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ABSTRACT 

Understanding bridge performance and detecting structurally deficient components are of 

increasing concern to modern infrastructure owners and managers. Concerns over possible effects 

of increased truck weights led to the opportunity to monitor a highway bridge, regularly subjected 

to heavy traffic due to logging activities typical of its locale. A weigh-in-motion and a structural 

health monitoring system were installed to collect long-term data on both traffic and bridge 

response. This thesis aims to tackle different aspects of the analysis of the data generated by these 

systems, to promote a gauge of bridge performance. After assessing the conditions of the bridge 

at the moment of the data collection, the first goal is to develop new metrics for bridge response 

based on strain, the second goal is to model and predict bridge response based on traffic and finally, 

the third goal is to classify the most common bridge responses and categorize the trucks which 

cause them. By achieving these tasks, this thesis aims to provide data-driven decision-making 

support for policymakers, bridge managers, and owners, to assure timely and effective 

interventions, to improve long-term durability and extended serviceability, to increase safety, and 

eventually to save money.   
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1 BRIDGE MAINTENANCE: A NON-SUSTAINABLE TREND TO CURB 

This thesis starts with an overview chapter which aims to explain the importance of bridge 

monitoring and how this work aims to contribute to the field. A comparison of costs and benefits 

between visual inspection and structural health monitoring is reported as well as some case-studies 

which focus on the implementation of bridge monitoring from space, as a potential solution for the 

future. Finally, the subject bridge and its components are described as well as the systems deployed 

to measure the bridge response (structural health monitoring) and the characteristics of the trucks 

crossing the bridge (weigh-in-motion).  
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1.1 CURRENT SITUATION  

Highways and bridges are commonly referred to as the “backbone” of the US transportation 

system and serve as the nation’s central artery of commerce and economic activity. Critical 

infrastructures are defined by Egan (2007) as “systems that provide critical support services to a 

country, geographic area or a corporate entity; when they fail, there is potentially a large cost in 

human life, the environment or economic markets”. The American Society of Civil Engineers 

(ASCE) gave the overall condition of US infrastructure a grade of D+ in its most recent report 

(ASCE, 2017). According to the 2018 Deficient Bridge Report (ARTBA, 2018) (Fig.1.1 and 1.2), 

54,300 structurally deficient U.S. bridges are crossed 174 million times daily across the nation. In 

2017, out of 612,677 total bridges, 54,259 are rated as structurally deficient, meaning that 1 in 9 

of the nation’s bridges is structurally deficient (data from the 2017 National Bridge Inventory 

ASCII files, released in January 2018 by the Federal Highway Administration (FHWA)). The 

average age of a structurally deficient bridge is 67 years, compared to 40 years for non-deficient 

bridges. The replacement and rehabilitation costs associated with those bridges are $21.5 billion 

and $14.5 billion, respectively (Halsey III, TWP, 2016). Not all deficient bridges are in danger of 

collapse, however, there are consequences that come with their decayed state. One of them is the 

need to impose weight restrictions which can have an impact on the routes of heavy trucks, which 

remain the highest volume mode in the US business supply chain. That can cause delays and those 

delays, ultimately, may cost the average consumer money. For example, the average daily delay 

for a UPS truck, due to substandard road conditions, congestion, and capacity issues is five minutes 

and that translates to $105 million in additional annual cost to this one company alone (Monga, 

WSJ, 2015). Other carriers suffer similarly, and the increased cost is passed on to consumers.   
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Figure 1.1: state map of the 2018 structurally deficient bridges report, (ARTBA). 
 

 

Figure 1.2: structurally deficient bridges on the U.S. National Highway System, (ARTBA). 
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Given that almost all economic activity, to some degree, depends on the mobility of our highways, 

roads, and bridges, keeping America’s roads and bridges in a state of good repair can positively 

contribute to a robust economy, improve labor productivity and favorably impact the quality of 

life of all Americans, including improved public health and higher energy efficiency (U.S. 

Treasury Department, 2012).  

1.2  IMPORTANCE OF MONITORING  

America’s highway network is underperforming, causing a significant impact on the economy 

by preventing goods and people to move efficiently. It has proven challenging for state and local 

governments to keep pace with the growing nation’s bridge needs. Consequently, understanding 

bridge performance  and detecting structurally deficient components are crucial steps to assure 

timely and effective interventions to improve long-term durability and serviceability (DeWolf et 

al., 2002). The sooner repairs are made, the cheaper they are. According to Kahn and Levinson 

(2011), every $1 in preventive maintenance saves between $4 and $10 in future repairs (Jaffe, 

2015). Bridges are structures designed to display ductile failure modes in case of collapse, and 

consequently, most of them will display early warnings when the structure is under extreme loads, 

providing enough time for remedial actions. With this in mind, structural health monitoring 

(SHM), intended as the practice of monitoring a structure to ensure that its structural integrity and 

safety remain satisfactory, is ideal for detecting early warnings of possible trends which can lead 

to failures or need for rehabilitation and strengthening. The broad objectives of SHM are to 

measure bridge condition, evaluate in-service performance, detect deterioration, determine 

required maintenance, and estimate remaining service life (Cusson et al., 2012). Adopting SHM 

techniques on critical bridges can contribute to addressing some of today’s challenges and 
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improving inspection, repair, and rehabilitation methods and reducing traffic disruption. For 

instance, a more accurate knowledge of the life cycle performance of a bridge network through 

SHM can provide more complete and timely information to decision makers for an improved 

management of maintenance and rehabilitation of highway bridges. As a result, timely 

identification of potential problems can help mitigate their impact on structural health and reduce 

bridge rehabilitation costs, extending the service life and minimizing life-cycle cost of bridge 

networks. 

With aging structures and increased user demands, proper maintenance and monitoring of 

bridges are more of a national priority than they have ever been. This thesis aims to provide a 

contribution to the bridge condition assessment practice to improve the decision-making process 

by addressing the following issues:  

• Preliminary monitoring of bridge performance (Chapter 2); 

• Development of bridge response metrics (Chapter 3); 

• Modeling and predicting bridge response (Chapter 4); 

• Clustering bridge response and trucks’ classification (Chapter 5). 

Each chapter addresses a different challenge to improve various aspects of the bridge monitoring 

practice. Chapter 2 shows the preliminary analysis which is usually developed with the data 

collected using strain gages. The calculation of girder distribution factors (GDF) and aggregate 

analysis at different level are presented to point out potential trends over time. Chapter 3 proposes 

new metrics to measure bridge response and bridge integrity over time based on the influence line 

theory. Chapter 4 provides a comparative study of three machine learning methods to model and 
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predict bridge response using the metrics developed in chapter 3, and an alternative strategy based 

on the influential observations analysis is proposed. Chapter 5 presents, for the first time, an 

application of longitudinal clustering to structural engineering. The strain responses of the subject 

bridge to heavy trucks are clustered and the characteristics of the trucks which produce each 

response are extracted. The information obtained can be used by decision-makers, policy-makers 

and even during design, to understand what kind of traffic is crossing (or it is expected to cross) 

the bridge and flag those trucks which could cause more harm to the structure.  

1.3 VISUAL INSPECTION AND SHM: A COMPARATIVE ANALYSIS OF COSTS AND 

BENEFITS 

The most common technique of bridge monitoring is visual inspection. However, monitoring 

bridge with sensors is becoming more and more common due to numerous advantages. Inspection 

and monitoring are distinct methods, each with its own pros and cons but not mutually exclusive. 

Their functional differences can be leveraged for a complementary approach to bridge monitoring 

resulting in potential savings, efficiency of assessment and better decision-making support. Below, 

two studies (Agdas et al., 2015 and CAR et al., 2012), which developed the cost assessment of 

visual inspection and structural health monitoring, are shown.  

Visual inspection is the default bridge inspection methodology governed by National 

Bridge Inspection Standards (NBIS) published by the FHWA. It is required every two years, 

however, flexibility is given to the state and federal agencies to increase the frequency when 

necessary. The inspection is done mostly visually, more advanced inspections may include the 

execution of destructive and non-destructive testing. Monitoring for corrosion and scour is 
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common practice but also fracture critical members of the bridge, defined by the FHWA as steel 

members in tension, or with a tension element, need to be inspected because in the event of a steel 

member’s failure there is no path for the transfer of weight being supported by the member, causing 

potential failure of a portion of or the entire bridge to collapse. Visual inspection has certainly 

some limitations such as the inspection frequency, the timing of the inspection becomes 

particularly important for deficient bridges; interpretability because visual inspection depends on 

the inspector’s subjective assessment; accessibility is one of the most important shortcomings of 

the visual inspection, all internal problems which are not visible from surface will not be identified 

and flagged, and also some areas of the bridge might be difficult to access.  

The term structural health monitoring encompasses a range of methods and practices 

designed to assess the condition of a structure based on a combination of measurement, modeling, 

and analysis. While non-destructive evaluation approaches seek to discover flaws at the material 

level resulting in a local damage assessment, SHM is a more global approach to assess the 

structure. The size and complexity of civil structures like bridges often require this type of 

approach. SHM data are generated by sensors installed on the bridge need to be processed and 

analyzed to capture the structure’s response and any trend which can lead to potential anomalous 

behavior. This approach can also provide the benefits of real-time assessment. The SHM system 

heavily depends on the number of sensors and their locations. A plethora of sensors are now 

available in the market, strain gages, accelerometers widely have been used for decades to measure 

structure response, more recently, optical fibers sensors are used to measure strain, temperature, 

and vibration. SHM has also some limitations such as complexity: size, complexity of the structure 

and surrounding environment; system maintenance: hardware and software failure, so maintenance 
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is required for long-term operation; automated data analysis: dedicated personnel is required for 

monitoring and analyzing the system outputs; costs and implementation: SHM requires a 

significant initial investment. 

1.3.1 Case Study 1 

The first case study (Agdas et al., 2015) presents a typical pre-stressed concrete girder 

bridge in a coastal region, with three 65-ft spans (Fig.1.3) and 8-ft girder spacing and a 56-ft wide 

deck (Fig. 1.4). The bridge presents known issues with corrosion of pre-tensioning steel and scour.  

 

Figure 1.3: bridge view. 

 

 Figure 1.4: sensors layout. 
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Visual inspection costs 

Table 1.1 shows all the items which add up to a total cost: routine field inspection, which are the 

costs associated with the actual inspection which is expected to take one day, maintenance of traffic 

(MOT) are expenses due to traffic control for one day, underwater inspection is performed due to 

the possibility of scour, a snooper, necessary to access the underside of the bridge. 

Table 1.1: case study 1, bridge estimated inspection costs. 

 

 

SHM costs 

The estimation of SHM costs is complicated due to the high number of potential composition of 

the system, methods, parameters to monitor and other aspects. The bridge is equipped with 

corrosion and scour sensing sensors, strain gages to track load sharing between girders, 

accelerometers to investigate changes in the modal properties of the structure over time (Fig.1.4). 

Wired and wireless systems are considered, with the latter showing a 40% reduction in the initial 
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costs (Table 1.2), this cost-benefit will increase with the bridge length. The life expectancy of 

typical system components, with proper maintenance, is approximately 10 years. 

Table 1.2: case study 1, wired and wireless SHM costs for case study bridge. 

 

1.3.2 Case Study 2 

The Michigan Tech Transportation Institute (MTTI) and Michigan Tech Research Institute 

(MTRI), in cooperation with the Center for Automotive Research (CAR) and the Michigan 

Department of Transportation (MDOT), have investigated the use of remote sensing technologies 

to assess and monitor the condition of bridge infrastructures (CAR et al., 2012).  
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Visual inspection costs 

This study collected data through literature review and face-to-face interviews with MDOT 

partners to establish realistic agency cost estimates of current bridge inspections. Costs of labor 

are the primary component of bridge inspection costs. For most routine inspections, a team of two 

can complete four to five bridges per day. Large or complex bridges may take longer. Thus, the 

cost of a routine inspection can be highly variable, based on factors such as size, location, traffic 

volume, and construction type. Non-routine inspections (e.g., in-depth, fracture critical) may also 

cost more. Historical bridge inspection cost data from CAR research are summarized in Table 1.3. 

Table 1.3: case study 2, sample of bridge inspection costs for selected transportation 

agencies. 
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SHM costs 

Three MDOT bridges were selected for field demonstration of using the following commercially 

available remote sensing technologies: 3D Optical Bridge-evaluation System (3DOBS), Bridge 

Viewer Remote Camera System (BVRCS), GigaPan Photography, Thermal Infrared Imagery 

(ThIR), Digital Image Correlation (DIC), Mobile Light Detection and Ranging (M-LiDAR), 

Synthetic Aperture Radar , Ultra Wide Band Imaging RADAR System (UWBIRS). The costs are 

Some cost elements, presented in Table 1.4, can be measured based on available market data and 

the field demonstration cost data collection efforts. Others, those with greater uncertainty, are not 

easily measured, such as final labor costs associated with inspection and data processing time.  

Table.1.4: case study 2, summary of costs per individual technology. 
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The study also provides three different packages: Basic, Enhanced, Premium. They respectively 

include only ThIR; ThIR and 3DOBS developed by the research team; ThIR, 3DOBS, and 

UWBIRS developed by the project team. For each package, a period of analysis of 5, 10, or 15 

years can be selected.   

1.3.3 The South Carolina DOT Saving Strategy  

The South Carolina Department of Transportation (SCDOT) adopted a bridge monitoring 

system to cut costs and increase maintenance efficiency by reducing the number of in-person 

inspections and collecting real-time information on infrastructure stability and maintenance needs. 

The bridge monitoring system uses Advanced Condition Assessment Technology (ACAT) to help 

extend the life of transit infrastructure using girder sensors on the bridges to measure the carrying 

capacity of the infrastructure. The information collected from the sensors is relayed to the state’s 

computers for 24/7 monitoring and assessment. While the monitoring system does not take the 

place of all in-person inspections, SCDOT found that the sensors are more accurate in determining 

the condition of the bridge than visual inspections. This helps to better prioritize projects and, in 

the long run, it will save money. Indeed, since deploying the monitoring system, SCDOT has 

reported substantial cost savings. The department was able to retrofit one bridge for $100,000 

rather than replacing it for $800,000. In the future, an estimated $5 million in savings is expected 

as a result of more accurate readings on just eight bridges currently being monitored. If just 1% of 

the 8,000 bridges in the state were equipped with the monitoring system, a predicted $56 million 

could be saved (Greenfield, 2014). 

http://www.ch2m.com/corporate/markets/water/assets/CH2M-HILL-conveyance-cars.pdf
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1.3.4 Summary  

The two studies presented two ways to analyze the cost of visual inspection and SHM. The first 

study provides a very detailed analysis of the cost to inspect and monitor one specific bridge with 

known geometry and known problems of corrosion and scour. The second showed a broader cost 

analysis, resulted from averaging all bridges in the states considered in the survey. The average 

includes all kind of bridges, long-span as well short-span, structurally deficient, newly renovated 

and new bridges, located in different areas with different challenges. It is important to do these 

considerations when consulting those tables of costs, otherwise, the costs might seem not 

comparable. In terms of choosing the best method, it can be concluded that both visual inspection 

and SHM present benefits which complement each other to provide a complete and detailed 

assessment of bridges.  

1.4 SUBJECT BRIDGE DESCRIPTION AND DATA ACQUISITION SYSTEMS 

The Hurley bridge is the test bed structure for many techniques developed and tested in this 

thesis (Fig.1.5). It is a five-girder, three-span continuous steel bridge over two piers with a 

composite concrete deck and carries the two westbound lanes of US Highway 2 over the Montreal 

River (the eastbound lanes cross on a separate but identical structure) between Ironwood, 

Michigan, and Hurley, Wisconsin (Fig.1.6).  
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Figure 1.5: Hurley Bridge (photo credits David Kosnik). 

 

Figure 1.6: a) bridge map location; b) aerial view of the bridge, Montreal River and US Highway 

2 (Google Maps). 
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The overall length of the structure is 37 m (120 ft) (Fig.1.7). The two lanes are 3.65 m (12 ft) wide 

and the two asymmetric shoulders are 3 m and 1.8 m (10 ft and 6 ft) (Fig.1.8).  The structure is 

skewed by 30°.  

 

Figure 1.7: plan view. 

 

Figure 1.8: cross section with truck position visualization. 
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Per Wisconsin Department of Transportation (WisDOT) records, the average annual daily 

traffic is 5200 vehicles, 13% of which are trucks. Concerns over possible effects of increased load 

limits on the US-2 corridor, including the subject bridge, led to an opportunity to measure both 

vehicle parameters (system inputs) and structural responses (system outputs) on a multi-year basis 

by installing a weigh-in-motion (WIM) system and an SHM system during the Summer of 2009. 

Logging is an important economic activity in the area (Fig.1.9-1.10), and load limits for logging 

trucks were increased in the subject corridor to promote transportation of timber from Michigan 

to a sawmill in Wisconsin, approximately 64 km (40 miles) west of the subject bridge.  

Specifically, the regulation change allows logging trucks loaded per Michigan regulations, which 

include greater gross vehicle weight (GVW) than Wisconsin, to travel into Wisconsin along the 

US-2 corridor. For non-logging trucks, the GVW limit on the route is approximately 

36.3 metric tons (80 kips); logging trucks are allowed to exceed this gross weight, and routinely 

do so. In addition, special permit loads such as heavy machinery routinely also cross the bridge. 

As these increased GVWs and different axle configurations are beyond the design basis for the 

subject bridge, concerns of overload damage have arisen. For these reasons and for its age and 

design, typical of many river crossings throughout the country, this bridge is representative of 

many similar structures nationwide.  
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Figure 1.9: logging truck (photo credits David Kosnik). 

 

Figure 1.10: sawmills and lumber store close to the bridge. 

1.4.1 WIM System 

A commercial in-pavement WIM system, which allows measurements of moving vehicles 

without interrupting traffic, was installed approximately 60 m (200 ft) ahead of the bridge 

(Fig.1.11) Each lane includes two load cells, enabling the system to weigh left and right wheels 
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(or wheelsets) on each axle individually. Two inductive loops (L1, L2, L3, L4; Fig.1.12), one 

before and one after from the scales, and a piezo sensor are also deployed (P1, P2, Fig.1.12). Two 

cameras, one on either side of the roadway, are available to photograph each vehicle as is passing 

the WIM site (Fig.1.13). The photo record is especially useful for clarification in situations with 

multiple vehicles on the bridge, unusual axle or tandem trailer configurations, and snow removal 

or other specialty vehicles on the bridge. In particular, snow removal equipment was found to 

produce unusual strain signatures due to a tendency to drive along the shoulders. 

Figure 1.11: WIM site overall layout (courtesy of David Kosnik). 
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Figure 1.12: WIM details westbound lanes, dimensions in ft (courtesy of David Kosnik). 

Figure 1.13: photo of the WIM site (Google Maps). 
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The commercial system processes signals from the in-pavement sensors to determine vehicle 

properties such as GVW, overall length, axle configuration (axle weight and spacing), speed, lane 

of travel, and Federal Highway Administration (FHWA) vehicle class (Fig.1.14). When the WIM 

system detects a truck classified as FHWA Class 9 or above, it signals the SHM system installed 

on the bridge.  The Class 9 threshold for triggered burst recording was determined empirically to 

capture trucks of interest while minimizing spurious triggers from passenger or light commercial 

vehicles (e.g. pickup trucks with trailers). This approach was necessary because FHWA vehicle 

classes are related to axle configuration, not weight. 

 

 

 

Figure 1.14: two types of WIM’s output with axle configuration information. 
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1.4.2 SHM System 

The Infrastructure Technology Institute at Northwestern University (NU-ITI) designed, 

constructed, and installed an autonomous long-term SHM system on the bridge (Kosnik, 2012). 

The sensors employed in this study are five strain gauges on the bottom flange of each of the five 

girders at mid-span, one of the high-stress regions on a girder (Fig.1.15-1.16). When the SHM 

system is triggered by the WIM system it starts recording dynamic waveforms (sampled at 100 Hz) 

of the strain, for five seconds, including a half-second pre-trigger buffer. Real-time data are 

automatically transmitted back to NU-ITI servers, where they are processed and made available in 

near real-time on a password-protected project Web site (http://data.iti.northwestern.edu). 

Fig.1.17-1.18 show the SHM output for a class 12 truck crossing the bridge on lane 1 (Fig.1.17) 

and a similar class 12 truck crossing the bridge on lane 2 (Fig.1.18). It is clear from the strain 

waveform that the load of the former is mostly supported by girder 3 and 4 while the latter is 

mostly supported by girder 2 and 3. The fascia girders (1 and 5) show a minimal response in both 

cases. It is also noteworthy that the measured response is dominated by quasi-static strains induced 

by the weight of the truck; that is the free vibration response is minimal in magnitude and is most 

evident after the truck leaves the bridge.  
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Figure 1.15: location of SHM sensors on the bridge (photo credits David Kosnik). 

 

Figure 1.16: bridge configuration and location of SHM sensors on the bridge. 
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Figure 1.17: dynamic responses of the bridge caused by truck crossing in lane 1. 
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Figure 1.18: dynamic responses of the bridge caused by truck crossing in lane 2. 
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A combination of scheduled and randomly-triggered recording allowed the SHM system to capture 

both the long-term and dynamic responses of the bridge. The data acquisition system buffered 

measurements from all sensors at 100 Hz at all times, with various subsets of the data (or statistics 

describing those subsets) permanently recorded according to one of the following schemes: 

Long-term hourly averages: once an hour, the average of the preceding 60 minutes’ worth of data 

for each instrument was written to the data file. These averages characterize changes in strain and 

displacements over long periods of time, supporting detection of long-term trends, drifts, or 

variations in the bridge response (Fig.1.19). This dataset has been used for applications of 

statistical process control methods in SHM (Chen et al., 2014; Chen and Durango-Cohen, 2015). 

 

Figure 1.19: hourly data since November 2009, (left) strains, (right) displacements, air 

temperature, and relative humidity. 
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Triggered burst events: when the WIM system detects a truck classified as FHWA Class 9 or 

above, it signals the SHM system to record dynamic waveforms sampling 501 strain data-points 

in a five-second time frame. Triggered burst events are deployed in this thesis. 

1.4.3 Dataset  

Data were collected continuously, under live traffic, for over three years (2010-2013) 

generating a unique long-term WIM-SHM combined dataset. Approximately 171,411 trucks were 

recorded by the SHM system and 904,604 by the WIM system, however, for only 31,000 trucks 

the WIM time and the SHM time match. For the preliminary analyses developed in the first part 

of chapter 2, the SHM dataset is used in its entirety, while for the remaining part of the thesis the 

combined WIM-SHM dataset is used because both traffic characteristics and bridge response to it 

are needed (Fig.1.20).  

There are some assumptions, described following, which are important when handling real 

data where several uncontrollable factors have the potential to influence the data. The presence of 

multiple vehicles on the bridge is not the focus of this study (Fig.1.21). Since the type of traffic 

examined is heavy trucks which tend to keep right, most of the analyses, not all, consider only lane 

1 traffic where girders 3 and 4 carries play the most important role in carrying the load. For some 

analyses, at each crossing, the average of the strain waveform of girder 3 and 4 is computed for 

the following two reasons. First, to limit the delay due to the fact that the bridge is skewed of 30˚ 

and the signal reaches the mid-span of girder 3 and 4 with a delay of a few milliseconds. Second, 

to limit the uncertainty due to the lateral position of the truck on the bridge, (i.e. driving more 

towards the centreline will produce a bigger response on girder 3 while driving more toward the 

shoulder will produce a larger response on girder 4). It is also noteworthy that, unlike controlled 
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experiments with pre-weighted trucks with constant speed, these are all measurements from real 

live traffic, where changes of speed during the crossing can happen and can cause variation in the 

shape of the strain waveform.  

The combination of truck characteristics from the WIM system and bridge response from 

the strain sensor system provides a comprehensive dataset of bridge loading and subsequent 

response. The parameters measured were GVW [kg or kN], length of the truck [m], speed [km/h], 

weight of each axle (ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8, ax9) [kg or kN], spacing between axles 

(s12, s23, s34, s45, s56, s67, s78, s89) [m] from the WIM system and strain measurements [µε] 

from the SHM system.  

 

Figure 1.20: combined output of the WIM-SHM system. 

 

 



 
 

 

 

Figure 1.21: scheme of the concurrent events not included in the study.

4
9 
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1.5 FUTURE OF BRIDGE MONITORING 

The combination of bridge inspection and health monitoring is probably the most valuable 

strategy which can help identify structural problems before they become critical and endanger 

public safety. However, a typical major urban center may possess several hundreds of bridges, 

which makes it difficult to upgrade all these bridges with surface-mounted sensors to monitor their 

structural performance due to practical and economic reasons. In-situ sensors are appropriate for 

targeted monitoring of selected structures, but cannot be readily deployed on a large scale, due to 

the already limited budgets for bridge maintenance and rehabilitation. Satellite-based monitoring 

data may offer a viable source of independent information products that may be used to remotely 

monitor the structural health of bridges, confirm conclusions drawn from in-situ sensor data, and 

feed decision-support models and tools for pre-emptive bridge rehabilitation. A two-step approach 

may be used, in which potentially critical bridges are first identified through a screening process 

by remote satellite-based monitoring, and then further investigated with in-situ monitoring and 

detailed inspection. 

1.5.1 Monitoring Bridge from Space: the R2SHM Project  

Canada is investigating satellite technologies for use in prioritizing in-situ monitoring and 

maintenance of critical bridges. A project entitled RADARSAT-2 Structural Health Monitoring 

(R2SHM) was initiated to supply bridge products, combined with in-situ data to identify 

safety- critical structures and quantify the risk they pose to their users. Preliminary results from 

the application of this technology to transportation infrastructure assets in selected major Canadian 

urban centers like Vancouver and Montreal are reported.  Interferometric SAR (InSAR) is an 

advanced processing technique applied to radar images of the Earth’s surface that can detect very 
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small movements from ground features such as infrastructure systems, including roadway and 

railway bridges and their major components. By applying InSAR processing techniques to a series 

of radar images over the same region, it is possible to detect vertical movements of infrastructure 

systems on the ground in the millimeter range, and therefore identify abnormal or excessive 

movement indicating potential problems requiring detailed ground investigation. A major 

advantage of this technology is that a single radar image, which can be obtained in darkness and 

in any weather, can cover a major urban area of up to 100 km by 100 km, and therefore all bridges 

in the area could be monitored cost effectively. The expected accuracy of elevation measurements 

being in the millimeter range makes this technology very attractive to displacement monitoring of 

bridges and other infrastructures. Space-borne InSAR, compared to other non-destructive 

evaluation techniques, offers the potential of rapid assessment of numerous bridges in a single 

scene from high standoff distance without requiring calibration or preparation of the structure and 

without interfering with traffic, which is a considerable benefit for busy highway bridges. This 

technology is best suited for the monitoring of bridge differential settlement, bridge deformed 

shape and, to a lesser extent, changes in bridge length and bridge deck transverse displacement by 

extracting the horizontal components of the measured satellite light-of-sight displacement. 

 Case study 1  

The R2SHM project uses radar image data from Canada’s RADARSAT-2 satellite launched in 

2007, which is one of the world's most advanced commercially available Earth observation radar 

image providers, over five selected bridges in Vancouver (Granville, Burrard, Cambie, Lions Gate, 

and Ironworkers Memorial bridges). InSAR can generate wide-area displacement maps that 

identify and quantify displacement basins occurring in the entire imaged region. Fig.1.22 illustrates 

the cumulative displacement map generated over the Greater Vancouver area using a Multi-Fine 
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RADARSAT-2 dataset (5-meter resolution) over a period of 2 years and many basins are proximal 

to bridge approaches and exits. The Lions Gate Bridge and the Skytrain (Canada Line) exhibit 

conspicuous thermal displacement, manifesting as cyclic displacement fringes along the length of 

the structure. Although some seasonal effects may be observed, the general trends show steadily 

increasing ground sinking by 20 mm over two years. 

 

Figure 1.22: cumulative displacement map over greater Vancouver (Jan 2010- Feb 2012). 
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Case study 2 

The Lions Gate suspension bridge in Vancouver, Canada crosses the First Narrows of Burrard 

Inlet and connects the City of Vancouver to other municipalities on the north shore. The bridge 

was built in 1938 with a main span of 473 m and two approach spans of 187 m each. Among the 

number of bridges being monitored in the R2SHM project, measuring vertical displacements of 

the Lions Gate Bridge is the most challenging, as the interferogram pixels over the bridge comprise 

two uncorrelated signals: elevation error and strong displacement due to environmental factors. 

Fig.1.23 illustrates an interferogram of the Lions Gate Bridge, in which the numerous colored 

fringes are indicative of large displacements occurring over the bridge. 

 

Figure 1.23: interferogram of the Lions Gate Bridge. 

Deformation due to changes in ambient temperature between pairs of interferograms is of interest 

for satellite-based SHM of bridges in two regards. Firstly, it is an expected displacement 

component and thus must be modeled and removed in order to reveal suspect mechanical 
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displacements, if any. Secondly, it is used as a means of validating any vertical displacement 

measurements taken from space: two independent data sets are compared (i.e. temperature records 

and InSAR-derivate displacements) and the strength of the correlation indicates the degree of 

confidence in the measurements. The Lions Gate Bridge confirms the finding of another case study 

by Westgate et al., (2011), where a similar long-span suspension bridge (over the Tamar River in 

the UK) was monitored using in-situ sensors, and its structural response to environmental variables 

was analyzed using a calibrated finite element model of the bridge. The effects of temperature on 

vertical displacements of the bridge were found to be dominant among all other variables. They 

obtained an almost identical (absolute) correlation coefficient of 0.92 for the correlation of 

temperature changes and the in-situ vertical displacements measured on the Tamar River 

suspension bridge. The strong correlation of the regression analysis provides high confidence in 

the InSAR-derived displacement results at the Lions Gate Bridge and indicates that the thermal 

component of the displacements can be accurately modeled and removed. 

Overall, space bridge monitoring can overcome some limitations of the current practice 

such as: eliminate lane closure and traffic disruption, as these technologies do not come in direct 

contact with the structure, access remote bridge locations, hazards in remote areas that often do 

not receive the required attention due to accessibility issues. 

1.5.2 Monitoring Bridge from Space: the GeoSHM Project  

The University of Nottingham with the operator of the Forth Road Bridge in Scotland 

developed a system, called Global Navigation Satellite System (GNSS) and Earth Observation 

(EO) for Structural Health Monitoring (GeoSHM), which uses space assets for monitoring 

purposes (ESA, 2016).  GeoSHM is an SHM system integrating remote sensing (EO) and GPS-
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based sensors (GNSS) monitoring the structural health system of long suspension bridges. While 

the GeoSHM solution has been initially designed mainly for monitoring long-span bridges, the 

service also has potential, however, for shorter bridges. Increased loads and extreme weather 

conditions such as strong winds, cause stressed structural members, unexpected deformations, and 

frequent bridge closures, respectively. To mitigate these problems, the GeoSHM consortium set 

out to determine whether it was technically feasible and economically viable to deploy GNSS and 

EO technologies to monitor more precisely the Forth Road Bridge. Specifically, they wanted to 

provide real-time indicators of bridge movement by means of highly sensitive sensors at key 

locations (Fig.1.24), as well as map potential long-term subsidence of the supporting structures.  

 

Figure 1.24: GeoSHM sensor locations on the Forth Road Bridge. 

The EO is considered a powerful tool to monitor both local changes to the surrounding ground as 

well displacements of key components of such structures. Highly sensitive GNSS receivers and 

anemometers were developed to measure short-term movement, and EO data to measure long-

term ground movement. The study on Forth Road Bridge did not show significant changes because 

the bridge was very stable, however, it was helpful to understand how much the bridge can move 

under extreme weather conditions. This allows deciding to close the bridge based on precise 
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deformation information. On the other hand, the same studies were conducted in China were 

ground subsidence around bridge sites was founded in two cities, Shanghai and Wuhan, caused by 

underground engineering and groundwater extraction.  
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2 MONITORING BRIDGE PERFORMANCE 

Bridges are structures designed to display ductile failure modes, and consequently, most of them 

will display early warnings when the structure is under extreme loads, providing enough time for 

remedial actions. For this reason, it is crucial to monitor bridge response for long-term. Changes 

in the material properties or in the integrity of the bridge components do not necessarily indicate 

a risk, however, over a decade or less these changes can be a signal of a trend which should rise a 

red flag and should be monitored. 

The second chapter aims to show a preliminary analysis to monitor the bridge response over a 3-

year period by using the strain data available and the concept of the girder distribution factor. 

Different levels of aggregate analysis are shown. This chapter also aims to validate the AASHTO 

load distribution factors for the Hurley bridge which, as many others in the country, is subjected 

to increasing loads due to the increasing demand.   
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2.1 INTRODUCTION  

Interpretation of real data is always a challenging task because of the noise present in the data, 

environmental and human. Temperature, humidity, driver’s behavior, truck’s features (suspension, 

frame stiffness, etc.), cross-section of the bridge all generate uncertainty. One of the biggest 

complications while passively monitoring is the still unknown interaction between truck’s 

geometry, speed, location, and weight. Although the bridge does not show any evidence of 

anomalous behavior, not knowing what is the healthy behavior under normal operating conditions 

is certainly a challenge.  It is always good practice to get an overall idea of the bridge health by 

using field strain data to calculate how the loads crossing the bridge are distributed over the five 

steel girders using girder distribution factors (GDF).  The goal of this chapter is to provide 

preliminary analyses to monitor the performance of the structure using SHM data for over 171,000 

trucks. Long-term aggregate analyses are also developed and shown. 

2.1.1 Literature Review 

The need for a more efficient use of steel in highway bridge design led the American Iron and 

Steel Institute (AISI) to the publication of "Tentative Criteria for Load Factor Design of Steel 

Highway Bridges" in 1969 (Vincent, 1969). The first formulation of the GDF (AASHTO, 1996) 

intended as the percentage of the design load that each girder will carry, was defined as the ratio 

between the girder spacing S and a constant based on the bridge type. This formula, also called 

“S-over”, was applicable to non-skewed bridge only. Since that time, the use of AASHTO Load 

Factor Design (LFD) for steel bridges has continued to arouse interest, mainly due to the fact that 

there were many important parameters that were not included in it. In order to achieve better 

accuracy and flexibility across a wider range of bridges, in 1993, the AASHTO LRFD formulas 
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were developed under the National Cooperative Highway Research Program (NCHRP) project 

12- 26 (Zokaie et al., 1991). The new specifications presented major changes. In addition to girders 

spacing, bridge length and slab thickness, and bridge skewness were finally considered, as well as 

stiffness of girders and deck. Further corrections were introduced to take into account the 

difference between interior and exterior girders. In 2001, Tabsh et al. developed a gauge 

modification factor that multiplies the AASHTO GDFs to consider oversized trucks. This factor 

is a function of the effect of the flexural or shear load effect, truck configuration and bridge 

geometry. Also, Bae and Oliva (2009), developed their modification to the code for overloaded 

trucks. Having more accurate load distribution may allow designing a bridge that can support 

higher loads, this may result in less money spent on freight transportation since companies can 

have more loaded trucks (Eom and Nowak, 2001). At this reference, Barr at al. (2001) stated that 

if the bridge had been designed using the distribution factors calculated with the finite-element 

model rather than the code values, the required concrete strength can be reduced by 6.9 MPa (1,000 

psi) or the live load can be increased by 39%.  

Ghosn et al., in 1986, using experimental data, defined the GDF as the ratio of the static 

strain at the girder to the sum of all the static strains, valid for identical girders only. Stallings and 

Yoo in 1993 refined this method to account for bridges with different interior and exterior girder 

sizes using weighted strains. When all girders have the same section modulus, their formula is 

equivalent to that of Ghosn et al. A similar approach to Stallings and Yoo was used by Neely 

(2001) to determine the distribution factors from both strain and deflection data for the Tom’s 

Creek Bridge field test. Reiff et al. (2015) analyzed four damaged bridges subjected to crack, 

corrosion, diaphragm crack, and deck delamination and compared their GDFs to the undamaged 

structure. While Shenton and Hu (2006) showed how the dead load is redistributed when damage 
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occurs, Kennedy and Grace (1983), who developed two 118-scale bridge models to verify their 

theory, stated that transverse cracking of the concrete deck, at the intermediate support(s), does 

not appear to influence significantly the transverse distribution of the design parameters. Cardini 

and DeWolf (2008) suggested a continuous long-term SHM system to determine if there are 

significant changes to the deck or the girders due to major damage.  

2.2 PRELIMINARY ANALYSIS 

When a load, like a passing vehicle, is applied to the bridge, a reaction is immediately 

produced. The strain gages installed on the bridge record that reaction by producing five strain 

waveforms, one for each girder. Preliminary analysis of the SHM strain is necessary to understand 

the bridge response to heavy trucks. As mentioned in chapter 1 and shown in Fig.1.17-1.18, lane  1 

is mostly supported by girders 3 and 4 while lane 2 by girders 2 and 3. It is also noteworthy that 

the measured response is dominated by quasi-static strains induced by the weight of the truck; that 

is the free vibration response is minimal in magnitude and is mostly evident after the truck leaves 

the bridge. The strain waveforms also provide a first hint on the axle configuration of the truck 

where the peaks represent either a single axle or a tandem axle.  

To facilitate the analysis of hundreds of thousands of vehicle crossings, some parameters are 

immediately computed by the data post-processing script and stored for reference. One important 

parameter, computed during every vehicle crossing, is the maximum absolute departure from the 

zero point (ε0) which is the initial strain value prior to loading (Fig.2.1). This parameter is called 

zero-to-peak (ZTP) and it is defined as follows:  

 ZTPi,j = max (εt=1; εt=2; … ; εt=500) − ε0 (1) 
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where, i is the truck crossing and j is the girder, j=1, …, 5. During a five-second truck crossing 

record, 500 data points (εt=1; εt=2;...; εt=500) are stored for each girder. The zero-point ε0 is the average 

of the first ten data points (100 ms); this is within the pre-trigger buffer recorded before the vehicle 

reaches the bridge. ZTP is an attractive parameter because it captures the effect of each truck 

crossing while removing effects of temperature and other quasi-static phenomena. 

 

Figure 2.1. waveform generated by the truck crossing and ZTP identification. 

The theoretical linear relationship between strain and GVW are confirmed by the scatterplots in 

Fig.2.2. For Girders 2 and 4, the lobes in the scatter plot representing data points for the two 

different lanes are more distant and well-separated. This effect is reduced on Girder 3 (the middle 

girder), where the distinction between Lanes 1 and 2 is minimal; as such, the resulting data cloud 

is more compact, though two distinct lobes remain visible, presumably due to the asymmetry of 

the road and shoulders with respect to the centerline of the bridge structure. The responses of the 

fascia girders (1 and 5) are significantly lower. 
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Figure 2.2: scatterplots of ZTP vs GVW, by girder (March 2011). 

 

Measured ZTPs were normalized by the GVW to remove the linear relationship described in the 

previous section. Fig.2.3 shows how, for each girder, the normalized response of the bridge is 

approximately constant. The scatter is attributable to the large number of trucks with different axle 

configurations, as well as external factors, including the position of the truck within the lane. It is 

noteworthy that the scatter is wider on the more heavily loaded girders (Girders 2, 3 and 4) but it 

is slightly reduced when the trucks are significantly heavy. 
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Figure 2.3: normalized ZTP vs GVW, by girder (March 2011). 

2.3 GIRDER DISTRIBUTION FACTOR (GDF) 

2.3.1 AASHTO Design GDF 

The calculated GDFs, which describe the structural behavior of the bridge, have been 

compared with the GDF formulation for design provided by AASHTO LRFD specification.  

AASTHO GDFs identify the percentage of the design maximum live load that each girder will 

carry (AASHTO 2007). The following formulation is valid for the concrete deck, supported by 

steel beams, for moment in interior girders. 

One design lane loaded: 
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AASHTOGDFI = [ 0.075 + (

S

9.5
)
0.6

∙ (
S

L
)
0.2

∙ (
Kg

12 ∙ L ∙ ts
3)

0.1

] = 0.6 
(3) 

Eq.3 is chosen due to its more conservative value. Since the bridge has skewed supports the code 

suggests a reduction of the load distribution: 

 AASHTOGDFIS
= AASHTO_GDFI ∙ [1 − c1(tanθ)

1.5] = 0.54 (4) 

The variables in the equation are explained below: 

S = Girder Spacing [ft]; 

L = Span [ft]; 

t = Deck Depth [in]; 

𝐾𝑔 = 𝑛 ∙ (𝐼 + 𝐴 ∙ 𝑒𝑔) = Longitudinal Stiffness parameter [in4]; 

𝑛 =
𝐸𝐵

𝐸𝐷
 = Modular Ratio; 

𝐸𝐵= Modulus of Elasticity of Beam Material [ksi]; 

𝐸𝐷 = Modulus of Elasticity of Deck Material [ksi]; 

I = Moment of Inertia [in4]; 

A = Cross-Sectional Area of the Girder [in2]; 

eg = Distance between the centers of gravity of the basic girder and the deck [in]; 

𝜃 = Angle of Skewness, for 30° ≤ 𝜃 ≤  60°; 

𝑐1 = 0.25 ∙ (
𝐾𝑔

12∙𝐿∙𝑡𝑠
3)
0.25

∙ (
𝑆

𝐿
)
0.5

, for 𝜃 < 30° then 𝑐1 = 0. 

2.3.2 Experimental GDF 

As mentioned in the literature review, the formula developed by Ghosn et al. (Eq.5), 

(which, in this case, study, coincides with the formulation of Stallings and Yoo because all 

girders have the same section modulus, wi=1), is used here and it is rewritten in Eq.6. 
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 GDFi =
εi ∙ wi

∑ εj ∙ wj
#girders
j=1

 
(5) 

Given the (µε-t) waveform, obtained by recording the strain (µε) for five seconds (t), and the 

calculated ZTP for each girder, the ZTPGDFs are calculated, for each truck crossing (i), as the ratio 

between the ZTP at girder j and the sum of all girder ZTPs.  

 
ZTPGDFi,j  =

ZTPi,j

∑ ZTPi,j
5
j=1

 
(6) 

The ZTPGDFs can be used as a reliable method for lane classification. It is important to 

notice that the WIM system is installed 60 m prior to entering the bridge, meaning that the driver 

can potentially change lanes resulting in an incorrect lane record. In order to avoid lane mismatch, 

the GDF of the two most representative girders has been used. More load on girder 4 indicates that 

the truck is in lane 1, otherwise, the truck is clearly in lane 2, as explained by Eq.7-8. 

 ZTPGDFgirder 4(i) > ZTPGDFgirder 2(i) → Lane 1 (7) 

 ZTPGDFgirder 4(i) < ZTPGDFgirder 2(i) → Lane 2 (8) 

This method has been validated by using the photos taken by the WIM system cameras and has 

consequently been used to confirm WIM lane classifications. The rate of WIM misclassification 

is not very concerning because out of 31,107 trucks crossings only 462 (1.5%) are misclassified, 

among which, 285 (62%) trucks crossing on lane 2 were detected as lane 1 and 177 (38%) trucks 

crossing on lane 1 were identified as lane 2. WIM misclassification is not necessarily due to a 

malfunction of the system, but it can be due to a change of lane after passing the WIM system, due 

to roadworks which signal to use the other lane or due to the need to overcome a vehicle. Numbers 

show that the WIM misclassification rate is low, however, a consistent incorrect lane classification 
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can raise some concerns due to a potential disruption of the pavement which force the drivers to 

change lane.    

2.4 RESULTS 

The overall average of ZTPGDF was calculated for all trucks over the three-year period for 

each girder, for each lane (Fig.2.4). As expected Lane 1 and Lane 2 distributions are symmetric 

and slightly skewed due to the asymmetric shoulders. Since Girder 3 is in the center, it always 

plays an important role in carrying both lane’s live loads. GDF averages never exceed the 

AASHTO design values (Fig.2.4), therefore, it may be concluded that the AASHTO specifications 

are appropriate for this bridge. This outcome is also significant in relation to the age of the bridge. 

It was built in 1960, and it was subsequently subjected to deck replacement in 1987, i.e. much 

earlier than when the code was released, meaning that the AASHTO parameters are also valid for 

aging bridges. For completeness, the AASHTO GDF for non-skewed bridges (dotted line; Fig.2.4) 

is also presented in the graph, in addition to the value for skewed bridges (solid line; Fig.2.4), 

because 30º is the border line limit to apply the formula for skewed bridges. To validate the 

distribution obtained, the results of a similar study conducted by Tennyson et al. (2001) is shown 

in Fig.2.5. The values of the graphs shown in Fig.2.4 are presented in percentages in Fig.2.6. 

The long-term data recorded at Hurley were used to check the AAHSTO specifications 

also against extraordinary events (crossing of heavy machinery, snow removal, house moving, 

etc.). For this purpose, the maximum values of GDF were calculated and plotted for both lanes 

(Fig.2.7-2.8). As expected, Girders 2, 3 and 4 present the highest values that almost reach the 

design value suggested by AASHTO, however, they never exceed them. This indicates that the 
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AASTHOGDFs are valid for both the average truck and the exceptional event, and not excessively 

conservative as other studies suggest (section 2.4.1). 

 

Figure 2.4: AASHTOGDF, 3-year averages (µ) of ZTPGDFs, ± std. dev. a) lane 1; b) lane 2.



 
 

 

 

Figure 2.5: “Load Sharing among girders based on dynamic strain measurements 1997” (Tennyson et al., 2001). 

7
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Figure 2.6: load percentages carried by each girder, by lane. 

 

Figure 2.7: AASHTOGDF and calculated ZTPGDFs maxima. 
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Figure 2.8: 3-year averages, maximum values and AASHTO specifications. a) lane 1; b) lane 2. 
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with two traffic lanes the AASHTO specifications are appropriate. Olund and DeWolf (2007) 

stated that their long-term bridge monitoring program showed that the live load distribution, 

calculated for each of the eight girders during crossings of two trucks with known GVW, was 

approximately 42% lower than the AASHTO specifications. Brendler and Yasser (2015) stated 

that the AASHTO specifications were reasonable for one loaded lane but overly conservative for 

multiple loaded lanes. They also stated that the code is more conservative for simply supported 

bridges than equivalent integral abutment bridges. 

2.4.2 Influence of Truck’s Characteristics 

Gross vehicle weight, overall length, and speed of the truck are analyzed to investigate 

their influence on the calculated ZTPGDFs. To ensure that the recorded data do not contain 

operational errors, the following checks were applied, (Dai, 2013): GVW>0, 

15 km/h<Speed<160 km/h, 0<Length<60 m. For trucks in Lane 1, Girder 3 GDFs were plotted 

against the truck’s characteristics. Fig.2.10-2.11-2.12 suggests that heavier trucks, including 

overweight ones, show a smaller range of GDF values because larger GVW trucks produce larger 

strain values while fluctuations due to bridge vibration or other factors will not increase with truck 

GVW. Trucks with a length between 18 m and 24 m (60-80 ft) are closer to the design limit. Speed 

does not seem to be influential. Ultimately, the position of the truck on the bridge, in terms of the 

lane and the driver's tendency to drive toward the centerline or towards the shoulders, are the most 

important parameters that influence the distribution of the load on girders. 



 
 

 
Figure 2.9: ZTPGDF vs GVW, girder 3 and 4, lane 1; girder 2 and 3, lane 2. 
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Figure 2.10: ZTPGDF vs length, girder 3 and 4, lane 1; girder 2 and 3, lane 2. 
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Figure 2.11: ZTPGDF vs speed, girder 3 and 4, lane 1; girder 2 and 3, lane 2. 
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2.5 LONG-TERM AGGREGATE ANALYSES 

A long-term aggregate analysis is developed to detect potential trends, changes, sudden anomalies 

and seasonal events, over time. Daily, weekly and monthly averages of ZTPGDF for each girder 

and lane are calculated. Figure 2.12 shows one day of truck crossings (February 20, 2010), as 

expected, the frequency of trucks starts to increase after 7 am and it is much less during the night.   

A common feature of all following plots is that lane 2 presents much more scatter and a much 

lower number of trucks, presumably because heavy vehicles tend to drive in the slow lane (lane  1).  

The first level of aggregation is daily average meaning that Fig.2.12 a-b are represented in 

Fig.2.13 and 2.14 as five data-points, one for each girder. In Fig.2.13 girder 3 presents upward 

trends towards the end of each year and downward trends with the beginning of the new year, 

while girder 2 and 5 reasonably show the opposite behavior. More scatter is also noticeable during 

the same period during the transition of all three years. The increase of scatter between years is 

even more noticeable in lane 2 (Fig.2.14). Fig.2.15 shows a typical week of truck crossings 

(February 20-26, 2010). The plots show a very clear separation between days, the presence of 

fewer trucks identifies the nights. The sharp gap on Thursday represents a malfunction of the 

system which was promptly repaired. In lane 2 (Fig.  2.15b), the separation between loaded girders 

(2 and 3) and less loaded (4 and 5) is less clear suggesting that trucks crossing the bridge on lane 

2 tend to drive more toward the center, creating more compact clouds in the plots.  

The second level of aggregation is the weekly average where changes are smoother but still 

appreciable. Fig.2.16 still shows the same temporary shift around the new year, already mentioned 



80 
 

for the daily average, of girder 3 and 4 between 2010 and 2011, and between 2011 and 2012 

although less marked. Fig.2.17 shows the presence of scatter at the transition between years.  

The third level of aggregation is the monthly average which is the final widest aggregation 

range that still allows potential changes to be captured. A further step of aggregation will cause 

significant loss of information. The trends in Fig.2.18 are much smoother, but it is still possible to 

detect a periodical behavior (or seasonality) with different intensity between the years, with a more 

accentuated trend in lane 2 (Fig. 2.19).  Girder 3 shows a permanent shift in the GDF values, 

starting January 2011. 

Some of the changes highlighted by the plots can be linked to some events or decisions. 

Three types of events were considered potential influencers of the bridge behavior over the 3-year 

period and they are logging season, weather conditions, and Wisconsin statutory change.   

- The logging season generally begins after the first frost in October, when sap begins to run 

and ends in March when it becomes difficult to drive in thawing soil. Monday through 

Friday hauling is common, while a few mills operate 24/7, Saturday operations are 

generally mulch or chips from logging during the weekdays. There is a general increase in 

loaded logging truck traffic during the winter months with peaking occurring mostly in 

December and February, while there is a significant decline of loaded logging trucks in 

March, this can be the most plausible cause of the consistent trend between the end of the 

year and the beginning of the new one. Due to the periodic nature of the phenomenon 

visible in all plots, with different levels of detail, and its persistence in each year, it can 

also be described as seasonality. 
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- There is a specific event which might have impacted the truck traffic. The event is the 

Wisconsin statutory change, effective from 1 January 2011, which allowed vehicle 

combination up to 98 kips on six axles to transport loads of raw forest products during the 

spring thaw suspension period (Owusu-Ababio and Schmitt, 2014). For completeness, for 

the zone 1, where the Hurley Bridge is located, the frozen road declaration was 84 days in 

2010-2011 from December 17, 2010 to March 11, 2011 and 50 days in 2012, from January 

19 to March 9 while the spring weight restriction was 83 days in 2011, from March 14 to 

May 14, and 35 days in 2012 from March 14 to April 18. This decision might have had a 

role in the permanent shift in the GDF starting January 2011. 

- Another important event which might have contributed to the permanent shift after January 

2011 is the severe winter. The Hurley-Ironwood area in Iron County experienced the most 

snow of 167 inches in the winter of 2010-2011, including the exceptional Groundhog Day 

blizzard of February 2, 2011 (emergencymanagement.wi.gov). This might have influenced 

the accentuated behavior of the most loaded girders (upward, then downward) visible at all 

three levels of aggregation. The whole bridge was supporting the additional snow load, 

vehicles might have been more loaded for safety reasons and snow removal vehicles were 

certainly in use during that event. Another extreme weather event happened during the 

weekend of December 11-12, 2010 where a so-called “monster storm” which left a foot or 

more of snow falling in Wisconsin and Minnesota (accuweather.com).  

 



 
 

 

Figure 2.12: 1-day crossing, Saturday, 20 February 2010. 
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Figure 2.13: daily average, lane 1. 
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Figure 2.14: daily average, lane 2. 
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Figure 2.15: 1-week crossing, 20-26 February 2010. 
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Figure 2.16: weekly average, lane 1. 
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Figure 2.17: weekly average, lane 2. 
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Figure 2.18: monthly average, lane 1. 
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Figure 2.19: monthly average, lane 2. 
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2.6 CONCLUSIONS 

In this chapter, a preliminary analysis is shown to monitor the performance of the structure using 

SHM data for over 171,000 trucks. GDFs are computed to study the structural behavior of the 

bridge under its current operational condition using ZTP data. The GDFs for over 171,000 trucks 

were compared to the AASHTO specifications and were found to be within specified limits. It is 

noteworthy that extreme events (with unusual high GDF) never exceed the AASHTO limits. This 

suggests that the AASHTO specifications are appropriate for this bridge. The GDF concept is also 

successfully used to provide a 100% error free lane classification method and to analyze the long-

term behavior of the bridge at different levels of aggregation (daily, weekly and monthly average). 

A specific trend of GDFs is consistently noticeable at all levels of aggregation, towards the end of 

the year and the beginning of the new one, although with different levels of accuracy, this can be 

presumably explained with the beginning and end of the logging season (the most important 

economic activity of the area). The more accentuated GDF perturbations between 2010 and 2011 

can be influenced by the extremely severe weather conditions of that specific winter with 168 

inches of snow measured.  
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3 METRICS FOR BRIDGE PERFORMANCE 

Prompted by the need for an efficient and effective use of monitoring data, the goal of this chapter 

is to propose novel metrics to monitor bridge performance. The first metric is a strain-distance-

area measure which aims to monitor the bridge response to a wide range of truckloads. The second 

metric is a follow-up concept of the first metric and it is used to monitor the integrity of the bridge’s 

component and materials over time. The overall goal is to provide decision-making support 

concerning the reduction in some aspect of performance and serviceability rather than warning for 

incipient failure. 
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3.1 INTRODUCTION  

Bridges are essential elements of a complicated network of infrastructures (Liu and 

Frangopol, 2006) which is often underperforming, resulting in loss of efficiency in moving goods 

and people across the country. Long-term monitoring performed proficiently by using the best 

selection of instruments, thoughtfully placed, is the starting point of continuous monitoring field 

performance. Interpretation of the acquired data is equally important to obtain information 

concerning the structural integrity (Bergmeister and Santa, 2001; Feng et al., 2004). Both actions 

are fundamental to aid management decision-making (DeWolf et al., 2002;  Hirachan and Chajes, 

2005) and to plan for cost-effective allocation of (often limited) funds and resources. Assessing 

the integrity of existing bridges and planning effective maintenance (Lansdell et al., 2017) require 

accurate monitored bridge data, and therefore need for an efficient use of monitoring data 

(Frangopol et al., 2008). On this matter, there is large interest among researchers and practitioners 

in developing monitoring systems that efficiently incorporate performance assessment indicators 

(Strauss et al., 2012). 

The overall objective of this work is to support asset management decisions to promote the 

ongoing serviceability of the structure and the transportation network in which it forms a critical 

link – not to provide warning of incipient failure. Such changes do not necessarily imply total loss 

of functionality of the structure, but rather reduction in some aspect of performance or 

serviceability. Judicious application of structural health monitoring instrumentation and analysis 

can provide timely decision-support information to extend service life and, as in the case of this 

bridge, evaluate effects of increased or unanticipated loads.   
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3.2 MEASURE OF BRIDGE RESPONSE 

The ZTP, introduced in chapter 2, is an important measure of bridge response which does 

present some limitations, mostly due to the fact that it does not consider the axle configuration of 

the truck but only GVW and length. The new metrics proposed in this thesis are rooted in the 

influence line theory which is useful for conducting performance evaluation to understand the 

actual bridge behaviour under real traffic and environmental conditions, to monitor changes over 

time, to anticipate the response under various loads, and to identify damage (Moses, 1979; 

Hirachan and Chajes, 2005; O'Brien et al., 2006; Štimac-Grandić et al., 2011; Ieng, 2014; Zhao et 

al., 2014; Wang et al., 2017). Fitting the bridge response through the superimposition of influence 

lines allows the acquisition of data on axle weight of crossing vehicles (McNulty and O'Brien, 

2003; Lydon et al., 2016; Ojio et al., 2016). Strain data and influence lines have been used over 

the years to develop methods to compute traffic characteristics such as axle weight, axle spacing 

and speed using only strain measurements (Cardini and DeWolf, 2008; Wall et al., 2009; Lansdell 

et al., 2017). In another study, Gagarin et al. (1994) estimated strain influence line in its application 

of neural network to determine trucks characteristics purely from strain-response measurements. 

It is hoped that the metrics introduced in this dissertation will be widely applicable for long-

term monitoring and performance evaluation to promote time effectively maintenance which, in 

turn, will lead to a strengthen asset management of similar bridges.  

3.2.1 Strain-Distance-Area (SDA) 

Both long-term monitored flexural strain data from SHM and traffic characteristics from 

WIM are used in the development of the strain-distance-area (SDA) measure, a novel metric to 

monitor bridge response to traffic. As already mentioned, this metric is based on the concept of 
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influence line (IL), which is the effect of a moving point load at a location other than the strain 

gages locations (Liu et al., 2009b; Buckley, 1998). In this study, the effect of interest is bending 

moment. Based on simple structural considerations, it is possible to relate strain (ε) and the bending 

moment calculated from an influence line (MIL) (Fig.3.8). Stress (σ) can be expressed as the 

product between Young’s modulus (E) and strain deformation (ε) (Eq.9) and also as the ratio 

between MIL times the distance between the fibers subjected to the maximum tension stress and 

the neutral axes (y) and the moment of inertia (I) (Eq.10). 

Combining Eq. (9) and Eq. (10) ε can be defined as follows: 

 

 

ε =
MIL ∙ y

E ∙ I
= αd ∙ MIL 

(11) 

All the constant quantities (y, E, I) are grouped into one single term called αd which represents the 

bridge flexibility calculated from design (d) drawings (geometry and materials). The development 

of the novel metric starts with revising Eq.11. For this purpose, preliminary steps are required: 

first, the recorded strain-time waveform is transformed into a strain-distance waveform, where the 

distance traveled is calculated using the speed recorded by the WIM system (Fig.3.1a-b); second, 

after the waveform is transformed, the area under the strain-distance waveform represents the 

metric proposed in this chapter, SDA.  

 σ = E ∙ ε (9) 

 
σ =

MIL ∙ y

I
 

(10) 
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Figure 3.1: a) strain vs time; b) strain vs distance of two trucks with similar GVW, length, and 

speed, (girder 4). 
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MIL (Fig.3.2) is constructed using the traffic data (axle weight and spacing) recorded from the 

WIM system and the moment-distance area (MDA) under the constructed MIL curve is computed. 

SDA and MDA are shown in Fig.3.3. Based on previous considerations, Eq.11 is here revised as: 

Where “e” stands for experimental. It will be shown later that, although αe is a product of field 

data, it resulted to be a good candidate as a monitoring quantity due to its constant nature. 

 

 

Figure 3.2: theoretical bending moment influence line (MIL). 

 

 

 

 

 

 

SDA = αe ∙ MDA (12) 
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Figure 3.3: a) measured strain waveform (average girder 3 and 4); b) calculated MIL at 

mid- span, generated by a 331.4 kN (74.5 kips), 22 m (72 ft) truck.  
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3.2.2 Data Pre-processing 

Some pre-processing steps are necessary to guarantee that outliers do not affect the quality of the 

information in the data. Four conditions are empirically chosen to define an outlier:  

- null GVW or length from WIM;  

- negative SDA values; 

- presence of another vehicle approaching or leaving the bridge while a truck is crossing; 

- WIM mismatch between the GVW and the axles weights.   

3.2.3 Benefits of SDA 

The benefits of SDA over ZTP are discussed as follows.  First, ZTP is a concentrated measure 

of the effect of the load on the bridge. The peak from which ZTP is computed occurs when the 

truck is in the proximity of the strain gage while SDA takes into account the effect of the truck at 

any point on the bridge. ZTP is a localized measure while SDA has the important benefit of being 

independent of the position of the truck, and it includes the effects of the truck throughout its 

crossing of the bridge.  

Using SDA reduces dependency on the truck’s length and therefore reduces the scatter in data. 

ZTP is highly dependent on the length, indeed, a load distributed over a smaller length generates 

a steeper waveform, while the same load distributed over a bigger length produces a shorter and 

wider waveform, this generates inevitable scatter in the data (Fig.3.4a). To visualize the reduction 

in scatter and compare same-unit quantities, ZTP and SDA values are normalized by the sum of 

all trucks crossing the bridge that month. Fig.3.4b shows, indeed, a significant reduction in the 

scatter. 
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Figure 3.4: a) normalized ZTP vs GVW; b) normalized SDA vs GVW. Values are averages of 

girder 3 and 4, Lane 1, March 2011. 

R² = 0.7939

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0 50 100 150 200 250 300 350 400 450 500

N
o

rm
al

iz
ed

  
Z

T
P

GVW [kN]

ZTP vs GVW

R² = 0.8687

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0 50 100 150 200 250 300 350 400 450 500

N
o

rm
al

iz
ed

 S
D

A
  

GVW [kN]

SDA vs GVW

a) 

b) 



100 
 

The third benefit is related to the ability to avoid response underestimation. For instance, 

the presence of another vehicle on the bridge produces a biased ZTP (Fig.3.5) This anomaly can 

be avoided or reduced by computing the SDA under the truck’s waveform instead. 

 

 

Figure 3.5: an example of underestimated ZTP due to the presence of another vehicle 

approaching the bridge. 

SDA can also be used to calculate the GDF described in chapter 2.  

SDAGDFi,j =
SDAi,j

∑ SDAi,j
5
j=1

 
 (13) 

Where i is the truck identifier and j is the girder (j=1, …, 5). The monthly average of ZTPGDF and 

SDAGDF, for both lanes, is calculated and compared in Fig.3.6. Not only it has been shown that 

SDA can be used to calculated GDF, but also, unlike traditional strain GDF, SDAGDF has the 

potential to capture the presence of multiple vehicles by using strain data only. Fig.3.7 shows how 

the ZTPGDF and SDAGDF methods react to this. When ZTPGDF is calculated, these episodes (black 

dots) are well hidden among the normal values (grey dots) (Fig.3.7a); when the SDAGDF is 

computed the anomalies are easily recognizable (Fig.3.7b) so that they can be further studied to 

assess if they are just errors to discard or special events to be taken under special consideration 

(Chen et al., 2014). The black dots represent the case when two vehicles are crossing the bridge at 
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the same, typically a car and a truck (Fig.3.5). The black dots above the normal values are typically 

due to vehicles crossing the bridge on lane 2 while the truck is in lane 1, the ones below are vehicles 

crossing the bridge in the same lane as the truck.  This analysis can potentially lead to the definition 

of safe thresholds to manage the traffic on the bridge.  

 

 

Figure 3.6: a) ZTPGDF; b) SDAGDF. Monthly average (March 2011). 
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Figure 3.7: a) ZTPGDF; b) SDAGDF, girder 4 (March 2011). 
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bridge, particularly its geometry (y, I) and the materials (E) of girders and deck. The design value 

of αd can be calculated from the design drawings. The cross-section used in the calculations 

includes steel girder (W24x76) and concrete deck, steel bars in the concrete slab have a negligible 

effect, therefore, are not included. After homogenizing the cross-section in Fig.3.8 into one 

equivalent material, the design value of α resulted to be the following:  

α =
y

E ∙ I
= 1.08 ∙ 10−6 [

1

kN ∙ m
] 

(14) 

 

Figure 3.8: cross-section of steel internal girder and concrete deck. 

Since only trucks on lane 1 are considered, it is important to get only the portion related to girder 

3 and 4 by multiplying α for the appropriate GDF.  

αd = α ∙ GDFAVE(3,4) = 4.2 ∙ 10
−7 [

1

kN ∙ m
] 

(15) 

On the other hand, α can also be estimated from field data as the ratio between SDA and MDA 

(i.e. the slope of the scatterplots in Fig.3.9). 

αe =
SDA

MDA
= 2.8 ∙ 10−7 [

1

kN ∙ m
] 

(16) 
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In spite of the uncertainty and environmental factors which can affect the 3 years of recorded data, 

both design and experimental values of α are quite close to each other. The design value is larger, 

meaning more flexibility, likely due to factors such as variation in concrete stiffness, age, 

discrepancy between specified concrete compressive strength (fc’) and in-place concrete strength.  

αe is here proposed as a valid metric to monitor the bridge flexibility over time. During the 

first stage of life of the structure, any change from αd, and later in time any change of αe, can be 

considered as an alert of a change in the components of the bridge or in their materials. This 

monitoring can lead to targeted effective maintenance actions. Fig.3.9 shows two important pieces 

of evidence used to confirm the reliability of αe as a metric of the bridge performance. First, the 

volume of traffic does not influence αe, for this purpose, Fig.3.9a and Fig.3.9b shows that one 

month and three years of recorded data present the same value of αe. Second, the type of traffic 

does not influence αe, for this purpose, Fig.3.9a and Fig.3.9b show respectively only class 9 trucks 

(5-axle trucks) and all classes of trucks from class 9 to class 13 (from 5- axle to 9axle trucks) 

confirming the same αe and therefore its validity.  
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Figure 3.9: a) one-month (March 2011), class 9 (5-axle) trucks only; b) three years, from class 9 

to class 13 (up to 9-axle) trucks. 
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αe can be estimated by plotting ZTPε vs ZTPIL, however, there is one particular case where 

computing αe from SDA-MDA and not from ZTPε-ZTPIL is highly recommended. This happens 

when the axle configuration (axle weight and spacing) is not available but GVW is the only 

accessible piece of information. With this parameter is still possible to build MIL and calculate 

MDA as shown in Fig.3.10. Fig.3.11a and Fig.3.11b show that, if the axle configuration is 

available, using ZTPε-ZTPIL or SDA-MDA to estimate αe is equivalent, indeed the slope shows 

the same value of αe. However, when the axle configuration is not available, and  MIL is constructed 

based on GVW only, the SDA-MDA (Fig.3.11c) still produces the correct αe value while 

ZTPε- ZTPIL fails to do so (Fig.3.11d, Table 3.1). 

 

Figure 3.10:  MIL at mid-span, truck considered as a point load. 
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Table 3.1: αe values from fitting line. 
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Figure 3.11: a) SDA-MDA and b) ZTPε-ZTPIL IL calculated with axle weights; c) SDA-MDA 

and d) ZTPε-ZTPIL IL calculated with GVW. 

3.3 CONCLUSIONS 

This chapter presents novel metrics to monitor the influence of heavy traffic on the bridge 

response and potential changes in rigidity/flexibility over time. Nominally, two metrics, rooted in 

the influence line theory, are proposed. 

The development of the first metric for bridge response consists of two steps. First, the strain-

time waveform recorded from SHM is converted into a strain-distance waveform, then, the area 

under that curve is computed. The computed area is here proposed as an alternative strain measure 

for bridge response and it is called strain-distance area (SDA). SDA presents several benefits over 

more traditional strain metrics:   

- it provides a generalized measure of the response of the bridge as opposed to a localized 

measure; 

y = 1E-07x + 6E-07

R² = 0.787

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0 200 400 600 800 1000 1200 1400 1600 1800

Z
T

P
ε

ZTPIL [kN*m²]

ZTPε vs ZTPIL (Influence Line calculated with GVW)

d) 



110 
 

- it shows significant reduction of the dependency on length, resulting in significant 

reduction of scatter in data; 

- it identifies hidden anomalies which can lead to response underestimation; 

- it provides an alternative way to calculate GDF and it allows to efficiently detect anomalies 

of from the monitoring systems. 

SDA is also used in the implementation of a second metric to monitor the bridge 

rigidity/flexibility over time. The ratio between the area under the recorded strain waveform (SDA) 

and the area under the calculated bending moment influence line (MDA) provides αe, which, if 

constantly compared to αd (bridge flexibility/rigidity calculated from design drawings) is able to 

detect changes in the bridge rigidity/flexibility. It is shown that in the case of lack of detailed 

information on the truck’s axle configuration, αe obtained by plotting SDA vs MDA assure the 

achievement of reliable values of flexibility, unlike more traditional strain methods (ZTPε- ZTPIL). 

This work aims to provide practitioners improved metrics with immediate applicability. 
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4 PREDICTING BRIDGE RESPONSE  

After defining valid metrics to study the bridge response, the next step is to identify the best way 

to model and predict bridge performance to ensure resource allocation in a cost-effective manner. 

Bridge management can benefit from machine learning techniques to prolong the life of the 

structure and improve safety. The first goal of this work is to present a comparison between 

Multilinear Regression, Artificial Neural Network, and Regression Tree, which are used to model 

the performance of a bridge subjected to a wide variety of trucks. The second goal is to propose 

an alternative strategy for practitioners to avoid trading off predictive power for explanatory 

capabilities and interpretability. The models use both WIM and SHM data.  
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4.1 INTRODUCTION 

To be able to monitor and assess bridge conditions, three key components are needed: (i) data 

availability, here facilitated by long-term monitoring using both WIM and SHM data (section 1.4); 

(ii) appropriate metrics of infrastructure performance (Chapter 2); (iii) efficient predictive models, 

achieved by means of analytical tools such as machine learning techniques to identify conditions 

that undermine the safety of a bridge, as well as to prevent critical events and this is the purpose 

of this chapter.  

Extracting information from large amounts of data can be a challenging endeavor for any 

organization and becomes particularly difficult in the resource-constrained environment in which 

many infrastructure managers are forced to operate. For this reason, more traditional methods to 

evaluate bridge performance are often still preferred to more advanced data mining techniques. 

The goal of this study is to address bridge performance by comparing advantages and 

disadvantages of three techniques namely, Multilinear Regression (MLR), Artificial Neural 

Network (ANN), and Regression Tree (RT). These three supervised learning methods are chosen 

to cover a wide range of skills. MLR, widespread in civil engineering, is chosen for its 

interpretability and explanatory skills. ANN, commonly used to solve a wide variety of problems 

in civil engineering, is chosen for its outstanding predictive power. RT, not commonly adopted in 

civil engineering, is chosen for its user-friendly structure, which can result to be an excellent tool 

for practitioners to justify to a non-technical audience (i.e. management, public, clients, etc.) how 

decisions are made. After comparing strengths and weaknesses of the three methods, this study 

also aims to contribute with an alternative predictive strategy where users do not need to trade-off 

between different capabilities, but they can finally benefit from interpretability, explanatory 
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capabilities, and predictive power by using only one method. The proposed strategy combines 

influential observations analysis (IOA) with regression models, in this case, MLR is preferred. It 

is shown that, once influential observations are identified and discarded, the predictive power of 

MLR is significantly improved and outperforms the well-known predictive capabilities of ANN. 

Owing to the bridge configuration, which is representative of many others in the country, the 

results presented in this study have a broader applicability to many other real cases.  

4.1.1 Technical Background 

Many civil engineering problems have been studied using machine learning methods, in particular, 

ANN. The first application of ANN to civil engineering was published in 1989 to model the design 

of steel beams (Adeli and Yeh, 1989; Adeli 2001). Li et al. (1996) first applied ANN to assess 

bridge conditions using inspection data. An example of how ANN can be used to predict highway 

bridge performance was proposed by Tokdemir et al. (2000). ANN is also considered a promising 

tool for damage detection (Wu et al. 1992; Li et al., 2011) and to reduce subjectivity in structural 

assessment traditionally performed by visual inspection (Elkordy and Chang, 1993; Williams, 

1994; Cattan and Mohammadi, 1997). A number of studies have shown that ANN has advantages 

over traditional statistical methods (Elhag and Boussabaine, 2002) where the statistical 

distributions are unknown, in the presence of outliers and noise (Burke, 1991) and when the sample 

size is large (King 1999; Nguyen and Cripps, 2001). More recent examples of the use of ANN in 

civil engineering include analysis of seismic data (Kerh et al., 2011; Adeli and Panakkat, 2009; 

Youd et al., 2002), estimates of dynamic displacement of bridges under dynamic loads (Masri et 

al., 1993;  1996; Ok et al., 2012), and prediction of bridge health condition using acceleration and 

displacement data (Suryanita and Adnan, 2013). Gagarin et al. (1994) used strain data and weigh-
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in-motion data to compute truck attributes such as velocity, axle loads, and axle spacing, using 

ANN. MLR models have been specifically used in the analysis of dams since the 1950s. A 

comparative study of ANN and MLR to interpret dam behavior is presented by Mata (2011). Other 

studies compare ANN and MLR to determine future maintenance priorities based on the analysis 

of bridge score risk (Wang and Elhag, 2007; Elhag and Wang, 2007). While extensive literature 

suggests that ANN outperforms traditional statistical methods, Kumar (2005) found that for 

skewed data, MLR performs better than ANN. According to Dunlop and Smith (2010), MLR 

produces positive findings in the analysis of concrete delivery and placement process. RT is not 

widely present in the literature, however, Reich (1997), suggested RT as a potential machine 

learning technique to solve civil engineering problems. 

Although this study does not aim to provide a comprehensive survey of the existing literature 

review on the topic, a list of representative papers, selected from above, which discusses MLR and 

ANN in structural engineering is organized in an easy-to-read table (Table 4.1). The table sorts the 

studies by methodology, monitored structure, data collected and goal of the study. The common 

goal of the selected studies is to evaluate the structure’s conditions by predicting parameters which 

can shed a light on potential defects, risks or damage such as strain response and displacement. 

Among these papers, 53% of the monitored structures are bridges. 90% of the papers use ANN to 

make predictions about structures features and 26% of the papers present comparative studies. 

Based on the outcome of the existing literature review, this study aims to provide a comparison 

where RT is also suggested as a valid algorithm which was not highly considered over the 24-year 

period analyzed. Also, the analysis of the literature review identifies a clear prevalence of ANN 

use, with most of the studies highlighting the superiority of ANN over MLR. For these reasons, 
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the authors were prompted to explore a method that could provide the same predictive power of 

ANN and also provide interpretability and explanatory capabilities typical of MLR. 

Table 4.1: chronological list of MLR and ANN applications in structural engineering. 

Reference Method Structure Data Goal 

Adeli and Yeh (1989) ANN Beams Control Parameters and 

Perceptron 

Design Steel Beams 

Wu et al. (1992) ANN 3-Story Building Membrane Stiffness Identify Structural Damage 

Elkordy et al. (1993) ANN Steel Frame Acceleration Data Damage Diagnosis of Structures 

Williams (1994) ANN Structures Macroeconomic Data Construction Cost Indexes 

Gagarin et al. (1994) ANN Bridge Strain and WIM Data Predict Truck Attributes from 

Strain Response from Bridge 

Li et al. (1996) ANN Bridge Inspection Data Evaluate Bridge Conditions 

Masri et al. (1996) ANN Structures Vibration Data Detection of Structural Changes 

Cattan & Mohammadi 

(1997) 

ANN Railroad Bridge Bridge Parameters Bridge Condition Rating 

Tokdemir et al. (2000) ANN* Highway Bridge Geometry, Age, Traffic, 

Structural Attributes 

Bridge Rating 

Youd et al. (2002) MLR Structures Displacement, Earthquake 

Data 

Lateral Spread Displacement 

Dunlop & Smith (2003) MLR Concrete Concrete Data Estimate Efficiency of Concrete 

Operations 

Wang and Elhag (2005) ANN 

MLR* 

Bridge Risk Data (Safety, 

Functionality, 

Sustainability) 

Risk Assessment 

Elhag and Wang (2007) ANN 

MLR 

Bridge Risk Data Risk Score, Risk Category 

Adeli and Panakkat (2009) ANN 
 

Earthquake Data Earthquake Magnitude Prediction 

Mata (2011) ANN 

MLR 

Dam Relative Displacement, 

Strains, Stresses in Concrete 

Characterization of Dam 

Behaviour under Loads 

Kerh et al. (2011) ANN Bridge Seismic Data Identify Hazardous Bridges 

Li et al. (2011) ANN* Bridge Frequency Data Damage and Defect Identification 

Ok et al. (2012) ANN Bridge Dynamic Loads Estimate Displacement 

Suryanita and Adnan 

(2013) 

ANN Bridge Acceleration and 

Displacement Data 

Predict Bridge Conditions 

     *Other methods are used in the comparison. 
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4.1.2 Data Pre-processing  

To avoid potential WIM lane misclassification, the following relations are used to assign the 

correct lane to each truck: 

ZTPgirder4(i) > ZTPgirder2(i) → Lane 1;  ZTPgirder4(i) < ZTPgirder2(i) → Lane 2 (17) 

Only trucks crossing the bridge on lane 1 are considered for this study because in general slower 

traffic like trucks tend to keep right, indeed, 95% of the recorded trucks crossed the bridge on lane 

1, providing a significant sample size for the analyses. To assure the quality of the dataset some 

constraints are set. When a truck is crossing lane 1 girders 3 and 4 are the most loaded, however, 

it is important to ensure that also the fascia girders (external), although less loaded, show a non-

zero perturbation: 

SDAgirder 2 > 0;  SDAgirder 5 > 0 (18) 

For the most loaded girders, a value of 6 µε-m is set as minimum, which is the monthly average 

for the external girders: 

SDAgirder 3 > 6 [με ∙ m] ;  SDAgirder 4 > 6 [με ∙ m] (19) 

Finally, this study considers 14,660 class 9 trucks which represent 74% of all the trucks in the 

dataset. The initial variables included in the data analysis are: SDA [µε‧m] or [10-6‧m] (in this 

chapter only the positive area under the curve is considered), GVW [kg or ton], length of the truck 

[m], speed [km/h], weight of each axle (ax1, ax2, ax3, ax4, ax5) [kg or ton], spacing between axles 

(s12, s23, s34, s45) [m].  
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4.2 METHODOLOGY 

 MLR, ANN, and RT are all supervised learning techniques where the focus is to predict 

the response of the bridge to trucks, in terms of SDA. Hereafter, their principles are explained. A 

goodness of fit is performed for all three methods. 

4.2.1 Multilinear Regression (MLR) 

Regression analysis aims to explain the relationship between variables and predict the value 

of target covariates by fitting a function to patterns of data. In MLR the dependent variable (or 

response, y) is estimated from k independent variables (or predictors, x1-xk) by using a linear 

equation.  

y = β0 + β1 ∙ x1 + β2 ∙ x2 + β3 ∙ x3 +⋯+ βk ∙ xk + ε (20) 

where β0 is the intercept of the model, i.e. the expected value of y when all the predictors are zero, 

β1-k are the coefficients which will be estimated by the model and ε is the error, which describes 

the effect of latent variables not included in the model. The goal is to estimate all the β coefficients 

by minimizing the sum of squared errors (SSE).  

SSE =∑[yi − (β0̂ + β1̂ ∙ xi1 + β2̂ ∙ xi2 +⋯++βk̂ ∙ xik)]
2

n

i=1

=∑𝑒𝑖
2

𝑛

𝑖=1

 
(21) 

𝜕𝑆𝑆𝐸

𝜕𝛽0
= −2 ∙∑[𝑦𝑖 − (β0̂ + β1̂ ∙ xi1 + β2̂ ∙ xi2 +⋯++βk̂ ∙ xik)] =

𝑛

𝑖=1

0 
(22) 
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𝜕𝑆𝑆𝐸

𝜕𝛽𝑗
= −2 ∙∑[𝑦𝑖 − (β0̂ + β1̂ ∙ xi1 + β2̂ ∙ xi2 +⋯++βk̂ ∙ xik)] ∙ 𝑥𝑖𝑗 =

𝑛

𝑖=1

0  

𝑤𝑖𝑡ℎ (𝑗 = 1, 2, … , 𝑘) 

(23) 

Which means solving k+1 equations in k+1 unknowns. 
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Once the following terms are defined in matrixial terms as follows: 
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(25) 

The model in its compact form becomes: 

𝒀 = 𝑿 ∙ 𝜷 + 𝜖 (26) 

When [XTX] is invertible, the least square solution becomes:  

[𝑿𝑻𝑿] ∙ �̂� = 𝑿𝑻 ∙ 𝒀 (26) 
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�̂� = [𝑿𝑻𝑿]−𝟏 𝑿𝑻 ∙ 𝒀 (27) 

A standard measure of the goodness of fit is the coefficient of determination R2 which represents 

the portion of the variability in the data explained by the model. 

R2 = 1 −
SSE

SST
 

(28) 

SST = SSE + SSR (29) 

𝑆𝑆𝐸 =∑𝑒𝑖
2

𝑛

𝑖=1

;  𝑆𝑆𝑅 =∑(�̂�𝑖 − �̅�)
2

𝑛

𝑖=1

;  𝑆𝑆𝑇 =∑(𝑦𝑖 − �̅�)
2

𝑛

𝑖=1

 
(30) 

Where SST is the total sum of squares, SSE is the error sum of squares and SSR is the regression 

sum of squares. It is usually good practice to use the adjusted R2 (R2
adj)

 which is calculated using 

the error mean of squares (MSE) and the total mean of squares (MST) to adjust for new predictors 

added to the model to prevent the problem of overfitting. However, when the sample size is large 

the difference is negligible; for this reason, in this study R2 is adopted as a measure the goodness 

of fit. 

4.2.2 Artificial Neural Network (ANN)  

ANN aims to mimic how the human brain processes complicated data sets by modeling the 

response as a nonlinear function of various linear combinations of the predictors. The structure of 

ANN used in this study consists of one input layer, one hidden layer with multiple hidden nodes, 

and one output layer. These components are defined as follows. 

• The input layer consists of k predictors (x) which are here are called input variables. 
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• The hidden layer consists of m hidden nodes (H), which are functions of the k predictors 

and m model parameters (α). Sigmoidal activation functions are used for all hidden nodes. 

• The output layer consists of the response y, which is here called output variable. y is a 

function of H and model parameters β.  A linear function is used for the output. 

A single-hidden-layer neural network model is fitted to the training dataset. In order to fit the 

model, the response must be rescaled in a [0,1] interval and the predictors must be standardized as 

follows, where j is the predictor and i is the observation.  

yi =
yi − ymin 

ymax − ymin
 (31) 

xij =
xij −mean(xj)

std dev(xj)
 

(32) 

A potential problem with ANN is overfitting. To overcome this issue, a user-chosen tuning 

parameter λ, called decay, is included. The parameters are estimated by minimizing the nonlinear 

sum of squares (SSE*) as shown below: 

SSE∗ =∑[yi − g(𝐱i, 𝛉) ]
2 + λ ∙ (∑∑αm,j

2

k

j=0

+ ∑ βm
2

M

m=0

M

m=1

) 

n

i=1

 

(33) 

In Eq.33, the second term is the shrinkage term, where λ multiplies the sum of squares of nonlinear 

regression coefficients and it is assigned to govern the trade-off between overfitting and 

underfitting. The best values for λ are usually between 0.001 and 0.1 (Kutner et al.,  2004). M is 

the total number of hidden nodes m, k is the total number of predictors j. The first term minimizes 



121 
 

the SSE, where g(xi, θ) is the neural network response prediction which is also a function of the α 

and β, represented by θ, as shown below: 

g(𝐱𝐢, 𝛉) = ŷi =
exp{β0 + β1 ∙ Hi,1 +⋯+ βM ∙ Hi,M} 

1 + exp{β0 + β1 ∙ Hi,1 +⋯+ βM ∙ Hi,M} 
 

(34) 

�̂�i,m  =
exp{αm,0 + αm,1 ∙ xi,1 +⋯+ αm,k ∙ xi,k}

1 + exp{αm,0 + αm,1 ∙ xi,1 +⋯+ αm,k ∙ xi,k}
 

(35) 

4.2.3 Regression Tree (RT)  

RT is a valid alternative model which combines interpretability and capacity to model 

non- linear relationships. The idea behind RT is simple, in that fitting models corresponds to 

growing trees one node at a time. The tree model is the following: 

𝑔(𝒙, 𝜽) = ∑ 𝑐𝑚𝐼(𝒙 ∈ 𝑅𝑚)

𝑀

𝑚=1

 

(36) 

Where M is the total number of regions or terminal nodes, Rm is the mth region, I is an indicator 

function equal to 1 or 0 depending on x belonging to Rm. The highest reduction of SSE defines the 

best predictor and the best place to split the data set into regions. At each split, the RT model 

divides the predictor’s space into rectangular regions where the predicted response y is the average 

response over the entire region cm. Nm is the size of the mth terminal node (region) and θ represents 

all the parameters and the structure.  
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SSE =∑[yi − yî]
2

n

i=1

= ∑ ∑ [yi − cm̂]
2

xi∈Rm

M

m=1

 

(37) 

cm̂ =
1

Nm
∙ ∑ yi
xi∈Rm

 
(38) 

Since more algorithms overfit than it is important to prune back the branches which means to 

collapse one of the internal nodes into a single terminal node. For this purpose, the best size of the 

tree λ, also called complexity parameter, is obtained by minimizing the deviance (Sutton, 2004) 

which, for continuous responses, is equal to minimize the mean square error. 

4.2.4 Influential Observations Analysis (IOA) 

The concept of influential observations is pivotal to introduce the alternative predictive 

strategy. Influential observations are outliers which are likely to substantially change the 

regression model results (Stevens, 1984). One approach to identify them is to compute the Cook’s 

distance (Cook, 1977;  1979) to assess how much the regression would change if a specific 

observation is omitted. A Cook’s distance higher than 4/n (where n is the sample size) (Bollen and 

Jackman, 1985) is the rule of thumb for flagging an observation as influential. This study refers to 

this procedure as Influential Observations Analysis (IOA). The approach chosen for the IOA is 

based on regressions because this strategy will propose to combine IOA with MLR to achieve 

interpretability, explanatory skills, and short computing time along with outstanding predictive 

power.  
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4.3 RESULTS 

4.3.1 Multilinear Regression (MLR) 

Some preliminary actions must be taken before running an MLR model. A potential problem 

that might affect the results is multicollinearity, which is due to strong correlation among 

predictors and can cause inflation of the probability value (p-value). The p-value quantifies the 

level of statistical significance, and it is generally set to the cut-off level of p-value<0.05. The best 

way to detect multicollinearity is to calculate the Variance Inflation Factors (VIF) for each β. As 

a rule of thumb, a VIF higher than 10 indicates multicollinearity and therefore it cannot be accepted 

(Alin,  2010). For instance, a value of VIF equal to 100 means that the variance of the coefficient 

is 100 times larger than it would be if all predictors were uncorrelated. Eq.39 shows how VIF is 

calculated, where R2
j denotes R2 for regressing predictor xj onto the remaining predictors 

{x1,…,xj- 1, xj+1…,xk}. 

VIFj =
1

1 − Rj
2 

(39) 

To correct for multicollinearity, the predictors with an elevated VIF are excluded from the model. 

First, the VIF coefficients are calculated for all 12 predictors (weight, length, speed, ax1, ax2, ax3, 

ax4, ax5, s12, s23, s34, s45). As expected, variables found to have an elevated VIF are weight, and 

the individual axle weights (ax1 to ax5), given that the weight is roughly the sum of all axles’ 

weights. As a result, the individual axles’ weight will be removed from the regression model. 

When computing the VIF coefficients with the reduced variable-set, all predictors fall within the 

acceptable range (VIF<10).  
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Based on the previous considerations, the final MLR model can be summarized by the 

following equation: 

SDA = β0 + β1 ∙ GVW + β2length + β3speed + β4s12 + β5s23 + β6s34 + β7s45 + ε (40) 

Table 4.2 shows the results from the MLR model where all parameters are statistically significant 

with intuitive signs.  

Table 4.2: estimated coefficients of MLR model. 

 

 

 

 

 

As expected, GVW has a significant impact on SDA, for each change of 1 [ton] in GVW, the 

average increase in the mean of SDA is about 29‧10-6 [m], also all the spacing variables are found 

to be strong drivers of SDA variation, for instance, each change of 1 [m] in s23, the average 

increase in the mean of SDA is about 35.33‧10-6 [m]. The combination of spacing is important 

because it defines the shape of the strain waveform and therefore SDA. If the spacing between two 

axles is large, the strain response decays and rises again as the next axle approaches the sensor, 

resulting in a bimodal shape. If the spacing between axles is smaller, this means that axles are more 

equally spaced and the time between axles is not enough to allow the strain waveform to 

Predictors �̂� coefficients‧10-6 Std. Error t-value p-value 

Intercept -56.43 11.06 -5.102 3.4e-7 

GVW [kg] 0.029 0.0001 260.267 < 2e-16 

Length [m] -9.676 0.9421 -10.270 < 2e-16 

Speed [km/h] -1.927 0.0739 -26.065 < 2e-16 

s12 [m] 22.13 1.494 14.807 < 2e-16 

s23 [m] 35.33 2.448 14.432 < 2e-16 

s34 [m] 16.82 1.184 14.212 < 2e-16 

s45 [m] 23.86 1.181 20.192 < 2e-16 
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significantly decay. Speed and length do not contribute much to SDA because by definition SDA 

excludes the dependence on speed and reduces the dependence on length. For MLR R2
 is equal to 

0.85, meaning that 85% of the variability in the data is explained by the model. Actual SDA and 

Predicted SDA are plotted as an additional proof of the goodness of fit for the test dataset 

(Fig. 4.1a).  A simple scheme of MLR is provided in Fig.4.2a.



 
 

 

 

Figure 4.1: actual SDA against predicted SDA a) for MLR with (W IO); b) for ANN with (W IO); c) for MLR  

without (W/O IO); for ANN without (W/O IO). All SDA values are standardized ranging from 0 to 1.  

 

a) 
b) 

c) d) 

1
26

 



 
 

 

 

Figure 4.2: a) scheme of MLR; b) scheme of ANN. 
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4.3.2 Artificial Neural Network (ANN) 

The ANN dataset preparation consists in standardizing the response and all the predictors as 

described in Sec. 4.2.2. Moreover, to avoid any subjectivity in choosing the best decay λ and size 

(number of hidden nodes) of the ANN, k-fold Cross Validation (CV) is used (Browne, 2000). CV 

is an empirical measure that does not involve any assumptions. It consists of randomly splitting 

the dataset into n folds where 1/n is left out (this method is also called leave-one-out) for the test 

data set while the remaining folds constitute the training dataset. At each repetition, a new data set 

is randomly chosen. For this case, a 10-fold CV, repeated 6 times, is used including all predictors: 

weight, length, speed, s12, s23, s34, s45.  

 The smallest value of root mean square error (RMSE) and the highest R2 are used to 

select the optimal calibration parameters (Table 4.3), which are decay λ equal to 0.01 and size 

equal to 15. Fig.4.2b shows the scheme of the calibrated ANN model, which presents 1 input layer 

with 7 predictors, 1 hidden layer with 15 hidden nodes and 1 output layer with 1 response. The 

estimated coefficients are not reported because they lack a straightforward interpretation. To 

visualize the results, the predicted SDAs for the test data sets are plotted against the actual values 

(Fig.4.1b). The calculated R2 is 0.88. ANN is considered more robust against outliers due to the 

use of a bounded function that tends to limit the influence on individual cases in comparison with 

the standard regression approaches (Kutner et al. 2004). This is also confirmed by the analyses 

shown later in Table 4.4, where improvement after removing influential observations is lower than 

in the other methods.  
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Table 4.3: ANN model calibration parameters: decay λ and size, based on the best R2 and lowest. 

RMSE. 

λ SIZE RMSE R2 

0.01 5 0.0332 0.873 

0.01 10 0.0329 0.876 

0.01 15 0.0327 0.877 

0.1 5 0.0334 0.872 

0.1 10 0.0332 0.873 

0.1 15 0.0332 0.873 

0.5 5 0.0339 0.868 

0.5 10 0.0339 0.868 

0.5 15 0.0338 0.868 

1 5 0.0341 0.866 

1 10 0.0341 0.867 

1 15 0.0341 0.867 

4.3.3 Regression Tree (RT) 

RT model does not require any preparation of the dataset or predictors selection. The RT 

model chooses the most important predictors among GVW, length, speed, s12, s23, s34, s45. Their 

importance can clearly be noticed because only the most significant predictors are represented in 

the tree, they can be repeated multiple times and located higher in the tree plot. RT’s explanatory 

capabilities are also accompanied by the possibility to handle non-linear relationships. K-fold CV 

is used to find the best tree size, by plotting the deviance against the tree size or complexity 

parameter λ, the minimum tree size corresponds to the lowest deviance value (Fig.4.3), which, 

form, in this case, is 5. Two sizes slightly bigger than the minimum are chosen to build the trees, 

size 8 (Fig. 4.4) and size 6 (Fig.4.5). From Fig.4.4 and 4.5 it is very intuitive which parameters are 

the most important because they appear first in the tree and because they are repeated multiple 
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times. The prediction is revealed at the end of the final branch reached by following a known path. 

As expected GVW is the most important predictor of SDA, and only secondarily (Table 4.2), a 

spacing variable (s23) has significant impact on the response. The goodness of fit measured by R2 

is 0.82. 

 

Figure 4.3: deviance vs tree size λ.



 
 

 

Figure 4.4: RT with 8 nodes. 
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Figure 4.5: RT with 6 nodes. 
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4.3.4 Influential Observations Analysis (IOA)  

To more rigorously analyze the predictive power of the MLR, the Cook’s distance is 

computed and 592 (4%) influential observations are detected and discarded. The IOA resulted in 

a significant R2 improvement, specifically from 0.85 (MLR) to 0.95 (IOA+MLR), showing more 

accurate β coefficients and marked improvement in predictions (Fig.4.1c). ANN is considered a 

robust method against outliers, for this reason, ANN is eligible for comparison with IOA+MLR. 

However, this does not imply that outliers do not have an effect on the fit of the ANN model. 

Indeed, IOA+ANN resulted in an improved R2 (equal to 0.96 compared to 0.88 of ANN) and 

better-predicted values (Fig.4.1d). RT model is also run on the dataset with no influential 

observations resulting in an improved R2 from 0.83 (RT) to 0.93 (IOA+RT).   

Table 4.4: mean values of R2 after cross-validation. 

DATASET ANN MLR RT 

W/O IOA 0.88 0.85 0.83 

W IOA 0.96 0.95 0.93 

Δimprovement 0.08 0.1 0.1 

 

4.4 DISCUSSION 

The following four criteria are discussed to select the best model:  predictive power, explanatory 

capabilities, interpretability, and computation speed. 

• Predictive Power. In order to compare the goodness of fit of the three models, R2 is 

computed by adopting a 3-fold CV, repeated 10 times, as opposed to splitting the dataset 

into test and training data. The mean of the 10 repetitions of R2 is calculated and shown in 

Table 4.4. For consistency, standardized variables are used not only for ANN (where it is 
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necessary) but for all three models. Before removing the influential observations, all 

models already provided more than acceptable values of R2. However, on average, ANN 

shows better R2 than MLR and RT, respectively 0.88, 0.85 and 0.83 (Table 4.4). The IOA 

led to a significantly improved R2 for MLR and RT models (0.1, Table 4.4) and a lower 

improvement for ANN (0.08, Table 4.4). This confirms that ANN is more robust against 

outliers than the others. For this reason, it is legitimate to compare ANN to IOA+MLR. 

Unlike numerous studies in the literature, which state the superiority of ANN, this 

comparison reveals that the latter method (R2
IOA+MLR=0.95) outperforms the former 

(R2
ANN=0.88). When IOA is performed on both models, the gap between IOA+MLR and 

IOA+ANN is shrieked at 73% where the values of R2 almost coincide (R2
IOA+ANN=0.956 

and R2
IOA+MLR=0.948).  RT also improves its predictive performance when influential 

observations are removed from 0.83 to 0.93 reducing the gap with IOA+ANN of 58% 

(R2
IOA+ANN=0.956 and R2

IOA+RT=0.927).  

• Explanatory capabilities. It is well known that ANN is a machine learning black box whose 

output provides α and β coefficients which are used in sigmoidal functions and do not 

provide insight about the response. It is therefore difficult to link the magnitude of each 

coefficient to the predictor’s importance. For MLR, instead, the p-values evaluate which 

predictor is statistically significant and the β coefficients suggest, on average, how much 

each 1-unit change would increase or decrease the response. Finally, RT provides 

information on the importance of predictors, by including them in the final tree, by means 

of the sizes of its branches and by locating the predictors in higher levels.    
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• Interpretability of results. ANN output lacks direct interpretability, additional plots and 

calculations must be done to get a sense of how the model is performing. MLR provides 

an output which is easy to understand. RT provides the most straightforward output, i.e. a 

tree that can be easily explained to non-experts by using “if…then…else” statements. RT’s 

output is also highly intuitive since it facilitates the ability to predict a new observation on 

the spot just by following the correct branches of the tree.  

• Computation Speed. For ANN and RT, the user needs to make a decision on some 

calibration parameters. To prevent subjectivity, algorithms are used for this purpose. Due 

to the large size of the dataset, the time spent to calibrate the parameters for ANN is of the 

order of magnitude of hours. When the calibration parameters are set, running the model 

takes 1 second for RT and 51 seconds for ANN (time is rounded to the second). MLR does 

not require calibration and it also takes 1 second to run. 

The four criteria are ranked in Table 4.5, from 1 to 3, with 1 being the best score, showing how 

the model works with and without IOA. In practice, the ranking mechanism presented here needs 

to be completed by also accounting for the different weights that different end-users and 

stakeholders assign to each criterion. 

Table 4.5: ranking criteria, 1=Best. 

 

CRITERIA 

W IOA 

ANN    MLR    RT 

W/O IOA 

ANN    MLR    RT 

Predictive power 1 2 3 1 1 2 

Explanatory capabilities 3 1 2 3 1 2 

Interpretability results 3 2 1 3 2 1 

Computation Speed 3 1 2 3 1 2 
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Notation: With Influential Observations Analysis (W IOA), Without Influential Observations Analysis (W/O IOA). 

 

4.5 CONCLUSIONS 

The first goal of this chapter is to propose a comparative study of three techniques, Multiple 

Linear Regression (MLR), Artificial Neural Network (ANN) and Regression Tree (RT), whose 

goal is to predict the bridge performance in terms SDA. Advantages and disadvantages of each 

method are discussed and ranked. To identify the model with the best predictive power, R2 was 

calculated using CV. While all three models fitted the data well resulting in satisfactory values of 

R2, ANN displayed the highest R2 (0.88), thus confirming its superior predictive power. MLR 

produced a valuable R2 (0.85), and most notably it provided significant insights on the parameters 

that exert the strongest influence on SDA: GVW and spacing between axles. RT also showed 

satisfying values of R2 (0.83), and similarly to MLR, it provided insights on the most meaningful 

predictors of bridge response, by confirming that primarily GVW and secondarily spacing between 

axles are the most important predictors. Nevertheless, multiple factors also need to be considered 

when comparing the performance of models. In particular, it was noted that the ANN’s output 

lacks interpretability, thus not being the ideal choice if an investigation that has the primary goal 

of explaining the origin of certain response patterns. Another downside is the significant amount 

of time needed to calibrate the model’s parameters. MLR results were obtained in a fraction of a 

second, its output was easily interpreted, and its β coefficients provided valuable insights on how 

the predictors drive the changes in the response. The results of RT were obtained in very short 

time, provided insight on the importance of the predictors, and were easily interpreted thanks to 

the user-friendly tree shape. These benefits are accompanied by the possibility to perform 

predictions on the spot by following the branches of the tree.  
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The second goal of this chapter is to propose an alternative predictive strategy which aims 

to avoid trading off predictive power for explanatory capabilities or interpretability and vice versa. 

For this purpose, Influential Observations Analysis (IOA) is employed. It was proved that IOA 

can drive improvements to all three methods. The IOA improves the predictive power of MLR 

which already has the potential to enjoy more support among practitioners given its elevated 

interpretability and explanatory capabilities. For this reason, the combination of IOA and MLR is 

here suggested as the alternative strategy to ANN, which is considered to be better suited to handle 

outliers in the basic estimation. In this case, IOA+MLR outperforms ANN (0.95 vs 0.88) and when 

influential observations are discarded for ANN as well, the gap between MLR and ANN is nearly 

eliminated (0.95 vs 0.96).  

On the whole, this work’s results show how to efficiently study bridge performance and 

guide interventions. Ultimately, this chapter demonstrates how statistical methods are critical to 

the process of distilling information out of bridge monitoring data, to aid infrastructure owners in 

evaluating bridge performance and making data-driven management decisions. While the subject 

bridge in this study is largely performing safely, the parameters of the IOA+MLR investigation 

could provide a metric that could be used for long-term monitoring.  Shifts in the regression 

parameters could indicate a condition change on the bridge that warrants further investigation.  A 

practical challenge in proof-of-concept research of this nature is that it is difficult to identify 

subject structures that will exhibit problems that can be detected with monitoring.   
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5 CLUSTERING BRIDGE RESPONSE AND TRUCK CLASSIFICATION  

Information on truck data is important for many functions of maintaining the infrastructure and 

transportation network. These functions include pavement design and maintenance, enforcement, 

freight movement, traffic monitoring, air quality models, determining remaining life of critical 

fatigue details, tracking weight limits on posted bridges, and research. A two-step strategy is 

proposed to cluster and label the response of the bridge and to classify truck traffic. Longitudinal 

clustering is used to perform step 1, image processing and classification tree are used together or 

separately to perform step 2. This strategy aims to support decision makers with different 

management tasks such as traffic management policy, and regulation of heavy traffic.
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5.1 INTRODUCTION 

Assuming that all vehicles have a similar impact on bridges would lead to significant error 

in the management of a structure. Heavy and overweight trucks significantly contribute to the 

reduction of the service life of pavements and bridges (Fiorillo and Goshn, 2014). Having an 

accurate knowledge of the type and number of heavy trucks and the different responses of the 

bridge can be beneficial in planning effective maintenance interventions, in addition, to aiding 

policymakers and enforcement to promote an overall better use of the structure.  As mentioned in 

the first pages of this thesis, the installation of the WIM and SHM systems was motivated by 

increased load limits on the US Highway 2 corridor including the subject bridge, where load limits 

for logging trucks were increased to promote transportation of timber from Michigan to a sawmill 

in Wisconsin. Specifically, per Michigan regulations, logging trucks loaded with greater GVW 

than Wisconsin are allowed to travel into Wisconsin along the US-2 corridor.  

This chapter aims to propose a two-step strategy which consists of first, clustering the bridge 

response under different heavy trucks using longitudinal clustering and second, identifying the 

characteristics of the trucks which generate each specific response by using image processing and 

classification trees or either one depending on the type of information available. This data-driven 

strategy aims to support bridge managers and policymakers (from both transportation and 

structural engineering point of view), to regulate heavy traffic and maintain safe thresholds to 

avoid potential harm that they can cause to the bridge over time. Approximately 12,000 truck 

records and correspondent strain bridge responses, collected over the 3-year period, are analyzed. 

The recorded strain waveforms are clustered using a non-parametric technique belonging to the 

class of unsupervised learning methods: longitudinal k-means clustering (KmL) specifically 
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developed to identify similar patterns in longitudinal data by Genolini and Falissar (2011).  The 

major challenge of the classification part of the study is not to classify vehicles with evident 

different features such as cars and trucks, but to classify all heavy trucks which belong to FHWA 

classes 9 to 13 (5 to 9 axles) with similar characteristics and often even similar axle configuration. 

5.1.1 Technical Background 

Traffic classification has always been an important area of research for infrastructure 

management. Previous studies on traffic classification are reported below.  

- Gagarin et al., 1994 applied neural network to determine truck characteristics such as 

speed, axle spacings, and axle loads from strain-response records measured at the bottom 

flange of the bridge girder. Nine types of trucks (from 2 to 6 axles) were considered in the 

study. 

- Sun et al., 2003 developed an inductive classifying artificial network (ICAN) for vehicle 

classification. This time the classification is not done by number of axles or spacing but 

into useful classes such as passenger cars, sport utility vehicles, vans, bus, and trucks.  

- Erman et al., 2006 used two methods of clustering analysis to identify groups of traffic 

with similar characteristics. K-means and DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise) are adopted and their results are compared to AutoClass 

algorithm. They measureD the accuracy of the clusters to classify a particular category of 

traffic with the DBSCAN having the highest precision for three out of four classes of 

traffic. They also compared the time to build the model which went from 4.5 hours for 

AutoClass to 1 and 3 minutes for K-Means and DBSCAN respectively. 
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- Shin et al., 2007 applied three machine learning algorithms: naïve Bayesian, neural 

network and support vector machine, with the last one outperforming the other two, to 

automatically classify vehicles in five classes form small vehicles to trucks. The data were 

collected from strain gages installed on bridge-deck panels. Principal component analysis 

was used for features extraction. When a vehicle was misclassified it was always 

incorrectly assigned to a class which neighbored the correct one.  

- Yan et al., 2008 developed a strain-based vehicle classification using neural network which 

was compared to a manual classification developed by the authors. The dataset consists of 

strain records and videos from which they extracted using principal component analysis 

class, weight, and speed of the vehicles. They considered all vehicles from passenger car 

to trucks. The results obtained with neural network were compared with those obtained by 

using bayesian inference method. 

- Fiorillo and Goshn, 2014 developed a data mining algorithm to analyze WIM data used to 

identify and classify overweight trucks into permit and illegal categories. They adopted a 

pattern recognition algorithm to cluster vehicles according to FHWA classification, 

number of axles, spacing and total axle length in four preliminary categories. Then, they 

applied Bayesian conditional probability to finally identify illegal trucks.  

5.1.2 Longitudinal K-Means (KmL) in Other Fields  

This section presents studies which used the KmL to perform the clustering. This machine 

learning technique is adopted in different fields where it is common to study longitudinal data such 

as criminology (Wheeler et al., 2016;), epidemiology (Hurault-Delarue et al., 2016), psychology 

and psychiatry (Pingault et al., 2013, Herba et al., 2015, Walton et al., 2017), sociology (Laurin et 
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al., 2015) neurology (Schels et al., 2013), endocrinology (Abdennour et al., 2014), and many other 

branches of medicine (Tanaka et al., 2017). Below some applications of KmL are presented:  

- Mackelprang et al., (2012) clustered the level of exposure to HIV-1 to identify individuals 

with host resistance to the infection. High, low and decreasing exposure were the three 

clusters identified in the study. The individuals who belonged to the high exposure cluster 

but showed low incidence of HIV-1 infection were the host resistance. These individuals 

were further studied to identify their biological characteristics and understand what makes 

them resistant to the disease.  

- Pingault et al., (2014) clustered the level of inattention across childhood to verify if the 

form of inattention could predict high school graduation failure. Stable, Fluctuating and 

increasing level of inattention were the three clusters identified by the study. The study 

concluded that increasing inattention level during elementary school made a significant 

contribution to graduation failure.  

- Curman et al., (2014) clustered crime pattern trends to examine crime at the street block 

level. Very low, low, high and very high crime were the four clusters identified. Results 

showed how crime decreased over a 16-year period, they also identified some streets and 

intersections where the crime level is still high. This study aimed to support the local police 

in planning their interventions. 

5.2 METHODOLOGY 

5.2.1 Data Pre-processing 

To develop the two-step strategy both SHM and WIM datasets were used. In the first step, 

the strain records collected by SHM system are used to perform the clustering analyses. Each truck 
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is represented by a waveform of 501 strain data-points (longitudinal dataset) resulting from 5 

seconds of recording at 100 Hz (1 strain measurement every 10 ms), creating a longitudinal data 

set of strain measurements for each girder. For the reasons explained in paragraph 1.4.3, the 

average of the waveform of girder 3 and 4 is computed for trucks crossing the bridge on lane 1 and 

girder 2 and 3 for trucks crossing the bridge on lane 2. In the second step, the truck’s characteristics 

(GVW, length, speed, axles weight, spacing, lane) recorded by the WIM system as well as the 

photos taken by the WIM cameras are used to classify trucks in both qualitative and quantitative 

to identify. The data processing consists of the following actions: 

i) Homogenization of raw strain records: each girder has its own zero point which 

changes due to the temperature and other environmental factors. In order to get rid of 

this bias and allow comparisons between different girders, during different time of the 

day and different periods of the years, all strain values are zeroed. 

ii) Conversion to longitudinal strain records: each truck was initially represented by a 

matrix of 501 rows and 6 columns (time, strain at girder 1-5), in order to have a 

longitudinal dataset each truck’s matrix was transposed resulting in 5 rows (one for 

each girder) and 501 columns (from index 1 to 501). Then, the average of the strain 

waveform of girder 3 and 4 is calculated for trucks on lane 1 and girder 2 and 3 for 

trucks on lane 2. After taking the averages of the strain records, each truck is finally 

represented by a longitudinal vector [1, 1:501].  

iii) Data selection: only trucks of class 9 to 13 are considered for the analysis. The two- step 

strategy is fully tested on March 2012, lane 2 dataset because of the availability and 
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quality of photos taken by the WIM cameras. However, to assure a statistically 

significant sample size for most of the analyses only lane 1 trucks are considered.  

iv) Basic Data Normalization and Outlier Detection: to reduce the influence of speed on 

the clustering analysis, the longitudinal strain response data are normalized for direct 

comparison. To do so, the peak of each strain response is centered and the whole strain 

response is shifted accordingly. A 4-condition outlier detection strategy is adopted. As 

shown by Eq.41 the goal is to capture first, null GVW and length resulting from WIM 

reading malfunction; second, trucks with GVW less than 9 ton (20 kips) which were 

erroneously classified BY THE WIM as class 9; third, trucks with a summation of all 

axle weights not within 10% of GVW; fourth, data entries with an additional waveform 

on the left or right of the strain truck’s response. This last condition is performed by 

taking the absolute value of the mean of the first ten strain readings (left side of strain 

response) and the absolute value mean of the last ten strain readings (right side of strain 

response), data entries with either of these values greater than 1 µε were removed from 

the dataset. This method tries to discard most of the cases of multiple vehicles on the 

bridge. 

outlier detection:
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v) Time-Window Data Normalization and Outlier Detection: an alternative combination 

of normalization and outlier detection is also considered (Eq.43). The first three 

conditions of Eq.41 are kept, and an alternative approach to treat the presence of 

multiple vehicles is adopted. Instead of discarding those trucks, a temporal window 

called time-to-cross (ttc) is computed using the speed, the length of the truck and the 

length of the bridge (36 m, 120 ft). This normalization includes cases of multiple 

vehicles on the bridge, but it just considers the response to the truck. By considering 

only the time-window necessary to cross the bridge, only the truck’s waveform is 

included. This method is clearly not immune from errors so all the trucks with an 

extremely slow recorded speed are discarded, because this would mean that the truck 

needed more time than the 5-second recording interval to cross the bridge, in practice, 

it is possible that either the speed reading was wrong or special machinery with a very 

low speed were crossing the bridge for snow removal or maintenance. Once the time- 

window is identified the peak values are again centered. It is also presented a variation 

of this normalization which does not align the peaks but the time-frame the truck is 

entering the bridge (left SIDED normalization). The imperfection of the time-window 

normalization is due to the change of speed which the truck might have while crossing 

the bridge, therefore, the ttc is not completely accurate and predictable. 

𝑡𝑡𝑐 =
𝐿𝑏𝑟𝑖𝑑𝑔𝑒 + 𝑙𝑡𝑟𝑢𝑐𝑘

𝑠𝑝𝑒𝑒𝑑
 (42) 
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outlier detection:

{
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(43) 

5.2.2 Longitudinal Clustering 

K-Means is an algorithm commonly used for clustering unlabeled data. The goal of K-Means 

clustering is to group data into clusters with similar characteristics. The R package (2016) KmL is 

used to perform the longitudinal clustering. This process provides a way to analyze trends and 

patterns in a dataset that may not be through traditional grouping and comparisons. Each strain 

waveform is called single trajectory or trajectory, several trajectories, which made a dataset, are 

called joint trajectories and can be written as a matrix where, in this case, each row is a single 

strain waveform (Genolini et al., 2015). K-Means works by computing the distance between two 

objects, in this case, it would be the distance between two matrices. Considering a set S of n objects, 

for each object an outcome variable Y at different time t is measured.  yil is the value of Y for the 

object i at time l and the sequence yi=(yi1, yi2, …, yit) is the trajectory. The goal of clustering is to 

divide a set S in k homogeneous subsets by assigning each trajectory to the nearest cluster by 

calculating the various distances, this case uses the Euclidean distance E defined as follows: 

𝐷𝑖𝑠𝑡𝐸(𝑦𝑖 , 𝑦𝑗) = √∑ (𝑦𝑖𝑙 − 𝑦𝑗𝑙)
2𝑡

𝑙=1
 

(44) 

The challenge consists of choosing the best number of clusters. The Calinski-Haravbatz (1974) 

criterion is used to select the optimal number of clusters by combining the within-clusters and 

between-clusters covariance to evaluate the quality of the partition. Defining nm as the number of 
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trajectories in cluster m, 𝑦𝑚̅̅ ̅̅  is the mean trajectories of clusters m, �̅� is the mean of the whole set 

S. The between-clusters covariance matrix B is defined as follows: 

𝐵 =∑ 𝑛𝑚(
𝑘

𝑚=1
𝑦𝑚̅̅ ̅̅ − �̅�)(𝑦𝑚̅̅ ̅̅ − �̅�)′ 

(45) 

Where trace(B) is the sum of the diagonal coefficients of B. High values of trace(B) indicate 

well- separated clusters, low values of trace(B) indicate that the clusters are close to each other. 

The within-cluster W covariance matrix is defined as follows: 

𝑊 =∑ ∑ 𝑛𝑚(
𝑛𝑚

𝑙=1
𝑦𝑚𝑙 − 𝑦𝑚̅̅ ̅̅ )(𝑦𝑚𝑙 − 𝑦𝑚̅̅ ̅̅ )′

𝑘

𝑚=1
 (46) 

Where trace(W) is the sum of the diagonal coefficients of W. High values of trace(W) indicate 

heterogeneous clusters, while low values of trace(W) indicate compact clusters, which is the ideal 

scenario. The optimal number of clusters corresponds to the value k which maximize the following 

expression: 

𝐶(𝑘) = (
𝑡𝑟𝑎𝑐𝑒(𝐵)

𝑡𝑟𝑎𝑐𝑒(𝑊)
) ∙ (

𝑛 − 𝑘

𝑘 − 1
) (47) 

Overall, the best solution is the one which maximizes the between-matrix variance and minimizes 

the within-matrix variance. It is worthy to note that even if this criterion helps find the optimal 

number of cluster, it was shown that not always find the correct solution (Shim et al., 2005). The 

first step of the K-Means algorithm is to choose an initial configuration. Different methods with 

different starting conditions are considered to choose the initial configuration: 

- RandomAll: all individuals are randomly assigned to a cluster and the mean of each cluster 

is the cluster center. 
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- RandomK: k individuals are chosen randomly, they are the initial cluster center not an 

average of several individuals. The other individuals are not assigned. This method 

produces initial conditions which are not close to each other which eventually might be 

from different clusters, this method will speed up the convergence. 

- maxDist: this is an incremental method. The matrix of the distances between all individuals 

is computed, the two farthest individuals are chosen to be the two centers c1 and c2, the 

following individuals are added one at a time and they are the farthest individuals from 

those already selected. The farthest individual is the one with the greatest distance from the 

selected individuals.  

- allMethods: it combines all three methods above. 

The starting condition chosen by default uses allMethods for k=2, 3, 4, 5, and 6 clusters 20 times 

each. Fig.5.1 shows how the user can visualize the options and see which one is selected as the 

best according to the Calinski-Harabatz criterion, also called “active criterion”. The x-axis is the 

number of iterations (20) and the y-axis is the value of the specific quality criterion, C(k) (Eq.47). 

In the plot, the partitions with the same cluster k are ordered in decreasing order, the best coming 

first, for all the partitions the best is selected with a black dot. This plot is useful, not only, because 

it suggests the best option according to the selected criterion, but also, it provides an overview of 

how all the other cluster-options perform, and, since quality criteria are not always efficient, this 

may help the user to support a cluster-choice which is different from the one selected by the active 

criterion (Genolini and Falissard, 2011). 
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Figure 5.1: selection of the number of clusters according to the Calinski-Harabatz quality 

criterion. 

5.2.3 Truck traffic classification 

Clustering bridge response is step 1 of the two-step strategy. Step 2 starts with the clustering output 

and aims to define which category of trucks is more likely to produce each bridge response. Two 

methods are here proposed: manual image processing and classification tree. The two methods 

provide two different types of truck classification based on the different set of information they 

process. The former aims to classify the truck’s type by extracting this information from the images 

taken by the WIM cameras, the latter, aims to classify the trucks based on their characteristics 

captured by the WIM system (GVW, length, speed, class axle weight, spacing). The combination 

of both methods makes a strong asset in the truck-classification, however, the two-step strategy 

still works with either method.  

5.2.3.1 Image processing 

The image processing method consists of manual analysis of the photos taken at each truck 

crossing by the WIM’s cameras. This method can be automatized using artificial intelligence 
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algorithms when the volume of images to visualize and classify is significant. The manual analysis 

included the additional searches such as the carrier’s company when visible to gain more 

information on the load carried. Since the photos only picture the front of the truck, the axle 

configuration information from the WIM system are pivotal in the truck classification. 

 

 

Figure 5.2: day-time photo and night-time photo, March 2012, lane 2. 

5.2.3.2 Classification Tree 

Fitting and using a classification tree with k-category response is similar to fitting and using 

a regression tree, described in paragraph 4.2.3 of this thesis. For classification trees, the probability 

of the response Y being the category or class k (k=1,2,…,K) given the predictors x is modeled as a 

constant over each region Rm. 



151 
 

𝑝𝑘(𝒙) = Pr{𝑌 = 𝑘|𝒙} (48) 

The fitted class probability and the best class prediction, which is the most common class in region 

Rm, are respectively shown in Eq.49 and Eq.50. 

�̂�𝑚,𝑘 =
1

𝑁𝑚
⋅∑ 𝐼(𝑦𝑖 = 𝑘)

𝑥𝑖∈𝑅𝑚

 (49) 

𝑘𝑚 = argmax
𝑘
{�̂�𝑚,𝑘 } (50) 

At each step in the fitting algorithm, the best split is the one that most reduces the “impurity” 

within the regions. Different impurity measures can be used, such as misclassification error or Gini 

index, however, the one that most software adopt is the deviance, already mentioned in chapter 4, 

also called “-2 log-likelihood”. High deviance indicates more impurity. CV-deviance plot, as the 

one shown in Fig.4.3, is used to choose the best size of the tree is again used the tree. 

𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = −2∑ 𝑁𝑚∑�̂�𝑚,𝑘 𝑙𝑜𝑔(�̂�𝑚,𝑘 )

𝐾

𝑘=1

𝑀

𝑚=1

 
(51) 

5.3 ANALYSIS STRATEGY (PROOF OF CONCEPT) 

Studies have shown that the GVW, axle weight, and axle configuration of heavy trucks directly 

affect the service life of highway bridge superstructures. Damage typically occurs in the bridge 

deck and in the main superstructure elements, including floor beams and girders, diaphragms, 

joints, and bearings. With the rapid growth of highway transportation, the increasing frequency of 

passing heavy trucks contributes to fatigue damage (FDOT, 2000). The two-step strategy gives a 

complete picture of the situation regarding the heavy traffic which regularly crosses the Hurley 
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bridge for different activities. Bridge owners, bridge managers, policymakers and more in general 

decision makers can all benefit from this data-driven strategy.  

This section aims to show how each component of the two-step strategy works and the 

contribution that each step provides to reach the final goal of understanding bridge performance 

under heavy traffic and subsequent truck-traffic classification. 

STEP 1: Clustering of Bridge Response (iteration 1) 

The KmL is used on March 2012, lane 2. The dataset is normalized according to Eq.41 with a final 

sample size of 237 trucks. Fig.5.3 and 5.4 show the output of the clustering analysis where the 

y- axis, identified in the plots by “V”, is the strain value (µε). 145 trucks (61.2%) fall into cluster 

A, 55 trucks (23.2%) into cluster B and 37 trucks (15.6%) into cluster C. Fig.5.3 shows the three 

clusters resulting from averaging all the waveforms assigned to each cluster. Fig.5.4 shows on the 

left, the Calinki-Harabatz quality criterion, which suggests that 3 is the optimal number of clusters 

and the second-best option is 4 clusters, in the center, the clusters which overlap the waveforms, 

and, on the right, the waveforms color-coded according to the respective cluster. 



153 
 

 

Figure 5.3: clustering output, 3 clusters. 



 
 

 

 

 

 

 

 

 

 

 

Figure 5.4: from left to right, Calinski-Harabatz criterion (y-axis is the C(k) of Eq.47, the x-axis represents the 20 iterations); 3 

clusters and waveform; waveforms color-coded by cluster.
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STEP 2: Truck Classification - Image Processing 

Photos taken between March 27 and March 31, 2012, of trucks crossing the bridge on lane 2 are 

envisioned to understand which type of truck belongs to each of the three clusters identified in step 

1. Since three clusters are defined as the best option by the KmL method, the images are, therefore, 

divided in clusters A, B and C. The images are crucial to identifying trucks with specific 

characteristics such as logging trucks or tank trucks. Some challenges were due to the fact that the 

image only pictures the front of the truck not its whole length and no information is available on 

whether or not all the other regular trucks were traveling empty or just carrying a light load. It 

noteworthy to mention that the data were collected under live traffic conditions and not using 

surveys. 43 pictures are analyzed, and they are respectively clustered as summarized in Table 5.1.  

Table 5.1: 43 trucks clustered. 

Clusters A B C 

Number of trucks 29 9 5 

Percentage of trucks 67.44% 20.93% 11.63% 

The pictures revealed the following results which are summarized in Fig.5.5 and Table 5.2: 

Cluster A includes trucks with a lighter GVW, always below the 80 kip-limit, a bimodal 

waveform due to the presence of a large spacing (25-30 ft), usually between axle 3 and 4 and ZTP 

which never exceeds 50 µε. They are: 

1. Tank trucks with GVW≤ 40 kip (18 ton), Class 9, with identical axle configuration. 
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2. Flatbed, empty or light weighted, with GVW≤ 50 kips (~22 ton), or just slightly above 50 kips; 

class 9 (5 axles) and 10 (6 axles). Sometimes they can be confused with empty logging trucks, 

however, they do not have a typical configuration of that type of truck.  

3. Regular trucks (dry-van or refer) with GVW <50 kips, suggesting an empty or partial cargo or 

light weight cargo, class 9. 

4. Regular trucks (dry-van or refeer) with GVW between 50 and 70 kips, class 9 and 10. 

Cluster B includes two different waveforms, a bimodal one, and a non-bimodal one, very 

heavy trucks, often overweight, ZTP is therefore very high as well. They are: 

1. Full logging trucks, their GVW is about 100 kips or more, class 12 (6 axles), axles more 

equally spaced although there is at least one larger spacing between axle 3 and 4 of 12-18 ft 

(3.7-5.5 m), they present a non-bimodal waveform and ZTP ≥80 µε. 

2. Regular trucks (dry-van or refeer) with high GVW, sometimes overweight but never reaching 

100 kips, class 9, they present a bimodal waveform due to the large spacing, >25 ft (>7.6 m). 

Cluster C includes logging trucks, with a non-bimodal waveform, extremely heavy trucks, 

always overweight, ZTP is therefore very high as well. 

1. Full logging trucks, their GVW is around 100 kips or more, class 12 (6 axles), axles more 

equally spaced although there is still a large spacing is between axle 3 and 4 of (12-18 ft, 

3.7- 5.5 m), they present a non-bimodal waveform and ZTP ≥80 µε. 
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Table 5.2: summary of trucks characteristics within each cluster. 

Cluster Truck type Weight Waveform Class 

A1 Tank trucks Light Bimodal 9 

A2 Flatbed Medium- Light Bimodal 9-10 

A3 Regular trucks Light Bimodal 9 

A4 Regular trucks Medium Bimodal 9-10 

B1 Logging trucks Overweight Non-Bimodal 12 

B2 Regular trucks Heavy Bimodal 9 

C Logging trucks Overweight Non-Bimodal 12 

 

Figure 5.5: sample images of trucks by cluster. 
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Table 5.2 shows two that two clusters contain the same type of truck, they are cluster B1 and 

cluster C. This is believed to be a consequence of the normalization process which, as described 

in section 5.2.1, takes the peak of each waveform and aligns them to the center (Fig.5.6) to reduce 

the influence of speed.  

 

Figure 5.6: two identical logging trucks belonging to two different clusters. 

To prove that those two clusters can contain waveforms generated by similar trucks, two identical 

logging trucks from the same company are studied in depth (Fig.5.7). To do so, 18 characteristics 

of the two trucks are listed in Table 5.3 to show that there are no significant differences to highlight. 

The question is what is causing those two identical trucks to be separated into two different 

clusters. The clustering technique is an unsupervised machine learning method where clusters are 

defined based on the strain waveform only. In this specific case, the peak’s position is what 

influences the normalization, and, as it can be observed in Fig.5.6, the peaks can be multiple and 

can differ from one another of extremely small quantities, this might be due to small dynamic 

effects such as discontinuity in the pavement or truck’s suspension. Since the road is the same for 
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both trucks which are crossing the bridge within 24 hours, it is highly possible that the suspensions 

of the trucks, in particular, their type, age, and wear, can cause that dynamic fluctuation in the 

waveform. It is crucial to be aware of a phenomenon which, although not measurable, and therefore 

uncontrolled, can play a small role in the explanation of the results. 

Table 5.3: comparison of 18 truck’s characteristics. 

 Imperial System Metric System 

 B C B C 

GVW 101.6 [kip] 100.4 [kip] 46.1 [ton] 45.5 [ton] 

Length 63 [ft] 63 [ft] 19.2 [m] 19.2 [m] 

Speed 56 [mph] 57 [mph] 90.1 [km/h] 91.7 [km/h] 

Class 12 12 12 12 

Axles 6 6 6 6 

Axle 1 weight 12.1 [kip] 12.2[kip] 5.5 [ton] 5.5 [ton] 

Axle 2 weight 17.3 [kip] 17.1[kip] 7.85 [ton] 7.76 [ton] 

Axle 3 weight 17.2 [kip] 18[kip] 7.8 [ton] 8.16 [ton] 

Axle 4 weight 17.3 [kip] 17.5[kip] 7.85 [ton] 7.94 [ton] 

Axle 5 weight 19.1 [kip] 18.1[kip] 8.66 [ton] 8.21 [ton] 

Axle 6 weight 18.4 [kip] 17.4[kip] 8.35 [ton] 7.89 [ton] 

Spacing 1-2 15.7 [ft] 15.8[ft] 4.79 [m] 4.82 [m] 

Spacing 2-3 4.3 [ft] 4.2[ft] 1.31 [m] 1.28 [m] 

Spacing 3-4 18.2 [ft] 18.2[ft] 5.5 [m] 5.5 [m] 

Spacing 4-5 10 [ft] 10[ft] 3.1 [m] 3.1 [m] 

Spacing 5-6 10.3 [ft] 10.3[ft] 3.14 [m] 3.14 [m] 

ZTP (ave_g3, g4) 72.2 µε 72.25 µε 72.2 µε 72.25 µε 

SDA (ave_g3, g4) 4207.3 [ft] 4287.5 [ft] 1282.4 [m] 1306.8 [m] 
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Figure 5.7: (above) March 29 at 23:19:18, cluster B; (below) March 28 at 22:05:07, cluster C. 
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The image processing provides the important contribution of assigning a truck typology to 

each cluster. This step can also provide a pivotal contribution to the identification of the best 

number clusters. Based on these results shown in Tab.5.3, it seems that cluster B can be split into 

two clusters, therefore, the results might be suggesting that 4 clusters would better group the 

dataset. Also, the option with 4 clusters was the second-best option according to the quality 

criterion Calinski-Harabatsz. Therefore, a new iteration of step 1 is performed. 

STEP 1: Clustering of Bridge Response (iteration 2) 

The best option identified in the first iteration of step 1 was 3 clusters, however, a deeper analysis 

with the support of photos suggests that 4 clusters might be more representative of more truck 

types crossing the bridge. The results of the clustering analysis considering 4 clusters are shown 

in Fig.5.8 and 5.9. 

 

Figure 5.8: clustering output, 4 clusters.



 
 

 

Figure 5.9: from left to right, Calinski-Harabatz choice method, 4 clusters, waveforms color-coded by cluster. 
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The clustering analysis in the second iteration confirms the presence of two different types of 

trucks in cluster B (B1: logging trucks, B2: heavy bimodal trucks), which are then split into B 

(heavy bimodal) and C (logging non-bimodal) in the 4-cluster option. Type A4 is also reassigned 

from cluster A (3-cluster option) to cluster B (4-cluster option), this makes sense because type A4 

was a borderline group of trucks, with higher GVW compared all the other trucks belonging to the 

same cluster (A) and it is assigned to cluster B with other heavier trucks causing a bimodal 

response. The better reassignment of trucks into 4 clusters is shown in Fig.5.10 and Table 5.4. 

 

 

 

Figure 5.10: cluster reassignment. 
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Table 5.4: reassignment (4 cluster-option). 

March 2012, lane 2 4 CLUSTERS 

A B C D 

 

3
 C

L
U

S
T

E
R

S
 

A 136 9 0 0 

B 0 19 36 0 

C 0 0 0 37 

 

STEP 2: Truck Classification - Classification Tree 

Classification trees, unlike the study of images which provides a qualitative classification 

of the truck-traffic, provide a quantitative classification based on the truck’s characteristics 

measured by the WIM system. The tree identifies which predictors are the ones which most 

influence the categorical response y={A, B, C, D}  

When 3 clusters are considered (step 1, first iteration) (Fig.5.11), the classification tree 

identifies GVW and the weight of axle 6 as the most significant predictors of the response. It does 

not come as a surprise that the predictors which most influence the cluster-category, which groups 

similar strain waveforms, are related to weight. The first split is GVW which divides lighter trucks 

(A) from heavy trucks (B and C), the second split provides an important piece of information to 

help support the controversial distinction of logging trucks belonging to clusters B and C. 

According to the tree, trucks in cluster C show a heavier load in the rear axle 6, resulting in a peak 

shifted to the right (rear of the truck), while cluster B shows its peak right after the first axle.  
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Figure 5.11: classification tree, 3 clusters. 

 

 

Figure 5.12: classification tree, 4 clusters. 

 

When 4 clusters are considered (step 1, second iteration) (Fig.5.12), the tree first, separates 

the trucks in heavy and lighter trucks (respectively A and B, C, D) , then, it separates heavy trucks 
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according to the shape of their waveform (bimodal B or not bimodal C, D) which is strictly 

connected to the dimension of spacing between axle 3 and 4. A large spacing indicates a bimodal 

waveform, meaning that after axle 3 hits the bridge there is enough time for the bridge response to 

reach low values of strain before axle 4 hits the bridge. This type of behavior is not ideal for the 

bridge because one truck-crossing is perceived by the bridge as almost two cycles, this can cause 

fatigue problems over time. Finally, the heavy trucks with more equally spaced axles (clusters C 

and D) are separated by the weight of axle 6, with D having heavier rear than C, as explained 

before. Finally, a flow chart of the complete two-step strategy is provided to summarize the 

procedure in Fig.5.13. 

 

Figure 5.13: flow chart of the two-step strategy. 
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5.4 RESULTS 

GVW and axle configurations are the key characteristics, not only to group trucks but also to 

keep under control their potential effects to the bridge and its components. GVW is certainly the 

first most important parameter. For this reason, trucks in cluster A are considered the least 

dangerous, with a bridge response which never exceeds 50 µε. Even if they present a bimodal 

strain waveform due to the presence of a large spacing, typical of class 9 trucks, their limited 

weight assures their allocation among the safer traffic for the bridge. Unlike trucks in cluster A, 

trucks which fall in cluster B, C, and D should all be taken under control. Going in order of 

increasing GVW, trucks in cluster B are much heavier than A and often overweight (80-kip limit), 

in addition to their excessive weight they also present a large spacing which produces a bimodal 

waveform. This axle configuration makes the bridge perceive one truck crossing almost as two 

trucks crossings, this would speed up fatigue damages in areas which are particularly prone to it. 

Increasing further the GVW, there are the logging trucks with their extremely heavy weight, 

logging trucks are a constant presence in the Hurley bridge traffic. Both trucks in cluster C and D 

show a very high GVW sometimes exceeding 100 kips (limit 98-kip on 6 axles) and the same axle 

configuration with more equally spaced axles. For this category, the concern is due to the peak 

strain that they can reach, up to 100 µε and more. There are also some exceptions which should be 

taken under control, though very limited in number, where the bridge response can reach up to 250 

µε. They resulted to be all trucks with 9 axles, and, since they were found mostly in summer 

months and in some cases in winter. A visual summary of the truck classification is provided in 

Fig. 5.14. 



 
 

 

Figure 5.14: visual summary of trucks classification.
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5.4.1 Monthly clustering 

This section is going to show the clustering of 10 months over the 3-year period when the bridge 

was monitored. Only the months with a significant sample size are selected. The database is 

subjected to the basic normalization and outlier detection (Eq. 41). Per previous considerations, to 

allow direct comparison, for each month, 4 clusters are considered. Table 5.5 lists the months 

studied, the monthly average. Fig.5.15 shows the monthly and the yearly average, where trucks in 

cluster A are always between 40% and 50%, and they represent the majority of trucks. This result 

can be seen as encouraging since they are the least harmful to the bridge. However, Fig.5.16 and 

5.17 show combined scenarios to have a more accurate overview of the situation. The former 

combines cluster C and D to for a better understanding of the magnitude of logging activity in the 

area, which are slightly less than 30% of the whole truck traffic, Table 5.6 shows that on average 

the probability of a logging truck to be clustered as group C is slightly higher (0.56) than group D 

(0.44). The latter, instead, combines all the heavy trucks B, C and D (close to limit and overweight) 

to have an estimated magnitude of the traffic which would require more attention in order to plan 

strategic maintenance of the structure, indeed these trucks are slightly more than 50%. Among the 

heavy trucks, the most common truck is the logging truck which concerns because its weight often 

exceeding 100 kips. Slightly less numerous than logging trucks are the trucks belonging to cluster 

B, heavy truck with large spacing with the potential to cause fatigue issues, these kinds of trucks 

show a peak in 2011 with 30% (Fig.5.15), in correspondence of a downward trend of trucks A. 

This result could be a consequence of the Wisconsin statutory change (Owusu-Ababio and 

Schmitt, 2014) which allowed heavy trucks to cross the area even during the spring thaw.  
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Table 5.5: percentages of trucks in each cluster. 

Month Size A B C D B&C&D  C&D 

Aug-10 1310 48.1% 22.7% 15.8% 13.4% 51.9% 29.2% 

Sep-10 1342 49.8% 25.0% 14.5% 10.7% 50.2% 25.2% 

Oct-10 1791 48.2% 23.3% 15.2% 13.3% 51.8% 28.5% 

Nov-10 1585 49.6% 22.0% 16.9% 11.5% 50.4% 28.4% 

Dec-10 1688 48.1% 23.2% 16.8% 12.0% 52.0% 28.8% 

Mar-11 2029 40.8% 28.4% 18.9% 11.9% 59.2% 30.8% 

Apr-11 1705 42.1% 31.1% 15.7% 11.1% 57.9% 26.8% 

Mar-12 1955 45.3% 25.1% 17.3% 12.3% 54.7% 29.6% 

Apr-12 1884 47.0% 28.5% 13.3% 11.2% 53.0% 24.5% 

Jun-12 2293 48.7% 28.1% 10.7% 12.5% 51.3% 23.2% 

 
Average 46.8% 25.7% 15.5% 12% 53.2% 27.5% 

 

Table 5.6: logging trucks probabilities. 

Month Size Logging trucks Pr(C) Pr(D) 

Aug-10 1310 29.2% 0.54 0.46 

Sep-10 1342 25.2% 0.58 0.42 

Oct-10 1791 28.5% 0.53 0.47 

Nov-10 1585 28.4% 0.60 0.40 

Dec-10 1688 28.8% 0.58 0.42 

Mar-11 2029 30.8% 0.61 0.39 

Apr-11 1705 26.8% 0.59 0.41 

Mar-12 1955 29.6% 0.58 0.42 

Apr-12 1884 24.5% 0.54 0.46 

Jun-12 2293 23.2% 0.46 0.54 

 
Average 27.5% 0.57 0.44 
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Figure 5.15: monthly and 3-year average percentages of trucks by cluster. 
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Figure 5.16: monthly and 3-year average percentages of trucks by cluster, with C&D 

representing logging trucks. 
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Figure 5.17: monthly and 3-year average percentages of trucks by cluster where B&C&D 

represents heavy trucks. 
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Figures 5.18 to 5.27 show, for each month considered in the study, the four clusters which 

are the result of the average of all waveforms included assigned to that cluster and the individual 

waveforms color-coded by clusters. The y-axis noted as “V” in the figures represent strain [µε]. 

Table 5.7 shows how the maximum value of all clusters is stable over time, with very small 

variations. The highest value of strain for the clusters is about 100 µε for all months (cluster C), 

however, some months show individual waveforms which exceed 200 µε (August, November and 

December 2010). Even if the clusters are the result of the average of all waveforms, their 

magnitude is not highly influenced by the presence of extreme events because of their limited 

number. Therefore, if extreme events become more frequent the cluster will show it and this can 

be used as a warning. The shape of the cluster can be determined by the number of each truck’s 

typology. For instance, cluster A and B maintain their shape consistent over the period while C 

and D tend to slightly vary their shape, in particular, D, depending on the number of trucks with a 

large spacing, can tend to a more bimodal shape.   
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Table 5.7: maximum strain values of each cluster. 

 Maximum Averaged Strain Values [µε] 

Month A B C D 

Aug-10 47.34 78.51 99.11 90.35 

Sep-10 45.36 76.92 99.23 83.67 

Oct-10 45.36 77.18 99.72 95.68 

Nov-10 44.81 75.11 94.43 88.61 

Dec-10 43.01 74.14 92.67 83.76 

Mar-11 42.34 74.45 92.22 85.69 

Apr-11 44.36 78.28 94.27 79.84 

Mar-12 43.39 76.12 95.57 86.78 

Apr-12 45.06 75.35 97.38 86.32 

Jun-12 45.69 74.14 96.11 87.62 



 
 

 

 

 

 

 

 

 

 

Figure 5.18: August 2010, clusters (left) waveforms sorted by cluster (right). 
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Figure 5.19: September 2010, clusters (left) waveforms sorted by cluster (right). 
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Figure 5.20: October 2010, clusters (left) waveforms sorted by cluster (right). 
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Figure 5.21: November 2010, clusters (left) waveforms sorted by cluster (right). 
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Figure 5.22: December 2010, clusters (left) waveforms sorted by cluster (right). 
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Figure 5.23: March 2011, clusters (left) waveforms sorted by cluster (right). 
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Figure 5.24: April 2011, clusters (left) waveforms sorted by cluster (right). 
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Figure 5.25: March 2012, clusters (left) waveforms sorted by cluster (right). 
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Figure 5.26: April 2012, clusters (left) waveforms sorted by cluster (right). 
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Figure 5.27: June 2012, clusters (left) waveforms sorted by cluster (right). 
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5.4.1.1 Sensitivity Analysis  

A sensitivity analysis is performed to show how different normalization methods and outlier 

cleansing techniques can influence the clustering results.  

Comparison 1: normalization 1 

Fig.5.28 to 5.37 aim to show the difference between the two methods of normalization and outlier 

detection explained in Eq.41 and Eq. 43. Both methods have the following in common, all the 

peaks of the waveforms are centered (basic normalization), and both discard those trucks whose 

data present WIM incongruences. 

The difference between the methods are: 

- Basic Normalization and Outlier Detection (Eq. 41): tries to discard most of the multiple 

vehicle presences. The advantage is to have a cleaner dataset where fewer outliers can 

affect the clusters; the disadvantage is a reduced sample size to study. 

- Time-Window Normalization and Outlier Detection (Eq.43): adopts a different 

normalization which does not discard those trucks whose waveform signals the presence 

of another vehicle but only considers the portion of waveform generated by the crossing of 

the truck. The advantage is that fewer trucks are discarded; the disadvantage is that the 

calculation of the time window (ttc, Eq.42) depends on the speed measured by the WIM, 

which is hardly kept constant. 

The choice of outlier detection and normalization can influence the number of clusters selected, 

for instance, April 2012 (Fig. 5.36) shows 5 clusters or 4 depending on the method selected. 

Overall, the main difference is a slight redistribution of percentage. 



 
 

 

 

 

 

 

 

 

 

 

Figure 5.28: August 2010, 3 clusters, (left) basic normalization, (right) time-window normalization. 
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Figure 5.29: September 2010, 4 clusters, (left) basic normalization, (right) time-window normalization. 
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Figure 5.30: October 2010, 5 clusters, (left) basic normalization, (right) time-window normalization. 

 

 

 

1
89

 



 
 

 

 

 

 

 

 

 

 

 

Figure 5.31: November 2010, 3 clusters, (left) basic normalization, (right) time-window normalization. 
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Figure 5.32: December 2010, 4 clusters, (left) 4-rule outliers detection, (right) ttc-normalization. 
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Figure 5.33: March 2011, 4 clusters, (left) basic normalization, (right) time-window normalization. 
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Figure 5.34: April 2011, 4 clusters, (left) basic normalization, (right) time-window normalization. 
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Figure 5.35: March 2012, 4 clusters, (left) basic normalization, (right) time-window normalization. 
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Figure 5.36: April 2012, 4 clusters, (left) basic normalization, (right) time-window normalization. 
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Figure 5.37: June 2012, 4 clusters, (left) basic normalization, (right) time-window normalization. 
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Comparison 2: normalization 2 

The second comparison aims to show the importance of performing the normalization. For this 

analysis, March 2012, lane 2 is used including potential outliers. Dataset 1 is not normalized, 

dataset 2 is normalized (basic). Fig.5.38 shows how all waveforms are more spread due to the 

different speed of the trucks, waveforms towards the left belong to faster trucks than the waveforms 

towards the right. The clusters resulting from the analysis of dataset 1 are not reliable because 

highly biased by the speed which determines their position in the plot.  

Comparison 3: normalization 3 

In the third comparison, time-window normalization is used on March 2012, lane 2. The goal of 

this comparison is to show the alignment point used for the normalization influences the clusters.  

Dataset 3 is normalized by aligning the peaks, while dataset 4 aligns the time-frame when the truck 

enters the bridge, identified by the time at which the ttc starts (Fig.5.39). The peaks eventually 

result aligned in both datasets, however, the shape of the clusters is slightly different. The peak 

alignment is considered more reliable than the entering-moment alignment because not dependent 

on the speed which can change.  

 

 

 



 
 

 

 

 

 

 

 

 

 

Figure 5.38: Normalization 2, 3 cluster, dataset 1, non-normalized (left) and dataset 2, normalized (right). 
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Figure 5.39: Normalization 3, 3 clusters, dataset 3, peak alignment (left) and dataset 4, entering-time alignment (right). 
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5.4.2 Monthly Classification Tree 

After each monthly clustering analysis of the bridge response (step 1) follows the truck 

classification (step 2) using classification trees. As mentioned before, the classification tree 

provides a more quantitative description as opposed to a more qualitative description of the truck’s 

typology, which, nevertheless, can be eventually deduced from the tree output. Tables 5.8 to 5.17 

provide a visual overview of which truck’s characteristics are used every month and which value 

determines each split. Fig.5.40 to 5.49 provide a visual overview of the parameters which are 

considered the most important based on their position and on the frequency with which they appear 

in the tree. Not all parameters are used for every month’s analysis, some are consistently present 

such as GVW, speed, spacing 3-4, some are more common than others such as weight of axle 4 

and length, while others only appear in one or two months. Overall, all parameters appear at least 

once but spacing 1-2. The features that all trees have in common are the following: 

- The first split is always governed by GVW, which separates lighter from heavy trucks. 

GVW can also appear multiple times in a tree. 

- Speed consistently separates A from B in the lighter GVW side, with A being always faster 

than B. However, splits governed by speed happen also for heavy trucks and not only 

between A and B. 

- Spacing 3-4 always separates trucks with a large spacing and therefore a bimodal waveform 

(B) from non-bimodal waveform (C, D), but not limited to these clusters. It can also happen 

that sometimes D includes trucks with large spacing (Fig. 5.30, October 2010, blue cluster). 

- From the two-step strategy conducted on March 2012, Lane 2, the weight of axle 6 seemed 

to contribute to the controversial separation of cluster C and D. This idea of having a 
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heavier rear part of the truck, is confirmed here where most of the time axle 4 weight and 

sometimes axle 5 weight are heavier in D than C.  

- An additional piece of information regarding the separation between C and D is gained. 

Length splits C and D with D being consistently shorter than C. 

Two comparisons are provided to see how practitioners can use classification tree to perform 

long-term monitoring and to acquire a get a general idea of what may happen during the following 

month and even during the same month in the following year. These values can be used to raise 

red flags in case of uncommon tree’s structures.  

- The first comparison is between two consecutive months (March 2012 and April 2012, 

Fig.5.50). Four splits stay the same with negligible differences in values and they are GVW 

(green) which splits all trucks in lighter and heavy, spacing 3-4 (orange) which splits 

bimodal from non-bimodal waveforms, speed (light blue) which separates A from B, also 

in the heavier side of GVW, and length (yellow) which separates D from C. Also, other 

splits are somehow related to each other, for example axle weight 4 in March 2012 and 

GVW in April 2012 (purple) agree that weight is influencing this split. Also, spacing 2-3 

and axle weight 1, even if they are different quantities with different units, they are both 

related to the front part of the truck. 

- The second comparison is between two consecutive years (March 2011 and March 2012, 

Fig.5.51). It is encouraging to see how the parameters which constitute the structure of the 

tree (GVW, spacing 3-4, speed and length) are consistent, suggesting reliability of this 

method to classify and monitor trucks over time. 

 



 
 

Table 5.8: August 2010. 

 

Figure 5.40: classification tree, August 2010. 

Aug-10 GVW 

 [ton] 

ax1 

 [ton] 

ax2 

 [ton] 

ax3 

 [ton] 

ax4  

[ton] 

ax5  

[ton] 

ax6 

 [ton] 

speed  

[km/h] 

s23 

[m] 

s34 

[m] 

s45 

[m] 

s56 

[m] 

Length 

 [m] 

A <27.6 
   

<4.1 
        

A <27.6 
   

>4.1 
  

>87.7 
     

A 27.6-32.1 
      

>90.9 
 

>8.4 
   

B <27.6 
   

>4.1 
  

<87.7 
     

B >27.6 
      

<90.9 
 

>8.4 
   

B >32.1 
      

>90.9 
 

>8.4 
   

C >27.6 
        

<8.1 
  

<16.6 

D >27.6 
        

<8.4 
  

<16.6 

D >27.6 
        

8.1-8.4 
  

>16.6 
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Table 5.9: September 2010. 

 

Figure 5.41: classification tree, September 2010.  

Sep-10 GVW 

 [ton] 

ax1  

[ton] 

ax2 

 [ton] 

ax3 

 [ton] 

ax4 

 [ton] 

ax5 

 [ton] 

ax6  

[ton] 

speed  

[km/h] 

s23 

[m] 

s34 

[m] 

s45 

[m] 

s56 

[m] 

Length 

 [m] 

A <26.7 
   

<4.2 
        

A <26.7 
   

>4.2 
  

>87.7 
     

A >26.7 
  

<6.4 
   

>90.9 
 

>8.3 
   

B <26.7 
   

>4.2 
  

<87.7 
     

B >26.7 
  

>6.4 
     

>8.3 
   

B >26.7 
  

<6.4 
   

<90.9 
 

>8.3 
   

C >30.6 
        

<8.3 
   

D 26.7-30.6 
        

<8.3 
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Table 5.10: October 2010. 

Oct-10 GVW  

[ton] 

ax1 

 [ton] 

ax2 

 [ton] 

ax3  

[ton] 

ax4  

[ton] 

ax5 

 [ton] 

ax6  

[ton] 

speed  

[km/h] 

s23  

[m] 

s34  

[m] 

s45  

[m] 

s56  

[m] 

Length 

 [m] 

A <28.7 
            

B >28.7 
 

>5.8 
      

>8.3 
   

C >28.7 
        

<8.3 >2.8 
  

D >28.7 
 

<5.8 
      

>8.3 
   

D >28.7 
        

<8.3 <2.8 
  

 

 

Figure 5.42: classification tree, October 2010. 
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Table 5.11: November 2010. 

Nov-10 GVW  

[ton] 

ax1  

[ton] 

ax2  

[ton] 

ax3  

[ton] 

ax4  

[ton] 

ax5 

 [ton] 

ax6 

 [ton] 

speed  

[km/h] 

s23 

[m] 

s34 

[m] 

s45 

[m] 

s56 

[m] 

Length 

 [m] 

A <27.5 
            

A >27.5 
   

<13.9 
  

>90.9 
 

>8.5 
   

B >27.5 
   

>13.9 
  

>90.9 
 

>8.5 
  

>19.1 

B >27.5 
      

<90.9 
 

>8.5 
   

C >27.5 
   

>13.9 
  

>90.9 
 

>8.5 
  

<19.1 

C >27.5 
        

<8.5 >2.8 
  

D >27.5 
        

<8.5 <2.8 
  

 

Figure 5.43: classification tree, November 2010. 
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Table 5.12: December 2010. 

Dec-10 GVW 

 [ton] 

ax1  

[ton] 

ax2 

 [ton] 

ax3  

[ton] 

ax4  

[ton] 

ax5  

[ton] 

ax6  

[ton] 

Speed 

 [km/h] 

s23 

[m] 

s34 

[m] 

s45 

[m] 

s56 

[m] 

length  

[m] 

A <22.4 
   

<3.7 
        

A <29 
   

>3.7 
  

>86.1 
     

A <29 
   

>3.7 
  

<86.1 
 

<9.1 
   

B <29 
   

>3.7 
  

<86.1 
 

>9.1 
   

B >29 
      

<84.5 
 

>8.2 
   

B >29 
      

>84.5 
 

>8.2 >2.8 
  

B >29 
      

>84.5 
 

>9.7 <2.8 
  

C >29 
      

>84.5 
 

8.2-9.7 <2.8 
  

C >29 
        

<8.2 
 

>2.9 
 

C >29 
  

>7 
     

<8.2 
 

<2.9 
 

D >29 
  

<7 
     

<8.2 
 

<2.9 
 

 

Figure 5.44: classification tree, December 2010. 
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Table 5.13: March 2011. 

Mar-11 GVW  

[ton] 

ax1 

 [ton] 

ax2 

[ton] 

ax3 

 [ton] 

ax4  

[ton] 

ax5 

 [ton] 

ax6  

[ton] 

speed  

[km/h] 

s23 

[m] 

s34 

[m] 

s45 

[m] 

s56 

[m] 

length  

[m] 

A <23.4 
            

A 23.4-28.5 
      

>89.3 
     

B 23.4-28.5 
      

<89.3 
     

B >28.5 
    

<8.3 
   

>8.1 
   

C >28.5 
        

<8.1 
  

>16.3 

D >28.5 
    

>8.3 
   

>8.1 
   

D >28.5 
        

<8.1 
  

<16.3 

 

 

Figure 5.45: classification tree, March 2011. 2
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Table 5.14: April 2011. 

Apr-11 GVW 

 [ton] 

ax1  

[ton] 

ax2  

[ton] 

ax3  

[ton] 

ax4 

 [ton] 

ax5 

 [ton] 

ax6  

[ton] 

speed  

[km/h] 

s23 

[m] 

s34 

[m] 

s45 

[m] 

s56 

[m] 

Length 

 [m] 

A <28 
   

<3.6 
        

A <28 
   

>3.6 
  

>87.7 
     

A <28 
   

3.6-4.7 
  

<87.7 
     

B >28 
   

>4.7 
  

<87.7 
     

B >28 
        

>8.6 
   

C >28 
        

<8.6 
 

>2.8 
 

D >28 
        

<8.6 
 

<2.8 
 

 

Figure 5.46: classification tree, April 2011. 
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Table 5.15: March 2012. 

Mar-12 GVW  

[ton] 

ax1  

[ton] 

ax2 

 [ton] 

ax3 

 [ton] 

ax4  

[ton] 

ax5  

[ton] 

ax6 

 [ton] 

speed  

[km/h] 

s23 

[m] 

s34 

[m] 

s45 

[m] 

s56 

[m] 

length  

[m] 

A <27.1 
   

<4.1 
        

A <27.1 
   

>4.1 
  

>82.9 
     

B <27.1 
   

>4.1 
  

<82.9 
     

B >27.1 
        

>6.2 
   

C >27.1 
       

>2.1 <6.2 
   

C >27.1 
       

<2.1 <6.2 
  

>17.2 

D >27.1 
       

<2.1 <6.2 
  

<17.2 

 

Figure 5.47: classification tree, March 2012. 
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Table 5.16: April 2012. 

Apr-12 GVW  

[ton] 

ax1 

[ton] 

ax2  

[ton] 

ax3 

 [ton] 

ax4  

[ton] 

ax5 

 [ton] 

ax6 

 [ton] 

speed  

[km/h] 

s23 

[m] 

s34 

[m] 

s45 

[m] 

s56 

[m] 

length  

[m] 

A <23 
            

A 23-26.7 
      

>82.9 
     

A 26.7-30.5 
      

>90.9 
 

>7 
   

B 23-26.7 
      

<82.9 
     

B >30.5 
        

>7 
   

B 26.7-30.5 
      

<90.9 
 

>7 
   

C >26.7 >5.7 
       

<7 
   

C >26.7 <5.7 
       

<7 
  

>16 

D >26.7 <5.7 
       

<7 
  

<16 

 

Figure 5.48: classification tree, April 2012. 
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Table 5.17: June 2012. 

Jun-12 GVW  

[ton] 

ax1 

[ton] 

ax2  

[ton] 

ax3  

[ton] 

ax4  

[ton] 

ax5  

[ton] 

ax6  

[ton] 

speed  

[km/h] 

s23 

[m] 

s34 

[m] 

s45 

[m] 

s56 

[m] 

length  

[m] 

A <26.7 
   

<3.8 
        

A <26.7 
   

>3.8 
  

>78.1 
     

A 26.7-30.4 
     

<6.4 >92.5 
 

>8.1 
  

>19.1 

B <26.7 
   

>3.8 
  

<78.1 
     

B >26.7 
        

>8.1 
  

<19.1 

B >30.4 
     

<6.4 
  

>8.1 
  

>19.1 

B 26.7-30.4 
     

<6.4 >92.5 
 

>8.1 
  

>19.1 

C >26.7 
     

>6.4 
  

>8.1 
  

>19.1 

D >26.7 
        

<8.1 
   

 

Figure 5.49: classification tree, June 2012. 
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Figure 5.50: comparison of classification trees between two consecutive months. 

 

 

 

 

 

2
12

 



 
 

 

Figure 5.51: comparison of classification trees between two months in two consecutive years.
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5.5 CONCLUSIONS 

This chapter aims to develop a two-step strategy to cluster bridge response and classify the 

truck traffic which regularly crosses the subject structure. The goal of this strategy is to provide 

support to decision-making and planning, in order to assure better maintenance and therefore 

improved serviceability of the infrastructure.  

Step 1 of the two-step strategy is performed using a machine learning method called 

longitudinal clustering (KmL). This method belongs to the class of unsupervised learning, meaning 

that the right answer is not known a priori. KmL assigns each strain waveform, which represents 

the response of the bridge to a specific type of truck, to a cluster by calculating the distance between 

the waveform and the cluster’s centroid. Waveforms with similar shapes are grouped together. The 

best number of cluster to use in the analysis is an important decision to make. This decision can 

be supported by some quality criteria such as Calinski-Harabatz, and other consideration of 

practical nature. 

Step 2 of the two-step strategy can be performed with different methods depending on the data 

availability. Here, two techniques are proposed, first, manual image processing, when photos of 

the vehicles are available, which aims to classify the type of truck, second, classification tree which 

is a machine learning method, which aims to provide a more quantitative description of the truck’s 

characteristics.  

Results show that the bridge response can reasonably be grouped in four categories, however, 

other ad hoc scenarios can be considered. The combined use of image processing and classification 

tree allowed to build a truck profile for each response of the bridge identified by the clustering 
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analysis. Either method can also be used individually to obtain valid truck classification. The four 

bridge responses are clustered as follows: 

- Cluster A is caused by lighter weight trucks, with large spacing which produce bimodal 

strain waveforms (tank trucks, flatbed, regular trucks); 

- Cluster B is caused by heavier trucks with large spacing which produce bimodal strain 

waveforms (regular trucks); 

- Clusters C and D are mainly caused by logging trucks, with more equally spaced axles to 

support extremely heavy loads. Cluster D can sometimes be caused by trucks with large 

spacing as well.  

According to the classification tree outcome, GVW, speed, spacing 3-4, length and weight of axle 

4 are the most important features which determine the clusters distinction. GVW first separates 

lighter from heavy trucks, spacing isolates cluster B from the other clusters, speed separates cluster 

A from B, length, and weight of rear axles separate C form D.  

Each cluster can be linked to a specific problem to the bridge. For instance, trucks which 

cause a bimodal waveform can cause fatigue problems because the bridge perceives one crossing 

as almost two different cycles, such as cluster B. These types of trucks should be taken under 

control. Another problem is the presence of overweight trucks which can speed up the deterioration 

of the bridge and its component. The two-step strategy can successfully extract pivotal information 

regarding the bridge performance and its traffic which can facilitate the planning of specific 

maintenance programs, the development of ad hoc regulation, more in general, support decision-

making and the overall better management of the structure. 
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6 CONCLUSIONS 

6.1 OVERVIEW  

America’s highway network is underperforming, and while not all deficient bridges are in 

danger of collapse, there are consequences that come with their decayed state. One of them is the 

need to impose weight restrictions which can have an impact on the routes of heavy trucks, and, 

more in general, on the economic activity. It has proven challenging for state and local 

governments to keep pace with the growing nation’s bridge needs; for this reason, it is crucial to 

find more effective strategies to allocate resources by assuring timely and effective interventions 

to improve long-term durability and serviceability. 

This goal can be achieved by understanding bridge performance and monitoring of bridges 

to detect structurally deficient components in time, to properly plan maintenance and promote 

data-driven decision-making to assure an overall improved management of the structure. 

Adopting SHM techniques on critical bridges can contribute to addressing some of today’s 

challenges and improving inspection, repair, and rehabilitation methods and reducing traffic 

disruption. Keeping America’s roads and bridges in a state of good repair can positively contribute 

to a robust economy and favorably impact the quality of life. As a result, timely identification of 

potential problems can help mitigate their impact on structural health and reduce bridge 

rehabilitation costs, extending the service life and minimizing life-cycle cost of bridge networks. 

6.2 CONTRIBUTION 

The overall objective of this work is to support asset management and decision-making 

process, not to provide warning of incipient failure, but rather reduction in some aspect of 
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performance or serviceability. Application of structural health monitoring instrumentation and 

analysis can provide timely decision-support information to extend service life and promote 

ongoing serviceability. This thesis aims to provide all the key elements to monitor and assess 

bridge conditions which are: a dataset, which includes both traffic information and bridge 

response; appropriate metrics to monitor the bridge performance; efficient predictive models; 

bridge response and truck classification strategy to support planning and managing, as well as, 

facilitate regulation. 

Some preliminary studies were necessary to understand the health condition of the subject 

bridge. For this purpose, the GDFs were computed and compared to AASHTO specifications. The 

long-term behavior of the bridge over the 3-year period was analyzed at different level of 

aggregation. Changes in the trends and patterns were identified, and linked to potential causes such 

as logging season, extreme weather conditions and Wisconsin statutory change, which allowed 

vehicle combination up to 98 kips on six axles to transport loads of raw forest products during the 

spring thaw suspension period. Overall, the bridge is in healthy conditions with no evidence of 

structural loss of integrity such as anomalous repartition of the load on the girders. 

Long-term monitoring is performed proficiently when the best selection of instruments, 

thoughtfully placed, is deployed. Assessing the integrity of existing bridges requires accurate 

monitored bridge data and adequate interpretation. The need for an effective use of monitoring 

data promoted the development of novel metrics to monitor how the bridge responds to heavy 

traffic. The first metric (SDA) proposed aims to overcome some limitations of traditional strain 

measurements. It aims to provide a generalized measure of the response of the bridge as opposed 

to a localized measure; to show reduction of the dependency on length, resulting in significant 

reduction of scatter in data; to provide an alternative way to calculate GDF and to efficiently detect 
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reading errors of from the monitoring systems, as well as hidden anomalies which can lead to 

response underestimation. The second metric (αe) aims to monitor the bridge rigidity/flexibility 

over time by constantly comparing it to the design values (αd). Any detected change over time has 

the potential to raise red flags regarding the conditions of the bridge rigidity/flexibility. 

Once a valid metric to study the bridge response is defined, the next step is to distill information 

out of bridge monitoring data, to aid infrastructure owners in evaluating bridge performance and 

making data-driven management decisions. Machine learning methods are deployed to model and 

predict bridge performance. First, a comparative study of Multilinear Regression, Artificial Neural 

Network, and Regression Tree, is presented to analyze advantages and disadvantages and to 

identify the most desirable features to model the bridge performance. Second, an alternative 

strategy is proposed for practitioners to avoid trading off important capabilities. The results of the 

comparative study showed that all three models fitted the data well, with ANN confirming its 

superior predictive power. Nevertheless, predictive power is not the only valuable capability to 

evaluate the proficiency of a model, indeed, four criteria are discussed to select the best model:  

predictive power, explanatory capabilities, interpretability, and computation speed. ANN’s output 

showed lack of interpretability and explanatory capabilities, which is not ideal if the primary goal 

is to explain the origin of certain response patterns. MLR’s output was easily interpreted, and its 

coefficients provided valuable insights on how the predictors drive the changes in the response. 

The results of RT provided insight on the importance of the predictors, and they were easily 

interpreted thanks to the user-friendly tree shape. The outcome of the comparative study provided 

a complete overview of each method’s capabilities allowing an alternative solution to be defined 

which eventually combined benefits of different methods into one. It was proven that the IOA 

could drive improvements to all three methods. The IOA improves the predictive power of MLR 
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which already has the potential to enjoy more support among practitioners given its elevated 

interpretability and explanatory capabilities. For this reason, the combination of IOA and MLR 

was suggested as the alternative strategy to ANN, that could be used for long-term monitoring of 

shifts in the regression parameters which could indicate a change of the bridge’s condition that 

warrants further investigation.  

Planning and managing infrastructures can certainly benefit from predictive models of bridge 

response. Assuming that all vehicles have a similar impact on the bridge would lead to significant 

errors, therefore, to plan effective maintenance interventions, it is important to study in depth what 

is causing different bridge responses and what type of traffic should be taken more under control 

because of its potential impact of the structure. To achieve this goal a two-step strategy which 

provides a complete overview of the bridge response to the heavy traffic which regularly crosses 

the subject bridge, is proposed. Step 1 is performed using longitudinal clustering. The choice of 

number of clusters can be facilitated with quality criteria and other consideration of practical 

nature. Step 2 can be performed with different methods depending on the data availability, such as 

manual image processing, which aims to classify the type of truck and/or classification tree, which 

aims to provide a more quantitative description of the truck’s characteristics. The identified groups 

of bridge responses were, bimodal-low strain caused by lighter trucks, bimodal-high strain caused 

by heavy trucks, non-bimodal-very high strain mainly caused by logging trucks. Each cluster can 

be linked to a potential problem to the bridge. For instance, high frequency of trucks which trigger 

bimodal waveforms can contribute to fatigue damage and heavy and overweight trucks 

significantly contribute to the reduction of the service life of pavements and bridges. This data-

driven strategy can facilitate the planning of specific maintenance programs, the development of 
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ad hoc regulations, more in general, support decision-making and the overall better management 

of the structure. 

6.3 LIMITATIONS AND FUTURE WORK 

This thesis addressed multiple aspects of the bridge monitoring, using a unique dataset resulted 

from the fruitful collaboration between WisDOT and Northwestern ITI. The term “unique” is used 

with a two-fold meaning, first, unique in the sense that it is rare to have a long-term dataset with 

both traffic (input) and bridge (output) data of such quality, second, unique meaning that all the 

analyses were developed on one bridge. Although the subject bridge is very representative of many 

others in the country for its characteristics, it would be excellent to test these results on other 

bridges. A future step it would be to apply machine learning image recognition algorithms to 

automatize and speed up the image processing in the case of large databases. Another future plan 

would be to compare classification tree results obtained with other methods such as XGBoost and 

Support Vector Machine and compare their misclassification rate.   

It is hoped that this thesis, by showing how statistical methods can be critical to the process of 

distilling information out of the bridge monitoring, could provide a guide for practitioners to 

support data-driven decision-making, improve the maintenance planning process, and overall, to 

increase serviceability of bridges and infrastructures.
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