
NORTHWESTERN UNIVERSITY

Machine Learning in Option Markets

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Industrial Engineering and Management Sciences

By

Yaxiong Zeng

EVANSTON, ILLINOIS

September 2017

	 	 2

© Copyright by Yaxiong Zeng 2017

All Rights Reserved

	 	 3

ABSTRACT

Machine Learning in Option Markets

Yaxiong Zeng

Machine learning has been widely applied to solve intricate problems in finance. Yet in options

theory, machine learning methods are less visited due to the structural complexity of the

derivatives market. This dissertation focuses on using machine learning algorithms to obtain

optimal decisions for three distinct option-related problems. In the first chapter, we apply a

reinforcement learning technique – approximate dynamic programming to model a real option of

an investment in the renewable energy sector. The second chapter combines Q-learning and

progressive hedging to attain optimal decisions for an option portfolio. In the third chapter, we

model the implied volatility surface that exists in option markets by an online adaptive support

vector regression algorithm. Each of the three chapters presents detailed case studies and

numerical experiments that prove the effectiveness of our proposed models and algorithms.

Chapter 1 solves a real option problem of the investment timing of solar panels. Solar energy is

rapidly emerging thanks to the decreasing installation cost of solar panels and the renewable

portfolio standard imposed by state governments. Recently, third-party financing has become a

common practice in solar panel investments. In this chapter, we discuss optimal timing for the

host to potentially buy back the solar panels after being installed for a period of time and how to

incorporate the optimal timing into a power purchase agreement between the host and the third-

	 	 4

party developer. By a modified real option structure, we model the buyback contract as a real

option and solve it with an approximate dynamic program based Monte Carlo simulation method.

Chapter 2 focuses on financial options, in particular, a portfolio of American options. American

options allow early exercise, which yields an additional challenge when optimizing a portfolio of

American options, besides the weights of each option. We propose a reinforcement learning (Q-

learning) algorithm for an American option portfolio, combining an iterative progressive hedging

method and a quadratic approximation to Q-values by regression. By means of Monte Carlo

simulation and empirical experiments we evaluate the quality of the algorithms proposed.

In Chapter 3, we design a machine learning based method – online adaptive primal support

vector regression (SVR) – to model the implied volatility surface (IVS). The algorithm proposed

is the first derivation and implementation of an online primal kernel SVR. It features

enhancements that allow online adaptive learning by embedding the idea of local fitness and

budget maintenance. To accelerate our algorithm, we implement its most computationally

intensive parts in a Field Programmable Gate Arrays hardware. Using intraday tick data from the

E-mini S&P 500 options market, we show that our algorithm outperforms two competing

methods and the Gaussian kernel is a better choice than the linear kernel. Sensitivity analysis is

also presented to demonstrate how hyper parameters affect the error rates and the number of

support vectors in our models.

	 	 5

Acknowledgements

During the past five years, I am indeed fortunate to have received tremendous help from so many

supportive and talented individuals. Hereby, I would like to pay special thanks to those who left

positive influence on me throughout my years as a graduate student.

First and foremost, I would like to extend my sincere gratitude to my advisor, Professor Diego

Klabjan. Under his guidance, I learnt how to conduct research and polished my way of critical

thinking. His tolerance and patience of my missteps and his inspiration and wisdom that

enlightened me along my PhD path were critical to the achievements that I accomplished during

my PhD study. Without him, I would be nowhere near the fulfilment of PhD.

I would like to express my appreciation to Professor Vadim Linetsky, who led me into the world

of finance. From his financial engineering courses, I absorbed plenty of ideas that are essential to

my research projects. I would like to thank Professor Jorge Nocedal for his course machine

learning, which opened a new door for me and stimulated my interest in pursuing machine

learning applications in finance. I would like to thank my mentors during my internships, Eric

Meschke, who showed me how exchange data was analyzed professionally and Tom Kalaway,

who taught me how to develop ideas for trading. I am also grateful for my friends who enriched

my life and provided me help: Dahai Liu, Yu Ang, Jiaming Miao, Lu Wang, Yi Gao, Yutian Nie.

Last but not least, I dedicate this dissertation to my parents – Jiangnan Song and Ming Zeng. I

feel deeply indebted to them for their selfless support.

	 	 6

Table of Contents

ABSTRACT 3

Acknowledgements 5

List of Tables 8

List of Figures 9

Chapter 1. Distributed Solar Renewable Generation: Option Contracts with Renewable Energy

Credit Uncertainty 11

1.1. Introduction 11

1.2. Literature Review 15

1.3. REC Forecasting Model 20

1.4. Option Contract Modeling 27

1.5. Case Studies 37

1.6. Conclusion and Future Work 47

Chapter 2. Portfolio Optimization for American Options 48

2.1. Introduction 48

2.2. Literature Review 51

2.3. Models and Algorithms 54

2.4. Numerical Results 65

2.5. Conclusion and Future Work 77

	 	 7

Chapter 3. Online Adaptive Machine Learning Based Algorithm for Implied Volatility Surface

Modeling 78

3.1. Introduction 78

3.2. Literature Review 81

3.3. Background 85

3.4. Method 91

3.5. Computational Study 105

3.6. Conclusion and Future Work 121

References 122

Appendix A. Appendix for Chapter 2 132

A.1. Model for European Option Portfolio 132

A.2. Results for European Option Portfolio 139

A.3. Benchmark Algorithms for American Option Portfolio 142

A.4. Summary Statistics of Empirical Experiments 144

Appendix B. Appendix for Chapter 3 148

	 	 8

List of Tables

Table 1.1: Comparison of the American call option and the solar option 32	

Table 1.2: Optimal exercise years with different discount rates 45	

Table 1.3: Savings rates with different discount rates 45	

Table 1.4: Optimal exercise years and savings rates with different solar electricity price

escalation rates 46	

Table 1.5: Optimal exercise years and savings rates with different solar panel output degradation

rates 46	

Table 2.1: Variance of portfolio returns with different exercise times 50	

Table 3.1: Support vector size 114	

Table 3.2: Two-sample t-test of MAPE for Gaussian vs. Linear Kernels 115	

Table 3.3: Performance summary of competing algorithms 117	

Table A.1: Performance summary statistics (1-year maturity, GEV distribution, non-hedge) 145	

Table A.2: Performance summary statistics (1.5-year maturity, GEV distribution) 146	

Table A.3: Performance summary statistics (1.5-year maturity, GBM distribution) 147	

Table B.1: Summary statistics of implied volatility on 01/27/2014 149	

Table B.2: Performance summary of our algorithms (in %) 150	

Table B.3: Performance summary of our algorithms without edge strikes (in %) 150	

	 	 9

List of Figures	

Figure 1.1: Histogram of the frequency of exceeding the ACP value 23	

Figure 1.2: Simulated REC prices from the JD model 24	

Figure 1.3: QQ plots of the JD and GBM models 26	

Figure 1.4: Out-of-sample test for the JD model 26	

Figure 1.5: Out-of-sample test for the GBM model 26	

Figure 1.6: The artificial strike prices 39	

Figure 1.7: The artificial stock prices 40	

Figure 1.8: The panel purchase prices 40	

Figure 1.9: The histogram of optimal exercise year 40	

Figure 1.10: The optimal exercise years 41	

Figure 1.11: The values of the solar options 42	

Figure 1.12: The percentages of money saved 42	

Figure 1.13: The optimal exercise years under the general scenario 44	

Figure 1.14: The values of the solar option 44	

Figure 1.15: The percentages of money saved 44	

Figure 2.1: Monthly cumulative return of simulated index fitted by GEV distribution 66	

Figure 2.2: Utility gap from baseline 67	

Figure 2.3: Certainty equivalent of returns 67	

Figure 2.4: Exercise time of each option 68	

Figure 2.5: Utility gap from baseline 69	

Figure 2.6: Certainty equivalent of return 69	

	 	 10

Figure 2.7: Expected return and Sharpe ratio of each algorithm 73	

Figure 2.8: Expected return and Sharpe ratio of different maturities 73	

Figure 2.9: Expected return and Sharpe ratio of different CRRA parameters 74	

Figure 2.10: Expected return and Sharpe ratio of different CRRA parameters 75	

Figure 2.11: Distribution of portfolio returns 76	

Figure 2.12: Portfolio weights over time 77	

Figure 3.1: Maxeler dataflow engine architecture (Courtesy of Maxeler tutorial) 101	

Figure 3.2: DFE design for sample prediction 102	

Figure 3.3: DFE design for two-step matrix multiplication 104	

Figure 3.4: Summary statistics of IV 107	

Figure 3.5: IVS 108	

Figure 3.6: IV prediction 111	

Figure 3.7: Average performance difference from IVS-EKPSVR 115	

Figure 3.8: Average performance difference from IVS-EKPSVR 116	

Figure 3.9: Sensitivity of support vector size and MAPE to gamma (γ) and rho (ρ) 119	

Figure 3.10: Sensitivity of support vector size and MAPE to warmup (ω) and lambda (λ) 119	

Figure 3.11: FPGA vs. CPU speed comparison 120	

Figure A.1: Comparison of portfolio returns 140	

Figure A.2: Portfolio wealth overtime 140	

Figure A.3: Mean rate of return during month 4 141	

Figure A.4: Cumulative portfolio return 141	

	 	

	

11

CHAPTER 1

Distributed Solar Renewable Generation: Option Contracts with

Renewable Energy Credit Uncertainty

1.1. Introduction

In recent years, global warming has been increasingly acknowledged as a threat to long-term

human survival. Many countries have thus set up targets concerning emission limitations or

reductions of greenhouse gases: the European Union aims at a 20% reduction below the 1990

baseline by 2020 (UNFCCC, 2008) and the United States offers a goal of a 17% reduction below

the 2005 level by 2020 (US Department of Energy, 2009). To attain these goals, renewable

energy technologies are being widely adopted to reduce the reliance of energy on fossil fuels.

In the United States, in 2011 renewable energy accounted for 9% of total primary energy

consumption, with hydroelectric (35%), wood (22%), biofuels (21%) and wind power (13%) as

major renewable sources (EIA, 2012). The solar market is now rapidly expanding as a result of

historically high photovoltaic prices and by the financial incentives from the federal government,

states and utilities. From the 2012 U.S Solar Market Insight report, photovoltaic installations

totaled 3,313 MW, up 76% from 2011 with an estimated market value of $11.5 billion

(SEIA/GTM Research, 2013).

	 	

	

12

One important aspect in the solar market is the Renewable Energy Credit (REC). As of 2013, the

Renewable Portfolio Standard (RPS) is implemented in 30 U.S. states (including District of

Columbia). Under such a policy, local utilities and load-serving entities are obligated to procure

a specified fraction of their electricity as renewable energy. As a market response to RPS, the

REC trading programs are initiated in most of the 30 states. Eligible renewable power producers

receive a REC for each MWh of renewable energy generated. When electricity providers cannot

meet the mandatory requirement from their own power facilities, they can in turn purchase RECs

from renewable generators to comply with the RPS. The unit of REC price is $/MWh.

Specifically, 17 out of the 30 states adopted detailed RPS targets to ensure solar power comprises

a minimum fraction of the renewable mix, resulting in the creation and trading of the Solar

Renewable Energy Credit (SREC). If the power supplier fails to obtain adequate credits, i.e. fails

to meet the RPS, it is then subject to a penalty called the Alternative Compliance Payment (ACP)

per MWh. In the solar case, the supplier is subject to the Solar Alternative Compliance Payment

(SACP). Generally, SACP caps the SREC price. Otherwise, the obligated entity would prefer to

pay the penalty, which is the mechanism of last resort to achieve compliance with the RPS. As

the solar market continues to grow, the SREC trading program provides a driving incentive for

home and business owners to install photovoltaic panels to satisfy their own electricity needs and

financially benefit from selling SRECs.

In residential or commercial sites, direct ownership of solar panels is not a common practice.

Instead, third party financing is taking off across the U.S. For instance, the 2012 U.S. Solar

Insight Report pinpoints the ongoing third-party solar revolution. Specifically, over 50% of all

	 	

	

13

new residential installations in most major residential markets are from third-party-owned

systems. The report also forecasts that the momentum will last. Usually, a third-party developer

designs, installs, owns, operates and maintains solar panels on the user’s roof and the user or host

procures electricity from developer-owned solar panels. The user pays the developer according

to a lease or Power Purchase Agreement (PPA). In the lease contract, home or business owners

pay a monthly flat fee to the third-party developer. In the PPA, the host pays based on its

electricity usage and according to a fixed rate or a rate with a fixed annual escalating factor. In

both settings, the host does not pay for the panel installation or maintenance while it is the

developer who incurs these costs. We particularly study the PPA setting, where the host buys all

the electricity generated from the panels as negotiated in the contract.

Although the contract based on third-party financing can bring electricity with low and

predictable costs, it prevents the host from making profits by selling RECs since they are owned

by the third-party entity because they own the installation. The customer can buy back the panels

at a later time (see NREL, 2009). However, when to buy back the panels has not yet been studied.

Thus in this chapter, we discuss optimal timing of the buyback option by the host, in which the

host buys the third-party owned solar panels at a particular time and price, and the REC

ownership transfers from the developer to the host after panel buyback. The timing decision from

our analysis is valuable to both the third-party developer and host. Grounded on the analysis, the

two parties can develop the PPA and integrate the best timing decision into the contract.

Ultimately, the buyback problem is a real option because it focuses on the exercise opportunity

during a predetermined period.

	 	

	

14

Uncertainties involved in the buyback option result from fluctuations of REC prices, the

electricity price, electricity demand by the user, and the value of the solar panels. As the REC

markets continue to grow in the United States and worldwide, changing REC prices will have an

increasing effect on the optimal investment timing decision. In this chapter, we first introduce a

new financial model to forecast REC prices, which have a lower bound of zero and upper bound

of the ACP value. Results show that our model outperforms the existing Geometric Brownian

Motion (GBM) forecasting model. Forecasted REC prices are then incorporated in the cost-profit

analysis of the solar investment. After the buyback option is exercised, the pattern of the cash

flow changes due to REC sales. We thus model the investment timing problem as a real option

by proposing a new option structure. We solve the model using a Monte Carlo simulation

method based on approximate dynamic programming (ADP). In essence, our real option

structure does not rely on sophisticated financial mathematics due to inherent complexity and

can provide decision insights under different combinations of uncertainties.

In this chapter, we consider the host to be a non-power generating company. We only discuss

solar projects, but the methodology can be adapted to other distributed renewable generations.

For example, on-site wind generation is also applicable to our analytical framework, since it has

an equivalent REC market and a similar third-party financing structure. The main contributions

of this chapter are as follows.

1. A new REC forecasting method that specifically takes ACP values into account.

	 	

	

15

2. A new real option framework that can handle different patterns of cash flows before and

after the option is exercised.

3. A developer-host contract that explicitly considers optimal buyback timing, the first of its

kind in distributed renewable generation.

4. A case study that solves a problem of a real-world company.

The structure of this chapter is as follows. Section 1.2 provides a literature review. Section 1.3

introduces the new REC forecasting model and compares it with existing models. Section 1.4

exhibits the model of the investment timing problem as a real option and it provides the solution

methodology by means of the least square ADP algorithm. Section 1.5 discusses the results from

the Monte Carlo simulation with three case studies. Section 1.6 draws conclusions and suggests

relevant future work.

1.2. Literature Review

An important model in our work is the discounted cash flow (DCF) model. When assessing an

investment project, the DCF model is chosen traditionally. The model discounts the cash flows

of the project to present time. If the obtained net present value (NPV) is positive, the project is

economically viable. Due to its simplicity, it leads to rigid managerial decisions. It assumes the

future cash flows have no variability, and the decision is simply to invest now or abandon the

investment. These two drawbacks contradict the current investment styles characterized by

uncertainties and dynamic decisions. As a remedy, the concept of real option has been proposed,

which has been researched in a variety of disciplines during the last three decades. Essentially, it

	 	

	

16

serves as an extension to the DCF model. Several textbooks have been published to

comprehensively introduce the concepts, theories and methods in real option studies (Dixit and

Pindyck, 1994; Trigeorgis, 1996; Amram and Kulatilaka, 1999; Mun, 2002).

Before year 2000, in the energy sector, most of the real option literature applies to the oil

industry. Because of the deregulation of the electricity market in the mid 1990s, real option

principles began to be widely adopted in the analysis of electricity relevant topics such as

electricity markets and power system investments. However, it is not until the last decade that

the real option theory has been applied to the renewable energy field. The first paper by

Venetsanos et al. (2002) presents a framework to assess renewable energy projects by real

options and illustrates the possible uncertainties under deregulated energy markets. The paper

models a Greek wind energy project as a real option and evaluates it by the Black-Scholes model,

different from our ADP approach.

There are two popular methods in renewable real option analyses: the partial differential

equation (PDE) method and the dynamic programming (DP) method. Usually, the PDE method

requires an advanced understanding of stochastic models and financial mathematics. It is also not

easy to analyze a real option that allows an early exercise using PDE, similar to an American call

option. As another method, DP follows a recursive pattern to optimize decisions that influence

future cash flows. Unlike PDE, the DP approach makes intermediate values and decisions readily

available (Fernandes et al., 2011). In DP applications, a full stochastic DP is sometimes used, but

the simplest and most frequently used model is the lattice model. By calculating risk neutral

	 	

	

17

probabilities and up and down factors, it is possible to almost always identify the basic structure

from any real option and construct a corresponding lattice model (Mun, 2002). For example,

Munoz et al. (2009) use a trinomial lattice model to evaluate the option to invest in a wind power

generation project and demonstrate the probabilities of “invest now,” “wait,” and “abandon,”

while we only consider one option over the entire time horizon – in which year should we invest.

The main problem with the lattice model is the difficulty to deal with multiple uncertainties. It

needs multiple variables to represent different uncertainties, and thus the number of nodes grows

exponentially with the dimension of uncertainties. Furthermore, to approximate the stochastic

process accurately, it requires a high-dimension tree or infinitesimal time intervals. These two

factors make it computationally expensive in the attempt to model complex problems with

several uncertainties and to retain a satisfactory level of approximations of endogenous

stochastic processes.

As a result, we adopt a Monte Carlo simulation and optimization method to solve our model.

Unlike the PDE method, it requires less mathematical sophistication and can easily handle early

exercise situations. In contrast to the lattice model, it better copes with stochastic processes,

regardless of the dimension of uncertainties. In this study, we integrate Monte Carlo simulation

with ADP. It differs from the lattice model mainly in the fact that ADP can cope with a large

number of decisions and complex stochastic processes. Overall, Monte Carlo simulation is

widely used in real option, but less so in renewable energy. Martínez-Cesena and Mutale (2011)

propose an advanced real option methodology for renewable energy generation project planning

using a simulation approach for a hydropower case study. In comparison, we focus on the

	 	

	

18

flexibility of the investment decision because the exercise year is to be decided, rather than the

flexibility of a project design.

In financial theory, Longstaff and Schwartz (2001) propose a simple least-square approach to

value American options. The key contribution is their estimation of continuation values, i.e. the

conditional expectation of payoff if the option is held. In each time period, the option holder

compares the value of exercising the option and expected payoff when holding the option. If the

exercise value surpasses the holding value, the holder exercises; otherwise, the option is held and

exercised later. The holding value is based on a conditional expectation function that is generated

from the regression of ex post realized payoffs from continuation as functions of the values of

the state variables. The proposed algorithm falls in the category of ADP and is called least square

Monte Carlo (LSM). Applications of LSM in real options have been studied in Rodrigues and

Armada (2006). However, such a method has not yet been used in renewable real options. In this

chapter, we focus on the Monte Carlo simulation and we specifically incorporate LSM in finding

the optimal exercise time.

Solar-related literature is the scarcest among renewable applications of real options (Fernandes et

al., 2011). Four papers relate to our work in terms of the solar investment timing. The most

relevant is Ashuri et al. (2011), who study the best timing to invest in photovoltaic panels on

solar ready buildings. Ashuri et al. and our work both focus on the timing decision to install solar

panels of a stakeholder such as a company or homeowner. They assume the price of solar panels

decreases over time according to the experience curve, while we make a different assumption

	 	

	

19

that the price decreases according to market fair values. Ashuri et al. focus on savings from solar

panels while we concentrate on the minimization of the total NPV over the entire time horizon.

The uncertainty in their model is the electricity price, by which they calculate the savings from

solar panels against procuring electricity from a utility, while our uncertainty is predominantly

the REC price. They assume no cash flow before exercising the option, making it possible to use

the lattice model. But cash flow is captured throughout the future horizon in our model, and has

different patterns before and after the option exercise. They use a binomial lattice to forecast

electricity prices and by means of decision trees they determine the optimal installation time,

while we use a Monte Carlo simulation method combined with ADP. In summary, our model is

more general and realistic under current market conditions.

Beliën et al. (2013) also consider the optimal timing for a solar panel investment and follow a

similar method to Ashuri et al. (2011) to construct the model, and only differ in that they

consider more cost and revenue factors, and solve the problem using the future value analysis.

Sarkis and Tamarkin (2008) also consider savings as profit, not from electricity, but from

greenhouse gas emissions. They also adopt the lattice model to solve the timing problem.

Martinez-Cesena et al. (2013) from a savings point of view discuss about optimal timing using

the economics concept of an indifference curve. These four papers have a similar cash flow

structures and similar uncertainties. They differ mainly in the calculations of savings and the

methods that solve the models. Unlike these studies, we propose a different real option structure,

we combine multiple uncertainties with the focus on REC price volatility and solve the model

with a different method.

	 	

	

20

An important building block of this chapter is REC price forecasting. To the best of our

knowledge, only one paper, Tang et al. (2012), discusses a forecasting method. The paper

provides three stochastic models for price processes: Geometric Brownian Motion (GBM), Jump

Diffusion and NGARCH processes. By a statistical comparison they choose GBM as the

appropriate model. When forecasted prices exceed the ACP value, they simply cap the price by

the ACP. This can be problematic because it is possible for GBM to exceed the ACP for a long

time; and thus during that period, REC prices are constants (equal to ACP), which obviously

deviates from the market trend. In this chapter, we provide a forecasting model that in particular

accounts for the ACP value.

1.3. REC Forecasting Model

REC is a market response to RPS. It helps electricity providers to meet the RPS by purchasing

certificates from the REC market. As a provider of RECs, a company equipped with solar panels

should forecast the REC prices and incorporate them in its cash flow (REC sales) calculation.

Forecasting of REC prices is needed in our real option model explained in Section 1.4, but it also

has value as a standalone model in NPV analyses.

REC prices should have the ACP as the upper bound and zero as a natural lower bound. The

ACP value, functioning as the penalty payment that the utility incurs when it fails to meet the

RPS, varies across states. For example, New Jersey has a mature SREC market and has designed

its 20-year SACP plan so that by 2028 it would have 4.1% of its electricity from the solar power.

	 	

	

21

However, California just initiated a tradable REC market in 2011, with a promotional REC price

cap of $50 that will expire at the end of 2013. We base our study on the NJ SREC market and

use its available monthly-basis data from 2004 to the present. 81 historical monthly average

prices from April 2004 to May 2011 are used to calibrate parameters of forecasting models,

while the remaining 20 prices from June 2011 to January 2013 are used to perform out-of-sample

tests. The ACP value decreases over time from $711 in 2009 to $239 in 2028. For years before

2004 and after 2028, we assume the ACP is the same as in 2009 and 2028, $711 and $239

correspondingly.

To feature the variations of ACP values overtime, we introduce the artificial prices by dividing

the actual REC prices by the ACP value at that time. It is the artificial prices on which we base

our parameter estimation and price forecasting. To further obtain the forecasted REC prices, we

simply multiply the artificial prices by corresponding ACP values.

We first introduce the GBM model that has been used to forecast REC prices in Tang et al.

(2012). The process St , t ≥ 0{ }defined by

St = S0e
µt+σBt , t ≥ 0 (1.1)

is called a Geometric Brownian Motion with driftµ and volatilityσ . The standard Brownian

MotionBt is characterized by the independent normal distributions with mean 0 and variance

t, t ≥ 0 . In finance, St is considered as the asset price withS0being the initial price. It can be also

expressed by the stochastic differential equation (SDE):

	 	

	

22

dSt = St µdt +σdBt(), t ≥ 0 . (1.2)

In the SDE formulation, dSt is the price increment,dt is the time increment anddBt is the

increment for standard Brownian Motion. In particular, dBt also follows a normal distribution

with mean 0 and variance dt . By Ito’s formula, (1.1) and (1.2) are equivalent.

To simulate the GBM process, we need to discretize the time horizon. Suppose we want to

simulate a sample path of an asset price from [0,T]. We first divide the time interval into N equal

time steps with the interval lengthΔt = T
N

and simulate a sample path Sti , i = 0,1,...,N{ }with

ti = iΔt and a starting price S0 :

Si+1 = Sie
µ−1

2
σ 2⎛

⎝⎜
⎞
⎠⎟Δt+σεi+1 Δt

, i = 0,1,...,N −1,

whereε i ’s are i.i.d. random variables generated from the standard normal distribution with mean

0 and variance 1. In each step, we basically simulate the return process Si+1
Si

, and multiply it by

the previous asset priceSi . To obtain parametersµ andσ , we apply the widely used maximum

likelihood estimation method, based on historical prices.

A drawback of the GBM model is that even if the parameters are estimated accurately, prices

generated by this model can often exceed the ACP upper bound. To confirm this, we performed

the following experiment. We first simulated 110 sample paths (with 100 prices in one sample

path) generated by the GBM model with fitted parameters µ = 0.2424, σ = 0.4972 using

historical REC prices in New Jersey since 2004. If the generated artificial price is greater than 1,

	 	

	

23

then it is considered to exceed the ACP value. Figure 1.1 illustrates the number of sample paths

in which the sample paths exceed the ACP different times. From the plot, we observe that most

sample paths exceed the ACP value more than once, which is not acceptable as it contradicts the

market fundamentals. Even worse, some sample paths show more than 80% of the prices over

the ACP! There are only 17% of sample paths with no or only one exceeded value. This occurs

because the GBM model does not have an upper bound that should be fundamental to a REC

forecasting model.

Figure 1.1: Histogram of the frequency of exceeding the ACP value

Next we propose a new forecasting model that is borrowed from financial engineering – Jacobi

Diffusion (JD). Its stochastic differential equation is:

dst = −b st − β()dt +σ st 1− st()dBt ,

whereb > 0, σ > 0, 0 < β <1 . Quantityb is the mean reverting parameter,β is the mean of the

process, andσ is the volatility. Again, dst is the price increment,dt is the time increment anddBt is

the increment of standard Brownian Motion. In particular, st generated by this model lie between

0 and 1. To further obtain forecasted REC pricesSt , we simply multiply st by the ACP value. As

	 	

	

24

the ACP vary year by year, forecasted REC prices display different upper bounds (see Figure 1.2,

whose details are discussed later).

Figure 1.2: Simulated REC prices from the JD model

In simulation, discretization of the JD process is also needed. We follow the same structure

introduced in the GBM part: Δt = T
N

and we simulate a sample path Sti , i = 0,1,...,N{ }with

ti = iΔt and starting priceS0 (s0 = S0 / ACP0):

si+1 = si − b si − β()Δt +σ si 1− si()Δtε i+1, i = 0,1,...,N −1, (1.3)

Si+1 = ACPi+1 ⋅ si+1, i = 0,1,...,N −1. (1.4)

In essence, during each step we simulate the difference of the prices. Then we add the difference

to the previous price and perform the multiplication to get the forecast. However, due to the

discretization of the time, in a few cases si can be greater than 1 or less than 0, making it

impossible to produce the next price. To prevent this, we force si to be 0.99 or 0.01 in respective

cases. Finally, we follow the approximated maximum likelihood estimation method introduced

in Gouriéroux and Valéry (2004) to estimate the parameters in the JD model. The fitted

	 	

	

25

parameters areb = 0.11, β = 0.9085, c = 0.0808 by using the same historical data in New Jersey

as in the GBM case.

Unlike the GBM sample paths exceeding the ACP multiple times, the JD sample paths exceed

the ACP at most once in all 100 sample paths due to the time discretization. To further assess the

GBM and JD forecasts, we present the Quantile-Quantile (QQ) plot. The QQ plot is used to test

how well the sample data fits a distribution. In Figure 1.3, the x-axis plots the quantiles of

historical REC returns in NJ, and the y-axis plots the quantiles of the log returns of simulated

data from GBM and JD processes. We use log returns to normalize the data and consequently we

can compare the data over different time periods. From the QQ plots we observe that the points

from the JD process lie closer to the straight line, indicating that the JD process fits the historical

REC prices better.

As another piece of evidence, in an out-of-sample test, we find that the JD sample path behaves

better than the GBM sample path. Out of the 101 historical NJ REC prices, we use the first 81

points to estimate parameters for the GBM and JD processes. Then we generate 20 prices

separately from the two models and compare them with the remaining 20 historical prices.

Because the price before the 81st month are near the ACP value, there is little room for the actual

prices to go up and it is very likely that the price should exhibit a downward trend. The JD

process captures this feature very well and shows a sharp contrast to the GBM model, which

allows the prices to go up (Figures 1.4 and 1.5). All of the three comparisons show our

forecasting method outperforms the GBM model.

	 	

	

26

Figure 1.3: QQ plots of the JD and GBM models

Figure 1.4: Out-of-sample test for the JD model

Figure 1.5: Out-of-sample test for the GBM model

	 	

	

27

1.4. Option Contract Modeling

As described in the introduction, we consider a host to be an industrial non-power generating

company, considering a third-party developer to install, maintain and operate the panels on its

property due to the high up-front investment cost of solar panels. In return, the company pays the

charge based on the amount of electricity generated from the solar panels according to the PPA.

If the panels cannot satisfy the company’s power demand, it has to buy extra electricity from a

utility. The third-party developer has a good reason to engage in such a contract: besides the

regular profit by selling electricity to the company, the developer can also benefit from selling

the RECs from the solar electricity and the tax incentives from the government. However, as

time goes by, the value of solar panels declines. To minimize the company’s overall cost, the

company has an option to purchase the panels from the developer at a specified time in the future.

We model this option as an investment contract. In the contract, the company has the option to

buy the solar panels from the third-party developer for a predetermined price based on a buyback

time. After the purchase, the company then owns the panels and associated RECs, and thus

benefits from the REC market. The buyback option is analogous to the American call option.

First, they both have a limited time horizon. The call option has an expiration date, while the

buyback can only happen during the panels’ lifespan. Second, they both emphasize the exercise

opportunity. The call option exercises at a particular price prior to expiration while the company

buys the panels at a given price before the panels turn obsolete. So the questions for the company

are: (a) Should the panels be bought? (b) When should they purchase the panels in order to

minimize the net cost NPV during the entire time horizon? To answer these questions, we model

the buyback contract as a real option.

	 	

	

28

In a buyback contract for solar panels, the cash flows have different patterns before and after the

purchase of panels. Before the purchase, the company has to incur the electricity cost from

panels paid to the developer and to the utility for the remaining power. While after the purchase,

the company only needs to pay the electricity cost to the utility, potentially pay the maintenance

cost to the developer and receive profits by selling RECs and potential sales of redundant solar

electricity. Specifically, we calculate all costs on a monthly basis, i.e. the time period is a month.

We use the following notation

T - life span of solar panels (month)

 Gm – electricity energy generated from solar panels in month m (kWh)

 Dm – electricity energy demand in month m (kWh)

 Pm – price of electricity from solar panels in month m ($/kWh)

 Um – price of electricity from utility in month m ($/kWh)

Rm – REC price in month m ($/MWh)

 Wm – one-time purchase price of solar panels in month m ($)

 Mm – maintenance cost of solar panels in month m ($)

Usually, invertors of solar panels need to be replaced at the half of solar panels’ life span and the

replacement cost represents 10% of related investment cost. In our model, we incorporate the

replacement cost into monthly maintenance cost with

Mm =
Mm , if m ≠ T

2⎢⎣ ⎥⎦

Mm +MINV , if m = T
2⎢⎣ ⎥⎦

⎧
⎨
⎪

⎩⎪
,

	 	

	

29

whereMm is the regular maintenance cost andMINV is the invertor replacement cost.

We make the following assumptions:

1. The life span T of solar panels is finite.

2. The amount Gm of electricity generated from the solar panels decreases on a yearly basis

and we do not take into account any panel failures or variability of weather conditions

that cause generation variability.

3. The price of solar electricity Pm escalates at a fixed rate per year.

4. The price of utility electricity Um escalates at a fixed rate per year.

5. Panel purchase price Wm decreases according to the net profit the third-party developer

expects to incur from the solar panels after the company’s purchase, not according to

experience curves.

6. The company is obligated to purchase all the generated electricity before owning the

solar panels. If the generated electricity Gm exceeds the company’s demand Dm, the

current owner will sell it back to the grid at the current utility price Um.

7. The ACP values are known in advance and thus deterministic.

8. After the buyback the company pays the developer to maintain the solar panels with

maintenance cost Mm per month.

9. The company applies the buyback contract to mature factories or buildings so the

electricity demand is deterministic over years (including peak demand).

	 	

	

30

10. The discount rate is constant. We use different discount rates when calculating NPVs for

the company and the developer since they have dissimilar capital structures and thus

different discount rates.

Note that Gm, Pm and Um change on a yearly basis. For example, Gm decreases yearly based on

fixed degradation rate a. It means that the value of Gm changes only for m representing January

and in that month it decreases by 1 – a% over the value in the previous year.

Under these assumptions, we next present the cost analysis. Before exercising the option, the

company has to incur the following cost in month m:

Cm = GmPm + Dm −Gm()+Um .

After exercising the option, the company has to incur the following cost during each month:

Bm Rm() = Dm −Gm()Um −GmRm +Mm .

At any time, the panel purchase price Wm is the NPV of the developer’s future profit from selling

RECs and sales of electricity to the company. Future maintenance costs after the purchase are

subtracted from the purchase price in accordance with assumption 8, i.e.

Wm R
!"
m() = E γ d

n−m Rn + Pn()Gn −Mn()
n=m+1

T

∑ Fm
⎡
⎣⎢

⎤
⎦⎥

, (1.5)

where R
!"
m = Rm+1,Rm+2,...,RT(), γ d

k = e−rdk is the continuous discount factor and rd is the

developer’s discount rate. Note that rd is used only here for the calculation of panel purchase

price and the company discount rate is used elsewhere. By (1.5), the resulting optimal month can

balance the profits of the developer and company.

	 	

	

31

Accordingly, the exercise value of the option in month m is

Vm

e R
!"
m() = γ nCn Fm()

n=1

m

∑ + γ mWm R
!"
m() + E γ nBn Rn() Fm()

n=m+1

T

∑⎡
⎣⎢

⎤
⎦⎥

,

whereγ k = e−rk is the continuous discount factor, r is the company discount rate, Rk isFk

measurable, i.e.Fk =σ Ru ,u ≤ k() andFk contains the information up to time k. IfRm is a

martingale, then the expectation can be computed by substituting the Rn ’s byRm and thus

Vm

e R
!"
m() =Vme Rm() . Note that the value in month m is function of only R

!"
m , as we assume other

variables can be computed without uncertainty. Let

Vm

h R
!"
m() be the optimal cost if the optimal

exercise time happens after month m. This implies that in month m the option is not exercised

and thus this is the holding cost in month m. There does not exist a closed form expression forVmh .

The optimization problem that minimizes the overall cost is to find the latest monthmj
* for which

V
mj
*−1
h R
!"
mj
*−1

j() ≤Vmj
*
e R
!"
mj
*

j()

for a realization

R
!"
mj
*−1

j of REC prices. The selected final time is the average time of allmj
* over all

realizations j.

For such a cash flow form, it is difficult to apply traditional approaches of real options that treat

cash flows in a consistent pattern. We propose a new option framework that addresses this

difficulty.

	 	

	

32

We first define two artificial variables: the artificial strike price and the artificial stock price.

Artificial Strike Price Km: - (total cost that has incurred before month m + panel purchase price in

month m)

Artificial Stock Price Sm: + (total cost expected to incur after current month m)

The artificial strike price is known given the current month m while the artificial stock price is

still undetermined. This resembles the structure of an American call option with fixed strike

prices and volatile stock prices. In an American call option the option allows option holders to

exercise the option, i.e. buy an agreed quantity of a particular stock from the seller at a

predetermined price K at any time prior to and including its expiration date T. The value of

exercising an American option is

S − K()+ = max 0,S − K() = 0, S < K
S − K , S ≥ K

⎧
⎨
⎩

.

The artificial value of our option is thus simply

(total cost expected to incur after current month m + total cost that has incurred before month m

+ panel purchase price in month m) = Total cost during the entire time horizon.

To summarize these concepts, we draw a comparison between the American Call option and our

solar option in Table 1.1.

Table 1.1: Comparison of the American call option and the solar option

American Option Solar Option
Maturity time T Life span of the solar panel T

Stock price Sm at time m Total cost the company expects to incur after month m
Strike price Km at time m Total cost the company has incurred before and in month m

	 	

	

33

Early exercising time m (<T) Month to buy back the solar panels m (<T)
Option price if exercising at time m

=max 0,S − K()
Value of the project (the total cost during T) in month m

=Vm
e Rm()

Solving this model in traditional ways, such as by a PDE or the lattice model is not easy due to

the inconsistent cash flow form. We thereby propose an ADP based Monte Carlo simulation

method. The basic idea has been introduced in Longstaff and Schwartz (2001). The algorithm

first simulates a series of realizations of sample paths and calculates relevant cash flows.

Although exercise values can be easily computed, holding values in each month are difficult to

obtain. The algorithm thus approximates holding values by least square regression and then

performs DP backward recursion. The algorithm returns an optimal exercise time for each

realization. Instead of pricing financial options, we fit it to our proposed solar option framework.

Let us first modify the exercise value by changing its discount rates. Then the value becomes

Vm

e R
!"
m() = γ m−nCn Fm()

n=1

m

∑ +Wm R
!"
m() + E γ n−mBn Rn() Fm()

n=m+1

T

∑⎡
⎣⎢

⎤
⎦⎥

.

In this form, we consider the value to be the NPV in month m instead of at time zero. By our

definition, the artificial strike price

Km

j R
!"
m
j() =Wm

j R
!"
m
j() + γ m−nCn

j Fm()
n=1

m

∑ , (1.6)

and the artificial stock price

Sm
j R
!"
m
j() = E γ n−mBn

j Rn
j() Fm()

n=m+1

T

∑⎡
⎣⎢

⎤
⎦⎥

, (1.7)

	 	

	

34

where superscript represents the jth realization of REC prices. To be specific, each realization

uses a distinct REC price sample path. We also assume artificial strike prices are positive for

ease of computation.

As opposed to the simplicity of obtaining the exercise values in each month, it is relatively

difficult to calibrate the holding value

Vm

h R
!"
m()without knowing when to exercise the option. One

remedy is to approximate the holding values. When implementing the LSM method proposed by

Longstaff and Schwartz (2001), we use the following approximation formula,

ε j + c + a1Rm
j + a2 Rm

j()2
=

e
−r j

e*
−m()ΔmVj

e*

j ,e R
!"

j
e*

j(), if je* ≤ T ;

0, if j
e* = T +1.

⎧
⎨
⎪

⎩⎪
 (1.8)

where je* is the optimal exercise time of realization j after current month m, ε j is the

corresponding regression error, andΔm is the time increment. In (1.8), the right-hand side is first

computed and then approximated byε j + c + a1Rm
j + a2 Rm

j()2 by means of regression. For each j,

there is one regression observation, which yields coefficientsa1 , a2 and constant c obtained based

on the current optimal exercise values in all realizations.

The method follows the classic idea of a backward algorithm with the starting month to be the

last time period T. Next by substituting coefficients a1 ,a2 and constant c in the left hand side of

(1.8) without the regression errorε j , we have the approximated holding values

Vm
h Rm() = c + a1Rm + a2 Rm()2 .

	 	

	

35

If the holding value is less than the exercise value, in other words, the cost is less if the option is

held, then we go backward to the previous month and keep the current optimal exercise time je*

and valueVj
e*

j ,e . Otherwise, we update the optimal exercise time to the current month m and

change the corresponding exercise value toVm
e . We continue this procedure until we reach the

first month. Essentially, in each month, the method compares the value of exercising now with

the approximated optimal value of posterior exercising, i.e. the holding value. The algorithm is

presented in Algorithm 1.1.

	 	

	

36

Algorithm 1.1 – The modified least square ADP algorithm

Initialization:

a. Generate N sets of REC price sample paths indexed by j.

b. Calculate artificial strike price

Km

j R
!"
m
j()

and artificial stock price

Sm
j R
!"
m
j()

for all j, m.

c. Calculate the cash flows

Vm

j ,e R
!"
m
j() = Km

j R
!"
m
j() + Smj R

!"
m
j() for all j, m.

d. SetVT
j ,h =VT

j ,e , je* = T for all j.

For m=T-1 to 1

e. Apply the least square regression based on N realizations and find valuesa1 ,a2 and c by

solving

ε i + c + a1Rm
i + a2 Rm

i()2 = e−r ie*−m()Vi
e*

i,e for all i=1,…,N.

 For j=1 to N

f. Set

Vm
h Rm() = c + a1Rm + a2 Rm()2 and thusVm

j ,h = c + a1Rm
j + a2 Rm

j()2 .

g. CompareVm
j ,h andVm

j ,e :

IfVm
j ,h ≤Vm

j ,e , update j
e* = m andVj

e*

j ,e =Vm
j ,e .

 End

End

	 	

	

37

The algorithm returns the optimal exercise time je* for each realization. The average optimal

exercise month and other statistics can be obtained from these.

1.5. Case Studies

In this section, we present three case studies. We first study the optimal exercise timing and the

savings by buying back the panels at the optimal timing by considering only the REC prices as

uncertainty. This strictly mimics the setting of our industrial partner. The second case study adds

additional uncertainties to the model and the corresponding results are discussed. The third case

study presents the sensitivity analysis using different parameter values. These case studies are

based on data from a large US company where a project recently conducted is based on a fixed

contract. The company assumed a fixed REC price given in advance and stationary during the

planning horizon and optimally derived year 21 out of 30 years to buy back its solar panels.

By using stochastic REC prices and computing the difference of the total cost with exercise year

21, or the 252th month, and the total cost with the optimal exercise month, we obtain the savings

for incorporating the optimal timing. Note that we are using the same simulated REC prices to

calculate the total costs of these two cases. We define this saving to be the value of our buyback

option, which differs from the previously defined artificial option value, the total cost.

Next we introduce the setting of our case studies. The project is in California. Because its REC

market just started without adequate data for statistical inference, we use historical REC prices

from the New Jersey market instead to calibrate the parameters of the Jacobi process and forecast

	 	

	

38

REC prices. Note that we should first convert the historical REC prices into artificial prices by

dividing the REC price by the corresponding ACP value in that year since our inference is based

on the artificial prices ranging from 0 to 1. Then by approximated maximum likelihood

estimation, we obtain the fitted parametersb = 0.11, β = 0.9085,c = 0.0808 for equation (1.3). To

simulate the REC prices in California, we set the ACP value over the 30-year horizon to be

constant at $25 since the state does not have a clear plan for ACP. Then by using (1.3) and (1.4),

5000 sample paths of REC prices are simulated.

The solar project input consists of solar panel generation output, electricity energy and demand

and utility electricity rates based on 3-tier periods: on-peak, mid-peak and off-peak periods. The

utility rate has three main parts: delivery, demand and energy. A monthly peak-demand cost

from the utility is also included and is determined by the largest daily peak demand during mid-

and on-peak periods. Besides, there are over 20 other parameters in the model. For example, the

annual degradation rate of the solar panel generation output, the annual escalation rate of the

solar electricity price, the starting price of solar electricity and many other tax exemption

parameters. These parameters were given by the partner company. Invertor replacement cost is

not considered in the case study since almost all sample paths have exercise time after year 15,

which implies that inventor cost is occurred by the third party. By omitting it we also mimic our

industrial partner’s contractual settings.

Our methodology has been implemented in MATLAB on a Mac computer with 3.4 GHz Intel

Core i7-2600 processor and 8 GB 1333 MHz DDR3 RAM.

	 	

	

39

We first assume that REC prices are the only source of uncertainty. Under a single source of

uncertainty, i.e. the REC price, the total cost expected to incur after current month, i.e. the

artificial stock price (1.7) first increases and then decreases (Figure 1.7), while the total cost that

has been incurred, i.e. the artificial strike price (1.6) increases exponentially (Figure 1.6). The

panel purchase price (1.8), decreases over time and reaches zero at year 27.5, or the 330th month,

out of the 30-year lifespan (Figure 1.8), which suggests the optimal timing should definitely be

prior to this time as the panels can be bought for free and thus utilizing the potential panel

benefits over the remaining periods. These costs comprise the basic values in determining the

optimal timing. With the ACP value being equal to $25 over the entire time horizon, the average

optimal exercise time is year 22.2, or the 266th month. Figure 1.9 shows the histogram of the

optimal exercise year.

Figure 1.6: The artificial strike prices

	 	

	

40

Figure 1.7: The artificial stock prices

Figure 1.8: The panel purchase prices

Figure 1.9: The histogram of optimal exercise year

	 	

	

41

We next discuss the impact of different ACP choices. We let the ACP values increase from a

baseline of $20 to a maximum of $500. It turns out that the optimal year increases with the ACP

but tends to stabilize when the ACP is close to or over $300 (Figure 1.10). Figure 1.11 shows

that the value of the buyback option increases linearly. It should also be noted that the rate of

savings, calculated by dividing the savings with the total cost in the fixed contract, increase from

2.55% when ACP value is $20 to a level of 10.76% when the value reaches $500 (Figure 1.12).

Since the New Jersey market has a long history of high REC prices (over $500), the savings rate

would be over 10% in the NJ case.

Figure 1.10: The optimal exercise years

	 	

	

42

Figure 1.11: The values of the solar options

Figure 1.12: The percentages of money saved

So far we have only considered one uncertainty. Since electricity demand, utility electricity price

and maintenance cost are not deterministic in reality, we next further assume that the electricity

demand and maintenance cost in every time period follows a normal distribution centered at the

fixed value used thus far with 10% volatility. We also assume that the escalation rate of the

utility electricity price follows a uniform distribution between 1% and 2% every year.

To handle this situation, we have to augment the state space. Hence (1.6) changes to

	 	

	

43

Km

j R
!"
m
j ,D
!"

m
j ,M
! "!

m
j ,U
!"

m
j() =Wm R

!"
m
j ,D
!"

m
j ,M
! "!

m
j ,U
!"

m
j() + γ m−nCn

j Fm()
n=1

m

∑ ,

and (1.7) changes to

Sm
j R
!"
m
j ,D
!"

m
j ,M
! "!

m
j ,U
!"

m
j() = E γ n−mBn

j Rn
j ,Dn

j ,Mn
j ,Un

j() Fm()
n=m+1

T

∑⎡
⎣⎢

⎤
⎦⎥

,

where D
!"

m = Dm+1,Dm+2,...,DT(), M
! "!

m = Mm+1,Mm+2,...,MT(), U
!"

m = Um+1,Um+2,...,UT().

Meanwhile, the regression equation in our algorithm also has to be modified. In particular, step e

changes to

ε i + c + a1Rm
i + a2 Rm

i()2 + x1Dm
i + x2 Dm

i()2 + y1Mm
i + y2 Mm

i()2 + z1Um
i + z2 Um

i()2 = e−r ie*−m()Vi
e*

i,e

for all i=1,…,N, with six additional regression coefficients x1, x2, y1, y2, z1, z2 . Step f also has to be

changed in the same way.

After introducing these uncertainties, the basic trends of the optimal year and option value do not

change substantially but display more variance (Figures 1.13, 1.14 and 1.15). It is still the case

that the higher the REC prices, the higher the savings rate, from 3.3% when ACP is $20 to 10.69%

when it reaches $500.

	 	

	

44

Figure 1.13: The optimal exercise years under the general scenario

Figure 1.14: The values of the solar option

Figure 1.15: The percentages of money saved

	 	

	

45

The third case study explores the sensitivity of our results with regard to different parameter

values. The following tables present the optimal year and savings rates with different input

values of company and developer discount rates, annual degradation rate of the solar panel

generation output and annual escalation rate of the solar electricity price. The savings rate is the

percentage change in cost with respect to the baseline case. The results are obtained from the

model with REC uncertainty.

Table 1.2: Optimal exercise years with different discount rates

Optimal Exercise Year

 Company Discount Rate

Developer
Discount

Rate

 -2% -1% ±0% +1% +2%
-2% 23.8 24.3 24.5 24.8 25.2
-1% 22.3 23.1 23.6 24.2 24.4
±0% 19.9 21.3 22.2 23.0 23.4
+1% 14.2 17.7 19.9 21.2 22.1
+2% 1.2 9.2 14.7 17.7 19.9

Table 1.3: Savings rates with different discount rates

Savings Rate

 Company Discount Rate

Developer
Discount

Rate

 -2% -1% ±0% +1% +2%
-2% 3.45% 3.18% 2.96% 2.77% 2.59%
-1% 3.23% 2.98% 2.78% 2.59% 2.44%
±0% 3.11% 2.83% 2.62% 2.46% 2.30%
+1% 3.13% 2.78% 2.54% 2.34% 2.20%
+2% 5.71% 3.13% 2.57% 2.31% 2.14%

	 	

	

46

Table 1.4: Optimal exercise years and savings rates with different solar electricity price

escalation rates

Solar Electricity Price Escalation Rate Optimal Exercise Year Savings Rate
1% 19.3 2.10%
2% 22.2 2.62%
3% 24.4 3.30%
4% 25.7 4.11%
5% 26.9 5.05%

Table 1.5: Optimal exercise years and savings rates with different solar panel output

degradation rates

Solar Panel Output Degradation Rate Optimal Exercise Year Savings Rate
0.5% 23.6 2.90%
1.0% 22.2 2.62%
1.5% 20.6 2.41%
2.0% 18.5 2.25%
2.5% 16.0 2.18%

Tables 1.2 and 1.3 exhibit the results when discount rates are perturbed by 1% or 2%. The

optimal exercise year increases with increasing company discount rates while it decreases with

increasing developer discount rates. The savings rate decreases with increasing company

discount rates. With an exception of the +1% case (with a company discount rate perturbed by -

2%) and the +2% case (with a company discount rate perturbed by less than or equal to 0%), it

decreases with increasing developer discount rates. This exception is reasonable since +2%

developer discount rate leads to more volatile exercise years and thus a larger range of savings

rates. Generally, the results are more sensitive with low company discount rates and high

developer discount rates.

	 	

	

47

Table 1.4 demonstrates the positive relationships between the solar electricity price escalation

rate and our two target metrics. Table 1.5 reveals that the optimal exercise year and savings rate

are negatively correlated with the solar panel output degradation rate.

1.6. Conclusion and Future Work

In this chapter we present a developer-host contract that specifies the panel buyback year in

which the host buys back the solar panels installed on its property. We model the cash flows of

the host as an option framework and solve the minimum cost problem using Monte Carlo

simulation based on ADP to obtain a good buyback timing. The modified framework can

manage the inconsistent cash flows before and after the option exercise. By considering the panel

purchase price to be the expected profit of the developer, the exercise year from the algorithm

can balance the benefits of both the developer and host. In addition, we propose a new REC

forecasting model, which can be applied to a market with specific RPS and ACP values.

The structure we introduced can fit a broader set of projects, such as wind generation. Such

projects should have two common characteristics: only one exercise decision is made during the

entire time horizon and cash flows differ before and after the exercise. Future work should

extend the assumptions of our model. For example, we assume that the utility price increases

year by year based on a fixed contract. However, a forward contract between the host and the

utility can be employed. For the REC forecasting method, how market and policy factors

influence the REC price should also be examined.

	 	

	

48

CHAPTER 2

Portfolio Optimization for American Options

2.1. Introduction

Portfolio optimization is a classic topic in financial engineering since the inception of the

Modern Portfolio Theory by Markowitz (1952). With different objectives and constraints, a large

body of literature has discussed the optimal capital allocation to financial assets such as stocks

and bonds in a portfolio (see Brandt (2010) for a survey). Despite the wide recognition that

options can help complete the market, only a handful of papers discuss a specific portfolio

consisting mainly or only of options. Due to the high leverage nature of options market, option

portfolios may yield unexpected returns that can potentially outperform a benchmark index. One

may argue that we may apply broad researched portfolio optimization methods to obtain the

weight allocation among options. However, it is already hard to find a stochastic process that

captures the behavior of option returns exactly. Furthermore, the early exercise feature of

American options makes it more difficult to apply methods of classic portfolio optimization to

option portfolios. Option portfolios thus attract less attention than portfolio of stocks, futures or

other assets.

When adding options into a portfolio, existing literature only considers European options, which

are more convenient to incorporate thanks to its structural simplicity. However, with flexible

exercise timing, American options are more complicated and thus modeling American option

portfolios is much more challenging. Investors solve an American option portfolio in two steps:

	 	

	

49

first determine when to exercise the options in absence of all other considerations and then find

the weights. However, in a simple example given next, we show that this is not necessarily a

good strategy.

Suppose there are two independent American options in a portfolio, denoted by option 1 and

option 2. By the pricing algorithm for American options in Longstaff and Schwartz (2001), their

optimal exercise time can be found. Given option returns, we then implement a portfolio

optimization with an objective to minimize the variance of the portfolio return based on the

Markowitz mean-variance model. We impose three constraints. The first constraint demands the

completeness of weights, i.e. the sum of weights equals to 1. The next constraint requires that the

portfolio returns at least 95% of the average of the maximum of the two options returns. The last

one is the no-short-selling constraint, which translates into nonnegativity of the two weights. The

initial values of the underlying asset for option 1 and 2 are set to be $20 and $30 with volatility

0.2 and 0.3, respectively. We simulate the underlying asset returns using a geometric Brownian

motion (GBM) model. In a discrete time setting, options can only be exercised at the end of

month 1, 2, …, 6, where month 6 is the maturity time. Their exercise prices are $19.8 and $29,

respectively, and the risk free rate is 6%. From the pricing algorithm, the option prices are $0.8

and $1.7, and the optimal exercise time for both options is month 5. Table 2.1 presents the

variances of the portfolio return under different combinations of exercise time. It is apparent that

if we exercise both options in month 5, we would not obtain the minimum variance. Instead,

option 1 should be exercised in month 5 and option 2 in month 2, meaning the optimal exercise

	 	

	

50

time can be different if we consider the weight and timing decisions together. In fact, this is the

motivation and goal of our Q-learning algorithm for American option portfolios.

Table 2.1: Variance of portfolio returns with different exercise times

Month 1 2 3 4 5 6
1 2.16 3.74 3.34 2.81 2.66 2.57
2 2.59 5.18 3.08 2.25 2.08 2.06
3 4.93 2.16 2.47 1.88 2.03 2.19
4 3.09 2.30 1.92 2.24 2.51 2.80
5 2.17 1.67 2.17 2.60 2.93 3.33
6 1.87 1.79 2.42 2.92 3.35 3.82

In our Q-learning algorithm, we consider two stages: the optimization and evaluation stage. In

the optimization stage, we employ an iterative progressive hedging algorithm to find the weights

and exercise time of all options at each time period, where the Q-values are approximated by

regression. Note that here the term “hedging” differs from the meaning of hedging in finance – it

is the name of an algorithm. Particularly, we include a penalty term in the myopic problem with

approximate Q-values to drive the weights into convergence since we need only one set of

weights (and not weights per period). In the evaluation stage, we mimic real-time trading and

refine when to exercise the options for each simulated sample path (trajectory) given the weights

from the optimization stage. The algorithm at this stage is similar to the preceding one except

that the progressive hedging part is omitted while regression-based Q-value function

approximation remains. For this stage, we have designed two algorithms. In one we modify an

existing algorithm for pricing American options (our modification of the existing algorithm is

needed because it cannot handle a portfolio of American options). The second algorithm uses a

variant of our Q-learning algorithm. These two algorithms are compared for a small number of

American options and time periods against a quasi-optimal benchmark, which enumerates all

	 	

	

51

possible weight and exercise time combinations with perfect information, i.e. flawless

knowledge of when the maximal returns are achieved. We conclude by means of a simulation

study that our algorithms perform well, with a small gap around 10% from quasi optimal in a

relatively long time horizon. With empirical experiments, we discuss the scenarios where our Q-

learning algorithms beat the underlying index from 2006 to 2015.

The main contributions of this chapter are as follows.

1. It is the first work that adds American options into option portfolio and explicitly takes

the optimal exercise time into account concurrently with weights.

2. We develop a non-standard progressive hedging algorithm combined with Q-learning for

solving the underlying option portfolio problem.

3. Along the way, we also exhibit a new algorithm for finding exercise times of a portfolio

of American options. It significantly outperforms an adaption to the portfolio setting of

an existing algorithm for finding the time to exercise an American option.

The structure of this chapter is as follows. Section 2.2 provides a literature review. Section 2.3

introduces the models and algorithms. Section 2.4 discusses the simulation and empirical

experiments. Section 2.5 draws conclusions and presents future work.

2.2. Literature Review

In portfolio theory, Markowitz proposed the mean-variance model, an intuitive method that can

handle single-period models well. However, investment is not simply a one-period decision.

	 	

	

52

Arrival of new information or changes in the overall objective can prompt adjustments in trading

strategies. Thus, a multi-period model is more appropriate to cope with current complex portfolio

optimization problems. Usually, researchers treat portfolio optimization in a continuous or

discrete time. Merton (1969, 1971, 1975) first introduces portfolio choice problems in

continuous time using stochastic calculus. The continuous setting enables to find a closed-form

solution in some simple cases, for example, Merton (1990) gives an analytical solution to a

portfolio optimization problem with a Brownian motion model using logarithm or power utility

functions. In this chapter we discuss the discrete-time setting, which can be formulated as a

Markov decision problem (MDP). There are a number of MDP methods used in the portfolio

optimization literature, see Birge (2007) and Haugh and Kogan (2007) for a survey, but none

when options are present. Q-learning, a branch of MDP and a model-free reinforcement learning

technique, has been widely applied in the fields of machine learning and artificial intelligence.

However, very limited literature applies Q-learning to solve portfolio optimization problems

(sometimes under the name of approximate dynamic programming, see Denault and Simonato

(2017)).

Current works on American option pay most attention to its pricing theory, with dedicated

treatment to early exercise timing (e.g. Longstaff and Schwartz (2001), Tsitsiklis and Van Roy

(2001), Stentoft (2014)). Yet, with a simulation and regression scheme, their focus is always on a

single option and they do not consider the benefits of diversification by adding other American

options and pricing the corresponding option portfolio. The value functions in their works

	 	

	

53

emphasize the approximation to expected option payoffs, while our Q-learning algorithm deals

with the utility of option returns.

Since no existing literature adds American options into portfolio optimization, we only

summarize papers that build portfolios with European options. Liu and Pan (2003) introduces

derivatives into portfolios comprised with only primitive assets such as bonds and stocks. In a

continuous time model, they obtain analytical results and conclude that options can improve the

portfolio performance because they can complete the markets by adding risk factors such as

stochastic volatility and price jumps. Ilhan et al. (2004) builds a portfolio model consisting of

only one option and one stock based on stochastic volatility, while our model does not limit the

number of derivatives and thus no close form expressions exist. By utility-indifference pricing

mechanism, they further attain the optimal static composition. Constantinides et al. (2012)

discusses an option portfolio constituted to maintain targeted maturity, moneyness and market

beta. Their focus is to explain the cross-sectional variation of index option returns rather than to

improve the portfolio performance. Other relevant papers are Jones (2006), Driessen and

Maenhout (2013), Eraker (2013) and Hu and Jacobs (2016), who also, to some extent, discuss

the role of European options in a portfolio. Their perspectives of optimizing portfolios vary, such

as put mispricing, portfolio insurance, and option trading. These papers consider options only as

European options. We are the first to add American options into portfolios and particularly deal

with the optimal exercise time.

	 	

	

54

In this chapter, we apply a least-square recursive regression in the Q-learning algorithm for

American option portfolios. The general idea of the approximation method can be found in

Powell (2011). As the name suggests, regression-based approximations need to update regression

coefficients. In the American option algorithm, besides regression, we introduce progressive

hedging (PH) to find weights in the optimization stage. PH is proposed by Rockafellar and Wets

(1991), which uses a penalty term to lead optimization into convergence. See Bianchi et al. (2009)

for a survey of applications using PH.

2.3. Models and Algorithms

In this section we discuss the model for an American option portfolio, which is then solved by a

Q-learning (QL) algorithm. In contrast to existing literature, we do not follow a traditional buy or

sell option trading scheme and explicitly consider the early exercise opportunity of American

options as a potential profit-generating source. In our work, the focus is not to achieve a market

neutral portfolio (whether delta or gamma neutral) since our investment horizon is in the order of

years, but an optimally weighted portfolio that can be exercised according to pre-calibrated value

functions of utilities, aiming at maximizing the utility function or certainty equivalent of returns.

There is no portfolio rebalance in our model; once the weights are determined, the only decision

left is exercise timing. Moreover, we do not allow short selling and borrowing; therefore, weight

values are strictly nonnegative and sum up to 1.

We assume that the time horizon is finite and investors can only trade options at discrete times

t=1,…T. Suppose the number of options is N, and they are based on the underlying asset whose

	 	

	

55

price At = (A1,t ,A2,t ,...,AN ,t) evolves based on a stochastic process. This is a general setup, but one

could assume that the underlying asset is the same for all options.

The price of option i is pi = pi,1, pi,2 ,..., pi,T() , and the strike price isKi = Ki,1,Ki,2 ,...,Ki,T() . Then

the return of option i during time t is simply

ri,t =

Ai,t − Ki,t

pi,t

⎛
⎝⎜

⎞
⎠⎟

+

 if call option;

Ki,t − Ai,t
pi,t

⎛
⎝⎜

⎞
⎠⎟

+

 if put option,

⎧

⎨

⎪
⎪

⎩

⎪
⎪

where i()+ = max i,0() . Note that this schema can be extended to include other hedging

instruments into the portfolio. For example, if an investor would like to add the underlying asset,

we can simply include the return process of the underlying as a new ri,t , where i now represents

the underlying asset. We consider the underlying asset is “exercised” when it is sold and the

transaction time as the “exercise time.” In this way, the underlying asset can be effectively

treated as an option in the following discussions. The hedging scenario will be revisited during

empirical experiments in Section 2.4.

The portfolio strategy over the entire horizon is represented by

w = w1,w2,...,wT()∈X = w∈! +

N×T : wi,t
i=0

N

∑ = 1,for every t⎧
⎨
⎩

⎫
⎬
⎭

, wherewt = w1,t ,w2,t ,...,wN ,t()T .

Weightwi,t , for every i ∈{1,..,N} is the weight of option i during time t in the portfolio.

	 	

	

56

In solving the portfolio optimization problem comprising American options, we face challenges

not only to come up with the optimal weights, but also the optimal exercise timing. To tackle the

challenge, we create a Q-value function that is a product of option weights, exercise time and the

underlying asset price (i.e. product of the actions and states, to be defined in Section 2.3.1), the

most crucial features for an American option portfolio to approximate the value function of

utilities. Q-learning is more appropriate in this context since exercise times are discrete values,

which are present in both the actions and state space. For the same reason, regression is more

appropriate to approximate the Q-value function; it does not involve derivatives and updates the

slopes dynamically from trajectory to trajectory.

Given a set of weights, the optimal exercise times have to be determined. Following such an

approach it is not clear how to change or adjust the weights. The idea is to relax the restriction

that we have a single weight vector that comprises the weights of each option. Instead we assume

that there is a weight vector per time period which are then adjusted in each iteration. In other

words, the weights are for each option and for every time period. To drive the weight

optimization into convergence, we introduce a progressive hedging component into the

optimality equation. PH adds a factor to the myopic optimization problem that penalizes the

weights to differ across time periods. At the end of the PH algorithm, we fix the portfolio

weights by taking the average across all time periods, which becomes an optimal weight vector

that can be further used when we try to find the optimal exercise timing in the evaluation stage,

the only decision variable that remains. The evaluation stage provides a more accurate

assessment of the average performance than the optimization stage only.

	 	

	

57

2.3.1. Optimization stage

In this stage, our main task is to find optimal option weights that are used later.

Let the exercise time of each option

St = s1,t , s2,t ,..., sN ,t()

and underlying asset prices At be the state variables. Here si,t is the exercise status indicator

which equals to t if option i is exercised in time period t, and 0 otherwise. Particularly,

si,0 = 0, for every i = 1,...,N . Asset prices are part of the state space for algorithmic purposes (the

Q-value approximation is also a function of asset prices). This also allows the opportunity to

stochastically generate them based on a time dependent process without a need to change the

algorithm. One of the action variables is the set of options that should be exercised in time

period t. Note that the exercise times depend on the realization of asset prices and option returns

but for simplicity we omit this dependency in our notation. We represent the option set by a

vector of index variables, denoted by yt . For example, if options 1 and 2 are to be exercised, then

yt = 1,2{ }. Hence, the corresponding post decision state variable is

St
y St , yt() = St + t ⋅1yt , (2.1)

where1yt is an N-element vector of indicator variables with element values equal to 1 if

corresponding options are to be exercised, and 0 otherwise. In the previous example,

1yt = 1,1,0,0,...,0() .

	 	

	

58

Once the state variable si,t of option i changes from 0 to a positive integer of time, it is fixed to

this integer in later time periods. Another action variable is the option weight in each time period

wt = w1,t ,w2,t ,...,wN ,t() .

Note that we have different weights for each option and each time period, which purposely

deviates from the practice that only one set of weights is required before an investment. To

obtain the optimal set of weightswi for every i, we simply take the average of wi,t for every t. This

set of weights is fixed and then used in the evaluation stage. Here we follow the strategy outlined

in the introduction of the section. In other words, we have side constraints w1 = w2 = ...= wT = w .

These constraints are relaxed in the PH spirit.

The objective function for our problem ismax
w
E U WT w()()⎡⎣ ⎤⎦ , wherew = wt{ }t=1

T . Here WT is the

terminal portfolio wealth. The optimality equation reads

Vt St ,At() = max
wt

E max a,b() St ,At⎡⎣ ⎤⎦,

where

a = max
yt⊂ i: si ,t=0{ }

Vt+1 St
y(St , yt),At(),

b =U wi,tri,si ,t
i: si ,t≠0
∑ + wi,tri,t

i: si ,t=0
∑

⎛

⎝
⎜

⎞

⎠
⎟ +Vt+1 St

y St , i : si,t = 0{ }(),At().

Contribution a is the value function if less

than (R – 1) options are exercised, where R is the

number of unexercised options up till now. It corresponds to the case that not all options are

exercised, i.e. yt is a proper subset of i : si,t = 0{ } . Term b is the value function if all the

	 	

	

59

remaining options are exercised, thereby no optimization is involved in this equation. Moreover,

the utility of portfolio wealth is added only after all options are exercised . Without loss of

generality, we assumeW1
total = 1, and henceWT

total = wi,tri,si ,t
i: si ,t≠0
∑ + wi,tri,t

i: si ,t=0
∑ is the argument of the

utility function. The first sum of WT is the weighted return of exercised options before time

period t. The second sum is the weighted return of the remaining options exercised in time period

t. The maximum of a and b is then considered as the objective function that is being optimized to

find the best weights and exercised times.

Instead of approximatingVt , Q-value function is derived to approximateVt+1 in a and b as a

function of St ,At andwt . In essence, we rewrite

a = max
yt⊂ i: si ,t=0{ }

Qt+1 St
y St , yt(),At ,wt(),

b =U wi,tri,si ,t
i: si ,t≠0
∑ + wi,tri,t

i: si ,t=0
∑

⎛

⎝
⎜

⎞

⎠
⎟ +Qt+1 St

y St , i : si,t = 0{ }(),At ,wt().

This is not quite the standard Q-value approximation but a minor variation. To approximateQt+1 ,

we use recursive least square regression for nonstationary data. In the regression,

Qt+1 St
y ,At ,wt() = θi,t+1 ⋅ wi,t si,t

y At()
i=1

N

∑ ,

whereθ are the regression slopes, and inside the bracket is the product of three features – weights,

exercise times and asset prices. The slope updates keep track of the temporal differences of old

and new estimates of the value functions from iteration to iteration. Note that our method is

	 	

	

60

model-free and does not involve transition functions since asset prices are based on Monte Carlo

simulation.

We also include a progressive hedging mechanism to accelerate convergence by imposing that

w1 = w2 = ...= wT = w , which means all time periods should have the same set of weights. To

achieve this, a penalty term is introduced in the optimality equation to drive the optimal weights

to converge to w . The adjusted optimality equation now becomes

V t St ,At() = max
wt

E max a,b()− zt()T ⋅wt −
ρ
2
wt −w 2

2⎡
⎣⎢

⎤
⎦⎥
St ,At

⎧
⎨
⎩

⎫
⎬
⎭
,

where parameter zt represents the cumulative difference betweenwt andw .

The algorithm called IPH (iterative progressive hedging) is presented in Algorithm 2.1. In Step 2,

we find the updated value of Vt based on the current approximation to Qt+1 . Step 3 exhibits

standard formulas for updating regression coefficients when a single new observation is added.

After each iteration of progressive hedging, the new average weightwNEW and cumulative

deviation zt are updated in Steps 5 and 6. We terminate the algorithm if the norm betweenwNEW

andw is less than a given threshold gterm (Step 7); otherwise, letw take the new value (Step 1).

The obtained single set of weightsw is further used in the evaluation stage as an input.

	 	

	

61

Algorithm 2.1

a. Initializeθ t
0
,λ, Bt

0 = ε I , simulate samples At
n ,ri,t

n .

b. Set gk = 1, w
NEW

= 1/ N{ }N×1 , z = 0{ }N×T .

Loop

1. Let w = w
NEW
.

For n=1,…,N1

For t=1,…,T

2. Solve

V! t

n
= max

wt
n
max a,b()− zt

n()T ⋅wt
n + ρ
2
wt

n −w
2

2⎡
⎣⎢

⎤
⎦⎥

 where

a = max
yt
n⊂ i: si ,t

n =0{ }
Qt+1

n−1
St
y(St

n , yt
n),At

n ,wt
n(),

b =U wi,t
n r

i,si ,t
n

n

i: si ,t
n ≠0
∑ + wi,t

n ri,t
n

i: si ,t
n =0
∑

⎛

⎝
⎜

⎞

⎠
⎟ +Qt+1

n−1
St
y St

n , i : si,t
n = 0{ }(),Atn ,wt

n(),

Qt+1
n−1

St
y,n ,At

n ,wt
n() = θ i,t+1

n−1
⋅ wi,t

n si,t
y,nAt

n()
i=1

N

∑ .

Letwt
n,*be an optimal solution and yt

n,* be an optimal solution to the

maximization problem for computing a or i : si,t
n = 0{ } , depending on which

term attains the maximum inmax a,b() . By using yt
n,* and (2.1), we update

the exercise time of each option i to si,t
y*,n . We then define φi,t

n = wi,t
n,*si,t

y*,nAt
n for

every option i.

3. Update

	 	

	

62

 θ t
n
= θ t

n−1
− Ht

nφt
nε! t

n
,

where

ε! t
n
= θ t

n−1()T φtn −V" tn , Ht
n = 1

γ t
n Bt

n−1, γ t
n = λ + φt

n()T Btn−1φtn ,

Bt
n = 1

λ
Bt
n−1 − 1

γ t
n Bt

n−1φt
n φt

n()T Btn−1⎛
⎝⎜

⎞
⎠⎟

.

4. Find the next pre-decision state

St+1
n = St

y St
n , yt

n,*() .

End

End

5. UpdatewNEW
= 1
NT

wt
n

t ,n
∑ .

6. Update zt
n = zt

n + ρ wt
n −w

NEW() for all n, t.

7. If w
NEW

−w < gterm , exit.

End

The most important output of IPH are weightsw (although the approximate Q-value function is

also an output).

2.3.2 Evaluation stage

With weights from the optimization stage, we now move on to evaluation. By fixing option

weights, we mimic real-world practice that only allows one single set of weights that does not

	 	

	

63

vary over time. In essence, this stage evaluates the weights more precisely by using two different

algorithms tailored specifically for exercising options.

The first algorithm is a stripped-down version of IPH, which omits the outer loop of progressive

hedging. With these simplifications, the new algorithm called IPH-QL only finds the exercise

time of each option in every trajectory (given weights from the optimization stage).

The second evaluation algorithm is a modification of Longstaff and Schwartz (2001). They

proposed a Least Square Monte Carlo (LSMC) algorithm, which prices an American option by

regression and returns exercise time for each sample path. We modify their method, apply it in

the portfolio setting and evaluate their performance in discovering the exercise time. To capture

risk aversion, cash flows in the original algorithm are replaced by the utility of option returns.

The algorithm assumes an additive utility function so that the portfolio utility is the sum of

individual utilities. The modified LSMC algorithms are exhibited as Algorithms A.2 and A.3 in

Appendix A. The resulting algorithm is labeled as IPH-LSMC (weights obtained by IPH and

evaluation done by our version of LSMC).

Note that the two evaluation algorithms only provide two approaches to evaluate the weights by

determining exercise times in two distinct ways. One is based on our own QL (stripped-down

version of IPH where weights are fixed but subsets of options to exercise are explicitly captured

in states and actions) and the other one is a modification of a known algorithm based on LSMC.

	 	

	

64

2.3.3. Quasi-optimal benchmark algorithm

To benchmark our IPH algorithm at the optimization stage, we also introduce a ‘quasi’ optimal

algorithm that sweeps all possible weight vectors in fine-granular discrete steps. Since there are

many weight value combinations, the algorithm works for only a small number of options. For

each weight vector, we then search the best exercise time of each option in every sample path,

which is found by enumerating all possible sets of time periods and taking the one with the

largest utility. This enumeration step implies that the number of time periods also needs to be

reasonably low. Finally, we select the weight vector with the largest portfolio utility. The

weights obtained from this enumeration process are further used at the evaluation stage to assess

the quality of IPH. The resulting versions based on the two evaluation methods are denoted as

QO-QL and QO-LSMC.

To add on top of this the quality of the evaluation, we assume perfect information at the

evaluation stage, i.e. simply enumerates all possible sets of exercise times and picks the one that

yields the largest portfolio utility, given the quasi optimal weights. We call the resulting

algorithm QO-PERFECT.

It should be stressed that to obtain quasi optimal weights at the optimization stage and optimal

exercise times at the evaluation stage requires perfect information, which is impossible in reality.

Except for enumerating weights, thus, QO-PERFECT provides an upper bound on an optimal

solution. In what follows we use QO-PERFECT as the baseline and all other solutions in the

simulation study are measured against it.

	 	

	

65

2.4. Numerical Results

In this section, we show numerical results by comparing the proposed algorithms. Both

simulation study and empirical experiment are presented. We include a simulation study because

it helps to assess the average or expected performance of our algorithms, while the empirical

experiment only evaluates an actual sample path.

We use the CRRA utility function

U W() = W
1−γ

1−γ
.

To avoid extremely negativity, the utility is set to a fixed negative value given a W less than a

negative threshold. The threshold is determined upon the choice of γ .

All algorithms have been implemented in MATLAB on an Apple Mac computer with 4.0 GHz

Intel Core i7 processor and 16 GB of RAM.

2.4.1. Simulation study

We simulate 20 months of log returns of the underlying asset using GEV distribution with

parameter k = -0.149 , σ =0.0153 ,µ=-0.00545 . These parameters are fitted based on 15 years of

historical S&P500 index values. After simulating the monthly returns, the cumulative index

returns for each trajectory are calculated, which is positively skewed as shown in Figure 2.1. The

CRRA parameter used in this simulation study is set to 9.

	 	

	

66

The portfolio contains four American options: an ATM put option, a 5% OTM put option, an

ATM call option and a 5% OTM call option, all of which depend on the same underlying index.

Their prices are determined using the algorithm proposed by Longstaff and Schwartz (2001),

with LIBOR rates and historical volatilities as the pricing inputs. At the optimization stage, 50

iterations are used (sample paths) to find weights with gterm = 0.1andρ = 1 for T = 5,10 and

gterm = 0.15 andρ = 2 forT = 15,20 . These parameters are chosen to trade off run time and utility

performance. At the evaluation stage, we create 1,000 iterations (resampled trajectories) to

generate a histogram of exercise times (Figure 2.4) with a reasonable number of bins. In the

benchmark algorithm, the weights are discretized by 0.05.

Figure 2.1: Monthly cumulative return of simulated index fitted by GEV distribution

To see how well the algorithm performs, the utility gap is calculated between the benchmark

algorithm and IPH-QL or IPH-LSMC. Since the QO-PERFECT algorithm injects perfect

information for both weights and exercise times, penalty is needed in order to get a fair gap. We

therefore add a gradient-based penalty to the QO-PERFECT (baseline) portfolio utility, proposed

by Brown and Smith (2011). It takes 80 seconds to run IPH, 2 seconds to run QL-based

evaluation and 1 second to run LSMC.

	 	

	

67

Figure 2.2: Utility gap from baseline

Figure 2.3: Certainty equivalent of returns

Note that both IPH-QL and IPH-LSMC use the weights from the IPH algorithm. Observed from

the IPH-QL algorithm, the utility gap without penalty tends to stabilize around 25 – 31%. With

penalty, the gap is reduced by 7 – 15% (Figure 2.2). We see that as the number of time periods

increases, the utility gap with penalty tends to decrease. IPH-LSMC leads to a higher utility gap,

with penalized gap even higher than the unpenalized one from the IPH-QL algorithm. The next

simulation experiment tries to find how far the IPH weights are from quasi optimal. As we have

discussed in 3.2.3, despite different weight choices, we still use the QL and LSMC algorithms to

	 	

	

68

measure performances. In other words, we compare IPH-QL against QO-QL, and IPH-LSMC

against QO-LSMC. From Figure 2.3, the difference of certainty equivalent (CE) between the

IPH-QL algorithm and QO-QL is narrowing and decreases from around 10% to 4.6%. However,

although rising slowly as the number of time periods increases, CE of the IPH-LSMC algorithm

is very low, less than 8%.

Figure 2.4: Exercise time of each option

In Figure 2.4, we only plot the exercise times for options that are exercised in each sample path

using the IPH-QL algorithm. Options tend to be exercised in late periods before maturity.

	 	

	

69

Figure 2.5: Utility gap from baseline

Figure 2.6: Certainty equivalent of return

In the 3rd experiment, we vary the CRRA parameter (Figures 2.5 and 2.6). The utility gap

between IPH-QL and QO-PERFECT is less than 16% with penalty, while the CE of IPH-QL is

around 5% less than the penalized QO-PERFECT value.

In the next simulation experiment, we increase the number of options to 10 and evaluate the

performance of the IPH-QL algorithm. The added 6 options are: a 5% ITM call option, a 5%

ITM put option, a 2.5% OTM call option, a 2.5% OTM put option, a 2.5% ITM call option and a

	 	

	

70

2.5% ITM put option. The portfolio is now symmetric; there are both put and call, ITM and

OTM for all values of moneyness. Due to a larger number of options, we set gterm = 0.25 ,ρ = 4

and T = 20. Because of the exponentially increased running time of QO (enumerating all

options), we do not implement the QO benchmark since it would take days to finish a single run.

CE of IPH-QL is 14.1%, similar to the 4-option case. The algorithm takes 8 minutes to terminate,

which shows its scalability.

2.4.2. Empirical experiment

In this section, we design empirical experiments with historical market data from the

OptionMetrics Ivy DB database. Options are no longer priced via simulation, but trajectories of

asset prices are still simulated to find optimal weights and exercise timing. The underlying asset

of options is SPDR S&P500 ETF (Symbol: SPY), which closely tracks the S&P500 index but is

traded at 1/10th of the index value.

The experiment time horizon ranges from 2006 to 2015. In each year, we construct portfolios

twice, one in January and another one in July due to the availability of tradable SPY options. In

January, the length of time periods (expiration) takes value of 1 year (12 months), while July

takes value of 1.5 years (18 months). This setting helps to answer whether a shorter or a longer

time horizon benefit most from our algorithm. Specifically, the PH hyper parameters are

gterm = 0.1 ,ρ = 1 for 12-month maturity and gterm = 0.125 , ρ = 1.5 for 18-month maturity.

	 	

	

71

In the following experiments, two scenarios are discussed: portfolio with options only (non-

hedge case) and portfolio with options and underlying as the hedging instrument (hedge case).

For both cases, we include 4 portfolio settings:

1. an ATM call, an ATM put, a 5% OTM call and a 5% OTM put,

2. an ATM call, an ATM put, a 5% ITM call and a 5% ITM put,

3. an ATM call, an ATM put, a 5% ITM call and a 5% OTM put,

4. an ATM call, an ATM put, a 5% OTM call and a 5% ITM put.

Since strike prices increment by 5 points across order book levels, the closest integer strike

prices are used to approximate 95% or 105% of moneyness. Option prices on each date are

determined at the average closing ask (we always long options due to the no-short-selling

constraint), which we consider a way to embed market friction and transaction cost. Options can

be exercised in the beginning of any months before expiration (one opportunity a month). This

limitation essentially reduces the size of the action space.

To compare the performance of investors with different risk preference, we vary the risk

aversion CRRA parameter from -0.5 to 20. Special cases are -0.5, 0 and 1: value -0.5 represents a

risk-seeking investor (convex utility function), value 0 means risk-neutral (linear) and value 1

corresponds to a log utility function. The other four tested values are 2, 5, 10 and 20. We also

discuss if hedging with the underlying ETF SPY improves the overall performance, whose

weight is determined by the same IPH algorithm, since it can be effectively modeled as an option

(see Section 2.3). Additionally, we investigate how the choice of distribution influences

	 	

	

72

performance, given that the value functions are approximated by simulated log returns. Two

distributions are thus evaluated: GEV and GBM. Their parameters are calibrated by the historical

prices in the past 10 years of each portfolio construction date.

Our IPH-QL algorithm is tested against equal weights (EW-QL) and perfect timing (IPH-

PERFECT). Quasi-optimal weights are not applied here because it is more suitable to evaluate

average performances as in the simulation study, while the actual trajectory only represents one

realization.

In summary, in our empirical study we try to answer the following questions:

1. Does our algorithm perform better in a shorter or longer time horizon?

2. Which portfolio setting outperforms the others?

3. What type of investors are appropriate to invest in American option portfolios?

4. Should we hedge our position using the underlying asset?

5. Which distribution models the underlying asset returns better, GEV or GBM?

Figure 2.7 summarizes the expected return and Sharpe Ratio under different CRRA parameters

under the horizon of 1 year. It can be observed that the weights from the IPH algorithm performs

much better than equal weights by comparing IPH-QL with EW-QL in all portfolio settings. IPH

assigns larger weights to call options and results in a greater delta, which is considered a good

strategy given the strong upward pattern of the S&P500 index in recent years. Yet the QL

evaluation algorithm still has room for improvement to close the gap between IPH-QL and IPH-

	 	

	

73

PERFECT, despite the fact that perfect information can never be attained in reality. The same

observation applies to the time horizon of 1.5 years.

Figure 2.7: Expected return and Sharpe ratio of each algorithm

(1-year, GEV distribution, non-hedge)

Figure 2.8 indicates that IPH-QL presents better profitability in a longer term that allows more

exercise opportunities. Over the same period, holding the underlying asset SPY achieves an

annualized return of 5.1% and a Sharpe ratio of 0.31. Only portfolio setting 2 and 3 have the

potential to beat the index based on our experiments. Both settings include an ITM call option

that enjoys large positive returns. In what follows, we use the time horizon of 1.5 years.

Figure 2.8: Expected return and Sharpe ratio of different maturities

	 	

	

74

(GEV distribution, non-hedge, IPH-QL)

The risk aversion parameter affects the performance. In general, the greater the CRRA parameter,

the worse the performance (Figure 2.9). Rephrasing, investors with strong risk aversion are

advised not to invest in American option portfolios. The performance of each portfolio setting

also depends on risk preference; settings 2 and 3 outperform the other two under small risk

aversion (less than 5), while settings 2 and 4 perform better with CRRA parameter greater than

or equal to 5.

Figure 2.9: Expected return and Sharpe ratio of different CRRA parameters

(GEV distribution, non-hedge vs. hedge, IPH-QL)

By further examining Figure 2.9, we conclude that hedging with the underlying asset positively

impact the returns and Sharpe ratio. Under the GEV distribution, the average expected return and

Sharpe ratio across all risk preferences are 4% and 0.15, compared with the non-hedge case of

3.8% and -0.07. The GBM distribution also benefits from the hedge scenario with an average

expected return of 4.3% and Sharpe ratio of 0.16, compared with the non-hedge case of 3.6% and

0.12.

	 	

	

75

Conducting a similar analysis, we notice that the GEV distribution leads to a better performance

when small risk aversion is present (less than 5), while GBM yields better results when the

parameter is greater than or equal to 5 (Figure 2.10).

Figure 2.10: Expected return and Sharpe ratio of different CRRA parameters

(GEV vs. GBM, hedge, IPH-QL)

Figure 2.11 displays the distribution of portfolio returns. All of them show positive skewness

(around 0.3 to 0.4). Portfolio setting 3 has the largest excess kurtosis (0.7) and setting 4 presents

a negative kurtosis (-0.14). The kurtosis for portfolio setting 1 and 2 are 0.08 and 0.01.

	 	

	

76

Figure 2.11: Distribution of portfolio returns

(GEV, hedge, IPH-QL)

Figure 2.12 exhibits the average portfolio weights over time. Within 2 years after the financial

crisis in 2008, our IPH algorithm prefers equal weights for all options that essentially form a

straddle strategy. Given an uncertainty about market directions, long straddle strategies make

profit if the market moves either up or down considerably. During other times, call options

dominate the portfolios and result in a positive delta. The underlying asset, however, tends to

share a stable weight of 20% at all times.

	 	

	

77

Figure 2.12: Portfolio weights over time

(GEV, hedge, IPH-QL)

Further details of algorithmic performances can be found in Section A.4, Appendix A.

2.5. Conclusion and Future Work

In this chapter, we propose a model of American option portfolios and use regression-based Q-

learning algorithms to find excellent portfolio compositions. Our algorithms outperform LSMC

with regard to the utility gap from optimal and CE of return. The gap and CE are better in a

longer time horizon, while with an increasing CRRA parameter, the gap is relatively stable and

the CE decreases. The empirical experiments show that our weights perform well, yet the

evaluation algorithm can still be improved to achieve a higher Sharpe ratio. In addition, the

underlying asset as a hedging instrument improves the overall portfolio performance. Finally, we

advise that risk averse investors avoid constructing American option portfolios due to extreme

high-leverage risk. In Sections A.1 and A.2, Appendix A, a study of European option portfolios

is presented as a complement to this chapter.

	 	

	

78

CHAPTER 3

Online Adaptive Machine Learning Based Algorithm for Implied

Volatility Surface Modeling

3.1. Introduction

Machine learning is gaining interest in the finance industry. In the last two decades, support

vector machine, neural networks, decision trees, reinforcement learning, genetic programming

and other machine learning models have been widely applied to tackle complex problems in

finance, such as market direction forecasting, sentiment analysis, portfolio optimization,

bankruptcy prediction, credit risk modeling, etc. For these topics, an important aspect is the

challenge of the non-stationarity of noisy data, due to parameter regimes varying from time to

time. Inability to react to a pattern drift can lead to damaging predictive performance and

unprofitability in real-time trading. This fact motivates us to go beyond off-line training and to

propose a novel online adaptive machine learning algorithm that is applied, for example, to tick

data from the S&P500 options market.

Since the inception of the Black-Scholes-Merton model, implied volatility surface (IVS)

modeling has been a popular topic in options pricing theory. IVS is a mapping from the strike

prices and time to maturity of options to a nonnegative value, implied volatility, whose value

depends on strike prices, time to maturities, interest rates, dividends and so forth. Despite the

recognition that their assumptions do not hold in a realistic trading environment, the Black-

Scholes-Merton formula is widely used due to its simplification from an option price to a

	 	

	

79

nonnegative value called implied volatility, which enables a fair comparison of options with

different strikes, maturity and the underlying assets. As Poon and Granger (2003) point out,

option implied volatility is shown to have the most information on future market volatility and

outperforms classical time series based models. It also performs well across different asset

classes and over a long forecasting horizon. Various methods can be used to model the IVS, such

as stochastic volatility models, Levy processes, GARCH, spline interpolation, etc. (see Homescu,

2011 for a survey). Nonetheless, machine learning algorithms are seldom applied. Recent works

include Audrino and Colangelo (2010) (regression trees) and Wang, Lin et al. (2012) (artificial

neural nets). Yet, all the above works view IVS modeling from a static perspective, not allowing

the model to update adaptively when new market information arrives.

In this work, we propose a novel adaptive machine learning method based on support vector

regression (SVR), which is further employed to update IVS. The SVR method designed is an

adaptation and enhancement of Shalev-Shwartz et al. (2007), who develop an effective support

vector machine (SVM) method using stochastic sub-gradient descent that solely optimizes the

primal objective function. Compared with the dual formulation, their primal SVM has an

advantage of simplicity and can be easily adapted to the stochastic gradient descent method.

Aiming at classification, they briefly mention the modification of the Pegasos algorithm suitable

for regression with ϵ-intensive loss but they do not derive the full regression algorithm, which we

discuss in details. As an enhancement, we introduce the concept of feature vector selection (FVS)

into the primal SVR algorithm. Instead of training with all data, the online algorithm updates the

model using selective data points (as support vectors) that are orthogonal in the reproduced

	 	

	

80

kernel Hilbert space. The idea of combining FVS and SVR is first proposed by Liu and Zio

(2016), but their online SVR is based on the dual formulation of the optimization problem rather

than the primal. In addition, to adaptively modify the model upon pattern drift, their solution

attributes to incremental and decremental learning (Cauwenberghs and Poggio, 2000), while our

algorithm updates support vectors by budget maintenance through removal (Wang, Crammer et

al., 2012), which maintains the support vector size defined in FVS. To further speed up the

algorithm, we implement the most computationally intensive parts in a Field Programmable Gate

Arrays (FPGA) hardware developed by Maxeler Technologies, and contrast its runtime

performance against a pure CPU implementation.

To summarize, our contributions focus on the following four aspects.

1. This work presents the first derivation and implementation of online primal kernel SVR.

Pegasos provides an algorithm for primal kernel SVM and a quick mentioning of the extension

to primal kernel SVR with no implementation and computational study in the SVR setting.

2. We provide an algorithmic enhancement to online primal SVR by means of FVS and adaptive

support vector updates through budget maintenance.

3. We propose a new IVS modeling algorithm using our online primal SVR.

4. A new application of the FPGA technology is provided to accelerate the most computationally

intensive parts in our algorithm.

The rest of this chapter is structured as follows. Section 3.2 reviews existing literature. Section

3.3 gives background of primal SVR algorithms and IVS modeling. Section 3.4 presents our

	 	

	

81

SVR algorithm and its application to model IVS. Section 3.5 exhibits an empirical study using

tick data from the S&P500 options market. Section 3.6 draws conclusions and presents future

work.

3.2. Literature Review

A handful of financial applications using adaptive machine learning models have been recently

developed. Chen et al. (2011) propose a bankruptcy prediction model based on an adaptive fuzzy

k-nearest neighbor. The neighborhood size and the fuzzy strength parameter are updated over

time by continuous particle swarm optimization. Li et al. (2012) apply an evolution strategy

based support vector machine (SVM) to perform credit risk classification, which adapts the

penalty term in the objective function according to time-varying data structures. Sun et al. (2013)

put forward a method named adaptive and dynamic ensemble of SVM to predict corporate

financial risk with focus on the concept drift of financial distress hidden in a corporate data flow.

Booth (2016) explores the use of artificial neural nets, SVM, random forests and other machine

learning methods in adaptive stock price return prediction and limit order book modeling.

Similar to these applications, we emphasize on the ability to update the model upon occurrence

of pattern drift, but our focus is on dynamic IVS modeling.

In financial market volatility forecasting, a few papers focus on SVR. Chang and Tsai (2008)

introduce the combination of SVR, grey model and GARCH using artificial neural nets and show

that the composite models perform better in volatility prediction than a time series method. Chen

et al. (2010) apply SVR under the GARCH framework to forecast market volatility. They

	 	

	

82

conclude that SVM-GARCH models are better than all competing methods in most situations of

one-period-ahead forecasting. Wang (2011) combines SVR and a stochastic volatility model with

jump to form an efficient currency option pricing model. He claims that the new model reduces

forecasting errors and outperforms artificial neural nets. While machine learning has been widely

recognized in forecasting market volatility (refer to Hahn, 2013 for a detailed survey), IVS from

the Black-Scholes-Merton model has not yet been extensively studied by machine learning

approaches. A few examples are as follows. Malliaris and Salchenberger (1996) apply artificial

neural nets to forecast S&P100 implied volatility with past volatilities and other options market

factors. Fengler et al. (2007) model IVS dynamics using a semiparametric factor model by means

of a principal component analysis, with empirical experiments using the DAX index options data.

Lee et al. (2007) propose a particle swarm optimization method. Based on an analysis of the

KOSPI 200 index options market, they find that their prediction yields option prices closer to

theoretical values than generic algorithms. Audrino and Colangelo (2010) present a semi-

parametric model by means of regression trees to forecast implied volatility and conduct an

empirical study for S&P500 index options. All four papers assert promising results in implied

volatility prediction, which further motivates us to explore an SVR application. To the best of

our knowledge, SVR has not been tailored to model IVS, not to mention adaptive SVR.

SVR is the regression form of SVM. Usually, SVR is formulated as a dual optimization problem.

For online training of the dual, Cauwenberghs and Poggio (2000) propose incremental and

decremental support vector machine that can be used to bound the number of support vectors in a

model and updates the model by one support vector at a time. The increments using matrix

	 	

	

83

manipulation are adiabatic, allowing the retention of Karush-Kuhn-Tucker conditions on all

previous training data. In turn, the decrement step is a reversal of the increment by means of a

leave-one-out procedure. Throughout the updating process, they require a book-keeping routine

that migrates data points among different sets of support vectors: margin support vectors, error

support vectors and (ignored) vectors within the margin. Ma et al. (2003) apply incremental and

decremental SVM in a dual ϵ-SVR setting (Vapnik, 1998) (named accurate online SVR). Similar

to accurate online SVR, our online primal ϵ-SVR algorithm entails a support vector adding and

removal process, an online budget maintenance idea that is first proposed by Crammer et al.

(2003) and thoroughly discussed in Wang, Crammer et al. (2012). Due to the primal setting, the

model update rule requires much lower computational resources than incremental and

decremental SVM. Budget maintenance of support vectors plays an important role in keeping the

sparsity of an online model regardless of the primal or dual formulation; without it, the number

of support vectors typically grows linearly with the number of training examples (Steinwart,

2003). In this work, we introduce the budget maintenance idea into the primal ϵ-SVR algorithm

called Pegasos (adapted by us from its original SVM version, proposed by Shalev-Shwartz et al.,

2007). Compared with a well-established dual formulation, the primal problem is much easier

and faster to solve using stochastic sub-gradient descent (Shalev-Shwartz and Srebro, 2008).

Similar stochastic gradient descent based methods are applied to SVM classification problems by

Kivinen et al. (2004) and Zhang (2004), who use different learning rates than Pegasos. For a

detailed comparison of large scale and online SVM methods, we refer the reader to Wang,

Crammer et al. (2012).

	 	

	

84

An additional challenge is how to decide the upper limit of support vectors during budget

maintenance. Liu and Zio (2016) embed the idea of FVS, first proposed by Baudat and Anouar

(2003), into dual ϵ-SVR. Inspired by them, we include FVS in primal ϵ-SVR with their notions

of new pattern and changed pattern. FVS is designed for kernel implementations targeting at

complexity control of the size of feature basis, in our case, the number of support vectors. To

insert a new feature (or support) vector, the rule of thumb is to determine if the mapping of a new

data point is nonlinearly independent from existing support vectors in the reproduced kernel

Hilbert space. If so, it is viewed as a new pattern that cannot be expressed as a linear

combination of the mapping of existing support vectors and is immediately added into the

support vector set. Unlike a new pattern, a changed pattern indicates that the mapping of the new

data point is not linearly independent in the reproduced kernel Hilbert space, but the bias of its

predicted value exceeds a predetermined threshold. In this case, an existing support vector is

replaced by the changed pattern while the nonlinear independence of all support vectors in

reproduced kernel Hilbert space is still preserved. Continuously adding support vectors by

detecting new patterns and replacing support vectors by identifying changed patterns are critical

steps in our algorithm that are essential for adaptive model update, sparsity preservation and

computational cost/complexity/overfitting reduction. New patterns determine the number of

support vectors needed while changed patterns tell us when and where budget maintenance

thought support vector removal is to be performed. A similar method that involves adaptive

quantity control of support vectors is ν-SVR (Schölkopf et al., 2000) that employs a different

loss function than ϵ-SVR. Recently, Gu et al. (2015) combine ν-SVR with incremental and

	 	

	

85

decremental SVM and design a new online algorithm: incremental ν-SVR (INSVR). However,

the decremental (support vector removal) step is missing in their work.

During the training phase of our SVR algorithm, the inverse of the kernel matrix has to be

constantly updated upon support vector insertion and replacement. To accelerate such

computation, we implement the matrix inverse calculation in the FPGA hardware developed by

Maxeler Technologies. Besides this, the prediction part of our algorithm also has its

implementation in FPGA. In existing literature, many forms of SVM have been designed

specifically for a parallel FPGA implementation, with recent examples such as CORDIC based

SVM and SVR by Ruiz-Llata et al. (2010), a novel Cascade SVM by Papadonikolakis and

Bouganis (2012), and an adapted Cascade SVM by Kyrkou et al. (2013). All of these papers are

for inference only, due to the iterative nature of the training phase that is difficult to parallelize.

We not only implement the inference in FPGA, but also parts of the training procedure.

3.3. Background

In this section, we review basics of ϵ-SVR, kernel Pegasos SVR and IVS modeling.

3.3.1. ϵ-SVR

Given a training set % = '(, *((+,
- , where '(∈ ℝ0, *(∈ ℝ, ϵ-SVR solves the following

quadratic optimization problem

min
4,5

6

2
8 9 +

1

<
= 8; '(, *(

-

(+,

, 3.1

	 	

	

86

where the ϵ loss function is

= 8; '(, *(=
*(− B '(− C, *(− B '(≥ 	C,

0, otherwise,

and the estimate function

	B ' = 8,G ' + H. 3.2

The L2 norm in the objective function represents the regularization term, where 6 is referred as a

regularizing parameter that serves to shrink the overall model complexity. The second term is the

average empirical error measured by loss function = 8; '(, *(. Optimization in (3.1) penalizes

data points whose y values differ from	B ' by more than C. In (3.2),	G ' is a nonlinear

mapping from input ' to reproduced kernel Hilbert space; I, J denotes the standard inner

product between vectors I	and	J; term H is the regression intercept.

Estimates of w and b can be obtained by solving the following equivalent model to (3.1):

min
4,5

6

2
8 9 +

1

<
K(+ K(

∗

-

(+,

 subject to

*(− B '(≤ C + K(,

B '(− *(≤ C + K(
∗,

K(
∗, K(≥ 0, N = 1,… ,<.

Slack variables K(and K(∗ measure the excess deviation of positive and negative errors. They are

added to cope with the scenarios where no function B ' exists to satisfy the C constraints by

allowing regression error up to K(∗ or K(.

	 	

	

87

3.3.2. Kernel Pegasos SVR algorithm

The dual formulation of SVR attracted more attention than the primal, with various versions of

online dual SVR proposed based on incremental and decremental SVM (refer to Section 3.2). In

contrast, we dedicate our effort to devising a primal online SVR, enhanced from a stochastic sub-

gradient descent based SVM algorithm called Pegasos (Shalev-Shwartz et al., 2007), originally

for classification. Compared with the dual, the primal formulation of SVR has an advantage of

simplicity and can be easily adapted to the stochastic gradient descent method. Next, we derive

the regression version of the Pegasos algorithm.

The convex optimization problem (3.1) can be rewritten as follows by substituting the loss

function into the objective:

min
4,5

P 8, H; '(, *(=
6

2
8 9 +

1

<
max 0, *(− B '(− C +max 0, B '(− *(− C

-

(+,

. 3.3

To solve (3.3), the stochastic sub-gradient descent method takes one random data point '(, *(at

a time to estimate the sub-gradient of P, which reads

∇P4 = 68 +

G '(, if B '(− *(− C > 0,

–G '(, if *(− B '(− C > 0,

0, otherwise.

∇P5 =

1, if B '(− *(− C > 0,

– 1, if *(− B '(− C > 0,

0, otherwise.

With these sub-gradients, it is clear that the rules to update 8 and H are

8 ← 8 −
1

6W
XP4, H ← H −

1

6W
XP5, 3.4

	 	

	

88

where	W represents the current iterate index, and ,
Z[

 the learning rate. Substituting	∇P4	and ∇P5

into (3.4), we obtain

8 ← 1	–	
1

W
8 ±

G '(

6W
, H ← H ±

G '(

6W
, 3.5

if the sample falls outside the C bound; otherwise,

8 ← 1	–	
1

W
8. 3.6

One of the major benefits of SVR is the kernel trick that avoids direct access to the high-

dimension mapping G and only uses the inner products of samples specified through a kernel

function. We next discuss how to embed the kernel trick with a support vector dictionary %.

Every time a sample ' falls out of the C bound, it becomes a support vector if it is not a current

support vector; coefficient 8 is updated by a discounted mapping ±_ `

Z[
. This leads to creating a

dictionary to keep track the cumulative sum of the discount factors ± ,

Z[
 for each support vector.

To be specific, the keys of % are comprised of current support vectors and their corresponding

values are the cumulative sums of the discount factors. The regression coefficient 8 can be

represented as

8 = % a ∙ G a
c∈d

and we have

B ' = 8,G ' + H = % a ∙ G a eG '
c∈d

+ H = % a ∙ f a, '
c∈d

+ H, 3.7

	 	

	

89

where f is a nonlinear kernel function with f '(, 'h = G '(
eG 'h . The kernel trick allows a

feature space of arbitrary dimensionality without explicit computation of the map G ' . As long

as a function satisfies the Mercer conditions (Vapnik, 1998), it can be used as a kernel function.

The kernel Pegasos SVR (KPSVR) algorithm is exhibited in Algorithm 3.1. Parameter i denotes

the maximum number of iterations. Step 2.b uses the primal form of the estimate function (3.7).

Step 2.c replaces 8 by % in (3.5) and (3.6). Step 2.d updates the support vector dictionary if the

new sample lies outside the C bound.

Algorithm 3.1 – Kernel PSVR (KPSVR)
1. Initialize % = ∅

2. For W = 1,… , i

a. Randomly sample ('[, *[)

b. Predict B '[by iterating all keys in % and using the kernel trick

B '[← %[a] ∙ f(a, '[)
c∈d

+ H

c. %[a] ← 1	–	
,

[
% a for all a ∈ %

d. If	 *[− B '[> C, then '[is a support vector

If key '[is in %, % '[← % '[±
,

Z[
 ; else insert a key value pair,	% '[←

±
,

Z[

Additionally, H ← H ±
,

Z[

	 	

	

90

3.3.3. IVS modeling

The implied volatility surface (IVS) is a mapping from the strike prices κ and time to maturity p

of options to a nonnegative value – implied volatility, i.e. a mapping

q[
rs: κ, p ↦ ℝ.

Implied volatility at a given point and measured as the standard deviation of the rate of return of

the underlying asset is obtained by plugging the option price, the price of the underlying asset,

the risk-free rate (estimated by Treasury yield in this chapter), κ and p into the Black-Scholes-

Merton formula and back-solving for implied volatility. Since there is no closed-form solution

for computing implied volatility, typical methods are by bisection or Newton-Raphson. Implied

volatility is valuable for comparison of options with dissimilar characteristics such as different

underlying, strike, time to maturity, etc. Although the Black-Scholes-Merton model assumes

constant volatility across all options, empirical evidence shows the existence of the volatility

smile and skew among a cross-section of options. Moreover, the IVS is not static; it changes over

time and thus requires adaptive updates.

To model the IVS, we turn to a parametric quadratic volatility function introduced by Dumas et

al. (1998). The following ad hoc model has been proven to be a simple yet robust method

(usually the best among all competing functional forms) to approximate the IVS:

q[
rs κ, p = vw + v,κ + v9κ

9 + vxp + vyκp.

It explores the variation in volatility to asset price and time. The quadratic form is chosen due to

the parabolic shape of the IVS and an attempt to avoid over-parametrization. In our kernel SVR

setting, this function translates into a 4-dimension representation of each data point κ, κ9, p, κp ,

	 	

	

91

which can be further substituted into a kernel function to calculate the dot products between two

samples.

3.4. Method

In this section, we describe FVS, budget maintenance, our enhanced kernel Pegasos SVR

algorithm, its adaptation to IVS modeling and how FPGA technology is applied to accelerate the

computationally intensive parts of our algorithm.

3.4.1. FVS

The idea of FVS is first proposed by Baudat and Anouar (2003) to select “feature” vectors from

a data set and form a basis in the reproduced kernel Hilbert space that can express other data

points by projection, i.e. a linear combination of the mapping of selected vectors. In our SVR

setting, FVS is treated as a natural way to add support vectors and control the size of the support

vector set. Furthermore, FVS is designed specifically for the kernel trick, enabling a seamless

integration with SVR.

To determine if a new data point can be spanned by existing support vectors, the following

statistic, named local fitness, is calculated:

zd,` =
{d,`
e fd,d

|,{d,`

{`,`
, 3.8

	 	

	

92

where % denotes the current support vector set, ' is a new data point, fd,d represents the kernel

matrix, {d,` denotes the kernel vector of dot products between ' and the support vectors, {`,` is

the dot product of ' mapping itself.

Local fitness functions as an approach to measure the maximum possible collinearity between

the original data mapping and the approximation using a linear combination of the mapping of

support vectors (Baudat and Anouar, 2003). In their original work, FVS is an iterative process of

forward selection that repeatedly samples the entire data set to find the next support vector with

smallest local fitness. This searching process is terminated when the maximum number of

support vectors is reached, or the average local fitness of all data points (called global fitness)

exceeds a certain threshold, or a complete basis is found. Since our SVR is an online algorithm,

their framework does not fit our need. Instead we enforce a threshold criterion to enlarge the

support vector set, i.e. add a new data point as a new support vector if its local fitness is smaller

than a given threshold ~, in which case the new data point cannot be sufficiently approximated

by any linear combination of the mapping of existing support vectors (thus the invertibility of

fd,d and its nonlinear independence from existing support vectors are guaranteed). The new data

point is aliased as a new pattern. Note that a smaller ~ leads to a lower number of support

vectors, and vice versa. Choosing a good ~ is hence important to help noise reduction while

keeping a sufficient number of support vectors for satisfactory model performance.

	 	

	

93

3.4.2. Budget maintenance

When a new data point ' arrives that is not a new pattern (i.e. a large local fitness is present), we

ought to further check if it represents a changed pattern. A changed pattern occurs if its

prediction error by the current model surpasses a certain limit C, indicating that the support

vector set needs an adaptive update: a removal of an existing support vector (old pattern) and an

insertion of the new data point (changed pattern). The number of support vectors, however,

remains unchanged since it is controlled by FVS.

To determine which support vector to remove, Liu and Zio (2016) put forward a contribution

based method by deleting the least contributing support vector. Wang, Crammer et al. (2012)

discuss three budget maintenance ideas that fix the number of support vectors to a pre-specified

value � (in our case, a value controlled by FVS): support vector removal, projection and merging.

Support vector projection projects a support vector onto remaining support vectors while support

vector merging merges two support vectors and creates a new one. In our primal setting, removal

is much easier to accomplish for budget maintenance purpose, which also results in less kernel

matrix manipulations than projection and merging. Since we already have the support vector

dictionary %, we could simply remove the key with the smallest absolute value in %, known as a

process that leads to the least gradient error or, equivalently, the least weight degradation (Wang,

Crammer et al., 2012). In the following analysis, budget maintenance refers to support vector

removal.

	 	

	

94

Yet this works only for the Gaussian kernel. For a general kernel function f, we remove the

support vector key with least	% a ∙ G a or based on the kernel trick % a 9 ∙ f a, a . It is easy

to see that this rule in the case of Gaussian kernel, which has f ', ' = 1 for any ', is the same

as least weight degradation. The support vector dictionary we create serves two purposes: a

regression coefficients container as in (3.7) and a reference for budget maintenance. After the old

pattern has been removed, the changed pattern ' is added to %.

Every time the keys in dictionary % are modified, the kernel matrix fd,d demands an update.

More challenging, the inverse of fd,d in (3.8) needs to be recalculated. Since only one support

vector is added or removed at a time in our algorithm, we must be able to efficiently manage

these matrix inverse computations. Baudat and Anouar (2003) propose a method that only deals

with support vector addition, which does not work directly on the inverse matrix. Nonetheless,

their method cannot be extended to the case of support vector deletion. In the following, we

derive the formulas for updating the kernel inverse upon support vector addition and removal.

Suppose we have a working set of Ä support vectors forming kernel matrix f0 (we leave out

subscript %, % for notation simplicity) and its inverse f0|,. Let us assume we want to add a new

support vector ', and update the kernel matrix by appending a new column and a new row:

f0Å, =
f0 {d,`

{d,`
e {`,`

,

where {d,` denotes an Ä×1 vector of dot products between ' and the previous Ä support vectors.

	 	

	

95

Let

f0Å,
|, =

É Ñ

Ñe Ö
3.9

be the updated inverse matrix, where É is an Ä×Ä matrix, Ñ is an Ä×1 vector, and Ö is a scalar.

The inverse matrix is symmetric because the kernel matrix is always symmetric.

The solutions for É, Ñ and Ö are

Ö = 1 {`,` − {d,`
e f0

|,{d,` ,

Ñ = −Öf0
|,{d,`, 3.10

É = f0
|, − f0

|,{d,`Ñ
e.

The denominator of Ö is never zero, because otherwise, the local fitness of the new data point '

is one, meaning it is an existing support vector and cannot be inserted into the support vector

dictionary once again (assuming ~ < 1, which is reasonable).

Upon support vector deletion, we are given f0Å,|, as in (3.9) and after deleting Ñ we obtain:

f0
|, = É −

ÑÑe

Ö
. 3.11

Updating the kernel matrix is straightforward by removing the row and column corresponding to

the deleted support vector.

3.4.3. Enhanced KPSVR algorithm

We first incorporate budget maintenance and FVS to KPSVR. Wang, Crammer et al. (2012)

discuss how budgeted SVM can improve computational efficiency in both time and space, but

	 	

	

96

with no mentioning of its potential extension to SVR. Algorithm 3.2 exhibits the budgeted

KPSVR algorithm. Step 2.e removes the support vector with the least absolute value if the

maximum number is exceeded.

Algorithm 3.2 – Budgeted KPSVR (BKPSVR)

1. Initialize % = ∅

2. For W = 1,… , i

Step 2.a to 2.d from KPSVR

e. If % > �, select the key	a in % with the smallest % a 9 ∙ f a, a , remove its key

value pair

A fixed number of support vectors may not be optimal when a new pattern emerges or when data

patterns are continuously changing, in which cases the number of support vectors should adapt

responsively. This is addressed by incorporating FVS into BKPSVR. Once a sample	' cannot be

sufficiently approximated by any linear combinations of the mapping of existing support vectors

(i.e. a small local fitness zd,` that is less than the preset threshold ~), it is added into the support

vector dictionary % as a new pattern without checking if it is a changed pattern. Otherwise, if its

prediction is not within the C bound, we call it a changed pattern that further activates budget

maintenance. Algorithm 3.3 presents the enhanced KPSVR algorithm with FVS and adaptive

updates of support vectors through budget maintenance. In particular, Step 2.d is modified to

detect new patterns and changed patterns, where support vector addition and budget maintenance

are conducted. Upon support vector insertion into or deletion from %, formulas (3.9) and (3.11)

	 	

	

97

are used to efficiently update the matrix inverse fd,d|, so that it is ready to calculate local fitness

zd,` in the next iteration.

Algorithm 3.3 – Enhanced KPSVR (EKPSVR)

1. Initialize % = ∅

2. For W = 1,… , i

Step 2.a to 2.c from KPSVR

a. If local fitness is violated, i.e. zd,`à < ~, then '[is a new support vector (new

pattern)

Add key '[into %, % '[← ±
,

Z[
, H ← H ±

,

Z[

Else if	 *[− B '[> C, then '[is a support vector (changed pattern)

If key '[is in %, % '[← % '[±
,

Z[
 ; else select the key a in % with the

smallest % a 9 ∙ f a, a , remove its key value pair, then insert key '[,

% '[← ±
,

Z[

Additionally, H ← H ±
,

Z[

3.4.4. IVS modeling by EKPSVR

To model the constantly fluctuating IVS, the stochastic gradient descent based EKPSVR

algorithm has to be tailored to reflect the online nature of the training and predicting process

using market data.

	 	

	

98

If EKPSVR is directly applied to model IVS without further modification, then later in time

when W gets large enough, newly received data barely influences the model (with small step size

±
,

Z[
 close to 0), which is then almost unchanged and fails to capture regime changes. As a result,

reopening is necessary by reinitiating W = 1 at the end of a certain interval for adjustments to

latest market conditions. For instance, the interval might be market opening or based on

empirical evidence that uses minute level frequency in the context of intraday tick data. We

name such an interval a reopening interval. To inherit models from previous intervals upon

reopening, we adjust the learning rate from ,
Z[

 to ,

Z [Åâ
 by introducing a positive warm-start

hyper-parameter ä into the denominator (otherwise the model would be completely retrained

since Step 2.c would have 1	–	,
[
= 0).

Algorithm 3.4 finalizes the online IV-EKPSVR algorithm. Upon arrival of a new tick, regression

errors are recorded and the model is updated according to local fitness and prediction bias, after

which a new IVS prediction is made. Once reaching the end of a reopening interval, W is reset to

1.

	 	

	

99

Algorithm 3.4 – Online IVS-EKPSVR

1. Initialize W = 1, % = ∅

2. Loop

a. Receive a new observation ('[, *[) at time	W (where '[is the feature vector and	*[

is the computed IV value based on '[)

b. Obtain B '[from the predicted IVS

c. % a ← 1	–	
,

[Åâ
% a for all a ∈ %

d. If local fitness is violated, i.e. zd,`à < ~, then '[is a new support vector (new

pattern)

Add key '[into %, % '[← ±
,

Z [Åâ
, H ← H ±

,

Z [Åâ

Else if	 *[− B '[> C, then '[is a support vector (changed pattern)

If key '[is in %, % '[← %['[] ±
,

Z [Åâ
 ; else select the key	a in % with

the smallest	 % a 9 ∙ f a, a , remove its key value pair, then insert key '[,

% '[← ±
,

Z [Åâ

Additionally, H ← H ±
,

Z [Åâ

e. Predict IVS for each strike price and maturity of interest by (7) with the updated

support vector dictionary

f. W ← W + 1

g. If the end of current reopening interval is reached, reset W = 1

	 	

	

100

3.4.5. FPGA implementation

Field Programmable Gate Arrays (FPGA) hardware has been widely used in the high frequency

trading sector to accelerate and reduce the latency of packet capture (e.g. FIX/FAST messages),

order book modeling, theoretical price calculations and other finance statistic evaluations (e.g.

option greeks). In this work, an FPGA embedded server MaxWorkstation10G (developed by

Maxeler Technologies) is adopted for parallel computing. This powerful server is equipped with

one Vectis dataflow engine (DFE) and Intel Core i7 quad-core CPU with 16GB RAM. The

Vectis board includes a Xilinx Virtex-6 SX475T FPGA, where highly parallelizable

computations are performed. MaxWorkstation10G is a connectivity development platform with

CPU and DFE connected via PCI Express gen2 x8, guaranteeing its ultra-low latency (Figure

3.1). Compared with Graphical Processing Unit (GPU) based accelerators, reconfigurable FPGA

implementations enjoy lower power consumption alongside its strong capability in high-

performance computing, but at the expense of ease of programming. Unlike conventional FPGAs,

Maxeler FPGA solutions offer extended flexibility and significantly improve the programming

experience (with MaxIDE in MaxelerOS). They developed a customized Java-based language to

program the DFE kernels, which specifies computational logic, and the DFE managers, which

connect the data flows among CPU, kernels, and memories (fast on-chip memory FMem or large

off-chip memory LMem). Note that data flows are streamed into and out of the DFE, meaning

that additional data handling is necessary, for example, matrix serialization. By Simple Live

CPU interface (SLiC), the FPGA application can be embedded into a number of major

programming languages such as C/C++, Java, python, MATLAB, R etc.

	 	

	

101

Figure 3.1: Maxeler dataflow engine architecture (Courtesy of Maxeler tutorial)

As presented in Section 3.4.2, the support vector insertion and deletion in Step 2.d of IVS-

EKPSVR require kernel matrix inverse updates by formulas (3.9) and (3.11), which are

computationally intensive and thus become a good candidate for FPGA acceleration. Essentially,

these matrix updates are a number of nested-for loops that are highly parallelizable. We also

notice that the local fitness calculation (at the beginning of Step 2.d) and the predictions for each

sample (Step 2.e) consist only of nested-for loops. Based on these observations, four parts of the

IVS-EKPSVR algorithm are prime candidates for DFE: support vector addition, support vector

removal, local fitness, and sample prediction.

Consider inference (Step 2.e). To make these predictions, two for loops are required – one

sweeps all data points and another scans all support vectors. Its pseudo code is as follows (denote

the prediction output vector as ã, the number of samples as å, the number of support vectors

as	ç).

	 	

	

102

Our DFE implementation is shown in Figure 3.2 (assuming there are 3 support vectors). The

outer loop in the CPU code is the target of parallelization since the predictions for each sample

are independent. The support vector related data is stored in the read-only memory (ROM) in

FPGA. Each time a new sample is streamed into DFE, it is then distributed into every ROM and

multiplied with the support vector to calculate % é ∙ fd,d[N, é]. Then, we sum all these

contributions to obtain the prediction output for this particular data point.

Figure 3.2: DFE design for sample prediction

Next we discuss local fitness. The formulas to calculate zd,` in (3.8) and Ö in (3.10) are very

similar. In (3.8), the numerator is matrix multiplication {d,`e fd,d
|,{d,` and the denominator is a

scalar. In (3.10), the solution to Ö	also involves a matrix multiplication, similar to {d,`e fd,d
|,{d,`.

They can indeed share the same DFE design. We develop a two-step data flow for this matrix

Initialize ã[N] = 0 for	all N = 1,… ,å	

For	N	from	1	to	å	
	 For	é	from	1	to	ç	

	 	 ã[N] = ã[N] + %[é] ∙ fd,d[N, é]	

Output	ã

	 	

	

103

multiplication: multiply {d,`e fd,d
|, first, resulting in an intermediate row vector denoted è; then

multiply è ∙ {d,` and output the desired scalar ê. The pseudo code is given below.

The corresponding DFE implementation is presented in Figure 3.3. In both the left and right DFE

kernels, we map the vector {d,` into on-chip ROM, meaning each box in the figure represents an

element of {d,` (suppose the kernel inverse matrix is 3-by-3). The inverse matrix columns of fd,d|,

are then streamed into the left DFE kernel and multiplied with each element of {d,`, which yields

{d,` é ∙ fd,d
|,[N, é]. By summing up these multiplications, the intermediate row vector è is attained.

Vector	è is then streamed into the next DFE kernel on the right and multiplied with each vector

element of {d,` to obtain è N ∙ {d,`[N]. Finally, summing these multiplications yields the desired

scalar ê.

Initialize è[N] = 0 for	all N = 1,… , ç	

Initialize	ê = 0	

For	N	from	1	to	ç	
	 For	é	from	1	to	ç	

	 	 è[N] = è[N] + {d,`[é] ∙ fd,d
|,[N, é]	

 ê = ê + è[N] ∙ {d,`[N]
Output	ê

	 	

	

104

Figure 3.3: DFE design for two-step matrix multiplication

Once the intermediate row vector è and scalar Ö are obtained, vector Ñ in (3.9) immediately

follows by multiplying èe with −Ö.

Finally we discuss support vector deletion and addition. This amounts to computing	É in (3.10)

and the inverse matrix update upon support vector deletion using (3.11). Note that the solution to

É in (3.10) requires the intermediate row vector as well, therefore we rewrite

É = f0
|, − èeÑe,

a form identical to (3.11). This means that these two parts can share the same data flow design

again. The pseudo code and DFE implementation are omitted due to its resemblance to the

previous two cases. The basic idea is that for each element in matrix É or f0|,, depending on the

formulas, we subtract its value by the product of corresponding elements in vectors èe and Ñe or

the product of scalar 1/Ö and elements in vectors Ñ and Ñe. Matrix É or f0|, is streamed into the

DFE, while two vectors and a scalar (in the É case, the scalar is 1) are mapped onto the on-chip

ROM.

	 	

	

105

3.5. Computational Study

Using empirical data from the E-mini S&P 500 futures and options market, in this section we

present a computational study that compares our IVS-EKPSVR algorithm against competing

methods.

3.5.1. Data

The E-mini S&P 500 option has the E-mini S&P 500 future as the underlying asset, both traded

in the Chicago Mercantile Exchange (CME). The options tick data used for this study is based on

dates 01/27/2014 to 01/31/2014 and contains 5 maturities: February to June 2014. Each tick

represents the latest top level of a limit order book. The trading hours are Sunday to Friday 5 pm

to 4 pm Central Time with a halt from 3:15 pm to 3:30 pm, and a 60-minute break beginning at 4

pm. These non-trading time periods are excluded from our experiments. Although trading

activity can occur almost any time in a trading day, the busiest hours are from 9 am to 4 pm. For

example, over 54.4 million ticks are recorded during this time period out of 79.9 million on

01/27/2014, i.e. approximately 70% ticks in 30% time of a day. For this reason we built our

models only for these hours. The moneyness of options is defined as the ratio of strike price

divided by the underlying asset price. Because out-the-money and in-the-money options are less

traded in a high-frequency intra-day setup, we limit the moneyness of options to 0.95 to 1.05 (i.e.

at-the-money or ATM). Their matching strike prices are determined by the settlement price of

the underlying futures in the previous trading day of 01/27/2014, which is 01/24/2014. The total

number of data points on each modeled IVS (Call Bid, Call Ask, Put Bid and Put Ask) is 200, i.e.

40 strike prices of the ATM options for each of the 5 maturities. These samples on the strike-

	 	

	

106

maturity grid display varying values of implied volatility over time and thus become the targets

of our online prediction models.

Given the price data, implied volatilities are computed using the Black-Scholes formula with

interest rates linearly interpolated from the daily Treasury yield curve. Figure 3.4 summarizes the

statistics of the average implied volatility from 9 am to 4 pm on 01/27/2014 (details can be found

in Appendix B). Generally, Feb 2014 maturity shows the most volatile properties with the largest

standard deviations. The longer the maturity, the smaller the standard deviation. Another

observation is that put options are on average priced higher than call options by examining the

mean of implied volatility.

0%
5%

10%
15%
20%

Fe
b-
14

M
ar
-1
4

A
pr
-1
4

M
ay
-1
4

Ju
n-
14

Fe
b-
14

M
ar
-1
4

A
pr
-1
4

M
ay
-1
4

Ju
n-
14

Fe
b-
14

M
ar
-1
4

A
pr
-1
4

M
ay
-1
4

Ju
n-
14

Fe
b-
14

M
ar
-1
4

A
pr
-1
4

M
ay
-1
4

Ju
n-
14

Call	Bid Call	Ask Put	Bid Put	Ask

Mean

	 	

	

107

Figure 3.4: Summary statistics of IV

Figure 3.5 presents the Call Bid, Call Ask, Put Bid and Put Ask IVS models for ATM options at

9 am on 01/27/2014 (strike prices range from 1,670 to 1,865 with a discrete increment of 5).

Volatility smile can hardly be identified but volatility skew exists in all four surfaces. It can also

be observed that dramatic changes of implied volatility appear on the higher end of strike prices

for shorter maturities. The above observations not only apply to 01/27/2014, but all other four

days.

0%
2%
4%
6%
8%

10%

Fe
b-
14

M
ar
-1
4

A
pr
-1
4

M
ay
-1
4

Ju
n-
14

Fe
b-
14

M
ar
-1
4

A
pr
-1
4

M
ay
-1
4

Ju
n-
14

Fe
b-
14

M
ar
-1
4

A
pr
-1
4

M
ay
-1
4

Ju
n-
14

Fe
b-
14

M
ar
-1
4

A
pr
-1
4

M
ay
-1
4

Ju
n-
14

Call	Bid Call	Ask Put	Bid Put	Ask

Standard Deviation

	 	

	

108

Figure 3.5: IVS

(From left to right, top to bottom: Call Bid, Call Ask, Put Bid, Put Ask)

3.5.2. Results

Our algorithms are developed in C++ and a Java-based FPGA programming language on a load-

free MaxWorkstation10G with 4.0 GHz Intel Core i7 processor and 16 GB of RAM.

In the implementation, once the top level of a limit order book is updated by a new tick in C++

(on the CPU), that tick is then streamed into the FPGA hardware (or DFE) to update the SVR

model by examining its local fitness, updating the kernel matrix inverse upon support vector

addition or removal and finally to predict the entire IVS (see Section 3.4.5 for details). In

between these operations, C++ functions as a data transfer medium that serializes, recovers and

stores vectors and matrices, and connects input and output data flows with the PCI Express portal

of the FPGA hardware. A counterpart implementation that accomplishes the same computations

exclusively in C++ has also been developed for a comparison purpose (we call it a pure CPU

implementation).

	 	

	

109

Experiments are implemented on a slightly modified version of the online IVS-EKPSVR. In

Algorithm 3.4, models are continuously updated at each tick and so does the IVS prediction.

Empirically, tick-by-tick prediction and evaluation are not necessary since the surface does not

vary drastically within a short period. This fact motivates us to delay prediction and error

evaluation until receipt of a certain number of ticks or elapse of a certain amount of time. For

simplicity, we set such time point to be the end of a reopening interval, where regression errors

are recorded and prediction for the next interval is performed. Due to our intraday setting, the

length of reopening intervals is set to be 1 minute, a lower limit of common choices between 1 to

5 minutes (Hansen and Lunde, 2005) due to higher liquidity of ATM options. Similar minute-

level intervals are used by Bollerslev et al. (2009) and Sévi (2014) for estimation of volatilities

using tick data. Since the IVS prediction is delayed, Step 2.b of Algorithm 3.4 then follows Step

2.b of KPSVR to obtain the predicted value of a new observation using the latest support vector

dictionary instead of extracting it from previously predicted IVS.

The hyper-parameters chosen for the IVS-EKPSVR algorithm are as follows: ~ = 0.3, 6 =

0.75, ä = 7, C = 0.01. SVR is equipped with the Gaussian kernel1 using í = 0.25. They were

selected based on calibration with data from 01/27/2014. After fixing these hyper-parameters, the

other four days essentially form a hold-out set used to assess all algorithms. We do not carry a

model from the previous day to the next, i.e. the training process is restarted every morning, but

the order book is constantly updated upon receipt of new ticks. Model fitting starts at 8 am, and

1 Gaussian kernel function: f ', * = ì'ã −í ' − * 9 .

	 	

	

110

inference begins at 9 am. This one-hour lag provides a warm start for inference tasks each day.

Both model update and prediction end at 4 pm daily with a halt from 3:15 to 3:30 pm.

We first present select behavior on the validation date of 01/27/2014. Figure 3.6 exhibits the

implied volatility prediction time series of IVS-EKPSVR for options with a strike price of 1,770

(right ATM) on this date. The sequence-axis represents the time sequence discretized by 1

minute from 9 am to 4 pm (3:15 to 3:30 pm excluded) with 0 representing 9 am. Models from

our algorithm adaptively adjust themselves and lead to predictions varying with the shifting

market conditions. Specifically, prediction errors behave as if they are white noises

(corresponding plots are omitted here), with absolute prediction error averaging 0.87%, 0.86%,

0.68%, 0.68% for Call Bid, Call Ask, Put Bid and Put Ask IVS models, respectively. Prediction

error is relatively large on the edge of the strike-maturity grid for options with the shortest and

longest maturities, because these options have less reference points to infer their implied

volatilities during online learning. The aforementioned observations not only apply to strike

1,770, but also to other strikes and days.

	 	

	

111

Figure 3.6: IV prediction

(From left to right, top to bottom: Call Bid, Call Ask, Put Bid, Put Ask)

We now explore a few competing models and contrast their average performance against IVS-

EKPSVR with data from 01/28/2014 to 01/31/2014. For consistency, the same strike-maturity

grid is used for these four days as on 01/27/2014. As a simplification, KPSVR provides a

baseline that excludes any enhancements, and BKPSVR embeds budget maintenance. Similar to

Algorithm 3.4, identical IVS prediction schemas are attached to these benchmarks, naming them

	 	

	

112

to IVS-KPSVR and IVS-BKPSVR correspondingly. Average performance statistics across the

four days are shown in Table 3.1 and Figure 3.7 (details can be found in the Appendix B). Table

3.1 is about the average support vector sizes over the four days. Note that for budget

maintenance purpose, the support vector size in IVS-BKPSVR is set to 50. We choose this value

as a complement to the other two algorithms to reveal the performance when a quarter of

available data points are considered support vectors while the other two discuss scenarios where

all or half samples are used as support vectors. Figure 3.7 presents the differences of

performance measured by average minute-by-minute MAPE (mean average percentage error)

and RMSE (root mean square error) over the four days between IVS-EKPSVR and IVS-KPSVR

or IVS-BKPSVR.

Figure 3.7 particularly asserts that IVS-EKPSVR and IVS-KPSVR are comparable in

performance metrics with the latter slightly outperforming the former. Both clearly substantially

beat IVS-BKPSVR. To verify that IVS-EKPSVR and IVS-KPSVR perform equivalently in a

statistical sense, we perform a two-sample t test with the null hypothesis that these two

algorithms have the same mean MAPE. Using the Gaussian kernel, the p values are 82.51%,

49.89%, 52.90% and 74.79% for Call Bid, Call Ask, Put Bid and Put Ask IVS models

respectively, meaning that the null hypothesis cannot be rejected. The same test between IVS-

EKPSVR and IVS-BKPSVR yields p values of 0.91%, 0.09%, 3.37% and 1.86% implying that

the mean of IVS-EKPSVR is lower than the mean of IVS-BKPSVR with 95% confidence.

Analogous conclusions can be drawn for the linear kernel. However, peeking at Table 3.1 we

observe that IVS-EKPSVR uses substantially fewer support vectors in the Gaussian kernel case

	 	

	

113

than IVS-KPSVR, which does not bound the total number of support vectors and keeps adding

support vectors provided that the C condition is violated. Thus, in the call bid and ask models, the

number of support vectors reaches the maximum 200 (the total number of data points on the

strike-maturity grid, i.e. all samples) while the put bid and ask models arrive at 199. FVS in IVS-

EKPSVR functions as a support vector size controller. It only adds a support vector when local

fitness zd,` of a new sample ' is smaller than the preset threshold ~. In the Gaussian kernel case,

IVS-EKPSVR uses around 50 ~ 60% of support vectors as in IVS-KPSVR, but results in a

similar performance that can be seen from Figure 3.7. Nevertheless, it distinguishes itself from

IVS-BKPSVR by dynamic support vector size tuning and further reduction in error rates. In

essence, it finds a balance point where it stops increasing model complexity once performance

reaches its limit. In the linear kernel case the difference is not that pronounced. We now

conclude that IVS-EKPSVR achieves the same performance numbers as the best of the two

competing algorithms but with fewer support vectors and is thus the preferred choice of the

algorithm.

The actual MAPE values in all settings range from 12% to 15% while RMSE is from 1.5% to

2.5%.

Taking a closer look at Table 3.1 and Figure 3.7, we obtain the following observation that under

IVS-EKPSVR, the Gaussian kernel behaves better than the linear kernel, whereas the linear

kernel acts analogous to the baseline IVS-KPSVR, encompassing almost entire samples into the

support vector space and achieving similar performance to IVS-KPSVR. Table 3.2 exhibits the

	 	

	

114

two-sample t statistics and p values of MAPE, with a null hypothesis that the linear and Gaussian

kernel share the same mean MAPE. By examining Table 3.2, we observe that when support

vector size is the same, the linear kernel performs comparable to the Gaussian kernel in IVS-

KPSVR and IVS-BKPSVR since a large p value does not reject the null hypothesis. With much

more support vectors, the linear kernel does not lead to significant improvement over the

Gaussian kernel in IVS-EKPSVR. This being said, the Gaussian kernel works better for our

online algorithm.

As a final note based on Table 3.1 and Figure 3.7, we find that a larger number of support

vectors leads to smaller MAPE and RMSE but at the expense of more computational resources to

perform kernel matrix manipulations, a conclusion that can be further justified by the sensitivity

analysis presented in the latter part of this section.

Table 3.1: Support vector size

 Kernel Call Bid Call Ask Put Bid Put Ask

IVS-KPSVR
Gaussian 200 200 199 199

Linear 200 200 199 199

IVS-
BKPSVR

Gaussian 50 50 50 50
Linear 50 50 50 50

IVS-
EKPSVR

Gaussian 110 104 116 120
Linear 191 194 196 196

	 	

	

115

Table 3.2: Two-sample t-test of MAPE for Gaussian vs. Linear Kernels

 Call Bid Call Ask Put Bid Put Ask

 T Stat. P Val. (%) T Stat. P Val. (%) T Stat. P Val. (%) T Stat. P Val. (%)
IVS-KPSVR 0.39 69.62 -0.43 66.74 -0.63 52.87 -0.71 47.81

IVS-BKPSVR 0.55 58.45 -0.56 57.46 -1.29 19.64 -1.31 18.93
IVS-EKPSVR 0.43 66.67 -0.82 41.23 -1.08 28.15 -1.09 27.43

Figure 3.7: Average performance difference from IVS-EKPSVR

Edge points on the strike-maturity grid have less reference points to infer their values, in which

case accuracy on the edges is negatively impacted. In all IVS models, the edge points that lie

outside of the 20 strike prices in the center part of the grid can increase the regression error by

-0.5%

0.0%

0.5%

1.0%

Gaussian Linear Gaussian Linear

IVS-KPSVR IVS-BKPSVR

MAPE Difference from IVS-EKPSVR

Call	Bid Call	Ask Put	Bid Put	Ask

-0.05%
0.00%
0.05%
0.10%
0.15%
0.20%

Gaussian Linear Gaussian Linear

IVS-KPSVR IVS-BKPSVR

RMSE Difference from IVS-EKPSVR

Call	Bid Call	Ask Put	Bid Put	Ask

	 	

	

116

about 30 ~ 60% (detailed numbers can be found in the Appendix B). In Figure 3.8, we present

the performance differences of IVS-KPSVR and IVS-BKPSVR from IVS-EKPSVR if edge

strike prices are ruled out. In the center part of the grid, IVS-EKPSVR again outperforms IVS-

BKPSVR but shows identical results to IVS-KPSVR with much less support vectors.

Figure 3.8: Average performance difference from IVS-EKPSVR

Before Pegasos, two stochastic gradient descent based methods were introduced to solve SVM

classification problems – Kivinen et al. (2004) and Zhang (2004). Kivinen suggests a learning

rate of î
Z [

 in their algorithm called NORMA, while Zhang simply let it be a constant ï,

-0.5%
0.0%
0.5%
1.0%
1.5%

Gaussian Linear Gaussian Linear

IVS-KPSVR IVS-BKPSVR

MAPE Difference from IVS-EKPSVR

Call	Bid Call	Ask Put	Bid Put	Ask

-0.05%
0.00%
0.05%
0.10%
0.15%

Gaussian Linear Gaussian Linear

IVS-KPSVR IVS-BKPSVR

RMSE Difference from IVS-EKPSVR

Call	Bid Call	Ask Put	Bid Put	Ask

	 	

	

117

regardless of iterations (we name it BSGD). To adapt these methods in an online adaptive

regression setting, we update Step 2.c in Algorithm 3.4 to %[a] ← 1	–	
î

[
% a (for NORMA)

and %[a] ← 1	– 	ï6 % a (for BSGD). Step sizes in Step 2.d are changed to ± î

Z [
 and ï

respectively. We name these enhanced algorithms IVS-NORMA2 and IVS-BSGD. In IVS-BSGD,

constant ï is set to 0.01 and 6 is set to 10 to attain a relatively good result that balances the

support vector size and prediction error (tuned using data from 01/27/2014). Since the shrinkage

multiplier for %[a] are nonnegative in both cases, the warmup parameter is not needed for these

two algorithms. All other parameters remain the same as in IVS-EKPSVR. Table 3.3 shows that,

under Gaussian kernel, IVS-EKPSVR uses the least number of support vectors but also achieves

the smallest error rates. This further verifies the superiority of the learning rate ,
Z[

 and all other

enhancements behind IVS-EKPSVR.

Table 3.3: Performance summary of competing algorithms

 Call Bid Call Ask Put Bid Put Ask

 MAPE
(%)

RMSE
(%) SV MAPE

(%)
RMSE

(%) SV MAPE
(%)

RMSE
(%) SV MAPE

(%)
RMSE

(%) SV

IVS-
EKPSVR 12.09 2.27 110 11.86 2.48 104 14.58 1.63 116 12.45 1.66 120

IVS-
NORMA 18.52 3.29 170 17.89 3.34 169 24.66 2.72 164 21.13 2.63 160

IVS-
BSGD 18.63 3.38 105 17.20 3.39 106 27.35 3.01 120 23.10 2.87 125

Hyper parameter tuning directly impacts the number of support vectors and prediction accuracy.

Parameter	í in the Gaussian kernel controls how far the influence of a support vector reaches;

2 Optimal	ã is determined by 0.5 2 +

w.ñ

e
, where i is the maximum number of iterations. We

let i go to infinity due to the large size of option tick data and hence ã = 0.71.

	 	

	

118

constant ~ is related to local fitness; parameter 6 regularizes the loss function; warmup

coefficient ä defines the magnitude of model updates at each step. In the following analysis, we

discuss the sensitivity of IVS-EKPSVR to these parameters using a Gaussian kernel and data

from 01/27/2014. All the parameters chosen previously are based on the subsequent grid search

process that trades off the model complexity (the number of support vectors) and error rates.

Figure 3.9 demonstrates the changes of average support vector size and MAPE of the four

models (Call Bid, Call Ask, Put Bid and Put Ask) with regard to 1 í and ~3. A larger 1 í exerts

a greater influence of support vectors to more distant samples, while a smaller value constrains

support vector’s influence on nearby data points and hence calls for more support vectors in a

model. The MAPE, on the other hand, reaches its lowest value when 1 í = 4. Local fitness

threshold ~ mainly controls the number of support vectors. The larger the threshold	~ is, the

more support vectors will be selected. In the MAPE plot, given a fixed 1 í, parameter ~ yields

fairly stable error rates across different ~ values. The spike in the MAPE plot occurs as a

resultant of a large 1 í and a small ~, which produces very few support vectors in the model (a

sudden drop at the bottom in the left figure), followed by a large MAPE.

3 For a better viewing angle, the axis directions are different in the two plots.

	 	

	

119

Figure 3.9: Sensitivity of support vector size and MAPE to gamma (ó) and rho (ò)

Figure 3.10 presents the sensitivity analysis of ä and 6. The warmup factor ä does not influence

the MAPE to a great extent, but impacts the support vector sizes: a larger ä leads to a smaller

support vector set. A smaller regularization parameter 6 puts more emphasis on the regression

error by introducing more freedom or support vectors into the model, which further yields a

reduced MAPE.

Figure 3.10: Sensitivity of support vector size and MAPE to warmup (ô) and lambda (ö)

In Figure 3.11, we contrast the runtime performance of FPGA against CPU implementations for

the four parts of the algorithm as explained in Section 3.4.5. Given the support vector size limit

of 200 (the original grid size), FPGA cannot fully utilize its computational power and does not

	 	

	

120

show much speed improvement due to the communication overhead between CPU and FPGA.

For this reason, we enlarge the support vector size 100 times to 20,000, which represents a much

finer grid. In the following analysis, it is assumed that all data points on the grid are used as

support vectors. During the model training phase, FPGA shows a 16.7 speedup for calculating a

local fitness, 7.2 faster for completing the matrix inverse calculations upon a support vector

addition and 5.4 speedup for a support vector removal. Prediction phase (Step 2.e in Algorithm

3.4) enjoys the most speedup due to its highly parallel nature. It obtains a 131.8 acceleration for

predicting 20,000 samples. For a large-scale online implementation of machine learning

algorithms, not only ours, FPGA technology is thus an excellent alternative to reduce latency and

to enable agile responses to the unremitting changes in the real world.

Figure 3.11: FPGA vs. CPU speed comparison

0

20

40

60

80

100

120

140

0

1

2

3

4

5

6

7

Local	Fitness SV	Addition SV	Removal Prediction

Sp
pe

d
up

(×
)

Ru
nt
im

e
(s
ec
on

ds
)

FPGA vs. CPU

FPGA CPU Speed	Up

	 	

	

121

3.6. Conclusion and Future Work

This chapter presents the first implementation of an online adaptive primal SVR algorithm with

an application to model the implied volatility surface in the E-mini S&P 500 options market. We

introduce feature vector selection and budget maintenance to control the number of support

vectors and dynamically update the model once a new pattern or changed pattern emerges, which

then evolves into the IVS-EKPSVR algorithm that outperforms either IVS-KPSVR or IVS-

BKPSVR. We find that the linear kernel does not work well with FVS in regulating the support

vector size, but performs similarly to Gaussian kernel in terms of error rates if an identical

number of support vectors are used such as in IVS-KPSVR and IVS-BKPSVR. Due to less

reference points, edges of the maturity-strike grid possess larger regression errors that may boost

overall MAPE and RMSE by around 30 ~ 60%. Compared with competing methods, IVS-

EKPSVR outperforms IVS-NORMA and IVS-BSGD to a great extent, with a MAPE gap up to

12.7% and RMSE gap up to 1.4%. Finally, FPGA hardware has been proved to significantly

accelerate the training and prediction phase of our algorithm. Future work can focus on

improving the prediction accuracy on the edges of the IVS grid, for example, by introducing

more predictor variables from the markets.

	 	

	

122

References

Amram, M. and Kulatilaka, N. (1999). Real options: Managing strategic investment in an

uncertain world. Harvard Business School Press, Boston, Mass.

Ashuri, B., Kashani, H. and Lu, J. (2011). A real options approach to evaluating investment in

solar ready buildings, Management and Innovation for a Sustainable Built Environment,

Amsterdam, The Netherlands.

Audrino, F., and Colangelo, D. (2010). Semi-parametric forecasts of the implied volatility

surface using regression trees. Statistics and Computing, 20(4), 421-434.

Baudat, G., and Anouar, F. (2003). Feature vector selection and projection using

kernels. Neurocomputing, 55(1), 21-38.

Belien, J., De Boeck, L., Colpaert, J. and Cooman, G. (2013). The best time to invest in

photovoltaic panels in Flanders. Renewable Energy 50, 348-358.

Bianchi, L., Dorigo, M., Gambardella, L. M., and Gutjahr, W. J. (2009). A survey on

metaheuristics for stochastic combinatorial optimization. Natural Computing: an international

journal, 8(2), 239-287.

Birge, J. R. (2007). Optimization methods in dynamic portfolio management. Handbooks in

Operations Research and Management Science, 15, 845-865.

Bollerslev, T., Kretschmer, U., Pigorsch, C., & Tauchen, G. (2009). A discrete-time model for

daily S & P500 returns and realized variations: Jumps and leverage effects. Journal of

Econometrics, 150(2), 151-166.

	 	

	

123

Booth, A. (2016). Automated algorithmic trading: machine learning and agent-based modelling

in complex adaptive financial markets (Doctoral dissertation, University of Southampton).

Brandt, M. W. (2009). Portfolio choice problems. Handbook of Financial Econometrics, 1, 269-

336.

Brown, D. B., and Smith, J. E. (2011). Dynamic portfolio optimization with transaction costs:

Heuristics and dual bounds. Management Science, 57(10), 1752-1770.

Cauwenberghs, G., and Poggio, T. (2000, December). Incremental and decremental support

vector machine learning. In NIPS (Vol. 13).

Chang, B. R., and Tsai, H. F. (2008). Forecast approach using neural network adaptation to

support vector regression grey model and generalized auto-regressive conditional

heteroscedasticity. Expert systems with applications, 34(2), 925-934.

Chen, H. L., Yang, B., Wang, G., Liu, J., Xu, X., Wang, S. J., and Liu, D. Y. (2011). A novel

bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor

method. Knowledge-Based Systems, 24(8), 1348-1359.

Chen, S., Härdle, W. K., and Jeong, K. (2010). Forecasting volatility with support vector

machine-based GARCH model. Journal of Forecasting, 29(4), 406-433.

Constantinides, G. M., Jackwerth, J. C., and Savov, A. (2013). The puzzle of index option

returns. Review of Asset Pricing Studies.

Crammer, K., Kandola, J. S., and Singer, Y. (2003, December). Online Classification on a

Budget. In NIPS (Vol. 2, p. 5).

	 	

	

124

Denault, M., and Simonato, J. G. (2017). Dynamic portfolio choices by simulation-and-

regression: Revisiting the issue of value function vs portfolio weight recursions. Computers and

Operations Research, 79, 174-189.

Dixit, A.K. and Pindyck, R.S. (1994). Investment under uncertainty. Princeton University Press,

Princeton, N.J.

Driessen, J., and Maenhout, P. (2013). The world price of jump and volatility risk. Journal of

Banking and Finance, 37(2), 518-536.

Dumas, B., Fleming, J., and Whaley, R. E. (1998). Implied volatility functions: Empirical

tests. The Journal of Finance, 53(6), 2059-2106.

Energy Information Administration (2012). Annual Energy Review 2011,

www.eia.gov/totalenergy/data/annual/pdf/aer.pdf.

Eraker, B. (2013). The performance of model based option trading strategies. Review of

Derivatives Research, 16(1), 1-23.

Faias, J., and Santa-Clara, P. (2011). Optimal option portfolio strategies. In AFA 2011 Denver

Meetings Paper. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1569380

Fengler, M. R., Härdle, W. K., and Mammen, E. (2007). A semiparametric factor model for

implied volatility surface dynamics. Journal of Financial Econometrics, 5(2), 189-218.

Fernandes, B., Cunha, J. and Ferreira, P. (2011). The use of real options approach in energy

sector investments. Renewable Sustainable Energy Review 15, 4491-4497.

	 	

	

125

Gouriéroux, C. and Valéry, P. (2004). Estimation of a Jacobi process. Preprint,

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.196andrep=rep1andtype=pdf.

Gu, B., Sheng, V. S., Wang, Z., Ho, D., Osman, S., and Li, S. (2015). Incremental learning for ν-

support vector regression. Neural Networks, 67, 140-150.

Hahn, T. (2013). Option pricing using artificial neural networks: an Australian perspective.

Hansen, P. R., & Lunde, A. (2005). A realized variance for the whole day based on intermittent

high-frequency data. Journal of Financial Econometrics, 3(4), 525-554.

Haugh, M. B., and Kogan, L. (2007). Duality theory and approximate dynamic programming for

pricing American options and portfolio optimization. Handbooks in operations research and

management science, 15, 925-948.

Hoff, T.E., Margolis, R. and Herig, C. (2003). A simple method for consumers to address

uncertainty when purchasing photovoltaics, http://www.cleanpower.com/Research.

Homescu, C. (2011). Implied volatility surface: Construction methodologies and characteristics.

Hu, G., and Jacobs, K. (2016). Volatility and Expected Option Returns.

Ilhan, A., Jonsson, M., and Sircar, R. (2004). Portfolio optimization with derivatives and

indifference pricing. Indifference Pricing (ed. Carmona), 181-210.

Jones, C. S. (2006). A nonlinear factor analysis of S&P 500 index option returns. The Journal of

Finance, 61(5), 2325-2363.

	 	

	

126

Kivinen, J., Smola, A. J., and Williamson, R. C. (2004). Online learning with kernels. IEEE

transactions on signal processing, 52(8), 2165-2176.

Kyrkou, C., Theocharides, T., and Bouganis, C. S. (2013, July). An embedded hardware-efficient

architecture for real-time cascade support vector machine classification. In Embedded Computer

Systems: Architectures, Modeling, and Simulation (SAMOS XIII), 2013 International

Conference on (pp. 129-136). IEEE.

Lee, S., Lee, J., Shim, D., and Jeon, M. (2007, September). Binary particle swarm optimization

for black-scholes option pricing. In International Conference on Knowledge-Based and

Intelligent Information and Engineering Systems (pp. 85-92). Springer Berlin Heidelberg.

Li, J., Li, G., Sun, D., and Lee, C. F. (2012). Evolution strategy based adaptive L q penalty

support vector machines with Gauss kernel for credit risk analysis. Applied Soft

Computing, 12(8), 2675-2682.

Liu, J., and Pan, J. (2003). Dynamic derivative strategies. Journal of Financial Economics, 69(3),

401-430.

Liu, J., and Zio, E. (2016). An adaptive online learning approach for Support Vector Regression:

Online-SVR-FID. Mechanical Systems and Signal Processing, 76, 796-809.

Longstaff, F. A., and Schwartz, E. S. (2001). Valuing American options by simulation: a simple

least-squares approach. Review of Financial studies, 14(1), 113-147.

Ma, J., Theiler, J., and Perkins, S. (2003). Accurate online support vector regression. Neural

computation, 15(11), 2683-2703.

	 	

	

127

Malliaris, M., and Salchenberger, L. (1996). Using neural networks to forecast the S&P 100

implied volatility. Neurocomputing, 10(2), 183-195.

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91.

Martinez-Cesena, E.A., Azzopardi, B. and Mutale, J. (2013). Assessment of domestic

photovoltaic systems based on real options theory. Progress in Photovoltaics 21, 250-262.

Martinez-Cesena, E.A. and Mutale, J. (2011). Application of an advanced real options approach

for renewable energy generation projects planning. Renewable Sustainable Energy Review 15,

2087-2094.

Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: The continuous-time case.

The Review of Economics and Statistics, 51(3), 247-257.

Merton, R. C. (1971). Optimum consumption and portfolio rules in a continuous-time model.

Journal of Economic Theory, 3(4), 373-413.

Merton, R. C. (1975). Theory of finance from the perspective of continuous time. Journal of

Financial and Quantitative Analysis, 10(04), 659-674.

Merton, R. C. (1990). Continuous-time finance. Cambridge, Mass., B. Blackwell.

Mun, J. (2002). Real options analysis: Tools and techniques for valuing strategic investments and

decisions. John Wiley and Sons, Hoboken, N.J.

Munoz, J.I., Contreras, J., Caamano, J. and Correia, P.F. (2009). Risk assessment of wind power

generation project investments based on real options. 2009 IEEE Bucharest Powertech, Vols 1-5,

2346-2353.

	 	

	

128

National Renewable Energy Laboratory (2009). Power purchase agreement checklist for state

and local governments, www.nrel.gov/docs/fy10osti/46668.pdf.

National Renewable Energy Laboratory (2011). Solar renewable energy certificate (SREC)

markets: Status and trends, http://apps3.eere.energy.gov/greenpower/pdfs/52868.pdf.

Papadonikolakis, M., and Bouganis, C. S. (2012). Novel cascade FPGA accelerator for support

vector machines classification. IEEE Transactions on Neural Networks and Learning

Systems, 23(7), 1040-1052.

Poon, S. H., and Granger, C. W. (2003). Forecasting volatility in financial markets: A

review. Journal of economic literature, 41(2), 478-539.

Powell, W. B. (2011). Approximate Dynamic Programming: Solving the curses of

dimensionality. John Wiley and Sons.

Powell, W., Ruszczyński, A., and Topaloglu, H. (2004). Learning algorithms for separable

approximations of discrete stochastic optimization problems. Mathematics of Operations

Research, 29(4), 814-836.

Rabieah, M. B., and Bouganis, C. S. (2015, September). FPGA based nonlinear Support Vector

Machine training using an ensemble learning. In Field Programmable Logic and Applications

(FPL), 2015 25th International Conference on (pp. 1-4). IEEE.

Rockafellar, R. T., and Wets, R. J. B. (1991). Scenarios and policy aggregation in optimization

under uncertainty. Mathematics of operations research, 16(1), 119-147.

	 	

	

129

Rodrigues, A. and Armada, M.J.R. (2006). The valuation of real options with the least squares

Monte Carlo simulation method, http://ssrn.com/abstract=887953 or

http://dx.doi.org/10.2139/ssrn.887953.

Ruiz-Llata, M., Guarnizo, G., and Yébenes-Calvino, M. (2010, July). FPGA implementation of a

support vector machine for classification and regression. In Neural Networks (IJCNN), The 2010

International Joint Conference on (pp. 1-5). IEEE.

Sarkis, J. and Tamarkin, M. (2008). Real options analysis for renewable energy technologies in a

GHG emissions trading environment, Emissions Trading. Springer, New York, pp. 103-119.

Schölkopf, B., Smola, A. J., Williamson, R. C., and Bartlett, P. L. (2000). New support vector

algorithms. Neural computation, 12(5), 1207-1245.

SEIA/GTM Research (2013). U.S. Solar Market Insight 2012 Year in Review.

Sévi, B. (2014). Forecasting the volatility of crude oil futures using intraday data. European

Journal of Operational Research, 235(3), 643-659.

Shalev-Shwartz, S., and Srebro, N. (2008, July). SVM optimization: inverse dependence on

training set size. In Proceedings of the 25th international conference on Machine learning (pp.

928-935). ACM.

Shalev-Shwartz, S., Singer, Y., and Srebro, N. (2007, June). Pegasos: Primal estimated sub-

gradient solver for svm. In Proceedings of the 24th international conference on Machine

learning (pp. 807-814). ACM.

Steinwart, I. (2003). Sparseness of support vector machines. Journal of Machine Learning

Research, 4(Nov), 1071-1105.

	 	

	

130

Stentoft, L. (2014). Value function approximation or stopping time approximation: a comparison

of two recent numerical methods for American option pricing using simulation and regression.

Sun, J., Li, H., and Adeli, H. (2013). Concept drift-oriented adaptive and dynamic support vector

machine ensemble with time window in corporate financial risk prediction. IEEE Transactions

on Systems, Man, and Cybernetics: Systems, 43(4), 801-813.

Tang, A., Chiara, N. and Taylor, J.E. (2012). Financing renewable energy infrastructure:

Formulation, pricing and impact of a carbon revenue bond. Energy Policy 45, 691-703.

Trigeorgis, L. (1996). Real options: Managerial flexibility and strategy in resource allocation.

MIT Press, Cambridge, Mass.

Tsitsiklis, J. N., and Van Roy, B. (2001). Regression methods for pricing complex American-

style options. IEEE Transactions on Neural Networks, 12(4), 694-703.

U.S. Department of Energy (2009). President Obama sets a target for cutting U.S. greenhouse

gas emissions, http://apps1.eere.energy.gov/news/news_detail.cfm/news_id=15650.

United Nations Framework Convention on Climate Change (2008). Kyoto Protocol Reference

Manual, http://unfccc.int/resource/docs/publications/08_unfccc_kp_ref_manual.pdf.

Vapnik, V. N., and Vapnik, V. (1998). Statistical learning theory (Vol. 1). New York: Wiley.

Venetsanos, K., Angelopoulou, P. and Tsoutsos, T. (2002). Renewable energy sources project

appraisal under uncertainty: The case of wind energy exploitation within a changing energy

market environment. Energy Policy 30, 293-307.

	 	

	

131

Wang, C. P., Lin, S. H., Huang, H. H., and Wu, P. C. (2012). Using neural network for

forecasting TXO price under different volatility models. Expert Systems with

Applications, 39(5), 5025-5032.

Wang, P. (2011). Pricing currency options with support vector regression and stochastic

volatility model with jumps. Expert Systems with Applications, 38(1), 1-7.

Wang, Z., Crammer, K., and Vucetic, S. (2012). Breaking the curse of kernelization: Budgeted

stochastic gradient descent for large-scale svm training. Journal of Machine Learning

Research, 13(Oct), 3103-3131.

Zhang, T. (2004, July). Solving large scale linear prediction problems using stochastic gradient

descent algorithms. In Proceedings of the twenty-first international conference on Machine

learning (p. 116). ACM.

	 	

	

132

APPENDIX A

Appendix for Chapter 2

A.1. Model for European Option Portfolio

A European option portfolio consists of a number of European options that depend on one or

more underlying assets. It also contains a risk-free account that stores part of the total wealth

while the remainder is allocated to the options. In general, we want to maximize the utility of the

portfolio terminal wealth.

We assume that the time horizon is finite and investors can only trade options at discrete times

t=1,…T. The maturity time of each option is one time period. Suppose the number of options is

N, and they are based on the underlying asset whose price At = (A1,t ,A2,t ,...,AN ,t) evolves based on

a stochastic process. The risk-free asset follows the return process r0,t . The portfolio is self-

financing.

The price of option i is pi = pi,1, pi,2 ,..., pi,T() , and the strike price isKi = Ki,1,Ki,2 ,...,Ki,T() . Then

the return of option i during time t is simply

ri,t =

Ai,t − Ki,t

pi,t

⎛
⎝⎜

⎞
⎠⎟

+

 if call option;

Ki,t − Ai,t
pi,t

⎛
⎝⎜

⎞
⎠⎟

+

 if put option,

⎧

⎨

⎪
⎪

⎩

⎪
⎪

(A.1)

	 	

	

133

where i()+ = max i,0() .

The portfolio strategy over the entire horizon is represented by

w = w1,w2,...,wT()∈X = w∈! +

N×T : wi,t
i=0

N

∑ = 1,for every t⎧
⎨
⎩

⎫
⎬
⎭

, wherewt = w0,t ,w1,t ,...,wN ,t()T .

Weightw0,t is the weight of the risk-free asset during time t andwi,t , for every i ∈{1,..,N} is the

weight of option i during time t in the portfolio. Particularly, we do not allow short selling and

borrowing.

The total wealth of the portfolio thus followsWt+1
total =Wt

totalrt
portfolio , where rt

portfolio = ri,twi,t
i=0

N

∑ is the

rate of return of the portfolio during time period t.

The objective function then reads

max
w∈X

E U W1
total ,W2

total ,...,WT
total()⎡⎣ ⎤⎦ , whereWt

total =Wt
total w1,...,wt−1(), (A.2)

and U i() is the utility function. Clearly, the terminal wealth is a function of the weights

throughout the horizon. We assume an additive utility function in the following form:

U W1
total ,W2

total ,...,WT
total() = U Wt

total()
t=1

T

∑ .

Without loss of generality, we suppose there are N European options based on a single

underlying asset in the following analysis. In the beginning of each time period, only one

decision is made: the weights of wealth allocated to each option and the risk-free account.

	 	

	

134

A.1.1. Optimal Option Portfolio Strategy (OOPS, Faias and Santa-Clara, 2011)

As we have introduced, OOPS introduces a simple but intuitive method that solves a portfolio

problem explicitly for European options. The resulting solution is not optimal but we use this

term in order to be consistent with the terms used by Faias and Santa-Clara. We next summarize

their key ideas.

By simulatingN1 series of underlying asset values and substituting them into (A.1), they first get

N1 series of option returns ri,t
n for each option i during each time period t, and sample

n∈ 1,...,N1{ } . Then from time 1 to the last period T, they perform the following unconstrained

optimization to obtain optimal weights for the next time period

max
wt

E U Wt
totalrt

portfolio()⎡⎣ ⎤⎦ ≈maxwt

1
N1

U Wt
totalrt

portfolio,n()
n=1

N1

∑⎡

⎣
⎢

⎤

⎦
⎥ ,

where rtportfolio,n = ri,t
nwi,t

i=0

N

∑ .

After the optimization, they then update the portfolio wealth and step forward into the next time

period.

Note that they do not have any constraints in the optimization, which means the weights can be

negative. If the weight of an option is negative, it corresponds to short selling. However, if the

weight of the risk-free account turns negative, it requires net borrowing money. We do not allow

such features in our model, even though then can be easily incorporated.

	 	

	

135

Another point is that their method is myopic. By treating each time period independently, they

only optimize the utility for next time period instead of the entire time horizon. Essentially, their

method is a repeating process that solves multiple single-period models.

A.1.2. ADP Algorithm

We now propose an ADP method that treats problem (A.2) as a multi-period model. This method

is an extension to the portfolio optimization method in Powell (2011).

We first define relevant variables. Let the wealth of risk free account and each option during

every time period be denoted byWi,t for every i ∈ 0,1,...,N{ },t ∈ 1,...,T{ }. The decision variable,

action, is the wealth transfer xm,n,t between assets m and n in time period t. We denote

xt = xm,n,t()m,n .

Note that instead of the weights in the general model and OOPS, we define wealth transfers to be

the decision variables. The weights can be implied fromWi,t as wi,t =
Wi,t

Wt
total

.

We also define the following post decision state variables

Wi,t
x =Wi,t + xm,i,t

m=0

N

∑ .

	 	

	

136

After a decision is made during some time period t, exogenous information

ω t+1 =ω t+1 Ai,t ,Ki,t , pi,t() realizes. With Ai,t ,Ki,t and pi,t , we calculate the return ri,t of option i by

(A.1). Then we update the state variable using the following transition function

Wi,t+1 = ri,tWi,t
x .

The objective is to maximize the total utility over time, i.e.

max
x1,x2 ,...,xt

E U Wi,t+1
i=0

N

∑⎛⎝⎜
⎞
⎠⎟t=0

T

∑⎡
⎣
⎢

⎤

⎦
⎥ .

Based on the objective, the optimality equation reads

Vt−1
x W0,t−1

x ,...,WN ,t−1
x() = E max

xt
U Wt

total() +Vtx W0,t
x ,...,WN ,t

x()⎡⎣ ⎤⎦W0,t−1
x ,...,WN ,t−1

x{ } .

Post decision state variables eliminate the need to find the one-step transition matrix by pulling

the expectation operator out of the max operator, which makes the algorithm computationally

tractable.

To solve this ADP, we apply the piecewise linear approximation method to estimate the value

function. We let the estimation

V i,t
n
Wi,t

x,n() = vi,t
n−1

m −1()
m=1

Wi ,t
x ,n⎢⎣ ⎥⎦

∑ + Wi,t
x,n − Wi,t

x,n⎢⎣ ⎥⎦()vi,tn−1 Wi,t
x,n⎢⎣ ⎥⎦()

approximate the value function of Wi,t
x,n in the nth iteration. Notation i⎢⎣ ⎥⎦ is the floor operator.

Here vi,t
n−1

is the slope of the piecewise linear function of asset i during time t in the nth iteration.

	 	

	

137

Algorithm A.1 lists the entire algorithm for computing the weights. We add up the value

functions of each asset to get the value function approximation of the portfolio wealth (Step 2.1).

Across iterations, we want to improve the performance of the piecewise linear approximation in

estimating the value functions, which is done by updating slopes vi,t
n−1

based on dual variables in

the mathematical program. The mathematical program also gives the optimal decision of wealth

transfer (Step 2.2). Again, in every iteration n we update the slope values and use them in the

next iteration (Step 2.4). We follow the trick provided by Powell (2011) to calculate the slopes

(Step 2.3). It is straightforward calculus to verify Step 2.3. To make the slopes form a concave

function, we apply the separable, projective approximation routine (SPAR) algorithm provided

in Powell et al. (2004). Concavity implies that maximization in Step 2.2 is a linear program.

Thus v! i,t
n

 is the derivative of

δV! t
n

δWi,t−1
x .

Algorithm A.1

Initialize vt
0
, W1

0 , n=1.

Step 1 Choose a sample path of the underlying asset price Atn and determine the option and strike

prices. Based on these data, calculate returns ri,t
n .

Step 2 For t=1,…,T

1. Let

V t
n−1

Wi,t
x,n() = V i,t

n−1
Wi,t

x,n()
i=0

N

∑ .

2. Solve

	 	

	

138

V! t
n
= max

xt
U(Wt

total ,n)+V t
n−1

Wi,t
x,n()() =U(Wt

total ,n)+ max
xt

V t
n−1

Wi,t
x,n()()

s.t. xi, j ,t
j=0

N

∑ =Wi,t
n , for every i; (A.3)

 xi, j ,t ≥ 0, for every i, j.

Let xtn be an optimal solution to the maximization problem, and v i,t
n

be the dual variable

of (A.3).

3. Compute

v! i,t
n
= δV" t

n

δWi,t−1
x =

δU Wt
total()

δWi,t
Wt

total=Wt
total ,n + v# i,t

n⎛

⎝
⎜

⎞

⎠
⎟ ri,t

n .

4. Update vt−1n using

vi,t−1
n

m() =
1−α n−1()vi,t−1

n−1
m() +α n−1v i,t

n
, if m = Wi,t−1

x,n⎢⎣ ⎥⎦.

vi,t−1
n

m(), otherwise.

⎧
⎨
⎪

⎩⎪

5. Find the post-decision stateWi,t
x,n , the next pre-decision stateWi,t+1

n
 based on an

optimal solution in Step 2.2 and update portfolio wealthWt+1
total ,n = Wi,t+1

n

i=0

N

∑

Step 3 n = n + 1. Ifn ≤ N1 , go back to Step 1.

Step 4 Return value functions

V! t

N1()
t=1

T
.

	 	

	

139

A.2. Results for European Option Portfolio

We assume there are four options in the portfolio: an ATM put option, a 5% OTM put option, an

ATM call option and a 5% OTM call option, which have higher liquidity. They are based on a

single underlying asset – S&P500 index. Besides, there is also a risk-free account. We perform a

30-month test for both algorithms, where one month is a time period. In the beginning, we fit the

parameters by using historical data using the generalized extreme value (GEV) distribution and

then sample the initial index returns 500 times. As we move forward in time from a month to the

next one, we re-fit the parameters of GEV based on the historical values available up to the

current time. For example, we use 15-years of historical S&P500 data to train the initial GEV

parameters. Options expire at the end of the 1st month and we enter a new time period. Then we

add the known index value during the 1st month to fit a new set of GEV parameters. The new

parameters are used to sample asset returns for the 2nd month. The 30 sets of GEV parameters

are not listed here. The simulated index (asset) values can be obtained by Atn = rtnAt−1n . Without

the data of historical option prices, the option prices are computed based on Black Scholes

formula by inputting the historical index volatilities. The risk-free rate is defined to be the one-

month London Interbank Offered Rate (LIBOR). We use the same sample paths and data to

evaluate both the ADP and OOPS algorithms. For simplicity, the same set of samples is used for

optimization and evaluation. It takes 75 seconds to run ADP and 6 seconds to run OOPS.

Figure A.1 shows the comparison of portfolio returns during each time period. Mean values of

portfolio returns are used. We find that our ADP method outperforms the OOPS method. Out of

the 30 months, the ADP algorithm surpasses OOPS in 28 months. The across-time mean

	 	

	

140

portfolio return of OOPS is -6.18%, while ADP returns 72.51%. From Figure A.2 we see that the

ADP algorithm also outperforms OOPS in terms of the cumulative wealth. The mean cumulative

return for OOPS is -92.63%, while 66.75% for ADP.

Figure A.1: Comparison of portfolio returns

Figure A.2: Portfolio wealth overtime

Figure A.3 shows the convergence of the ADP algorithm. We pick the mean rate of return in

month 4 and plot it against the increasing number of iterations. We find the mean values to

	 	

	

141

stabilize after 300 iterations. This is also the case for the cumulative portfolio return, see Figure

A.4.

Figure A.3: Mean rate of return during month 4

Figure A.4: Cumulative portfolio return

	 	

	

142

A.3. Benchmark Algorithms for American Option Portfolio

Here we present the modified algorithm to find exercise times of a portfolio of American options

assessed by a utility function. The algorithm is a modification of LSMC from Longstaff and

Schwartz (2001) where a single option with no utility is dealt with.

Algorithm A.2 finds a set of linear regression parameters for each option in every time period.

By comparing the holding value against the exercise value, Algorithm A.2 determines what

options we should exercise in each time period. After Algorithm A.2 computes the regression

coefficients based on a set of sample paths, Algorithm A.3 resamples the paths and computes

exercise times by using the regression coefficients from Algorithm A.2.

Note that Algorithm A.2 starts from the last time period T, while Algorithm A.3 goes forward

from the first time period. The weights from IPH are used only in Algorithm A.3.

Algorithm A.2

a. Sample At
n ,ri,t

n forn = 1,...,N1 .

b. Calculate the exercise value functionVi,t
n,e =U ri,t

n() for all i, n, t.

c. SetVi,T
n,h =Vi,T

n,e , ne* = T for all n, i (superscript e stands for “exercise”; h stands for “hold”; e*

stands for “optimal exercise time”).

For t=T-1 to 1

	 	

	

143

1. Apply the least square regression based on N1 realizations and find the values for

c, b1, b2, by solving

ξ m + ci,t + bi,1,t At
m + bi,2,t At

m()2 =Vi,m
e*

m,e for all i, m∈ 1,...,N1{ } .

 For n=1 to N1

2. SetVi,t
n,h = ci,t + bi,1,t At

n + bi,2,t At
n()2 for all i.

3. CompareVi,t
n,h andVi,t

n,e :

IfVi,t
n,h ≤Vi,t

n,e , updatene* = t ,Vi,n
e*

n,e =Vi,t
n,e for all i.

 End

End

4. Return c, b1, b2.

Algorithm A.3

a. Sample At
n ,ri,t

n forn = 1,...,N1 .

b. Apply Algorithm 2 to obtain vectors

ct = ci,t()i=1
N
,b1,t = bi,1,t()i=1

N
,b2,t = bi,2,t()i=1

N
.

For n=1,…,N1

For t=0,1,…,T

1. Set I = 1,...,N{ } .

2. Solve

	 	

	

144

max
yt
n∈ 0,1{ }

wi 1− yi,t
n()Vi,tn,h At

n() + yi,tn Vi,tn,e Atn()⎡⎣ ⎤⎦
i∈I
∑ ,

where

Vi,t
n,h At

n() = ci,t + bi,1,t At
n + bi,2,t At

n()2
, Vi,t

n,e At
n() =U ri,t

n().
Let ytn,*be an optimal decision of the optimization problem.

3. Set

I = I \ i : yi,t
n,* = 1{ }, ti

n,* = t for i with yi,t
n,* = 1.

End

End

4. Return exercise times tin,* for each sample path n and option i.

A.4. Summary Statistics of Empirical Experiments

In Tables A.1 – A.3, notation E(R) represents the annualized expected return, SR the annualized

Sharpe Ratio, and CE the annualized certainty equivalent of return. The Skew and Kurt columns

measure the skewness and excess kurtosis of annualized portfolio returns. The Delta column

reports the portfolio delta given the weights from IPH. The Delta column under IPH-PERFECT

is omitted because they share the same delta as IPH-QL due to identical weights.

Table A.1: Performance summary statistics (1-year maturity, GEV distribution, non-hedge)

CRRA PS
IPH-QL EW-QL IPH-PERFECT

E(R) SR CE Skew Kurt Delta E(R) SR CE Skew Kurt Delta E(R) SR CE Skew Kurt

-0.5

1 -5.5% -0.06 53.8% 1.00 0.32 0.34 -21.1% -0.40 51.7% -0.15 -1.38 0.08 45.5% 0.37 95.0% 1.72 3.21
2 3.4% 0.06 54.5% 0.55 -0.60 0.30 -14.7% -0.42 49.3% -0.30 -1.24 0.09 54.1% 0.79 87.2% 0.98 0.62
3 -4.8% -0.08 51.3% 0.71 -0.53 0.33 -14.1% -0.31 54.0% 0.50 0.44 0.14 39.0% 0.56 80.8% 1.34 1.75
4 1.4% 0.02 55.1% 0.33 -1.43 0.30 -19.3% -0.44 49.9% -0.21 -1.28 0.03 63.4% 0.51 104.7% 1.21 1.38

0

1 -7.5% -0.10 -7.5% 0.65 -0.75 0.32 -21.2% -0.37 -21.2% 0.61 0.91 0.08 45.9% 0.41 45.9% 1.61 2.64
2 2.0% 0.03 2.0% 0.36 -1.14 0.32 -14.3% -0.36 -14.3% 0.08 -0.99 0.09 52.5% 0.79 52.5% 0.97 0.63
3 -4.9% -0.08 -4.9% 0.61 -0.59 0.35 -17.0% -0.34 -17.0% 0.97 2.47 0.14 37.9% 0.58 37.9% 1.27 1.41
4 2.0% 0.02 2.0% 0.56 -0.96 0.30 -14.8% -0.30 -14.8% 0.02 -1.14 0.03 56.7% 0.50 56.7% 1.33 1.57

1

1 -5.0% -0.06 -3.1% 1.13 1.02 0.32 -22.1% -0.42 -27.1% -0.03 -1.21 0.08 42.9% 0.41 26.4% 1.54 2.35
2 0.5% 0.01 -7.8% 0.23 -1.27 0.30 -15.3% -0.40 -24.3% 0.08 -0.73 0.09 51.0% 0.83 28.0% 0.82 0.17
3 -7.4% -0.14 -12.7% 0.55 -0.70 0.32 -18.2% -0.48 -25.0% -0.39 -0.87 0.14 37.0% 0.62 15.2% 1.14 1.24
4 3.1% 0.04 -1.0% 0.27 -1.46 0.27 -18.5% -0.38 -26.1% 0.11 -1.06 0.03 58.2% 0.55 38.3% 1.13 0.96

2

1 -6.4% -0.09 -11.2% 0.53 -0.86 0.30 -20.5% -0.37 -28.9% 0.31 -0.24 0.08 43.4% 0.45 8.8% 1.37 1.85
2 -0.7% -0.01 -14.9% 0.24 -1.41 0.28 -16.4% -0.43 -27.1% 0.26 -0.21 0.09 51.4% 0.88 8.9% 0.68 -0.40
3 -7.0% -0.13 -18.0% 0.25 -1.04 0.31 -16.4% -0.35 -27.2% 0.43 0.70 0.14 37.6% 0.65 0.3% 0.89 0.40
4 -1.6% -0.02 -9.2% 0.46 -1.17 0.25 -21.8% -0.49 -28.7% -0.15 -1.41 0.03 55.9% 0.57 14.8% 1.02 0.54

5

1 -5.8% -0.09 0.5% 0.39 -0.61 0.25 -18.6% -0.34 -4.0% 0.33 -0.17 0.08 43.2% 0.53 4.5% 1.17 1.70
2 -2.4% -0.05 -0.1% 0.25 -1.26 0.28 -13.0% -0.35 -3.4% 0.01 -0.52 0.09 47.8% 0.94 7.0% 0.80 0.50
3 -7.8% -0.16 -0.7% 0.33 -0.68 0.31 -16.9% -0.37 -3.6% 0.29 0.24 0.14 38.3% 0.75 5.6% 0.82 0.84
4 -1.5% -0.02 0.8% 0.30 -1.37 0.22 -17.6% -0.34 -4.2% 0.39 -0.23 0.03 53.9% 0.64 5.8% 0.97 0.60

10

1 -10.0% -0.16 0.1% 0.26 -1.06 0.24 -24.4% -0.50 -2.0% -0.20 -1.35 0.08 44.8% 0.56 3.1% 0.92 0.95
2 -3.6% -0.08 -0.1% 0.36 -1.24 0.27 -12.8% -0.35 -1.4% -0.06 -0.38 0.09 47.1% 0.99 5.1% 0.65 0.18
3 -7.5% -0.17 -0.3% 0.07 -1.04 0.31 -15.2% -0.32 -1.7% 0.38 0.00 0.14 41.1% 0.80 4.8% 0.61 0.01
4 -6.0% -0.10 0.0% 0.20 -1.44 0.20 -18.2% -0.36 -2.0% 0.41 -0.11 0.03 51.9% 0.67 3.3% 0.84 0.38

20

1 -10.4% -0.18 0.0% -0.04 -1.51 0.24 -22.5% -0.43 -1.0% 0.02 -1.18 0.08 45.6% 0.56 2.1% 0.79 0.39
2 -3.7% -0.08 -0.1% 0.28 -1.18 0.28 -13.8% -0.38 -0.8% 0.04 -0.37 0.09 47.3% 0.99 4.1% 0.73 0.34
3 -5.2% -0.11 -0.1% 0.03 -1.12 0.32 -14.5% -0.30 -0.9% 0.34 -0.14 0.14 43.3% 0.80 3.9% 0.69 0.13
4 -6.7% -0.12 0.0% 0.28 -1.28 0.20 -17.7% -0.39 -1.0% -0.22 -1.33 0.03 50.6% 0.66 2.3% 0.87 0.47

145

	 	

	

146

Table A.2: Performance summary statistics (1.5-year maturity, GEV distribution)

CRRA PS
IPH-QL Non-hedge IPH-QL Hedge

E(R) SR CE Skew Kurt Delta E(R) SR CE Skew Kurt Delta

-0.5

1 0.9% 0.02 36.8% 0.47 -0.49 0.33 4.2% 0.10 36.1% 0.22 -0.79 0.45
2 9.2% 0.33 36.4% 0.98 0.85 0.31 9.5% 0.36 35.3% 0.51 -0.92 0.44
3 6.9% 0.21 37.6% 0.60 -0.11 0.36 5.2% 0.18 31.4% 0.37 0.16 0.49
4 3.9% 0.09 39.1% 0.04 -1.39 0.31 4.0% 0.10 35.5% 0.16 -1.19 0.42

0

1 2.4% 0.06 2.4% 0.04 -1.20 0.32 2.1% 0.05 2.1% 0.45 -0.61 0.45
2 8.3% 0.33 8.3% 0.91 0.15 0.33 9.1% 0.38 9.1% 0.65 -0.48 0.43
3 9.9% 0.33 9.9% 0.60 -1.21 0.34 8.6% 0.32 8.6% 1.04 0.19 0.45
4 7.8% 0.17 7.8% 0.11 -1.31 0.32 4.9% 0.12 4.9% 0.43 -0.58 0.41

1

1 2.6% 0.06 -3.8% -0.06 -1.28 0.30 4.0% 0.11 -1.6% -0.11 -1.27 0.44
2 11.3% 0.39 0.6% 0.50 -0.99 0.31 7.0% 0.31 -0.3% 0.78 -0.16 0.42
3 6.1% 0.21 -1.9% 0.87 0.39 0.32 6.6% 0.26 -0.3% 1.00 0.29 0.44
4 4.2% 0.10 -2.7% -0.08 -1.32 0.29 4.9% 0.15 -1.4% -0.11 -1.27 0.41

2

1 -1.7% -0.04 -9.7% -0.01 -0.90 0.30 1.7% 0.05 -6.0% 0.20 -0.86 0.43
2 4.5% 0.19 -8.4% 0.59 -0.02 0.29 6.9% 0.33 -5.7% 0.47 -0.45 0.43
3 5.9% 0.21 -7.8% 0.35 -0.51 0.31 6.7% 0.29 -5.8% 0.26 -0.85 0.44
4 3.1% 0.08 -7.5% 0.28 -0.52 0.28 6.0% 0.17 -5.4% 0.00 -1.13 0.41

5

1 -0.5% -0.02 0.0% -0.20 -0.73 0.26 1.1% 0.04 1.1% -0.05 -0.65 0.40
2 4.5% 0.19 0.5% 0.19 -1.04 0.29 5.2% 0.25 0.9% -0.02 -1.72 0.39
3 4.0% 0.16 0.3% 0.00 -0.80 0.28 1.8% 0.09 0.7% 0.12 -0.86 0.39
4 4.2% 0.10 0.6% -0.02 -1.36 0.26 5.4% 0.15 1.2% -0.03 -1.29 0.38

10

1 -2.2% -0.07 -0.4% -0.46 -0.69 0.24 -1.1% -0.04 0.3% -0.24 -1.02 0.41
2 3.8% 0.17 0.2% 0.07 -1.28 0.28 2.3% 0.12 0.8% -0.03 -1.49 0.40
3 1.3% 0.06 0.0% -0.10 -0.82 0.28 0.2% 0.01 0.5% 0.25 -1.06 0.42
4 2.5% 0.07 0.1% -0.34 -1.51 0.25 3.4% 0.12 0.7% -0.38 -1.40 0.38

20

1 -1.1% -0.03 -0.3% -0.43 -0.65 0.23 -1.2% -0.04 0.3% 0.00 -0.94 0.43
2 3.2% 0.12 0.2% 0.12 -1.24 0.28 3.4% 0.17 0.6% -0.23 -1.82 0.42
3 -0.7% -0.03 -0.1% -0.08 -1.18 0.29 -0.6% -0.03 0.4% 0.19 -1.29 0.45
4 1.8% 0.05 0.0% -0.37 -1.50 0.24 0.8% 0.03 0.5% -0.29 -1.82 0.40

	 	

	

147

Table A.3: Performance summary statistics (1.5-year maturity, GBM distribution)

CRRA PS
IPH-QL Non-hedge IPH-QL Hedge

E(R) SR CE Skew Kurt Delta E(R) SR CE Skew Kurt Delta

-0.5

1 2.7% 0.06 37.4% 0.01 -1.24 0.36 8.2% 0.18 39.1% -0.22 -1.32 0.48
2 5.8% 0.23 39.3% 1.40 3.55 0.30 5.8% 0.31 33.7% 0.59 1.04 0.45
3 7.6% 0.25 37.4% 0.25 -0.35 0.37 7.8% 0.26 33.4% -0.17 -0.02 0.52
4 1.0% 0.02 37.1% 0.41 -0.95 0.33 -2.6% -0.06 30.2% 0.48 -0.85 0.44

0

1 2.7% 0.06 2.7% -0.20 -1.30 0.36 5.8% 0.14 5.8% 0.08 -0.92 0.5
2 2.1% 0.09 2.1% 0.92 0.73 0.34 3.6% 0.13 3.6% 0.59 0.03 0.48
3 8.6% 0.28 8.6% 0.17 0.44 0.34 9.4% 0.35 9.4% 0.22 -0.41 0.52
4 0.1% 0.00 0.1% 0.57 -0.94 0.34 0.6% 0.02 0.6% 0.7 -0.31 0.46

1

1 4.8% 0.10 -2.8% -0.03 -1.22 0.30 4.6% 0.11 0.7% 0.08 -0.9 0.47
2 8.0% 0.32 -2.5% 0.59 0.64 0.29 4.2% 0.2 -2.7% 0.8 -0.08 0.45
3 9.6% 0.35 -0.8% -0.09 1.57 0.34 6.6% 0.22 1.6% 0.52 0.02 0.5
4 4.7% 0.11 -2.6% 0.62 -0.32 0.28 -0.1% 0 -4.9% 0.56 -0.7 0.44

2

1 1.6% 0.04 -8.2% 0.13 -0.39 0.29 2.1% 0.06 -5.0% 0.04 -0.89 0.45
2 7.0% 0.25 -9.1% 0.02 0.45 0.26 8.2% 0.34 -5.4% 0.22 0.14 0.42
3 6.8% 0.24 -6.8% 0.08 0.59 0.33 6.5% 0.23 -3.1% 0.21 -0.22 0.49
4 -1.5% -0.04 -10.5% 0.10 -0.18 0.23 5.3% 0.15 -7.2% 0.2 -1.08 0.41

5

1 6.2% 0.16 1.0% -0.35 -0.70 0.29 2.0% 0.06 2.9% -0.04 -1.18 0.46
2 5.8% 0.22 0.4% 0.24 0.61 0.28 6.3% 0.25 1.8% 0.83 0.15 0.43
3 2.3% 0.09 1.0% 0.19 1.78 0.32 7.2% 0.34 2.1% 0.05 -0.28 0.5
4 -1.2% -0.03 -0.3% -0.47 -0.28 0.21 5.0% 0.17 1.0% -0.37 -0.91 0.37

10

1 -0.2% -0.01 0.1% -0.22 -0.46 0.26 0.7% 0.02 1.1% -0.17 -1.44 0.45
2 5.2% 0.20 0.4% 0.15 0.47 0.27 4.6% 0.22 1.1% 0.22 -0.41 0.42
3 2.5% 0.10 0.4% 0.05 1.52 0.32 6.0% 0.28 1.5% 0.11 -0.75 0.51
4 1.7% 0.05 -0.3% -0.39 -0.35 0.19 1.6% 0.06 0.6% -0.47 -1.08 0.37

20

1 -0.8% -0.03 -0.1% -0.62 0.15 0.25 1.0% 0.04 0.6% -0.13 -1.47 0.46
2 3.2% 0.13 0.2% -0.32 -0.40 0.28 4.9% 0.22 0.7% 0.47 0.38 0.44
3 4.0% 0.16 0.3% -0.10 -0.54 0.34 2.8% 0.13 1.0% 0.09 -0.77 0.53
4 -0.9% -0.03 -0.1% -0.63 -0.67 0.20 3.4% 0.13 0.4% -0.68 -0.99 0.38

	 	

	

148

APPENDIX B

Appendix for Chapter 3

Table B.1 shows that Feb 2014 maturity presents the most volatile properties with the largest

standard deviation (std.), skewness (skew.) and kurtosis (kurt.). The longer the maturity is, the

smaller the std. and the absolute values of skew. and kurt. are. Table B.2 summarizes the

performances of our algorithms while Table B.3 shows the same except without edge strike

prices.

	 	

	

149

Table B.1: Summary statistics of implied volatility on 01/27/2014

 Maturity Mean (%) Std. (%) Skew. Kurt.

Call Bid

Feb 2014 11.74 7.98 -2.51 6.11
Mar 2014 14.42 1.86 -2.37 14.73
April 2014 13.66 0.98 -0.06 -0.56
May 2014 14.47 0.81 -0.03 -0.64
June 2014 15.05 0.78 -0.07 -0.43

Call Ask

Feb 2014 14.10 5.20 -3.57 15.40
Mar 2014 15.03 1.48 -0.86 4.72
April 2014 14.02 0.96 -0.03 -0.55
May 2014 14.80 0.79 0.02 -0.59
June 2014 15.34 0.77 -0.04 -0.42

Put Bid

Feb 2014 14.53 2.30 0.28 -0.95
Mar 2014 14.40 1.54 -0.21 -0.67
April 2014 15.06 1.02 -0.02 -0.66
May 2014 14.88 0.80 -0.01 -0.67
June 2014 14.97 0.82 0.03 -0.50

Put Ask

Feb 2014 15.30 2.35 0.10 -1.01
Mar 2014 14.83 1.53 -0.25 -0.58
April 2014 15.38 1.03 -0.01 -0.72
May 2014 15.19 0.82 0.00 -0.74
June 2014 15.24 0.84 0.04 -0.57

	 	

	

150

Table B.2: Performance summary of our algorithms (in %)

Call Bid Call Ask Put Bid Put Ask

Kernel MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

IVS-
KPSVR

Gaussian 12.05 2.26 11.76 2.45 14.38 1.61 12.36 1.66
Linear 12.20 2.08 11.70 2.14 14.42 1.63 12.37 1.67

IVS-
BKPSVR

Gaussian 12.51 2.39 12.33 2.61 15.24 1.69 13.12 1.73
Linear 12.86 2.24 12.38 2.31 15.40 1.68 13.18 1.72

IVS-
EKPSVR

Gaussian 12.09 2.27 11.86 2.48 14.58 1.63 12.45 1.66
Linear 12.23 2.08 11.71 2.14 14.48 1.63 12.34 1.66

Table B.3: Performance summary of our algorithms without edge strikes (in %)

Call Bid Call Ask Put Bid Put Ask

Kernel MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

IVS-
KPSVR

Gaussian 8.13 1.47 7.80 1.50 9.90 1.23 8.41 1.21
Linear 8.50 1.50 8.13 1.51 10.16 1.27 8.68 1.25

IVS-
BKPSVR

Gaussian 8.32 1.53 8.06 1.58 10.27 1.27 8.76 1.25
Linear 9.30 1.62 8.95 1.63 11.44 1.36 9.55 1.30

IVS-
EKPSVR

Gaussian 8.14 1.48 7.85 1.51 9.99 1.24 8.45 1.21
Linear 8.53 1.51 8.15 1.51 10.17 1.28 8.64 1.25

