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ABSTRACT 

Elucidating the causes of heterogeneity in bacterial genome replication and conjugative transfer 

leveraging orthogonal transcriptional control 

Andrew Hilz Scarpelli 

 
A disconnect exists between the behavior of transcriptional and genetic regulation in 

bacterial systems when comparing phenotypic patterns and dynamics of a population to those 
observed at the single cell level. In this thesis, we developed a number of tools and assays to better 
understand, overcome, and predict the challenges of heterogeneity within a population with the 
goal of enabling a better understanding of fundamental biology and the use of this understanding 
for engineering novel tools in E. coli. I describe our exploration of whether the strategy of 
conditional spatial sequestration of transcriptional regulators, a means by which bacteria naturally 
regulate native gene expression, could be engineered to create novel regulatory networks. We 
engineered an orthogonal conditional spatial sequestration system for transcriptional regulators 
which allows for the accumulation of said regulators within a cell that can be rendered functional 
in response treatment by a small molecule. I then describe our attempts to gain better understanding 
the regulation of the transfer machinery in the F plasmid, specifically why only a subset of cells 
within a donor population initiates conjugation. In particular, we examined the role of TraJ in 
regulating PY, the promoter associated with transcription regulation of most conjugative 
machinery. Through the development of two assays quantifying TraJ induction of PY and 
conjugative rates at a single cell level, we determined that while TraJ is required for induction 
from PY, expression of TraJ does not directly correlate to induction of PY, nor does the addition of 
orthogonal TraJ expression lead to an increase in conjugative rates. We then leveraged these 
observations to engineer| a novel orthogonally regulated conjugative transfer system. Finally, I 
describe our work on the creation of a model to aid in the analysis and of design of genetic circuits 
for genomic integration by predicting how distributions of genomic DNA evolve within bacterial 
cultures in relation to changes in growth. To inform this model, we generated a library of genomic 
distribution snapshots throughout an entire growth curve of multiple batch cultures to calibrate and 
validate a predictive, agent-based model capable of capturing variation in E. coli genome copy 
number across multiple phases of growth. 
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Index of Figures 

Figure 2.1: PASS concept and mechanism of action. The proposed mechanism is as follows: 

tethering a transcriptional regulator to the inner face of the cytoplasmic membrane prevents its 

ability to regulate target gene expression; protease-mediated cleavage of the PASS construct 

liberates the transcriptional regulator to repress or activate its cognate promoter sequence. In this 

study, recombinant PASS constructs included a periplasmic mCherry ectodomain, a 

transmembrane α-helix derived from E. coli ATP synthase subunit B, the cleavage sequence for 

tobacco etch virus protease (TEV), and either the tetR or λ CI transcriptional regulator domains. 

Released tetR represses the constitutive pTet promoter, and released CI activates the conditional 

pRM+ promoter, to modulate output gene (GFP) expression.    38 

  

Figure 2.2. Regulation of reporter constructs by soluble repressor and activator. (A) Cells 

were transformed with the tetR-regulated reporter plasmid and tetR expression plasmid, as 

indicated, and induced with 1 % (w/v) arabinose. (B) Cells were transformed with the CI-regulated 

reporter plasmid and CI expression plasmid, as indicated, and induced with 1 % (w/v) arabinose. 

Samples undergoing exponential growth were analyzed, blanked, and normalized as described in 

Chapter 2.2.3. Experiments were conducted in biological triplicate, and error bars indicate standard 

deviations.  * p < 10-5 and ** p < 10-10, as calculated for a two-tailed paired Student’s t-test. 

Abbreviations: TR, tetR.         40 

 

Figure 2.3. Expression and proteolytic processing of PASS constructs. (A) Cells were 

transformed as indicated and induced with varying concentrations of IPTG. Fluorescence was 

quantified as in Figure 2.2. Experiments were conducted in biological triplicate, and error bars 
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indicate standard deviations. (B - D) Cells were transformed and induced, as indicated, with 1 mM 

IPTG and/or 1% (w/v) arabinose, and lysates were analyzed by N-terminal (mCherry) or C-

terminal (6xHis) labeling. Protein standards are given in kilodaltons (kD).   43 

 

Figure 2.4. PASS construct localization at the cytoplasmic membrane. (A) Micrographs of 

cells transformed with pTet-GFP, pLacIQ-mTR, and pBAD-TEV Protease treated with 1 mM 

IPTG. mCherry fluorescence is localized to the periplasmic area while GFP fluorescence is diffuse 

throughout the cytoplasm. (B) Cells transformed with pLacIQ-mTR or pLacIQ-mCI and induced 

with 1 mM IPTG; shown in mCherry channel. (C) Spheroplasts generated from cells in panel (B).

            45 

 

Figure 2.5. PASS-regulated gene repression by tetR. Cells were transformed and induced as 

indicated, and fold-change was quantified as in Chapter 2.2. Experiments were conducted in 

biological triplicate, and error bars indicate standard deviations. * p < 10-10 and ** p < 10-13, as 

calculated for a two-tailed paired Student’s t-test. Abbreviations: mC, membrane-bound mCherry 

(mTR cleavage product); TR, tetR.        48 

 

Figure 2.6. PASS-regulated gene repression in individual cells. (A) Cells transformed with 

pTet-GFP, pLacIQ-mTR, and pBAD-TEV were induced as indicated and analyzed by flow 

cytometry. (B) Mean fluorescence intensity (MFI) in GFP for mCherry-positive cells from panel 

(A). Experiments were conducted in biological triplicate, and error bars indicate standard 

deviations. Normalized MFI GFP values were determined by calculating MFI GFP for mCherry-
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positive cells in the test sample, calculating MFI GFP for mCherry-positive cells in the uninduced 

sample, and then dividing the former by the latter. * p < 0.01 and ** p < 0.005, as calculated for a 

two-tailed paired Student’s t-test.        50 

 

Figure 2.7. PASS-regulated gene repression by λ CI. Cells were transformed and induced as 

indicated, and fold-change was quantified as in Methods. Experiments were conducted in 

biological triplicate, and error bars indicate standard deviations. * p < 10-3 and ** p < 10-5, as 

calculated for a two-tailed paired Student’s t-test. Abbreviations: mC, membrane-bound mCherry 

(mCI cleavage product).         53 

 

Figure 2.8. PASS-regulated gene induction in individual cells. (A) Cells transformed with 

pRM+-GFP, pLacIQ-mCI, and pBAD-TEV were induced as indicated and analyzed by flow 

cytometry. (B) Mean fluorescence intensity (MFI) in GFP for mCherry-positive cells from panel 

(A). Experiments were conducted in biological triplicate, and error bars indicate standard 

deviations. Normalized MFI GFP values were determined by calculating MFI GFP for mCherry-

positive cells in the test sample, calculating MFI GFP for mCherry-positive cells in the uninduced 

sample, and then dividing the former by the latter. * p < 10-2 and ** p < 10-4, as calculated for a 

two-tailed paired Student’s t-test.        55 

 

Figure 3.1. Native F plasmid transfer machinery regulation and the construction of a PY 

reporter system. (A) Schematic representation of the regulatory region of the tra operon and its 

key regulators. Drawing is not to scale. Further information provided in the text. (B) Schematic 
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representation of our PY reporter system. Upon the addition of arabinose, TraJ is expressed and 

able to act upon PY resulting in expression of GFP. (C) Comparison of GFP induction when 

transcribed from different copy numbered plasmids. TraJ expression only leads to GFP induction 

on low copy number plasmids. Data shown was collected on a microplate reader. (D) Comparisons 

of GFP induction when under the control of PY variants of different lengths. Two potential 

variations on the full length sequence of PY were examined for their ability to drive expression of 

GFP in the presence of TraJ. Data shown were collected on a microplate reader.   67 

 

Figure 3.2. Regulation of PY-driven transcription by TraJ. (A) GFP fluorescence as an output 

for induction by induced orthogonal systems in response to arabinose. Experiments were 

conducted in biological triplicate, and error bars indicate standard deviations. * p < 0.05 and ** p 

< 0.005 as calculated for a two-tailed paired Student’s t-test. Data shown was collected on a 

microplate reader. (B) The effect of arabinose induction during stationary phase. Experiments were 

conducted in biological triplicate, and error bars indicate standard deviations for Mean 

GFP/OD600. Data shown was collected on a microplate reader. (C) Comparisons of an induced 

and uninduced pJ and reporter containing population via flow cytometry. (D) Mean Fluorescent 

Intensities as an output for induction in a population by induced orthogonal systems in response to 

arabinose via flow cytometry and percentage of cells expressing GFP. Cells examined via flow 

cytometry are comparable to trends as seen in panel (A) when considering mean fluorescences of 

populations.           70 
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Figure 3.3. Quantitative coupling between TraJ expression and PY induction in single cells. 

(A) Schematic representation of pJaR reporter system. Upon addition of arabinose, TraJ is 

transcribed along with monomeric RFP (mRFP). TraJ is then capable of acting upon PY to induce 

GFP expression. (B) GFP fluorescence as an output for induction by induced orthogonal systems 

in response to arabinose detected via flow cytometry. pJaR leads to GFP induction in similar 

patterns to that of pJ and pJam. (C) Raw flow cytometry data of pJaR reporter system in the 

absence of arabinose and three replicates in the presence of 1% arabinose by volume. (D) Lack of 

correlation between GFP and mRFP (TraJ) expression. No significant correlation between GFP 

and mRFP expression could be found using various fittings. Shown here is a linear distribution of 

GFP-POSITIVE cells and a linear fit, with an R2 value below 0.2.     74 

 

Figure 3.4. Regulation of native conjugation machinery by exogenous TraJ. (A) Schematic 

representation of pShuttle/pOX38 (pOX38;oriTf::CmR) conjugation reporter system. Conjugative 

machinery expressed by pOX38 is capable of transferring pShuttle, a plasmid that contains both a 

GFP expression cassette as well as the native F OriT. Upon forming a mating pair with a donor 

cell that contains an mRFP expression plasmid, conjugation can occur, resulting in a 

transconjugant expressing both mRFP and GFP. (B) Observed colonies from donor and 

transconjugant cells. (C) Transconjugant cells expressed both observable mRFP and GFP, while 

donor cells only expressed GFP. Observation of transconjugants by flow cytometry. Populations 

of recipient cells paired with populations of donors or mock “donor” with an immobile GFP 

plasmid instead of pShuttle were co-cultured for 5 h and then run on flow cytometry. The increased 

rate of doubly GFP and mRFP + cells appears in the system with functional donors, indicating the 
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fitness of this assay. (D) Comparison of quantification of mating assays by colony count or flow 

cytometry. Experiments were conducted in biological triplicate, and error bars indicate standard 

deviations. (E) Observed mating efficiencies with the addition of pJ to donor population cells. TraJ 

expression was induced at various times relative to co-culture with recipient cells. Experiments 

were conducted in biological triplicate from three distinct colonies, the averages of those three 

colonies were then averaged, and error bars indicate standard deviations from initial averages. 

            78 

 

Figure 3.5. Orthogonal regulation of conjugative transfer. (A) Schematic representation of 

novel, orthogonally regulated conjugation reporter system. Conjugative machinery is expressed 

from pHeadless after the induction of TraJ expression from an orthogonal expression plasmid 

(Shown in image as pJ). (B) Observed mating efficiencies by flow cytometry of orthogonal 

conjugative systems. Experiments were conducted in biological triplicate, and error bars indicate 

standard deviations. No treatment condition was determined to be significantly different, with p < 

0.05 as determined by a two tailed Student’s t-test.       82 

  

Figure 4.1. Injection-based strategy for connecting the HMG simulator to empirical growth data. 

This cartoon summarizes the process by which empirical growth data (e.g., a measured OD vs. 

time curve) is used to “drive” the HMG simulator via the volume injection method, where the open 

circles represent the sections of the growth curve where DNA distributions were measured. Thus 

in this illustration, the simulation would contain three independent steps: (1) The region of 

exponential growth is identified. This exponential growth rate is used to drive the HMG simulation 
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from a single cell inoculate to a diversified population of exponentially growing cells; (2) During 

post-exponential growth, the OD curve is used to calculate the rate at which the overall cell volume 

(of the population) is increasing; (3) At each time point, the calculated rate of volumetric change 

(per cell) is “injected” into each cell in the population, each of which advances its cell state via the 

HMG algorithm outlined in Figure 4.1. The dashed rectangles indicate that during each time step 

of the simulation, a random subset of 5000 cells is taken forward into the subsequent time step of 

the simulation in order to keep simulations computationally tractable.    95 

 

Figure 4.2. Heterogeneous Multiphasic Growth (HMG) simulation algorithm. This figure 

summarizes the algorithms used to advance our agent-based simulation of bacterial growth. This 

algorithm marries our “injection” model for driving growth based upon experimentally measured 

growth curves with either the original CH model of bacterial replication (ignoring the dashed 

boxes) or an extended version of the CH model which incorporates the effects of recA mutation 

(including the dashed boxes). In each time step of the simulation, each cell is advanced through 

the 5 indicated processes: (1) Growth, (2) Opening of origin(s) of replication, (3) DNA replication 

and DNA degradation, (4) Segregation, and (5) Cell division. Gray boxes indicate the steps in the 

algorithm where noise is applied to the cell cycle.      97 

 

Figure 4.3. Training of the HMG simulator framework. The HMG simulator was “fed” growth 

curves for TOP10 cells grown in LB, shaken at 230RPM or 23RPM, and simulated DNA 

distributions were compared with those which were measured empirically. The measured DNA 

distributions shown here each represent a single experiment, each of which is representative of 
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two or more independent experiments. The first column within each heat map represents the 

exponential growth phase (indicated by *), and all subsequent time points represent post-

exponential growth. The simulator was run using two different models: the first model was based 

upon a prior description of exponential growth (1), which omits any consequences of recA 

mutation, and the second (updated and optimized) model incorporated our description of the 

consequences of recA mutation with parametric optimization. Similarity scores indicate the degree 

to which each prediction matches the observed DNA distribution. The solid lines on the two bottom 

panels represent the mean similarity score across the time course, and the shaded boxes represent 

the standard deviation of these scores across the time course.     100 

 

Figure 4.4. Validation of the HMG simulator framework. The HMG simulator was “fed” growth 

curves for TOP10 cells grown in M9, shaken at 230RPM or 23RPM, and simulated DNA 

distributions were compared with those which were measured empirically. The measured DNA 

distributions shown here each represent a single experiment, each of which is representative of 

two or more independent experiments. The first column within each heat map represents the 

exponential growth phase (indicated by *), and all subsequent time points represent post-

exponential growth. The simulator was run using two different models: the first model was based 

upon a prior description of exponential growth (1), which omits any consequences of recA 

mutation, and the second (updated and optimized) model incorporated our description of the 

consequences of recA mutation with parameters optimized based upon growth in LB (i.e., using 

the same updated and optimized model described in Figure 4.3). The solid lines on the two bottom 



15 
 
panels represent the mean similarity score across the time course, and the shaded boxes represent 

the standard deviation of these scores across the time course.     101 

 

Figure 4.5. HMG simulator-based prediction of gene dosage effects. The updated and optimized 

HMG simulator was used as a testbed to predict gene dosage dynamics over a range of hypothetical 

growth curves (left column). Here we track three genomic loci (blue, red, and green rectangles), 

located at various positions relative to oriC (pink circle). Numbers accompanying the chromosome 

maps in the top row indicate the relative distance of each locus from oriC, in each scenario, on a 

scale where 1.0 is completely distal (e.g., the primary Ter site, teal rectangle). Each predicted 

trajectory represents the mean copy number of each locus per cell, averaged over 100 independent 

simulations, with error bars representing one standard deviation. For each hypothetical growth 

curve (left column), each shaded area is labeled with the doubling rate calculated for that window 

of growth. Each simulation was inoculated (initiated) under conditions of exponential growth, 

using the doubling rate calculated for the first indicated period of exponential growth (gray 

shading), and thereafter simulations proceeded using the injection method through the remainder 

of the growth curves.           105 
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CHAPTER 1 

 

Introduction 

 

Even within genetically identical populations of bacteria, dramatic phenotypic variation 

may exist between individual cells (2). This heterogeneity can result in very different behaviors of 

cells within a population and create a disconnect between what is seen on a population and a 

cellular level (3). In this thesis, I describe a number of bacterial systems that display heterogeneity 

and explore the relevant biology governing this behavior, with the goal of harnessing such 

microbial systems for applications in biotechnology. In chapter 2, I discuss a system of spatial 

sequestration as a mechanism of gene regulation. Bacteria commonly use spatial sequestration of 

transcriptional regulators to accumulate these regulators for rapid induction of genes required for 

acclimation to new and changing growth conditions. In order to better understand the limitations 

and mechanics of natural systems of this sequestration process, we engineered a novel spatial 

sequestration system and characterized the ability of said system to coordinate a response within 

a population of bacteria. We designed and implemented an orthogonal system in which 

transcription factors can be accumulated within a cell and only made functional upon induction 

with a small molecule. In chapter 3, I explain my work characterizing the heterogeneous expression 

of conjugative machinery from the F plasmid, a well characterized model system of conjugation. 

Specifically, I examined the role of TraJ, the main transcriptional regulator of conjugation, and 

how its expression contributes to this heterogeneity of conjugative machinery expression during 

bacterial growth. In chapter 4, I describe my contributions to the development of an agent based 

simulation tool for describing genomic distribution throughout various phases of growth for E. coli 

cultures. This agent based model will serve as a predictive tool for genomic copy number 

distribution within bacterial populations, utilizing a simplified representation of DNA replication 
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and cell division. Our model will accurately predict the distribution of genome copy number 

ensembles throughout multiple phases of growth, a capability lacking in current genomic 

distribution models.  

 

1.1 Spatial sequestration as a mechanism of gene regulation 

 

1.1.1 Spatial sequestration as a natural bacterial mechanism for gene regulation 

 

Bacteria utilize mechanisms of conditional spatial sequestration to regulate a number of 

functions, including gene expression. A number of different gene regulation systems have been 

reported that utilize this technique including well studied examples such as MalT, σE, and Mlc (4-

6). Spatial sequestration in bacteria usually consists of localizing transcription factors along the 

inner membrane of the cytoplasm, restricting their ability to influence gene regulation. When 

particular conditions unique to each system arise, the presence of maltose for MalT, an 

accumulation of misfolded porins for σE, or a the absence of glucose for Mlc, these transcription 

factors are released from their localization fully functional from their localization and immediately 

can act as transcriptional regulators (6-8).  

One of the best characterized natural spatial sequestration systems of transcriptional 

regulation can be found in the maltose uptake regulation system in E. coli (9, 10). In this system, 

MalE binds to maltose in the periplasm and taxis the sugar to a MalFGK2, a transporter complex 

that spans the inner membrane between the periplasm and cytoplasm (7). Prior to interactions with 

MalE, the transporter complex sequesters the transcriptional regulator MalT to the cytoplasmic 

inner membrane (11). When MalE interacts with the complex, it causes a conformational change 

that results in the release of MalT, which is then free to act as a genetic regulator on a number of 
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genes with mal promoters (12).  Thus the cell sequesters MalT in the absence of maltose, but it 

allows for MalT-directed transcription in the presence of maltose. 

Another well-characterized but distinct natural spatial sequestration system is associated 

with the release of the stress factor σE (13). In sustained growth conditions, σE is bound to the anti-

sigma factor RseA, which also spans the membrane between the periplasm and cytoplasm (14, 15). 

As misfolded porins accumulate, RseA binds in the periplasm, leaving the protein open to 

proteolysis by DegS (16). The degradation of RseA in the periplasm leads to alterations in the 

protein allowing for cleavage by YaeL in the cytoplasm (17). This second cleavage event results 

in the release of σE from its sequestration with RseA on the membrane, and σE then diffuses into 

the cytoplasm where it is able to recruit RNA polymerases and initiate the expression of a number 

of stress response genes (18). 

A final natural system of conditional spatial sequestration is associated with Mlc and 

glucose transport (6). In the absence of glucose, Mlc acts as a soluble repressor in the cytoplasm, 

repressing genes associated with glucose uptake and metabolism (19). When glucose is taken up 

by the cell via the transporter PtsG, the transporter undergoes dephosphorylation (20). This 

dephosphorylation allows for the binding and sequestration of Mlc, resulting in alleviation of its 

repression of a number of genes associated with glucose metabolism (21).  

Each system provides a relevant example of how conditional spatial sequestration allows 

for rapid changes in the transcriptional control in a bacterial cell in response to changing 

environmental or cellular conditions.  

 

1.1.2 Artificial spatial sequestration of transcription factors 

 

 Conflicting evidence exists as to the feasibility of engineering artificial spatial 

sequestration of transcription factors in E. coli. . For example, fusion of the binding domain of the 
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protein that sequesters the previously mentioned Mlc global repressor to LacY permease on the 

inner face of the cytoplasmic membrane in E. coli led to inactivation Mlc-mediated regulation of 

transcription (22). If the Mlc binding domain were instead fused to a cytoplasmic expressed 

protein, Mlc retained its ability to repress genes, strongly suggesting that the spatial sequestration 

is solely responsible for the inactivity of Mlc when bound to the inner membrane. Conversely, the 

localization of LacI to the same location using the M13 bacteriophage coat protein VIII failed to 

preclude LacI-mediated inhibition of LacI-regulated genes (23). This study specifically called into 

question whether spatial sequestration could be used to explain any of the natural cases in which 

transcription factors are temporarily housed at the inner membrane as the explanation for their lack 

of function, postulating instead that their sequestration is steric or conformational, not spatial. 

Despite this conflicting evidence as to the feasibility of engineering spatial sequestration-based 

transcriptional regulation in E. coli, engineering a synthetic conditional spatial sequestration-based 

system would provide a number of benefits. In particular, because transcriptional regulators could 

be pre-synthesized, such a system could confer a rapid response to a desired stimulus. However, 

the use of conditional spatial sequestration as a tool has not been explored.  

 In Chapter 2, I describe our previously published work describing the implementation and 

characterization of a framework of engineering conditional spatial sequestration of transcription 

factors in E. coli (24). We used a completely orthogonal spatial sequestration system to help 

characterize the limits of natural spatial sequestration system and to explore the potential of spatial 

sequestration as a tool for engineering more complex systems. Our system utilizes an exogenous 

protease for proteolytic release of an engineered transcription factor from a protein tether to the 

bacterial inner membrane. We then characterize our protease-alleviated spatial sequestration 

(PASS) in its capacity to function as either a transcriptional activator or repressor.  

Chapter 2 is mainly adapted with permission from Pitner, Scarpelli, & Leonard, Copyright 

2015, American Chemical Society (24). 
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1.2 F-plasmid tra gene regulation and engineering novel regulation lateral gene transfer 

 

1.2.1 Conjugation: mechanism and biological relevance 

 

Bacterial conjugation is an important process that is of relevance to a number of aspects of 

bacterial biology and is one of only three ways in which bacteria can laterally transfer genetic 

material (25). Conjugation consists of the transfer of genetic material usually encoding conjugative 

functionality from one bacterial cell directly into another recipient cell (26). Conjugation is 

initiated by the assembly of a secretion system in donor cells, which are host cells capable of 

conjugation, and the creation of a pilus, a long filament of protein able to attach to other (recipient) 

cells (27). The pilus is retracted, and the attached recipient cell is drawn towards the donor to form 

a mating pair (28). Mating pairs experience an outer membrane fusion, and conjugative machinery 

mediates transport of single-stranded copies of genetic information associated with the secretion 

system from the original donor cell into a recipient (29). The two cells then separate, leaving both 

cells genetically capable of transferring genetic information onto new recipients (30). 

 Conjugation has been shown to play a key role in a number of processes of biological and 

clinical relevance. Conjugation has been well documented as the means by which antibiotic 

resistance and virulence genes are spread within a population (31, 32). Conjugation is thought to 

be one of the main concerns in the spread of such genes within a clinical environment (29, 33). 

Conjugation also plays a key role in the evolution of bacterial genomes (34). Conjugation has long 

been associated with the transfer of conjugative and mobilizable plasmid between distinct different 

families of both gram negative and gram positive bacteria, and has been known to integrate into 

genomes of wide array of species, leading to transfer of genomic information between species (26, 

35). Conjugation is seen as the main player in acquisition of large chromosomal regions that play 
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an important role in the survival of bacteria in newly colonized environments (36). The acquisition 

of these elements can be derived from diverse sources, as conjugation from many conjugative 

plasmids has been shown to span large numbers of species, with many conjugative plasmids able 

to transfer to and from distantly related organisms (25). Therefore, better understanding how 

conjugation is regulated could provide insights into fields ranging from microbial ecology and 

evolution to infectious disease management. 

 Conjugation is also used as a tool, enabling transfer of genetic information not only 

between members of the same species, but across species and even kingdoms (32, 37). Conjugation 

has been shown to be essential in the life cycle of the bacteria Agrobacterium tumefaciens, which 

transfers a virulence gene into plant roots as to create a response beneficial to the bacteria (38). 

This discovery has led to the observation of conjugation capabilities between bacteria and fungi 

(39), bacteria and human cells (40), and even bacteria and isolated mammalian mitochondria (41), 

which has led to interest in using conjugation as a means to engineer mammalian mitochondria 

(42). Conjugation has been used to introduce novel genetic circuits into diatoms, and is seen as a 

potential system to engineer algae for the production of fuels and designer molecules (37).  

 The existence and importance of conjugation has been known for almost seventy years 

(43), and the first discovered conjugative plasmid, the F plasmid, or Fertility factor, has been used 

consistently as a model system for the exploration of how conjugation is regulated, how it 

functions, and its implications in bacterial systems growth and dynamics (30). The F plasmid was 

fully sequenced in 2000 and most encoded genes have been at least partially characterized (27). 

The F plasmid is a relatively large plasmid, just shy of 100 kb, and it encodes the majority of genes 

required for conjugation in a single operon, called the tra operon (32).  

 

1.2.2 The F Plasmid as a model system and tra operon regulation 
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Although the components of the F plasmid and its conjugative machinery have been well 

studied, a number of questions about the specific functions on the parts continue to exist. 

Specifically relevant to the work I describe in this thesis, much is known about the key factors 

regulating transcription of genes essential for transfer, but the exact mechanisms governing 

regulation have not been fully elucidated (44). Regulation of the tra operon from its upstream 

promoter PY has been extensively studied, and a number of key players have been elucidated, 

including the key player TraJ (32, 45). TraJ is encoded on a gene located outside of the tra operon 

on the F plasmid, and shares the role of activating transcription of most tra genes with native 

regulator ArcA (46). TraJ is only functionally expressed during exponential growth, and its 

expression is silenced outside of that phase by a number of different host proteins, many of which 

also compete against TraJ to suppress expression of the tra operon. With all that is known about 

TraJ, a number of question about its function still exist, including: Can TraJ modulate gene 

expression outside of exponential growth? What role does the concentration of TraJ play on in its 

ability to regulate gene expression and promote conjugative transfer? Under what conditions does 

TraJ most robustly promote gene expression from PY? As described below, each of these question 

is explored in this thesis.  

 

1.2.3 TraJ regulation and the heterogeneity in conjugative populations 

 

 In the investigations described in Chapter 3, we sought to address these questions identified 

above by examining the function of TraJ in a quantitative, single-cell fashion. To this end, we 

developed a PY GFP reporter system as well as various constructs enabling inducible expression 

of TraJ via the application of a small molecule. Previous studies have used PY reporter systems to 

explore TraJ effects on transcription, but have used reporter systems that only provide information 

on a population level, which would be incapable of capturing heterogeneity within the population 
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(45). With this reporter system we were able to probe what role expression of TraJ has in mediating 

the heterogeneity of PY induction and what is the correlation between TraJ expression and PY 

induction. 

 We also wanted to explore the effect of orthogonal TraJ on the rate of conjugation. TraJ 

mutants are known to decrease the rate of conjugation in previously described systems (47). If 

having less functional protein decreased conjugative rates, we decided to investigate whether 

adding more would lead to an increase in conjugative rates. We also decided to explore when the 

timing of this additional expression of TraJ would result in the greatest effect on conjugative rates. 

Lastly, we wanted to quantify the ability of a completely orthogonal transcription control region 

would play in a novel conjugative system. We engineered a system to explore in what context we 

could induce or observe conjugative transfer with such as system. 

 

1.3 Predicting heterogeneity and dynamics in genomic DNA content of bacterial populations 

across variable growth regimes 

 

1.3.1 Phenotypic heterogeneity resulting from variation in maintenance of genetic elements 

 

For coordination of expression of engineered protein system in bacteria, variation between 

cells in expression can make prediction and characterization of function difficult, which illustrates 

a need for increased stability of the copy number regulation of introduced genetic elements. This 

need for stability typically motivates the integration of engineered genetic elements into the 

genome as an alternative to relying upon expression from plasmids, as plasmid copy number may 

vary from cell to cell and subsets of a population experience plasmid loss over time (48). However, 

copy number of genes encoded within the Escherichia coli genome fluctuates and becomes 

elevated well above a single copy throughout rapid growth (regularly exceeding 8 copies per cell), 
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and in a manner dependent upon environmental factors such as nutrients and cell densities (49, 

50). The replication of the genome in E. coli is also regulated by a number of factors and has a 

large role in how genes are expressed at different loci (51). Nonetheless, genomic integration of 

engineered gene circuits is still preferential for the exact reason of relative copy number stability 

(52).  

While the genome is more stably regulated than many plasmid systems (50), it is not 

maintained at a single copy throughout different phases of growth (53). The replication of the 

genome takes about 40 minutes, with some variation depending on strain and growing conditions 

(54), and this slow rate of replication is one of the possible reasons for genomic copy number’s 

heightened stability compared to smaller plasmids capable of completing multiple rounds of 

replication in a relatively short time. However, the replication of the genome and cell division are 

controlled via very distinct mechanisms, thus the ratio between copies of complete genomes per 

cell can highly vary in different conditions. 

DNA replication begins at the origin of replication, OriC (54). This initiation is facilitated 

by DnaA (55). DnaA localizes to a series of specific binding sites and upon binding causes changes 

to the DNA structure within the OriC, and, after accumulating above a specific threshold on the 

DNA while complexed with ATP, begins the process of initiating replication (54, 56). Bound 

DnaA and ATP complexes allow the recruitment of the helicase DnaB, which is the first step in 

replicating the genome (57). Replication occurs in both directions from the OriC, and continues 

until termination, a process that is coordinated by interactions between the protein Tus and one of 

10 Ter sequences along the genome (58). Tus complexes with Ter sites in an asymmetric fashion, 

which enables the complex to function as a direction-specific terminator of replication. When a 

replication forks reaches a Tus complex from one direction, the Tus complex will dissipate and 

replication will continue (59). If the replication fork reaches the Tus complex from the other 
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direction, however, the Tus complex will remain intact, inhibiting further replication until the 

opposite replication fork is able to complete replication from the other direction.  

The accumulation of genomes within a cell during rapid growth means that the replication 

of DNA has to be decoupled from cell division. The regulation of cell division in E. coli is less 

well understood than the regulation of DNA replication, but a number of essential regulators of 

cell division have been identified (60). The first protein to localize at the point of division is FtsZ, 

a tubulin homologue that forms a ring around the nucleoid of the cell (61). This ring can form well 

before the two distinct genomic copies separate into distinct regions. The ring then complexes with 

the membrane-bound ZipA, tethering the ring to the membrane in preparation to pinch the 

membrane during division(62). This leads to the recruitment of a number of proteins to form the 

divisome, which contracts the membrane while actively transporting chromosomes to opposite 

daughter cells (63). 

Interestingly, regulation of cell division and genome replication are actually largely 

decoupled. Initiation of cell division is largely associated with cell size in a mechanism that is 

currently not fully understood (64). Replication of the genome is largely initiated by the 

accumulation of DnaA and the energy state of the cell (55). While cell size has some effect on the 

internal concentrations of DnaA, these two mechanisms are mainly independent, leading to the 

accumulation of genomes during growth. While this decoupling enables E. coli to grow rapidly 

when nutrients are abundant, such the cell division time can be less than the time required to 

replicate a single genome (53), this decoupling also makes predicting variations in genomic DNA 

content more challenging.  

 

1.3.2 Modeling E. coli cell cycle in exponential growth 
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While the understanding of these two processes – chromosome replication and cellular 

division – has grown since early models of genomic copy distributions in a population, modeling 

has relied on broader understandings of what governs these two mechanisms and largely avoided 

specific mechanistic details. Instead, since the earliest attempts to model the relationship between 

genome count and cell division have simply approximated these two processes into two terms for 

describing their role in the bacterial cell cycle (65, 66). C, the first of these terms, represents the 

time associated with average genomic replication. Details of the mechanism of chromosome 

replication are lumped into a general term giving an average rate of DNA synthesis. The other 

term, D, represents the average time that passes between the conclusion of replication with at least 

two distinct genomes and cell division. Each term is modified to account for with the rate at which 

growth occurs as well as other factors such as temperature and nutrient constraints (53).  

A number of models for genomic distribution have been created at steady state growth, 

some based on predicted events within cells, some based on cell size distributions and some based 

on cell age distributions within a population (67-69). A Monte Carlo simulation described in 1995 

by Keasling et al. used an elegant system where dividing cells were linked to a membrane such 

that cells only escaped the membrane upon division into new daughter cells to synchronize the age 

of cells in a collected population accurately predicted distributions of cell size, DNA content, and 

chromosome segregation patterns in exponentially growing cells. This model, however is unable 

to predict distributions outside of exponential growth, and is unable to predict how changes in their 

environment will affect these distributions. Newer models have combined similar approaches for 

predicting distributions with more detailed methods such as observation of genomic content by 

flow cytometry, but are also limited to exponential growth (53, 70). Even papers exploring more 

diverse growing conditions have limited their models to steady state growth, limiting the potential 

use to cells in the same growth state (71). In experimental cultures outside of simulations, growth 

rate are constantly changing throughout a run, and therefore, new design tools are needed to 



27 
 

evaluate and predict the consequence of genomic copy number heterogeneity in non-steady state 

cultures and synthetic biology experiments.  

 

1.3.3 Toward modeling E. coli cell cycle across multiple phases of growth 

  

In the investigation I described in Chapter 4, we set out to assess the feasibility and 

limitations of a comprehensive model of genome copy regulation and dynamics throughout 

multiple phases of growth in a bacterial culture. Working with Declan Bates and Melchior du Lac 

at the University of Warwick, we collaborated on designing, calibrating, and validating an agent-

based computational model for predicting distributions of genomic content within ensembles of 

individual cells, throughout multiple phases of growth. While other models already exist for 

genome distribution at varying rates at steady state, but our model was designed with the intention 

of following cells out of exponential growth and all the way into stationary phase. This added 

complexity would allow for the design and prediction of function for novel genetic circuits 

integrated in the genome whose functionality was relevant or required in multiple phases of 

growth, such as those requiring genetic induction after exiting exponential growth or whose 

function are designed for batch culture usage. In our investigation, the computational modeling 

has been led by Melchior du Lac, and my contribution was largely in the collection of data for 

training and calibrating our models, as well as providing guidance throughout the process of model 

development to ensure that assumptions and mechanisms included in the model were well-

grounded in biology.  

 Our collaborative effort led to the design of designed an agent-based simulation framework 

termed the Heterogeneous Multiphasic Growth (HMG) simulator. The data used to build and 

calibrate our simulator was largely collected via a methodology I developed. Experiments using 

this methodology conducted by Andrew Younger and myself generated a series of experimental 
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data sets quantifying genomic DNA distributions for cells grown in batch cultures, sampling 

multiple phases of growth, different growth media, and different shaking rates. These cells were 

stained and examined for genome content using single cell analysis to get a picture of population 

distributions of genome dynamics. We built our simulator based on a subset of this data, and 

validated it using other runs from the remaining sets. We have also investigated whether our model 

can predict genome replication dynamics in experiments quite divergent from those used to 

calibrate the simulator. For this work, I generated a series of data sets using experiments run in 

shake flasks during various phases of growth to probe the limits of the predictive ability of our 

model. 

Chapter 4 is mainly adapted with permission from Du Lac, Scarpelli, Younger, Bates & 

Leonard, Copyright 2016, American Chemical Society (72). 
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CHAPTER 2 

 
Evaluating whether conditional spatial sequestration is sufficient for 

mediating regulation of bacterial gene expression  
 

2.1 Introduction 

 

Conditional spatial sequestration of transcription factors is a strategy widely employed by 

prokaryotes to achieve gene regulation. Among the best characterized examples is the E. coli 

mechanism for regulated uptake of maltose (4, 7). In this system, the MalFGK2 maltose transporter 

spans the cytoplasmic membrane, and in its resting state, this transporter sequesters the 

transcriptional activator MalT at the cytoplasmic membrane (11).When MalE binds maltose in the 

periplasm, this complex binds to the transporter and promotes a series of ATP hydrolysis-linked 

conformational changes (73), which eventually result in the release of MalT from the cytoplasmic 

face of the transporter. MalT then drives downstream mal genes in a manner dependent on 

endogenous maltotriose (a product of glycogen degradation (10)). Thus in this case, conditional 

localization of the transcriptional regulator is mediated by conformation-dependent protein-protein 

interactions. 

A distinct mechanism for controlling localization of transcriptional regulators is regulated 

intramembrane proteolysis (RIP), which is conserved from prokaryotes to eukaryotes (13). In RIP, 

the sequential proteolysis of extra- and intra-membrane segments of a transmembrane protein leads 

to the cytoplasmic release of a transcription regulator (8). One such system is the σE stress response 

in E. coli, whereby accumulation of misfolded outer membrane porins is sensed to drive expression 

of stress response genes, such as chaperones(15). In this system, σE is initially bound to and 
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inhibited by the cytoplasmic membrane antisigma factor, RseA (30, 74). Binding of misfolded 

porins to RseA renders the periplasmic domain of RseA labile to cleavage by DegS, and this 

cleavage subsequently renders the cytoplasmic domain of RseA labile to cleavage by YaeL (17, 

18, 75). Following this second cleavage event, sequestration of σE is alleviated and it diffuses from 

the membrane to recruit RNA polymerase to promoters of stress-response genes. Thus in both the 

σE RIP system and the MalT system, conditional control of gene expression is mediated by 

alleviation of spatial sequestration of a pre-synthesized transcription factor. 

Importantly, these natural systems illustrate that conditional spatial sequestration of 

transcription factors enables rapid responses to changes in environmental or cellular state, since 

such responses do not require novel synthesis of transcriptional regulators to coordinate 

downstream gene expression. Thus, spatial conditional sequestration may also be useful for 

engineering synthetic biology technologies ranging from biosensing to coordination of engineered 

metabolic pathways. However, to date it remains unclear how or whether conditional spatial 

sequestration may be engineered. In some cases, artificial sequestration of native transcriptional 

regulators has proven sufficient to mediate spatial control of transcription. For example, targeting 

the transcriptional repressor Mlc to the inner face of the E. coli cytoplasmic membrane, by 

genetically fusing Mlc to the transmembrane protein LacY permease, was sufficient to de-repress 

Mlc-controlled genes (22). In contrast, targeting the LacI repressor to the inner face of the E. coli 

cytoplasmic membrane, by genetically fusing LacI to bacteriophage M13 coat protein, did not 

impede LacI-mediated repression of a tac operator-promoter located either on a plasmid or 

integrated into the chromosome (23). As proposed by Gorke et al., it is possible that these 

seemingly contradictory observations derive from distinct mechanism by which tethering regulates 
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the activity of transcriptional regulators or their interactions with DNA. However, it remains 

unknown whether other regulators commonly used in synthetic biology may be amenable to 

spatially-regulated control. Moreover, how or whether conditional spatial sequestration of 

transcriptional regulators may be engineered has not been explored. 

Here we describe a platform for investigating and implementing conditional spatial 

sequestration of transcriptional regulators. We describe a mechanism for conditional tethering, in 

which expression of an exogenous (non-native) protease mediates proteolytic release of engineered 

transcriptional regulators from the inner face of the E. coli cytoplasmic membrane. We also 

demonstrate that this Protease-Alleviated Spatial Sequestration (PASS) mechanism can robustly 

mediate either conditional transcriptional activation or conditional transcriptional repression. 

Thus, this work both provides new insights into a biologically important facet of microbial gene 

regulation and establishes a new class of conditional regulation for the microbial synthetic biology 

toolbox. 

 

2.2 Materials and Methods 

 

2.2.1 Growth Conditions and strains 

 

Cells were grown in Lysogeny broth (LB) Lennox formulation (10 g/L tryptone, 5 g/L 

yeast extract, 5 g/L NaCl) for preparatory steps, and in supplemented M9 (M9 minimal medium 

with 0.4% glycerol, 0.2% casamino acids, and 1 mM thiamine hydrochloride) for characterization 

steps. All experiments were performed at 37°C. Singly-transformed cultures included 50 μg/ml 
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kanamycin or 34 μg/mL chloramphenicol; doubly-transformed cultures included 37.5 μg/mL 

kanamycin and 17 μg/mL chloramphenicol. All experiments were performed in TOP10 competent 

cells (Life Technologies), which have genotype: F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 

Δ lacX74 recA1 araD139 Δ(araleu)7697 galU galK rpsL (StrR) endA1 nupG. 

 

2.2.2 DNA constructs 

 

Primers were purchased from Life Technologies (Carlsbad, CA) and IDT (Coralville, IA), 

and E. coli-optimized GeneArt Strings for mCherry_TM, TM_PS_CI, and TM_TEV Protease 

were ordered from Life Technologies. All other coding sequences were obtained from the Spring 

2010 Registry of Standard Biological Parts Distribution. 

 

2.2.3 Microplate fluorescence assays 

 

Colonies were grown overnight in supplemented M9 medium with appropriate antibiotics 

and shaking, diluted to an OD600 of 0.05 in 3 mL pre-warmed M9 medium, and after reaching an 

OD600 between 0.4-0.6, cultures were again diluted to an OD600 of 0.05 in 2 mL of pre-warmed 

M9 medium containing appropriate inducers and grown for 30-60 min. Three 180 μL replicates 

per culture were then transferred to black-walled clear-bottom 96-well plates (Corning) and placed 

in a Synergy H1MFD multi-mode microplate reader (BioTek). OD600, mCherry fluorescence, and 

GFP fluorescence were measured every 15 min for ~ 10 h while shaking at 37°C. Monochrometer 

excitation/emission settings were 585/615 nm for mCherry and 485/515 nm for GFP. To 
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distinguish GFP-mediated fluorescence from autofluorescence, the fluorescence/OD600 value 

calculated for untransformed TOP10 cells was subtracted from each sample to generate “blanked” 

measures of GFP fluorescence/OD600, which we termed, “GFP/OD600”. To calculate the mean 

value of (GFP fluorescence intensity per OD600) for each sample (here, Mean GFP/OD600), four 

consecutive time points from late exponential phase were selected for each sample Late 

exponential phase was analyzed to ensure that cells were at steady state, rather than exhibiting 

transient responses to the inducer; all time points analyzed were at least 3 hours after inducer 

addition. For each case analyzed, Mean GFP/OD600 was averaged over four time points for each 

of three biological replicates. More specifically, analysis of growth for microplate analysis was 

examined using a semi-log plot of log2(OD600) vs. time. Exponential phase growth was determined 

by identifying sequential data points that appear co-linear on such a plot. Time points were 

generally selected  towards  the  later  end  of  exponential  phase  growth  in  order  to  maximize 

signal to noise in measured fluorescence. We observed no pronounced construct-specific impacts 

on growth rate (not shown). To correct for non-specific effects of inducers on reporter gene 

expression, for each genetic configuration analyzed in Figures 2.5 and 2.7, fold-change in Mean 

GFP/OD600 upon inducer addition was normalized to the fold-change in Mean GFP/OD600 elicited 

by adding the same inducer(s) to a strain harboring only the corresponding reporter plasmid (pTet-

GFP or pRM+-GFP). Thus, by definition, fold-change for the inducer-free case for each genetic 

configuration was set to unity. 

 

2.2.4 Microscopy and spheroplast synthesis 
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For fluorescent microscopy, agarose pads were prepared by adding 2% low-melt agarose 

(Lonza) to minimal M9 medium and heating until melted. 30 µL of agarose solution were then 

added onto a depression slide and covered with another flat slide (Fisher Scientific). Following 

pad solidification (~10 min), 5 μL of cell culture were added to the pad, covered with a coverslip, 

and sealed with clear fingernail polish. Slides were viewed on an inverted fluorescent Leica DM-

IL LED microscope with a Leica HCX PL APO 100x/1.40 PH CS oil-immersion objective lens 

and high-resolution cooled Q-imaging CCD. Images in Figure 2.4 were sharpened using the 

DeconvolutionJ plugin for ImageJ to reduce optical distortion. 

For spheroplast synthesis, whole cells were converted to spheroplasts based upon an 

established protocol (76). Briefly, cells were grown and induced as described for microplate 

assays, and samples were collected after 6 hours of growth in microplate format. 1 mL of induced 

cell culture was centrifuged at 10,000 x g for 4 minutes. The pellet was re-suspended in 100 μL of 

30 mM Tris hydrochloride buffer (Tris-HCl, pH 8.0) containing 0.1 mg/ml of chloramphenicol 

and 3 mM NaN3. Cells were again pelleted, the supernatant was removed, and the pellet was 

suspended in 100 μL of spheroplasting buffer (20% sucrose, 30 mM Tris-HCI (pH 8.0), 0.1 mg/mL 

chloramphenicol, 3 mM NaN3). 10 μL of a 1 mg/ml lysozyme solution (freshly dissolved in 0.1 

M EDTA, pH 8.0) were added to each sample and incubated for 30 min at 0°C. Spheroplasts were 

separated from released periplasmic contents by centrifugation at 10,000 x g for 4 min. 

 

2.2.5 Flow Cytometry 
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Cells were grown and induced as described for microplate assays, and samples were 

collected after 6 h of growth in microplate format. Samples were analyzed on an LSR II (BD), and 

mean fluorescent intensity (MFI) was calculated using FlowJo software (Treestar). A minimum of 

4,000 individual cells (typically out of ~20,000 events) was analyzed per sample. 

 

2.2.6 Western Blotting 

 

Colonies were grown overnight in 5 mL culture tubes in supplemented M9 medium with 

appropriate antibiotics, diluted to an OD600 of 0.05 in pre-warmed M9 medium, and after reaching 

an OD600 between 0.4-0.6, cultures were again diluted to an OD600 of 0.05 in pre-warmed M9 

medium containing appropriate inducers. Samples were collected after reaching an OD600 of at 

least 0.1, diluted to an OD600 of 0.1 in M9 medium, and then combined with 2X Laemmli buffer. 

Samples were boiled at 95°C for 5 min. 30 μL per sample were loaded and run in pre-cast 12% 

(Figure 3.3D) or 4-15% gradient polyacrylamide gels (Bio-Rad). Gels were transferred to PVDF 

membranes (Bio-Rad) for 2 h at 100 V. Antibodies used for western blot analyses were anti-

mCherry monocolonal (Abcam), anti-His6X polyclonal (Abcam), anti-rabbit HRP-conjugated 

secondary (Life Technologies), and anti-mouse HRP-conjugated secondary (Cell Signaling). 

Transferred membranes were blocked in blocking buffer (5% milk in TBST: 50 mm Tris, 150 mM 

NaCl, 0.1% Tween-20) for 1 h followed by primary antibody labeling in blocking buffer at 4°C 

overnight. Membranes were washed 3x with TBST and stained with secondary antibody in 

blocking buffer for 1 h at 4°C. Membranes were washed 3x with TBST, treated with ECL solution 

(Bio-Rad), and then exposed to films (GE). 
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2.3 Results and Discussion 

 

2.3.1 Protease-Alleviated Spatial Sequestration (PASS) Platform Design 

 

Figure 2.1 summarizes the platform developed for evaluating the feasibility of the Protease-

Alleviated Spatial Sequestration (PASS) concept. The proposed mechanism is as follows: (1) the 

transcriptional regulator is tethered to the inner face of the cytoplasmic membrane by genetically 

fusing the regulator to an engineered single-pass integral membrane protein, separated by a 

sequence that is labile to cleavage by an exogenous protease (hereafter, the PASS construct)(7), 

expression of the exogenous protease enables it to cleave the PASS construct, liberating the 

transcriptional regulator to diffuse into the cytoplasm and bind DNA. Note that “exogenous” is 

used herein to indicate that the DNA encoding the protease is not native to the E. coli host, not to 

indicate that the protease is extracellular. In our system, PASS constructs included an N-terminal 

ectodomain based upon the monomeric red fluorescent protein mCherry (77), which was targeted 

for Sec-mediated transport to the periplasm via fusion to a MalE signal sequence (MalE_SS). The 

single-pass α-helical transmembrane domain was derived from the native E. coli ATP synthase 

subunit B, for which the structure is known (78). The protease derived from Tobacco etch virus 

(TEV) was selected based upon its high degree of sequence specificity (79, 80), and all PASS 

constructs included the canonical TEV substrate sequence, ENLYFQ/G, where the slash indicates 

the cleavage site. Notably, TEV has been harnessed for intracellular protein processing in E. coli 

in vivo, suggesting that off-target cleavage may not be problematic (81).  
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To evaluate the potential for PASS-mediated repression as well as induction of 

transcription, we selected a model transcriptional repressor and a model transcriptional activator. 

To evaluate repression, PASS constructs included the tetracycline-regulated repressor (tetR) and 

were evaluated with reporter plasmids driving the expression of GFP from the constitutive, tetR-

regulated promoter pTet (Figure 2.1) (82). To evaluate activation, PASS constructs included a 

constitutively active transcriptional activator based on the CI transcription factor from λ phage 

(83). The λ CI protein activates the λ pRM promoter, and reporter constructs were developed based 

upon the pRM+ variant of this promoter in which OR3 was deleted to prevent repression of pRM+ 

at high concentrations of CI (84). Finally, 6xHis tags were appended to C-termini of transcription 

factors to facilitate biochemical analysis. PASS constructs were expressed in an IPTG-inducible 

fashion from the pLacIQ promoter, and TEV was expressed in an arabinose-inducible fashion from 

the pBAD promoter. 
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Figure 2.1: PASS concept and mechanism of action. The proposed mechanism is as follows: 

tethering a transcriptional regulator to the inner face of the cytoplasmic membrane prevents its 

ability to regulate target gene expression; protease-mediated cleavage of the PASS construct 

liberates the transcriptional regulator to repress or activate its cognate promoter sequence. In this 

study, recombinant PASS constructs included a periplasmic mCherry ectodomain, a 

transmembrane α-helix derived from E. coli ATP synthase subunit B, the cleavage sequence for 

tobacco etch virus protease (TEV), and either the tetR or λ CI transcriptional regulator domains. 
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Released tetR represses the constitutive pTet promoter, and released CI activates the conditional 

pRM+ promoter, to modulate output gene (GFP) expression. 

To initially assess the quantitative range of our reporter systems, plasmids encoding 

arabinose-inducible tetR and CI (pBAD-tetR and pBAD-CI) were co-transformed with their 

cognate reporter plasmids (pTet-GFP and pRM+-GFP), induced, and evaluated by microplate-

based fluorescence analysis (Figure 2.2). Both tetR and CI conferred significant repression or 

induction, respectively, of GFP expression, confirming operability of the reporter system. 

Arabinose did confer some tetR-independent reduction in GFP for pTet-GFP containing cells, but 

this reduction was substantially less than the tetR-mediated reduction in GFP expression. 

Nonetheless, subsequent microplate analyses were controlled and normalized to account for this 

effect. These soluble transcription factor controls also established benchmarks for interpreting the 

relative magnitude of subsequent PASS-mediated changes in reporter gene expression. 
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Figure 2.2 Regulation of reporter constructs by soluble repressor and activator. (A) Cells 

were transformed with the tetR-regulated reporter plasmid and tetR expression plasmid, as 

indicated, and induced with 1 % (w/v) arabinose. (B) Cells were transformed with the CI-regulated 

reporter plasmid and CI expression plasmid, as indicated, and induced with 1 % (w/v) arabinose. 

Samples undergoing exponential growth were analyzed, blanked, and normalized as described in 

Methods. Experiments were conducted in biological triplicate, and error bars indicate standard 

deviations.  * p < 10-5 and ** p < 10-10, as calculated for a two-tailed paired Student’s t-test. 

Abbreviations: TR, tetR. 
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2.3.2 Inducible PASS Construct Expression and Cleavage 

 

To evaluate expression of PASS constructs based upon membrane-bound tetR (mTR) or 

CI (mCI), fluorescence of the mCherry domain was assessed by microplate reader assays following 

induction with IPTG (Figure 2.3A). Most importantly, these data indicated that PASS constructs 

were expressed in a sufficiently stable fashion to enable mCherry folding and maturation. In 

addition, while IPTG treatment enhanced expression of both constructs, some expression was also 

evident in the absence of IPTG, presumably due to leaky expression from pLacIQ on high copy 

number plasmids (85). To evaluate whether PASS constructs were proteolyticly processed in 

accordance with the proposed mechanism, we analyzed this process in greater detail focusing on 

the mTR constructs. To this end, mTR constructs were co-expressed with TEV (driven by pBAD-

TEV) and evaluated by western blot (Figure 2.3B-D). N- and C-terminal fragments were detected 

via anti-mCherry and anti-6xHis antibodies, respectively. The full-length 55.6 kDa mTR construct 

was observed for all strains including the pLacIQ-mTR construct, in a manner that increased with 

IPTG but was not dependent on this inducer, which is consistent with the microplate assay analysis 

(Figure 2.3A). Arabinose-mediated expression of TEV dramatically increased the prevalence of 

the expected N- and C-terminal cleavage fragments of 31.4 and 24.2 kD, respectively, while 

decreasing prevalence of the full-length mTR band. The cleavage products were also present at 

low levels in the absence of arabinose, potentially due to slightly leaky expression of TEV 

protease.  
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Several unexpected bands were also observed. Expression of full-length mTR 

corresponded with appearance of a band at ~40 kD, which was observed in both anti-mCherry and 

anti-6xHis blots. Because overexpression of MalE_SS-tagged mCherry leads to aggregation in the 

cytoplasm in a manner that blocks secretion (86), we hypothesized that under high levels of 

expression, some mTR aggregates in either the cytoplasm or after transport to the cytoplasmic 

membrane. If the aggregated mTR were partially degraded near the N-terminus, this would reduce 

construct size without ablating binding by either the anti-His6X antibody or the anti-mCherry 

antibody (which binds within amino acids 84-237 of mCherry; personal communication with 

Abcam, June 26, 2014). Notably, this proposed proteolysis did not result in liberation of substantial 

quantities of soluble tetR (Figure 2.3B), such that this effect is unlikely to impede evaluation of 

the PASS mechanism. The aggregate also appeared partially labile to TEV-mediated cleavage, 

yielding an mCherry-positive band of ~15-20 kD in the presence of TEV. As suggested by Figure 

2.3A, substantial mTR was expressed in the absence of IPTG, and mTR expression increased with 

IPTG; in either case, induction of TEV with arabinose resulted in liberation of soluble tetR (Figure 

2.3C,D). Altogether, these analyses indicated that mTR was generally expressed and processed as 

per the proposed PASS mechanism. Moreover, our conclusions pertaining to the proposed 

aggregation and proteolysis of mCherry are not specific to PASS constructs incorporating tetR, 

and thus this analysis likely applies generally to PASS constructs in which the periplasmic domain 

is based upon mCherry (including mCI). 
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Figure 2.3: Expression and proteolytic processing of PASS constructs. (A) Cells were 

transformed as indicated and induced with varying concentrations of IPTG. Fluorescence was 

quantified as in Figure 2. Experiments were conducted in biological triplicate, and error bars 

indicate standard deviations. (B - D) Cells were transformed and induced, as indicated, with 1 mM 

IPTG and/or 1% (w/v) arabinose, and lysates were analyzed by N-terminal (mCherry) or C-

terminal (6xHis) labeling. Protein standards are given in kilodaltons (kD). 
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2.3.3 Subcellular Localization of PASS Constructs  

 

To determine whether PASS constructs were successfully integrated into the cytoplasmic 

membrane, we next visualized cells by fluorescent microscopy. Cells co-expressing cytoplasmic 

GFP and mTR exhibited a mCherry-positive halo surrounding a GFP-POSITIVE core (Figure 

2.4A). Thus, the mCherry domain was successful secreted to the periplasm and refolded to 

reconstitute fluorescence. To determine whether this mCherry was associated with the cytoplasmic 

membrane (rather than simply secreted into the periplasm), we next generated spheroplasts by 

lysing the outer membrane to enable diffusion of soluble periplasmic species away from the cells 

(76). For cells expressing either mTR or mCI, membrane-associated mCherry was retained upon 

conversion of intact cells (Figure 2.4B) to spheroplasts, which exhibited characteristic rounded 

morphology (Figure 2.4C). Together with the western blot analysis, these data indicate that PASS 

constructs were efficiently integrated into the cytoplasmic membrane as designed, where they 

preferentially accumulated. 
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Figure 2.4: PASS construct localization at the cytoplasmic membrane. (A) Micrographs of 

cells transformed with pTet-GFP, pLacIQ-mTR, and pBAD-TEV Protease treated with 1 mM 

IPTG. mCherry fluorescence is localized to the periplasmic area while GFP fluorescence is diffuse 

throughout the cytoplasm. (B) Cells transformed with pLacIQ-mTR or pLacIQ-mCI and induced 

with 1 mM IPTG; shown in mCherry channel. (C) Spheroplasts generated from cells in panel (B). 
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2.3.4 PASS-Regulated Repression of Gene Expression 

 

Having established that the PASS mechanism functions as designed, we next investigated 

whether mTR repressed reporter gene expression from pTet in a manner that depended on TEV 

expression (Figure 2.5). These experiments included a control series in which mCI was expressed 

in place of mTR, to control for potential non-specific impacts of PASS construct expression on 

GFP expression from the pTet-GFP reporter. Induction of TEV expression by arabinose led to a 

significant decrease in GFP expression, and the magnitude of this decrease was comparable to that 

mediated by soluble tetR (Figure 2.2). Repression was not enhanced by IPTG, although such 

treatment did increase expression of mTR (Figure 2.3). Thus, together, these data indicate that the 

low level of mTR expressed in the absence of IPTG provided sufficient tetR to maximally regulate 

the pTet promoter, and that TEV-mediated processing of mTR was efficient. Notably, no such 

IPTG- or arabinose- induced changes in GFP expression were observed for control cells expressing 

mCI in place of mTR. Moreover, these data indicate that subcellular sequestration of tetR to the 

inner surface of the cytoplasmic membrane via the PASS mechanism can limit this transcription 

factor’s ability to suppress its cognate promoter. Notably, sequestration prevented repression of 

pTet encoded on high copy number plasmids; whether this holds true for chromosomally-

integrated pTet remains to be determined. Our observations also differ from those in which LacI 

was tethered in a similar fashion (23). One potential explanation is that tethering tetR impacts its 

folding or DNA binding in a manner that is distinct from the mechanism by which tethering LacI 

impacts its regulatory capacity. Overall, tetR-based PASS constructs were functional and robust. 

One unexpected observation was that IPTG-induced expression of mTR (without arabinose) also 
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conferred a reduction in reporter GFP expression, at least at the population-averaged level. Since 

IPTG-mediated induction of mTR did not alter overall bacterial growth compared to control cells 

in which IPTG induced expression of mCI (not shown), a simple growth effect is unlikely to 

entirely explain these results. Thus, we next investigated these phenomena at the single cell level 

in order to elucidate the mechanism by which mTR regulated reporter gene expression. 
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Figure 2.5: PASS-regulated gene repression by tetR. Cells were transformed and induced as 

indicated, and fold-change was quantified as in Methods. Experiments were conducted in 

biological triplicate, and error bars indicate standard deviations. * p < 10-10 and ** p < 10-13, as 
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calculated for a two-tailed paired Student’s t-test. Abbreviations: mC, membrane-bound mCherry 

(mTR cleavage product); TR, tetR.  

To evaluate whether individual cells within the population exhibited differential PASS-

mediated conditional gene expression, we leveraged the fact that mTR constructs are fluorescent 

to analyze PASS function by flow cytometry. Consistent with western blot and microplate 

analyses, TEV-mediated cleavage of mTR drove repression of pTet-GFP, even at uninduced levels 

of mTR expression for which mCherry expression was indistinguishable from background (Figure 

2.6A). Within the population of mCherry-positive cells, arabinose-induced expression of TEV 

drove a substantial suppression of pTet-GFP, for both basal and induced levels of mTR co-

expression (Figure 2.6B), and the magnitude of this suppression surpassed that observed in 

population-averaged quantification by microplate assays (Figure 2.5). Thus, while IPTG-mediated 

induction of mTR may moderately suppress GFP expression in cells expressing pTet-GFP, our 

single cell analysis revealed that this effect was far less important than was the TEV-mediated 

release of tetR to suppress pTet via the proposed PASS mechanism (even in mCherry-positive 

cells). Although it is not clear why only a subset of cells expressed detectable levels of mCherry 

(as part of mTR), the PASS mechanism appeared to function robustly in this population. In 

addition, the arabinose (TEV)-responsive population was generally mCherry- in the absence of 

IPTG and mCherry-positive in the presence of IPTG. Thus, there may exist a subset of cells or cell 

states in which the PASS mechanism functions most robustly. 
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Figure 2.6: PASS-regulated gene repression in individual cells. (A) Cells transformed with 

pTet-GFP, pLacIQ-mTR, and pBAD-TEV were induced as indicated and analyzed by flow 

cytometry. (B) Mean fluorescence intensity (MFI) in GFP for mCherry-positive cells from panel 

(A). Experiments were conducted in biological triplicate, and error bars indicate standard 

deviations. Normalized MFI GFP values were determined by calculating MFI GFP for mCherry-

positive cells in the test sample, calculating MFI GFP for mCherry-positive cells in the uninduced 

sample, and then dividing the former by the latter. * p < 0.01 and ** p < 0.005, as calculated for a 

two-tailed paired Student’s t-test. 
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2.3.5 PASS-Regulated Induction of Gene Expression 

 

Having established that the mTR PASS system mediated conditional repression of gene 

expression, we next investigated whether the mCI PASS system mediates conditional activation 

of gene expression. In general, the results mirrored those observed with mTR, and these 

experiments similarly included a control series in which mTR was expressed in place of mCI. 

Induction of TEV expression by arabinose led to a significant increase in GFP expression from 

pRM+ (Figure 2.7), and the magnitude of this increase was comparable to that mediated by soluble 

CI (Figure 2.2). TEV-mediated induction of gene expression did not require induction of mCI 

expression by IPTG, suggesting that leaky expression of mCI was sufficient to maximally activate 

the reporter in an arabinose (and thus TEV)-dependent manner. Moreover, these data indicate that 

subcellular sequestration of CI to the inner surface of the cytoplasmic membrane via the PASS 

mechanism can limit this transcription factor’s ability to activate its cognate promoter. Single cell 

analysis by flow cytometry again indicated that only a subset of cells expressed mCI at levels 

detectable as mCherry-positive (Figure 2.8A), and significant TEV-mediated induction of GFP 

was observed in mCherry-positive cells (Figure 2.8B). To facilitate comparison, data in Figures 6 

and 8 were collected with the same flow cytometer settings. The moderate induction of pRM+-

GFP by CI (compared to basal expression of GFP from pTet-GFP) is consistent with prior reports 

(84) and Figure 2.2, such that although the magnitude of mCI-mediated conditional gene regulation 

was less than that observed with mTR, this limitation likely reflects upon the dynamic range 

accessible to the CI system rather than the robustness of the PASS mechanism. Overall, these data 
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collectively suggest that the PASS mechanism for conditional gene regulation may be applicable 

to a range of transcription factor platforms and mechanisms for achieving gene regulation. 
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Figure 2.7: PASS-regulated gene repression by λ CI. Cells were transformed and induced as 

indicated, and fold-change was quantified as in Chapter 2.2. Experiments were conducted in 

biological triplicate, and error bars indicate standard deviations. * p < 10-3 and ** p < 10-5, as 



54 
 
calculated for a two-tailed paired Student’s t-test. Abbreviations: mC, membrane-bound mCherry 

(mCI cleavage product).  
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Figure 2.8: PASS-regulated gene induction in individual cells. (A) Cells transformed with 

pRM+-GFP, pLacIQ-mCI, and pBAD-TEV were induced as indicated and analyzed by flow 

cytometry. (B) Mean fluorescence intensity (MFI) in GFP for mCherry-positive cells from panel 

(A). Experiments were conducted in biological triplicate, and error bars indicate standard 

deviations. Normalized MFI GFP values were determined by calculating MFI GFP for mCherry-

positive cells in the test sample, calculating MFI GFP for mCherry-positive cells in the uninduced 

sample, and then dividing the former by the latter. * p < 10-2 and ** p < 10-4, as calculated for a 

two-tailed paired Student’s t-test.   

 

. 
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2.3 Summary and future directions 

The central objective of this study was to investigate a fundamental question in microbial 

gene regulation – is the engineered conditional sequestration of a transcriptional factor to the inner 

face of the cytoplasmic membrane a viable strategy for regulating gene expression in E. coli? We 

answered this query in the affirmative by establishing the feasibility of the PASS mechanism, and 

our results provide novel insights into microbial gene regulation and suggest strategies for 

harnessing this mechanism for biotechnology. 

Given the feasibility of the PASS mechanism in our system, it is worth considering the 

conditions under which such regulation is possible. In this study, sequestration of either a repressor 

(tetR) or an activator (λ CI) precluded regulation of cognate promoters encoded on high copy 

number plasmids. Thus, this mechanism might be extensible to a range of regulator-promoter 

platforms, although the LacI system might represent an exception to this trend, (23) as discussed 

earlier. Multicopy plasmids with pUC19-derived origins, such as those on which reporters were 

encoded in this study, have been observed to cluster in subcellular foci (87), which could help 

explain why sequestration was a robust regulator of transcription factor activity in our 

investigation. However, reporter plasmids used to evaluate sequestration of LacI used the same 

pUC19-derived origin (pMB1) and demonstrated no inhibition of repression upon tethering LacI 

to the cytoplasmic membrane (23), so such plasmid clustering is seemingly not sufficient to 

mediate the effect of spatial sequestration of transcription factors. Subcellular spatial localization 

of chromosomal loci is highly regulated and dynamic (88), and whether the PASS strategy can be 

extended to regulation of chromosomal promoters, and potentially promoters at different 

chromosomal locations, requires further investigation. Thus, PASS also provides a novel 
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experimental tool for investigating gene regulation in the context of subcellular spatial 

organization and dynamics. 

While this study focused on establishing the feasibility of the PASS mechanism, there now 

exist multiple opportunities for optimizing PASS performance and leveraging this mechanism for 

synthetic biology applications. For example, use of lower copy number reporter plasmids would 

likely improve fold-change in output gene expression upon protease expression, particularly for 

reporter plasmids regulated by sequestered repressors (e.g., pTet-GFP). Only a subset of cells 

expressed sufficient PASS constructs to appear mCherry-positive by flow cytometry, and it is 

possible that PASS expression may be more uniform if these constructs were expressed at a lower 

level (e.g., by using a less efficient ribosome binding site). Although our characterization 

experiments used inducible expression of TEV to “activate” the PASS construct, regulation of 

PASS could be made translation-independent to achieve the same rapid and robust responses 

exhibited by the natural systems discussed in the Introduction (e.g., the σE RIP and MalT systems), 

which inspired this investigation. To illustrate, we consider an application in which PASS is 

harnessed for biosensing. The TEV protease may be genetically split into fragments that 

individually lack catalytic activity, and catalytic activity may be reconstituted by bringing these 

fragments into proximity (89). By fusing split-TEV fragments to protein domains that associate 

only in the presence of a small molecule (90), protease activity is reconstituted in response to 

changes in cell state or environment. If a cell were engineered to constitutively express both these 

split-TEV biosensors and PASS constructs, then introduction of the small molecule analyte would 

trigger protease reconstitution, and these proteases could immediately act upon the large pool of 

pre-synthesized PASS constructs. Although such examples require direct experimental 
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investigation, such a PASS-based mechanism could enable biosensors with higher sensitivity and 

rapid responses due to the intrinsic catalytic signal amplification within this proposed scheme. 

Altogether, PASS presents a new strategy for engineering microbial gene regulation to achieve the 

desirable performance characteristics exhibited by natural mechanisms while also being amenable 

to modular protein and gene circuit engineering. 
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CHAPTER 3 

 

Quantitatively profiling the determinants of conjugative transfer initiation 

using orthogonal transcriptional control 

 
3.1 Introduction 
 

Conjugative transfer of DNA between bacteria plays an important role in microbial 

ecology, evolution, and disease. Through this process of direct cell-to-cell transfer, the exchange 

of large portions of genomic DNA can drive evolution and even speciation (34), including the 

spread of antibiotic resistance and virulence genes (44), and conjugation can even enable transfer 

of genetic material between biological kingdoms (37). Conjugative plasmids have also been shown 

to aid in the creation of biofilms (91), and conjugative plasmids encode genes that serve as models 

and tools for the study of functions including genetic partitioning elements, anti-microbial agents, 

and non-coding RNA systems (92-95). Given the role of conjugation in these diverse processes, 

understanding how and when conjugation occurs remains an important goal. 

Much of our understanding of conjugation is based upon investigation of the F plasmid, 

which was the first conjugative plasmid discovered (in 1947) and serves as the prototypical 

conjugative model systems (43, 96). Within this nearly 100 kb plasmid, the conjugative machinery 

is largely encoded in a single 33 kb region termed the tra operon, which includes at least 34 known 

genes (97). Transcription of this entire operon is driven from a single promoter upstream of the 

first operon gene, traY, which is termed PY. A few genes within the tra operon may also be 

expressed from promoters located within the operon, such as traT, which encodes a protein that 
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precludes conjugative transfer to F+ cells via a process termed surface exclusion (98). Nonetheless, 

conjugative transfer is understood to be regulated primarily by regulation of transcription from PY. 

Only two transfer genes are located on the F plasmid upstream of the tra operon – traJ and traM 

(97). TraJ functions as the main transcriptional regulator of PY, such that expression of TraJ is 

required to promote transcription from PY (45, 96). TraM mediates interactions between the OriT 

sequence on the F plasmid DNA and the secretory machinery (96), and TraM promotes interactions 

between host and tra proteins required to form the relaxosome and initiate transfer (99). Thus 

TraM is also required for conjugative transfer. Although the roles of TraJ and TraM are relatively 

well-characterized, the determinants of how and when these proteins are expressed are 

substantially more complicated and poorly understood. 

Competing interests within the cell result in a complex regulatory system determining 

when conjugation occurs (97). Most of the machinery encoded by the tra operon contributes to the 

components or construction of a Type IV Secretion System, a protein complex capable of 

extending a large filament of protein capable of attaching to recipient bacterial cells. The creation 

of each system requires the synthesis of at least fourteen essential proteins and thereafter uses 

energy to constantly extend and retract once fully formed (100, 101). This secretion system is 

required for the transfer of conjugative plasmids, but the synthesis and energy use comes at a large 

cost to the host cell, putting the cell in a state of increased stress (102). Thus, the activation of 

expression of the tra operon is essential for the function of the F plasmid but detrimental to the 

health of the cell, explaining the need for a complex regulatory mechanism. On the F plasmid, this 

complex system involves PY, TraJ, TraM, other tra elements and a variety of host-associated 

factors (Figure 3.1). Dimers of TraJ bind tra DNA and mediate interactions with the host 
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transcription factor ArcA to promote expression of conjugative machinery; loss of either TraJ or 

ArcA leads to a complete loss of genetic transfer in most common genetic backgrounds (46, 103). 

TraJ also promotes transcription from PY by displacing Histone-like nucleoid structuring protein 

(H-NS), which is a host protein that otherwise suppresses transcription of the tra operon (45). H-

NS binds to regions of DNA, silencing gene expression, and is associated with DNA segments 

with increased curvature and AT content (104). H-NS has long been associated with silencing of 

promoter regions that evolved outside of the E. coli genome, such as those of viral genomes and 

other selfish genetic elements (104). TraJ protein is degraded by stress-induced chaperonin GroEL 

and the protease HslVU, which leads to reduced levels of TraJ when these proteins are up-regulated 

upon exit from rapid growth (105, 106). Host proteins H-NS, cyclic AMP receptor protein (CRP), 

and leucine-responsive protein (lrp) each regulate transcription of traJ. Host factor for Qβ replicase 

(Hfq) promotes active degradation of mRNA encoding TraJ (and TraM) either directly or by 

recruiting host RNases (107-110). While TraJ is translated primarily from an mRNA transcribed 

via its cognate promoter, PJ, TraJ may also be translated from polycistronic mRNA, including PM-

driven transcripts encoding upstream TraM, and PM/PJ-driven transcripts encoding downstream tra 

genes (TraY, TraA, TraL, etc.) (109). Thus, TraJ is regulated at the transcriptional, post-

transcriptional, and post-translation levels by a range of host mechanisms.  

TraJ expression may also be regulated by plasmid-derived regulatory mechanism. In some 

conjugative plasmids, TraJ is regulated by an antisense system termed FinOP, which is encoded 

within the conjugative plasmid (95). In this system, FinP is an antisense RNA that is stabilized by 

binding to its partner protein FinO, which protects FinP from RNase-mediated degradation. The 

FinO-FinP complex inhibits translation of TraJ by binding to the 5’ UTR of TraJ mRNA. However, 
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in most IncF plasmids, including the F plasmid, the finO gene is interrupted by an insertion element 

(IS3), which greatly diminishes the regulatory role of FinOP and leads to enhanced expression of 

conjugative machinery (95, 111, 112). Given this complex network of potential regulatory 

interactions, elucidating how and why conjugation is initiated, and what mechanism(s) limit 

conjugation under various conditions has proven challenging. 

A question of particular importance for understanding the role of conjugation in bacterial 

evolution and ecology is this – why do some cells within a population initiate conjugation while 

others do not, and how is such heterogeneity in states influenced by both internal and external 

factors (113, 114)? In general, the efficiency of conjugation is substantially influenced by growth 

dynamics; both growth rate and growth phase contribute to the efficiency of transfer (115). Thus, 

conjugation may be suppressed due to silencing of transcription from the tra operon by negative 

regulatory factors, such as H-NS, which accumulate as cell growth slows (104). Other cellular 

regulators may respond to changes in growth conditions or stress to regulate conjugative 

machinery, such host chaperonins and proteases such as GroEL and HslVU, which mediate 

degradation of TraJ (105, 106). Overall, it remains unclear how negative and positive regulation 

of conjugation interact to generate heterogeneity in the expression of conjugative machinery, and 

to what extent such heterogeneity is ascribable to limitations upon TraJ-mediated transcription 

from PY. 

To elucidate the role of transcriptional control in the initiation and efficiency of 

conjugation, in this study we developed a novel system in which the expression of upstream tra 

genes traJ and traM was decoupled from PY-driven expression of the tra operon. This partially 

refactored system was harnessed to investigate fundamental, quantitative questions pertaining to 
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the regulation of conjugation, including: does TraJ regulate PY-driven expression in a digital or 

analog fashion? Does limited expression of TraJ limit the frequency of conjugative transfer? Can 

the initiation of conjugation be functionally decoupled from the processes that coordinate 

downstream aspects of conjugation? 

 

3.2 Materials and methods 

 

3.2.1 Growth conditions and strains 

 

Cells were grown in Lysogeny Broth (LB) Lennox formulation (10 g/L of tryptone, 5 g/L 

of yeast extract, 5 g/L of NaCl)  or supplemented M9 (M9 minimal medium with 0.4% glycerol, 

0.2% casamino acids, and 1 mM thiamine hydrochloride) unless otherwise specified. Antibiotics 

were used at the following final concentrations: ampicillin (Amp), 100 μg/ml; kanamycin (Km), 

50 μg/ml; and chloramphenicol (Cm), 34 μg/ml. All experiments were conducted using the 

commercially available Top 10 strain (F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 

nupG recA1 araD139 Δ(ara-leu)7697 galE15 galK16 rpsL(StrR) endA1 λ-) (Invitrogen). 

 

3.2.2 DNA constructs 

 

Primers were purchased from Life Technologies (Carlsbad, CA) and IDT (Coralville, IA). 

pOX38/MC1041 oriTf knockout, (pOX38;oriTf::CmR), was obtained upon request from the 

Registry of Standard Biological Parts. pBelo BAC 11 and the F plasmid from strain ER2738 were 
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obtained from New England Biolabs (Ipswitch, MA). All other coding sequences were obtained 

from the Spring 2010 Registry of Standard Biological Parts Distribution. 

 

3.2.3 Microplate fluorescence assays 

 

Colonies were grown overnight in supplemented M9 medium with appropriate antibiotics 

and shaking, diluted to an OD600 of 0.05 in 3 mL of pre-warmed M9 medium, and after reaching 

an OD600 between 0.3 and 0.6, cultures were again diluted to an OD600 of 0.05 in 2 mL of pre-

warmed M9 medium containing appropriate inducers. Three 200 μL replicates per culture were 

then transferred to black-walled clear-bottom 96-well plates (Corning) and placed in a Synergy 

H1MFD multimode microplate reader (BioTek). OD600 and GFP fluorescence were measured 

every 30 min for ∼16 h while shaking at 37° C. Monochrometer excitation/emission settings was 

485/515 nm for GFP. For each sample, background fluorescence from M9 medium controls paired 

with appropriate concentrations of arabinose was subtracted to quantify GFP-specific 

fluorescence.   

 

3.2.4 Flow cytometry 

 

Cells were grown and induced as described for mating efficiency assays, and samples were 

collected after 5 h of growth. Cells were diluted 1:1000 in phosphate buffered saline with 25 mM 

Ethylenediaminetetraacetic acid (EDTA).  Samples were analyzed on an LSR II (BD), and mean 

fluorescent intensity (MFI) was calculated using FlowJo software (Treestar). A minimum of 

10,000 individual cells (typically out of ∼50 000 events) was analyzed per sample. 
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3.2.5 Transconjugant quantification 

A freshly plated single colony was inoculated into LB media containing appropriate 

antibiotics and grown at 37°C with shaking for 16 h. Cells were then diluted 50-fold and grown 

for 3 hours to an OD600 of 0.2-1.0 with shaking. Cells were then diluted with pre-warmed LB to 

an OD600 of 0.1. Donor and recipient cells were then co-cultured at 37° C without agitation for 5 

hours to allow for conjugation and expression from transferred genetic components. At 5 hours 

post co-culture, cells were removed from incubation and analyzed by either flow cytometry 

(described below) or colony mating assays. For colony mating assays, cells were diluted 1:100,000 

in supplemented M9 minimal media and plated onto LB plates with appropriate antibiotics. Plates 

were then grown for at least 16 hours and colonies were counted and scored as either donor or 

transconjugant based on fluorescent protein expression evaluated by fluorescent microscopy. 

 

3.3 Results and discussion 

 

3.3.1 Developing a minimal PY reporter construct  

 

While PY reporter systems have previously been describe, the development of the GFP 

reporter used in this study was used to determine aspects of the required length and copy number 

to create a functional TraJ reporter. A series of two-plasmid systems for quantifying TraJ function 

as an activator of PY were created testing multiple features of the design space. TraJ was placed 

under transcriptional control of PBAD in a medium copy number replicon plasmid (p15A) in cells 
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containing a compatible plasmid encoding GFP downstream of PY (Figure. 3.1B). In our initial 

construct, we defined “PY” as the sequence used in the PY LacZ reporter used by Will and Frost in 

2006 (45). We also investigated whether copy number of the reporter plasmid impacted TraJ-

mediated induction of transcription from PY. Thus, both a high copy number reporter plasmid 

(ColE1 origin) and a low copy number reporter plasmid (F1/P1 origin) were generated. Upon 

induction of TraJ with arabinose, significant induction of GFP expression was only observed in 

the low copy number plasmids (Figure 3.1C). The inability of TraJ to function as an activator of 

PY on a high copy number plasmid suggests that TraJ needs to be in excess of the promoter upon 

which it acts to promote transcription. In order to investigate whether our PY sequence comprised 

the minimal promoter that is inducible by TraJ, we also investigated a previously described shorter 

definition of PY. This “short” PY construct included only the region downstream from the first 

region of high curvature previously associated with H-NS-mediated repression (104). In contrast 

to our original PY construct, induction of TraJ expression did not induce transcription from the 

truncated PY (Figure 3.1D). This result suggests that sequence coding for TraJ, which is present 

only in our longer PY construct, mediates TraJ-dependent interactions that promote transcription 

from PY and cannot be attributed solely to TraJ-mediated alleviation of H-NS binding. 
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Figure 3.1: Native F plasmid transfer machinery regulation and the construction of a PY 

reporter system. (A) Schematic representation of the regulatory region of the tra operon and its 

key regulators. Drawing is not to scale. Further information provided in the text. (B) Schematic 

representation of our PY reporter system. Upon the addition of arabinose, TraJ is expressed and 

able to act upon PY resulting in expression of GFP. (C) Comparison of GFP induction when 

transcribed from different copy numbered plasmids. TraJ expression only leads to GFP induction 

on low copy number plasmids. Data shown was collected on a microplate reader. (D) Comparisons 

of GFP induction when under the control of PY variants of different lengths. Two potential 

variations on the full length sequence of PY were examined for their ability to drive expression of 

GFP in the presence of TraJ. Data shown was collected on a microplate reader.   
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3.3.2 Regulation of PY-driven transcription by orthogonal TraJ 

  

TraJ is often transcribed co-cistronically with the upstream TraM or downstream genes of 

the tra operon in native systems, each of which can impact the efficiency with which TraJ is 

translated relative to these other components (109, 116). To investigate how such variations may 

impact TraJ-induced conjugation, we next explored how TraJ induced expression from PY was 

affected by inclusion of TraJ in various orientations within a multicistronic transcript. Along with 

our initial pJ construct, we included two constructs in which TraJ was expressed co-cistronically 

with another gene in these experiments. Upon induction with arabinose, bacteria with the plasmid 

encoding traJ-traM cistrons (labeled pJaM here forth) behaved similarly to those with traJ alone 

(pJ), both showing strong induction of GFP in the presence of arabinose (Figure 3.2A). 

Surprisingly, plasmids with traM-traJ cistrons (pMaJ) appeared to lose inducibility and instead 

constitutively expressed GFP.  

We next explored whether orthogonal induction of TraJ could overcome the inactivation 

of PY in stationary phase. traJ transcripts are degraded by Hfq in stationary phase, so we were 

surprised to see that trends seen in exponential phase held true for stationary phase (Figure 3.2B). 

pJ and pJaM were both able to induce expression of GFP in the presence of arabinose. pMaJ drove 

constitutive expression of GFP and actually seemed to depress GFP expression in the presence of 

arabinose. The induction of PY by exogenous expression of TraJ has been shown in the past with 

a LacZ reporter, but the PY GFP reporter allowed for single cell analysis of this induction, giving 

us a tool to examine whether the implications of TraJ expression and action on PY on the single 
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cell level could contribute to explaining the stochastic nature of expression of the tra operon. To 

examine this phenomenon, we analyzed the cells via flow cytometry. The overall population mean 

fluorescence via this assay followed similar trends to what we see via a plate reader (Figure 3.2D, 

first panel). This single cell analysis allowed us to further explore the probability that a cell 

expressing TraJ would express consistently from PY. Looking at the overall patterns of GFP 

expression throughout an experiment, we were able to see two distinct populations of cells, a 

portion showing activation of PY and a population with no GFP expression (Figure 3.2C), After 

gating these two populations, we noted that only a subset of cells actually turned on PY GFP in 

even the highest expression levels. Less than 20% of cells in all reporter construct showed GFP 

expression. This shows that even when TraJ expression is induced, only a portion of cells are 

responsive to this activation.  
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Figure 3.2. Regulation of PY-driven transcription by TraJ. (A) GFP fluorescence as an output 

for induction by induced orthogonal systems in response to arabinose. Experiments were 

conducted in biological triplicate, and error bars indicate standard deviations. * p <0.05 and ** p 

< 0.005 as calculated for a two-tailed paired Student’s t-test. Data shown were collected on a 

microplate reader. (B) The effect of arabinose induction during stationary phase. Experiments were 

conducted in biological triplicate, and error bars indicate standard deviations for Mean GFP/OD600. 

Data shown were collected on a microplate reader. (C) Comparisons of an induced and uninduced 

pJ and reporter containing population via flow cytometry. (D) Mean Fluorescent Intensities as an 

output for induction in a population by induced orthogonal systems in response to arabinose via 
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flow cytometry and percentage of cells expressing GFP. Cells examined via flow cytometry are 

comparable to trends as seen in panel (A) when considering mean fluorescences of populations.  
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Given the observed multimodal induction of PY-driven expression by TraJ, we next 

investigated whether the degree of TraJ expression impacted either the probability of inducing PY-

driven transcription or the level of PY-driven transcription. We hypothesized if there exists a 

minimal expression level at which TraJ expression induces PY-driven reporter expression, then 

cells with low amounts of TraJ would be “off,” while all cells that are “on” would possess a level 

of TraJ that exceeds this threshold value. Similarly, if the TraJ regulates the extent of PY-driven 

expression (in addition to or instead of simply determining whether PY-driven expression is 

induced), than the level of TraJ expression would correlate with the level of PY-driven expression. 

To investigate these questions, a PBAD traJ-mRFP construct (pJaR) was generated and evaluated 

for its potential to regulate PY gfp (Figure 3.3a). The pJaR construct consisted of a PBAD regulated 

traJ cocistronically expressed with mRFP, such that mRFP expression serves as a proxy for TraJ 

expression at a single cell level.  At a population level, pJaR induced PY in a manner similar to 

both pJ and pJaM, further confirming that the downstream gene on a traJ-led polycistronic 

transcript does not modulate TraJ-induced expression from PY (Figure 3.3B). Comparing mRFP 

fluorescence, our reporter for TraJ expression, and GFP fluorescence, our reporter for PY 

activation, illustrated that while GFP expression is not seen in the absence of mRFP, only a subset 

of mRFP expressing cells express GFP (Figure 3.3C). Therefore, we can conclude that when TraJ 

is being expressed, only a subset of cells with PY express the genes it promotes.  Beyond this, the 

level of GFP expression does not correlate with mRFP expression; looking at only GFP expressing 

cells, a linear, log-linear, or exponential fit to the data could not be found with R2 values in all 

three cases failing to rise above 0.2 (Figure 3.3D). The conclusion to be drawn from this is that the 

level of TraJ expression does not correlate with the level of induction from PY. Instead, our data 
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suggests that while TraJ is required to initiate expression from PY, it is only able to initiate this 

expression in a subset of cells when reaching a specific threshold in a subset of cells, and that 

exceeding that threshold does not enhance PY induction.  
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Figure 3.3: Quantitative coupling between TraJ expression and PY induction in single cells. 

(A) Schematic representation of pJaR reporter system. Upon addition of arabinose, TraJ is 

transcribed along with monomeric RFP (mRFP). TraJ is then capable of acting upon PY to induce 

GFP expression. (B) GFP fluorescence as an output for induction by induced orthogonal systems 

in response to arabinose detected via flow cytometry. pJaR leads to GFP induction in similar 

patterns to that of pJ and pJam. (C) Raw flow cytometry data of pJaR reporter system in the 

absence of arabinose and three replicates in the presence of 1% arabinose by volume. (D) Lack of 

correlation between GFP and mRFP (TraJ) expression. No significant correlation between GFP 

and mRFP expression could be found using various fittings. Shown here is a linear distribution of 

GFP-positive cells and a linear fit, with an R2 value below 0.2.   
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By examining the expression of TraJ (via mRFP) in cells that express GFP from PY, we 

observe three things: 1) TraJ expression is required for PY induction (Figure 3.3C), as GFP is not 

significantly expressed without TraJ induction. 2) TraJ expression does not always result in PY 

induction, as many cells appear mRFP-positive, but GFP-negative. 3) Within the population of 

cells inducing GFP expression from PY, the level of TraJ does not correlate with PY induction 

(Figure 3.3D). These three observations allow us to speculate on the behavior of the system. In an 

ideally behaved hyperbolic response, adding a given amount of a stimulant results in a correlated 

output response (117). However, our observed response is very different, with even a little 

expression of TraJ resulting in a strong response (GFP expression) in a subset of cells, and the 

fraction of cells that exhibit this strong response (High GFP expression) do not continue to grow 

as more stimulant (TraJ (represented by mRFP)) is added. Therefore, our observations are more 

indicative of binary response than of a graded response (118). This observed ultrasensitivity cannot 

be explained by TraJ alone; as more TraJ was added, we did not observe more cells converted to 

the “PY on” state. Therefore, while TraJ works as a binary controller in this system, it is not the 

only component regulating PY expression and is not sufficient to induce PY. Indeed, this claim is 

consistent with prior observations, since TraJ is known to act in conjunction with a number of 

regulatory partners and competitors such as H-NS, ArcA, lrp, and CRP, all of which likely 

contribute to the fate decision of cells in terms of PY expression (45, 46, 107, 108). Additionally, 

in some redox states, TraJ is known to act differently due to structural changes resulting from 

environmental sensing of a PAS domain, meaning that TraJ itself may be functional in a subset of 

cells but ineffective or even act as a competitive inhibitor in others (47).   
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Since TraJ expression lead to a strong induction of PY in a subset of cells, we hypothesized 

that the addition of orthogonally regulated TraJ could lead to larger pool of active conjugation 

donor cells, and thus increase mating efficiencies within a population. To enable rapid 

quantification of a large number of cells in a population, we developed an assay for analysis of 

conjugation via flow cytometry (Figure 3.4A). Our method consists of the transfer of a high copy 

number shuttle plasmid, called pShuttle, harboring a constitutive GFP expression cassette. This 

plasmid is transferred by means of an immobile F derivative, which we obtained from the Registry 

of Standard Parts, pOX38; oriTf::CmR (for the sake of brevity is hereafter referred to as pOX38). 

This immobile host of conjugative machinery is able to transport pShuttle into other cells. To 

quantify this transfer, we used recipient cells expressing monomeric RFP from a medium copy 

number plasmid. To test if this method was feasible, we conducted a mating assay similar to one 

previously described in the literature (45) in which conjugation was allowed to occur in incubated, 

fresh media with donor and recipient strains, and then cells were plated onto LB agar plates. 

Because donor and recipient cells were distinguishable via fluorescence, we plated onto Ampicillin 

containing plates. pShuttle in this experiment encoded an ampicillin resistance gene. 

Transconjugant colonies were identified as colonies expressing both GFP and mRFP (Figure 

3.2B), and mating efficiency was determined to be the number of mRFP and GFP co-expressing 

cells (transconjugants) to the number of GFP expressing cells (donors).  

Samples were analyzed via flow cytometry. After gating out cells by forward and side 

scatter, we looked at the expression of GFP and mRFP within the population. For a negative 

control, we co-cultured “donor cells” with a pOX38 strain containing an immobile GFP encoding 

plasmid. pOX38 is capable of expressing the full conjugative machinery, and thus should still form 
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mating pairs, but does not contain the sequence for the OriT, the sequence of DNA associated with 

a functional relaxasome, and thus transfer. As can be seen from raw data (Figure 3.4C), while a 

number of dually expressing cells appear in the control experiment, this is a small fraction of those 

seen in cells with a functional donor. Samples from cultures were examined by colony based 

mating assays and flow based mating assays, showing similar rates between different runs (Figure 

3.4D).  

Using this flow based assay, the effect of the addition of orthogonally regulated TraJ to the 

rates of conjugation was explored. Mating cultures of donors and recipients were induced with 

arabinose at various time points relative to co-culture to determine the effect on conjugative rates. 

We tried multiple time points prior to co-culture to determine if pre-exposure would lead to an 

increase in TraJ promoted conjugative machinery would predispose cells to be more likely to 

conjugate. We also attempted induction at the time of co-culture and an hour post co-culture to 

determine if the addition of newly synthesized TraJ would boost conjugation. To overcome any 

clonal variation between runs, a series of colonies from both pJ inclusive and exclusive pOX38-

Shuttle ensemble plates were averaged and compared (Figure 3.4E). Surprisingly, the addition of 

TraJ did not have a significant effect on conjugative rates determined by flow cytometry. 

Additional runs were conducted of this system and trends were consistent in multiple repeats of 

the experiments.  
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Figure 3.4: Regulation of native conjugation machinery by exogenous TraJ. (A) Schematic 

representation of pShuttle/pOX38 (pOX38;oriTf::CmR) conjugation reporter system. Conjugative 

machinery expressed by pOX38 is capable of transferring pShuttle, a plasmid that contains both a 
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GFP expression cassette as well as the native F OriT. Upon forming a mating pair with a donor 

cell that contains an mRFP expression plasmid, conjugation can occur, resulting in a 

transconjugant expressing both mRFP and GFP. (B) Observed colonies from donor and 

transconjugant cells. (C) Transconjugant cells expressed both observable mRFP and GFP, while 

donor cells only expressed GFP. Observation of transconjugants by flow cytometry. Populations 

of recipient cells paired with populations of donors or mock “donor” with an immobile GFP 

plasmid instead of pShuttle were co-cultured for 5 hours and then run on flow cytometry. The 

increased rate of doubly GFP and mRFP positive cells appears in the system with functional 

donors, indicating the fitness of this assay. (D) Comparison of quantification of mating assays by 

colony count or flow cytometry. Observed mating efficiencies by flow cytometry matched with 

rates seen by colony assays. Experiments were conducted in biological triplicate, and error bars 

indicate standard deviations. (E) Observed mating efficiencies with the addition of pJ to donor 

population cells. TraJ expression was induced at various times relative to co-culture with recipient 

cells. Experiments were conducted in biological triplicate from three distinct colonies, the averages 

of those three colonies were then averaged, and error bars indicate standard deviations from initial 

averages.  
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3.3.3 Initiation of conjugation via orthogonal transcriptional control 

 

The orthogonal regulator plasmids (pJ, pJaM, and pMaJ) were then used as a tool to 

engineer a novel conjugative ensemble of plasmids capable of lateral gene transfer without native 

regulatory elements. A large plasmid called pHeadless, consisting of the full tra operon under PY 

was placed in a bacterial artificial chromosome derived plasmid so that it could be maintained with 

antibiotic resistance alongside pShuttle as well as an orthogonal regulator plasmid. Cells were 

induced at various time points relative to co-culture and then examined via flow cytometry after 5 

hours (Figure 3.5B). Because the pJ ensemble lacks TraM, a protein required for conjugation 

(119), it cannot create transconjugant cells and should be considered a negative control. Thus it 

serves as a negative control simply because it cannot transfer genetic information, and it should 

still be able to induce PY via TraJ. TraJ activation of the tra operons means that conjugative 

machinery could still enable the creation of a pillus, attach to other cells, and create mating pairs, 

a donor and recipient cell temporarily fused awaiting the completion of genetic transfer. Since this 

outcome of cells sticking together without a resulting transconjugant could occur if the tra operon 

was activated, the pJ system can be considered a stringent negative control. Notably, when 

pHeadless was paired with pJaM, significant conjugative transfer was observed, although such 

transfer did not require arabinose to induce high levels of TraJ and TraM (indeed conjugative 

transfer was somewhat higher in the absence of arabinose). In contrast, pairing pHeadless with 

either pMaJ or pJ alone did not result in significant conjugative transfer. Altogether, these results 

suggest that the low levels of TraJ (and TraM) expression driven by PBAD, even in the absence of 

arabinose, were sufficient to confer functional induction of conjugative transfer. It is also possible 



81 
 
that if pMaJ drives high constitutive expression from PY in pHeadless as was the case for PY in our 

reporter construct, than this result also suggests that coordination of functional transfer may be 

impaired by high constitutive expression from PY. Finally, even though pJaM mediated functional 

induction of conjugation, the observed rates were lower than those observed for pOX38-mediated 

transfer. In sum, these results demonstrate that regulation of the TraJ and TraM may be decoupled 

from regulation of the tra operon, although maximal rates of conjugative transfer may be sensitive 

to the level (and perhaps timing) at which TraJ (and potentially TraM) are expressed. 
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Figure 3.5. Orthogonal regulation of conjugative transfer. (A) Schematic representation of 

novel, orthogonally regulated conjugation reporter system. Conjugative machinery is expressed 

from pHeadless after the induction of TraJ expression from an orthogonal expression plasmid 

(Shown in image as pJ). (B) Observed mating efficiencies by flow cytometry of orthogonal 

conjugative systems. Experiments were conducted in biological triplicate, and error bars indicate 

standard deviations. No treatment condition was determined to be significantly different, with 

p<.05 as determined by a two tailed Student’s t-test. 
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3.4 Summary and future directions  

 

The first PY reporter was described in 1991 (120), and since then, the list of PY regulators 

identified has grown at a steady pace, yet we still understand little about how PY-driven expression 

is induced under different growth conditions. However, previously described systems have utilized 

enzymatic LacZ reporter systems, which reveal population average behavior but do not enable 

monitoring of cell-to-cell variability within the population. To meet this need and investigate how 

conjugative transfer is initiated at the single cell level, we developed a novel fluorescent reporter 

system. By determining that both a truncated PY reporter as well as a reporter on a high copy 

number plasmid failed to exhibit TraJ-inducible expression from PY (Figure 3.1C and 1D), we 

identified several novel features of TraJ-PY interactions. When paired with our observations that 

TraJ expression levels did not correlate with the degree to which transcription is induced from PY 

(Figure 3.3D), the fact that a high copy number plasmid fails yield a functional reporter suggest 

that a threshold concentration of TraJ is required to induce transcription from PY, but after that 

point, more TraJ does not confer more transcription from PY. Thus, TraJ appears to regulate PY-

driven expression in a “digital”, rather than “analog”, fashion. We hypothesize that on the high 

copy reporter plasmid, more copies of PY per cell may result in a higher threshold that was not 

reached even under induced expression of TraJ. An alternative explanation is that induction of 

transcription from PY requires host factors that become limiting in the context of a high copy 

number plasmid, such that TraJ is not sufficient to induce transcription from PY. The fact that a 

truncated PY failed to work as a functioning reporter indicates that the coding sequence of TraJ, 

which is all that differs between the two reporter constructs, is important for conferring TraJ-
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inducible regulation of PY. This hypothesis is also consistent with our observations comparing 

pJaM- and pMaJ- mediated regulation of either PY-GFP or pHeadless –- while the coding sequence 

of TraM has never been shown to have an effect on expression of TraJ, multiple loci within the F 

plasmid’s genetic elements have been shown to contribute to altered expression of transcripts 

found elsewhere on the plasmid (32). The removal of the intergenic region between traM and traJ 

in our construct may have either introduced or altered one such additional regulatory element. 

Our key finding that a subset of cells expresses GFP from a PY reporter in the presence of 

TraJ expression strongly indicates that TraJ has a key role in the stochastic induction of expression 

of conjugative machinery, but heterogeneity in TraJ expression is not sufficient to explain 

heterogeneity in PY-driven expression. Other components of the regulatory mechanism must create 

conditions within individual cells that allow for a decision as to whether to activate conjugative 

machinery once a threshold level of TraJ has been reached. For instance, TraJ may fail to properly 

coordinate with ArcA, another protein required for induction of PY, in a subset of cells, or may fail 

to overcome repression by H-NS or targeted degradation.  

It is important to note that the mechanism herein hypothesized for TraJ’s regulation of PY 

did not closely resemble that of a bistable, hyperbolic, or ultrasensitive circuit. In a bistable circuit, 

adding inducer above a certain concentration leads to switch-like behavior (121). While there was 

indeed a threshold concentration of TraJ necessary to induce expression from PY, this did not lead 

to long term, stable expression, which would otherwise be expected from a bistable system. TraJ 

expression was required but not sufficient in order to drive expression. Our system is also not 

ultrasensitive. In a hyperbolic system, an increase in the stimulus should lead to an initial direct 

increase in the response (116). However, simply increasing the stimulus (TraJ), did not uniformly 
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lead to an increase in the output genes, and the magnitudes of expression of stimulus and response 

did not correlate.   In an ultrasensitive system, expression of a key element above a specific 

threshold leads to induction of the system. Again, while TraJ was required for induction, TraJ was 

not sufficient in all cells to drive induction of PY. We did not observe a particular concentration of 

TraJ (or in this case, our fluorescent proxy for TraJ) that was sufficient to lead to consistent 

induction of PY, and therefore our observations are not explained by a simple model of 

ultrasensitivity (i.e., to TraJ).  

Our final experiments exploring the possibility of orthogonal control of conjugation 

provide promising initial clues as to how one might engineer an experimentally-inducible lateral 

gene transfer platform. Conjugation is already being used as a tool for transfer between bacteria 

and across kingdoms (37, 39, 41), and creating an engineered and tunable transfer system would 

be a useful tool for introducing new genetic elements upon small molecule induction. This would 

prove useful when engineering a system where the introduction of genetic elements or gene 

expression is required at specific time intervals or when specific conditions have been met. 

Transfer only upon induction would allow for control over when genetic elements are introduced 

to a system, possibly allowing for the accumulation of precursors in a metabolic pathway or 

regulatory elements in a genetic circuit. This platform also comprises a useful new experimental 

tool for elucidating the role of key regulatory elements in isolation from the complex native 

regulatory network. Our results suggest that increasing rates of conjugative transfer under 

orthogonal control may be achieved by tuning the relative levels of both TraJ and TraM and placing 

the expression of TraJ (and potentially TraM) under the control of an inducible promoter with very 

low background expression. Since cells bearing pJaM and pHeadless exhibited the highest 
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conjugative transfer rates in the absence of arabinose, it is also possible that the optimal induction 

of conjugation may occur when TraJ (and perhaps TraM) are only induced to low, but finite, levels 

of expression. Improvement on this system may also come from adding other possible regulators 

or interaction partners to the set of induced genes, allowing for a stronger regulatory push. 

Altogether, this investigation provides new tools and insights for understanding and controlling 

how conjugation is regulated within individual cells. 
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CHAPTER 4 

 

Predicting bacterial genome copy number dynamics under variable growth 

regimes using a novel quantitative model 

 

4.1 Introduction 

 

For many applications in microbial synthetic biology, optimizing a desired function, such 

as biosynthesis via an engineered metabolic pathway, requires careful and labor-intensive 

optimization of the degree to which various genes are expressed (122). Transgene copy number, 

genomic integration site, promoter strength, translational efficiency, and culture conditions all 

impact “function” in a manner that is difficult to predict and typically requires high throughput 

screening (123), (124), (125) or evolutionary selection for such properties (126). One challenge 

for predicting such effects or even interpreting typical characterization experiments is that in 

bacteria such as E. coli, genome copy number varies widely across different phases of growth, 

often exceeding 8 copies per cell during portions of a typical fermentation (49), (50), (71), (127). 

Genomic replication also impacts how and when endogenous genes are expressed from different 

loci (51), and in addition, growth rate affects gene expression at a global level (128). While such 

phenomena are relatively well-understood at a mechanistic level and benefit from decades of 

research in this area, there are important gaps in our quantitative understanding of such processes 

that limit our ability to predict or explain the impact of genomic copy number variation on 

engineered biological functions. 

In E. coli, upon which this discussion will focus, DNA replication begins at the origin of 

replication, oriC (54), and is facilitated by DnaA (55). The initiation of replication is largely 
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regulated by DnaA, which accumulates at oriC via an ATP-dependent process to alter the 

conformation of oriC and recruits the helicase, DnaB, which initiates the process of replication 

(56), (129),(57). Replication proceeds in both directions from oriC and continues until termination, 

a process that is coordinated by interactions between the protein Tus and one of 10 Ter sequences 

along the genome (58). Tus complexes with Ter sites in an asymmetric fashion, which enables the 

complex to function as a direction-specific terminator of replication. When a replication fork 

reaches a Tus complex from one direction, the Tus complex will dissipate and replication will 

continue (59). If the replication fork reaches the Tus complex from the other direction, however, 

the Tus complex will remain intact, inhibiting further replication until the opposite replication fork 

is able to complete replication from the other direction. Thus, the concentration of active (ATP-

bound) DnaA is generally understood to integrate the effects of cell size and other aspects of cell 

state in order to regulate genome replication, although these processes are only indirectly 

connected to the regulation of cell division. Indeed, decoupling the regulation of cell division and 

genome replication enables E. coli to grow rapidly when nutrients are abundant. The minimal time 

required to replicate the genome is about 40 minutes, but by initiating multiple rounds of 

replication prior to cell division, the doubling time can be substantially shorter than 40 minutes 

(54).  

The regulation of cell division in E. coli is less well understood than is the regulation of 

DNA replication, but regulation is strongly coupled to cell size (24), and a number of essential 

regulators of cell division have been identified (130). The first protein to localize at the point of 

division is FtsZ, a tubulin homologue that forms a ring around the nucleoid of the cell (61). This 

ring can form well before the two distinct genomic copies separate into distinct regions. The ring 

then complexes with the membrane-bound ZipA, tethering the ring to the membrane in preparation 

to pinch the membrane during division (62). This leads to the recruitment of a number of proteins 

to form the divisome, which contracts the membrane while actively transporting chromosomes to 
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opposite daughter cells to complete the process of division (63). While the adaptive benefits of 

such decoupling between genome replication and cell division are well understood, this decoupling 

also presents challenges for predicting both dynamics and intercellular variations in genomic DNA 

content.  

To address these issues, a number of theoretical models have been developed to predict 

variations in genomic DNA content. The most widely used model was first created in 1968 by 

Cooper and Helmstetter (hereafter, CH model) (65). The CH model was the first to formally 

describe the relationship between mass accumulation and chromosome dynamics of a bacterium, 

and it explained, among other things, the aforementioned dynamics associated with overlapping 

rounds of genome replication (65). The central observation motivating the CH model is that every 

DNA replication initiation event occurs at a fixed ratio between the number of origins of 

replication (copies of oriC) and the mass of the cell (131). To explain this observation, the CH 

model separates the cell cycle into three distinct phases. The “C” phase represents the time required 

to complete one round of genomic DNA replication. Once the cell completes at least one round of 

replication, the “D” phase represents the period during which the cell then undergoes segregation 

of the chromosomes into two daughter cells to complete cell division. If the doubling time is 

greater than the sum of the C and D periods, then another phase arises called the “B” phase, which 

is simply the time required for the cell to accumulate enough mass to initiate a new round of 

replication (132). By combining the CH model with a probability density function (PDF) 

describing the theoretical age distribution of a population growing exponentially (133), the DNA 

distributions of such a population can be calculated using the growth rate, C and D times (129). 

This strategy has been widely used to determine the C and D parameters, for example by fitting 

simulated DNA distributions to experimentally measured DNA distributions sampled from 

exponentially growing cultures (71),(53).  
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However, outside the scope of exponential growth the previously described PDF describing 

the age distribution of a population is no longer valid, since the previous assumption of unrestricted 

growth cannot be made. During a typical batch fermentation, cells exiting exponential growth 

experience a transition phase, a stationary phase, and finally a death phase, during which growth 

limiting factors becoming increasingly important. Furthermore cells grown upon complex media 

may exhibit multiple instances of such phases, as well as other dynamics (129),(53). To help 

explain growth restriction, various mechanistic growth models have been proposed (134), each of 

which is an extension of the Malthusian growth model with context-specific parameters that 

restrict growth in ways that may be loosely attributed to biological mechanisms (1). However, 

Malthusian models generally provide poor fits to experimentally observed growth curves for a 

wide range of growth conditions (135). Monod pioneered the early development of empirical 

models that better fit experimental growth curves, by mathematically linking the growth rate of a 

population of cells to particular growth-limiting substrates (136),(137). Except in the case of 

idealized three phase growth curves, however, all such models are generally highly inaccurate. 

Since the vast majority of synthetic biology characterization experiments utilize batch 

fermentations, such as shake flasks, and microtiter plate cultures, which exhibit complex growth 

dynamics particularly as cell densities become appreciable, new tools are required to predict and 

evaluate genomic DNA content under such conditions(134),(138).  

To meet this need, we report a novel modeling strategy that leverages agent-based 

simulation and high performance computing to robustly predict the dynamics and heterogeneity of 

genomic DNA content within bacterial populations across variable growth regimes. We show that 

by directly feeding routinely collected experimental data, such as optical density (OD) time series, 

into our mechanistic simulations, our model predicts genomic DNA distributions that accurately 

reproduce those observed experimentally over a range of non-exponential growth conditions.  
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4.2 Materials and Methods 

 

4.2.1 Growth Conditions and Strains 

 

Cells were grown in Lysogeny Broth (LB) Lennox formulation (10 g/L of tryptone, 5 g/L 

of yeast extract, 5 g/L of NaCl)  or supplemented M9 (M9 minimal medium with 0.4% glycerol, 

0.2% casamino acids, and 1 mM thiamine hydrochloride) as specified, and all cultures were run at 

37°C. Streptomycin was used at a final concentration of 50 μg/ml. All experiments were conducted 

using the commercially available TOP10 strain (F- mcrA Δ(mrr-hsdRMS-mcrBC) φ r-hsdRMS- 

Δ r-hsd nupG recA1 araD139 Δ(ara-leu)7697 galE15 galK16 rpsL(StrR) endA1 λ-) (Invitrogen).   

 

4.2.2 Bacterial genome quantitative PCR 

 

Cells were grown overnight in 3 mL of M9 supplemented media and appropriate levels of 

streptomycin. Cells were prepared for growth using a BIOSTAT® B (Sartorious Stedim Biotech) 

benchtop bioreactor by adding 250 μL to 4 mL of M9 supplemented media and grown for 2 hours 

into exponential phase. Components of the bioreactor were autoclaved, assembled, media was 

added, and media was allowed to acclimate to proper temperature and aeration for one hour. 1 mL 

of cells grow in into exponential phase were added to each bioreactor. Samples were collected 

upon addition and after every half hour thereafter and oxygen levels and OD600 were recorded. 5 

uL of each culture was added to 1 mL of PBS and placed on a hot plate for 5 minutes, effectively 

killing and lysing all cells. Lysed cell solutions were then immediately placed in a -20 freezer until 

samples could be analyzed by quantitative PCR.  

A protocol for analysis of TolC counts in a population was outlined in a paper by Wan et. 

Al. in 2011 (115). qPCR primers from that publication were used to quantify TolC copy numbers 
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in solution (Forward: CGACAAACCACAGCCGGTTA, Reverse: 

CAGCGAGAAGCTCAGGCCA). A plasmid with the coding sequence for TolC was constructed. 

A standard curve with that plasmid was created using a fivefold dilution series from 1 ng/ uL 

solution. Samples were quantified  

 

4.2.3 Batch culture growth, genomic labeling, and flow cytometry 

 

For batch cultures, cells were grown overnight in 3 mL of LB and appropriate levels of 

streptomycin. Cells were then diluted fifty fold in 100 mL of growth media and placed in a shaking 

incubator. Cells were sampled prior to addition to growth media and upon addition, then every 30 

minutes thereafter. Sampled cells were used to determine OD600 and treated for quantification of 

genomic distribution by flow cytometry.  

For examination by flow cytometry, sampled cultures were diluted 5 μL culture into 200 

μL ice-chilled PBS. For OD600’s under 0.5, 1 μL culture into 200 μL ice-chilled PBS. for OD600’s 

between 0.5 and 2.0, and 0.5 μL culture into 200 μL ice-chilled PBS. for OD600’s over 2.0. 800 μL 

ice chilled ethanol was then added to this solution. The solution was gently shaken, and the 

immediately spun with a microcentrifuge for 5 minutes at 1000xg. Ethanol solution was discarded 

and pelleted cells were then resuspended in 500 μL chilled PBS, and spun a second time in the 

same conditions. Cells were then resuspended in 500 μL chilled PBS with 1 μg/mL DAPI, and 

immediately placed in a 4 C refrigerator until samples could be run on the flow cytometer. Cells 

were run on the flow within 24 hours of collection. Samples were analyzed on an LSR II (BD), 

and analyzed using FlowJo software (Treestar). A minimum of 2,000 individual cells (typically 

out of ∼25, 000 events) was analyzed per sample 
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4.3 Results and Discussion 

 

Most simulations of bacterial population dynamics start with a simple model of growth, 

typically framed at the single cell level, which is then expanded to predict the growth dynamics of 

populations (71), (53), (69). Our objectives are not well served by this approach, in that from a 

bioengineering standpoint, it would be useful to have a model that works in the reverse direction 

– starting from simple, experimentally measured growth curves (OD vs. time), such a model would 

enable one to infer the growth dynamics of the individual cells within such a population. To 

achieve this goal of describing chromosomal dynamics across a heterogeneous population, we 

designed an agent-based simulation framework termed the Heterogeneous Multiphasic Growth 

(HMG) simulator. This framework comprises two distinct innovations – an “injection growth” 

mechanism and a novel agent-based description of the bacterial cell cycle.  

The “injection growth” mechanism was designed to enable us to relate experimentally 

measured growth curves to the growth of individual cells within the simulation. To implement this 

mechanism, at every time step, we calculate the population’s instantaneous volumetric changes 

(where, in this case “volumetric” refers to the collective cellular volume of the population), and 

distribute the changes in volume equally among all members of a population (assuming a well-

mixed system). This mechanism thus enables us to match the growth of simulated cells to the 

growth of the measured population without restricting our analysis to the limited window or 

assumption of balanced growth, such that the injection growth model may be used across various 

phases of growth (134), (139), (138). Because population dynamics under exponential growth have 

been extensively studied and robustly mathematically defined, we leverage this knowledge to 

initiate our simulated population of cells such that the simulated DNA distributions and cell states 

match those expected for exponentially growing cells (49), (140), (69). In practice, this requires 

us to first identify the section of the experimental growth curve in which cells are growing 
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exponentially, and we developed a partially automated strategy for doing so. We then initiate our 

simulations using this measured exponential growth rate, and the model is advanced under 

conditions of Malthusian growth to generate a population of simulated cells that represent a 

distribution of states observed during exponential growth. We hypothesized that if such an 

injection model were coupled to a suitably mechanistic description of DNA replication and cell 

division, it may be possible to predict genomic DNA distributions beyond exponential phase 

growth. 
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Figure 4. 1. Injection-based strategy for connecting the HMG simulator to empirical growth data. 

This cartoon summarizes the process by which empirical growth data (e.g., a measured OD vs. 

time curve) is used to “drive” the HMG simulator via the volume injection method, where the open 

circles represent the sections of the growth curve where DNA distributions were measured. Thus 

in this illustration, the simulation would contain three independent steps: (1) The region of 

exponential growth is identified. This exponential growth rate is used to drive the HMG simulation 

from a single cell inoculate to a diversified population of exponentially growing cells; (2) During 

post-exponential growth, the OD curve is used to calculate the rate at which the overall cell volume 

(of the population) is increasing; (3) At each time point, the calculated rate of volumetric change 

(per cell) is “injected” into each cell in the population, each of which advances its cell state via the 

HMG algorithm. The dashed rectangles indicate that during each time step of the simulation, a 

random subset of 5000 cells is taken forward into the subsequent time step of the simulation in 

order to keep simulations computationally tractable.   
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The second innovation of the HMG simulator comprises a novel agent based model of the 

bacterial cell cycle, wherein the growth and each individual cell in a population is simulated in 

parallel. The central algorithm describing this model is summarized in Figure 4. 2. The advantage 

of performing population simulations using this method is twofold. First, biological noise can be 

accurately captured in a predictive and mechanistically meaningful manner. Secondly, we can 

examine the dynamics of individual cells in a population to elucidate their role in the overall 

dynamics of a population, which facilitates both model development and utilization. As described 

above, the overall goal of our modeling framework is to take an experimentally measured growth 

curve (OD vs. time) as an input and predict the dynamics and distributions in genomic DNA 

content over time; therefore, we explicitly do not attempt to predict growth as a function of any 

experimental parameter. 
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Figure 4. 2: Heterogeneous Multiphasic Growth (HMG) simulation algorithm. This figure 

summarizes the algorithms used to advance our agent-based simulation of bacterial growth.This 

algorithm marries our “injection” model for driving growth based upon experimentally measured 

growth curves with either the original CH model of bacterial replication (ignoring the dashed 

boxes) or an extended version of the CH model which incorporates the effects of recA mutation 

(including the dashed boxes). In each time step of the simulation, each cell is advanced through 

the 5 indicated processes: (1) Growth, (2) Opening of origin(s) of replication, (3) DNA replication 

and DNA degradation, (4) Segregation, and (5) Cell division. Gray boxes indicate the steps in the 

algorithm where noise is applied to the cell cycle. 
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After calculating the volume injection rate, each individual cell of our agent-based 

simulation otherwise follows the standard CH model, including the following key steps: (1) When 

the volume of a cell reaches the critical initiation volume (Vi), all oriC in that cell are deemed 

competent for replication initiation (or “open”); (2) Replication at each oriC is stochastically 

initiated to represent asynchronicity between independent chromosomes as well as overlapping 

rounds of replication events on a single chromosome; (3) When the C period “timer” elapses for 

any replication event in a cell, the D period segregation “timer” starts; (4) When the D period timer 

elapses, the cell splits into two daughter cells, with each partially or completely replicated 

chromosome being randomly assigned to one daughter or the other in a symmetrical fashion. At 

the time of cell division, new cell cycle parameters (C & D timers) are assigned to each daughter 

cell and Gaussian noise is applied (as illustrated by the grey boxes in Figure 4.1). To validate our 

injection model framework, we fed previously reported C & D parameters associated with a 

particular growth rate into our HMG simulation and confirmed that the DNA distribution predicted 

under conditions of exponential growth matched those generated by a validated Monte Carlo 

simulation of the canonical CH model (69).  

Our HMG simulator also captures the fact that many laboratory bacterial strains contain a 

mutant version of the recA gene (recA1) which has greatly reduced DNA-dependent ATPase 

activity (141), which is the case for the strain used in this study (TOP10). As critical mass is 

reached, all oriC loci in the cell open simultaneously, such that in a WT population of cells, the 

vast majority of individual cells contain 1, 2, 4, 8…. (i.e. 2n) chromosome copies per cell (132). 

Populations of recA1 cells, on the other hand, contain individuals with whole numbers (1, 2, 3, 4 

etc..) of chromosome copies per cell (142). Our current understanding is that this phenomenon 

likely stems from a dysfunctional DNA repair mechanism (142, 143) (144) , although the exact 

mechanisms by which the lack of functional RecA impacts the replication and repair mechanism 

is still the subject of intensive research (145). Therefore, we decided to capture the impacts of 
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RecA deficiency by including only high-level consequences that are generally believed to lead to 

the observed aberrant chromosome copy number phenotype: in our simulation, when DNA damage 

occurs in RecA-deficient cells, the inability to repair this damage by homologous recombination 

results, stochastically, in degradation of either the replicating strand or the entire replicating 

chromosome. Although there is no direct evidence that recA mutation-associated DNA 

degradation varies with growth rate (142), (146), there is evidence that mutant recA phenotypes 

are exacerbated by faster growth rates, so a reasonable explanation is that faster growth leads to 

more replications forks, and therefore more stalled replication forks, and therefore more instances 

in which lack of RecA leads to DNA degradation (147). 

We next developed a strategy for calibrating our HMG simulator to experimentally 

generated growth curves that include both exponential and post-exponential growth phases. When 

considering exponential growth under various conditions, the times for replication (C period) and 

segregation (D period) are highly correlated with growth rate (53), (69). Overall, as the growth 

rate decreases, both C and D periods increase from some minimal value, and these relationships 

are relatively well-described by simple empirical functions.  

To evaluate our HMG simulator against experimentally measured DNA distributions, we 

first measured DNA content across multiple phases and conditions of growth using the type of 

shake flask cultures typically used for routine characterization of engineered strains (Figure 3 and 

4). As a base case implementation of our HMG simulator, we calculated C & D parameters using 

functions based upon analyzing exponential growth1, and in this base case, we omitted any 

description of recA-related defects (Figure 4.2) (53), (69). As expected, this base case simulation 

produced relatively close matches to the experimental data during exponential growth and early 

stages of the transition to stationary phase (Figures 4.3-4.4). However, as the population departs 

further from exponential growth and approaches stationary phase, these predictions become 

increasingly inaccurate.  
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Figure 4.3: Training of the HMG simulator framework. The HMG simulator was “fed” growth 

curves for TOP10 cells grown in LB, shaken at 230RPM or 23RPM, and simulated DNA 

distributions were compared with those which were measured empirically. The measured DNA 

distributions shown here each represent a single experiment, each of which is representative of 

two or more independent experiments. The first column within each heat map represents the 

exponential growth phase (indicated by *), and all subsequent time points represent post-

exponential growth. The simulator was run using two different models: the first model was based 

upon a prior description of exponential growth (69), which omits any consequences of recA 

mutation, and the second (updated and optimized) model incorporated our description of the 

consequences of recA mutation with parametric optimization. The solid lines on the two bottom 

panels represent the mean similarity score across the time course, and the shaded boxes represent 

the standard deviation of these scores across the time course.  
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Figure 4.4: Validation of the HMG simulator framework. The HMG simulator was “fed” growth 

curves for TOP10 cells grown in M9, shaken at 230RPM or 23RPM, and simulated DNA 

distributions were compared with those which were measured empirically. The measured DNA 

distributions shown here each represent a single experiment, each of which is representative of 

two or more independent experiments. The first column within each heat map represents the 

exponential growth phase (indicated by *), and all subsequent time points represent post-

exponential growth. The simulator was run using two different models: the first model was based 

upon a prior description of exponential growth (69), which omits any consequences of recA 

mutation, and the second (updated and optimized) model incorporated our description of the 

consequences of recA mutation with parameters optimized based upon growth in LB (i.e., using 

the same updated and optimized model described in Figure 4.3). Similarity scores indicate the 

degree to which each prediction matches the observed DNA distribution. The solid lines on the 
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two bottom panels represent the mean similarity score across the time course, and the shaded boxes 

represent the standard deviation of these scores across the time course.  

  



103 
 

To improve upon these predictions for post-exponential growth, we next attempted to 

improve the HMG simulator in several ways. First, we incorporated the simplified description of 

recA-associated DNA degradation. Next, we attempted to optimize both parameters associated 

with this DNA degradation as well as parameters for the functions relating C and D periods to 

growth rate. To this end, we utilized a Genetic Algorithm (GA) to fit simulation parameters to one 

subset of our data – experimentally measured DNA distributions for TOP10 cells grown in LB at 

two different shake rates (230RPM and 23RPM) (Figure 4.3). This updated and optimized HMG 

simulation exhibited a 26.72% and 37.7% improvement in accuracy for predicting measured DNA 

distributions for the 230RPM and 23RPM cases, respectively, as quantified by a similarity score.  

We next investigated whether the updated and optimized HMG simulator could also predict 

genomic DNA dynamics for cells grown under conditions not included in the training data (i.e., as 

model validation), and to this end we examined cells grown in M9 medium. As shown in Figure 

4.4, the updated and optimized HMG simulator generates excellent fits during both exponential 

and post-exponential growth, and the optimized parameters provide a significantly better 

prediction of the experimental data than was achieved using standard parameters from the literature 

(increases in accuracy were 40.34% and 49.15% for cells shaken at 230RPM and 23RPM, 

respectively, as measured by similarity score). This improvement in performance is also readily 

visualized, qualitatively, by comparing histograms corresponding to the data presented as heat 

maps in Figures 4.3 and 4.4, which clearly indicate the points at which the pure CH model, run 

under the HMG simulator, breaks down.  

To illustrate the potential usefulness of our model as a design tool, we considered a scenario 

in which the designer wishes to insert three novel genes into the E. coli genome, and the HMG 

simulator is used to predict how insertion position impacts gene dosage dynamics across various 

growth conditions. For example, if these genes encoded three enzymes, then such dynamics could 

substantially impact the relative concentration of these enzymes relative to both one another and 
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to endogenous enzymes and other gene products. To this end, we generated theoretical growth 

curves representing different biologically realistic growth dynamics, and we used the optimized 

HMG simulator to predict gene dosage dynamics (Figure 4.5). The scenarios considered could 

represent fast and slow growth, growth on heterogeneous substrates (e.g, multiphase growth), and 

discontinuous growth conditions such as might be observed during metabolic adaptation (e.g., 

start-stop). As expected, genes located closer to oriC exhibit greater variation in mean copy 

number than do those distal from oriC, since genes located closer to oriC are present at higher 

copy numbers overall. While the simple fast and slow growth conditions both exhibit 

straightforward dynamics – gene dosage decreases with decreasing growth rate and approaches 1 

at stationary phase – the ratio between gene copy numbers (both during and after exponential 

growth) varies substantially as a function of genomic integration locations. Moreover, during 

multiphase growth, which is observed during most typical characterization experiments, gene 

dosage (and relative gene dosage) varies substantially between the two time frames corresponding 

to distinct rates of exponential growth (0-200 min and 200-400 min). Finally, the start-stop growth 

conditions result in dramatic spikes in gene dosage as simulated cultures exited intermediate 

“pauses” to resume rapid growth.  
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Figure 4.5: HMG simulator-based prediction of gene dosage effects. The updated and optimized 

HMG simulator was used as a testbed to predict gene dosage dynamics over a range of hypothetical 

growth curves (left column). Here we track three genomic loci (blue, red, and green rectangles), 

located at various positions relative to oriC (pink circle). Numbers accompanying the chromosome 

maps in the top row indicate the relative distance of each locus from oriC, in each scenario, on a 

scale where 1.0 is completely distal (e.g., the primary Ter site, teal rectangle). Each predicted 

trajectory represents the mean copy number of each locus per cell, averaged over 100 independent 

simulations, with error bars representing one standard deviation. For each hypothetical growth 

curve (left column), each shaded area is labeled with the doubling rate calculated for that window 
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of growth. Each simulation was inoculated (initiated) under conditions of exponential growth, 

using the doubling rate calculated for the first indicated period of exponential growth (gray 

shading), and thereafter simulations proceeded using the injection method through the remainder 

of the growth curves.    
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Each of these examples suggests strategies by which a synthetic biology practitioner might make 

use of the HMG simulator. As a hypothesis generation tool, the HMG simulator may be used to 

evaluate whether gene dosage may plausibly explain why an engineered function or pathway 

behaves differently under different growth regimes. Conversely, the HMG simulator may be used 

to design experiments to probe how gene dosage impacts the performance of a particular function. 

Ultimately, the HMG simulator may be paired with other design tools to facilitate the design of 

novel functions that operate in a desirable fashion over a range of growth conditions.  

  

4.4 Summary and future directions 

 

This investigation developed and validated a novel modeling approach to meet the need 

for synthetic biologists to be able to predict and evaluate the impact of genomic (and gene locus) 

copy number variation across a population of bacterial cells and across variable growth regimes. 

The results reported here have validated the overall HMG simulation strategy, and the injection 

growth model upon which it is based. Although we observed that a single calibrated version of the 

HMG simulator could make accurate predictions across a range of conditions, some conditions 

resulted in lower prediction accuracy for reasons that are not yet clear. Thus, further investigations 

are required to determine the extent to which any set of model calibrations enables predictions 

across genotypes, growth conditions, and other perturbations such as plasmid and transgene load. 

Ultimately, we expect that the HMG simulator will provide a powerful tool for the evaluation and 

design of synthetic microbial functions that perform robustly across a range of growth conditions 

(all software is freely available from the authors upon request). Another fundamental biological 

question that remains open and would be of interest is this – do there exist interactions between 

genomic distributions and the distributions of plasmids within a population? Variation exists 
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between cells in the maintenance of plasmids, and loss can occur in a subset of cells within a 

population (48). To add extra complexity, some plasmids and regulons thereon have been shown 

to share regulation with that of the genome and may be expected to track copy numbers 

accordingly, while other plasmids have shown to be regulated independent of the genomic 

replication process (148, 149). Expanding our experimental investigations and modeling efforts to 

integrate interactions between genomic replication, cell growth, and plasmid maintenance would 

increase the utility of our HMG framework, which may ultimately be extended to new challenges 

such as modeling the spread of conjugative elements within a population, expanding on the work 

presented in Chapter 3.  
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CHAPTER 5 

 

Conclusions and Recommendations 

 

5.1 Chapter 2: Engineered spatial sequestration 

 

 The goal of our study was to determine the feasibility of engineering a spatially sequestered 

transcription factor to the inner membrane of bacteria, only to be released from sequestration by 

protease activity, where transcription of said protease is induced by a small molecule. We proved 

that, in fact, we could use spatial sequestration in an engineered system, and that this system could 

be used for both activation and repression of genes within the cell.  

 The limits of PASS as a tool are only quantified at this point by the parts that were used in 

this study. PASS architecture could effectively sequester tetR and λ CI. From our observations, λ 

CI in particular does not induce strong activation of its associated promoter, and whether PASS 

architecture could accommodate sequestration with a stronger regulator/promoter pairing needs to 

be further explored. LacI proved to be still functional when sequestered to the inner membrane 

with M13 coat protein (23), and attaching LacI to PASS may shed light onto why that pairing 

failed to sufficiently inhibit the regulator while sequestered; is the regulator or the means of 

sequestration the reason for a lack of sequestration of activity?  

 There are a number of means that could be used to improve the function of PASS as a tool. 

As discussed earlier, noise is associated with expression from plasmids, particularly high copy 

number plasmids (3, 150). In our system, we used high copy number plasmids for encoding our 

GFP reporter. This may account for the leakiness of expression. Moving the genetic circuits to low 

copy number plasmids or onto the genome might improve signal to noise and make the system a 

more robust tool. However, changing the plasmid on which the reporter gene is expressed may 
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have an effect on the function of sequestration. Plasmids are known to cluster localize in specific 

locations within the cell (87), and it may be that PASS functioned as hypothesized based as much 

on the localization of the reporter as of the regulator. 

 In terms of understanding of how native sequestration systems work, of the natural systems 

described in chapter 2, our engineered system most closely approximates that of the σE. Both 

systems rely on an irreversible proteolytic degradation of the sequestration mechanism. In our 

system, protease activity is supplied by a cytosolic protease that is immediately active upon 

expression. With the degradation of RseA, protease activity is activated conditionally, occurring 

upon the accumulation of misfolded porins, which usually occurs when cells are under stress (5, 

15). If our system were to be used to understand the dynamics of this native system or as a tool to 

replicate behavior of this system, the protease activity would have to be altered to function upon 

some cue, but fully transcribed when activated. One means of doing this would be to use a split 

protease that could only be assembled upon binding of both parts to a small molecule. Indeed, the 

protease used in this study from tobacco etch virus has been shown to be split and reconstituted 

when bound to a membrane with the antibiotic rapamycin (89).  

 As a tool, PASS has the potential to be useful in a number of conditions. In metabolic 

engineering, it is often useful to rapidly change regulation the metabolome at different points in 

growth to maximize growth at some points in an experiment and production of a desired product 

in another (151, 152). Spatial sequestration has been shown to function in natural systems for 

conditional activity of regulators of multiple genes such as Mlc and σE, changing the metabolome 

of the cell. Combining PASS with global regulators may allow for a new tool for shifting cellular 

metabolomes upon induction with a small molecule. Our characterizations also focused on using 

a repressor and an activator individually, but there is no reason that these two functions could not 

be carried out simultaneously. Combining these two systems or similarly engineered systems could 

allow for the activation of genes and repression of others simultaneously.  
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5.2 Chapter 3: Regulation of F plasmid conjugation  

 

 The finding of key importance to the study described is that TraJ, thought to be the key 

activator of expression from PY, is only capable of inducing expression from PY in a subset of 

cells. The reason for this is unclear, but the expression of TraJ does not correlate with expression 

from PY, meaning that the heterogeneity seen between cells in the expression of conjugative 

machinery is not due to expression level of TraJ. There are multiple other known activators of 

conjugation, including ArcA and feedback loops within the F plasmid (32, 46). There are also 

known to be a large number of competitors of TraJ enforcing suppression of PY (45). Interactions 

between all of these components may create cell states that are amenable to induction from PY in 

a subset of cells, but render other cells incapable of producing the proper transfer machinery.   

 There are a number of reasons that a cell would actively work to repress conjugation. The 

conjugative machinery requires massive energy commitments from the cell for expression and for 

proper continued function (26, 95). Because of this interplay between the needs of the cell and the 

programing to execute conjugation by the F plasmid, it becomes clear why a simple circuit of 

regulation where expression of TraJ results in conjugation would be unwise for not only the cells 

but also the F plasmid itself. If all conjugative donor cells were activated, the energy commitment 

would put these cells at a disadvantage that may result in extinction of the population of donors. 

Balancing conjugation with simple F plasmid maintenance is beneficial to both parties, and more 

complex regulation could come from either the host or other components of the F encoded 

machinery.   

 Our final experiment exploring the feasibility of an orthogonal control system for 

conjugation gives many clues as to the biology of conjugation. The fact that our system with pJaM 
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showed a transfer rate that was low comparative to F driven conjugation but reliably above 

background allows us to start at a functioning framework in trying to engineer a useful orthogonal 

conjugative tool. Induction was strongest with pJaM uninduced. This suggests that low expression 

of TraM or TraJ (or TraM and TraJ) may yield more meaningful upregulation of the conjugative 

machinery and conjugative rates themselves than strong expression from fully induced systems. 

As a means to improve this system in the future, TraM and TraJ may have to be decoupled to 

understand how expression of each individually affects the rate of conjugation. Based on this 

study, it may be reasonable to guess that the level of TraJ induction is not a strong determinant on 

whether cells express the machinery controlling conjugation. TraM may be having more of an 

impact on the rate of conjugation in this circumstance TraM is required in conjugation to complex 

with both the OriT DNA sequence and with the secretion system (41). Low levels of TraM might 

be required for proper coordination between its various partners and roles within the conjugative 

machinery.  

 The use of conjugation not only to understand native phenomena like the spread of 

antibiotic resistance or virulence factors but as a tool for lateral gene transfer has created a strong 

interest in using conjugation to transfer genetic elements from easily modified bacterial systems 

to more complex organisms (37, 40, 42). In ordered to improve efficiency of any engineered 

system to different organisms, more than regulation of conjugation needs to be modified. In 

particularly, TraA, the protein that composes the pilus, could be modified to attach to membrane 

proteins of other organism (153). However before our system could be applied as a tool for inter-

kingdom genetic transfer, understanding of the regulatory principals at play would have to be 

improved. Therefore, if the system described in this study were used as a tool, multiple parts would 

have to be engineered concurrently to design a feasible system for species to species transfer.   

 Much of the understanding of the interaction partners of TraJ in regulating PY have been 

discovered in strains with mutations of those partners. TraJ is not required for transfer in cells with 
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mutant H-NS (104). Conjugation cannot occur in cells without ArcA independent of TraJ 

expression (46). Screening the function of our engineered system in cells with mutations of other 

regulators may give a clearer picture of what aspects of regulation are limiting conjugation in our 

engineered system.  

 As a tool, our pOX38 and pShuttle pairing has strong potential to help elucidate the 

function of different components of the conjugative machinery. Traditional assays for mating 

efficiency relied on colony counting assays that had low sampling outputs and large time 

constraints. Using our conjugative reporter system would allow for rapid quantification of changes 

in conjugation rates in different mutational backgrounds or with different orthogonal regulators 

added. It may be a useful screen for testing more variants rapidly in determining how changes in 

relevant components of the conjugative machinery or regulators affect the rate of conjugation.  

 

5.3 Chapter 4: Genomic heterogeneity simulator  

 

 For the work described in this paper, we constructed multiple distinct sets of data for the 

use in training, calibrating, and validating an agent based model as part of a collaboration with 

Andrew Younger, Declan Bates and Melchior Du Lac. With this agent based modeling based 

simulator, researchers can predict of genomic distributions in a population within the full runtime 

of an experiment. By simply supplying the OD600 data collected from a run over time, information 

about the distributions of genomes throughout their experiment can be acquired and analyzed in 

order to better understand gene count dynamics throughout different phases of growth. As a tool 

the simulation should better help with design of gene circuits requiring the coordination between 

multiple specific gene loci. Ultimately, such understanding could allow for better coordination and 

control of engineered functions across variable growth conditions.  
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 In future work, the HMG simulator can hopefully be further advanced in order to handle 

interactions between genetic elements outside of the bacterial genome. Incorporating these 

elements in future iterations of the HMG simulator may be relatively straightforward to implement 

within the mechanistic, agent-based modelling framework we developed. The HMG simulator will 

hopefully be able to incorporate different plasmids and their maintenance within a diverse 

population. This would be relevant to further research since plasmid maintenance has a lot of 

interesting biological features. While genomes cannot be lost (Cells need their genome), many 

cells within a population lose their plasmids, especially since plasmids often have an energy cost 

associated with their maintenance (150). Plasmids can cost competing cells valuable resources and 

slow growth, meaning the population dynamics and resource scarcity may lead to differing levels 

of plasmid loss. Depending on the replicon dictating plasmid maintenance, some plasmids sync 

their replication with the replication of the genome while others are replicating independently (148, 

154). Simply adding a single, low copy plasmid to cells in a population would add large amounts 

of complexity. However, as seen routinely in this document, many engineered systems require 

multiple plasmids, and coordination between parts on each play a role in determining the function 

of the larger system. Adding the capability of predicting the dynamics between plasmids would be 

a useful tool and is a future goal of the collaboration between our labs.  

 Another goal for future iterations of our model is adding interactions between cells. As 

discussed at length in Chapter 3, horizontal gene transfer including conjugation has many 

important biological implications. Modeling how genetic information travels within a population 

would aide in studying relevant processes such as how antibiotic resistance spreads in clinical 

setting. With the potential to use conjugation machinery as a tool for transfer, having a model able 

to predict the distribution of conjugative plasmids within individual cells as well as their likelihood 

of transfer and distribution within a population. This tool would be useful in exploring what aspects 

of conjugating would need to be engineered for the optimization of transfer events.  
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