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ABSTRACT

Topics in Deep Learning Classification

Jaehoon Koo

In machine learning, classification that assigns a label to a sample is a fundamental

problem and serves a building block for various applications of artificial intelligence such as

speech recognition, sentimental analysis, and image recognition. During the last years, deep

learning rejuvenates artificial intelligence; in particular, it leads to tremendous progress in

classification tasks. In this study, we develop enhanced deep learning methodologies for

supervised classification. We also explore training schemes and implementations of the

models using high-end computing machines. Furthermore, we study an interesting variant

of the classification problem, called inverse classification that explores interpretability of

classification models. This dissertation consists of three chapters, 1) Improved Classification

Methods Based on Deep Belief Networks (DBN), 2) Combined Convolutional and Recurrent

Neural Networks for Hierarchical Classification of Images, and 3) A New Framework for

Inverse Classification Using Mixed Integer Programming.

In the first chapter, we explore how to incorporate unsupervised learning methods in

supervised classification. Generative models are commonly used to initialize classifiers
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before fine-tuning. Typically, this requires solving separate unsupervised and supervised

learning problems. In this work, we focus on DBN, which is a widely used unsupervised

model. We develop several supervised models incorporating DBN in order to improve the

two-phase learning strategy. The improvements over two-phase are consistent.

In the second chapter, we focus on hierarchical classification of images. Object classes

have known hierarchical relations, and classifiers exploiting these relations can perform

better. To incorporate this perspective, we develop a combined model for classification

that extracts hierarchical representations of images by a convolutional neural network

and learns a tree of label paths to predict a final label of images by a recurrent neural

network. The proposed model leads to image classification that captures the hierarchical

characteristics of the classes.

In the third chapter, we shift our attention to studying interpretability of classification

models rather than improving classification accuracy. We study an inverse classification

problem that is a machine learning task designed to identify small changes needed in input

features of an instance to adjust its associated prediction as desired. To solve this problem,

we formulate a constrained mixed integer programming problem and design an associated

algorithm based on Lagrangian and subgradient methods.
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CHAPTER 1

Improved Classification Based on Deep Belief Networks

1.1. Introduction

A Restricted Boltzmann machine (RBM), an energy-based model to define an input

distribution, is widely used to extract latent features before classification. Such an

approach combines unsupervised learning for feature modeling and supervised learning for

classification. Two training steps are needed. The first step, called pre-training, is to model

features used for classification. This can be done by training a RBM that captures the

distribution of input. The second step, called fine-tuning, is to train a separate classifier

based on the features from the first step (Larochelle et al., 2012). This two-phase training

approach for classification can be also used for deep networks. Deep belief networks

(DBN) are built with stacked RBMs, and trained in a layer-wise manner (Hinton and

Salakhutdinov, 2006). Two-phase training based on a deep network consists of DBN and

a classifier on top of it.

The two-phase training strategy has three possible problems. 1) It requires two training

processes; one for training RBMs and one for training a classifier. 2) It is not guaranteed

that the modeled features in the first step are useful in the classification phase since they

are obtained independently of the classification task. 3) It can be difficult to decide which

classifier to use. Therefore, there is a need for a method that can conduct feature modeling

and classification concurrently (Larochelle et al., 2012).
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To resolve these problems, recent papers suggest transforming RBMs to a model that

can deal with both unsupervised and supervised learning. Since a RBM can calculate the

joint and conditional probabilities, the suggested prior models combine a generative and

discriminative RBM. Consequently, this hybrid discriminative RBM is trained concurrently

for both objectives by summing the two contributions (Larochelle and Bengio, 2008;

Larochelle et al., 2012). In a similar way, a self-contained RBM for classification is

developed by applying the free-energy function based approximation to RBM, which

is used for a supervised learning method, reinforcement learning (Elfwing et al., 2015).

However, these approaches are limited to transforming RBM that is a shallow network.

In this study, we develop alternative models to solve a classification problem based on

DBN. Viewing the two-phase training as two separate optimization problems, we apply

optimization modeling techniques in developing our models. Our first approach is to design

new objective functions. We design an expected loss function based on p(h|x) built by

DBN and the loss function of the classifier. Second, we introduce constraints that bound

the DBN weights in the feed-forward phase. The constraints ensure that extracted features

are good representations of the input during model training. Third, we apply bilevel

programming to the two-phase training method. The bilevel model has a loss function of

the classifier in its objective function but it constrains the DBN values to the optimal to

phase-1. This model searches possible optimal solutions for the classification objective

only where DBN objective solutions are optimal.

Our main contributions are several classification models combining DBN and a loss

function in a coherent way. In the computational study we verify that the suggested

models perform better than the two-phase method.
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1.2. Literature Review

The two-phase training strategy is applied to many classification tasks on different

types of data. Two-phase training with RBM and support vector machine (SVM) is

explored in classification tasks on images, documents, and network intrusion data (Xing

et al., 2005; Norouzi et al., 2009; Salama et al., 2011; Dahl et al., 2012). Replacing SVM

with logistic regression is explored in Mccallum et al. (2006); Cho et al. (2011). Gehler

et al. (2006) use the 1-nearest neighborhood classifier with RBM to solve a document

classification task. Hinton and Salakhutdinov (2006) suggest a DBN consisting of stacked

RBMs that is trained in a layer-wise manner. A two-phase method using DBNs and

deep neural networks is used to solve various classification problems such as image and

text recognition (Hinton and Salakhutdinov, 2006; Bengio and Lamblin, 2007; Sarikaya

et al., 2014). Recently, this approach is applied to motor imagery classification in the

area of brain–computer interface (Lu et al., 2017), biomedical research, classification

of Cytochrome P450 1A2 inhibitors and non-inhibitors (Yu et al., 2017), web spam

classification that detects web pages deliberately created to manipulate search rankings (Li

et al., 2018), and human emotion recognition that classifies physiological signals such as

“happy,” “relaxed,” “disgust,” “sad,” and “neutral” (Hassan et al., 2019). All these papers

rely on two distinct phases, while our models assume a holistic view of both aspects.

Many studies are conducted to improve the problems of two-phase training. Most of

the research is focused on transforming RBMs so that the modified model can achieve

generative and discriminative objectives at the same time. Schmah et al. (2009) propose a

discriminative RBM method, and subsequently classification is done in the manner of a

Bayes classifier. However, this method cannot capture the relationship between the classes
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since the RBM for each class is trained separately. Larochelle and Bengio (2008); Larochelle

et al. (2012) propose a self-contained discriminative RBM framework where the objective

function consists of the generative learning objective p(x, y), and the discriminative learning

objective, p(y|x). Both distributions are derived from RBM. Similarly, a self-contained

discriminative RBM method for classification is proposed (Elfwing et al., 2015). The

free-energy function based approximation is applied in the development of this method,

which is initially suggested for reinforcement learning. This prior paper relies on the RBM

conditional probability, while we handle general loss functions. Our models also hinge on

completely different principles.

1.3. Background

Restricted Boltzmann Machines. RBM is an energy-based probabilistic model, which

is a restricted version of Boltzmann machines (BM) that is a log-linear Markov Random

Field. It has visible nodes x corresponding to input and hidden nodes h matching the

latent features. The joint distribution of the visible nodes x ∈ RJ and hidden variable

h ∈ RI is defined as

p(x, h) =
1

Z
e−E(x,h), E(x, h) = −hWx− ch− bx

where W ∈ RI×J , b ∈ RJ , and c ∈ RI are the model parameters, and Z is the partition

function. Since units in a layer are independent in RBM, we have the following form of

conditional distributions:

p(h|x) =
I∏
i=1

p(hi|x), p(x|h) =
J∏
j=1

p(xj|h).
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For binary units where x ∈ {0, 1}J and h ∈ {0, 1}I , we can write p(hi = 1|x) = σ(ci+Wix)

and p(xj = 1|h) = σ(bj +Wjx) where σ() is the sigmoid function. In this manner RBM

with binary units is an unsupervised neural network with a sigmoid activation function.

The model calibration of RBM can be done by minimizing negative log-likelihood through

gradient descent. RBM takes advantage of having the above conditional probabilities which

enable to obtain model samples easier through a Gibbs sampling method. Contrastive

divergence (CD) makes Gibbs sampling even simpler: 1) start a Markov chain with training

samples, and 2) stop to obtain samples after k steps. It is shown that CD with a few steps

performs effectively (Hinton, 2002; Bengio, 2009).

Deep Belief Networks. DBN is a generative graphical model consisting of stacked RBMs.

Based on its deep structure DBN can capture a hierarchical representation of input data.

Hinton et al. (2006) introduced DBN with a training algorithm that greedily trains one

layer at a time. Given visible unit x and ` hidden layers the joint distribution is defined

as (Hinton et al., 2006; Bengio, 2009)

p(x, h1, · · · , h`) = p(h`−1, h`)

(
`−2∏
k=1

p(hk|hk+1)

)
p(x|h1).

Since each layer of DBN is constructed as RBM, training each layer of DBN is the same

as training a RBM.

Classification is conducted by initializing a network through DBN training (Hinton

et al., 2006; Bengio and Lamblin, 2007). A two-phase training can be done sequentially by:

1) pre-training, unsupervised learning of stacked RBM in a layer-wise manner, and 2) fine-

tuning, supervised learning with a classifier. Each phase requires solving an optimization

problem. Given training dataset D = {(x(1), y(1)), . . . , (x(|D|), y(|D|))} with input x and
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label y, the pre-training phase solves the following optimization problem at each layer k

min
θk

1

|D|

|D|∑
i=1

[
−log p(x(i)

k ; θk)
]

where θk = (Wk, bk, ck) is the RBM model parameter that denotes weights, visible bias,

and hidden bias in the energy function, and x
(i)
k is visible input to layer k corresponding

to input x(i). Note that in layer-wise updating manner we need to solve ` of the problems

from the bottom to the top hidden layer. For the fine-tuning phase we solve the following

optimization problem

(1.1) min
φ

1

|D|

|D|∑
i=1

[
L(φ; y(i), h(x(i)))

]
where L() is a loss function, h denotes the final hidden features at layer `, and φ denotes

the parameters of the classifier. Here for simplicity we write h(x(i)) = h(x
(i)
` ). When

combining DBN and a feed-forward neural networks (FFN) with sigmoid activation, all

the weights and hidden bias parameters among input and hidden layers are shared for

both training phases. Therefore, in this case we initialize FFN by training DBN.

1.4. Proposed Models

We model an expected loss function for classification. Considering classification of two

phase method is conducted on hidden space, the probability distribution of the hidden

variables obtained by DBN is used in the proposed models. The two-phase method provides

information about modeling parameters after each phase is trained. Constraints based

on the information are suggested to prevent the model parameters from deviating far

from good representation of input. Optimal solution set for unsupervised objective of the
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two-phase method is good candidate solutions for the second phase. Bilevel model has the

set to find optimal solutions for the phase-2 objective so that it conducts the two-phase

training in one-shot. We call our models combined models.

DBN Fitting Plus Loss Model. We start with a naive model of summing pre-training and

fine-tuning objectives. This model conducts the two-phase training strategy simultaneously;

however, we need to add one more hyperparameter ρ to balance the impact of both

objectives. The model (DBN+Loss) is defined as

min
θL,θDBN

Ey,x[L(θL; y, h(x))] + ρ Ex[− log p(x; θDBN)]

and empirically based on training samples D,

(1.2) min
θL,θDBN

1

|D|

|D|∑
i=1

[
L(θL; y(i), h(x(i)))− ρ log p(x(i); θDBN)

]
where θL, θDBN are the underlying parameters. Note that θL = φ from (1.1) and θDBN =

(θk)k=1. This model has already been proposed if the classification loss function is based on

the RBM conditional distribution (Larochelle and Bengio, 2008; Larochelle et al., 2012).

Expected Loss Model with DBN Boxing. We first design an expected loss model based

on conditional distribution p(h|x) obtained by DBN. This model conducts classification

on the hidden space. Since it minimizes the expected loss, it should be more robust and

thus it should yield better accuracy on data not observed. The mathematical model that

minimizes the expected loss function is defined as

min
θL,θDBN

Ey,h|x[L(θL; y, h(θDBN ; x))]
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and empirically based on training samples D,

min
θL,θDBN

1

|D|

|D|∑
i=1

[∑
h

p(h|x(i))L(θL; y(i), h(θDBN ;x(i)))

]
.

With notation h(θDBN ;x(i)) = h(x(i)) we explicitly show the dependency of h on θDBN .

We modify the expected loss model by introducing a constraint that sets bounds on DBN

related parameters with respect to their optimal values. This model has two benefits.

First, the model keeps a good representation of input by constraining parameters fitted

in the unsupervised manner. Also, the constraint regularizes the model parameters by

preventing them from blowing up while being updated. Given training samples D the

mathematical form of the model (EL-DBN) reads

min
θL,θDBN

1

|D|

|D|∑
i=1

[∑
h

p(h|x(i))L(θL; y(i), h(θDBN ;x(i)))

]

s.t. |θDBN − θ∗DBN | ≤ δ

where θ∗DBN are the optimal DBN parameters and δ is a hyperparameter. This model

needs a pre-training phase to obtain the DBN fitted parameters.

Expected Loss Model with DBN Classification Boxing. Similar to the DBN boxing

model, this expected loss model has a constraint that the DBN parameters are bounded

by their optimal values at the end of both phases. This model regularizes parameters

with those that are fitted in both the unsupervised and supervised manner. Therefore, it

can achieve better accuracy even though we need an additional training to the two-phase
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trainings. Given training samples D the model (EL-DBNOPT) reads

(1.3)
min

θL,θDBN

1

|D|

|D|∑
i=1

[∑
h

p(h|x(i))L(θL; y(i), h(θDBN ;x(i)))

]

s.t. |θDBN − θ∗DBNOPT | ≤ δ

where θ∗DBNOPT are the optimal values of DBN parameters after two-phase training and δ

is a hyperparameter.

Feed-forward Network with DBN Boxing. We also propose a model based on boxing

constraints where FFN is constrained by DBN output. The mathematical model (FFN-

DBN) based on training samples D is

(1.4)
min

θL,θDBN

1

|D|

|D|∑
i=1

[
L(θL; y(i), h(θDBN ;x(i)))

]
s.t. |θDBN − θ∗DBN | ≤ δ.

Feed-forward Network with DBN Classification Boxing. Given training samples D this

model (FFN-DBNOPT), which is a mixture of (1.3) and (1.4), reads

min
θL,θDBN

1

|D|

|D|∑
i=1

[
L(θL; y(i), h(θDBN ;x(i)))

]
s.t. |θDBN − θ∗DBNOPT | ≤ δ.

Bilevel Model. We also apply bilevel programming to the two-phase training method.

This model searches optimal solutions to minimize the loss function of the classifier only

where DBN objective solutions are optimal. Possible candidates for optimal solutions of

the first level objective function are optimal solutions of the second level objective function.
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This model (BL) reads

min
θL,θ

∗
DBN

Ey,x[L(θL; y, h(θ∗DBN ; x))]

s.t. θ∗DBN = arg min
θDBN

Ex[−log p(x; θDBN)]

and empirically based on training samples,

min
θL,θ

∗
DBN

1

|D|

|D|∑
i=1

[
L(θL; y(i), h(θ∗DBN ;x(i)))

]
s.t. θ∗DBN = arg min

θDBN

1

|D|

|D|∑
i=1

[
−log p(x(i); θDBN)

]
.

One of the solution approaches to bilevel programming is to apply Karush–Kuhn–Tucker

(KKT) conditions to the lower level problem. After applying KKT to the lower level, we

obtain

min
θL,θ

∗
DBN

Ey,x[L(θL; y, h(θ∗DBN ; x))]

s.t. ∇θDBNEx[−log p(x; θDBN)|θ∗DBN ] = 0.

Furthermore, we transform this constrained problem to an unconstrained problem with a

quadratic penalty function:

(1.5) min
θL,θ

∗
DBN

Ey,x[L(θL; y, h(θ∗DBN ; x))] +
µ

2
||∇θDBNEx[−log p(x; θDBN)]|θ∗DBN ||

2

where µ is a hyperparameter. The gradient of the objective function is derived in the

appendix.
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1.5. Computational Study

To evaluate the proposed models classification tasks on three datasets are conducted:

the KDD’99 network intrusion dataset (NI)1, the isolated letter speech recognition dataset

(ISOLET) 2, a collection of newswire articles (Reuters)3, and the MNIST hand-written

images 4. The experimental results of the proposed models on these datasets are compared

to the results of the two-phase method.

In FFNs, we use the sigmoid function in the hidden layers and the softmax function

in the output layer, and negative log-likelihood is used as the loss function. We select

the hyperparameters based on the settings used in Wang and Klabjan (2017), which are

fine-tuned. We first implement the two-phase method with DBNs of 1, 2, 3 and 4 hidden

layers to find the best configuration for each dataset, and then apply the best configuration

to the proposed models.

Implementations are done in Theano using GeForce GTX TITAN X. We use the

mini-batch gradient descent method to solve the optimization problems for each model. To

calculate the gradients of each objective function of the models Theano’s built-in functions,

‘theano.tensor.grad,’ is used. We denote the two-phase approach as 2-Phase.

1.5.1. Network Intrusion

The classification task on NI is to distinguish between normal and bad connections given

the related network connection information. The preprocessed dataset consists of 41 input

features and 5 classes, and 4,898,431 examples for training and 311,029 examples for testing.

1kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
2archive.ics.uci.edu/ml/datasets/ISOLET
3archive.ics.uci.edu/ml/datasets/reuters-21578+text+categorization+collection
4yann.lecun.com/exdb/mnist/

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://archive.ics.uci.edu/ml/datasets/ISOLET
https://archive.ics.uci.edu/ml/datasets/reuters-21578+text+categorization+collection
http://yann.lecun.com/exdb/mnist/
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The experiments are conducted on 20%, 30%, and 40% subsets of the whole training set,

which are obtained by stratified random sampling.We use the following hyperparameters.

Each layer has 15 hidden units and is trained for 100 epochs with learning rate 0.01 during

pre-training, and the whole network is trained for 500 epochs with learning rate 0.1 during

fine-tuning. The mini-batch size is 1,000, and ρ in the DBN+Loss and µ in the BL model

are diminishing during epochs.

On NI the best structure of 2-Phase is 41-15-15-5 for all three datasets, and so we

compare it to the proposed models with the same sized networks. We compute the means

of the classification errors and their standard deviations for each model averaged over 5

random runs. In each table, we stress in bold the best three models with ties broken by

standard deviation. Table 1.1 shows the experimental results of the proposed models with

the same network as the best 2-Phase. BL performs the best in all datasets, achieving

the lowest mean classification error without the pre-training step. The difference in the

classification error between our best model, BL, and 2-Phase is statistically significant as

the p-values are 0.03, 0.01, and 0.03 for 20%, 30%, and 40% datasets, respectively. This

shows that the model being trained concurrently for unsupervised and supervised purpose

can achieve better accuracy than the two-phase method. Furthermore, both EL-DBNOPT

and FFN-DBNOPT yield similar to, or lower mean error rates than 2-Phase in all of the

three subsets.

1.5.2. ISOLET

The classification on ISOLET is to predict which letter-name is spoken among the 26

English alphabets given 617 input features of the related signal processing information.
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Table 1.1. Classification errors with respect to the best DBN structure on NI

20% dataset 30% dataset 40% dataset
Mean Sd. Mean Sd. Mean Sd.

2-Phase 8.14% 0.12% 8.18% 0.12% 8.06% 0.02%
DBN+Loss 8.07% 0.06% 8.13% 0.09% 8.05% 0.05%
EL-DBN 8.30% 0.09% 8.27% 0.07% 8.29% 0.14%
EL-DBNOPT 8.14% 0.14% 8.15% 0.15% 8.08% 0.10%
FFN-DBN 8.17% 0.09% 8.20% 0.08% 8.07% 0.11%
FFN-DBNOPT 8.07% 0.12% 8.12% 0.11% 7.95% 0.11%
BL 7.93% 0.09% 7.90% 0.11% 7.89% 0.10%

The dataset consists of 5,600 for training, 638 for validation, and 1,559 samples for testing.

We use the following hyperparameters. Each layer has 1,000 hidden units and is trained

for 100 epochs with learning rate 0.005 during pre-training, and the whole network is

trained for 300 epochs with learning rate 0.1 during fine-tuning. The mini-batch size is 20,

and ρ in the DBN+Loss and µ in the BL model are diminishing during epochs.

In this experiment the shallow network performs better than the deep network; 617-

1000-26 is the best structure for 2-Phase. One possible reason for this is that the training

set does not include many samples. EL models perform well on this dataset. EL-DBNOPT

achieves the best mean classification error, tied with FFN-DBNOPT. With the same

training effort, EL-DBN achieves a lower mean classification error and smaller standard

deviation than the two-phase method, 2-Phase. Considering a relatively small sample size

of ISOLET, EL shows that it yields better accuracy on unseen data as it minimizes the

expected loss, i.e., it generalizes better. In this data set, p-value is 0.07 for the difference

in the classification error between our best model, FFN-DBNOPT, and 2-Phase.
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Table 1.2. Classification errors with respect to the best DBN structure for
ISOLET.

Mean Sd.
2-Phase 3.94% 0.22%
DBN+Loss 4.38% 0.20%
EL-DBN 3.91% 0.18%
EL-DBNOPT 3.75% 0.14%
FFN-DBN 3.94% 0.19%
FFN-DBNOPT 3.75% 0.13%
BL 4.43% 0.18%

1.5.3. Reuters

Reuters is a public dataset of newswire articles, used to predict 52 news categories

given 2,000 input features of the most common words. The dataset consists of 6,532

samples for training and validation, and 2,568 samples for testing. We use the following

hyperparameters. Each layer has 500 hidden units and is trained for 100 epochs with

learning rate 0.1 during pre-training, and the whole network is trained for 500 epochs with

learning rate 0.1 during fine-tuning. The mini-batch size is 50, and ρ in the DBN+Loss

and µ in the BL model are decreased during epochs.

On this dataset, 2000-500-52 is the best structure for 2-Phase; the shallow network

performs better than the deep network. As we pointed out in ISOLET, a small training

set is one possible reason for this. As Table 1.3 shows, FFN-DBNOPT achieves the best

mean classification error. It is statistically significant as p-value is 0.01 for the difference

in the classification error between our best model, FFN-DBNOPT, and 2-Phase. We find

that our combined models, BL and DBN+Loss, obtain better test accuracy than 2-Phase.
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Table 1.3. Classification errors with respect to the best DBN structure for
Reuters.

Mean Sd.
2-Phase 10.09% 0.16%
DBN+Loss 9.77% 0.15%
EL-DBN 15.83% 0.12%
EL-DBNOPT 9.65% 0.18%
FFN-DBN 10.09% 0.13%
FFN-DBNOPT 9.60% 0.25%
BL 9.79% 0.18%

1.5.4. MNIST

The task on the MNIST is to classify ten digits from 0 to 9 given by 28 × 28 pixel

hand-written images. The dataset is divided in 60,000 samples for training and validation,

and 10,000 samples for testing. We use the following hyperparameters. Each layer has

1,000 hidden units and is trained for 100 epochs with learning rate 0.01 during pre-training,

and the whole network is trained for 300 epochs with learning rate 0.1 during fine-tuning.

The mini-batch size is 10, and ρ in the DBN+Loss and µ in the BL model are diminishing

during epochs. Note that DBN+Loss and BL do not require pre-training.

2-Phase with three-hidden layers of size, 784-1000-1000-1000-10, is the best. In Table

1.4, the best mean test error rate is achieved by FFN-DBNOPT, 1.32%. Furthermore, the

models with the DBN classification constraints, EL-DBNOPT and FFN-DBNOPT, perform

similar to, or better than the two-phase method. This shows that DBN classification

boxing constraints regularize the model parameters by keeping a good representation of

input.
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Table 1.4. Classification errors with respect to the best DBN structure for
the MNIST.

Mean Sd.
2-Phase 1.33% 0.03%
DBN+Loss 1.84% 0.14%
EL-DBN 1.46% 0.05%
EL-DBNOPT 1.33% 0.04%
FFN-DBN 1.34% 0.04%
FFN-DBNOPT 1.32% 0.03%
BL 1.85% 0.07%

1.5.5. Ablation Study

We conduct an ablation study in order to understand various aspects of our models. First,

we study which part of our models is the most influential in classification accuracy. Second,

we study how the size of training data affects the performance of our models.

1.5.5.1. Hybrid 2-Phase and Combined Model. In this ablation study, we examine

which part of our networks contributes the most to classification accuracy if some parts

of the network are trained based on 2-Phase and the other part by a combined model.

We conduct ablation experiments by freezing layer-wise. For a network with three hidden

layers, one case is to freeze a hidden layer with weights from 2-Phase while the rest is

trained by a combined model; and the other case is to freeze any two hidden layers by

2-Phase weights and the rest is trained by a combined model. In this study, we use MNIST

and NI (40% training set) since their best model structure has more than two hidden

layers.

Figure 1.1 shows classification errors on the test set for MNIST and NI. In both

datasets, we find that freezing the top hidden layer obtains higher classification accuracy

than freezing the lower layers. We conclude that lower hidden layers in our networks
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contribute to performance more than higher layers. In addition, based on the MNIST

experiment, we find that freezing two hidden layers yields worse results than freezing one

layer. This further affects that the combined model is beneficial. In this setting, we also

observe that the lowest hidden layer contributes the most to classification accuracy since

freezing the top two hidden layers returns a higher accuracy than freezing the other two

layers.

(a) MNIST (b) NI

Figure 1.1. Experimental results for hybrid 2-Phase and combined model

1.5.5.2. Impact of Samples. We also conduct an ablation study to understand if our

models are affected by the size of training samples. We select the NI dataset as it has the

largest set of training samples, and conduct the ablation study on our best model, BL, for

this dataset. In order to carry out a meaningful ablation study with respect to the effect

of samples on BL, we formulate a model by combining BL and 2-Phase and training on

all samples, but one portion of samples is subject to BL while the remaining samples use
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2-Phase. Formally, given training dataset D = S ∪ S̄, our ablation model reads

min
1

|S|
∑
i∈|S|

J i
BL +

1

|S̄|
∑
i∈|S̄|

Li2-Phase

where JBL denotes the loss function of BL as defined in (1.5), and L2-Phase denotes the loss

function of 2-Phase. Model weights are shared by both models. We use the same setting of

hyperparameters as in Section 1.5.1. We conduct experiments on different sizes of S and

S̄, and each experiment uses five random runs to create each S by sampling from training

set. Figure 1.2 shows test accuracy on different sizes of S. Note that |S||D| = 0 corresponds

to pure 2-Phase while |S|
|D| = 1 means using solely BL on all samples. We observe that

as we increase the size of S, the classification error on test decreases. In addition, we

find that test error drops sharply once the BL is actually introduced (ratio = 0.2). We

conclude that the impact of BL is very pronounced. Even if BL is used only a small

fraction of samples (while the remaining samples are treated by 2-Phase), it improves the

performance significantly.

From both studies, we conclude that using a combined model only a subset of a network

or samples has a significant benefit.

1.6. Conclusion

DBN+Loss performs better than two-phase training 2-Phase in two instance. Aggre-

gating two unsupervised and supervised objectives is effective. Second, the models with

DBN boxing, EL-DBN and FFN-DBN, do not perform better than 2-Phase in almost all

datasets. Regularizing the model parameters with unsupervised learning is not so effective

in solving a supervised learning problem. Third, the models with DBN classification
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Figure 1.2. The impact of samples on NI

boxing, EL-DBNOPT and FFN-DBNOPT, perform better than 2-Phase in almost all of

the experiments. FFN-DBNOPT is consistently one of the best three performers in all

instances. This shows that classification accuracy can be improved by regularizing the

model parameters with the values trained for unsupervised and supervised purpose. One

drawback of this approach is that one more training phase to the two-phase approach is

necessary. Last, BL shows that one-step training can achieve a better performance than

two-phase training.
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CHAPTER 2

Combined Convolutional and Recurrent Neural Networks for

Hierarchical Classification of Images

2.1. Introduction

In computer vision, allocating labels to images is a fundamental problem, and it serves

as a building block for various image recognition tasks such as image localization, object

detection, and scene parsing (Hu et al., 2016). Over the past years, deep learning methods

have made tremendous progress in these classification tasks. Especially, many approaches

based on convolutional neural networks (CNNs) made significant advances in large-scale

image classification (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; He et al.,

2016; Hu et al., 2018; Woo et al., 2018). It is common to assume that separability of

object categories is pronounced (Yan et al., 2015), and a multi-class or binary classifier is

selected to label images (Hu et al., 2016).

Object categories in some settings are related to each other by means of a taxonomy.

This phenomenon is typically present in datasets with a large number of categories (Yan

et al., 2015). The categories of images can be represented by a tree based on two types

of hierarchies: 1) Has-A hierarchy is present when each parent node physically contains

some parts of each child node, and 2) Is-A hierarchy is exhibited when a parent node

semantically contains child nodes, i.e. a child object is a type of the parent object. Models

that can exploit details of objects lead to better classification performance. In some object
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Figure 2.1. An example of a class tree

classification tasks, objects contain detailed objects, and reliably classifying high level

objects lead to classifying detailed objects correctly. In such settings, we can build a Has-A

hierarchical tree of categories, and models that can capture hierarchical relationships are

required. Consider an investment or commercial real estate firm relying on satellite images

of malls to, for example, gauge investments. We have objects of ‘Booth,’ ‘Cars,’ and ‘Gas

station’ contained in images of parking lots. These categories have Has-A relationships,

and a hierarchical tree of classes can be built as shown in Figure 2.1. To classify an image

of ‘Booth,’ we need a model to find a path of ‘Mall’-‘Parking lot’-‘Booth.’ In this work, we

consider the classification problem where we are given a tree of classes, and for an image

we need to assign ‘a path’ in the tree.

We propose hierarchical classification models for images, named deep hierarchical

neural networks, that extract hierarchical representations of images from a CNN and, by

using a recurrent neural network (RNN), find a label path in the hierarchical class tree

to predict labels of an image. Recent studies reveal that CNN features learn hierarchical

representations of images at different layers representing an image ranging from detailed,

part-level, to abstract, object-level (Yosinski et al., 2015). Part-level representations are
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typically captured at lower layers of the CNN, and object-level representations are learned

at higher layers. Because of this insight, it is conceivable to associate the different level

feature maps with the different depth layers in the hierarchical label tree. High level

features should be able to classify top layers in the tree while low level features focusing

on details are suitable to predict classes in the bottom layers of the tree. It is natural

to view a path in the tree as a sequence and then to model it via an RNN. For these

reasons, we combine an RNN or sequence-to-sequence network (S2S) to classify a target

sequence with a CNN. As a result we predict target paths rather than a single label. The

proposed networks consist of three parts: 1) a CNN takes a raw image as input, and

produces convolutional features at each layer, 2) the features at different layers of the CNN

are converted to a vector of fixed dimension, and 3) an RNN or S2S takes the converted

CNN features as input, and outputs predictions at each level of the label tree. Figure 2.2

presents the structure of the proposed models.

To facilitate training of our compound model, we apply an alternating training scheme

between the CNN and RNN sub models. Under this scheme, we alternate updating

one while keeping the other frozen in the beginning of training and then unfreeze the

entire network in the final phase of training. Such a scheme is needed because each

sub model pursues different learning purposes in that the CNN learns representations of

images and the RNN learns sequential behaviors of the classes. Alternating prevents both

learning tasks from diverging in the early stage of training, consequently leading to better

classification performance. In addition, different methods such as a linear, convolutional,

and pooling operation are used to coerce the varying dimensions of the CNN features to
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the fixed dimension vector the RNN takes as input. The pooling retains much of the spatial

information of the trained CNN features and avoids additional trainable parameters.

In our study, we use a real world, proprietary dataset of images from the insurance

industry and a public dataset, Open Images (Krasin et al., 2017). Categories of both

datasets have mainly Has-A relationships. We compare our models to state-of-the-art

CNNs, and find that our models perform better. We conclude that our models can learn a

hierarchical tree with both fixed- and variable-length target paths.

The main contributions of this work are as follows.

(1) We suggest a new structure of deep neural networks for hierarchical classification

of images. Our models extract features from different CNN layers, and feed them

to an RNN or S2S to learn a hierarchical path of categories. Our models can

learn both fixed- and variable-length target paths; CNN-RNN are for fixed and

CNN-S2S are for variable path lengths.

(2) We apply residual learning to the RNN part in order to facilitate training of our

compound model and improve generalization of the model.

The rest of this chapter is organized as follows. In Section 2.2, the related literature

is discussed. Section 2.3 describes the proposed models, and Section 2.4 provides a

computational study including experimental details and analysis of the experimental

results. Conclusions are given in Section 3.6.

2.2. Related Work

Hierarchical structures have been studied for image recognition by using standard

computer vision (Tousch et al., 2012). Related literature is categorized based on how a
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Figure 2.2. The model

hierarchy is constructed (Yan et al., 2015); a hierarchy is predefined in Marszalek and

Schmid (2007); Deng et al. (2012); Verma et al. (2012); Jia et al. (2013), and it is trained

by top-down and bottom-up methods in Marszalek and Schmid (2008); Sivic et al. (2008);

Li et al. (2010); Deng et al. (2011); Salakhutdinov et al. (2011); Bannour and Hudelot

(2012); Liu et al. (2013).
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In the past, researchers adapted CNNs to hierarchical classification. Srivastava and

Salakhutdinov (2013) introduce CNNs to hierarchical classification. Their proposed method

improves the performance of minority classes over standard CNN by incorporating priors

imposed by a tree structure of the classes. Xiao et al. (2014) suggest CNN based hierarchical

networks; each branch model predicts a super-class, and leaf models return final predictions.

Yan et al. (2015) suggest a hierarchical deep neural net that embeds CNNs into a two-level

hierarchy of easy and difficult classes where the hierarchy is built automatically. The

model uses coarse category classifiers for easy classes, and fine category classifiers for

difficult classes. Schwing and Urtasun (2015) propose a method for hierarchical semantic

segmentation. They combine a Markov random field model that is used for segmentation

with a CNN to extract image representations. All these works rely on using CNNs in their

models to obtain a better feature learner for images while we approach the problem from

the perspective of improving prediction of target label paths by combining an RNN or

S2S with CNNs.

Approaches combining CNNs and RNNs have been studied to solve different image

classification tasks such as scene parsing, object detection, image captioning, etc. Such

CNN-RNN frameworks use the final feature map from the CNN and use it as an input

to RNN (possibly combined with other features such as caption). Such a network takes

advantages of the CNN’s representational feature learning over images and the RNN’s high

performance in capturing sequential information. Deng et al. (2016) propose an RNN that

trains a graph structure for recognition of group activities. Stewart et al. (2016) propose a

model for object detection. The proposed model combines a CNN that encodes an image

into features with an LSTM that decodes the encoded information into a set of people
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detections. In Liang and Hu (2015), a CNN-RNN model for object recognition is suggested

by incorporating recurrent connections into each convolutional layer. It improves capturing

of context information, which is important for object recognition. Wang et al. (2016)

propose a CNN-RNN framework for multi-label image classification. The proposed model

produces class probabilities by concatenating CNN features and outputs of an RNN that

takes a label vector as input. Shi et al. (2015) propose a convolutional Long Short-Term

Memory (ConvLSTM) in which convolutional operations are embedded in every LSTM

layer. They show that ConvLSTM captures spatiotemporal correlations. Guo et al. (2018)

suggest several models to classify coarse- and fine-level categories of a semantic hierarchy;

one of their models combines CNN and RNN so that top CNN features are input to RNN.

Our approach is different from these methods since we exploit CNN features at each layer

rather than only at the top layer. ConvLSTM overlays an RNN to each layer however

its purpose is completely different; it does not focus on hierarchical classes but rather on

sequences of images.

Recent papers suggest methods that consider CNN features from different layers, not

only from the top layer, for hierarchical classification. Zhu and Bain (2017) suggest

methods that take features at different middle layers of a CNN for coarse classes, and those

at the top CNN layer for fine classes. Their network does not correlate the extracted CNN

features to the final prediction; the extracted CNN features are trained independently

without considering them as a sequence. Wehrmann et al. (2018) also propose a method

considering features from middle layers of deep neural networks. They introduced an RNN

to fit a hierarchical tree by inputting the extracted features of a feed forward network.

Their network feeds raw inputs from each layer to RNN (which is possible if all layers
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have the same number of neurons; not the case in CNNs) and its performance on image

recognition tasks based on CNN is not studied. They also do not introduce the notion

of residual arcs which we find to be of great importance and they do not consider a S2S

setting which is required if paths in the tree are of different length.

2.3. Proposed Models

In this section, we describe the proposed models that predict target paths in a hierar-

chical class tree. Our models extract hierarchical features from a CNN taking an image

as input, and feed the extracted features to an RNN if tree paths have the same lengths.

The RNN part is replaced by S2S if tree paths have variable lengths. For this reason, we

present two models, CNN-RNN and CNN-S2S.

2.3.1. Fixed Path Length Tree Model: CNN-RNN

We propose a hierarchical fixed path length (FPL) classification model to fit a class tree

that has target paths with a fixed-length. To this end, we are given a rooted tree R where

each node corresponds to a class. We assume that each leaf node is of the same depth

T + 1. The root node corresponds to an artificial class. A training sample consists of

(x, y) where x is an image and y is a path from the root node to a leaf in R. By our

assumption on R, every y has the sample number T of labels. In this model, an RNN is

combined with a CNN. Our model starts with a CNN, a feature learner, that extracts

hierarchical features representing part-level and object-level of images. A CNN is used

since CNN features learn spatial representations of images through its local-connectivity

of the networks, i.e. the features are learned locally; and the extracted features at different
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layers have hierarchical relations (Zeiler and Fergus, 2014; Yosinski et al., 2015). In order

to feed features from different CNN layers to the RNN, a conversion process is required.

The dimensions of CNN features at each layer are different for combinations of convolution

and pooling layers. However, RNN input dimensions at each step should be the same. To

solve this we introduce a process that converts variable dimension CNN features to a fixed

dimension vector. As we view a path in the tree as a sequence, we model it via an RNN

(Graves et al., 2009). Taking converted CNN features as input, the RNN is trained to

produce predictions of the target path y in the class tree.

Formally, a network of L convolution-pooling layers is defined as

al = f (al−1;φl) for l = 1, 2, . . . , L

where a0 is input image x, φl are model parameters at layer l, and f is a convolution-pooling

function. Note that al ∈ RDl×Wl×Hl ; where Dl, Wl, and, Hl denote depth, width, and

height at the lth-layer. The general form of the conversion operation of CNN features, as,

fed to the RNN is defined as

ut =
1

|St|
∑
s∈St

g(as;αs) for t = 1, 2, . . . , T

where St ⊆ {1, . . . , L} is a subset of the CNN layers at each step t of the RNN such

that the subsets are “increasing;” i.e. for every 1 ≤ n < T we have if i ∈ Sn, j ∈ Sn+1,

then i < j. Also, g is a function of converting CNN outputs into RNN inputs, i.e.

g : RDs×Ws×Hs × Rνs → Rp where p is a dimension of the RNN input at each step and

αs ∈ Rνs are possible trainable model parameters. Conversion methods are discussed in

Section 2.3.3. The RNN takes converted fixed dimension CNN features ut ∈ Rp as inputs,
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and predicts labels for each layer of the class tree. The RNN is governed by

(2.1)
ht = rh (ut, ht−1; θh), and

ot = ro (ht; θo) for t = 1, 2, . . . , T

where h0 is an initial hidden state, rh and ro are the state transition and output functions,

and θh and θo are trainable parameters.

The loss function reads

T∑
t=1

wt · CE(yt, softmax(ot))

where wt represents weight for level t in R and CE denotes the cross entropy. The aim is

for ot to predict a node in R at level t. By definition of RNN all ot have to have the same

dimension. However, the number of classes at each level in R varies. For this reason, we

have ot ∈ RN with N + 1 being the total number of classes (nodes) in R. Label vector yt

is then the one-hot encoding with respect to an N -dimensional vector. In inference we

employ beam search to find the most likely predicted path in R.

We improve the FPL model by applying residual learning to the RNN part of the

model. Residual learning for deep networks is introduced by He et al. (2016). We connect

the residual arc between input ut (converted CNN features) and output ot of the RNN in

order to prevent the original CNN features from losing much information while the RNN

is trained. Outputs of the RNN with residual learning are calculated by

oresidual
t = ut + z (ot; ξ) for t = 1, 2, . . . , T
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where z is a linear mapping function to align dimensions of ut and ot with ξ being trainable

parameters. In the loss function ot is then replaced by oresidual
t .

2.3.2. General Tree Model: CNN-S2S

In this section, we propose CNN-S2S to fit a general class tree that has target paths with

variable lengths from the root to the final class node. In this model, the assumption of

a fixed-length of class path in the FPL model is relaxed, and the RNN part of the FPL

model is replaced by an S2S. Traditional RNNs are limited to solving problems where

input and target sequences are of the same length. S2S introduces an encoder to transform

the input sequence to a fixed-dimension representation, and a decoder to process this

fixed-length representation to a variable-length sequence (Cho et al., 2014). We propose a

model combining a CNN with an S2S that can deal with target label paths of variable

lengths. Let now R be a general rooted tree. Label path y is any path from the root to a

node (not necessarily a leaf) in R. We denote by |y| the number of nodes in y. Similar to

the FPL model, the general tree model feeds fixed dimension CNN features to S2S, and

predicts labels as a vector with the same length as the number of classes in y.

Given the converted CNN features ut as defined in Section 2.3.1 and the encoder

presented by (2.1), the decoder reads

h̄t = r̄h (ōt, h̄t−1; θ̄h),

ōt = r̄o (h̄t; θ̄o)

for t = 1, 2, . . . , |y|, and h̄0 = hT . The loss function defined in the FPL model is used in

the general tree model, and beam search is again used in inference.
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2.3.3. Conversion Operation

In our models, the conversion operation is the operation of connecting the CNN and the

RNN. This operation is needed in order to feed extracted CNN features that have varying

dimensions to the RNN that requires the one fixed input dimension. We design conversion

operations not only to align related dimensionality, but also to retain much information of

the learned CNN representations.

We first describe a linear conversion that converts CNN features directly through the

n-mode product of a tensor. This conversion is a series of linear transformations to modify

dimensionality of the CNN features that requires to train additional model weights. This

operator was previously proposed in Zhu and Bain (2017); Wehrmann et al. (2018). The

linear conversion, g(as;αs), is defined as

g(as;αs) = vec(as ×1 U
1
s ×2 U

2
s ×3 U

3
s )

s ∈ St, t = 1, 2, . . . , T

where U1
s ∈ Rm×Ds , U2

s ∈ Rn×Ws , and U3
s ∈ Rv×Hs are trainable parameter matrices at

CNN layer s ∈ St (αs = (U1
s , U

2
s , U

3
s )). Here ×k is the k-mode product of a tensor by a

matrix and vec is a flattening operation. In this conversion, a desired RNN or S2S input

dimension, p, is determined by m · n · v = p.

We also propose conversion methods by using convolutional and pooling operations.

Convolutional conversion retains spatial information of the CNN features and aligns related

dimensions efficiently. However, we have additional trainable model weights similar to the
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linear conversion. The convolutional conversion, g(as;αs), is defined as

g(as;αs) = vec(Conv(as;αs)) s ∈ St, t = 1, 2, . . . , T

where αs are trainable parameters for convolution operation Conv. Note that the filter

size, stride, and depth of Conv have to be selected in such a way that the resulting vector

is in Rp. The details are provided in the appendix.

The pooling conversion does not require to train additional model weights, at the same

time it keeps spatial information of the original CNN features. The pooling conversion,

g(as;αs), is defined as

g(as;αs) = vec(Pool(as)×1 U
1
s ×2 U

2
s ×3 U

3
s )

s ∈ St, t = 1, 2, . . . , T

where Pool is the pooling operation. The details are provided in the appendix.

2.4. Computational Study

In this section we present two cases: one based on a proprietary dataset and the other

one based on a public dataset. The models have been implemented using Tensorflow. A

single GPU card has been used in every run. In the experiments, we compare our models to

state-of-the-art CNNs: CNN architectures by Visual Geometry Group (VGG) (Simonyan

and Zisserman, 2014), Residual neural networks (Res) (He et al., 2016), Squeeze-and-

Excitation networks (SE) (Hu et al., 2018), and Convolutional Block Attention Module

(CBAM) (Woo et al., 2018). For the RNN and S2S parts of our networks a bidirectional

RNN with LSTM cells is applied.
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2.4.1. Real World Data

We conduct experiments on a real world proprietary dataset containing approximately

180,000 images. We select validation and test sets with approximately 36,000 images each.

The classes have mainly Has-A hierarchical relationships with 18 classes and the tree of

depth four in the FPL tree, and 15 classes (nodes in the tree) and the tree of maximal

depth four in the general tree. The general tree setting has target paths with lengths

ranging from two to four.

Preprocessing of raw data and hyperparameters are determined based on Simonyan

and Zisserman (2014); He et al. (2016). Original images are resized with its shorter side

sampled in [256, 512] and then cropped to 224×224. Hyperparameters are set as follows:

batch size is set to 32, input dimensions of the RNN converted from CNN features range

from 512 to 4,096, the dimensionality of the RNN hidden states range from 512 to 1,024,

the FPL model has three RNN layers, and the general tree model has one S2S layer.

The CNN part is initialized with the weights trained on ImageNet. Orthogonal random

initialization is adapted for the RNN and S2S weights. Due to low memory requirements,

we use the pooling conversion for the real dataset since it it the only option on this dataset.

The conversion operations are composed later on the public dataset where it is established

that pooling is best.

We apply an alternating training scheme for the CNN and RNN parts; i.e. we update

one while keeping the other frozen and flip in the beginning of training, and then in a

later phase unfreeze the entire network. Alternating prevents divergence during training of

the CNN and the RNN part as each has a distinct purpose; the CNN learns hierarchical

features of images, and the RNN learns hierarchical trees of categories. In addition, the
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Table 2.1. Test accuracies of the FPL model on real data

Method
Accuracy (%)
Path Node

VGG-16 64.0 71.3
VGG-RNN 59.9 77.3
VGG-RNN-Alt 61.7 78.1
VGG-RNN-Alt-Resi 65.3 80.5
Res-50 62.1 68.8
Res-RNN 63.4 78.9
Res-RNN-Alt 62.4 77.0
Res-RNN-Alt-Resi 64.0 78.4

quality of weight initializations is uneven between the CNN and the RNN as the CNN

starts with high-quality pretrained weights from a large-scale dataset, ImageNet, while the

RNN starts with random weights. For this reason, in our training we unfreeze the RNN

first in the alternating scheme. These settings are applied to VGG-16 and Res-50.

To evaluate performance of our models, two metrics are compared. For path accuracy

we count a prediction correct if the entire predicted path matches all of the labels in the

ground truth while for node accuracy we count how many nodes in the target path are

correct in the predicted path. Node accuracy captures how accurately predictions fit the

ground truth at different levels. Remark 1: Because as simple CNN classifiers, VGG-16

and Res-50, can predict only the final node of a path and for compatibility of the metric

we imply that if the final node is correctly predicted, all its predecessors are correctly

predicted as well.

In Tables 2.1 and 2.2 accuracies on the test set are presented. CNN models are

denoted by Res-50 and VGG-16. Our FPL and general tree models are denoted by (CNN

structure)-(RNN structure)-(alternating training scheme)-(residual learning). Training

takes around six days for 30 epochs.
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Table 2.2. Test accuracies of the general tree model on real data

Method
Accuracy (%)
Path Node

VGG-16 72.8 87.2
VGG-S2S 73.7 88.1
VGG-S2S-Alt 72.3 87.2
Res-50 71.5 86.4
Res-S2S 74.1 88.0
Res-S2S-Alt 68.3 85.0

FPL model: Table 2.1 presents the experimental results of the FPL model. Residual

variants with alternating training perform best on both Res and VGG. This shows that

both CNN and RNN of our model successfully play their specific roles; the CNN learns

hierarchical features of images, and the RNN correctly predicts target paths. Furthermore,

residual arcs and alternating training help improving test accuracy. Our models with Res

perform better than Res-50 on both path and node accuracies. However, for VGG our

non-residual variants VGG-RNN and VGG-RNN-Alt perform worse on path accuracy

than VGG-16 even though our models show higher node accuracy. This can be interpreted

as our models solving more difficult problems than CNN regarding path accuracy (see

Remark 1). Explicitly predicting all nodes along a path in a tree is more difficult than the

path correctness implicitly assumed as soon as only the final node is correctly predicted.

General tree model: Table 2.2 shows experimental results of the general tree model.

Our model without alternating training performs better on both path and node accuracies

than CNNs. This proves that our models successfully extract hierarchical features of

images and learns a label path with variable lengths of target paths. However, alternating

training in the experiments did not help to improve performance of our models. This can
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be interpreted as S2S with orthogonal initialization being good enough to avoid diverging

in training.

2.4.2. Public Data: Open Images

Open Images V4 is a public dataset of 9 million images annotated with image-level labels,

object bounding boxes and visual relationships (Krasin et al., 2017). We use a subset

of the original dataset for hierarchical classification. The subset contains approximately

950,000 images with 2.4 million labels for training and 36,000 images with 127,000 labels

for test; it is a multi-label dataset. Since the labels reside in different levels of the original

class hierarchy, we build a class tree of depth four by concatenating subtrees of the

original hierarchy. There are 30 classes in the tree with the classes having mainly Has-A

relationships. Figure 2.3 presents a subtree of the tree with the full tree presented in the

appendix. We follow the same preprocessing steps of raw images and model architectures

as those used in Section 2.4.1.

Figure 2.3. A part of the tree of Open Images

To evaluate multi-label classification models, scores computed by precision and recall

are typically considered such as the F1 score and area under precision-recall curve (Vens

et al., 2008; Bi and Kwok, 2011; Zhang and Zhou, 2014). In this study, we select the F1
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score as our evaluation metric that computes the harmonic average of the precision and

recall.

To solve the multi-label classification problem which in our case corresponds to multiple

paths in the tree for a single sample, we select the sigmoid function at the output layer of

CNNs and our models rather than the softmax function. The predictions are selected as

those with the logit value above a threshold. A path is selected if all logits of the nodes in

the path are above the threshold. The threshold is selected so as to maximize the F1 score

on the validation dataset. It is then used on the test dataset. In the same way as in the

real data experiments, we calculate the path and node F1 scores. To provide more reliable

results, we compute the means of the test F1 scores and their standard deviations for each

model averaged over 3 random runs. Each training takes around four days for 15 epochs.

Table 2.3 presents the test F1 scores of the general tree model (FPL does not apply here

since the paths have different lengths). VGG-16, Res-50, CBAM-Res-50, and SE-Res-50 are

CNN models. Our general tree models are denoted by (CNN structure)-(RNN structure)-

(alternating training scheme)-(conversion methods). For our models with Linear, Conv,

and Pool, we use 256 and 512 for input and hidden state dimensions of S2S, respectively.

Under this setting all three conversion operations can be executed without a memory

problem. For our models with Pool, we also use larger dimensions of 2048 and 1024 for

input and hidden state of S2S, respectively, since the pooling conversion has lower memory

requirements than others. We stress in bold the best three models in the table. We find

that SE-Res-50 performs best among all CNN models. All of our models based on different

CNN architectures such as VGG, Res, SE, and CBAM perform better on path and node

F1 scores than standard CNN models. The largest improvement over CNN models is made
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Table 2.3. Test F1 scores of general tree on Open Images

Method
Mean F1 score and Sd. (%)

Path Node
VGG-16 68.62 (0.09) 72.29 (0.09)
VGG-S2S-Linear 71.49 (0.10) 74.84 (0.12)
VGG-S2S-Alt-Linear 70.76 (0.06) 73.97 (0.15)
VGG-S2S-Conv 68.61 (0.41) 71.62 (0.51)
VGG-S2S-Alt-Conv 70.70 (0.14) 73.95 (0.06)
VGG-S2S-Pool 71.39 (0.16) 74.76 (0.18)
VGG-S2S-Alt-Pool 71.49 (0.10) 74.84 (0.07)
VGG-S2S-Pool-L 71.93 (0.09) 75.29 (0.07)
VGG-S2S-Alt-Pool-L 71.26 (0.13) 74.58 (0.17)
Res-50 71.15 (0.04) 74.47 (0.07)

Res-S2S-Linear* 72.14 (0.14) 75.46 (0.16)
Res-S2S-Alt-Linear 70.78 (0.09) 73.80 (0.14)
Res-S2S-Conv 70.42 (0.39) 73.55 (0.44)
Res-S2S-Alt-Conv 70.75 (0.15) 73.98 (0.18)
Res-S2S-Pool 71.98 (0.06) 75.40 (0.07)
Res-S2S-Alt-Pool 71.70 (0.06) 74.97 (0.09)

Res-S2S-Pool-L* 72.05 (0.06) 75.43 (0.03)
Res-S2S-Alt-Pool-L 71.66 (0.04) 74.89 (0.05)
SE-Res-50 71.22 (0.10) 74.49 (0.08)

SE-Res-S2S-Linear* 72.05 (0.04) 75.33 (0.08)
SE-Res-S2S-Alt-Linear 69.52 (0.11) 72.45 (0.14)
SE-Res-S2S-Conv 70.49 (0.15) 73.65 (0.14)
SE-Res-S2S-Alt-Conv 70.35 (0.09) 73.51 (0.06)
SE-Res-S2S-Pool 71.79 (0.15) 75.12 (0.16)
SE-Res-S2S-Alt-Pool 71.42 (0.05) 74.73 (0.04)
SE-Res-S2S-Pool-L 71.75 (0.09) 75.07 (0.04)
SE-Res-S2S-Alt-Pool-L 71.07 (0.13) 74.27 (0.18)
CBAM-Res-50 71.17 (0.09) 74.42 (0.04)
CBAM-Res-S2S-Linear 71.71 (0.19) 74.98 (0.19)
CBAM-Res-S2S-Alt-Linear 66.44 (0.43) 68.84 (0.53)
CBAM-Res-S2S-Conv 70.24 (0.07) 73.43 (0.05)
CBAM-Res-S2S-Alt-Conv 72.88 (0.09) 69.82 (0.07)
CBAM-Res-S2S-Pool 71.53 (0.12) 74.82 (0.10)
CBAM-Res-S2S-Alt-Pool 71.29 (0.18) 74.55 (0.11)
CBAM-Res-S2S-Pool-L 71.57 (0.07) 74.89 (0.07)
CBAM-Res-S2S-Alt-Pool-L 71.32 (0.05) 74.55 (0.01)
L denotes models with larger S2S than others.

∗ denotes top three performers in the table.
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by our model VGG-S2S-Pool-L, and the highest F1 score is achieved by Res-S2S-Linear.

This shows that our models fit the multi-label class tree better by extracting CNN features

from images and predicting paths with variable lengths by S2S. Alternating training does

not work for S2S in many cases even though our model with alternating is one of the

best three performers in VGG. As pointed out in real data experiments, the effect of

alternating training can be overshadowed by other factors such as weight initialization.

In almost all cases, pooling conversion performs better than other conversion methods.

This is because pooling at conversion keeps the spatial information of the trained CNN

features. However, convolutional conversion works only in VGG when it is combined with

alternating training. As this requires additional trainable weights, it makes our models

harder to train and consumes additional memory. We find that its usage may be limited

to smaller networks. We also find that models with larger S2S vector sizes perform better

than smaller models when alternating training is not used. Our models feed CNN features

to S2S, and so the input to S2S is a representation of images. Since larger S2S models can

extract more information from images from trained CNN features than smaller models,

the larger models are expected to achieve better results. This perspective is not true

for alternating training even though larger models without alternating perform the best

among models with pooling conversion.

2.5. Conclusion

In this work, we develop a new structure of deep neural networks for hierarchical

classification of images. Combining CNN as a feature learner with RNN or S2S as a

sequence classifier, the proposed models can predict a target path in a hierarchical tree
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of classes. By means of capturing hierarchical representations, the proposed models take

features from different CNN layers, and feed them to RNN or S2S. Depending on the class

tree structure two models are suggested; the FPL model (CNN-RNN) and the general tree

model (CNN-S2S) for a fixed- and variable-length target paths. To expedite training and

improve generalization of the model, we also suggest a CNN-RNN variation that adds

residual arcs to the RNN part. To examine the performance of our models, we conduct

experiments on a proprietary and a public dataset of images. Experimental results show

that our models perform better than state-of-the-art CNNs, VGG, Res, SE, and CBAM.

For CNN-RNN, our models with residual arcs perform best in predicting fixed length paths

for both CNN networks. For CNN-S2S, our models without alternating training perform

the best in almost all cases. For this reason we recommend not to use alternating training

in the S2S case. Considering GPU memory is limited in practice, we recommend to use

pooling conversion as it performs well and has low memory requirements for training.
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CHAPTER 3

A New Framework for Inverse Classification Using Mixed

Integer Programming

3.1. Introduction

Classification is a building block for solving various machine learning tasks such as

customer segmentation, sentimental analysis, and image recognition. Numerous state-of-

the-art classification models such as deep neural networks are developed to achieve high

classification accuracy (Aggarwal et al., 2010; Lash et al., 2017a). In this chapter, we study

an interesting variant of a classification problem, called inverse classification that studies

interpretability of classification models rather than improving classification accuracy. Given

a trained classifier, inverse classification models identify minimal changes of input features

of an instance so that the instance is predicted as a desired class that is different from

its original label (Laugel et al., 2018). It is first introduced as a topic of sensitivity

analysis (Mannino and Koushik, 2000) and then augmented as an interpretability approach

(Barbella et al., 2009). Viewing inverse classification as a utility-based data mining problem

Lash et al. (2017a) argue that it is a subtopic of strategic learning (Boylu et al., 2010).

Inverse classification is also related to a counterfactual explanation in interpretable machine

learning. A counterfactual explanation reveals how an instance should be perturbed to

change its original prediction significantly. By crafting counterfactual instances we can

interpret how a classifier computes individual predictions (Wachter et al., 2018; Molnar,
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2019). Laugel et al. (2018) and Lowd and Meck Lowd and Meek (2005) point out that

inverse classification is related to adversarial learning (Tygar, 2011) that aims to attack a

classifier by applying small perturbations to samples to modify their initial predictions.

Inverse classification and counterfactual explanation study focus on interpretability of

classification models. Meanwhile, adversarial learning mainly focuses on robustness of

associated models. For example, developing a defensive system against adversary attacks

is a study of interest in adversarial learning. Perturbing samples so that they are predicted

as a desired label is a goal to be achieved in all of these areas.

We present a typical setting considered in inverse classification, counterfactual expla-

nations, and adversarial learning. Assume that we have a classifier f(x) : x ∈ X → y ∈ Y

with input x and output y. Our goal is to generate an adversarial sample x̂ that is the

same form as a given sample x, and the adversarial sample is to be predicted as a desired

class that is different from the original label. Especially in adversarial learning, there are

two types of adversarial examples. A non-targeted adversarial example x̂ is generated by

adding small perturbation to x so that x̂ is classified as any class that is not the original

ground truth. A targeted adversarial sample fools a classifier so that it produces a desired

label as f(x̂) = ȳ where ȳ is the desired class determined by an adversary. A Lp norm

of perturbation between adversarial samples and given samples is usually used as a loss

function where p can be 0, 1, 2,∞ (Dong et al., 2018). In some cases, a set of budget

constraints for the perturbation is introduced, and subsequently, not all of candidate

instances can be successfully perturbed as desired. Here, we should optimally spend a

budget on instances so that as many instances as possible can be successfully perturbed
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within the budget. Existing inverse classification and adversarial attack frameworks that

minimize cost of the perturbation do not consider this perspective effectively.

In this chapter, we develop a new framework that can be applied to inverse classi-

fication and counterfactual explanations as well as adversarial learning. We assume to

have a budget constraint on perturbation in input features of samples, and the input

features are continuous. In order to obtain the maximum number of successfully perturbed

samples within a budget, we define an objective function that maximizes the number of

instances to be perturbed, which is different from the existing formulation. For this, a

binary variable to decide which sample to be perturbed is introduced. In addition, we

include a set of constraints that probability of a desired class by a classifier is higher

than the remaining classes by a margin, which guarantees to predict the desired class

as well as some confidence in adversarial attacks. Therefore, the proposed model is a

constrained mixed integer problem. We extend our deterministic mixed integer program-

ming to stochastic programming by assuming some of decision variables follow Bernoulli

or categorical distributions. Consequently, we have chance constraints for budget and

prediction confidence.

In this study, we use a real world proprietary dataset from the insurance industry and a

public dataset on health clinic, MIMIC (Goldberger et al., 2000; Johnson et al., 2016). We

design our solving algorithms based on a gradient method that updates solutions in a better

direction. We first reformulate our constrained problem as unconstrained using Lagrangian

method. Afterward, we design algorithms based on the projected subgradient method.

Subgradients are used to update variables iteratively in non-differentiable functions of

our model, and projection is used to deal with bounds on variables such as Lagrangian
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multipliers. For our chance constraint model, we apply the Gumbel trick to calculate

associated gradients, while avoiding computing them over expectations. We compare

the performance of our algorithms by evaluation metrics such as the number of feasible

samples and the budget spent per sample.

The contributions of this work are as follows.

(1) We introduce a new framework to solve inverse classification using mixed integer

programming. Our framework is designed to achieve the maximal number of

successfully perturbed samples within a budget. As far as we know, this framework

has not been applied to inverse classification in the existing literature.

(2) We design customized algorithms based on gradient methods to solve our problems.

(3) In the computational study, our approach performs well on different budget

scenarios, and we verify the scalability of our algorithms.

The rest of this chapter is organized as follows. In Section 3.2, the related work is

discussed. Section 3.3 describes the proposed models, and algorithms to solve them are

presented in 3.5. Section 3.5 provides a computational study including experimental details

and analysis of the experimental results. Conclusions are given in Section 3.6.

3.2. Related Work

In inverse classification and counterfactual explanation study, literature is categorized

based on the following perspectives; frameworks of formulation such as unconstrained or

constrained problems, and algorithmic mechanisms (Lash et al., 2017a,b). A formulation

framework is related to feasibility and implementablity of perturbed samples, which

categorizes literature as either an unconstrained (Aggarwal et al., 2010; Yang et al., 2012)
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or a constrained problem (Mannino and Koushik, 2000; Barbella et al., 2009; Chi et al.,

2012; Lash et al., 2017a,b; Wachter et al., 2018). Since an unconstrained formulation

does not consider practical constraints such as a budget, it tends to produce unrealistic

perturbation of input features of a sample as for example ‘change your purchase history.’

A constrained formulation provides realistic perturbation, however, we should design

a sophisticated algorithm that deals with constraints. There are three factors to be

considered in the framework; a) changeable or unchangeable features to be perturbed, e.g.

an unchangeable feature could be product purchase history, b) how difficult to change

features such as a feature-specific cost, and c) a limit to the amount of perturbations

over all instances, that is, a budget (Lash et al., 2017a,b). In Barbella et al. (2009), their

recommended perturbation is moderate; however, they do not consider a) which features

are changeable, b) feature specific costs, and c) budget constraints. Mannino and Koushik

(2000) consider b), but do not consider a) and c). Lash et al. (2017a) propose a general

framework that considers a), b), and c); however, a prediction confidence constraint is

not included. Based on algorithms to solve an inverse classification problem, literature is

categorized into two groups; greedy (Mannino and Koushik, 2000; Aggarwal et al., 2010;

Chi et al., 2012; Yang et al., 2012; Lash et al., 2017b) and non-greedy (Barbella et al.,

2009; Lash et al., 2017a). Greedy methods produce adversarial samples relatively fast

but tend to be unrealistic in the real world since they do not necessarily achieve optimal

solutions. Non-greedy methods tend to focus on more moderate objectives so that obtained

adversarial samples are more realistic. In Mannino and Koushik (2000); Aggarwal et al.

(2010); Chi et al. (2012); Yang et al. (2012); Lash et al. (2017b), heuristic methods that

do not use gradients such as local search, hill climbing, and genetic algorithm are used.
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In Lash et al. (2017a), the projected gradient method is adopted as a solving algorithm.

In Barbella et al. (2009), a non-linear solver package, CONOPT3 1, is used to solve a

constrained problem. Our work is different from the aforementioned papers since none

of the existing methods consider maximizing the number of perturbed samples in their

formulation. In addition, we verify our approach on state-of-the-art models, deep neural

networks, as our classifiers. Our framework considers budget and predictive confidence

constraints.

In adversarial learning, recent research mostly focuses on generating adversarial samples

to attack deep learning models since its purpose is to study robustness of the state-of-

the-art classifiers. Most adversarial attacks are targeted against deep nets as they are

currently the winning models in many classification tasks. Several attack algorithms have

been developed in order to generate adversarial images. Szegedy et al. (2013) propose the

following optimization problem and solve it using boxing constrained L-BFGS,

min
x̂

c||x− x̂||22 + J(x̂)

s.t. x̂ ∈ [0, 1]

where J is a loss function of classification toward a desired label such as cross-entropy

and Kullback–Leibler divergence. Goodfellow et al. (2015) propose a method called Fast

Gradient Sign method (FGSM) using sign of gradients, and L∞ is used as a distance

metric for perturbation. It is not guaranteed to produce optimal solutions, but quick to

obtain close adversarial examples. Given an input image x FGSM reads

x̂ = x− ε sign(∇J(x))

1http://www.conopt.com/

http://www.conopt.com/
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where ε is selected to be small. Kurakin et al. (2017) propose an improved FGSM, iterative

gradient sign method (I-FGSM), by taking multiple smaller steps α toward gradient sign

rather than one step of size ε, and its output is clipped by the same size ε. It produces

superior results to FGSM by updating x̂ on each iteration t as

x̂t = x̂t−1 − clipε(α sign(∇J(x̂t−1))

where x̂0 = 0. Recently, Papernot et al. (2016) propose a greedy algorithm to generate

adversarial examples using gradients to compute a Saliency map, called Jacobian-based

Saliency Map Attack (JSMA). However, these threat model algorithms do not consider a

budget constraint that is critical and practical in inverse classification even though they

have a bound on a pixel domain. In addition, our framework is designed to achieve the

maximal number of successfully perturbed instances within a budget.

3.3. Proposed Models

In this section, we present our constrained optimization problem to solve inverse

classification. Our formulation is designed to generate the maximal number of adversarial

examples that are classified as a desired class. In addition, we include a set of budget

constraints on perturbation of input features to make our formulation practical. We

first introduce notation and our baseline model. Afterward, we present a variation of

the baseline model, a chance constraint model by assuming decision variables follow a

probability distribution.

We denote a given input, x ∈ Rp and a perturbed input, x̂ ∈ Rp. We assume that

all features are continuous. Let f(x) : Rp 7→ [0, 1]k be a function associated with a
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classification model, and it computes the score of x being in a class such as probability

of k classes. We optimize over samples in x̂j given a new desired label vector ȳj ∈ [0, 1]k

with j = 1, . . . , |S| where S is a set of instances, {x1,x2, . . . ,x|S|}. We denote a perturbed

input feature matrix X̂. Furthermore, we introduce binary variables, z ∈ {0, 1}|S|, to

decide which instance to be perturbed. In our formulation, we maximize the binary

variables to obtain successfully perturbed instances as many as possible. We introduce

a budget constraint on perturbation of input features, which is computed by a distance

between given and perturbed input features. We assume that a budget is assigned to each

feature, and the distance is calculated by the Euclidean norm. In addition, we introduce

a constraint, called prediction confidence constraint to signify a margin for prediction

reflecting the uncertainty in the score function. Formally, our max samples model (MS) is

formulated as

(3.1)

max
z,X̂

|S|∑
j=1

zj

s.t. gi(z, x̂) ≤ 0, i = 1, . . . , p,

hj(z, x̂) ≤ 0, j = 1, . . . , |S|

where gi and hj is a nonlinear function associated with budget and prediction confidence

constraints, respectively. For budget constraints on perturbation of input features, they

are explicitly written as

(3.2) gi(z, x̂) =

|S|∑
j=1

zj ||x̂ij − xij||2 −Bi, i = 1, . . . , p
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where Bi ∈ R+ is a given budget for feature i. Prediction confidence constraints are

explicitly expressed as

(3.3) f(x̂j)u + δ ≤ f(x̂j)yj j = 1, . . . , |S|, u = 1, . . . , k, u 6= yj

where yj = argmax
u

[ȳj]u is a desired class of xj and δ > 0 is a given margin. In MS, we

rewrite (3.3) by multiplying binary variables so that we consider the constraints only on

selected samples as follows.

(3.4) hj(z, x̂) = zj max{0, max
u=1,...,k
u6=yj

f(x̂j)u − f(x̂j)yj + δ}, j = 1, . . . , |S|.

We further improve MS by assuming that the binary variables have a probability

distribution. We assume that our variables follow Bernouli or Categorical distributions

considering dependency among instances. First, we present a Bernouli case where there is

no relationship among perturbed instances. Let zj ∼ Ber(πj), j = 1, . . . , |S|, that is,

(3.5) zj =


1 with probability πj

0 with probability 1− πj.

Transforming MS (3.1), we propose a Bernoulli chance max samples model (BCMS),

(3.6)

max
Π,X̂

Ez

[ |S|∑
j=1

zj

]

s.t. Pr
(
gi(z, x̂) ≤ 0

)
≥ 1− ε, i = 1, . . . , p,

Pr
(
hj(z, x̂) ≤ 0

)
≥ 1− ε, j = 1, . . . , |S|
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where gi and hj is a nonlinear function associated with budget and prediction confidence

constraints, respectively, which is defined as the same as in MS. We can explicitly rewrite

BCMS (3.6) as the same as in expectation,

(3.7)

max
Π,X̂

|S|∑
j=1

πj

s.t. Pr
( |S|∑
j=1

zj ||x̂ij − xij||2 −Bi ≤ 0
)
≥ 1− ε, i = 1, . . . , p

πj h(x̂j) ≤ 0, j = 1, . . . , |S|.

Our chance max samples model with Categorical distribution (CCMS) considers dependency

among instances to be perturbed. CCMS has the same formulation as defined in (3.6),

but we use the following binary variables to determine which instance to perturb,

(3.8) z̄ξ ∈ R|S| ∼ Cat(Π), Π = (π1, . . . , π|S|), and z ∈ R|S| = min(1,

|S|∑
ξ=1

z̄ξ).

We present a model based on the existing framework (Szegedy et al., 2013; Molnar,

2019) of generating adversarial samples that is designed to solve inverse classification

with minimal cost of perturbation. This model optimizes over samples in x̂j ∈ D to

minimize a loss function lj = KL (ȳj||f(x̂j)) + a ||x̂j −xj||2, a ∈ [0,∞) where KL denotes
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Kullback-Leibler divergence. The model (KL) reads

(3.9)

min
X̂

|S|∑
j=1

lj (x̂)

s.t. gi(x̂) ≤ 0, i = 1, . . . , p,

hju(x̂) ≤ 0, j = 1, . . . , |S|, u = 1, . . . , k, u 6= yj

where g and h is a nonlinear function associated with budget (3.2) and prediction confidence

constraints (3.3) without a binary variable z. This model has a smaller number of variables

to optimize than our models; however, it does not consider which instance to be perturbed.

Therefore, it is not necessary to achieve the maximal number of the successfully perturbed

instances since budgets are not optimally spent.

3.4. Algorithms

In this section, we describe the proposed algorithms to solve our models. We design

our algorithms based on Lagrangian and subgradient methods. We first reformulate our

constrained problem to an unconstrained problem by multiplying Lagrangian multipliers to

constraints, and adding them to our loss function such that we derive Lagrangian function

for each model. Afterward, we develop algorithms to solve the Lagrangian functions based

on the projected subgradient method. We use the subgradient method since our models

contain non-differentiable functions, and projection is used to keep Lagrangian multipliers

positive during their update. For chance max samples models, we apply the Gumbel trick

(Maddison et al., 2014) to use approximated gradients in updating binary variables rather

than to compute exact gradients of the variables in the expectation in order to alleviate
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enormous computing cost. Since our algorithms do not necessarily find optimal solutions,

we discuss how to evaluate the performance of our algorithms on perturbed instances.

Algorithm for Max Samples Model. We first define Lagrangian function for our

baseline model MS (3.1) as

L(z, X̂, Λ,M) =

|S|∑
j=1

zj −
p∑
i=1

λigi −
|S|∑
j=1

µjhj

=

|S|∑
j=1

zj −
p∑
i=1

λi
( |S|∑
j=1

zj ||x̂ij − xij||2 −Bi

)
−
|S|∑
j=1

µjzjhj(x̂j)

=

|S|∑
j=1

cjzj +

p∑
i=1

λiBi

where cj = 1−
∑p

i=1 λi ||x̂ij − xij||2 − µjhj(x̂j), and λ and µ are Lagrangian multipliers.

We propose Algorithm 1 to solve min
Λ,M

max
z,X̂

L(z, X̂, Λ,M). The algorithm consists of two

main loops to solve our min max problem; the inner loop updates input features and

binary variables to maximize L, and the outer loop updates Lagrangian multipliers to

minimize L. In the algorithm, we initialize all Z with one as we desire to achieve as

many successfully perturbed samples as possible. Meanwhile, we add a line to break the

inner loop when all Z are zero, which is a case of no updates on variables. Note that

∇λiL = −
∑|S|

j=1 zj ||x̂ij − xij||2 + Bi, and ∇µjL = −zjhj(x̂j). In addition, line 7-13 in

Algorithm 1 is derived by solving

max
z

|S|∑
j=1

cjzj

where cj is a constant in the algorithm.
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Algorithm 1 MS

1: Initialize Λ,M,α, β.
2: while until convergence do
3: zj ← 1, j = 1, . . . , |S|
4: while until convergence do
5: Break if

∑
j zj = 0

6: X̂∗ ← argmax
X̂

L(z, X̂, Λ,M)

7: for j=1,. . . ,|S| do
8: if cj ≥ 0 then
9: zj ← 1
10: else
11: zj ← 0
12: end if
13: end for
14: end while
15: λi ←

(
λi − α∇λiL

)
+
, i = 1, . . . , p

16: µj ←
(
µj − β ∇µjL

)
+
, j = 1, . . . , |S|

17: end while

Algorithm for Bernoulli and Categorical Chance Max Samples Model. We

define Lagrangian function for BCMS (3.7) as

(3.10)

L(Π, X̂, Λ,M) =

|S|∑
j=1

πj
(
1− µjhj(x̂j)

)
+

p∑
i=1

λi

[
Pr
( |S|∑
j=1

zj ||x̂ij − xij||2 −Bi ≤ 0
)
− (1− ε)

]
.

We solve min
Λ,M

max
Π,X̂

L in which we have to compute gradients of Ez∼Ber(Π) with respect to Π.

To relieve burden of computing exact gradients, we apply the Gumbel trick (Maddison et al.,

2014) to use their approximation. Let the exact probability be Pri = EzX [
∑|S|

j=1 zj ||x̂ij −

xij||2−Bi ≤ 0]. We first approximate X ≈ 1
1+exp(−kx−τ

1−τ )
where k and τ are hyperparameters.

Then, we have Ez1,...,z|S|
[

1
1+exp(−kx−τ

1−τ )

]
where x =

∑|S|
j=1 zj ||x̂ij − xij||2 −Bi. Applying the
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Gumbel trick, the expectation term is approximately computed as

(3.11) Pri ≈
1

N

N∑
n=1

Pi
n =

1

N

N∑
n=1

1

1 + exp(−kxin−τ
1−τ )

where xin =
∑|S|

j=1 vnj||x̂ij−xij||2−Bi, vnj=zj(πj, g
n
1 , g

n
2 ) =

exp((logπj+g
n
1 )/ω)

exp((logπj+gn1 )/ω)+exp((log(1−πj)+gn2 )/ω)
,

and gn1 ∼ G, gn2 ∼ G; the Gumbel distribution is denoted by G. We can rewrite Eq. (3.10)

as

(3.12) L ≈
|S|∑
j=1

πj
(
1− µjhj(x̂j)

)
+

1

N

N∑
n=1

p∑
i=1

λiP
i
n − (1− ε)

p∑
i=1

λi.

We propose Algorithm 2 to solve min
Λ,M

max
Π,X̂

L. This algorithm has two main loops to

maximize L with respect to Π and X̂, and to minimize L with respect to Lagrangian

multipliers. Especially, a part of generating Gumbel’s samples is added to the inner

loop so that approximated gradients are used to update variables afterwards. Note that

L̈ =
∑|S|

j=1 πj
(
1− µjhj(x̂j)

)
in the algorithm.

For CCMS, we define Lagrangian function based on (3.6), which is written as

L(Π, X̂, Λ,M) = Ez

[ |S|∑
j=1

zj
(
1− µjhj(x̂j)

)

+

p∑
i=1

λi
{

Pr
( |S|∑
j=1

zj ||x̂ij − xij||2 −Bi ≤ 0
)
− (1− ε)

}]

where zj is jth element of z as defined in (3.8). Based on Gumbel’s approach we approximate

z by

[z̄ξ]j =
exp((logπj + gjξ)/ω)∑|S|
k=1 exp((logπk + gkξ)/ω)

where g1ξ, . . . , g|S|ξ ∼ G, ξ = 1, . . . , |S|.
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Algorithm 2 BCMS

1: Initialize Π,Λ,M, α, β, γ, η.
2: while until convergence do
3: while until convergence do
4: for n = 1, . . . , N do
5: for j = 1, . . . , |S| do
6: gn1 ∼ Gj, gn2 ∼ Gj
7: vnj ← zj(πj, g

n
1 , g

n
2 )

8: end for
9: L̇n ←

∑p
i=1 λiP

i
n

10: end for
11: ∇ΠL← 1

N

∑N
n=1∇ΠL̇n +∇ΠL̈

12: Π ← min{1,
(
Π + α∇ΠL

)
+
}

13: X̂← X̂ + β ∇X̂L
14: end while
15: λi ←

(
λi − γ ∇λiL

)
+
, i = 1, . . . , p

16: µj ←
(
µj − η ∇µjL

)
+
, j = 1, . . . , |S|

17: end while

Approximated Lagrangian function for CCMS is written as follows.

(3.13)

L ≈ EG∼G

[ |S|∑
j=1

zj(Π,G)
(
1− µjhj(x̂j)

)

+

p∑
i=1

λi
{

Pr
( |S|∑
j=1

zj(Π,G) ||x̂ij − xij||2 −Bi ≤ 0
)
− (1− ε)

}]

=
1

N

N∑
n=1

|S|∑
j=1

vnj
(
1− µjhj

)
+

1

N

N∑
n=1

p∑
i

λiP
i
n − (1− ε)

p∑
i=1

λi

=
1

N

N∑
n=1

L̃n +
1

N

N∑
n=1

L̇n − (1− ε)
p∑
i=1

λi
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where G ∈ R|S|×|S| is a Gumbel matrix, and Pi
n is the same as in (3.11), but changing the

binary variables for Categorical case such that

[z]j = zj ≈ vnj = zj(Π,G
n) = min(1,

|S|∑
ξ=1

exp((logπj + gnjξ)/ω)∑|S|
k=1 exp((logπk + gnkξ)/ω)

).

We propose Algorithm 3 to solve min
Λ,M

max
Π,x̂

L, which is the same structure as the algorithm

for BCMS (Algorithm 2). A part of simulating Gumbel’s samples is edited for Categorical

distribution (line 4-13).

Algorithm 3 CCMS

1: Initialize Π,Λ,M, α, β, γ, η.
2: while until convergence do
3: while until convergence do
4: for n = 1, . . . , N do
5: for j = 1, . . . , |S| do
6: for ξ = 1, . . . , |S| do
7: [Gn]jξ ← gnjξ ∼ G
8: end for
9: end for
10: vnj ← zj(Π,G

n), j = 1, . . . , |S|
11: L̃n ←

∑|S|
j=1 vnj

(
1− µjhj

)
12: L̇n ←

∑p
i=1 λiP

i
n

13: end for
14: ∇ΠL← 1

N

∑N
n=1(∇ΠL̃n +∇ΠL̇n)

15: Π ←
(
Π + α∇ΠL

)
+

16: πj ← πj∑
i πi
, j = 1, . . . , |S|

17: X̂← X̂ + β ∇X̂L
18: end while
19: λi ←

(
λi − γ ∇λiL

)
+
, i = 1, . . . , p

20: µj ←
(
µj − η ∇µjL

)
+
, j = 1, . . . , |S|

21: end while
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Algorithm for KL. We present Lagrangian function for KL (3.9) as follows.

(3.14) L(X̂, Λ,M) =

|S|∑
j=1

lj (x̂j, ȳj) +

p∑
i=1

λi gi(x̂) +
k∑

u=1,
u6=yj

|S|∑
j=1

µju hju(x̂)

where λ and µ are Lagrangian multipliers. Algorithm 4 is designed to solve max
Λ,M

min
X̂

L.

Similar to Algorithm 1, it consists of two loops; the inner loop updates input features to

minimize L, and the outer loop updates Lagrangian multipliers to maximize L.

Algorithm 4 KL

1: Initialize Λ,M,α, δ
2: while until convergence do
3: X̂← argmin

X̂

L(X̂, Λ,M)

4: λi ←
(
λi + α∇λiL

)
+
, i = 1, . . . , p

5: µju ←
(
µju + β ∇µjuL

)
+
, j = 1, . . . , |S|, u = 1, . . . , k, u 6= yj

6: end while

Algorithm for Budget Allocation. In this paragraph, we present an extension

of KL (3.9) and its related algorithm. Suppose that we have R groups of instances to

be perturbed separately since they have different characteristics, and a given budget

B = (B1, B2, . . . , Bp) ∈ Rp
+ is to be assigned for all instances. In this setting, we

have to solve a budget allocation problem. Each group Sr has the same settings as

defined in the KL (3.9), and is disjoint, S =
⋃R
r=1 Sr. Each problem is defined as

Lr = max
Λr,Mr

min
x̂r

L(x̂r, Λr,M r) for r = 1, . . . , R, and the budget constraint term in Lr is

written as
∑p

i=1 λ
r
i {
∑|Sr|

j=1 ||x̂rij − xrij||2 − bri} where the budget is assigned by a size of

instances in each group such that bri = |Sr|∑R
r̄=1 |Sr̄|

Bi. Once each group of perturbed instances

is obtained by running Algorithm 4, we allocate budget to Lr problems, r = 1, . . . , R.
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Then, we solve a following budget allocation problem,

(3.15)

min
b1,...,bR

R∑
r=1

Lr(br)

s.t.
R∑
r=1

br = B

where Lr(br) = max
Λr,Mr

min
x̂r

L(X̂r, Λr,M r|br), and br = (br1, b
r
2, . . . , b

r
p) ∈ Rp

+. Algorithm 5 is

proposed to solve the model (3.15). Note that in the algorithm ∇L = ∇bri
(
∑R

r̄=1 Lr̄) = −λri

Algorithm 5 Budget allocation (BA)

1: Initialize bri = |Sr|∑R
r̄=1 |Sr̄|

Bi, r = 1, . . . , R, i = 1, . . . , p

2: while until convergence do
3: bri ← bri − α∇L, r = 1, . . . , R, i = 1, . . . , p

4: bri ←
bri∑R
r̄=1 b

r̄
i

Bi, r = 1, . . . , R, i = 1, . . . , p

5: end while

and λri is Lagrangian multiplier with respect to a budget constraint for feature i in Lr;

therefore, we run Algorithm 4 for each br update to compute ∇brL.

Evaluation. We describe how to evaluate our algorithms. The performance of algo-

rithms is accessed based on how many samples are successfully perturbed within a given

budget. We consider only feasible instances as they are regarded as a practical success

in inverse classification. Since Lagrangian and subgradient methods do not necessarily

guarantee the optimality and feasibility of solutions, we conduct the following steps to

obtain a final solution set.

(1) Run proposed algorithms to obtain ‘good’ and possibly infeasible solutions.

(2) Find a subset of instances, S̃ ⊆ S, satisfying prediction confidence constraints.

That is, all of the instances in S̃ are classified as desired.
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(3) Solve the following problem over S̃ to find a set of feasible instances.

(3.16)

max
z1,...,z|S̃|

|S̃|∑
s=1

zs

s.t.

|S̃|∑
s=1

ais zs ≤ Bi, i = 1, . . . , p

zs ∈ {0, 1}, s = 1, . . . , |S̃|

where ais = ||x̂is − xis||2, and Bi is a given budget.

(4) Obtain a final ‘good’ and feasible set, Ŝ ⊆ S̃ ⊆ S.

3.5. Computational Study

In this section, we conduct a computational study on two datasets; a proprietary dataset

and a public dataset. We experiment with different budget scenarios and scalability of the

number of samples. Model implementations for all the experiments are done in Python

using Tesla V100 GPU and Intel Xeon CPU E5-2697 v4 @ 2.30Hz for the real dataset;

and Titan XP GPU and Intel Xeon Silver 4112 CPU @ 2.60GHz for the public dataset.

3.5.1. Real World Data

We conduct experiments on a real world proprietary dataset that contains sequential input

features for true and false predictions, which is introduced in Stec et al. (2013). The

dataset consists of five different types of features. They are three types of sequential

features; sparse and dense features based on their frequency, and delta features that are

related to the time between specified events in the sequence; and two types of static

features. Besides, there are five different classes; one true target and four different false
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classes. More details are described in Stec et al. (2013). For a classifier to attack, we use a

recurrent network that can deal with the five types of features, called the Sparse Time

LSTM (STLSTM) (Stec et al., 2013). We use a trained STLSTM that achieves accuracy

of around 70%.

3.5.1.1. Budget Experiments. We perturb 300 examples selected from test set and

they are grouped into 15 different cases by input sequence lengths and original labels. That

is, |S| = 300, and R = 15. The 300 samples are originally labeled as one of false classes

and correctly predicted by the trained classifier. Our purpose is to perturb them so that

they are predicted as a true target. We perturb 19 dense features that can directly affect

class predictions. To decide the sizes of budgets, we first run our algorithms with unlimited

budgets to measure how much of the budget is needed for successful perturbation. Then,

as well as practical consideration from data source experts we determine small, middle,

and large sizes of budgets by the amounts that are proportional to total spent with the

unlimited budgets. We use δ = 0.1, and initialize Lagrangian multipliers with adding

additive white Gaussian noise.

Figure 3.1 shows results of budget experiments. Note that the algorithm for budget

allocation is denoted by BA, and the other algorithms are denoted by their model name.

The final feasible solution set, Ŝ, is obtained based on the evaluation method in 3.4. We

find that algorithms with Gumbel’s method for BCMS and CCMS perform better than

other algorithms. They achieve a larger size of successfully perturbed examples than other

algorithms, and also they achieve lower spent per sample. This is because the objective

of max samples models is to maximize the number of successfully perturbed samples. In

addition, we observe that the larger budget achieves the larger size of successfully perturbed
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Figure 3.1. Real data: Budget experiments

samples for all algorithms, which is expected. Comparing KL to BA, improvement by

BA is negligible. We also analyze budget and prediction confidence constraints. For

budget constraints binding, we compute how much of the budget is spent for each budget

constraint, and calculate the mean of them. In addition, a prediction gap is computed

by measuring the gap between the top and the second top predictions. We find that

budget constraint bindings of BCMS and CCMS are lower than other algorithms, and

their prediction gaps are smaller than the others. We reason this as BCMS and CCMS

spend budgets large enough to guarantee a certain level of confidence; it is larger than δ

in their predictions, but not more than necessary. On the other hand, KL and BA have a

large prediction gap that shows high confidence in their predictions; however, it might be

more than necessary. This is why their spent per sample is relatively large.
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3.5.1.2. Scalability Experiments. We conduct scalability analysis of our algorithms.

We use three different sizes of samples |S| = 300, 600, and 900, and samples in each set

are grouped into 15 cases based on their input sequence lengths and labels. In addition,

they have inclusive relationships such that S300 ⊂ S600 ⊂ S900. In this context, we have

two strategies of initializing samples to be perturbed. First, we initialize input features of

samples in a large set with ones previously obtained from a subset, and the rest of samples

that are not in the subset, but in the large set is initialized by random, namely subset

initialization. For example, we run an algorithm on S300, and then run the algorithm on

S600. When we run it on S600, we initialize samples of S300 in S600 with obtained from the

run on S300, and samples of S600 \ S300 by random. The other strategy is to initialize all

samples by random. Similar to budget experiments, all samples are originally labeled as

one of false classes and correctly predicted by the trained classifier. We perturb 19 dense

features so that they are predicted as a true target. We use the middle size of budget and

the other hyperparameters as the same as those used in budget experiments 3.5.1.1.

Figure 3.2 shows results of scalability experiments. The final feasible solution set, Ŝ,

is obtained based on the evaluation method in 3.4. Note that a run on S300 with subset

initialization is denoted by 300-Sub, and one with random initialization is denoted by

300-Ran in the figure. Similar to the budget experiments, algorithms with Gumbel’s

method for BCMS and CCMS perform better than other algorithms. The number of

successfully perturbed examples by them is larger than other algorithms, and also spent

per sample is smaller. In terms of two initialization strategies, both cases show similar

results; we conclude effectiveness of two initialization strategies is negligible in this instance.

For analysis of budget and prediction confidence constraints, we find similar results to the
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Figure 3.2. Real data: Scalability experiments

budget experiments. Budget constraints bindings for BCMS and CCMS are lower than

KL and BA, and their prediction gaps are smaller than the others. The aforementioned

analysis applies to all of different sizes of samples. We conclude that our algorithms can

scale efficiently.

3.5.2. Public Data: MIMIC

MIMIC is a public dataset that describes clinical information of patients admitted to an

Intensive Care Unit at the Beth Israel Deaconess Medical Center in Boston, Massachusetts

from 2001 to 2012. It contains 58,576 data points for patients admissions. Baseline

characteristics and in-hospital mortality outcome measures are as follows; the median

age of adult patients is 65.86 years, 56.76% of patients are male, in-hospital mortality
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is around 10.49%, and the median length of a hospital stay is 7.08 days (Goldberger

et al., 2000; Johnson et al., 2016). In this study, we use 13 input features for 30-day

mortality predictions, which is used in Luo et al. (2018). The 13 features are sequential

and continuous, and cover Chloride, Potassium, Bicarb, Sodium, Hematocrit, Hemoglobin,

MCV, Platelets, WBC count, RDW, BUN, Creatinine, and Glucose. Detailed information

on the features is described in Luo et al. (2018). Since MIMIC is a time series data and

has missing values, we use a recurrent network based on Gated Recurrent Unit, called

GRU-D, that is widely used for coping with multivariate time series with missing values

(Che et al., 2018). In our experiment, we use a trained GRU-D that achieves AUC of

around 0.78. We conduct only a budget experiment for this dataset since it is a small

dataset for a scalability experiment.

We perturb 75 examples selected from test set and they are grouped into 5 different

cases. That is, |S| = 75, and R = 5. The 75 samples are originally labeled as dead and

correctly predicted by the trained classifier. Our purpose is to perturb the samples so

that they are predicted as alive. To decide the sizes of budgets, we first run our algorithm

with unlimited budget constraints to measure how much perturbation is needed. Then, we

determine small, middle, and large sizes of budgets by around 40%, 60%, and 80% of total

spent with unlimited budgets. We use δ = 0.1, and initialize Lagrangian multipliers with

adding additive white Gaussian noise.

Figure 3.3 shows results of budget experiments. The final feasible set, Ŝ, is obtained

based on the evaluation method in 3.4. Similar to results of the real data experiment,

algorithms for max samples models, MS, BCMS and CCMS perform better than KL

and BA. They obtain a larger size of successfully perturbed examples than the other
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Figure 3.3. MIMIC: Budget experiments

algorithms, and also they achieve smaller spent per sample. This is because max samples

models are formulated to maximize the number of successfully perturbed samples. Both

KL and BA show similar performance in terms of the number of successfully perturbed

examples, which means improvement by BA is negligible. Based on both real and public

data experiments, we recommend using KL since BA requires a more computational effort

than KL. In addition, we find that budget constraints of all algorithms are almost bindings.

That is, most of the budgets are used. On the other hand, KL and BA have a larger

prediction gap than MS, CBMS, and CCMS. KL and BA obtain high confidence in their

predictions; however, it can be more than it needs to be since δ is 0.1.
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3.6. Conclusion

In this study, a new framework based on mixed integer programming for inverse

classification is proposed. We formulate a constrained optimization problem that maximizes

the number of successfully perturbed samples with budget and prediction confidence

constraints. In addition, we formulate a stochastic problem with chance constraints by

extending the deterministic mixed integer problem. To solve our constrained problems,

algorithms based on Lagrangian and subgradient methods are also developed. Based on

an extensive computational study, we find that our algorithms perform greatly in various

budget settings and achieve scalability of data.
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APPENDIX A

Appendix: Chapter 1

A.1. Approximation of DBN Probability in the Proposed Models

DBN defines the joint distribution of the visible unit x and the ` hidden layers,

h1, h2, · · · , h` as

p(x, h1, · · · , h`) = p(h`−1, h`)

(
`−2∏
k=0

p(hk|hk+1)

)

with h0 = x.

DBN Fitting Plus Loss Model. From (1.2), p(x) in the second term of the objective

function is approximated as

p(x; θDBN) =
∑

h1,h2,··· ,h`
p(x, h1, · · · , h`) ≈

∑
h1

p(x, h1).
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Expected Loss Models. p(h|x) in the objective function is approximated as

p(h`|x) ≈ p(h`|x, h1, · · · , h`)

=
p(h`, h`−1, · · · , h1, x)

p(h`−1, h`−2, · · · , h1, x)

=
p(h`−1, h`)

(∏`−2
k=0 p(h

k|hk+1)
)

p(h`−2, h`−1)
(∏`−3

k=0 p(h
k|hk+1)

)
=
p(h`−1, h`)p(h`−2|h`−1)

p(h`−2, h`−1)

=
p(h`−1, h`)p(h`−2, h`−1)

p(h`−2, h`−1)p(h`−1)

= p(h`|h`−1).

Bilevel Model. From (1.5), ∇θDBN log p(x) in the objective function is approximated

for i = 0, 1, · · · , ` as

(A.1)

[∇θDBN log p(x)]i =
∂ log p(x)

∂ θiDBN

=
∂ log

(∑
h1,h2,··· ,h` p(x, h

1, h2, · · · , h`)
)

∂ θiDBN

≈ ∂ log (
∑

hi+1 p(hi, hi+1))

∂ θiDBN

where θDBN = (θ0
DBN , θ

2
DBN , · · · , θiDBN , · · · θ`DBN). The gradient of this approximated

quantity is then the Hessian matrix of the underlying RBM.
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A.2. Derivation of the Gradient of the Bilevel Model

We write the approximated ||∇θDBN − log p(x)||2 at the layer i as

||[∇θDBN − log p(x)]i||2 ≈ ||
∂ − log (

∑
hi+1 p(hi, hi+1))

∂ θiDBN
||2

=

[(
∂ − log p(hi)

∂θi11

)2

+

(
∂ − log p(hi)

∂θi12

)2

+

· · ·+
(
∂ − log p(hi)

∂θinm

)2
]

where m and n denote dimensions of hi and hi+1 and θipq denotes the pth and qth component

of the θiDBN . The gradient of the approximated ||∇θDBN − log p(x)||2 at the layer i is

∂

θipq

(∑
p,q

(
∂ − log p(hi)

∂θipq

)2
)

= 2

[(
∂ − log p(hi)

∂θi11

)(
∂2 − log p(hi)

∂θi11θ
i
pq

)
+

(
∂ − log p(hi)

∂θi12

)(
∂2 − log p(hi)
∂θi12∂θ

i
pq

)
+

· · ·+
(
∂ − log p(hi)

∂θipq

)(
∂2 − log p(hi)
∂θipq∂θ

i
pq

)
+

· · ·+
(
∂ − log p(hi)

∂θinm

)(
∂2 − log p(hi)
∂θinmθ

i
pq

)]

for p = 1, ...n, q = 1, ...m. This shows that the gradient of the approximated ||∇θDBN −

log p(x)||2 in (1.5) is then the Hessian matrix times the gradient of the underlying RBM.

The stochastic gradient of −log p(x) of RBM with binary input x and hidden unit h with
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respect to θDBNwpq is

∂RBM

∂wpq
= p(hp = 1|x)xq −

∑
x

p(x)p(hp = 1|x)xq

where RBM denotes −log p(x) (Fischer and Igel, 2012). We derive the Hessian matrix

with respect to wpq as

∂2RBM

∂w2
pq

=
∂

wpq
[p(hp = 1|x)xq)]−

∑
x

∂

wpq
[p(x)p(hp = 1|x)xq)]

= σ(ñetp)(1− σ(ñetp))x
2
q −

∑
x

[
∂p(x)

∂wpq
p(hp = 1|x)xq

+ p(x)σ(ñetp)(1− σ(ñetp))x
2
q],

∂2RBM

∂wpk∂wpq

=
∂

wpk
[p(hp = 1|x)xq)]−

∂

wpk
[
∑
x

p(x)p(hp = 1|x)xq)]

= σ(ñetp)(1− σ(ñetp))xqxk −
∑
x

[
∂p(x)

∂wpk
p(hp = 1|x)xq

+ p(x)σ(ñetp)(1− σ(ñetp))xqxk],
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∂2RBM

∂wkq∂wpq

=
∂

wkq
[p(hp = 1|x)xq)]−

∂

wkq
[
∑
x

p(x)p(hp = 1|x)xq]

= −
∑
x

[
∂p(x)

∂wkq
p(hp = 1|x)xq + p(x)

∂

∂wkq
[p(hp = 1|x)xq]],

∂2RBM

∂wkp∂wpq
= −

∑
x

[
∂p(x)

∂wkp
p(hp = 1|x)xq + p(x)]

where σ() is the sigmoid function, ñetp is
∑

q wpqxq+cp, and cp is the hidden bias. Based on

what we derive above we can calculate the gradient of approximated ||[∇θDBN − log p(x)]i||2.
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APPENDIX B

Appendix: Chapter 2

B.1. Deciding Dimensions for Convolutional Conversion

Let Fconvs , Kconvs , Gconvs , and Zconvs denote the filter size, number of filters, stride,

and zero padding for convolution Conv for s ∈ St, respectively. Also, let Dconvs , Wconvs ,

and Hconvs denote the depth, width, and height of output after the convolution operation.

In this conversion, the desired RNN or S2S input dimension, p, is determined by Dconvs ·

Wconvs · Hconvs = p. The formulas for convolution lead to Dconvs = Kconvs ;Wconvs =

Ws−Fconvs+2Zconvs
Gconvs

+ 1; and Hconvs = Hs−Fconvs+2Zconvs
Gconvs

+ 1. We assume that Hs and Ws are

the same, i.e. the feature map is shaped in a square.

1) Ws = Hs = Fconvs : We have

p = Dconvs ·Wconvs ·Hconvs

= Kconvs · (
Ws − Fconvs + 2Zconvs

Gconvs

+ 1)

· (Hs − Fconvs + 2Zconvs
Gconvs

+ 1),
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and thus Kconvs = p, Zconvs = 0, and Gconvs ∈ Z+.

2) Ws = Hs > Fconvs , Fconvs = Gconvs : We have

p = Dconvs ·Wconvs ·Hconvs

= Kconvs · (
Ws − Fconvs + 2Zconvs

Gconvs

+ 1)

· (Hs − Fconvs + 2Zconvs
Gconvs

+ 1)

= Kconvs · (
Ws − Fconvs + 2Zconvs

Fconvs
+ 1)2

= Kconvs · (
Ws + 2Zconvs

Fconvs
)2.

This leads to Fconvs ∈ [1,Ws), Zconvs such that (Ws+2Zconvs
Fconvs

)2 ∈ Z+, and Kconvs such that

p

(
Ws+2Zconvs

Fconvs
)2
∈ Z+.

3) Ws = Hs > Fconvs , Fconvs 6= Gconvs , Gconvs = 1: We have

p = Dconvs ·Wconvs ·Hconvs

= Kconvs · (
Ws − Fconvs + 2Zconvs

Gconvs

+ 1)

· (Hs − Fconvs + 2Zconvs
Gconvs

+ 1)

= Kconvs · (
Ws − Fconvs + 2Zconvs

Gconvs

+ 1)2

= Kconvs · (Ws − Fconvs + 2Zconvs + 1)2,
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and thus Fconvs ∈ [1,Ws), Zconvs = 0, and Kconvs such that p
(Ws−Fconvs+1)2 ∈ Z+.

4) Ws = Hs > Fconvs , Fconvs 6= Gconvs , Gconvs ∈ (1, Fconvs): We have

p = Dconvs ·Wconvs ·Hconvs

= Kconvs · (
Ws − Fconvs + 2Zconvs

Gconvs

+ 1)

· (Hs − Fconvs + 2Zconvs
Gconvs

+ 1)

= Kconvs · (
Ws − Fconvs + 2Zconvs

Gconvs

+ 1)2,

implying that Fconvs ∈ [1,Ws), Gconvs ∈ (1, Fconvs), Zconvs such that (Ws−Fconvs+2Zconvs
Gconvs

+

1)2 ∈ Z+, and Kconvs such that p

(
Ws−Fconvs+2Zconvs

Gconvs
+1)2
∈ Z+.

B.2. Deciding Dimensions for Pooling Conversation

A desired RNN input dimension, p, is determined by satisfying Dpools ·Wpools ·Hpools = p.

The pooling operation leads to Dpools = Ds;Wpools =
Ws−Fpools
Gpools

+1; and Hpools =
Hs−Fpools
Gpools

+1.

We assume that Hs and Ws are the same, i.e. the feature map is shaped in a square, and

Fpools and Gpools are the same, i.e. disjoint pooling.

1) Hs = Ws, Fpools = Gpools : We have

p = Dpools ·Wpools ·Hpools

= Ds · (
Ws − Fpools
Gpools

+ 1) · (Hs − Fpools
Gpools

+ 1)

= Ds · (
bs − apools
apools

+ 1)2

= Ds · (
bs

apools
)2,
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and thus apools = bs ·
√

Ds
p

= Fpools = Gpools .

2) Hs = Ws, Fpools 6= Gpools : We have

p = Dpools ·Wpools ·Hpools

= Ds · (
Ws − Fpools
Gpools

+ 1) · (Hs − Fpools
Gpools

+ 1)

= Ds · (
Ws − Fpools
Gpools

+ 1)2,

leading to Fconvs ∈ [1,Ws), and Gconvs ∈ (1, Fconvs).

B.3. Description of the General Tree of Open Images

Figure B.1. The full general tree of Open Images

Open Images provides a semantic hierarchy that consists of 600 object classes (Krasin

et al., 2017). We first take subtrees of classes that have mainly Has-A relationships such as

‘Human body’-‘Human foot’ and ‘Human outfit’-‘Hat,’ and then concatenate the subtrees

to create the final class tree. The tree is of depth four with 30 class nodes. Figure B.1

presents the whole tree.
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