the conditions of Assumption 2.3.8 for the hybrid holdout penalty.

To do so, we must assert the existence of an infeasible penalty C̃mpkq that satisfies our

assumptions. The infeasible penalty we consider is given by

C̃mpkq :“ WmpĜ
e
m,kq ´WrpĜ

e
m,kq ,
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where Wmp¨q and Wrp¨q are defined as in Section 2.3.3, that is, they are computed as if the

propensity score were known. We present the following lemma:

Lemma 2.3.3. Assume Assumptions 2.2.1, 2.3.1, 2.3.3, and 2.3.7. Suppose we have a

sample of size n and recall that m “ np1´`q and r “ n´m. Let Ce
mpkq be the hybrid holdout

penalty and C̃mpkq be the infeasible penalty as defined above. Then we have that

P n
pWmpĜ

e
m,kq ´W pĜ

e
m,kq ´ C̃mpkq ą εq ď exp

´

´ 2
´ κ

M

¯2

n`ε2
¯

,

EPnrC̃mpkqs ď C
M

κ
a

p1´ `q

c

Vk
n
,

and

sup
PPPe

EPn
“

sup
k
|Ce

mpkq ´ C̃mpkq|
‰

“ Opφ´1
n q ,

where C is the same universal constant as that in equation (2.3).

We thus obtain an analogous result to Proposition 2.3.2 for PWM with the hybrid holdout

penalty. Next we do the same thing for the Rademacher penalty. In fact, defining the hybrid

version of the Rademacher penalty is relatively straightforward. Recall that the Rademacher

penalty when the propensity score was known was defined as

Cnpkq “ Eσ

”

sup
GPGk

2

n

n
ÿ

i“1

σiτi1tXi P Gu | Sn

ı

.

The hybrid Rademacher penalty is defined analogously:

Ce
npkq “ Eσ

”

sup
GPGk

2

n

n
ÿ

i“1

σiτ̂i1tXi P Gu | Sn

ı

.
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To check the conditions of Assumption 2.3.8, the infeasible penalty we consider here is simply

just the penalty when the propensity score is known, so that C̃npkq “ Cnpkq. Hence we have

the following lemma:

Lemma 2.3.4. Assume Assumptions 2.2.1, 2.3.1, 2.3.3, and 2.3.7. Let Ce
npkq be the

hybrid Rademacher penalty and C̃npkq be the infeasible penalty as defined above. Then we

have that

P n
pWnpĜ

e
n,kq ´W pĜ

e
n,kq ´ C̃npkq ą εq ď exp

´

´ 2
´ κ

3M

¯2

nε2
¯

,

EPnrC̃npkqs ď C
M

κ

c

Vk
n
,

and

sup
PPPe

EPn
“

sup
k
|Ce

npkq ´ C̃npkq|
‰

“ Opφ´1
n q ,

where C is the same universal constant as that in equation (2.3).

Again, from this we obtain an analogous result to Proposition 2.3.1 for PWM with the

hybrid Rademacher penalty.

2.4. A Simulation Study

In this section we perform a small simulation study to highlight the ability of the PWM

rule to reduce G-regret in an empirically relevant setting. We consider a situation where

the planner has access to threshold-type allocations over five covariates, as described in

Examples 2.2.2 and 2.3.1, and wishes to perform best-subset selection. The sieve sequence

we consider is the same as in Example 2.3.1, where Gk is the set of threshold allocations on

k ´ 1 out of the 5 covariates. For example, G1 contains only the allocations G “ H and

G “ X , which correspond to threshold allocations that use zero covariates, G2 contains all

threshold allocations on one out of the five covariates, etc. We focus here on the setting
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with five covariates for computational simplicity, but recent work by Chen and Lee (2016)

suggests that solving this problem with ten or more covariates should be feasible in practice.

The problem that the planner faces is choosing how many covariates to use in the alloca-

tion: for example suppose that the distribution P is such that some of the available covariates

are irrelevant for assigning treatment. Of course, the planner could perform EWM on all the

covariates at once, and by the bound in equation (2.3) this is guaranteed to produce small

regret in large enough samples. However, if the sample is not large, the planner may be able

to achieve a reduction in regret by performing PWM. Through the lens of Corollary 2.3.3,

our results say that PWM should behave as if we had performed EWM in the smallest class

Gk that contains all of the relevant covariates.

To be concrete, we consider the following data generating process: Let X “ r0, 1s5, and

Xi “ pX1i, X2i, ..., X5iq „ pU r0, 1sq
5 .

The potential outcomes for unit i are specified as:

Yip1q “ 50p2X2i ´ p1´X1iq
4
´ 0.5` 0.5pX3i ´X4iqq ` U1i ,

Yip0q “ 50p0.5pX3i ´X4iqq ` U2i ,

where U1 and U2 are distributed as U r´20, 20s random variables which are independent of

each other and of X. The covariates enter the potential outcomes in three different ways:

‚ X5i is an irrelevant covariate; it does not play a role in determining potential out-

comes at all.

‚ X3i and X4i affect both treatment and control equally; there will be a nonzero

correlation between the observed outcome Yi and these covariates, but they serve

no purpose for treatment assignment.
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‚ X1i and X2i do serve a purpose for assigning treatment, and both are used in the

optimal threshold allocation. See Figure 2.1 below.

Figure 2.1. Shaded in green: the best threshold-allocation for our design.
Second-best welfare: 29.3

Traced in black: the boundary of the first-best allocation.

To implement PWM we used the holdout penalty, with 3{4 of our sample designated as

the estimating sample. In Appendix B.3 we explain in detail how to implement PWM as a

mixed integer linear program, and how we performed our simulations.

Our results compare the G-regret of the PWM rule against the regret of performing EWM

in G6 (which corresponds to the class that uses all five covariates) or performing EWM in

G3. Recall that G3 is the smallest class that contains the optimal threshold allocation. In

light of Corollary 2.3.3, we would hope that PWM behaves similarly to doing EWM in G3

directly. In Figure 2.2, we plot the regret of these rules for various sample sizes.
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Figure 2.2. Estimated regret by sample size. Optimal (second-best) welfare:
29.3. EWM5 corresponds to G6 (five covariates), EWM2 corresponds to G3

(two covariates).

First we comment on the regret of performing EWM in G6 (recall that this corresponds to

the set of allocations using all five covariates) vs. performing EWM in G3 (which corresponds

to the set of allocations that use two of the five covariates). As predicted by equation (2.3),

regret decreases as sample size increases. Moreover, performing EWM in G6 results in larger

regret at every sample size: performing EWM in G3 results in a 6% improvement on average,

across the sample sizes we consider.

Next, we comment on the performance of PWM. As we had hoped, the regret of PWM

is smaller than the regret of performing EWM in G6 at every sample size: performing PWM

results in a 4% improvement on average, across the sample sizes we consider. Moreover, the

results in Figure 2.2 suggest that this gain is not just due to an improvement in very small

samples, as the gap in regret seems to diminish quite slowly as sample size increases.
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2.5. An Application

In this section we apply the PWM rule to experimental data from the Job Training

Partnership Act (JTPA) Study. The JTPA study was a randomized controlled trial whose

purpose was to measure the benefits and costs of employment and training programs. The

study randomized whether applicants would be eligible to receive a collection of services

provided by the JTPA related to job training, for a period of 18 months. The study collected

background information about the applicants prior to the experiment, as well as data on

applicants’ earnings for 30 months following assignment (for a detailed description of the

study, see Bloom et al. (1997)).8

We revisit the application setting of Kitagawa and Tetenov (2018). The outcome that

we consider is total individual earnings in the 30 months following program assignment.

The covariates on which we define our treatment allocations are the individual’s years of

education and their earnings in the year prior to the assignment. The set of allocations

we consider is the set of monotone allocations defined in Example 2.2.3, but with a non-

increasing monotone function. To be precise, let X1 be the covariate set of years of education,

and let X2 be the covariate set of previous earnings, then the set of allocations we consider

is given by:

G “
 

G : G “ tpx1, x2q P X | x2 ď fpx1q for f : X1 Ñ X2 non-increasingu
(

.

Let us discuss what this set of allocations means in the context of this application. This

restriction imposes that, the less education you have, the more accessible is the program

based on your previous earnings. For example, if an applicant with 12 years of education

8The sample we use is the same as that in Abadie et al. (2013), which we downloaded from
ideas.repec.org/c/boc/bocode/s457801.html. We supplemented this dataset with education data from the
expbif.dta dataset available at the W.E. Upjohn Institute website. Observations with years of education
coded as ‘99’ were dropped.

https://ideas.repec.org/c/boc/bocode/s457801.html
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and previous earnings of $20,000 is to be accepted into the program, then an applicant with

the same previous earnings and less education must also be accepted, as well as an applicant

with the same level of education and less earnings. In Example 2.2.3 we discussed a situation

where application-specific assumptions impose this type of constraint. In this setting, we

instead argue that it is plausible that such a restriction may be exogenously imposed on

the planner for political reasons; after all, it may not be politically viable to implement a

job-training program where only those with high levels of education or income are accepted.

As we have previously discussed, this class of allocations will have infinite VC dimension

when continuous covariates are used. Accordingly, in the results that follow, we will assume

both covariates are continuous. However, note that in our application years of education is a

discrete covariate. This discrepancy is not an issue for illustrating our method, and we think

it is important that we make our study comparable to the one in Kitagawa and Tetenov

(2018).

The approximating sequence we consider is the one described in Example 2.3.2, but now

with a non-increasing monotonicity constraint. Recall that this was a sequence such that the

resulting allocations partitioned the covariate space with a progressively refined, piecewise-

linear, monotone boundary. Given any fixed class in this sequence, we can perform EWM in

that class. For example, Figure 2.3 below illustrates the result of performing EWM on the

simplest class in the approximating sequence. This class is equivalent to the class of linear

treatment rules from Kitagawa and Tetenov (2018), but with an additional slope constraint.

At the other end of the spectrum, we could consider performing EWM in the most

complicated class in our approximating sequence: this class corresponds to allocations that

stipulate a threshold for previous income at every level of education (note that such a class
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Figure 2.3. The resulting treatment allocation from performing EWM in G1.
Each point represents a covariate pair in the sample. The region shaded in
green (dark) is the prescribed treatment region, the region shaded in red

(light) is the prescribed control region.

exists here because years of education is discrete). Figure 2.4 below illustrates the result of

performing EWM in this class.

As we might expect, the resulting allocation in the simplest class and in the most com-

plicated class are quite different, and given the option to choose any class from our sequence,

it is not obvious which one should be chosen given the size of the experiment. Before showing

the results for the PWM rule, recall from Remark 2.3.1 that, if the class G is has infinite VC

dimension (as it would if both covariates were continuous), then we cannot establish a bound

on maximum regret without imposing additional regularity conditions. Accordingly, we will
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Figure 2.4. The resulting treatment allocation from performing EWM in G5.
Each point represents a covariate pair in the sample. The region shaded in
green (dark) is the prescribed treatment region, the region shaded in red

(light) is the prescribed control region.

first establish a set of regularity conditions under which we derive a bound on maximum

regret of the PWM rule.

We state the result for X “ r0, 1s2. We impose the following regularity condition on the

distribution P :

Assumption 2.5.1. Let Pr be a set of distributions such that there exists some constant

A, where for every P P Pr, X has a density px with respect to Lebesgue measure on r0, 1s2

such that px is bounded above by A.
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It is worth emphasizing that we do not require the first best to be contained in G, nor do

we require that W ˚
G even be attained. With this regularity condition imposed, we are able

to derive the following uniform bound on the approximation bias W ˚
G ´W

˚
Gk :

Proposition 2.5.1. Under Assumption 2.5.1, the approximation bias of the approxim-

ating sequence tGku8k“1 from Example 2.3.2 satisfies

sup
PPPr

W ˚
G ´W

˚
Gk ď A

M

κ
2´k ,

To illustrate the use of Proposition 2.5.1 in our setting, we derive a bound on max-

imum regret for monotone allocations. Proposition 2.5.1 and Corollary 2.3.1, along with the

(possibly loose) bound on Vk given in Example 2.3.2 allow us to conclude that:

Corollary 2.5.1. Let Cnpkq be the Rademacher or holdout penalty. Under Assumptions

2.2.1, 2.3.1, 2.3.3, and 2.5.1, we have that

sup
PPPrXPpM,κq

EPnrW
˚
G ´W pĜnqs “ O

`

n´
1
3

˘

.

As we alluded to in the discussion of Example 2.3.2, bounds on maximum regret for

EWM can be derived for the class of monotone allocations. Proposition 2.5.2 establishes

such a bound by modifying the proof presented in Györfi et al. (1996) in the context of

classification:

Proposition 2.5.2. Under Assumptions 2.2.1, 2.3.1, and 2.5.1, we have that

sup
PPPrXPpM,κq

EPnrW
˚
G ´W pĜEWMqs “ O

`

n´
1
4

˘

.

We make no claim that our bounds for PWM or EWM are sharp: for EWM, the most

relevant results of which we are aware are presented in Tsybakov (2004), where he shows that
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if the optimum is achieved in G, and sufficient smoothness is imposed on the boundary of

the optimal allocation, then the rate of convergence of the classification analogue of EWM is

Opn´1{2q. Another relevant result from classification comes from Tsybakov and van de Geer

(2005), where they develop a penalized method for classification over boundary fragments

which is able to achieve a root-n rate (up to a logarithmic factor) for monotone allocations,

while only assuming that the optimum is achieved. An interesting direction for future work

would be to understand to what extent these techniques generalize to our setting, and also

whether or not PWM is truly able to achieve a faster rate of convergence over EWM for this

example under our assumptions.

In Figure 2.5, we illustrate the result of performing PWM on our sequence of classes,

where we used 3{4 of our sample for estimation. In Appendix B.3 we discuss the computa-

tional details of our implementation. Note that PWM selects the allocation from the second

class in our sequence, which corresponds to a piecewise-linear allocation with one allowable

“kink”.

2.6. Conclusion

In this paper, we introduced a new statistical decision rule for the treatment assignment

problem, which we call the Penalized Welfare Maximization (PWM) rule. Our rule builds

on the Empirical Welfare Maximization Rule of Kitagawa and Tetenov (2018), which is

designed for situations where treatment allocation is exogenously constrained. The PWM

rule is designed for settings where the policy maker may want to choose amongst a collection

of such constrained classes. We established an oracle inequality for the regret of the PWM

rule which shows that it is able to perform model selection over the collection of available

classes. We then applied this result to two examples: the choice of the number of covariates

when performing best-subset selection, and the selection of an approximating class in a sieve.
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Figure 2.5. The resulting treatment allocation from performing PWM on the
approximating sequence tGku5k“1. Each point represents a covariate pair in
the sample. The region shaded in green (dark) is the prescribed treatment

region, the region shaded in red (light) is the prescribed control region.

Moving forward, we have identified some areas that we feel are worth further study. In

general, implementing PWM is computationally challenging; from a practical perspective,

practitioners may find it convenient to have a software package that can implement PWM

in a few important examples. In particlar, decision/regression trees are becoming popular

for the estimation of treatment effects, and as we illustrate in Appendix A.3 could serve as

a useful approximating classes in our setting. We hope to further study the use of decision

trees in the treatment assignment problem, as well as implement a software package that

implements decision-tree based rules for practitioners.
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CHAPTER 3

Inference with Dyadic Data: Asymptotic Behavior of the Dyadic

Robust t-statistic

3.1. Introduction to Chapter 3

Over the last 25 years applied microeconomics has increasingly embraced the fact that

dependence in cross-sectional data can affect inference. It has been well understood since at

least the work of Moulton (1986) that failing to account for dependence in cross-sectional

studies can have dire effects. In the past, researchers explicitly modeled such dependencies

and used techniques such as GLS to estimate and do inference in their models. However,

modern researchers are typically not satisfied with making such strong assumptions on the

dependence present in the data. It is now standard practice to account for dependence by

pairing standard test statistics with so-called “robust” variance estimators, analogous to the

heteroskedasticity-robust variance estimator of White (1980).

In this paper we focus on inference for the regression parameters in a linear model with

dyadic data. Dyadic data relates to pairs of objects; examples include data on trade between

pairs of countries and data on links in a social-network setting. We will call such pairs

“dyads” and the objects within them “units”. Because of the paired nature of the data,

dyads that share a unit in common could be correlated. In order to account for this potential

dependence when conducting inference, we study the asymptotic properties of a t-statistic

formed using a “robust” variance estimator known in the literature as the dyadic-robust

variance estimator.
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Fafchamps and Gubert (2007) were the first to propose the dyadic-robust variance es-

timator, under the following assumption: dyads that do not share a unit are uncorrel-

ated, but otherwise the dependence between dyads is unspecified. To draw an analogy with

cluster-robust inference (see Cameron and Miller, 2015, for an extensive survey), the dyadic-

dependence assumption results in an “overlapping-cluster” configuration of the data, with

each unit defining its own cluster. Subsequently, many applied papers in economics and

political science have employed the dyadic-robust estimator under this same assumption (an

incomplete list includes Aker, 2010; Baldwin and Jaimovich, 2012; Comola and Fafchamps,

2014; Echevarria and Gardeazabal, 2016; Egger and Tarlea, 2015; Leblang, 2010; Lustig and

Richmond, 2017; Poznansky and Scroggs, 2016). Many empirical papers with dyadic data

also make reference to the dependence assumption we describe, but then compute two-way

clustered standard errors as described in Cameron et al. (2011). However, Cameron and

Miller (2014) point out that this does not account for all the potential dependencies in the

dyadic setting.

We present formal results under which a t-statistic that uses the dyadic-robust variance

estimator is asymptotically normal. Using a central limit theorem for dependency graphs

proved in Janson (1988) and careful bounding arguments, we establish a range of assumptions

under which asymptotic normality holds. We then use our results to guide a simulation study

of the accuracy of a normal approximation in finite samples, and discover an important

setting where such an approximation is inadequate. With these insights, we propose a novel

degrees of freedom correction to help alleviate the issue, and assess the performance of this

correction in simulations.

Fafchamps and Gubert (2007) motivate the dyadic-robust variance estimator as an ex-

tension of the spatial HAC estimator of Conley (1999). Despite Conley’s work being the
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initial motivation, neither consistency of the dyadic-robust variance estimator nor asymp-

totic normality of the resulting t-statistic, under their maintained assumptions, follow from

his results. Recently, Cameron and Miller (2014) have proposed the use of the dyadic-robust

variance estimator in the analysis of trade data, and present simulation evidence to assess its

performance. Both Fafchamps and Gubert (2007) and Cameron and Miller (2014) implicitly

assume an asymptotic normality result for the dyadic-robust t-statistic in their analysis, but

do not provide conditions under which such a result may hold. Aronow et al. (2015) prove the

consistency of the dyadic-robust variance estimator for cross-sectional and panel data under

more strict assumptions than those considered here, but do not attempt to study the use of

this estimator for inference: although they derive the asymptotic variance of the t-statistic,

they do not characterize its asymptotic distribution, specifically, they do not establish condi-

tions under which the t-statistic is asymptotically normal. Our paper is the first to provide a

theoretical grounding for the use of a normal approximation to the dyadic-robust t-statistic

for inference in the linear model.

The remainder of the paper is organized as follows: In Section 3.2, we set up the model

and the asymptotic frameworks we will study. Section 3.3 presents our results about asymp-

totic normality of the t-statistic. In Section 3.4 we study the finite-sample behavior of our

approximation in a simulation study, and propose a degrees of freedom correction guided by

our results. Section 3.5 concludes.

3.2. Setup of the Model and Asymptotic Frameworks

3.2.1. The Model

We will now formally describe the model. Consider a collection of G units indexed by

g “ 1, ..., G. The data we consider is indexed by pairs of units pg, hq, which we call dyads.

We do not require that each possible pair of units form a dyad. Pairs of units pg, hq for
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which a dyad exists map into dyadic indices n “ 1, 2, ..., N through the index function

npg, hq, where for simplicity we make the assumption that npg, hq “ nph, gq (i.e. that we

treat the dyads as non-directional), and the assumption that there are no elements of the

type npg, gq (i.e. that we consider only pairs between distinct units). Given a dyadic index

n, we also define the inverse correspondence ψ so that ψpnpg, hqq “ tg, hu. The model we

consider is the linear model:

(3.1) ynpg,hq “ β1xnpg,hq ` unpg,hq ,

where xn isK-dimensional, with the standard conditions that Erxnuns “ 0 and Erxnx
1
ns ą 0.

Our focus is on performing inference on the components of the regression parameter β.

Next, we present the dependence structure we will consider. Intuitively, we want ob-

servations that do not share a unit in common to be independent, but to allow correlation

between observations otherwise. The typical assumption stated in the literature (see for

example Aronow et al., 2015; Cameron and Miller, 2014) is that

Erunum|xn,xms “ 0, unless ψpnq X ψpmq ‰ H .

Although this assumption somewhat captures the intuition presented above, we will need to

sharpen it considerably in order to prove formal results about our model. We impose the

following dependence assumption on the data:

Assumption 3.2.1. tpxn, unqu
N
n“1 are identically distributed. For any two disjoint sub-

sets S1, S2 of t1, 2, ..., Nu, tpxn, unqunPS1 is independent of tpxm, umqumPS2 if ψpnqXψpmq “

H for every pair n,m of dyads such that n P S1,m P S2.
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Remark 3.2.1. Although we focus on the setting where our data is cross-sectional and

the dyads are non-directional, our analysis covers settings with directional dyads, as well

as panel-data with a finite number of time periods. For example, consider the following

panel-data version of our model:

ypg,hqt “ β1xpg,hqt ` γg ` γh ` αgh ` upg,hqt ,

where we have explicitly indexed observations by their units, and now observations are

indexed by pairs of units pg, hq as well as by time t “ 1, ..., T . Note that we include γg and

γh, which are unit-level fixed effects, as well as a dyad-level fixed effect αgh. Let :ypg,hqt, :xpg,hqt,

and :upg,hqt denote the random variables that result from performing a within transformation:

:ypg,hqt :“ ypg,hqt ´
1

T

T
ÿ

s“1

ypg,hqs ,

and similarly for :xpg,hqt and :upg,hqt. Then the transformed model

:ypg,hq “ :xpg,hqβ ` :upg,hq ,

where :ypg,hq and :upg,hq are T ˆ 1 stacked vectors and :xpg,hq is a T ˆK stacked matrix, can be

studied completely analogously to Model (3.1) above, with the assumptions Er :x1
pg,hq:upg,hqs “

0 and Er :x1
pg,hq :xpg,hqs ą 0 (these assumptions are implied by standard primitive conditions

on the original, untransformed model; see Wooldridge, 2010). The extension of our results

to settings with growing T is more complicated and beyond the scope of this paper, as this

would require additional assumptions on the nature of the dependence across time.
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Let β̂ “ pβ̂1, β̂2, ..., β̂Kq
1 be the OLS estimator of β, that is

β̂ “

˜

N
ÿ

n“1

xnx
1
n

¸´1 N
ÿ

n“1

xnyn .

In this paper, we focus on the use of β̂ as a means of forming a test-statistic to perform

inference on β. To that end, we study the asymptotic distribution of the following root:

Tk “
β̂k ´ βk
b

pVkk

,

where β̂k is the kth component of the OLS estimator of β and V̂kk is the kkth entry of

an appropriate estimator of its asymptotic variance. For a specific value β0k of βk we call

the resulting statistic the dyadic-robust t-statistic. As mentioned in the introduction, the

estimator of V̂ we consider here is a sandwich estimator known in the literature as the

dyadic-robust variance estimator:

V̂ “ p
N
ÿ

n“1

xnx
1
nq
´1
´

N
ÿ

n“1

N
ÿ

m“1

1n,mûnûmxnx
1
m

¯

p

N
ÿ

n“1

xnx
1
nq
´1 ,

where ûn “ yn´ β̂
1xn and 1n,m is an indicator function that equals 1 when ψpnqXψpmq ‰ H.

Our goal is to specify conditions under which Tk is asymptotically standard normal.

As explained in the introduction, previous work on the dyadic-robust variance estimator

either implicitly assumes an asymptotic normality result for Tk (Cameron and Miller, 2014;

Fafchamps and Gubert, 2007), or does not explore or employ such a result (Aronow et al.,

2015). The contribution of this paper is to provide general conditions under which Tk is

asymptotically normal, and develop a degrees of freedom correction guided by our results.
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3.2.2. A Key Condition for our Central Limit Theorem

To study the asymptotic distribution of Tk we will employ a central limit theorem for de-

pendency graphs proved in Janson (1988). A key condition in the theorem, which we denote

as Condition (2) in the appendix, plays a central role in our analysis. To simplify the expos-

ition of our results, we introduce Condition 3.2.1 below, which is a modified, but equivalent,

condition. Remark C.0.1 in the appendix establishes the equivalence of these two conditions.

For each unit g, let Mg be the number of dyads containing g. Recall that N is the total

number of dyads in the data. Define

MH
“ max

g
Mg, ML

“ min
g
Mg .

Note that by definition MH ď G´ 1 and that MLG
2
ď N ď MHG

2
.

Condition 3.2.1. LetMH be as above. Let σ2
N “ V arp

ř

n xnunq. Given some additional

assumptions (see Theorem C.0.1), a sufficient condition for Janson’s Theorem to apply in

our framework is that

p N
MH q

1{`MH

σN
Ñ 0 as N Ñ 8 ,

for some integer ` ě 3.

Intuitively, Janson shows that in our framework the expression above gives a bound on

the higher-order cumulants of the sequence of random variables we will study, and that these

cumulants vanishing is sufficient to establish asymptotic normality. A central theme of our

paper is the fundamental connection Condition 3.2.1 creates between MH and σ2
N . This

connection will be made more clear throughout the rest of Section 3.2.

Remark 3.2.2. It is important to emphasize that Condition 3.2.1 is simply a sufficient

condition for asymptotic normality in our setting. Throughout Sections 3.2 and 3.3, we
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use Condition 3.2.1 to motivate the assumptions we impose to ultimately prove our main

asymptotic normality result (Theorem 3.3.1). In Section 3.4 we perform a simulation study

that explores what can happen when Condition 3.2.1 does not hold. In Remark 3.3.2 we

comment on how our results would change if we were to use alternative central limit theorems

for dependency graphs.

3.2.3. Asymptotic Frameworks

We will now describe the two asymptotic frameworks that we consider in this paper. The

first asymptotic framework we consider is one whereMH (and thus alsoML) is bounded as

GÑ 8. This framework is relevant in settings where units have few links. Model S in Figure

3.1 presents a configuration of the dyads in which we would expect such an approximation

to be appropriate; note that there are 25 units (the grey nodes), but no units are contained

in more than 6 dyads (the black edges). We will call this framework AF1:

Assumption 3.2.2. (AF1) MH ă D for some constant D as GÑ 8.

We will see in Section 3.3 that boundingMH makes the analysis very clean, but AF1 may

not be an appropriate framework for many settings of interest. In particular, Cameron and

Miller (2014) suggest trade-data as an application where MH could be very large relative

to sample size. Model D in Figure 3.1 presents a configuration of the dyads such that every

unit is contained in a dyad with every other unit, which is the configuration employed in all

of the simulation results presented in Cameron and Miller (2014) and Aronow et al. (2015).

Given such a configuration, we may not expect AF1 to provide a good approximation in

this setting for large G, hence we will also study an asymptotic framework where we allow

MH Ñ 8 as GÑ 8. This setting is more complicated, and several subtle issues will arise.
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The first issue that arises is that allowing MH to grow as G Ñ 8 now also frees ML

to grow as well. The most flexible possible framework would be one where we make no

assumptions on ML and simply require MH Ñ 8. Unfortunately, in this case Janson’s

CLT cannot generally establish asymptotic normality when ML is finite and fixed or grows

too slowly. To illustrate, suppose that the error structure were of the form

unpg,hq “ αg ` αh ` εn ,

where αg, αh, εn are i.i.d. If ML grows at rate logpGq, MH grows at rate G, and all but

finitely many units form links at rate ML, then V arp
ř

n xnunq would grow at rate G2. It

follows that Condition 3.2.1 would not be satisfied, so that Janson’s CLT would not apply.

The simulations of Section 3.4 will show that this has implications for inference when the

number of dyads per unit varies wildly. In light of this, our second framework is given by:

Assumption 3.2.3. (AF2) ML ě cG for some positive constant c.

It is clear that this assumption is stronger than simply requiring that ML Ñ 8, as it

imposes an explicit rate of growth onML (andMH). It is possible to weaken this assumption

slightly, but pinning down this rate clarifies our analysis and simplifies our notation.

Remark 3.2.3. It is crucial to note that, although this framework allows every unit to

be linked together, this does not imply that every dyad can be correlated with every other

dyad: consider the dense configuration of Model D presented in Figure 3.1. By construction,

every dyad can be correlated with at most 46 other dyads, despite there being 300 dyads

total.

Model B in Figure 3.1 highlights the kind of configuration of the dyads alluded to above

that this framework may have trouble capturing: note that most of the units are only
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Figure 3.1. Clockwise from the top-left: Models S, D, and B with G “ 25.
Units are the grey nodes, dyads are the black edges.

contained in three dyads, but that two of the units are contained in many dyads. This

type of configuration causes MH to be very large relative to σN , which we have seen may

cause Condition 3.2.1 to fail. Configurations of this type can arise in empirical settings with

dyadic data: as an example, the application in Aronow et al. (2015) features a configuration

in which most of the units are contained in approximately 10 dyads, but a handful of units

are contained in upwards of 140 dyads. Model B will play an important role in the simulation

study of Section 3.4, as well as in developing our proposed degrees of freedom adjustment.
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3.2.4. The Rate of Growth of V arp
ř

n xnunq

We have already seen that the connection between the asymptotic framework and the rate

of growth of V arp
ř

n xnunq plays an important role in establishing Condition 3.2.1. In this

section we will highlight another important observation concerning the rate of growth of the

variance that is essential to the results presented in Section 3.3.

First consider AF1. We see immediately that imposing AF1 results in

V arp
N
ÿ

n“1

xnunq “
N
ÿ

n“1

N
ÿ

m“1

Covpxnun,xmumq

growing at rate N . Hence under AF1 we will make the following assumption on the rate of

growth:

Assumption 3.2.4.

Ω :“ lim
GÑ8

1

N
V arp

N
ÿ

n“1

xnunq “ lim
GÑ8

1

N

N
ÿ

n“1

N
ÿ

m“1

Covpxnun,xmumq is positive definite .

We have seen in Section 3.2 that under AF2, when we allow MH and ML to grow as

G Ñ 8, the analysis can become more complicated. To clarify the exposition, we first

consider a straightforward assumption that could be imposed under AF2:

Assumption 3.2.5.

Ω :“ lim
GÑ8

1

NG
V arp

N
ÿ

n“1

xnunq “ lim
GÑ8

1

NG

N
ÿ

n“1

N
ÿ

m“1

Covpxnun,xmumq is positive definite .

This assumption is completely analogous to the standard assumption made on the vari-

ance in clustered data with strong dependence, and is implicitly the assumption made in all

of the results in Aronow et al. (2015). Note that this assumption holds under an additive
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common shocks error specification:

unpg,hq “ αg ` αh ` εn ,

where αg, αh, εn are i.i.d, which is a specification considered in the simulations of both

Cameron and Miller (2014) and Aronow et al. (2015). More generally, Assumption 3.2.5

would be appropriate in applications where the dependence results in a positive correlation

between dyads.

It is important to point out, however, that AF2 does not imply the rate of growth for

V arp
ř

n xnunq given in Assumption 3.2.5. For example, if instead the data were simply i.i.d,

then V arp
ř

n xnunq would grow at rate N since Covpxnun,xmumq “ 0 for n ‰ m. In Section

3.4 we also consider a more interesting example: suppose we divide the units in the data

into two groups, which we’ll call GA and GB, and specify the error term as

unpg,hq “

$

’

’

&

’

’

%

´pαg ` αhq ` εn if g and h belong to different groups

αg ` αh ` εn if g and h belong to the same group

then by controlling the relative sizes of GA and GB, we can achieve growth rates of the

form NGr for any r P r0, 1s in Model D while still maintaining the maximal amount of

dependence (see the appendix for details). Such an error structure is a stylized example

of a situation where a shock to a unit could affect certain dyadic relations positively, while

affecting others negatively. These examples highlight the fact that Assumptions 3.2.1 and

AF2 can accommodate many plausible rates of growth of the variance. Since the goal of

inference using robust-variance estimators is to be as agnostic as possible about the specific

dependence structure in the data, we will consider these possibilities in our analysis. Our

second assumption on the rate of growth of the variance under AF2 is given by:
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Assumption 3.2.6.

Ω :“ lim
GÑ8

1

NGr
V arp

N
ÿ

n“1

xnunq “ lim
GÑ8

1

NGr

N
ÿ

n“1

N
ÿ

m“1

Covpxnun,xmumq is positive definite ,

for some r P r0, 1s.

Note that Assumption 3.2.5 is a special case of Assumption 3.2.6 with r “ 1.

3.3. Asymptotic Properties of Tk

Recall that our goal is to study the asymptotic distribution of

Tk “
β̂k ´ βk
b

pVkk

.

Although Fafchamps and Gubert (2007) motivate the construction of Tk by citing the work

of Conley (1999), asymptotic normality under our maintained assumptions does not follow

from his results. Theorem 3.3.1 contains our main result. Our development proceeds in two

steps: our first set of results establish that

τNpβ̂ ´ βq
d
ÝÑ Np0, V q ,

for some V to be defined later in the section. It will turn out that the rate τN depends on

both the specific characteristics of the dependence and the asymptotic framework considered.

Our second set of results establish under which additional conditions we get that

τ 2
N V̂

p
ÝÑ V .

By combining these two sets of results, we will see that Tk is asymptotically standard normal

under a range of assumptions.
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For all of the results that follow, we make the following support assumption:

Assumption 3.3.1. tpxn, unqu
N
n“1 have uniformly bounded support for all N .

Remark 3.3.1. We choose to present the results under a bounded support assumption

for expositional simplicity, but this assumption can be weakened at the expense of adding

extra conditions on the moments of px, uq, without altering the substantive conclusions of the

paper. See the remarks after the proofs of Proposition 3.3.2 and Proposition 3.3.5 (Remarks

C.0.2 and C.0.4, respectively) for further discussion.

3.3.1. Asymptotic Normality

Let us now study the asymptotic distribution of τNpβ̂´βq under both frameworks. Expanding

the expression:

τNpβ̂ ´ βq “ p
1

N

N
ÿ

n“1

xnx
1
nq
´1 τN
N

N
ÿ

n“1

xnun .

We show that the first term converges in probability to Erxnx
1
ns
´1 by showing that the

variance of each component of p1{Nq
řN
n“1 xnx

1
n converges to zero. We show that the second

term converges in distribution to a normal by Janson’s Theorem. First we state the result

under AF1:

Proposition 3.3.1. Under Assumptions AF1, 3.2.1, 3.2.4, and 3.3.1,

?
Npβ̂ ´ βq

d
ÝÑ Np0, V q ,

with V “ Epxnx
1
nq
´1ΩEpxnx

1
nq
´1, and Ω as in Assumption 3.2.4.

Note that under AF1 the rate τN is the standard
?
N . Intuitively, this is because AF1

imposes strong restrictions on the amount of dependence in the data.

Our asymptotic normality result under AF2 is:
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Proposition 3.3.2. Under Assumptions AF2, 3.2.1, 3.2.6 with r ą 0 and 3.3.1,

τNpβ̂ ´ βq
d
ÝÑ Np0, V q ,

where τN “
b

N
Gr

, V “ Epxnx
1
nq
´1ΩEpxnx

1
nq
´1, and Ω is as in Assumption 3.2.6.

Note that the rate of convergence τN is now scaled by the growth-rate of V arp
ř

n xnunq;

the smaller is r, the closer we get to the standard
?
N rate. Our result explicitly excludes

the case r “ 0, this is because with r “ 0 and all of our imposed assumptions, Condition

3.2.1 does not hold. In any case, the most likely situation in which r is exactly zero would

be if the data were in fact i.i.d, and asymptotic normality then follows from many standard

CLTs.

Although it may seem problematic at first that r will be unknown in practice, we will

see in the following subsection that it is not necessary to know r precisely in order to do

inference on βk.

Remark 3.3.2. To prove Propositions 3.3.1 and 3.3.2 we employ a CLT for dependency

graphs developed in Janson (1988). However, we could also consider using other results,

such as the Berry-Esseen bounds for dependency graphs developed in, for example, Baldi

and Rinott (1989), Penrose (2003), and Chen and Shao (2004). For our purposes it seems that

Janson’s CLT is as general (if not more general) than other available results: for example,

to prove Proposition 3.3.2 by employing the results in Baldi and Rinott (1989) or Penrose

(2003) would require us to assume that r ą 2{3, and the results in Chen and Shao (2004)

do not allow us to establish an asymptotic normality result under AF2 and our maintained

assumptions.
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3.3.2. Consistency of V̂

We now turn to our second set of results: under what additional assumptions will the dyadic-

robust variance estimator V̂ converge to the asymptotic variance V ? Recall that

V̂ “ p
N
ÿ

n“1

xnx
1
nq
´1Ω̂p

N
ÿ

n“1

xnx
1
nq
´1 ,

where

Ω̂ “
´

N
ÿ

n“1

N
ÿ

n1“1

1n,n1ûnûn1xnx
1
n1

¯

.

To prove that τ 2
N V̂

p
ÝÑ V we consider the “bread”, p

ř

n xnx
1
nq
´1, and the “meat”, Ω̂, of

the estimator separately. The convergence of p1{Nq
ř

n xnx
1
n to Epxnx

1
nq was proved when

deriving the asymptotic distribution of τNpβ̂ ´ βq. To show that pτN{Nq
2Ω̂

p
ÝÑ Ω, we show

convergence in mean-square. As before, the result under AF1 is relatively straightforward:

Proposition 3.3.3. Under Assumptions AF1, 3.2.1, 3.2.4, and 3.3.1, we have that

NV̂
p
ÝÑ V .

The result under AF2 will again need more qualifications. First we present the result under

Assumption 3.2.5:

Proposition 3.3.4. Under Assumptions AF2, 3.2.1, 3.2.5, and 3.3.1, we have that

pN{GqV̂
p
ÝÑ V .

Note that the rate has now slowed in accordance with the fact that the number of

dependencies is growing for each unit. A special case of Proposition 3.3.4 for ML “MH “
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G ´ 1 appears in Aronow et al. (2015), whose proof generalizes to ours. Our next result

generalizes Proposition 3.3.4 to the setting where instead we impose Assumption 3.2.6:

Proposition 3.3.5. Under Assumptions AF2, 3.2.1, 3.2.6 with r ą 1{2, and 3.3.1, we

have that

τ 2
N V̂

p
ÝÑ V ,

where τN is as in Proposition 3.3.2.

Note that we have restricted the rate of growth of V arp
ř

n xnunq even more than in

Proposition 3.3.2. We will provide some intuition as to why we require r ą 1{2 in this

result. In our proof we show convergence in mean-square, so heuristically we want to show

that V arppτ 2{N2qΩ̂q Ñ 0. It is the case that the variance of Ω̂ depends not only on the

covariances between observations, but on their dependence in general. Now, the larger is

r, the slower the growth of τN , and hence the faster the convergence of τ 2{N2 to zero.

For small values of r, the convergence of τ 2{N2 is too slow and cannot combat the growth

in dependencies present in the data. This means that we cannot formally establish the

consistency of V̂ when the growth of V arp
ř

n xnunq is slow but the dependencies in the data

are strong. We will study the implications of this via simulation in Section 3.4.

Remark 3.3.3. Note that Propositions 3.3.4 and 3.3.5 do not establish the consistency

of V̂ when the data are i.i.d. As an aside, we prove this result separately in Proposition 3.3.6

below.

Proposition 3.3.6. Under Assumptions AF2, 3.3.1 and the assumption that tpxn, unqu

are i.i.d, we have that

NV̂
p
ÝÑ V .
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Remark 3.3.4. Cameron and Miller (2014) make the observation that there is no guar-

antee that V̂ is positive semi-definite in finite samples. To account for this possibility they

suggest the following modification: Consider the unitary decomposition V̂ “ UΞU 1 where

Ξ “ diagrλ1, ..., λks is the diagonal matrix of eigenvalues of V̂ . Cameron and Miller (2014)

suggest replacing V̂ by

V̂ ` “ UΞ`U 1 ,

where Ξ` “ diagrλ`1 , ..., λ
`
k s, λ

`
j :“ maxpλj, 0q for all j. This modification guarantees that

V̂ ` is positive semi-definite. For the purposes of doing inference it would be even better if

our estimator were positive-definite to guarantee that it is invertible. Politis (2011) suggests

such a modification for a HAC estimator in a time-series setting, where rλ`j :“ maxpλj, εnq

with εn Ñ 0 at a suitable rate, and proves its consistency there. Additionally, Cameron and

Miller (2014) suggest a simple finite sample correction for V̂ ` which may help alleviate some

of its finite-sample bias.

3.3.3. Asymptotic Normality of Tk

With all of these results in hand, we can now state the main result of the paper:

Theorem 3.3.1. Under Assumptions 3.2.1, 3.3.1, and either:

‚ AF1 and Assumption 3.2.4,

‚ AF2 and Assumption 3.2.5,

‚ AF2 and Assumption 3.2.6 with r ą 1
2
,

we have that,

Tk “
β̂k ´ βk
b

pVkk

d
ÝÑ Np0, 1q .
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Remark 3.3.5. With Theorem 3.3.1 in hand it is clear that a hypothesis test that uses

the dyadic-robust t-statistic and the quantiles of a Np0, 1q distribution as critical values will

be asymptotically valid. The same can be said for the coverage of an analogous confidence

interval.

We want to highlight two appealing aspects of this result. The first is that the limit

distribution is the same under both asymptotic frameworks. The second is that Tk features

a type of “self-normalization” of τN . Specifically, although the rate of convergence of the

estimator depends on which asymptotic framework we consider and which assumptions we

impose on the dependence, precise knowledge of this rate is not required to construct Tk. In

this respect our paper is philosophically similar to Hansen (2007), where he shows that the

robust t-statistic in the linear panel model is asymptotically normal under various assump-

tions about the dependence across time. There is, however, one important caveat to our

claim: under AF2 with Assumption 3.2.6, we only obtain the result when we impose that

r ą 1{2. This means that we have not established an asymptotic normality result when the

configuration of the dyads is dense and the dependence features many positively and negat-

ively correlated dyads. We treat the results under Assumption 3.2.6 as a form of robustness

to small deviations from Assumption 3.2.5, which is the standard assumption imposed in the

rest of the literature on strong dependence (i.e. clustering and its variations). In Section 3.4,

we will use the insights we have gained from our formal analysis of the problem to conduct

a simulation study under a broader range of designs than those considered previously in the

literature.

Remark 3.3.6. Theorem 3.3.1 is sufficiently general to accommodate the theoretical

setup considered in Aronow et al. (2015), as well as the simulation designs in Aronow et al.
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(2015) and Cameron and Miller (2014). In their settings, MH “ML “ G ´ 1, and r “ 1,

so that Theorem 3.3.1 applies under Assumptions AF2 and 3.2.5.

Remark 3.3.7. Cameron and Miller (2014) and Aronow et al. (2015) also consider

the use of the dyadic-robust variance estimator in settings with M-estimators or GMM

estimators. Our results can be extended to these settings under a set of “classical” regularity

conditions (see Van der Vaart, 1998, Section 5.6) which include, for example, the logit or

probit models considered in Cameron and Miller (2014). However, extending our results to

M-estimation problems under more general regularity conditions (see for example Van der

Vaart, 1998, Theorem 5.23) may require different tools, and hence different assumptions,

than those considered in this paper. To this end, theoretical tools recently developed in Lee

and Song (2017) look promising.

3.4. Simulation Evidence and a Degrees of Freedom Correction

In this section we perform a simulation-study to assess the accuracy of the normal ap-

proximation in finite samples, and the validity of the approximation for DGPs that do not

satisfy the results presented in Section 3. In light of our results, we propose a novel degrees

of freedom correction and study its performance via simulation as well. We use our formal

results to guide the choice of designs. In an attempt to make the link between the simulations

and our results as clear as possible, we consider simple designs.

The model we use throughout is a special case of what we have studied in Section 3:

yn “ 1` βxn ` un ,

with xn a scalar and β “ 0. We consider two different specifications of xn:

‚ When the un are i.i.d, xn „ U r0, 1s i.i.d, so that pxn, unq are i.i.d.
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‚ When un are not i.i.d, xnpg,hq “ |zg ´ zh| where zg „ U r0, 1s i.i.d. for g P G.

As pointed out in Remark 3.3.4, it is possible that V̂ is not positive definite in finite

samples, in particular when G is small. For the simulations we perform, we use the estimator

rV which is constructed by an analogous construction to V̂ ` presented in Remark 3.3.4 but

with λ̃`j “ maxpλj, εq for ε “ 10´7. Whether or not we use rV , or V̂ and drop those iterations

where V̂ is non-positive does not materially affect the results. In particular, for the sample

sizes in which we get appropriate coverage, V̂ and Ṽ are always equal. Although we do

not employ the finite sample corrections to V̂ suggested in Cameron and Miller (2014), we

comment on them briefly in Section 4.3 below.

3.4.1. Designs with Varying Levels of Sparsity

First we will study the normal approximation under varying levels of “sparsity” of the dyads

relative to the number of units, while maintaining the standard variance Assumptions 3.2.4

and 3.2.5. We will consider three possible levels of sparsity:

‚ Model D (dense) Every possible dyad is present in the data.

‚ Model S (sparse) A design whereMH “ 5 andML “ 2 regardless of sample size.

‚ Model B (both) A design where 0.5 logpGq ď ML ď 1.5 logpGq and 0.5G ď

MH ď G ´ 1, such that V arp
ř

n xnunq grows slower than required in Proposition

3.3.2.

See the appendix for the specific construction of Models S and B. Figure 3.1 in Section

3.2 was generated using these designs for G “ 25. Given the results presented in Section 3.3,

we expect Models D and S to behave well in large samples since they satisfy the conditions of

our theorem. Model B does not satisfy the conditions of our theorem since the rate of growth
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ofML is too slow. We saw in Section 3.2 that this has the potential to make V arp
ř

n xnunq

grow too slowly for Janson’s CLT to apply.

We will study these three models under two possible specifications of the error term. In

the first specification, un „ U r´
?

3,
?

3s i.i.d, so that pxn, unq are simply i.i.d. In the second

specification we set:

unpg,hq “ αg ` αh ` εn ,

where αg „ U r´
?

3,
?

3s i.i.d for g “ 1, 2, ...G and εn „ U r´
?

3,
?

3s i.i.d for n “ 1, 2, ..., N .

This is the additive common-shocks model discussed in Section 3.3.

We perform 10,000 Monte Carlo iterations and record the number of times a 95% confid-

ence interval based on the normal approximation contains the true parameter β “ 0. Table

1 presents the results under each specification. Recall that G is the number of units in the

data.

G
Specification 10 25 50 100 250

Model D
i.i.d 69.8 85.1 91.3 93.2 94.4

(0.46) (0.36) (0.28) (0.25) (0.23)
unit-level shock 63.7 86.2 92.1 93.6 94.3

(0.48) (0.34) (0.27) (0.24) (0.23)

Model S
i.i.d 70.0 84.8 90.1 92.8 94.5

(0.46) (0.36) (0.30) (0.26) (0.23)
unit-level shock 66.3 82.8 90.2 92.9 94.0

(0.47) (0.38) (0.30) (0.26) (0.24)

Model B
i.i.d 69.6 82.4 86.9 89.3 93.1

(0.46) (0.38) (0.34) (0.31) (0.25)
unit-level shock 65.4 81.0 84.5 86.1 89.4

(0.48) (0.39) (0.36) (0.35) (0.31)

Table 3.1. Coverage percentages of a 95% CI for β “ 0, simulation SEs in
parentheses.



128

We note that for Models D and S, we get appropriate coverage in large samples. This

is not surprising given our results, and is in line with the simulation results presented in

Cameron and Miller (2014) and Aronow et al. (2015). It is interesting to note that, despite

their similar performances, there is significantly less data present in the simulations for

a given G under Model S than under Model D. For example, at G “ 50 there are 1225

data points under Model D but only 86 data points under Model S. The fact that the

approximations are comparable suggests that estimating the variance is much harder when

the dyads are dense relative to the number of units. This makes sense seeing as the number

of potential dependencies grows quadratically in Model D but is fixed in Model S.

Given that it is the number of units that determines the accuracy of the approximation, it

is also clear that we require many units to get adequate coverage. In many settings of interest

(for example, social networks) the number of units required should not be insurmountable. In

other settings such as international trade, the number of units required could be prohibitive.

The final important observation we make is that the true coverage under Model B with

unit-shocks, which was designed to fail the conditions of our theorem, is consistently worse

than under either Models D and S, even when G is relatively large. In fact, even with G

as large as 800 (not formally reported) we do not see coverage higher than 92% using this

design. A similar phenomenon has been documented for the linear model with one-way

clustering when cluster sizes differ “wildly”, in MacKinnon and Webb (2017) and Carter

et al. (2017). Because configurations in the spirit of Model B do arise in applications (for

example, the empirical application in Aronow et al., 2015), the degrees of freedom correction

we propose in the next section is specifically designed to address this issue.
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3.4.2. Designs with Varying Growth Rates of V arp
ř

n xnunq

In this section we study the accuracy of a normal approximation under Assumption 3.2.6,

which allows varying rates of growth of V arp
ř

n xnunq. We noted in Section 3.3 that even

though we cannot expect to know the exact rate in practice, using Tk to test hypotheses

does not require this knowledge. However, we also saw in Section 3.3 that when the model

is dense, Proposition 3.3.5 does not establish consistency of V̂ if the data is such that the

growth rate of V arp
ř

n xnunq is too slow while still having many dependencies, which would

be the case if the dependence features many positively and negatively correlated dyads.

Throughout this section we consider Models D and S. Our specification is constructed

as follows: we divide the units in the data into two groups, which we call GA and GB, and

specify the error term as

unpg,hq “

$

’

’

&

’

’

%

´pαg ` αhq ` εn if g and h belong to different groups.

αg ` αh ` εn if g and h belong to the same group.

Where αg „ U r´
?

3,
?

3s i.i.d for g “ 1, 2, ...G and εn „ U r´
?

3,
?

3s i.i.d for n “ 1, 2, ..., N .

By controlling the relative sizes of GA and GB, we can achieve growth rates of the form

NGr for any r P r0, 1s in Model D while still maintaining the maximal amount of dependence

(see the appendix for details). Although it is clear that this design is artificial, we think it

is reasonable to consider situations where shocks at the unit-level can have differing effects

across dyads.

As before, we perform 10,000 Monte Carlo iterations and record the number of times

a 95% confidence interval based on the normal approximation contains the true parameter

β “ 0. Table 2 presents the results for varying levels of r.
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r G
10 25 50 100 250

Model D

0 65.5 75.9 80.4 83.6 84.0
(0.48) (0.43) (0.40) (0.37) (0.37)

0.25 65.2 77.3 82.8 86.7 89.8
(0.48) (0.42) (0.38) (0.34) (0.30)

0.5 65.2 80.1 87.3 91.5 94.7
(0.48) (0.40) (0.33) (0.28) (0.22)

0.75 65.3 82.6 91.1 93.9 94.4
(0.48) (0.38) (0.28) (0.24) (0.23)

1 63.7 82.6 92.1 93.6 94.3
(0.48) (0.38) (0.27) (0.24) (0.23)

Model S

0 68.2 84.1 90.3 92.8 93.8
(0.47) (0.37) (0.30) (0.26) (0.24)

0.25 68.6 84.1 90.1 92.9 94.2
(0.46) (0.37) (0.30) (0.26) (0.23)

0.5 68.6 84.0 90.1 92.5 94.3
(0.46) (0.37) (0.30) (0.26) (0.23)

0.75 67.5 83.4 90.4 92.6 94.1
(0.47) (0.37) (0.29) (0.26) (0.24)

1 66.3 82.8 90.2 92.9 94.0
(0.47) (0.38) (0.30) (0.26) (0.24)

Table 3.2. Coverage percentages of a 95% CI for β “ 0. Simulation SEs in
parentheses.

Unsurprisingly given our results, coverage probabilities under Model S are at the nominal

level in large samples. The results under Model D are more interesting: recall that Proposi-

tion 3.3.5 established consistency only for r ą 0.5, and indeed we see that we get appropriate

coverage in large samples for r “ 0.5, 0.75, and r “ 1. In contrast, our simulations display

poor coverage in large samples for r “ 0 and r “ 0.25, where Proposition 3.3.5 does not

establish consistency. This suggests that V̂ may be a poor approximation of the true asymp-

totic variance when there are a roughly equal number of negatively and positively correlated

observations in the data. For this reason we feel that it is more appropriate to treat the
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results under Assumption 3.2.6 as a form of robustness to small deviations from Assumption

3.2.5, which is the standard assumption imposed in the literature on strong dependence.

3.4.3. A Degrees of Freedom Correction

Given the simulation results in the previous sections, and the fact that configurations like

Model B do arise in empirical applications, we propose a new degrees of freedom correction

to help guard against the potential for under-coverage. Instead of using the critical values

from a Np0, 1q distribution to perform inference, we propose using the critical values from a

tκ distribution where κ is given by

κ “ G ¨

ˆ

medgtMgu

MH

˙

,

where medgtMgu denotes the median of the tMgu
G
g“1. This degrees of freedom adjustment

is similar in spirit to those proposed for analogous inference procedures using robust vari-

ance estimators in other settings: for example, Bell and McCaffrey (2002), Donald and Lang

(2007), and Imbens and Kolesar (2016) propose degrees of freedom adjustments for the het-

eroskedastic and clustered data settings (for a textbook treatment, see Angrist and Pischke,

2008). Although it is ad-hoc, the intuition behind our choice of κ is simple: when the con-

figuration of the dyads satisfies our asymptotic normality assumptions, as in Models S and

D, then medgtMgu{MH is large, and hence the critical values derived from a tκ distribution

approach the critical values derived from a Np0, 1q distribution for large G. On the other

hand, for configurations like Model B where most of the units are contained in a few dyads

but some units are contained in many dyads, we get that medgtMgu{MH is very small,

which results in a down-weighting of κ and hence an enlargement of the critical value. In

Table 3 we repeat our first simulation exercise, but with our degrees of freedom adjustment.
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Although we still see under-coverage for very unbalanced configurations such as Model B,

we do a modest job of improving coverage in this setting while maintaining proper coverage

in Models S and D; hence we see that a major benefit of employing this degrees of freedom

correction is that it does not require the researcher to take a stand on whether or not their

configuration is “well-behaved”. Moreover, this degrees of freedom correction could easily be

implemented in any software package that computes dyadic standard errors and confidence

intervals. Our simulations suggest that, by combining our degrees of freedom correction with

the finite sample corrections for V̂ presented in Cameron and Miller (2014), inference for

most configurations of at least 150 units should behave as expected.

G
Specification 10 25 50 100 250

Model D
i.i.d 73.1 86.4 91.8 93.5 94.5

(0.44) (0.34) (0.27) (0.25) (0.23)
unit-level shock 67.6 87.7 92.8 93.9 94.5

(0.47) (0.33) (0.26) (0.24) (0.23)

Model S
i.i.d 76.7 87.7 91.8 93.4 94.7

(0.43) (0.33) (0.27) (0.25) (0.22)
unit-level shock 73.2 86.2 91.6 93.6 94.2

(0.44) (0.34) (0.27) (0.25) (0.23)

Model B
i.i.d 74.5 88.3 92.6 94.5 95.8

(0.46) (0.32) (0.26) (0.23) (0.2)
unit-level shock 69.5 87.2 91.7 93.6 93.4

(0.46) (0.33) (0.27) (0.25) (0.25)

Table 3.3. Coverage percentages of a 95% CI for β “ 0, with tκ critical vaues.
Simulation SEs in parentheses.

3.5. Conclusion

In this paper we have established a range of conditions under which the dyadic-robust

t-statistic is asymptotically normal. We have also seen that in situations where our theorem

does not apply, using a normal approximation of Tk for inference may not be appropriate
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even for reasonable sample sizes. Our analysis suggests that, when we combine our degrees

of freedom correction with the finite-sample corrections to V̂ given in Cameron and Miller

(2014), inference should not be problematic for most datasets with roughly 150 units. How-

ever, if the data features a roughly equal number of positively and negatively correlated

dyads, the dyadic-robust variance estimator may not provide a suitable approximation to

the asymptotic variance. In our simulations this translated into confidence intervals that

covered less often than the nominal coverage dictated, even in large samples. From a the-

oretical perspective it would be ideal to have a method of inference that is robust to this

issue, but we expect that practitioners would consider such situations pathological in most

settings of interest.

In our opinion the most pressing issue to explore is that, as pointed out in our simulations,

the normal approximation of Tk can be very poor when we do not have a lot of units in

the data. A similar problem arises in the clustered-data setting, and recent papers have

studied solutions for inference with few or even finitely many clusters (see Bester et al.,

2011; Cameron et al., 2008; Canay et al., 2017; Ibragimov and Müller, 2010, 2016, for recent

work in this area). A very promising option has been recently proposed in Menzel (2017),

who develops a bootstrap procedure for multiway/dyadic clustering that provides refinements

whenever the limiting distribution is Gaussian. It would be interesting to see what other

techniques could be adapted to the dyadic data setting as well.
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APPENDIX A

Appendix to Chapter 1

A.1. Proofs of Main Results in Chapter 1

The proof of Theorem 3.3.1 requires some preliminary machinery which we develop in

Appendix A.2. In this section we take the following facts as given:

‚ We select a representative out of every equivalence class T P T by defining an explicit

labeling of the leaves, which we call the canonical labeling (Definition A.2.1).

‚ We endow T with a metric ρp¨, ¨q that makes pT , ρq a compact metric space (Defin-

ition A.2.2, Lemma A.2.2).

‚ We prove that V p¨q is continuous in ρ (Lemma A.2.1).

‚ Let T ˚ be the set of minimizers of V p¨q, then it is the case given our assumptions

that

inf
T˚PT ˚

ρprTm, T
˚
q
a.s.
ÝÝÑ 0 ,

asmÑ 8 (note that ρp¨, ¨q is measurable due to the separability of T ). Furthermore,

there exists a sequence of σtpWiq
m
i“1u{BpTLq-measurable trees T̄m P T ˚ such that

ρprTm, T̄mq
a.s.
ÝÝÑ 0 .

(Lemma A.2.4)

Remark A.1.1. To simplify the exposition, we derive all our results for the subset of

TL which excludes trees with empty leaves. In other words, this means that we will only

consider trees of depth L with exactly 2L leaves.



150

Proof of Theorem 3.3.1

Proof. By the derivation in the proof of Theorem 3.1 in Bugni et al. (2018), we have

that
?
Npθ̂pT̂ q ´ θq “

K
ÿ

k“0

”

Ω1pk; T̂ q ´ Ω0pk; T̂ q
ı

`

K
ÿ

k“0

Θkpk; T̂ q ,

where

Ωapk;T q :“
Npk;T q

Napk;T q

«

1
?
N

N
ÿ

i“1

1tAipT q “ a, Si “ kuψipa;T q

ff

,

with the following definitions:

ψipa;T q :“ Yipaq ´ ErYipaq|SpXqs ,

Npk;T q :“
N
ÿ

i“1

1tSi “ ku ,

Napk;T q :“
N
ÿ

i“1

1tAipT q “ a, Si “ ku ,

and

ΘkpT q :“
?
N

ˆ

Npk;T q

N
´ ppk;T q

˙

rEpY p1q|SpXq “ kq ´ EpY p0q|SpXq “ kqs2 .
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Note that by Assumptions 1.2.1 and 1.3.1, Ωap0; T̂ q and Θp0; T̂ q are both oP p1q, so we omit

them for the rest of the analysis. To prove our result, we study the process

OpT q :“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Ω0p1;T q

Ω1p1;T q

Ω0p2;T q

...

Ω1pK;T q

Θp1;T q

...

ΘpK;T q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.(A.1)

By Lemma A.1.1, we have that

OpT̂mq
d
“ ŌpT̄mq ` oP p1q ,

where Ōp¨q is defined in Lemma A.1.1 and T̄m P T ˚ is defined in Lemma A.2.4 (note that we

have explicitly indexed the trees by the pilot sample index m). Hence

?
Npθ̂pT̂mq ´ θq

d
“B1ŌpT̄mq ` oP p1q ,

where B is the appropriate vector of ones and negative ones to collapse ŌpT̄ q:

B1 “ r´1, 1,´1, 1, . . . , 1, 1, 1, . . . , 1s .

Now, we study ŌpT̄mq conditional on the sigma algebra generated by all of the pilot data:

σtpWjq
8
j“1u. Note that T̄m is a measurable function of the pilot data and that all other

sources of randomness in ŌpT̄mq are independent of the pilot data, so that we can “treat”
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T̄m as a deterministic sequence after conditioning (see Remark A.1.2). Fix a subsequence T̄mj

of T̄m. By Lemma A.2.4, T̄m P T ˚ which is a compact set, so that T̄mj contains a convergent

(sub)subsequence:

T̄mj` Ñ T̄ ˚ ,

where T̄ ˚ is in T ˚ and convergence is with respect to the metric we define in Appendix A.2.

Now by repeating many of the arguments of Lemma A.1.1,

ŌpT̄mj` q “ ŌpT̄ ˚q ` oP p1q ,

conditional on the pilot data. By the partial sum arguments in Lemma C.1. of Bugni et al.

(2018),

ŌpT̄ ˚q d
ÝÑ N

¨

˚

˝

¨

˚

˝

0

0

˛

‹

‚

,

¨

˚

˝

Σ1pT̄
˚q 0

0 Σ2pT̄
˚q

˛

‹

‚

˛

‹

‚

conditional on the pilot data, where Σ1pT̄
˚q and Σ2pT̄

˚q are such that

B1ŌpT̄ ˚q d
ÝÑ Np0, V ˚q ,

which follows from the fact that, by definition, every T P T ˚ is a minimizer of our variance.

Hence we have that

B1ŌpT̄mj` q
d
ÝÑ Np0, V ˚q ,

conditional on the pilot data, and so since every subsequence of T̄m contains a sub-sub

sequence that converges to the same value, we conclude that

B1ŌpT̄mq
d
ÝÑ Np0, V ˚q ,
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conditional on the pilot data. By the Dominated Convergence Theorem we get that this

convergence holds unconditionally as well. It thus follows that

?
Npθ̂pT̂ q ´ θq

d
ÝÑ Np0, V ˚q ,

as desired.

Lemma A.1.1. Given the Assumptions required for Theorem 3.3.1,

OpT̂ q d“ ŌpT̄ q ` oP p1q ,

where Op¨q is defined in the proof of Theorem 3.3.1 and Ōp¨q is defined in the proof of this

result.

Proof. By a slight modification of the argument in Lemma C1 in Bugni et al. (2018),

we have that

OpT̂ q d“ rOpT̂ q ,

where

rOpT q :“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

rΩ0p1;T q

rΩ1p1;T q

rΩ0p2;T q

...

Θp1;T q

...

ΘpK;T q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,(A.2)
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with

rΩapk;T q “
Npk;T q

Napk;T q

»

–

1
?
N

NpF̂ pk;T q`F̂a`1pk;T qq
ÿ

i“NpF̂ pk;T q`F̂apk;T qq`1

Gk
apUi,paqpkq;T q

fi

fl ,

with the following definitions: tUi,paqpkqu
N
i“1 are i.i.d U r0, 1s random variables generated

independently of everything else, and independently across pairs pa, kq, Gk
ap¨ ;T q is the inverse

CDF of the distribution of ψpa;T q|SpXq “ k, F̂ pk;T q :“ 1
N

řN
i“1 1tSi ă ku, and F̂apk;T q :“

1
N

řN
i“1 1tSi “ k,Ai ă au. Note that here it is important that we argue that this is true for

T̂ and not just pointwise in T P T : to do this we repeat the argument in Bugni et al. (2018)

for each T and then argue by conditioning on the pilot data.

Let us focus on the term in brackets. Fix some a and k for the time being, and let

G :“ tGk
ap¨ ;T q : T P T u

be the class of all the inverse CDFs defined above, then the empirical process ηN : r0, 1sˆG Ñ

R defined by

ηNpu, fq :“
1
?
N

tNuu
ÿ

i“1

fpUiq ,

is known as the sequential empirical process (see Van der Vaart and Wellner (1996)) (note

that by construction ErfpUiqs “ 0). By Theorem 2.12.1 in Van der Vaart and Wellner

(1996), ηN converges in distribution to a tight limit in `8pr0, 1s ˆ Gq if G is Donsker, which

follows by Lemma A.1.4. It follows that ηN is asymptotically equicontinuous in the natural

(pseudo) metric

d ppu, fq, pv, gqq “ |u´ v| ` ρP pf, gq ,

where ρP is the variance pseudometric. Note that since Ui „ U r0, 1s and ErfpUiqs “ 0

for all f P G, ρP is equal to the L2 norm || ¨ ||. Define F pk;T q :“ P pSpXq ă kq and

Fapk;T q :“
ř

jăa ppk;T qπjpkq, where π0pkq :“ 1 ´ πpkq, π1pkq :“ π, then it follows by
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Lemmas A.1.2, and A.1.5 that:

|F̂apk; T̂ q ´ Fapk; T̄ q|
p
ÝÑ 0 ,

|F̂ pk; T̂ q ´ F pk; T̄ q|
p
ÝÑ 0 ,

||Gk
ap¨ ; T̂ q ´G

k
ap¨ ; T̄ q||

p
ÝÑ 0 ,

where T̄ P T ˚ as defined in Lemma A.2.4. Hence we have by asymptotic equicontinuity that

ηN

´

F̂ pk; T̂ q ` F̂apk; T̂ q, Gk
ap¨ ; T̂ q

¯

“ ηN
`

F pk; T̄ q ` Fapk; T̄ q, Gk
ap¨ ; T̄ q

˘

` oP p1q .

By Lemma A.1.3,

Npk; T̂ q

Napk; T̂ q
“

1

πpk; T̄ q
` oP p1q .

Using the above two expressions, it can be shown that

rΩapk; T̂ q “ Ω̄apk; T̄ q ` oP p1q ,

where

Ω̄apk;T q :“
1

πpk;T q

»

–

1
?
N

tNpF pk;T q`Fa`1pk;T qqu
ÿ

i“tNpF pk;T q`Fapk;T qqu`1

Gk
apUi,paqpkq;T q

fi

fl .

Now we turn our attention to Θpk;T q. To show that

Θpk; T̂ q “ Θpk; T̄ q ` oP p1q ,

we consider the following expansion:

?
N

ˆ

Npk;T q

N
´ ppk;T q

˙

“
?
N

ˆ

npk;T q

n

n

N
´
npk;T q

n

˙

`

?
N
?
n

?
n

ˆ

npk;T q

n
´ ppk;T q

˙

,
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where we recall that Npkq “ npkq for k ą 0. The result then follows by Assumption 1.3.1,

Lemma A.2.4 and standard empirical process results for

?
n

ˆ

npk;T q

n
´ ppk;T q

˙

,

since the class of indicators t1tSpXq “ ku : S P Su is Donsker for each k (since the partitions

are rectangles and hence for a fixed k we get a VC class). Finally, let

ŌpT q :“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Ω̄0p1;T q

Ω̄1p1;T q

Ω̄0p2;T q

...

Θp1;T q

...

ΘpK;T q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,(A.3)

then we have shown that

OpT̂ q d“ ŌpT̄ q ` oP p1q,

as desired.

Remark A.1.2. We treated various objects as “fixed” by conditioning on the sigma

algebra generated by the pilot data. These arguments can be made more formal by employ-

ing the following substitution property of conditional expectations (see Bhattacharya and

Waymire (2007)):

Let W , V be random maps into pS1,S1q and pS2,S2q, respectively. Let κ be a measurable

function on pS1ˆS2,S1ˆS2q. If W is H-measurable, and σpV q and H are independent, and
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E|κpW,V q| ă 8, then

ErκpW,V q|Hs “ hpW q ,

where hpwq :“ Erκpw, V qs.

Proof of Theorem 1.3.2

Proof. Adapting the derivation in Theorem 3.3 of Bugni et al. (2018), and using the

same techniques developed in the proof of Theorem 3.3.1 of this paper, it can be shown that

V̂ pT̂ q
d
“V pT̄ q ` oP p1q .

By definition, T̄ P T ˚ so that the result follows.

Proof of Proposition 1.3.2

Proof. By definition,

n1pkq

n
“

tnpkqπpkqu

n
.

We bound the floor function from above and below:

πpkq
npkq

n
ď
n1pkq

n
ď πpkq

npkq

n
`

1

n
.

We consider the lower bound (the upper bound proceeds identically). It suffices to show

that

sup
TPT

ˇ

ˇ

ˇ

ˇ

npk;T q

n
´ ppk;T q

ˇ

ˇ

ˇ

ˇ

p
ÝÑ 0 .

Since the partitions are rectangles, for a fixed k we get a VC class and hence by the Glivenko-

Cantelli theorem the result follows.

Proof of Proposition 1.3.1
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Proof. First note that, for a given realization of the data, there exists an optimal choice

of π for every S P SL by continuity of rVmpT q in π (which we’ll call π˚pSq), so our task is

to choose pS, π˚pSqq to minimize rVmpT q. Given this, note that for a given realization of

the data, the empirical objective rVmpT q can take on only finitely many values, and hence a

minimizer rT exists. Re-write the population-level variance V pT q as follows:

V pT q “ ErνT pXqs ,

where

νT pxq “

„

σ2
1,Spxq

πpSpxqq
´

σ2
0,Spxq

1´ πpSpxqq
` pθSpxq ´ θq

2



,

σ2
a,Spxq “ V arpY paq|SpXq “ Spxqq ,

θSpxq “ ErY p1q ´ Y p0q|SpXq “ Spxqs .

Write rVmpT q as

rVmpT q “
1

m

m
ÿ

i“1

ν̂T pXiq ,

with

ν̂T pxq “

„

σ̂2
1,Spxq

πpSpxqq
´

σ̂2
0,Spxq

1´ πpSpxqq
` pθ̂Spxq ´ θ̂q

2



,

where the hats in the definition of ν̂ simply denote empirical analogs. For the sake of the

proof we also introduce the following intermediate quantity:

VmpT q “
1

m

m
ÿ

i“1

νT pXiq .
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Now, let T ˚ be any minimizer of V pT q (which exists by Lemma A.2.4), then

V prT q ´ V pT ˚q “ V prT q ´ rVmprT q ` rVmprT q ´ V pT
˚
q

ď V prT q ´ rVmprT q ` rVmpT
˚
q ´ V pT ˚q

ď 2 sup
TPT

|rVmpT q ´ V pT q| .

So if we can show

sup
TPT

|rVmpT q ´ V pT q|
a.s
ÝÑ 0 ,

then we are done.

To that end, by the triangle inequality:

sup
TPT

|rVmpT q ´ V pT q| ď sup
TPT

|rVmpT q ´ VmpT q| ` sup
TPT

|VmpT q ´ V pT q| ,

so we study each of these in turn. Let us look at the second term on the right hand side.

This converges almost surely to zero by the Glivenko-Cantelli theorem, since the class of

functions tνT p¨q : T P T u is Glivenko-Cantelli (this can be seen by the fact that νT p¨q can be

constructed through appropriate sums, products, differences and quotients of various types

of VC-subgraph functions, and by invoking Assumption 1.2.2 to avoid potential degeneracies

through division). Hence it remains to show that the first term converges a.s. to zero.

Re-writing:

rVmpT q “
K
ÿ

k“1

«˜

1

m

m
ÿ

i“1

1tSpXiq “ ku

¸

ˆ

σ̂2
1,Spkq

πpkq
´

σ̂2
0,Spkq

1´ πpkq
` pθ̂Spkq ´ θ̂q

2

˙

ff

,

and

VmpT q “
K
ÿ

k“1

«˜

1

m

m
ÿ

i“1

1tSpXiq “ ku

¸

ˆ

σ2
1,Spkq

πpkq
´

σ2
0,Spkq

1´ πpkq
` pθSpkq ´ θq

2

˙

ff

,
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where, through an abuse of notation, we define σ2
a,Spkq :“ V arpY paq|SpXq “ kq etc. By

the triangle inequality it suffices to consider each difference for each k P rKs individually.

Moreover, since the expression 1
m

řm
i“1 1tSpXiq “ ku is bounded, we can factor it out and

ignore it in what follows. It can be shown by repeated applications of the triangle inequality,

Assumption 1.2.2, the Glivenko-Cantelli Theorem and the following expression for condi-

tional expectation:

ErY |SpXq “ ks “
ErY 1tSpXq “ kus

P pSpXq “ kq
,

that

sup
TPT

ˇ

ˇ

ˇ

ˇ

ˆ

σ̂2
1,Spkq

πpkq
´

σ̂2
0,Spkq

1´ πpkq
` pθ̂Spkq ´ θ̂q

2

˙

´

ˆ

σ2
1,Spkq

πpkq
´

σ2
0,Spkq

1´ πpkq
` pθSpkq ´ θq

2

˙ˇ

ˇ

ˇ

ˇ

a.s
ÝÑ 0 .

Hence, we see that our result follows.

Proof of Proposition 1.3.3

Proof. For simplicity of exposition suppose that V ˚1 ą V ˚2 ą ... ą V ˚
L̄

. It suffices to

show that
ˇ

ˇ

ˇ

rV p1qprT
p2q
L q ´ V ˚L

ˇ

ˇ

ˇ

a.s
ÝÑ 0 ,

for each L, and similarly with 1 and 2 reversed. Then we he have that

rV CV
L

a.s
ÝÑ V ˚L ,

and hence

L̂
a.s
“ L̄ ,

for m sufficiently large. To that end, by the triangle inequality

ˇ

ˇ

ˇ

rV p1qprT
p2q
L q ´ V ˚L

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

rV p1qprT
p2q
L q ´ rV p2qprT

p2q
L q

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

rV p2qprT
p2q
L q ´ V ˚L

ˇ

ˇ

ˇ
.
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Consider the second term on the RHS, applying the triangle inequality again,

ˇ

ˇ

ˇ

rV p2qprT
p2q
L q ´ V ˚L

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

rV p2qprT
p2q
L q ´ V prT

p2q
L q

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
V prT

p2q
L q ´ V ˚L

ˇ

ˇ

ˇ
,

and both of these terms converge to zero a.s. by the arguments made in the proof of

Proposition 1.3.1. Next we consider the first term on the RHS, this is bounded above by

sup
T

ˇ

ˇ

ˇ

rV p1qpT q ´ rV p2qpT q
ˇ

ˇ

ˇ
,

and another application of the triangle inequality yields

sup
T

ˇ

ˇ

ˇ

rV p1qpT q ´ rV p2qpT q
ˇ

ˇ

ˇ
ď sup

T

ˇ

ˇ

ˇ

rV p1qpT q ´ V pT q
ˇ

ˇ

ˇ
` sup

T

ˇ

ˇ

ˇ

rV p2qpT q ´ V pT q
ˇ

ˇ

ˇ
,

with both terms converging to 0 a.s. by the arguments made in the proof of Proposition

1.3.1.

Lemma A.1.2. Let F̂ , F̂a, F and Fa be defined as in the proof of Theorem 3.3.1. Given

the Assumptions of Theorem 3.3.1, we have that, for k “ 1, ..., K,

|F̂apk; T̂ q ´ Fapk; T̄ q|
p
ÝÑ 0 ,

and

|F̂ pk; T̂ q ´ F pk; T̄ q|
p
ÝÑ 0 .

Proof. We prove the first statement for a “ 1, as the rest of the results follow similarly.

We want to show that

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

N
ÿ

i“1

1tSipT̂ q “ k,AipT̂ q “ 0u ´ p1´ πpk; T̄ qqppk; T̄ q

ˇ

ˇ

ˇ

ˇ

ˇ

p
ÝÑ 0 .
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By the triangle inequality, we bound this above by

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

N
ÿ

i“1

1tSipT̂ q “ k,AipT̂ q “ 0u ´ p1´ πpk; T̂ qqppk; T̂ q

ˇ

ˇ

ˇ

ˇ

ˇ

`

`

ˇ

ˇ

ˇ
p1´ πpk; T̂ qqppk; T̂ q ´ p1´ πpk; T̄ qqppk; T̄ q

ˇ

ˇ

ˇ
.

The first line of the above expression converges to zero by Assumption 1.3.5. Next consider

the second line: by Lemma A.2.4, we have that |ppk; T̂ q ´ ppk; T̄ q|
p
ÝÑ 0 and |πpk; T̂ q ´

πpk; T̄ q|
p
ÝÑ 0 (recall that T̂ is simply rT with and extra stratum appended for k “ 0), and

hence the second line converges to zero.

Lemma A.1.3. Given the Assumptions of Theorem 3.3.1, we have that, for k “ 1, ..., K,

Npk; T̂ q

Napk; T̂ q
“

1

πpk; T̄ q
` oP p1q .

Proof. This follows from Assumption 1.3.5, the Glivenko-Cantelli Theorem, and the

fact that πpk; T̄ qppk; T̄ q and 1
ppk;T̄ q

are Opp1q.

Lemma A.1.4. Given Assumption 1.2.1, the class of functions G defined as

G :“ tGk
ap¨ ;T q : T P T u ,

for a given a and k is a Donsker class.

Proof. This follows from the discussion of classes of monotone uniformly bounded func-

tions in Van Der Vaart (1996).

Lemma A.1.5. Given the Assumptions of Theorem 3.3.1, we have that, for k “ 1, ..., K,

||Gk
ap¨ ; T̂ q ´G

k
ap¨ ; T̄ q||

p
ÝÑ 0 .
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Proof. We show this for the case where Y paq is continuous. We proceed by showing

convergence pointwise a.s. by invoking Lemma A.5.2, and then using the dominated conver-

gence theorem. It thus remains to show that

|Zk
a pt; T̂ q ´ Z

k
a pt; T̄ q|

a.s.
ÝÝÑ 0 ,

where Zk
a p¨ ;T q is the CDF of the distribution of pY paq ´ ErY paq|SpXqsq

ˇ

ˇSpXq “ k. To that

end, fix some ω in the sample space such that

ρprT pωq, T̄ pωqq Ñ 0 ,

(note that by Lemma A.2.4 this convergence holds almost surely in ω, and recall that T̂ is

simply rT with an extra stratum appended to k “ 0). To emphasize the fact that we are now

studying a deterministic sequence of trees, let T
p1q
m “ T̂ pωq, T

p2q
m “ T̄ pωq, where have have

also explicitly indexed the trees by the pilot sample size. Then our goal is to show that:

|Zk
a pt;T

p1q
m q ´ Zk

a pt;T
p2q
m q| Ñ 0 .

Re-writing, this difference is equal to:

(A.4)

ˇ

ˇ

ˇ

ˇ

ˇ

Er1tY paq ď t` EpY paq|S
p1q
m pXq “ kqu1tS

p1q
m pXq “ kus

P pS
p1q
m pXq “ kq

´

Er1tY paq ď t` EpY paq|S
p2q
m pXq “ kqu1tS

p2q
m pXq “ kus

P pS
p2q
m pXq “ kq

ˇ

ˇ

ˇ

ˇ

ˇ

,
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(where the randomness is with respect to the distribution of pY paq, Xq). By the triangle

inequality, Assumption 1.2.2 and a little bit of algebra, this is less than or equal to

(A.5)
1

δ

ˇ

ˇEr1tY paq ď t` EpY paq|Sp1qm pXq “ kqu1tSp1qm pXq “ kus´

Er1tY paq ď t` EpY paq|Sp2qm pXq “ kqu1tSp2qm pXq “ kus
ˇ

ˇ

ˇ
`

1

δ2

ˇ

ˇP pSp1qm pXq “ kq ´ P pSp2qm pXq “ kq
ˇ

ˇ .

The third line of the expression in (A.5) goes to zero by Lemma A.2.4. It remains to show

that the rest goes to zero. Again by the triangle inequality, the first two lines of (A.5) are

less than or equal to

(A.6)
1

δ

˜

ˇ

ˇ

ˇ
Er1tY paq ď t` EpY |Sp1qm pXq “ kqu1tSp1qm pXq “ kus´

Er1tY paq ď t` EpY paq|Sp1qm pXq “ kqu1tSp2qm pXq “ kus
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
Er1tY paq ď t` EpY paq|Sp1qm pXq “ kqu1tSp2qm pXq “ kus´

Er1tY paq ď t` EpY paq|Sp2qm pXq “ kqu1tSp2qm pXq “ kus
ˇ

ˇ

ˇ

¸

.

The first two lines of (A.6) are bounded above by

1

δ

`

E
ˇ

ˇ1tSp1qm pXq “ ku ´ 1tSp2qm pXq “ ku
ˇ

ˇ

˘

,

(where we recall here that this expectation is with respect to the distribution of X). This

bound converges to zero by Lemma A.2.4 and the definition of the metric ρ2 on SL. The last

two lines of (A.6) are bounded above by

1

δ

`

E
ˇ

ˇ1tY paq ď t` EpY paq|Sp1qm pXq “ kqu ´ 1tY paq ď t` EpY paq|Sp2qm pXq “ kqu
ˇ

ˇ

˘

.
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By similar arguments to what we have shown above, this also converges to zero, and hence

we’re done.

A.2. A Theory of Convergence for Stratification Trees

Remark A.2.1. For the remainder of this section, suppose X is continuously distributed.

Modifying the results to include discrete covariates with finite support is straightforward.

Also recall that as discussed in Remark A.1.1, to simplify the exposition we derive our results

for the subset of TL which excludes trees with empty leaves.

We will define a metric ρ on the space TL and study its properties. To define ρ, we

write it as a product metric between a metric ρ1 on SL, which we define below, and ρ2 the

Euclidean metric on r0, 1sK . Recall from Remark 1.2.4 that any permutation of the elements

in rKs simply results in a re-labeling of the partition induced by Sp¨q. For this reason we

explicitly define the labeling of a tree partition that we will use, which we call the canonical

labeling :

Definition A.2.1. (The Canonical Labeling)

‚ Given a tree partition tΓD,ΓUu of depth one, we assign a label of 1 to ΓD and a

label of 2 to ΓU (recall by Remark A.1.1 that both of these are nonempty).

‚ Given a tree partition tΓ
pL´1q
D ,Γ

pL´1q
U u of depth L ą 1, we label Γ

pL´1q
D as a tree

partition of depth L´ 1 using the labels t1, 2, ..., K{2u, and use the remaining labels

tK{2` 1, ..., Ku to label Γ
pL´1q
U as a tree partition of depth L´ 1 (recall by Remark

A.1.1 that each of these subtrees hase exactly 2L´1 leaves).

‚ If it is ever the case that a tree partition of depth L can be constructed in two

different ways, we specify the partition unambiguously as follows: if the partition can

be written as tΓ
pL´1q
D ,Γ

pL´1q
U u with cut pj, γq and tΓ

1pL´1q
D ,Γ

1pL´1q
U u with cut pj1, γ1q,
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then we select whichever of these has the smallest pair pj, γq where our ordering is

lexicographic. If the cuts pj, γq are equal then we continue this recursively on the

subtrees, beginning with the left subtree, until a distinction can be made.

In words, the canonical labeling labels the leaves from “left-to-right” when the tree is

depicted in a tree representation (and the third bullet point is used to break ties whenever

multiple such representations are possible). All of our previous examples have been canon-

ically labeled (see Examples 1.2.1, 1.2.2). From now on, given some S P SL, we will use the

the version of S that has been canonically labeled. Let PX be the measure induced by the

distribution of X on X . We are now ready to define our metric ρ1p¨, ¨q on SL as follows:

Definition A.2.2. For S1, S2 P SL,

ρ1pS1, S2q :“
2L
ÿ

k“1

PXpS
´1
1 pkq∆S´1

2 pkqq .

That ρ1 is a metric follows from the properties of symmetric differences. We show under

appropriate assumptions that pS, ρ1q is a complete metric space in Lemma A.2.2, and that

pS, ρ1q is totally bounded in Lemma A.2.3. Hence pS, ρ1q is a compact metric space under

appropriate assumptions. Combined with the fact that pr0, 1s2
L
, ρ2q is a compact metric

space, it follows that pT , ρq is a compact metric space.

Next we show that V p¨q is continuous in our new metric.

Lemma A.2.1. Given Assumption 1.2.1, V p¨q is a continuous function in ρ.

Proof. We want to show that for a sequence Tn Ñ T , we have V pTnq Ñ V pT q. By

definition, Tn Ñ T implies Sn Ñ S and πn Ñ π where Tn “ pSn, πnq, T “ pS, πq. By the
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properties of symmetric differences,

|P pSnpXq “ kq ´ P pSpXq “ kq| ď PXpS
´1
n pkq∆S

´1
pkqq ,

and hence P pSnpXq “ kq Ñ P pSpXq “ kq. It remains to show that ErfpY paqq|SnpXq “

ks Ñ ErfpY paqq|SpXq “ ks for fp¨q a continuous function. Re-writing:

ErfpY paqq|SnpXq “ ks “
ErfpY paqq1tSnpXq “ kus

P pSnpXq “ kq
.

The denominator converges by the above inequality, and the numerator converges by the

above inequality combined with the boundedness of fpY q.

Lemma A.2.2. Given Assumptions 1.2.1 and 1.2.2, pS, ρ1q is a complete metric space.

Proof. We proceed by induction on the depth of the tree in the following fashion: Let

Γn “
Śd

j“1rajn, bjns be a Cauchy sequence w.r.t ρ1 of depth 0 tree partitions (i.e. simply

rectangles). Suppose for the time being that we have shown that tajnun and tbjnun are both

convergent as sequences in R, so that tΓnun converges to a depth zero decision tree given by

Γ “
Śd

j“1rlim ajn, lim bjns.

Now for the induction step, suppose it is the case that a Cauchy sequence of depth pL´1q

tree partitions tS
pL´1q
n un on Γn “

Śd
j“1rajn, bjns converges to a depth pL´ 1q tree partition

SpL´1q on Γ “
Śd

j“1rlim ajn, lim bjns. Consider a Cauchy sequence of depth L tree partitions

tSLn un on Γn, and consider the corresponding subtrees tS
pL´1q
D;n un on ΓD;npjn, γnq and tS

pL´1q
U ;n un

on ΓU ;npjn, γnq for some jn and γn. By the definition of ρ1, it is immediate that tS
pL´1q
D;n un

and tS
pL´1q
U ;n un are Cauchy, and so by the induction hypothesis each of these converges to

some tree S
pL´1q
D and S

pL´1q
U on ΓDplim jn, lim γnq and ΓUplim jn, lim γnq respectively. But



168

then the resulting collection tS
pL´1q
D , S

pL´1q
U u describes a limit of the original sequence tSLn un

and so we’re done.

It remains to show that our conclusion holds for the base case. Our goal is to show

that for a sequence of cubes Γn “
Śd

j“1rajn, bjns which is Cauchy, that the corresponding

sequences tajnu and tbjnu are both Cauchy as sequences in R. First note that it suffices to

treat PXp¨q as Lebesgue measure λ on r0, 1sd, since by Assumption 1.2.1, for any measurable

set A,

PXpAq “

ż

A

fXdλ ě cλpAq ,

for some c ą 0. Moreover to show each sequence tajnun tbjnun is Cauchy, it suffices to argue

this for d “ 1, since we can argue for d ą 1 by repeating the argument on the projection

onto each axis. So let d “ 1 and consider a sequence of intervals tran, bnsun which is Cauchy

(w.r.t to the metric induced by Lebesgue measure), then

λpran, bns∆ran1 , bn1sq “ |bn1 ´ bn| ` |an1 ´ an|,

and hence it follows that the sequences tanun and tbnun are Cauchy as sequences in R, and

thus convergent. It follows that tran, bnsun converges to rlim an, lim bns.

Lemma A.2.3. Given Assumption 1.2.1 pSL, ρ1q is a totally bounded metric space.

Proof. Given any measurable set A, we have by Assumption 1.2.1 that

PXpAq “

ż

A

fXdλ ď CλpAq ,

where λ is Lebesgue measure, for some constant C ą 0. The result now follows immediately

by constructing the following ε-cover: at each depth L, consider the set of all trees that can
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be constructed from the set of splits t ε
Cp2L´1q

, 2ε
Cp2L´1q

, ..., 1u. By construction any tree in SL

is at most ε away from some tree in this set.

Lemma A.2.4. Given Assumptions 1.2.1, 1.2.2, 1.3.1, and 1.3.2. Then the set T ˚ of

maximizers of V p¨q exists, and

inf
T˚PT ˚

ρprTm, T
˚
q
a.s.
ÝÝÑ 0 ,

where measurability of ρp¨, ¨q is guaranteed by the separability of T . Furthermore, there exists

a sequence of σtpWiq
m
i“1u{BpTLq-measurable trees T̄m P T ˚ such that

ρprTm, T̄mq
a.s.
ÝÝÑ 0 .

Proof. First note that, since pT , ρq is a compact metric space and V p¨q is continuous,

we have that T ˚ exists and is itself compact. Fix an ε ą 0, and let

Tε :“ tT P T : inf
T˚PT ˚

ρpT, T ˚q ą εu ,

then it is the case that

inf
TPTε

V pT q ą V ˚ .

To see why, suppose not and consider a sequence Tm P Tε such that V pTmq Ñ V ˚. Now by

the compactness of T , there exists a convergent subsequence tTm`u of tTmu, i.e. Tm` Ñ T 1

for some T 1 P T . By continuity, it is the case that V pTm`q Ñ V pT 1q and by assumption we

have that V pTm`q Ñ V ˚, so we see that T 1 P T ˚ but this is a contradiction.

Hence, for every ε ą 0, there exists some η ą 0 such that

V pT q ą V ˚ ` η ,
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for every T P Tε. Let ω be any point in the sample space for which we have that V prTmpωqq Ñ

V ˚, then it must be the case that T̃mpωq R Tε for m sufficiently large, and hence

inf
T˚PT ˚

ρprTm, T
˚
q
a.s.
ÝÝÑ 0 .

To make our final conclusion, it suffices to note that ρp¨, ¨q is itself a continuous function and

so by the compactness of T ˚, there exists some sequence of trees T̄ such that

inf
T˚PT ˚

ρprTm, T
˚
q “ ρprTm, T̄mq .

Furthermore, by the continuity of ρ, the measurability of rT , and the compactness of T ˚,

we can ensure the measurability of the T̄m, by invoking a measurable selection theorem (see

Theorem 18.19 in Aliprantis and Border (1986)).

A.3. Supplementary Results for Chapter 1

A.3.1. Supplementary Example

In this section we present a result which complements the discussion in the introduction

on how stratification can reduce the variance of the difference-in-means estimator. Using

the notation from Section 1.2.2, let tYip1q, Yip0q, Xiu
n
i“1 be i.i.d and let Y be the observed

outcome. Let S : X Ñ rKs be a stratification function. Consider treatments tAiu
n
i“1 which

are assigned via stratified block randomization using S, with a target proportion of 0.5 in

each stratum (see Example 1.2.5 for a definition). Finally, let

θ̂ “
1

n1

n
ÿ

i“1

YiAi ´
1

n´ n1

n
ÿ

i“1

Yip1´ Aiq ,
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where n1 “
řn
i“1 1tAi “ 1u. It can be shown using Theorem 4.1 of Bugni et al. (2017) that

?
npθ̂ ´ θq

d
ÝÑ Np0, V q ,

with V “ VY ´ VS, where VY does not depend on S and

VS :“ E
“

pErY p1q|SpXqs ` ErY p0q|SpXqsq2
‰

.

In contrast, if treatment is assigned without any stratification, then

?
npθ̂ ´ θq

d
ÝÑ Np0, V 1q ,

with V 1 “ VY ´ErY p1q`Y p0qs
2. It follows by Jensen’s inequality that VS ą ErY p1q`Y p0qs2

as long as ErY p1q`Y p0q|SpXq “ ks is not constant for all k. Hence we see that stratification

lowers the asymptotic variance of the difference in means estimator as long as the outcomes

are related to the covariates as described above.

A.3.2. Alternative Asymptotic Framework

In this section we present some supplementary results about the asymptotic behavior of

θ̂pT̂ q. We consider an asymptotic framework where the pilot study can be large relative to

the total sample size:

Assumption A.3.1. We consider the following asymptotic framework:

m

N
“ λ` o

ˆ

1
?
N

˙

,

where N “ m` n, for some λ P r0, 1s as m,nÑ 8.
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To prove an analogous result to Theorem 3.3.1 in this setting, we impose one additional

assumption:

Assumption A.3.2. The pilot-experiment data tWiu
m
i“1 was generated through a simple

randomized experiment without stratification.

In contrast, in our original asymptotic framework we made no assumptions about how the

pilot experiment was performed, except to prove Proposition 1.3.1. As explained in Remark

1.2.8, if the pilot experiment were stratified, we may want to incorporate this information

into the specification of T̂ . In this case Assumption A.3.2 could be weakened in various

ways at the cost of making the expression for the variance in Theorem A.3.1 slightly more

complicated.

We now obtain the following result about the ATE estimator θ̂pT̂ q:

Theorem A.3.1. Given Assumptions 1.2.1, 1.2.2, 1.2.3, A.3.1, 1.3.2, 1.3.4, 1.3.5,

A.3.2, and 1.3.6, we have that

?
Npθ̂pT̂ q ´ θq

d
ÝÑ Np0, V ˚λ q ,

where

V ˚λ “ λV0 ` p1´ λqV
˚ ,

and

V0 “
σ2

0p0q

1´ π0

`
σ2

1p0q

π0

.

Hence we see that in this asymptotic framework the pooled estimator θ̂pT̂ q has an asymp-

totic variance which is a weighted combination of the optimal variance and the variance in

the pilot experiment, with weights which correspond to their relative sizes.
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We now explain how to modify the proofs of Lemma A.1.1 and 3.3.1 to prove this result.

In comparison to the proof of Lemma A.1.1 we now have an extra component which corres-

ponds to the pilot stratum, but the proof continues to hold with that stratum left untouched.

For Theorem 3.3.1, we modify the argument as follows. Let RppT̄ q denote the components of

ŌpT̄ q which correspond to the pilot (where it is implicit that we have augmented T̄ to include

an extra stratum at k “ 0 for the pilot data), let RmpT̄ q denote the components of ŌpT̄ q

which correspond to the main study, and let pCp, Cmq be the corresponding re-arrangement

of B such that pCp, Cmq
1pRp, Rmq “ B1Ō. Then we claim that

P pC 1pRppT̄ q ď tp, C
1
mRmpT̄ q ď tmq Ñ P pζp ď tp, ζm ď tmq ,

where tp, tm are arbitrary real numbers and pζp, ζmq are independent mean zero normals,

independent of everything else, with variances such that varpζpq ` varpζmq “ V ˚λ . To see

this consider the following derivation, where σtpWjq
8
i“1u is the sigma algebra generated by

the pilot data:

P pC 1pRppT̄ q ď tp, C
1
mRmpT̄ q ď tmq “ E

“

P pC 1pRppT̄ q ď tp, C
1
mRmpT̄ q ď tmq|σtpWjq

8
i“1uq

‰

“ E
“

P pC 1mRmpT̄ q ď tm|σtpWjq
8
i“1uq1tC

1
pRppT̄ q ď tpu

‰

“ ErpP pC 1mRmpT̄ q ď tm|σtpWjq
8
i“1uq

´ P pζm P Amqq1tC
1
pRppT̄ q ď tpus

` E
“

P pζm P Amq1tRppT̄ q P Apu
‰

“ ErpP pC 1mRmpT̄ q ď tm|σtpWjq
8
i“1uq

´ P pζm P Amqq1tC
1
pRppT̄ q ď tpus

` P pζm P AmqP pC
1
pRppT̄ q ď tpq ,
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Where the first equality comes from the law of iterated expectations, and the second equality

follows from the fact that RppT̄ q is non-stochastic once we condition on σtpWjq
8
i“1u. By a

standard multivariate CLT, P pC 1pRppT̄ q ď tpq Ñ P pζp ď tpq, and by the proof of Theorem

3.3.1
ˇ

ˇP pC 1mRmpT̄ q ď tm|σtpWjq
8
i“1uq ´ P pζm P Amq

ˇ

ˇ “ opp1q ,

and so the result follows.

A.3.3. Details on the Multiple Treatment Case

In this section we present formal results for the setting with multiple treatments. Recall

from Section 1.3.2 that here we are interested in the vector of ATEs

θ “ pθa : a P Aq ,

where θa “ ErY paq ´ Y p0qs. We also generalized the concept of a stratification tree to

accommodate multiple treatments, and extended our estimator θ̂ accordingly.

Given a matrix norm || ¨ ||, our goal is to choose T P TL to minimize ||VpT q|| as defined

in Section 1.3.2. Define V pT q :“ ||VpT q|| and let V ˚ be the minimum of this objective

function. Consider the following extensions of Assumptions 1.2.1, 1.2.2, 1.3.2, 1.3.4, and

1.3.5 to multiple treatments:

Assumption A.3.3. Q satisfies the following properties:

‚ Y paq P r´M,M s for some M ă 8, for a P A0, where the marginal distributions of

each Y paq are either continuous or discrete with finite support.

‚ X P X “
Śd

j“1rbj, cjs, for some tbj, cju
d
j“1 finite.
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‚ X “ pXC , XDq, where XC P Rd1 for some d1 P t0, 1, 2, ..., du is continuously distrib-

uted with a bounded, strictly positive density. XD P Rd´d1 is discretely distributed

with finite support.

Assumption A.3.4. Constrain the set of stratification trees TL such that, for some fixed

ν ą 0, πapkq P rν, 1´ νs for all T .

Assumption A.3.5. The estimator rT is a σtpWiq
m
i“1u{BpTLq measurable function of the

pilot data and satisfies

|V prT q ´ V ˚|
a.s
ÝÑ 0 ,

where

V ˚ “ inf
TPTL

||VpT q|| ,

as mÑ 8.

Assumption A.3.6. The randomization procedure is such that, for each T “ pS, πq P T :

“

pYip0q, Yip1q, ..., Yip|A|q, Xiq
n
i“1 K ApnqpT q

‰

ˇ

ˇ

ˇ

ˇ

Spnq .

Assumption A.3.7. The randomization procedure is such that

sup
TPT

ˇ

ˇ

ˇ

ˇ

napk;T q

n
´ πapkqppk;T q

ˇ

ˇ

ˇ

ˇ

p
ÝÑ 0 ,

for each k P rKs. Where

napk;T q “
n
ÿ

i“1

1tAipT q “ a, Si “ ku .

We also require the following uniqueness assumption:

Assumption A.3.8. The minimizer T ˚ of V pT q over TL is unique.
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This assumption is quite strong: in general, we are not aware of any conditions that

guarantee the uniqueness of the minimum of V pT q. Clearly this assumption could be violated,

for example, if all the covariates enter the response model symmetrically, since then many

distinct trees could minimize V pT q. However, it is not clear if such examples would arise

in real applications. Finding appropriate conditions under which this should be true, or

weakening the result to move away from this assumption, are important considerations for

future research.

We now obtain the following result:

Theorem A.3.2. Given Assumptions A.3.3, A.3.4, 1.2.2, 1.2.3, 1.3.1, A.3.5, A.3.6,

A.3.7, and A.3.8, we have that

?
Npθ̂pT̂ q ´ θq

d
ÝÑ Np0,V˚q ,

where V˚ “ VpT ˚q, as m,nÑ 8.

Note that, since we are now imposing Assumption A.3.8, Assumption 1.3.6 is no longer

required. The proof proceeds identically to the proof of Theorem 3.3.1: we simply add

the necessary components to the vector Op¨q to accommodate the multiple treatments and

follow the derivation in Theorem 3.1 of Bugni et al. (2018) accordingly. We also skip the

final conditioning/subsequence step by invoking Assumption A.3.8.

To show that minimizing the empirical variance still satisfies Assumption 1.3.2, the ar-

gument proceeds component-wise in a manner similar to the proof of Proposition 1.3.1.

Essentially the argument proceeds as follows: let νT pXq and ν̂T pXq be the matrix-valued

analogues to those described in the proof of Proposition 1.3.1, and suppose we want to show,
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for example, that

sup
T
|VnpT q ´ V pT q|

a.s
ÝÑ 0 .

It follows by the reverse triangle inequality that it suffices to show

sup
T

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

m

m
ÿ

i“1

νT pXiq ´ ErνT pXqs
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a.s
ÝÑ 0 ,

which follows by applying the Glivenko-Cantelli Theorem component-wise.

A.4. Computational Details/Supplementary Simulation Details for Chapter 1

A.4.1. Computational Details

In this section we describe our strategy for computing stratification trees. We are interested

in solving the following empirical minimization problem:

rTEM P arg min
TPTL

rV pT q ,

where

rV pT q:“
řK
k“1

mpk;T q
m

„

pÊrY p1q´Y p0q|SpXq“ks´ÊrY p1q´Y p0qsq
2
`

ˆ

σ̂20pkq

1´πpkq
`
σ̂21pkq

πpkq

˙

,

with

ÊrY p1q´Y p0q|SpXq“ks:“ 1
m1pk;T q

řm
j“1 YjAj1tSpXjq“ku´

1
m0pk;T q

řm
j“1 Yjp1´Ajq1tSpXjq“ku ,

ÊrY p1q ´ Y p0qs :“
1

m

m
ÿ

j“1

YjAj ´
1

m

m
ÿ

j“1

Yjp1´ Ajq ,

σ̂2
apkq :“ ÊrY paq2|SpXq “ ks ´ ÊrY paq|SpXq “ ks2 .

Finding a globally optimal tree amounts to a discrete optimization problem in a large

state space. Because of this, the most common approaches to fit decision trees in statistics

and machine learning are greedy: they begin by searching for a single partitioning of the data
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which minimizes the objective, and once this is found, the processes is repeated recursively

on each of the new partitions (Breiman et al. (1984), and Friedman et al. (2001) provide a

summary of these types of approaches). However, recent advances in optimization research

provide techniques which make searching for globally optimal solutions feasible in our setting.

A very promising method is proposed in Bertsimas and Dunn (2017), where they describe

how to encode decision tree restrictions as mixed integer linear constraints. In the standard

classification tree setting, the misclassification objective can be formulated to be linear as

well, and hence computing an optimal classification tree can be computed as the solution to

a Mixed Integer Linear Program (MILP), which modern solvers can handle very effectively

(see Florios and Skouras (2008), Chen and Lee (2016), Mbakop and Tabord-Meehan (2016),

Kitagawa and Tetenov (2018), Mogstad et al. (2017) for some other applications of MILPs

in econometrics). Unfortunately, to our knowledge the objective function we consider cannot

be formulated as a linear or quadratic objective, and so specialized solvers such as BARON

would be required to solve the resulting program. Instead, we implement an evolutionary

algorithm (EA) to perform a stochastic search for a global optimum. See Barros et al. (2012)

for a survey on the use of EAs to fit decision trees.

The algorithm we propose is based on the procedure described in the evtree package

description given in Grubinger et al. (2011). In words, a “population” of candidate trees is

randomly generated, which we will call the “parents”. Next, for each parent in the population

we select one of five functions at random and apply it to the parent (these are called the

variation operators, as described below), which produces a new tree which we call its “child”.

We then evaluate the objective function for all of the trees (the parents and the children).

Proceeding in parent-child pairs, we keep whichever of the two produces a smaller value for

the objective. The resulting list of winners then becomes the new population of parents,
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and the entire procedure repeats iteratively until the top 5% of trees with respect to the

objective are within a given tolerance of each other for at least 50 iterations. The best tree

is then returned. If the algorithm does not terminate after 2000 iterations, then the best

tree is returned. We describe each of these steps in more detail below.

Although we do note prove that this algorithm converges to a global minimum, it is shown

in Cerf (1995) that similar algorithms will converge to a global minimum in probability, as

the number of iterations goes to infinity. In practice, our algorithm converges to the global

minimum in simple verified examples, and consistently achieves a lower minimum than a

greedy search. Moreover, it reliably converges to the same minimum in repeated runs (that

is, with different starting populations) for all of the examples we consider in the paper.

Optimal Strata Proportions: Recall that for a given stratum, the optimal proportion is

given by

π˚ “
σ1

σ0 ` σ1

,

where σ0 and σ1 are the within-stratum standard deviations for treatments 0 and 1. In

practice, if π˚ ă 0.1 then we assign a proportion of 0.1, and if π˚ ą 0.9 then we assign

a proportion of 0.9 (hence we choose an overlap parameter of size ν “ 0.1, as required in

Assumption 1.2.2).

Population Generation: We generate a user-defined number of depth 1 stratification trees

(typically between 500 and 1000). For each tree, a covariate and a split point is selected at

random, and then the optimal proportions are computed for the resulting strata.

Variation Operators:

‚ Split : Takes a tree and returns a new tree that has had one branch split into two

new leaves. The operator begins by walking down the tree at random until it finds

a leaf. If the leaf is at a depth smaller than L, then a random (valid) split occurs.
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Otherwise, the procedure restarts and the algorithm attempts to walk down the tree

again, for a maximum of three attempts. If it does not find a suitable leaf, a minor

tree mutation (see below) is performed. The optimal proportions are computed for

the resulting strata.

‚ Prune: Takes a tree and returns a new tree that has had two leaves pruned into one

leaf. The operator begins by walking down the tree at random until it finds a node

whose children are leaves, and destroys those leaves. The optimal proportions are

computed for the resulting strata.

‚ Minor Tree Mutation: Takes a tree and returns a new tree where the splitting value

of some internal node is perturbed in such a way that the tree structure is not

destroyed. To select the node, it walks down the tree a random number of steps, at

random. The optimal proportions are computed for the resulting strata.

‚ Major Tree Mutation: Takes a tree and returns a new tree where the splitting value

and covariate value of some internal node are randomly modified. To select the node,

it walks down the tree a random number of steps, at random. This modification

may result in a partition which no longer obeys a tree structure. If this is the case,

the procedure restarts and repeats the algorithm for a maximum of three attempts.

If it does not produce a valid tree after three attempts, it destroys any subtrees that

violate the tree structure in the final attempt and returns the result. The optimal

proportions are computed for the resulting strata.

‚ Crossover : Takes a tree and returns a new tree which is the result of a “crossover”.

The new tree is produced by selecting a second tree from the population at random,

and replacing a subtree of the original tree with a subtree from this randomly

selected candidate. The subtrees are selected by walking down both trees at random.
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This may result in a partition which no longer obeys a tree structure, in which case

it destroys any subtrees that violate the tree structure. The optimal proportions

are computed for the resulting strata.

Selection: For each parent-child pair (call these Tp and Tc) we evaluate rV pTpq and rV pTcq

and then keep whichever tree has the lower value. If it is the case that for a given T any

stratum has less than two observations per treatment, we set rV pT q “ 8 (this acts as a rough

proxy for the minimum cell size parameter δ, as specified in Assumption 1.2.2).

A.4.2. Supplementary Simulation Details

In this section we provide additional details on our implementation of the simulation study.

For each design we compute the ATE numerically. For Model 1 we find ATE1 “ 0.1257,

for Model 2 we find ATE2 “ 0.0862 and for Model 3 we find ATE3 “ 0.121. To compute

the optimal infeasible trees, we use an auxiliary sample of size 30, 000. The infeasible trees

we compute are depicted in Figures A.1, A.2 and A.3 below.
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Figure A.1. Optimal Infeasible Tree for Model 1
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Figure A.3. Optimal Infeasible Tree for Model 3

A.4.3. Application-based Simulation

In this section we repeat the simulation exercise of Section 1.4 using an application-based

simulation design, in order to assess the gains from stratification in our application. To

generate the data, we draw observations from the entire dataset with replacement, and

impute the missing potential outcome for each observation using nearest-neighbour matching



183

on the Euclidean distance between covariates. We perform the simulations with a sample

size of 30, 000, which corresponds approximately to the total number of observations in the

dataset. In order to reproduce the empirical setting, we conduct the experiment in two

waves, with sample sizes of 12, 000 and 18, 000 in each wave, respectively. In all cases, when

we stratify we consider a maximum of 4 strata, which corresponds to the number of strata

in Figure 1.6, and use SBR to perform assignment. We compare the following stratification

methods using the same criteria as in Section 1.4:

‚ No Stratification: Here we assign treatment to half the sample, with no stratification.

‚ Fixed Stratification: Here we use the stratification from Figure 1.6, and assign

treatment to half the sample in each stratum.

‚ Stratification Tree: Here we perform the experiment in two waves. In the first wave,

we assign individuals to treatment using the Fixed stratification, and then use this

data to estimate a stratification tree. In the second wave we use the estimated tree

to assign treatment.

‚ Cross-Validated Tree: Here we perform the experiment in two waves. In the first

wave, we assign individuals to treatment using the Fixed stratification, and then use

this data to estimate a stratification tree with depth selected via cross-validation.

In the second wave we use the cross-validated tree to assign treatment.

‚ Infeasible Optimal Tree: Here we estimate an infeasible “optimal” tree by using a

large auxiliary sample (see Figure A.4). In the first wave, we assign individuals to

treatment using the Fixed stratification. In the second wave, we assign individuals

to treatment using the infeasible tree.
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Figure A.4. Infeasible Optimal Tree for App.-based Simulation

When constructing the augmented tree T̂ , we incorporate the stratifications from both

waves in accordance with Remark 1.2.8. We perform 6000 Monte Carlo iterations. Table

A.1 presents the simulation results.

Stratification Method

Criteria

Coverage %∆Length Power %∆RMSE

No Stratification 93.7 0.0 51.9 0.0
Fixed 93.9 -0.6 52.4 -1.6

Strat.Tree 93.0 0.3 52.2 1.1
Strat. Tree (CV) 93.8 -1.9 53.9 -3.0
Infeasible Tree 94.8 -5.9 58.1 -7.7

Table A.1. Simulation Results for Application-Based Simulation

We see in Table A.1 that the overall gains from stratification are small. The Stratification

Tree performs slightly worse than no stratification, which agrees with the fact that the cross-

validation procedure returned a tree of depth one in Section 1.5. However, despite the fact

that the DGP is relatively complex and the gains from stratification are small, the cross-

validated Stratification Tree nevertheless performs fairly well.
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A.5. Auxiliary Lemmas for Chapter 1

Lemma A.5.1. Let tAnun, tBnun be sequences of continuous random variables such that

|An ´Bn|
a.s.
ÝÝÑ 0 .

Furthermore, suppose that the sequences of their respective CDFs tFnptqun tGnptqun are both

equicontinuous families at t. Then we have that

|Fnptq ´Gnptq| Ñ 0 .

Proof. Fix some ε ą 0, and choose a δ ą 0 such that, for |t1´t| ă δ, |Gnptq´Gnpt
1q| ă ε.

Furthermore, choose N such that for n ě N , |An ´Bn| ă δ a.s.. Then for n ě N :

Fnptq “ P pAn ď tq ď P pBn ď t` δq ` P p|An ´Bn| ą δq ď Gnptq ` ε ,

and similarly

Gnptq ď Fnptq ` ε .

We thus have that |Gnptq ´ Fnptq| ă ε as desired.

Lemma A.5.2. Let tFnptqun and tGnptqun be sequences of (absolutely) continuous CDFs

with bounded support r´M,M s, such that

|Fnptq ´Gnptq| Ñ 0 ,

for all t. Let tF´1
n un and tG´1

n un be the corresponding sequences of quantile functions, and

suppose that each of these form an equicontinuous family for every p P p0, 1q. Then we have

that

|F´1
n ppq ´G´1

n ppq| Ñ 0 .
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Proof. Let V be a random variable that is uniformly distributed on r´2M, 2M s, and

let Γp¨q be the CDF of V. Then it is the case that

|FnpV q ´GnpV q|
a.s
ÝÑ 0 .

By the uniform continuity of Γ and the equicontinuity properties of tF´1
n un and tG´1

n un, we

have that tP pFnpV q ď ¨qun and tP pGnpV q ď ¨qun are equicontinuous families for p P p0, 1q.

It thus follows by Lemma A.5.1 that

|P pFnpV q ď pq ´ P pGnpV q ď pq| Ñ 0 .

By the properties of quantile functions we have that |ΓpF´1
n ppqqq ´ ΓpG´1

n ppqq| Ñ 0. Hence

by the uniform continuity of Γ´1, we can conclude that

|Γ´1
pΓpF´1

n ppqqq ´ Γ´1
pΓpG´1

n ppqqq| “ |F
´1
n ppq ´G´1

n ppq| Ñ 0 ,

as desired.

Our final lemma completes the discussion in Remark 1.3.3. It shows that, as long as the

family of quantile functions defined in Assumption 1.3.6 are continuous, and vary “continu-

ously” in S P SL, then Assumption 1.3.6 holds.

Lemma A.5.3. Let pD, dq be a compact metric space. Let F be some class of functions

F “ tfd : p0, 1q Ñ RudPD

such that fdp¨q is continuous and bounded for every d P D. Define g : D Ñ L8p0, 1q by

gpdq “ fdp¨q, and suppose that g is continuous. Then we have that, for every x0 P p0, 1q,

tfdp¨, dqudPD is an equicontinuous family at x0.
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Proof. By construction, gpDq “ F , and so by the continuity of g and the compactness

of D, F is compact. Let ε ą 0 and fix some x0 P p0, 1q. Let Fε{3 “ tfdkp¨qu
K
k“1 be a

finite ε{3 cover for F . By continuity, there exists a δ ą 0 such that if |x ´ x0| ă δ,

|fdkpxq ´ fdkpx0q| ă ε{3 for every k “ 1, ..., K. By the triangle inequality, for any d:

|fdpxq ´ fdpx0q| ď |fdpxq ´ fdkpxq| ` |fdkpxq ´ fdkpx0q| ` |fdkpx0q ´ fdpx0q| ,

for all k “ 1, ..., K. It thus follows that, for |x´ x0| ă δ, and by virtue of the fact that Fε{3

is an open cover for F ,

|fdpxq ´ fdpx0q| ă ε ,

and hence tfdp¨qudPD is an equicontinuous family at x0.
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APPENDIX B

Appendix to Chapter 2

B.1. Proofs of Main Results in Chapter 2

Recall that the planner’s objective function is given by

(B.1) W pGq “ EP

„ˆ

Y D

epXq
´
Y p1´Dq

1´ epXq

˙

¨ 1tX P Gu



.

To each treatment allocation G P G we associate a function fG : RˆX ˆ t0, 1u Ñ R defined

by:

fGpZq “ fGpY,X,Dq “

ˆ

Y D

epXq
´
Y p1´Dq

1´ epXq

˙

¨ 1tX P Gu ,

where Z “ pY,X,Dq. Let F :“ tfG : G P Gu denote the corresponding set of functions

associated to decision rules in G. By (B.1), any optimal allocation in G solves

G˚ P arg max
GPG

EP

„ˆ

Y D

epXq
´
Y p1´Dq

1´ epXq

˙

¨ 1tX P Gu



.

Equivalently, functions associated to optimal allocations solve

f˚ P arg max
fPF

EPfpZq .

By an abuse of notation, for G P G, we set

W pfGq “ EPfGpZq .
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Given an approximating sequence tGkuk of classes of treatment allocations, let tFkuk denote

the sequence of associated classes of functions.

The following lemma, whose proof is given in Kitagawa and Tetenov (2018) (Lemma A.1),

establishes the relevant link between the classes of sets tGkuk and the classes of functions

tFkuk. It shows that if a class G has finite VC dimension, then the associated class F is a

VC-subgraph class with dimension bounded above by that of G.

Lemma B.1.1. Let G be a VC-class of subsets of X with finite VC dimension V . Let g

be a function from Z :“ Rˆ X ˆ t0, 1u to R. Then the set of functions F defined by

F “ tgpzq ¨ 1tx P Gu : G P Gu

is a VC-subgraph class with dimension at most V .

For each k ě 1, let f̂n,k be a maximizer of the empirical welfare over the class Fk; that

is:

f̂n,k “ arg max
fPFk

Wnpfq ,

and for f P Fk, define the complexity-penalized estimate of welfare by

Rn,kpfq “ Wnpfq ´ Cnpkq ´

c

k

n
.

The PWM rule f̂n,k̂ is then chosen such that

k̂ “ arg max
kě1

Rn,kpf̂n,kq .

In what follows, we set f̂n :“ f̂n,k̂ and Rnpf̂nq :“ Rn,k̂pf̂n,k̂q.
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To bound the regret, we decompose it as follows

(B.2) W ˚
F ´W pf̂nq “

´

W ˚
F ´Rnpf̂nq

¯

`

´

Rnpf̂nq ´W pf̂nq
¯

.

The following lemma yields (under Assumption 2.3.4) a subgaussian tail bound for the second

term on the right hand side of the preceding equality.

Lemma B.1.2. Given Assumption 2.3.4, there exists a positive constant ∆ (that does

not depend on n) such that:

P pRnpf̂nq ´W pf̂nq ą εq ď ∆e´2conε2

for every n.

Proof. First note that:

P pRnpf̂nq ´W pf̂nq ą εq ď P
´

sup
k

`

Rn,kpf̂n,kq ´W pf̂n,kq
˘

ą ε
¯

,

then by the union bound:

P
´

sup
k

`

Rn,kpf̂n,kq ´W pf̂n,kq
˘

ą ε
¯

ď
ÿ

k

P pRn,kpf̂n,kq ´W pf̂n,kq ą εq .

Now by definition of Rn,k, we have

ÿ

k

P pRn,kpf̂n,kq ´W pf̂n,kq ą εq “
ÿ

k

P
`

Wnpf̂n,kq ´ Cnpkq ´W pf̂n,kq ą ε`

c

k

n

˘

.

By Assumption 2.3.4,

ÿ

k

P pWnpf̂n,kq ´W pf̂n,kq ´ Cnpkq ą ε`

c

k

n
q ď

ÿ

k

c1e
´2conpε`

?
k
n
q2
ď e´2conε2

ÿ

k

c1e
´2kco .
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By setting

(B.3) ∆ :“
ÿ

k

c1e
´2kco ă 8 ,

the result follows.

Proof of Theorem 2.3.1. We follow the general strategy from Bartlett et al. (2002).

For every k, we have

(B.4) W ˚
F ´W pf̂nq “

`

W ˚
F ´W

˚
Fk

˘

`

´

W ˚
Fk ´W pf̂nq

¯

.

We first consider the second term in (B.4), and expand it as follows

(B.5) W ˚
Fk ´W pf̂nq “ W ˚

Fk ´Rnpf̂nq `Rnpf̂nq ´W pf̂nq .

By the definition of Rn, the first term of expression (B.5) is bounded by

W ˚
Fk ´Rnpf̂nq ď W ˚

Fk ´Wnpf̂n,kq ` Cnpkq `

c

k

n
.

Fix δ ą 0, and choose some f˚k P Fk such that W pf˚k q ` δ ě W ˚
Fk .

9 . We have

W ˚
Fk ´Wnpf̂n,kq ` Cnpkq `

c

k

n
ď W pf˚k q ` δ ´Wnpf

˚
k q ` Cnpkq `

c

k

n
.

Taking expectations of both sides and letting δ converge to 0 yields

ErW ˚
Fk ´Rnpf̂nqs ď ErCnpkqs `

c

k

n
.

9If the welfare criterion achieves its maximum on Fk, then f˚
k can be set equal to any maximizer. In general

however such an optimum may not exist, and thus we must choose f˚
k will to be an ”almost maximizer” of

the welfare criterion on Fk.
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By Lemma B.1.2 and a standard integration argument (see for instance problem 12.1 in

Györfi et al. (1996)), the second term on the right hand side of (B.5) is bounded by

ErRnpf̂nq ´W pf̂nqs ď

d

logp∆eq

2con
.

Combining these bounds yields

ErW ˚
F ´W pf̂nqs ď ErCnpkqs `W

˚
F ´W

˚
Fk `

d

logp∆eq

2con
`

c

k

n
,

for every k, and our result follows.

Proof of Lemma 2.3.1. We first establish the inequality

(B.6) P pWnpf̂n,kq ´W pf̂n,kq ´ Cnpkq ą εq ď exp
´

´2nε2p
κ

3M
q
2
¯

.

By two standard symmetrization arguments, we get

(B.7) E
“

sup
fPFk

Wnpfq ´W pfq
‰

ď 2E
“

sup
fPFk

1

n

n
ÿ

i“1

σifpZiq
‰

“ E
“

Cnpkq
‰

,

where we recall that Cnpkq “ E
“

2 supfPFk
1
n

řn
i“1 σifpZiq|Z1, Z2, ¨ ¨ ¨ , Zn

‰

and tσiu
n
i“1 is an

i.i.d sequence of Rademacher random variables independent from the data tZiu
n
i“1. Note

that

P pWnpf̂n,kq ´W pf̂n,kq ´ Cnpkq ą εq ď P psup
fPFk

ppWnpfq ´W pfqq ´ Cnpkq ą εq ,

and set Mn,k :“ supfPFk pWnpfq ´W pfqq´Cnpkq. Combining the preceding inequality with

(B.7) yields

P pWnpf̂n,kq ´W pf̂n,kq ´ Cnpkq ą εq ď P pMn,k ´ EMn,k ą εq .
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To control the deviations of Mn,k from its mean, we use McDiamird’s inequality (note that

Mn,k satisfies the bounded difference property with increments bounded by 3M
nκ

) which yields

the inequality

P pMn,k ´ EMn,k ą εq ď exp
´

´2nε2p
κ

3M
q
2
¯

,

from which our result follows.

The second inequality (where C is a universal constant)

ErCnpkqs ď C
M

κ

c

Vk
n
,

follows from a chaining argument and a control on the universal entropy of VC subgraph

classes (see for instance the proof of Lemma A.4 in Kitagawa and Tetenov (2018)), along

with Lemma B.1.1.

Proof of Lemma 2.3.2. Let us assume for notational simplicity that the quantity m “

np1´ `q is an integer. We first establish the inequality

(B.8) P pWmpf̂m,kq ´W pf̂m,kq ´ Cmpkq ą εq ď exp
´

´2n`ε2p
κ

M
q
2
¯

.

By the definition of Cmpkq, we have

P pW pf̂m,kq ´W pf̂m,kq ´ Cmpkq ą εq “ P pWrpf̂m,kq ´W pf̂m,kq ą εq .

Now, working conditionally on tZiu
m
i“1, we get by Hoeffding’s inequality that

P pWrpf̂m,kq ´W pf̂m,kq ą ε|tZiu
m
i“1q ď exp

´

´2n`ε2p
κ

M
q
2
¯

.

Since the right hand side of the preceding inequality is non random, the inequality holds

unconditionally as well.
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We now establish the inequality

ErCmpkqs ď C
M

κ
a

p1´ `q

c

Vk
n
.

By the definition of Cmpkq, we have

ErCmpkqs “ ErWmpf̂m,kq ´Wrpf̂m,kqs “ ErWmpf̂m,kq ´W pf̂m,kq `W pf̂m,kq ´Wrpf̂m,kqs .

Note that by the law of iterated expectations, we have

ErW pf̂m,kq ´Wrpf̂m,kqs “ 0 ,

and by Lemma A.4 in Kitagawa and Tetenov (2018) combined with Lemma B.1.1 there exists

some universal constant C such that:

ErWmpf̂m,kq ´W pf̂m,kqs ď C
M

κ

c

Vk
m

.

Since m “ p1´ `qn, the result follows.

Proof of Propositions 2.3.1 and 2.3.2. From the inequality

e´x

p1´ e´xq
ď

1

x
,

and from (B.3) and (B.6), we derive that

∆ ď 1{2

ˆ

3M

κ

˙2

.

Similarly, we derive from (B.3) and (B.8) that

∆ ď 1{p2lq

ˆ

M

κ

˙2

.
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The results then follow by substituting these into the inequalities of Theorem 2.3.1.

Proof of Theorem 2.3.2. Our strategy here is to proceed analogously to the proof of

Theorem 2.3.1 with some additional machinery. For every k, we have that:

(B.9) W ˚
F ´W pf̃

e
nq “

`

W ˚
F ´W

˚
Fk

˘

`

´

W ˚
Fk ´W pf̂

e
nq

¯

.

Adding and subtracting Re
npf̂

e
nq to the last term yields

(B.10) W ˚
Fk ´W pf̂

e
nq “

´

W ˚
Fk ´R

e
npf̂

e
nq

¯

`

´

Re
npf̂

e
nq ´W pf̂

e
nq

¯

.

Let f˚k :“ arg maxfPFkW pfq , (if the supremum is not achieved, apply the argument to a

δ-maximizer of the welfare, and let δ tend to zero). Now consider the first term on the right

hand side of (B.10). Expanding yet again gives

(B.11) W ˚
Fk ´R

e
npf̂

e
nq “ W ˚

Fk ´Wnpf
˚
k q `Wnpf

˚
k q ´R

e
npf̂

e
nq .

From the definition of Re
n, we have

Wnpf
˚
k q ´R

e
npf̂

e
nq ď Wnpf

˚
k q ´W

e
npf

˚
k q ` C

e
npkq `

c

k

n
ď

1

n

n
ÿ

i“1

|τ̂i ´ τi| ` C
e
npkq `

c

k

n
.

Hence, considering the above inequality and taking expectations in (B.11) yields

ErW ˚
Fk ´R

e
npf̂

e
nqqs ď E

” 1

n

n
ÿ

i“1

|τ̂i ´ τi|
ı

` ErCe
npkqs `

c

k

n
,

and thus by Assumption 2.3.7

(B.12) ErW ˚
Fk ´R

e
npf̂

e
nqqs ď Opφ´1

n q ` ErC
e
npkqs `

c

k

n
.
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We now consider the second term on the right hand side of (B.10). Let k̂ be the class k such

that

f̂ en “ f̂ e
n,k̂

.

Note that k̂ is random. We have

Re
npf̂

e
nq ´W pf̂

e
nq “ W e

npf̂
e
n,k̂
q ´ Ce

npk̂q ´

d

k̂

n
´W pf̂ e

n,k̂
q .

By adding and subtracting Wnpf̂
e
n,k̂
q and the function C̃npk̂q, we get

W e
npf̂

e
n,k̂
q ´ Ce

npk̂q ´

c

k

n
´W pf̂ e

n,k̂
q “

(B.13)

´

W e
npf̂

e
n,k̂
q ´Wnpf̂

e
n,k̂
q

¯

`

´

C̃npk̂q ´ C
e
npk̂q

¯

`

¨

˝Wnpf̂
e
n,k̂
q ´W pf̂ e

n,k̂
q ´ C̃npk̂q ´

d

k̂

n

˛

‚ .

Note again that

sup
k

`

W e
npf̂

e
n,kq ´Wnpf̂

e
n,kq

˘

ď
1

n

n
ÿ

i“1

|τ̂i ´ τi| ,

and so by Assumptions 2.3.7 and 2.3.8, the first two terms of (B.13) are of order Opφ´1
n q in

expectation. By the first part of Assumption 2.3.8, and an argument similar to the one used

in the proof of Lemma B.1.2, it can be shown that

E
”

sup
k

`

Wnpf̂
e
n,kq ´W pf̂

e
n,kq ´ C̃npkq ´

c

k

n

˘

ı

ď

d

logp∆eq

2c0n
,

where ∆ and co are the same constants that appear in B.1.2. We thus get

(B.14) ErRe
npf̂

e
nq ´W pf̂

e
nqs ď Opφ´1

n q `

c

logp∆eq

2m
.
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Now combining (B.12) and (B.14), we conclude that

ErW ˚
Fk ´W pf̂

e
nqs ď Opφ´1

n q ` ErC
e
npkqs `

c

k

n
`

c

logp∆eq

2m
.

Finally, by Assumption 2.3.8, we get

ErW ˚
F ´W pf̂

e
nqs ď Opφ´1

n q ` ErC̃npkqs `W
˚
F ´W

˚
Fk `

c

k

n
`

c

logp∆eq

2m
,

for all k, and hence the result follows.

Proof of Lemma 2.3.3 and 2.3.4. In what follows, we verify that the third condition

of Assumption 2.3.8 is satisfied for the holdout and Rademacher penalties with estimated

propensity scores, as the first two conditions follow from previous arguments. If we let

C̃npkq “ Eσ

«

2 sup
fPFk

1

n

n
ÿ

i“1

σifpZiq|Z1, Z2, ¨ ¨ ¨ , Zn

ff

,

which is the infeasible Rademacher penalty that depends on the unknown propensity score,

then it can be shown that

|C̃npkq ´ C
e
npkq| ď Eσ

«

2

n

n
ÿ

i“1

|τ̂i ´ τi|
ˇ

ˇ

ˇ
Z1, Z2, ¨ ¨ ¨ , Zn

ff

.

Since the right hand side does not depend on k, we conclude that

E sup
kě1

ˇ

ˇ

ˇ
C̃npkq ´ C

e
npkq

ˇ

ˇ

ˇ
ď 2E

n
ÿ

i“1

|τ̂i ´ τi| “ Opφ´1
n q ,

by Assumption 2.3.7. In the case of the holdout penalty, we can set

C̃mpkq “ Wmpf̂
e
m,kq ´Wrpf̂

e
m,kq .
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Note that since the propensity score is unknown, the empirical welfare criteria Wm and Wr

are infeasible. It can easily be shown that for this choice of C̃mpkq, we have

|C̃mpkq ´ C
e
mpkq| ď

1

m

m
ÿ

i“1

|τ̂i
E
´ τi| `

1

r

n
ÿ

i“m`1

|τ̂i
T
´ τi| ,

which yields

E sup
kě1

ˇ

ˇ

ˇ
C̃mpkq ´ C

e
mpkq

ˇ

ˇ

ˇ
“ Opφ´1

n q .

Next, we prove Proposition 2.5.1.

Let G be the set of monotone allocations. Let πk denote the partition of r0, 1s formed

by the points xi “ i{2k, i “ 0, ¨ ¨ ¨ , 2k. By definition, for each G P G, there is an associated

function bG : r0, 1s Ñ r0, 1s which determines the boundary of the allocation region, that

is, such that G “ tpx1, x2q P X : x2 ď bGpx1qu. Let tGkuk be the approximating sequence

defined in Example 2.3.2, and define G˚ P G to be a set such that W pG˚q “ W ˚
G (if no such

G˚ exists, the argument proceeds by considering an “almost maximizer”).

Proof of Proposition 2.5.1. Fix some P P Pr, where Pr is as defined in Assumption

2.5.1. By definition,

W ˚
G ´W

˚
Gk ď W pG˚q ´W pG̃kq ,

where G̃k P Gk is the allocation such that bG̃kp¨q is the linear interpolation of bG˚ on the

partition πk. We can re-write this as

W pG˚q ´W pG̃kq “ E

„ˆ

Y D

epXq
´
Y p1´Dq

1´ epXq

˙

¨

´

1tX P G˚u ´ 1tX P G̃ku

¯



ď
M

κ
P pG˚∆G̃kq ,

(B.15)
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where ∆ denotes the symmetric difference operator, A∆B :“ AzB Y BzA. By Assumption

2.5.1, X has density pX with respect to Lebesgue measure on r0, 1s2 such that px is bounded

by some constant A, so that

P pG˚∆G̃kq ď A

ż 1

0

|bG˚pxq ´ bG̃kpxq|dx .

We thus conclude that if bG̃k is a good L1-approximation of bG˚ , then the welfare difference

W pG˚q ´W pG̃kq is small. To that end, it remains to bound the approximation bias. Let

Mi “ rxi´1, xis ˆ rbG˚pxi´1q, bG˚pxiqs ,

for i “ 1, . . . , 2k. It follows from the monotonicity of bG˚ that the graphs of the restrictions

of bG˚p¨q and bG̃kp¨q to rxi´1, xis are contained in Mi. Hence we have that

ż 1

0

|bG˚pxq ´ bG̃kpxq|dx ď
2k
ÿ

i“1

areapMiq .

Now note that

2k
ÿ

i“1

areapMiq “

2k
ÿ

i“1

|bG˚pxiq ´ bG˚pxi´1q| ¨ |xi ´ xi´1| “
1

2k

2k
ÿ

i“1

|bG˚pxiq ´ bG˚pxi´1q| .

By monotonicity, it is the case that

1

2k

2k
ÿ

i“1

|bG˚pxiq ´ bG˚pxi´1q| ď
1

2k
,

since by definition bG˚ : r0, 1s Ñ r0, 1s. We thus obtain that

W ˚
G ´W

˚
Gk ď A

M

κ
2´k ,

as desired.
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Next, we prove Proposition 2.5.2. Define

NGpx1, ..., xnq “ |ttx1, x2, ..., xnu XG : G P Gu| ,

then we present the following lemma, which is proved in Györfi et al. (1996):

Lemma B.1.3. Let G be the set of monotone allocations. If X has a bounded density

with respect to Lebesgue measure on r0, 1s2, then

ErNGpX1, ..., Xnqs ď eα
?
n .

for some constant α.

Proof. See Theorem 13.13 and the discussion following the proof in Györfi et al. (1996).

Proof of Proposition 2.5.2. By Corollary 3.4 in Geer (2000), we have that

P

ˆ

sup
fPF

|Wnpfq ´W pfq| ą ε

˙

ď 4P

˜

sup
fPF

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

σifpZiq

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

4

¸

,

for ε ě
b

8pM{κq2

n
, where σi are Rademacher random variables (this follows from two sym-

metrizations). Write fpZq as

fGpZq “ gpZq1tX P Gu ,
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where gpZq “
´

Y D
epXq

´
Y p1´Dq
1´epXq

¯

. Conditioning on tZi “ zi “ pyi, xi, diqu
n
i“1, and applying the

union bound, we get that

P

˜

sup
GPG

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

σigpZiq1tXi P Gu

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

4

ˇ

ˇ

ˇ

ˇ

ˇ

tZi “ ziu
n
i“1

¸

ď

NGpx1, ..., xnq sup
GPG

P

˜ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

σigpZiq1tXi P Gu

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

4

ˇ

ˇ

ˇ

ˇ

ˇ

tZi “ ziu
n
i“1

¸

.

(B.16)

By Hoeffding’s inequality,

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

σigpZiq1tXi P Gu

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

4

ˇ

ˇ

ˇ

ˇ

ˇ

tZi “ ziu
n
i“1

¸

ď 2e´nε
2{c ,

where c “ p4M{κq2. Taking expectations, we can conclude that

P

˜

sup
fPF

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

σifpZiq

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

4

¸

ď 2ErNGpX1, ..., Xnqse
´nε2{c .

Using Lemma B.1.3, we get that

P

ˆ

sup
fPF

|Wnpfq ´W pfq| ą ε

˙

ď 8eα
?
ne´nε

2{c ,

for ε ě
b

8pM{κq2

n
. Let ε˚pnq “

b

8pM{κq2

n
, then the result follows by a slight modification of

the integration argument presented in Problem 12.1 of Györfi et al. (1996) (split the integral

of the tail probability as follows:
ş8

0
“
şε˚pnq

0
`
şu

ε˚pnq
`
ş8

u
, bound the first integral by ε˚pnq,

the second by u, and the third by our tail inequality, and proceed analogously).
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B.2. Supplementary Results for Chapter 2

B.2.1. Supplement to Example 2.2.3

We work through the claim of Example 2.2.3 in detail. Suppose the outcomes of interest to

the planner are described by

Y pkq “ gpk,Aq ´ 1tk “ 1uc ,

where A is an unobserved measure of a student’s ability, and c is the per-unit cost of the

scholarship to the planner. Let

hpaq :“ gp1, aq ´ gp0, aq .

Suppose the planner has two covariates X “ pZ, T q, on which to base treatment, where Z is

parental income and T is a student’s GPA. Define

τpt, zq :“ ErhpAq|Z “ z, T “ ts “

ż

hpaqdFA|Z,T pa|z, tq ,

to be the average treatment effect (ignoring costs) conditional on Z “ z, T “ t (note that if

we consider Assumption 2.3.1 then hpAq has finite support, which guarantees the existence

of τ). The unrestricted optimal allocation is given by

G˚FB :“ tpz, tq : τpz, tq ě cu .

We claimed in Example 2.2.3 that some plausible assumptions about hp¨q and pA, T, Zq could

give rise to an optimal allocation which is monotone, as defined in Example 2.2.3.

First, the planner makes the following assumption on hp¨q:

Assumption B.2.1. hpaq is increasing in a.
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This assumption asserts that the function g has increasing differences, which is a common

assumption made in economics when doing comparative statics analysis. Intuitively, it says

that higher ability students will realize a larger difference in outcomes if they receive the

scholarship than lower ability students.

Next, the planner makes the following assumptions about the conditional distribution of

pA|Z, T q:

Assumption B.2.2. (FOSD of A in (Z,T))

‚ FA|Z,T p¨|z, tq ľFOSD FA|Z,T p¨|z, t
1q for t ě t1

‚ FA|Z,T p¨|z, tq ľFOSD FA|Z,T p¨|z
1, tq for z ď z1

Stochastic-dominance assumptions of this type have been employed by, for example,

Blundell et al. (2007) in the study of wage distributions. Intuitively, Assumption B.2.2

asserts that, given a fixed level of parental income, a higher GPA is an indication of higher

innate ability, and that given a fixed GPA, lower levels of parental income are an indication

of higher innate ability. An assumption of this type could come out of a production function

for cognitive achievement, for example as studied in Todd and Wolpin (2003).

Given these assumptions, we can show that τpz, tq ě τpz, t1q if t ě t1, and τpz, tq ě τpz1, tq

if z ď z1. This follows by the fact that, for an increasing function fp¨q and two distributions

G1 and G2, such that G1 first order stochastically dominates G2, it is the case that

ż

fdG1 ě

ż

fdG2 .

This establishes that the first best allocation is indeed monotone.
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B.2.2. Supplement to Example 2.2.1

We elaborate on the example introduced in Example 2.2.1. We construct an approximating

sequence that results in what Scott and Nowak (2002) call a dyadic decision tree. From

now on assume it is the case that X “ r0, 1sd. First, we define a sequential dyadic partition

(SDP). Let tR1, R2, ..., Rku be a partition of the the covariate space where each Ri is a hyper-

rectangle with sides parallel to the co-ordinate axes. Given a cell Ri, let R
p1,jq
i and R

p2,jq
i be

the hyper-rectangles formed by splitting Ri at its midpoint along the co-ordinate j. A SDP

is defined recursively as follows:

‚ The trivial partition tr0, 1sdu is a SDP

‚ If tR1, R2, ..., Rku is a SDP, then so is

tR1, ..., Ri´1, R
p1,jq
i , R

p2,jq
i , Ri`1, ..., Rku ,

where 1 ď i ď k and 1 ď j ď d.

In words, a SDP is formed by recusively splitting a hyper-cube at its midpoint on some

coordinate. A dyadic decision tree (DDT) with k splits is a SDP with k partitions, paired

with a t0, 1u label for each hyper-rectangle in the SDP. Given a DDT Tk with k splits, let

GpTkq be the set of covariate points in X such that those covariates are labeled with a 1 in

Tk. Our approximating class is defined as follows:

Gk “ tG Ă X : G “ GpTkq for some DDT Tk with k splitsu .

It follows by results in Scott and Nowak (2002) that Gk has finite VC dimension. Given

this approximating sequence, the PWM procedure can be applied to choose the appropriate

DDT. In other words, our method could be used to choose the appropriate depth of a decision
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tree. Kallus (2016) develops Optimal Personalization Trees, which solve a similar problem

for a given class Gk, i.e. for trees of a fixed depth. Athey and Wager (2017) use decision trees

with a fixed depth as a primary motivating example for their method, and derive a bound

on the Hamming entropy of the class of fixed-depth decision trees without the dyadic-split

assumption we present here.

We expect that under appropriate regularity conditions we could derive bounds on the

maximum regret of this version of PWM with respect to the unrestricted optimum. The first

question one might ask is how the bounds on maximum regret of PWM with this approxim-

ating sequence would compare to the bounds on maximum regret that exist for plug-in rules.

As discussed in Kitagawa and Tetenov (2018), if the plug-in rule is implemented with appro-

priate local-polynomial estimators, and smoothness conditions on the regression functions

EpY pdq|X “ xq are imposed, a bound on maximum regret can be derived. On the other

hand, as explained in Audibert et al. (2007) in the context of classification, although results

for plug-in rules typically require assumptions on smoothness of the regression functions,

the analogues to our approach in classification typically require regularity conditions on the

boundary of the decision set G˚FB. In this sense, a comparison of the regularity conditions for

plug-in rules and PWM-type rules would suggest that they are complementary approaches.

B.2.3. Supplement to Remark 2.3.2

The demeaned EWM rule is defined as follows: Let Y dm
i :“ Yi ´EnrYis, then the demeaned

EWM rule solves the following problem:

max
GPG

En

„

Y dm
i Di

epXiq
1tXi P Gu `

Y dm
i p1´Diq

1´ epXiq
1tXi P Gu



.
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Analogues of the results presented in Sections 2.4 and 2.5 are available from the authors

upon request.

B.2.4. Supplement to Remark 2.3.5

In this subsection we provide some simple calculations that justify the comments made in

Remark 2.3.5. Consider first the Rademacher penalty, then Proposition 2.3.2 shows that

EPnrW
˚
G ´W pĜnqs ď inf

k

”

C
M

κ

c

Vk
n
`
`

W ˚
G ´W

˚
Gk

˘

`

c

k

n

ı

` gpM,κq
M

κ

c

1

n
,

where C is the universal constant derived in the bound of EWM in Kitagawa and Tetenov

(2018) and g is defined as

gpM,κq :“ 6

d

log
´3
?
e

?
2

M

κ

¯

.

Our first task is to quantify the size of C. By the proof of Lemma A.4. in Kitagawa and

Tetenov (2018), we can see that the constant C depends on a universal constant K derived

in Theorem 2.6.7 of Van der Vaart and Wellner (1996), which establishes a bound on the

covering numbers of a VC subgraph class. Inspection of the proof in Van der Vaart and

Wellner (1996) allows us to conclude that a suitable K is given by K “ 3
?
e{8. Plugging

this in to the expression for C derived in Kitagawa and Tetenov (2018) allows us to conclude

that a suitable C is given by C “ 36.17. Turning to gpM,κq, we can calculate that in order

for it to surpass C by an order of magnitude, we would need M{κ to be about as large as

10120. This give us a sense of the relative sizes of the terms in our bound.

B.3. Computational Details for Chapter 2

In this section we provide details on how we perform the computations of Sections 2.4

and 2.5. All of our work is implemented in Python 2.7 paired with Gurobi. To clarity the
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exposition, we begin with Section ??, which is more straightforward, then proceed to Section

2.4.

B.3.1. Application Details

We will now describe how we compute each Ĝn,k to solve PWM over monotone allocations.

Recall the definition of ψT,jpxq as defined in Example 2.3.2. We modify this definition to

accommodate the fact that our covariates do not lie in the unit interval. In particular, we

restrict ourselves to levels of education that lie in the interval r5, 20s, which leads to the

following modification.

ψT,jpxq “

$

’

’

&

’

’

%

1´ | T
15
px´ 5q ´ j|, x P

“

j´1
T {15

` 5, j`1
T {15

` 5
‰

X r5, 20s

0, otherwise .

Let ΘT “

„

θ0 θ1 ¨ ¨ ¨ θT

1

and let Θ̄T “

„

´1 θ0 θ1 ¨ ¨ ¨ θT

1

. Let our two dimen-

sional covariate be denoted as x “ pxp1q, xp2qq where xp1q is level of education and xp2q is

previous earnings. Let

ΨT pxq “

„

xp2q ψT,0px
p1qq ¨ ¨ ¨ ψT,T px

p1qq

1

.
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To compute Ĝn,k we solve the following mixed integer linear program (MILP), which modifies

the MILP described in Kitagawa and Tetenov (2018) for “Single Linear Index Rules”:

max
θ0,θ1,...,θT ,
z1,...,zn

n
ÿ

i“1

τi ¨ zi

subject to
Θ̄1
TΨT pxiq

ciT
ă zi ď

Θ̄1
TΨT pxiq

ciT
` 1, i “ 1, . . . , n

zi P t0, 1u, i “ 1, . . . , n

DTΘT ě 0

where T “ 2k´1, τi is as defined in equation (2.2), cT is an appropriate constant (to be

discussed in the following sentence), and DT is the differentiation matrix as defined in Ex-

ample 2.3.2. ciT is a constant chosen such that ciT ą supΘT
|Θ̄1

TΨT pxiq|, which allows us to

formulate a set of what are known as “big-M” constraints. To implement such a constraint

it must necessarily be the case that ΘT is bounded, so in order to implement PWM we also

include an implicit (very large) bound on the possible treatment allocations.10

The first two sets of constraints impose that the treatment allocation result in a piecewise

linear boundary, the third set of constraints impose that this boundary is monotone. The

strength of this formulation is that it imposes monotonicity via a linear constraint, which

allows us to solve the problem as a MILP.

10Big-M constraints have the potential to cause numerical instabilities when solving MILPs that are poorly
formulated. We found that it was important to ensure that the covariates are scaled to within the same
order of magnitude and that the IntFeasTol and FeasibilityTol parameters in Gurobi were set to their
smallest possible values.
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B.3.2. Simulation Details

We describe a MILP to compute each Ĝn,k over threshold allocations on d covariates. Define x

to be a pd`1q-dimensional vector where x “ p1, xp1q, xp2q, ..., xpdqq, with the last d components

denoting the d covariates, and suppose x P r0, 1sd`1, which is the case in the simulation

design. We define the threshold βk on covariate xpkq to be a pd` 1q-dimensional vector such

that the first component is in r´1, 1s, all other components other than the pk`1qst are zero,

and the pk ` 1qst component is one of t1,´1u. Let A “ t1, 2, ..., du index the dimension of

the threshold. We modify the MILP described in Kitagawa and Tetenov (2018) for “Multiple

Linear Index Rules”:
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max
tβauaPA,

tza1 ,...,z
a
nuaPA,z

˚
1 ,...,z

˚
n

n
ÿ

i“1

τi ¨ z
˚
i

subject to
x1iβa
c
ă zai ď

x1iβa
c
` 1, i “ 1, . . . , n, a P A

1´ |A| `
ÿ

aPA

zai ď z˚i ď
1

|A|

ÿ

aPA

zai , i “ 1, . . . , n

βp1qa P r´1, 1s, a P A

βpjqa “ 0, j ą 1, j ‰ a` 1, a P A

ÿ

aPA

ea “ k

´ ea ď βp1qa ď ea, a P A

βpa`1q
a “ yp1qa ´ yp2qa , a P A

yp1qa ` yp2qa “ ea, a P A

tzai uaPA, z
˚
i P t0, 1u, i “ 1, . . . , n

teauaPA P t0, 1u, a P A

typ1qa uaPA, ty
p2q
a uaPA P t0, 1u, a P A

The constraints serve the following roles: the first two constraints enforce the assignment

of observations to treatment, the next two constraints enforce part of the structure of the

threshold allocation, the fifth constraint specifies that only k thresholds can be used, and the

three subsequent constraints enforce this. Again we require an appropriately chosen constant

c to implement a set of big-M constraints, but in this case the choice is straightforward:
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c “ d ` 2 will suffice since this guarantees that c ą x1iβa for any possible xi and βa, by

construction.

Remark B.3.1. In practice, the solution of this MILP could be further optimized using

the improvements developed in Bertsimas et al. (2016) and Chen and Lee (2016).
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APPENDIX C

Appendix to Chapter 3

C.0.1. Proofs of the main Results

To simplify the exposition, we first present the proofs in the special case of

yn “ βxn ` un ,

where xn is a scalar. We then explain how to extend the proofs to the case where xn is a

vector (see Remarks C.0.3 and C.0.5).

A comment about the general strategy: to prove convergence in probability, we prove

convergence in mean-square by finding an appropriate bound on the variance that converges

to zero. To prove convergence in distribution to a normal, we use the following central limit

theorem for dependency graphs proved in Janson (1988). First we give the definition of a

dependency graph for a family of random variables:

Defininition C.0.1. A graph Γ is a dependency graph for a family of random variables

if the following two conditions are satisfied:

‚ There exists a one-to-one correspondence between the random variables and the

vertices of the graph.

‚ If V1, V2 are two disjoint sets of vertices of Γ such that no edge of Γ had one

endpoint in V1 and the other in V2, then the corresponding sets of random variables

are independent.

Now we state the theorem:
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Theorem C.0.1. (Janson 1988 Theorem 2) Suppose that, for each N , tXNiu
N
i“1

is a family of bounded random variables; |XNi| ď AN a.s. Suppose further that ΓN is a

dependency graph for this family and let DN be the maximal degree of ΓN (unless ΓN has no

edges at all, in which case we set DN “ 1). Let SN “
ř

iXNi and σ2
N “ V arpSNq. If there

exists and integer ` ě 3 such that

LN :“
p N
DN
q1{`DNAN

σN
Ñ 0 as N Ñ 8 ,(C.1)

then

SN ´ ErSN s

σn

d
ÝÑ Np0, 1q as N Ñ 8 .

Remark C.0.1. As will be made clear in the proof of Proposition 3.3.2, we use Theorem

C.0.1 by definining an appropriate dependency graph for which DN “ 2pMH ´ 1q, which

establishes the equivalence between Condition 3.2.1 and Equation C.1 for our purposes. Also

note that although Janson’s theorem applies to an array of random variables, in the sense

that for a given i, XNi is allowed to change as N grows, we do not use this feature for our

results.

Because the proofs under AF1 amount to special cases of the proofs under AF2, we prove

Propositions 3.3.2 and 3.3.5 before proving Propositions 3.3.1 and 3.3.3 and 3.3.4.

Proof of Proposition 3.3.2

Proof. We have

τNpβ̂ ´ βq “ p
1

N

N
ÿ

n“1

x2
nq
´1 τN
N

N
ÿ

n“1

xnun .

First let’s prove pp1{Nq
ř

n x
2
nq
´1 p
ÝÑ Erx2

ns
´1. By the continuous mapping theorem it is

enough to show that p1{Nq
ř

n x
2
n

p
ÝÑ Erx2s. The expectation of p1{Nq

ř

n x
2
n is Erx2

ns, so it
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suffices to show that

V arp
1

N

N
ÿ

n“1

x2
nq Ñ 0 .

Expanding the variance gives

V arp
1

N

N
ÿ

n“1

x2
nq “

1

N2

N
ÿ

n“1

N
ÿ

m“1

Covpx2
n, x

2
mq .

For a fixed n “ npg, hq, we have at most 2MH ´ 1 terms in the inner sum such that the

covariance is nonzero. By Assumption 3.3.1, Covpx2
n, x

2
mq is uniformly bounded. Hence the

sum over n is of order OpNMHq. Thus under AF2 we have that

V arp
1

N

N
ÿ

n“1

x2
nq “ O

`MH

N

˘

“ O
` 1

G

˘

“ op1q .

Next we’ll prove that

τN
N

N
ÿ

n“1

xnun
d
ÝÑ Np0,Ωq .

We apply Janson’s theorem to the family of random variables txnunu
N
n“1. A dependency

graph ΓN “ pV , Eq for this family is the graph with vertex-set V “ txnunuNn“1, and edge set

E “ ttxnun, xmumu : xnun, xmum P V and ψpnq X ψpmq ‰ Hu .

That ΓN is a dependency graph for txnunu
N
n“1 follows immediately from Assumption

3.2.1. The maximal degree DN of ΓN is 2pMH ´ 1q by definition and, by Assumption 3.3.1,

|xnun| ă A for all N for some finite constant A. It remains to check Condition (2) of Janson’s

theorem. Let ΩN “ V arp
ř

n xnunq, then:

LN “
p N

2pMH´1q
q1{`2pMH ´ 1qA
?

ΩN

“
p N

2pMH´1q
q1{`2pMH ´ 1qA
?
NGr

¨
` 1

NGr
ΩN

˘´1{2
.
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Call the first term in the product R1 and the second term R2. R2 converges to Ω´1{2 by

Assumption 3.2.6. To evaluate the limit of R1, we re-write everything in terms of the rates

dictated by AF2, which gives us

R1 “ O
´G1{`

Gr{2

¯

.

Choose ` sufficiently large such that 1
`
´ r

2
ă 0, which is possible since r ą 0. It then follows

that R1 Ñ 0. Now that we have established Condition (2) of Janson’s theorem, we have that

řN
n“1 xnun?

ΩN

d
ÝÑ Np0, 1q .

Re-writing:

řN
n“1 xnun?

ΩN

“
` 1
?
NGr

N
ÿ

n“1

xnun
˘

¨ p
1

NGr
ΩNq

´1{2
“
τN
N

N
ÿ

n“1

xnun ¨ p
1

NGr
ΩNq

´1{2

It thus follows by Assumption 3.2.6 that

τN
N

N
ÿ

n“1

xnun
d
ÝÑ Np0,Ωq .

Applying Slutsky’s Theorem to

τNpβ̂ ´ βq “ p
1

N

N
ÿ

n“1

x2
nq
´1 τN
N

N
ÿ

n“1

xnun ,

we can conclude that

τNpβ̂ ´ βq
d
ÝÑ Np0, V q ,

as desired.

Remark C.0.2. As noted after the statement of Assumption 3.3.1, we could weaken the

uniform boundedness assumption by using Janson’s theorem with a Lindeberg-type condition



216

(see Remark 3 in Janson (1988)). For example, if we instead assume that xnun has bounded

2 ` δ moments, then the result could be proved under the additional assumption that r ą

2{p2` δq, which agrees with our result as we take δ to infinity.

Remark C.0.3. The general case is proved as follows: to show the convergence of

p1{Nq
ř

n xnx
1
n we repeat the argument above but component-wise. To show the convergence

of pτN{Nq
ř

n xnun we use Janson’s Theorem paired with the Cramer-Wold device.

Proof of Proposition 3.3.1

Proof. This proof follows by a similar argument to the proof of Proposition 3.3.2. We

will sketch it here. Expanding:

?
Npβ̂ ´ βq “ p

1

N

N
ÿ

n“1

x2
nq
´1 1
?
N

N
ÿ

n“1

xnun .

The first term of the product converges to Epx2q´1 by the same argument as above. The

second term of the product converges to a normal by an application of Janson’s theorem

C.0.1 where we note that now under AF1 the maximal degree DN “ 2pMH ´ 1q of the

dependency graph is bounded. Hence by Janson’s theorem we have that

řN
n“1 xnun

ΩN

d
ÝÑ Np0, 1q .

By a similar calculation to the one done in the proof of Proposition 3.3.2, we get that

1
?
N

N
ÿ

n“1

xnun
d
ÝÑ Np0,Ωq ,

and thus Proposition 3.3.1 follows by an application of Slutsky’s theorem.

Proof of Proposition 3.3.5
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Proof. We follow the general strategy of Aronow et al. (2015). First we introduce some

notation for the proof. Given a dyadic index n, define ñ “ ψpnq. Recall that

V̂ “ p
N
ÿ

n“1

x2
nq
´1Ω̂p

N
ÿ

n“1

x2
nq
´1 ,

where

Ω̂ “
N
ÿ

n“1

N
ÿ

m“1

1n,mûnûmxnxm .

We proved in Proposition 3.3.2 that
`

p1{Nq
řN
n“1 x

2
n

˘´1 p
ÝÑ Epx2q´1. So it remains to show

that

τ 2
N

N2
Ω̂

p
ÝÑ Ω .

Re-writing ûn “ un ´ pβ̂ ´ βqxn and expanding gives:

τ 2
N

N2
Ω̂ “

τ 2
N

N2

´

R1 `R2 `R3 `R4

¯

,

where

R1 “

N
ÿ

n“1

N
ÿ

m“1

1n,mxnxmunum ,

R2 “ ´

N
ÿ

n“1

N
ÿ

m“1

1n,mxnx
2
munpβ̂ ´ βq ,

R3 “ ´

N
ÿ

n“1

N
ÿ

m“1

1n,mx
2
nxmumpβ̂ ´ βq , and

R4 “

N
ÿ

n“1

N
ÿ

m“1

1n,mx
2
nx

2
mpβ̂ ´ βq

2 .

We will show that pτ 2
N{N

2qR1
p
ÝÑ Ω while the rest converge in probability to zero. As usual,

we show convergence in mean-square. For the first term, it is the case by definition that

lim
GÑ8

E
” τ 2

N

N2
R1

ı

“ Ω ,
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so it suffices to show that

lim
GÑ8

V ar
´ τ 2

N

N2
R1

¯

“ 0 .

Expanding:

V ar
´ τ 2

N

N2
R1

¯

“
τ 4
N

N4

´

ÿ

i

ÿ

j

ÿ

k

ÿ

l

Covp1i,jxixjuiuj,1k,lxkxlukulq
¯

.

By Assumption 3.3.1, the summands are uniformly bounded, so in order to get a suitable

bound on the sum we need to understand under what conditions

Covp1i,jxixjuiuj,1k,lxkxlukulq ‰ 0 .

First it is clear that we must have

ĩX j̃ ‰ H and k̃ X l̃ ‰ H .(C.2)

Given (2) holds, expand the covariance:

Covpxixjuiuj, xkxlukulq “ Erxixjuiujxkxlukuls ´ ErxixjuiujsErxkxlukuls ,

then we see that we must also have that

ĩX k̃ ‰ H or ĩX l̃ ‰ H or j̃ X k̃ ‰ H or j̃ X l̃ ‰ H .(C.3)

Let S be the set of tuples pi, j, k, lq P N4 such that conditions (2) and (3) hold, then the

cardinality of S, denoted |S|, is an upper bound on the number of nonzero terms in the sum.

Our goal is to find an upper-bound on |S|.

Fix an index i, then there are OpMHq indices j such that ĩ X j̃ ‰ H. Now, for a fixed

i and j such that ĩ X j̃ ‰ H, there are OpMHq possible indices k such that ĩ X k̃ ‰ H or
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j̃X k̃ ‰ H. For a fixed i, j and k such that the above hold, there are OpMHq possible indices

l such that k̃ X l̃ ‰ H.

Similarly, for a fixed i and j such that ĩ X j̃ ‰ H, there are OpMHq possible indices l

such that ĩX l̃ ‰ H or j̃ X l̃ ‰ H. For a fixed i, j and l such that the above hold, there are

OpMHq possible indices k such that k̃ X l̃ ‰ H.

Thus there are N ¨OpMHq¨OpMHq¨OpMHq “ OpNpMHq3q possible indices i, j, k, l such

that pi, j, k, lq P S. Re-writing using the rates dictated by AF2 gives us that |S| “ OpG5q

and that

τ 4
N

N4
ď K

1

G4`2r
,

for some positive constant K. Therefore we can conclude that

V ar
` τ 2

N

N2
R1

˘

ď
1

G4`2r
OpG5

q “ op1q

for r ą 1
2
. Thus we have shown that pτ 2

N{N
2qR1

p
ÝÑ Ω. Next, we must show that the

remaining terms converge to 0 in probability. All three terms follow by similar arguments

so we will only present the argument for R2. We wish to show that

τ 2
N

N2

´

N
ÿ

n“1

N
ÿ

m“1

1n,mxnx
2
munpβ̂ ´ βq

¯

p
ÝÑ 0 .

We know from Proposition 3.3.2 that τ 1´ε
N pβ̂ ´ βq “ oP p1q for any ε ą 0, so it suffices to

show that

τ 1`ε
N

N2

´

N
ÿ

n“1

N
ÿ

m“1

1n,mxnx
2
mun

¯

“ OP p1q ,

for some ε ą 0. Note that from Assumption 3.3.1 and the definition of τ ,

E
”τ 1`ε

N

N2

´

N
ÿ

n“1

N
ÿ

m“1

1n,mxnx
2
mun

¯ı

Ñ 0 ,
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for ε sufficiently small, and that

V ar
´τ 1`ε

N

N2

´

N
ÿ

n“1

N
ÿ

m“1

1n,mxnx
2
mun

¯¯

Ñ 0 ,

which can be shown by similar arguments to what we have done above. Similarly, the third

and fourth terms also converge to zero in probability, and hence we have that

τ 2
N

N2
Ω̂

p
ÝÑ Ω ,

and ultimately that

τ 2
N V̂

p
ÝÑ V

as desired.

Remark C.0.4. Note that this proof relied on the bounded support Assumption 3.3.1

to ensure that the covariance terms in the summands were uniformly bounded. In general

we would need to make assumptions on these covariances if we were to weaken the support

assumption used here.

Remark C.0.5. The general case is proved as follows: to show the convergence of R1 to

Ω we repeat the argument above but component-wise. To show the convergence of R2, R3

and R4 to zero we modify the argument slightly. Consider

R2 “

N
ÿ

n“1

N
ÿ

m“1

1n,mxnx
1
mpβ̂ ´ βq

1xnun .

To show R2
p
ÝÑ 0 we will show that ||R2||

p
ÝÑ 0 where || ¨ || is the Frobenius norm. Using the

triangle inequality, the matrix Schwartz Inequality, and the definition of the Frobenius norm
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we get that

||R2|| ď

N
ÿ

n“1

N
ÿ

m“1

1n,m||xn||
2
||xm|| ¨ ||β̂ ´ β|| ¨ |un| .

The result then follows from the arguments presented above.

Proof of Proposition 3.3.3

Proof. Again we follow the same strategy as the proof of Proposition 3.3.5. Now when

getting a bound on the variance of R1, we have that, for each fixed i, there are only finitely

many j, k, l such that pi, j, k, lq P S. Therefore there are OpNq nonzero terms in the sum. It

then follows that the variance of p1{NqR1 converges to zero and the proof goes through in

the same manner as before.

Proof of Proposition 3.3.4

Proof. This is just a special case of Proposition 3.3.5.

Proof of Proposition 3.3.6

Proof. We follow the same strategy as the proof of Proposition 3.3.5. Now when getting

a bound on the variance of R1, we have that the terms in the sum are nonzero if and only

if i “ j “ k “ l, so that there are N nonzero terms in the sum. It then follows that the

variance of p1{NqR1 converges to zero and the proof goes through in the same manner as

before.

C.0.2. Simulation Design Details

In this section we provide some details about the construction of our designs not mentioned

in the main body. All of the simulations in the paper were performed using numpy in Python

2.7.
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Construction of Model S: Dyads were included in Model S according to the following

rule:

‚ pg, hq is included if |g ´ h| “ 1

‚ p1, Gq is included

‚ pg, 2gq is included if g ď
X

G
2

\

‚ pg, 3gq is included if g ď
X

G
3

\

Construction of Model B: Dyads were included in Model B according to the following

rule:

‚ pg, hq is included if |g ´ h| “ 1 and g, h ă G´ 1

‚ p1, G´ 2q is included

‚ If G “ 100, G “ 250, or G “ 800, pg, hq is included if |g ´ h| “ 2 and g, h ă G´ 1

‚ If G “ 100 or G “ 250, or G “ 800, p1, G´ 3q and p2, G´ 2q are included

‚ If G “ 800, pg, hq is included if |g ´ h| ď 4 and g, h ă G´ 1

‚ If G “ 800, p1, G´ 4q, p1, G´ 5q, p2, G´ 3q, and p2, G´ 4q are included

‚ pg,G´ 1q is included for all g ď
X

G
2

\

, and pg,Gq is included for all g ą
X

G
2

\

Construction of GA and GB: Recall that in Section 4.2 we constructed our design by

partitioning the units into two groups GA and GB and then specifying the error term as

unpg,hq “

$

’

’

&

’

’

%

´pαg ` αhq ` εn if g and h belong to different groups.

αg ` αh ` εn if g and h belong to the same group.

Where αg „ U r´
?

3,
?

3s i.i.d for g “ 1, 2, ...G and εn „ U r´
?

3,
?

3s i.i.d for n “ 1, 2, ..., N .

In order to achieve a rate of growth of NGr for V arp
ř

n xnunq, we construct GA and GB as

follows:

GA “

!

g P G : g ď

Z

G´Gs

2

^

)

,
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GB “

!

g P G : g ą

Z

G´Gs

2

^

)

,

where s “ 1`r
2

. Expanding V arp
ř

n xnunq shows that it indeed grows at rate NGr.
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