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ABSTRACT 
 

 

Deformation and Fracture 
 of Cross-linked Polymer Gels 

 

 

Wei-Chun Lin 
 

Because soft materials, particularly polymer gels, are playing a greater role in 

industrial and biotechnological applications today, the exploration of their mechanical 

behavior over a range of deformations is becoming more relevant in our daily lives.  

Understanding these properties is therefore necessary as a means to predict their 

response for specific applications.  To address these concerns, this dissertation presents 

a set of analytic tools based on flat punch probe indentation tests to predict the response 

of polymer gels from a mechanical perspective over a large range of stresses and at 

failure.    

At small strains, a novel technique is developed to determine the transport 

properties of gels based on their measured mechanical behavior.  Assuming that a 

polymer gel behaves in a similar manner as a porous structure, the differentiation of 

solvent flow from viscoelasticity of a gel network is shown to be possible utilizing a 

flat, circular punch and a flat, rectangular punch under oscillatory conditions.  Use of 
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the technique is demonstrated with a poly(N-isopropyl acrylamide) (pNIPAM) 

hydrogel.  Our results indicate that solvent flow is inhibited at temperatures above the 

critical solution temperature of 35oC.   

At high stresses and fracture, the flat probe punch indentation geometry is used 

to understand how the structure and geometry of silicone based gels affect their 

mechanical properties.   A delayed failure response of the gels is observed and the 

modes of failure are found to be dependent on the geometry of the system.    The 

addition of a sol fraction in these gels was found to toughen the network and play an 

important role at these large deformations.  Potential mechanisms of fracture resistance 

are discussed, as is the effect of geometric confinement as it relates to large scale 

deformation and fracture.  These results lay the groundwork for understanding the 

mechanical response of other highly, deformable material systems utilizing this 

particular geometry.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 RESEARCH MOTIVATION 

In the late 1980s to early 1990s, the mechanical properties of soft materials in 

biomedical applications attracted a great deal of media attention.  The health and safety 

of an estimated one million to two million women were at risk [1].  Lawsuits were filed 

against several large companies, such as Dow Corning Wright, and the Food and Drug 

Administration began to question the ethics of scientific practices in business.  A stir 

surrounding silicone gel breast implants inundated the country.  

The cause of concern dealt with a lack of understanding on the mechanical and 

transport properties of materials used in the implants.  A dearth of knowledge existed 

on the un-cross-linked silicone fluid that was used to fill the prosthetic and the cross-

linked silicone elastomer shell in which it was encased.  For over thirty years, no one 

had predicted that the fluid would diffuse readily into and through the elastomer, and 

that the swelling of the shell by the silicone fluid would adversely affect the mechanical 

properties of the shell [2].  Basic polymer science principles had been ignored. 

 As a result of the impending lawsuits and a number of women affected, the 

FDA called for a moratorium on the devices in 1992 that sparked several studies on the 
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prosthetics.  Officials at Dow Corning, the manufacturer, maintained that the implants 

were safe.  However, evidence in literature suggested otherwise [1].  Studies showed 

that swelling of the outer shells from the silicone oil led to an overall decrease in the 

mechanical strength and properties of the outer layer.  These results suggested that the  

degradation of the silicone elastomer shell caused the high incidence of rupture in these 

devices [2].  Although the safety of these devices is still unresolved today, the results of 

this case study demonstrate the importance of studying soft materials over a range of 

deformations.   

The silicone implant example is an extreme case of how the mechanical 

properties of a soft material can affect legal, health, and safety issues in a community.  

In our daily lives we often encounter situations of a similar nature, where prediction of 

the behavior in material is important to know as its physical properties change.  

Consider for example the diffusion of a solvent into a material.   At a picnic, we opt for 

the paper plates that have the greatest strength when oil or grease diffuses into them.    

The same logic would apply to buying paper towels or even, a baby’s diapers.  

Learning to control and predict such properties of materials over a large range of 

deformations becomes an important aspect of everyday life.  This topic is particularly 

relevant as soft materials play a greater role in industrial applications and 

biotechnology.  
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1.2 OVERVIEW 

The purpose of this dissertation is to encompass the elements necessary to 

explore the behavior of soft materials, particularly polymer gels, over a range of strains 

and at fracture.   The thesis is divided into five chapters, following this introduction, 

and is summarized at the end to clarify the reader’s understanding.   

The fundamental principles and background necessary to understand this 

research are described in Chapter 2.  Definitions of polymeric structures and an 

overview of the systems of interest are first introduced.  A discussion describing the 

mechanics and dynamics of these systems follows.  Chapter 2 closes with a review of 

an axisymmetric indentation technique, a method that is applied to all our experiments.          

The experimental work of this thesis is discussed in Chapters 3-5.  Each of these 

chapters focuses on the mechanical properties of our materials in three distinct regimes:  

at small strains, large deformations, and failure.  Chapter 3 discusses the use of 

mechanics to predict internal transport behavior of polymer gels in the Hookean region.  

A novel indentation technique and model are presented to determine the solvent 

diffusion within a hydrogel system at small strains.  Subsequently, Chapters 4 and 5 

aim to understand the behavior of polymeric materials beyond the linear elastic regime.  

In these chapters, highly, deformable silicone gels are used as model systems.  

Characterization of these silicone materials over a range of stresses prior to fracture is 

the focus of Chapter 4.  An understanding of the addition of sol fraction within these 

samples is detailed.  Chapter 5 extends our knowledge to include fracture of these 
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systems.  The mechanism of indentation fracture is described and related to the physical 

properties of these gels.    

Conclusions of the presented experimental work are summarized in Chapter 6. 

The implications of our results are noted and further discussed as a vehicle to motivate 

future experiments in this area of research.  The purpose of Chapter 6 is to serve as a 

bridge for future endeavors on this topic.   
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CHAPTER 2 

BACKGROUND 

2.1 INTRODUCTION 

Polymers, and their respective mixtures and solutions, are a class of materials 

that form a large subset of soft condensed matter.  As with metals and ceramics, the 

properties of polymeric materials are intricately related to their chemical and physical 

characteristics. Despite the various ways that polymeric materials can be synthesized, 

there are universal characteristics that surface from the generic traits found in long, 

chain-like molecules.  Because these commonalities are even more apparent when the 

string-like molecules overlap and create networks, an understanding of how and why 

they behave is crucial.  Various polymer structures and classifications need to be 

discussed and the fundamental models and theories that govern their properties from a 

mechanical and dynamic perspective reviewed.  Equally as important is the knowledge 

of how to characterize them.  Such topics, which help to tie together the experimental 

work for this thesis, are examined in this chapter.   

 

2.2 POLYMER STRUCTURES 

The term, ‘polymer’, originates from Greek roots and its meaning can be 

translated as ‘consisting of many parts’[3].  In general, a polymer is a giant molecule 
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that is formed from a number of structural repeating monomer units that are covalently 

bonded in a long chain.  The entire structure of a polymer chain is generated during 

polymerization, in which the chemical identity of the monomers determines the 

characteristics of the system.  The properties of a polymer chain are also dependent on 

the way the atoms arrange themselves during the polymerization process.  Depending 

on the type of monomer used for a polymer, polymeric materials can form a variety of 

architectures, ranging from linear[4] to ring[5] molecules, as well as star-branched[4, 6] 

and randomly branched[4, 5] archetypes, as shown in Figure 2.1.  Such polymer 

architectures are the basis of more complex polymeric structures, such as polymer 

networks and gels.   

 

2.2.1 Polymer Networks and Gels 

When a high degree of cross-linking is available among polymer chains, such as 

in the case of randomly branched polymer strands, a three-dimensional polymer 

structure can form[4].  The formation of this structure can be a polymer network or gel, 

depending on the extent of reaction during polymerization[7].  A polymer network is 

formed when nearly all linear strands are attached to create a single, interconnected 

polymer, as seen in Figure 2.2(a).  This large macroscopic molecule is created at a 

certain extent of reaction and is defined by infinite branching.   Polymer gels, on the 

other hand, are a form of diluted polymer networks, where the diluent can be other 
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polymer chains or solvent.  A polymer gel is a system that contains a network but is 

also permeated by a number of independent, unentangled and unlinked finite polymer 

strands[8], as seen in Figure 2.2(b).    This two component system is defined by its 

network and its continuous phase of polydispersed chains, or sol.  It is formed when the 

extent of reaction is not reached for a molecule with infinite branching.   

The formation of these three-dimensional systems is dependent on how the 

polymer chains are organized and linked.  Chemically cross-linked networks are the 

result of chemical bonds between polymer strands, whereas physical networks are 

formed from physical bonds.   Hence, polymer gels can be classified as either chemical 

or physical gels, depending on the nature of their network.  Figure 2.3 illustrates the 

types of bonding in these gels.  Physical gels are characterized by temporary 

associations (Figure 2.3(a)), whereas chemical gels are covalently bonded (Figure 

2.3(b)).  These temporary associations can range from helical structures to nodules of 

block copolymers[8].  In a triblock copolymer gel, for example, the aggregation of 

endblocks due to the influence of a solvent  is one type of physical bond that is possible 

in a gel system[9], as depicted in Figure 2.3(a).   

 

2.2.2 Systems of Interest 

Within the above classifications, polymer networks and gels can be further 

grouped according to their physical properties and characteristics.    A gel, for example, 
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can be defined according to its constituents, as in the case of aerogels and hydrogels.   

Aerogels are generally highly porous networks filled with air[10], whereas hydrogels 

are three-dimensional networks swollen with water[11].   A gel can also be classified 

according to their interchain interactions at elevated temperatures[12].  Thermosets and 

elastomers, for instance, degrade irreversibly because their structures are permanently 

cross-linked.   In contrast, physically-bonded thermoplastics are reversible upon heating 

and cooling due to the ability of their chains to slide past each in their networks.  Based 

on these classification schemes, we physically characterize hydrogels and elastomers, 

two systems of interest in our research.        

The first class of materials that we study is hydrogels.  Hydrogels are cross-

linked networks formed by water-soluble chains dispersed in water[13].  They can 

contain over 90-99% water[13, 14] and are prepared by chemical polymerization or by 

physical self-assembly of man-made or naturally occurring building blocks[11].  In 

recent years, these types of gels have been increasingly studied for applications in 

biomedical applications, such as  drug delivery[4] and tissue regeneration[14, 15] due 

to their properties and biocompatibility.  One motivation behind these studies is that  

hydrogels provide suitable semi-wet, three-dimensional environments for molecular-

level biological interactions[15-17].    Furthermore, a number of ‘intelligent’ hydrogels 

have been designed to change properties in response to externally applied triggers, such 

as temperature, ionic strength, solvent polarity, electric/magnetic field, light, or small 

bio-molecules [18-21].   However, a major limitation of novel materials like these is 
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that the barriers to use in medical applications are significant when the properties are 

not fully understood.  Chapter 3 resolves one aspect of this issue by exploring the 

mechanical and transport properties of such materials. The particular gel chosen for our 

studies is a poly (n-isopropylacrylamide) (pNIPAM) system, one of these 

thermoreversible, ‘intelligent’ materials.   

In the latter half of this dissertation, we focus on elastomeric systems.   

Elastomers, more commonly referred to as rubbers, are polymer networks that are 

characterized with glass transition and melting temperatures below room temperature. 

They degrade when heated, since cross-links are achieved in these networks by 

nonreversible chemical reactions[22].  Due to these bonds, such materials exhibit high 

extension ratios when stretched and easily recover their dimensions without losing their 

elasticity after the applied stress is released[23].  Because of these properties, 

elastomers have been favored in mechanical studies of  polymer networks [24-26].  

Studies in the past focused on understanding elastic models [27-29] and mechanisms 

leading to failure [30-32] of polymer networks.  However, more recent research has 

concentrated on increasing the strength of elastomers by adding fillers in them [33] or 

by introducing them as part of an interpenetrating double-network system[34].  In 

Chapters 4 and 5, we extend these previous studies to include elastomeric gels at high 

stresses and fracture.   The gels we use as model systems are based on silicone 

networks.   
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2.2.3  Polymer  Structures and Porous Media 

The architecture of a certain polymeric structures, such as gels or networks, lend 

themselves to being considered forms of porous materials.  Like the voids and pores 

that form the “microstructure” of soil, the “microstructure” of a gel can be related to the 

pores formed when the solid network of a system is swollen with solvent[35].  As 

demonstrated by Scherrer, et al. [36], such pores remain relatively constant upon 

swelling and shrinking in inorganic gels.  Evidence of an apparent pore structure in gel 

systems has been provided by scanning electron microscope images of silica 

aerogels[37].  As with inorganic gel systems, the microstructure of polymer gels can be 

related to the network and distribution of polymer chains within the solvent of the 

material.   

 

2.3 CHARACTERIZATION OF POLYMER SYSTEMS  

The characterization of polymer structures is commercially and academically 

important as a means to predict the performance of a particular system in a specific 

application.  As discussed briefly in the above sections, the molecular properties and 

constituents of a polymer structure often contribute to its bulk properties. For example, 

the properties of polymer gels are highly dependent on their constituents and network 

structures.  Forming these connections is essential to understanding the transport 

properties of gels, the focus of this work.  In this section, we center our attention on the 
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relationship between the network and sol fraction of a gel from a mechanical and 

dynamic perspective, as a means to gain insight into its transport properties.  The 

approach taken to understand these gels will be treated phenomenologically and in 

terms of molecular processes.    

 

2.3.1 Entangled Rubber Elasticity 

The mechanical behavior of polymer gels and networks can be described 

according to the theory of rubber elasticity[31].  The classical theory of rubber 

elasticity assumes that a perfect, homogeneous rubber is made up of network strands 

joined at cross-linked junctions that can fluctuate.  Under deformation, each individual 

cross-link point moves in proportion to the deformation of the whole sample and does 

not interfere with neighboring chains.    As the number of possible configurations is 

reduced when the chains are displaced under deformation, the properties of the network 

arise primarily from the change in entropy of the network strands. 

An effective modulus can be determined from this theory if we assume that the 

energy contribution per network strand is on the order of kBT.  At a local level, the 

material behaves like a liquid:  the bulk modulus is high and a first approximation of 

the material may be taken as incompressible[38].     However, cross-links in the 

network prevent macroscopic flow of the bulk polymer, resulting in a finite shear 

modulus.  Statistical methods lead us to calculate a shear modulus, Gx: [31]  
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 x
x

RTG
M

ρ
=  (2.1) 

where Mx is molecular weight between cross-links, ρ is the density, R is the universal 

gas constant, and T is temperature.   

A modification of Equation  (2.1) is taken when entanglements in a network are 

considered. In networks of very long, linear polymers, entanglements impose 

topological constraints on each other because they cannot pass through each other[29].  

The entanglements behave like temporary cross-links and the entanglement strand 

effectively replaces the polymer chains in the network in determining shear modulus.  

The shear modulus, Ge, becomes a function of average molar mass between 

entanglements, Me: [39]  

 e
e

RTG
M

ρ
=  (2.2) 

 Since it has been shown that entanglements are not localized[40], the shear 

modulus of an entangled network polymer can, therefore, be thought of as the sum of 

the G determined from a well-developed, cross-linked network plus any contribution 

from entanglements in the system.[41, 42]     

 x eG G G≅ +  (2.3) 

The importance of entanglements in the mechanical response of a polymer gel or 

network is evident in Equation (2.3).  The limits of the above equation indicate that 

entanglements control plateau modulus, Ge, in networks consisting of long polymer 
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chains, whereas cross-links control Gx of a network for low molar mass strands.  

Computer simulations support the validity of Equation (2.3), indicating that 

entanglements will increase the modulus of the same network without entangled 

polymer chains[43].  Experimental evidence of this behavior is noted in end-linked 

poly(dimethylsiloxane) networks, where G was found to be larger than  predicted 

value[44] and independent of chain length in very long chains[45].   Langley[42] noted 

this behavior when high molecular weight linear polymers were tested under dynamic 

conditions and the modulus remained constant.  If the molecular weight increased in 

such experiments, it was noted that the time span of the rubbery plateau increases but 

the level remains constant.[46]   The relevance of entanglements in systems is noted in 

Chapters 4 and 5.         

 

2.3.2 Linear Viscoelasticity 

 Like polymer melts and solutions, polymer gels and networks may behave like 

rubbery solids or viscous liquids, depending on the timescale over which the properties 

are measured.  At short times or instantaneous, small deformations, the mechanical 

behavior is elastic[47] and follows Hooke’s law: 

 Gσ γ≡  (2.4) 

where the proportion of stress, σ, to shear strain, γ, response of a material is 

characterized by shear modulus, G.  The material is able to recover to its original 
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dimensions the instant the stress applied is released.  For long times and large scale 

deformations, the material acts like a viscous, or Newtonian, liquid [47].  Deformation 

of the material is irreversible, and is also delayed or time dependent.  At intermediate 

times, polymer gels and networks exhibit mechanical behavior that is a combination of 

these two extremes and respond viscoelastically.  In viscoelastic materials, the 

relaxation time, τ, is used to describe a molecule’s position relative to its neighbors and 

relates the viscosity of the material, η, to the modulus of the material.  For a Maxwell 

fluid with a single relaxation time:  

 
G
ητ ≡  (2.5) 

Because the materials we use in our experiments are viscoelastic in nature, we focus on 

two specific techniques to measure and quantify these properties. 

   

2.3.2.1 Stress Relaxation 

One method to quantify the mechanical response of gels and networks is to use 

stress relaxation measurements [9, 48, 49].  In stress relaxation experiments, a step 

strain is imposed onto the sample.  If the material is perfectly elastic, the stress applied 

will obey Hooke’s law, Equation (2.4),  and will stay constant throughout the test.  This 

response occurs in the linear regime, when the applied strain is small enough that the 

relaxation modulus is independent of stress applied.  However, if the material behaves 

like a viscous liquid, the stress response will instantaneously decay to zero.  A 
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schematic showing the difference between the stress relaxation behavior of a liquid and 

solid is illustrated as a dashed line and solid line, respectively, in Figure 2.4.   

The behavior of a viscoelastic liquid or solid falls between the solid and liquid 

curves of Figure 2.4 and is depicted as solid lines.  Although all materials have a 

region of linear response at sufficiently small values of applied displacements or time 

scales, the stress beyond this applied strain is time dependent, σ(t) in the case of a 

viscoelastic liquid or solid.  The material response from the stress remaining at time t to 

the step strain, γ, can be characterized by a stress relaxation modulus, G(t).  A 

generalized version of Hooke’s law describes this behavior: 

 ( )( ) tG t σ
γ

≡  (2.6) 

For viscoelastic solids, stress relaxation to a finite value will occur due to the elastic 

component of the material behavior.  An equilibrium shear modulus Geq, can be 

defined:       

 lim ( )eq t
G G t

→∞
=  (2.7) 

For viscoelastic liquids, the stress relaxes towards zero at a certain time scale.  The 

stress relaxation modulus can be modeled as simple exponential decay.  According to 

the Maxwell model for liquids,  

 ( ) ( ) exp( / )G t G t t τ≈ −    (2.8) 
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where τ is the relaxation time for the material.  The relaxation time is the characteristic 

time in which a molecule’s position changes  when external forces alter its position 

relative to its neighbors.  Mechanically, τ determines how easily the viscous component 

of a material will flow when a stress is applied.  A material can therefore have multiple 

relaxation modes[50]. 

 ( ) ( ) exp( / )i iG t G t t τ= −∑  (2.9) 

Characteristic relaxation times for a viscoelastic solid, τ(s), and liquid, τ(l), are noted 

Figure 2.4.  These types of mechanical tests are applied throughout this dissertation. 

 

2.3.2.2 Oscillatory Shear 

 Because the viscoelastic response of materials can be probed directly on 

different time scales, another useful method of measurement is an oscillatory shear 

test[51].  In this technique, a steady state sinusoidal strain, δss, is applied with an 

angular frequency, ω, in simple shear:   

 ( ) ( )cosss t tω ωδ δ=  (2.10) 

In a perfectly elastic solid, the resulting steady state oscillatory load, Pss, has the 

following general form: 

 ( ) ( )cosss t tP Pω ω=  (2.11) 
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The oscillatory strain and resulting stress are in-phase.  A Newtonian liquid, on the 

other hand, behaves, according to its shear rate: 

 ( ) sin
2ss t tP Pω
πω ω + 

 
=  (2.12) 

In this situation, the liquid responds perfectly out-of-phase to the applied stress.  Figure 

2.5(a) and (b) depict the difference in the resulting sine waves of a perfectly elastic 

solid and Newtonian liquid, respectively.   The behavior of viscoelastic materials is 

between these two extreme cases and is characterized by a phase lag from the viscous 

component.  This shift is defined as the phase angle, ∆.   Since the phase angle must fall 

between 0oC (perfectly elastic behavior) and 90o (viscous behavior), Equation (2.11) 

can be re-written to take the phase angle, ∆, into account:   

 ( ) ( )cosss t tP Pω ω + ∆=  (2.13) 

Furthermore, the phase angle can be defined as the tangent ratio of the loss modulus, 

G” to the storage modulus, G’:   

 "tan
'

G
G

∆ =  , (2.14) 

where G” represent the liquid-like shear component of the material, and G’ is the solid 

response.  This property provides an indication of how much energy is lost from the 

elastic system and is the basis to analysis of the experiments in Chapter 3.   
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2.3.3 Fracture of Soft Solids 

The mechanical characterization of polymers gels and networks can be further 

extended to include fracture.  These systems often respond elastically or 

viscoelastically at stresses that induce failure and the crack fronts that form from 

fracture are usually well defined [52].   From a molecular point of view, fracture in 

such soft solids is interesting in that they have large spatial structural units and often 

have been characterized by delayed crack growth [50].  Furthermore, the classic 

theories of linear fracture mechanics must be extended to the bulk behavior of the 

material in question.  For example, the large elastic deformation of rubbers [53, 54] will 

be characterized differently from that of a viscoelastic polymer melt [55].  In our 

research, we are concerned with the failure of highly elastic materials, such as 

elastomers.   

In situations where crack propagation of elastomers can be controlled, elastic 

fracture mechanics principles are often applicable.  Common techniques in which crack 

length can be measured as a function of energy required to propagate the crack include 

using trouser[32, 54] and edge-crack geometries[53, 54], as seen in Figure 2.6.  In 

these geometries, the material is assumed to behave elastically and the energy losses 

confined to regions in the vicinity of the crack tip [56] .  A tearing energy, based on the 

Griffith criterion for brittle solids, can be applied to an elastomer in these situations 

as[53]: 
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A

−∂
≥ ℑ

∂
E  (2.15) 

where ℑ is the energy required to propagate a crack for each surface unit area, A.  

According to Equation (2.15), crack propagation occurs when the stored elastic strain 

energy, E, of the system during incremental crack growth is greater than the increase in 

surface energy due to the creation of a new surface.  The driving force for a crack to 

grow is to lower the total energy of the system.   In Chapter 5, we allude to these 

fracture mechanics principles to understand elastomeric gel behavior in a compression 

geometry.     

 

2.3.4 Dynamics of Entangled Polymers 

Polymer gels and networks can be treated as forms of entangled polymer melts 

and solutions, where size and connectivity of the molecules leads to striking new 

properties.  Unlike polymer mixtures, the behavior of polymer gels cannot be treated 

under mean-field conditions due to considerable variations in monomer density, and in 

the interactions between monomers in solution[57].   From this perspective, a polymer 

gel is a form of a polymer solution, and the movement of polymer chains in solvent is 

possible when it undergoes deformation.  In this respect, the dynamics of entangled 

polymer chains in solvent is very relevant in understanding the mechanics and transport 

phenomena of polymer gels.   
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2.3.4.1 Gels as Semi-Dilute Polymer Solutions 

From a polymer physics standpoint, a polymer gel is a semi-dilute solution.  A 

comparison of Figure 2.7 and Figure 2.3 demonstrates this concept.   As seen in 

Figure 2.7, a semi-dilute solution (c>c*) is characterized by overlapping chains and 

differs from a dilute solution (c<c*), where polymer chains are isolated and interact 

with each other only during brief times.   The basis of this transition between dilute and 

semi-dilute solutions occurs when the random coil of monomers begins to 

interpenetrate at a critical concentration, c*, a scaling law developed by de Gennes [8].   

Based on this principle, the overlapping chains of a semi-dilute solution are analogous 

to the mesh that is created in the gel networks, as depicted in Figure 2.3.  Furthermore, 

the polymer volume fraction in gels is often on the same order of magnitude as the ratio 

of monomer in solution to volume of solution that is required for semi-dilute solutions 

to form.  In polymer gels, typical polymer volume fractions range from 0.05 to 0.15 [9, 

58]. This value is within range of typical polymer volume fractions determined in semi-

dilute solutions, which are on the order  of 10-3 to 10-1 by weight [59].  Such similarities 

allow us to connect the principles to semi-dilute solutions to modeling gels with small 

polymer volume fractions.      
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2.3.4.2 Polymer Chain Interactions 

In the semi-dilute limit, interactions between the polymer chains exist and the 

movement of the chains relative to the solvent can be modeled.  To understand this 

concept clearly, we first describe the dilute behavior of the chains when there is no 

interaction between them, and then look at the approximations when chain overlap 

occurs.      

When the polymer chains are non-interacting, the strands act like independent 

coils in hard spheres.  The volume fraction of each hard sphere is approximately c/c*, 

where c is the concentration of polymer in solution and c* is the critical concentration 

at which polymer overlap begins[8]. Each hard sphere is a non-interacting molecule and 

can be described by a form of the ideal gas law.  When there is no interaction between 

polymer chains, the behavior of the coils is denoted as: 

 1M
cRT
Π

=  (2.16) 

Where Π is the osmotic pressure of the solution, M is the molecular weight of the 

polymer chain, R is the universal gas constant, and T is temperature.  

For semi-dilute solutions, the polymer chains interpenetrate and an interaction 

parameter needs to be considered.  Based on Equation (2.16), the behavior of the coils 

in a semi-dilute solution is therefore: 

 1
*

M cf
cRT c
Π  = +  

 
 (2.17) 
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Equation  (2.17) can be further simplified by noting the scaling relation between 

osmotic pressure, Π, of a gel and polymer concentration, c [60]. Noda, et al. 

demonstrated this universal behavior for polymer gels by plotting the logarithmic form 

of Equation (2.17) for five poly(α-methylstyrene)s of various molecular weights in 

toluene [60].  The resulting plot indicated that the data produced a universal curve 

independent of the weight of the gels. The slope of this curve was ~1.3 for the semi-

dilute regime.  Based on these results, Equation (2.17) could be re-written as a power 

law function [60].  For c>c*:   

 
*

M c
cRT c

βΠ  ∝  
 

 (2.18) 

where γ is an exponent that is dependent on the solution considered.  For the poly(α-

methylstyrene)s in toluene, β=1.3. 

 As chains overlap in a semi-dilute solution, two chains cannot occupy the same 

position in space.  The chain conformation can be described as a self-avoiding walk, in 

which the end-to-end distance, R0, of the polymer is related to the number of 

monomers, N, based on power law with a scaling exponent of 3/5[31]: 

 3/5
0 ~R N  (2.19) 

The self-avoiding walk used to describe the nature of the chains in the semi-dilute 

solution is also applicable to the behavior of the monomers in solution at the critical 

concentration, c*: 
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 3
0

* ~ Nc
R

 (2.20) 

Relating Equation (2.19) to Equation (2.20), the critical concentration of solution can 

be approximated as: 

 ( 4 /5)* ~c N −  (2.21) 

The behavior of the coils in a semi-dilute solution can then be approximated as: 

 (4/5)~ ~
*

M c N
cRT c

β
βΠ  

 
 

 (2.22) 

for c>c*.  Based on the observation of Noda, et al. [60],  β = 5/4, since Π is 

independent of concentration, c, and the molecular weight, M, in the semidilute regime.  

An approximation can be made for the osmotic pressure of a semi-dilute solution:    

 9/ 4 9 / 4~ ~c φΠ  (2.23) 

since the polymer volume fraction scales, φ, in the same manner as polymer 

concentration.  Equation (2.23) relates the effect of polymer volume fraction on the 

interaction between the polymer solution and solvent.   

 

2.3.4.3 Correlation Length 

To understand how a polymer network behaves in solution for a gel, a 

correlation length,ξ, can be defined as a reference unit within the system[8, 40, 61].  

The correlation length assists us in understanding the scaling relationship in a specific 
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frame of reference.  For a semi-dilute solution, a correlation length can be defined as 

the length of a monomer on an ideal, elongated polymer chain, as seen in Figure 2.8.  

At length scales greater than ξ, the monomer ‘sees’ other overlapping chains in solution 

and can therefore interact with monomers on those chains.  On length scales smaller 

than ξ, the monomer’s reference frame is limited to the other monomers on the same 

polymer chain and the solvent surrounding it.  Monomer interaction in this case is 

therefore limited to those on the same chain.     

If we consider the thermodynamic energy difference between each coil of 

polymer and solvent, the correlation length can be represented as a function of the 

polymer volume fraction.  Since polymer chains in a semi-dilute solution can be 

represented as coils in hard spheres or blobs, the correlation volume of each segment is 

on the order of ξ3.  If  the energy per correlation volume is on the order of kBT ,   The 

osmotic pressure for a semidilute solution can be estimated as [62]: 

 3
Bk T

ξ
Π ≈  (2.24) 

which leads to the same prediction as that of the mean-field theory for semi-dilute 

solutions. Based on the interactions between polymer solvent and solution, the 

correlation length can be simplified to  [8]:   

 3/ 4ξ λφ −≈  (2.25) 

from substitution of Equation (2.23) into (2.24).   λ is a constant that has been 

determined as 0.5 nm for most polymer systems[62].   Equation (2.25) is extremely 
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useful when experimentally characterizing a polymer gel because it demonstrates that 

the correlation length can be directly measured from osmotic pressure experiments.  

The ramifications of this equation from a mechanical perspective are presented in 

Chapter 3.    

 

2.4 AXISYMMETRIC INDENTATION 

 One experimental technique used to study the mechanics of soft materials over a 

large range of stresses is axisymmetric indentation [63].  Axisymmetric indentation 

utilizes an indenter, such as a hemispherical lens or flat punch, and brings it into contact 

with the material of interest.  Since intrinsic material properties, such as adhesion 

values or mechanical constants[63-67], can be extracted from this type of setup, this 

approach is useful in our experiments to understand polymer gel behavior under a large 

range of stresses.   

 

2.4.1  Elastic Half Space and Rigid Flat Punch Geometry 

 Of the axisymmetric indentation geometries available, the simplest and most 

useful for mechanically testing soft materials over a large range of stresses is the rigid, 

flat punch probe[63, 66].   The principle advantage for using a rigid cylindrical punch is 

that the contact area remains constant at varying strains[64, 68, 69].  Furthermore, the 

indenter can be assumed to be perfectly rigid, since a metal punch is applied to low 
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modulus polymeric systems [63].  Difficulties arise in measuring mechanical properties 

if the punch is compliant as compared to the substrate.   

A schematic of a rigid flat punch probe with radius a brought into contact with 

an isotropic, homogeneous elastic layer of thickness, h, is depicted in Figure 2.9.  The 

elastic layer is considered to be a semi-infinite elastic solid bounded by one surface 

plane.  The punch, with its rigid flat base of 2a and sharp corners, produces a line load 

across the surface of the elastic solid as long as there is no tilting in contact.  This 

geometry assumes that the contact area is in plane strain.   

The region close to the contact interface is important in determining the 

mechanical properties of the material because the contact stresses near that region, or 

near-field, are highly concentrated[63, 64]. At depths into the elastic layer that exceed 

the contact radius, the stress fields rapidly decrease to zero from the point of contact 

into the far field.  For small strain characterization of a material, linear elasticity is 

applicable when the displacement of the indenter is smaller than the radius of the 

punch[63].  In this region, the linear relationship between load, P, and displacement, δ, 

is defined by the compliance, C: 

 C
P
δ

=  (2.26) 

Applied to an elastic half-space that is much thicker than the radius of the rigid flat 

punch (h>>a), an analytic expression relating the compliance to Young’s modulus, E, 
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and Poisson’s ratio, v, can be written when the frictionless indenter with radius a comes 

in contact with the elastic layer[63]: 

 
21

2
vC

Ea
−

=  (2.27) 

Since the elastic layer is isotropic, we substitute G for Young’s modulus according to  

 2 (1 )E G v= +  (2.28) 

A general equation to describe the small strain response of a flat punch on an elastic 

layer can therefore be determined from substitution of the above equations: 

 4
(1 )
G aP

v
δ

=
−

 (2.29) 

 

2.4.2 Modifications due to Confinement Effects 

 In the previous derivation, it is assumed that the thickness of the elastic half-

space is much greater than the radius of a flat punch (h>>a).  Modifications of 

Equation(2.29) are necessary when the elastic layer can no longer be approximated as 

an infinite half-space, since the bulk response of the material will differ from that of a 

thin film[70].  When the thickness of the elastic layer is approximately equal (h≈a) or 

much smaller than the radius of the punch (h<<a), the stress fields of the punch will be 

altered since the stress will be confined to regions beneath the contact area[71].  The 

correction factor for an incompressible layer with a Poisson’s ratio of 0.5 has been 

determined to be[66]: 



49 

 

 3

1( / )
1 1.33( / ) 1.33( / )

f a h
a h a h

=
+ +

 (2.30) 

 

2.4.3 Fundamental of Indentation Fracture 

   The approach of using axisymmetric indentation to probe the mechanical 

constants of an elastic layer can be utilized to understanding the fracture of a material.  

Traditionally, indentation fracture methods have been applied to brittle materials, such 

as metals and ceramics[72, 73], as a means to determine their hardness values and 

quantify their strength.  In this section, we outline basic general fracture mechanics 

principles of axisymmetric indentation.  This framework provides insight into 

applications of indentation fracture to our specific soft systems. 

 

2.4.3.1 Contact Stress Fields 

Understanding crack evolution in a material from indentation fracture requires 

knowledge of the contact stress field[63, 72, 74].  The nature of this contact zone is 

determined principally by indenter geometry and material properties.  The importance 

of indenter shape on its crack fields is depicted in Figure 2.10, where the pressure 

distributions of these contacts vary according to their contact area.   Depending on such 

factors, indentation induced crack patterns can be described as resulting from ‘blunt’ or 

‘sharp’ contacts that are either elastic or elastic-plastic in nature, respectively[75].   
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Since tensile stresses near the contact region are highly concentrated, as 

mentioned in the elastic half-space example, crack patterns are largely dependent on the 

tensile component of the stress field in all indenters[74].  The effect of tensile 

components is most notable at indenter corners and edges, which is also illustrated in 

Figure 2.10(a).  These near-field stresses generally determine the point of crack 

initiation, while far-field stresses determine the propagation of the cracks[75].   

In this work, our primary concern is to understand the stress fields related to the 

Figure 2.10(b). Although our work involves utilizing a flat punch indenter, which has 

high stress fields at its edges, our model elastomer systems are largely elastic in nature.   

 

2.4.3.2 Blunt Indenters 

 In indentation fracture, contacts that form elastic deformation zones up to the 

point of fracture are regarded as ‘blunt.’ Analysis of such contacts was first performed 

by Hertz in 1882 on conical fractures at elastic contacts between curved glass surfaces 

[72, 75].  The classic example of a blunt tip geometry is of hard spherical indenter 

loaded on a flat, elastic half-space, as shown in Figure 2.10(b).       

 The evolution of crack propagation for a blunt indenter in this geometry is 

illustrated in steps in Figure 2.11[75].  As seen in Figure 2.11(a), initial loading of the 

indenter leads to elastic deformation around the point of contact, which produces tensile 

stresses around the contact and compressive stresses below it.  Upon further loading, 
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the tensile stresses and compressive stresses increase in magnitude until a surface flaw 

is found.  A ring crack, following the maximum tensile field, is formed from the surface 

flaw.  The surface crack is arrested until the crack extends out of the tensile region 

(Figure 2.11(b)).     As the strain is increased on the elastic layer, stable crack growth 

follows this tensile field and deviates outwards to avoid the compressive field (Figure 

2.11(c)).  When the ring crack becomes unstable, a Hertzian cone crack is formed 

spontaneously (Figure 2.11(d)).  The crack will continue to grow but may experience 

crack closure as the contact site consumes the surface ring crack (Figure 2.11(e)).  

Upon unloading, the crack healing occurs as the material assumes to minimize its 

elastic and surface energy (Figure 2.11(f)).          

 Since blunt indentation fracture concerns itself with only elastic deformation, 

the contact pressure for such a system can be analyzed in a similar nature as the rigid 

flat punch on an elastic half space in our previous example.  The stress for a Hertzian 

contact is determined as[63]: 

 13
4

E a
k r

σ
π

 =  
 

 (2.31) 

and k is a constant dependent on the geometry of the system: 
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where E1 and v1 are the respective Young’s modulus and Poisson’s ratio of the elastic 

layer and E2 and v2 are the material constants for the indenter.  These principles, as well 
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as the above analysis of crack propagation, provide a background to understand the 

behavior of our highly elastic materials in Chapter 5.   

 

2.5 SUMMARY 

 From an organizational standpoint, this chapter lays the groundwork to what 

will be expected in latter parts of the body of work.  The fundamental theme of 

understanding the properties of polymer gels and networks over a range of stresses is 

evident.  By using the indentation principles that are discussed, it is possible to measure 

the mechanical response for our systems of interest.  This understanding of mechanical 

behavior is what provides us with insight into how polymer architecture is affected 

under deformation.  Experiments and results supporting this theme are what follow in 

subsequent chapters.   
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Figure 2.1.  Examples of possible polymer architectures:  (a) linear, (b) 
ring, (c) star, and (d) randomly branched.   
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Figure 2.2.  Formation of (a) polymer network and (b) gel from 
uncross-linked linear chains (gray lines). Polymer chains are joined at 
cross-links (dots) to form a network (black lines).  In a gel, the unlinked 
chains are a continuous phase known as sol.  The sol can be a solvent or 
another type of polymer. 

(a) 

(b) 
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Figure 2.3.  Comparison of physical and chemical gel network.  The 
circles in the diagram represent types of cross-links in the gel.  (a) A 
physical gel is characterized by temporary associations, such as the 
aggregation of endblocks in a poor solvent, known as physical bonds. (b) 
Chemical gels are covalently bonded.   
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Figure 2.4.  Schematic of stress relaxation response of various types of 
materials for infinite times. The displacement is held constant.  
Viscoelastic solids and liquids exhibit a characteristic relaxation time 
which is denoted τ(s) and τ(l), respectively.  Note that the viscoelastic 
solid will plateau and the viscoelastic liquid will exponentially go to 0 at 
τ.  
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Figure 2.5.  Strain response of (a) a perfectly elastic solid and (b) a 
Newtonian liquid during oscillatory loading and unloading.  The strain 
response of an elastic solid is in-phase, while a liquid responds perfectly 
out of phase to the applied stress. The behavior of viscoelastic materials 
is between these two extreme cases and is characterized by a phase lag 
from the viscous component, which is denoted by ∆.  
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Figure 2.6.  (a) Trouser and (b) edge-crack geometries.     
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Figure 2.7.  Dilute vs. semidilute solutions. 
.
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Figure 2.8.  The concept of correlation length, ξ, as it relates to semi-
dilute solutions 

ξξ
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Figure 2.9.  Rigid, flat punch probe geometry on an elastic half-space. 
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Figure 2.10.  Elastic contact pressure distributions for:  (a) sharp 
indenter and (b) sphere.  P is the applied load and a is the contact radius.   
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Figure 2.11.  Formation of Hertzian cone crack from blunt indentation.  
(a) Initial loading of the indenter leads to elastic deformation around 
point of contact.  Surface flaw is detected and ring crack is formed. (b) 
The surface crack is arrested until the crack extends out of its tensile 
region.  (c) Stable crack growth continues to follow tensile field and 
avoids compressive field. (d) Hertzian cone crack forms when ring crack 
becomes unstable. (e) At further loading, the crack will continue to grow 
unless the area of contact expands beyond the surface ring crack.  Crack 
closure will result in this case since the Hertzian cone will then be in the 
compressive zone.  (f) Crack relaxes to minimize surface energy.  
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FLUID FLOW WITHIN POLYMER GELS 
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CHAPTER 3 

CONTACT MEASUREMENT OF INTERNAL FLUID 

FLOW WITHIN POLYMER GELS 

  

3.1 INTRODUCTION 

Gels are porous materials composed of subunits that are able to bond with each 

other to form a macroscopic network.  An important characteristic of gels is that their 

mechanical behavior depends on the time scale of the measurement used to probe the 

material.  At sufficiently short times a gel behaves as an incompressible material, 

because there is no time for fluid to flow out of the network [76]. At extended times, 

however, the gel acts as a compressible material.  This process has implications in 

fields ranging from soil mechanics to biomaterials development.  For example, the rate 

at which water is expelled from the interparticle regions is a rate limiting factor in the 

consolidation of soil [77]. 

      Polymer gels, consisting of a network of cross-linked polymer chains, swollen 

with a small molecule solvent, are another important class of gels, with widespread 

applications in medicine and biomedical engineering.  In the eye, for example, the lens 

and the vitreous body, the large space behind the lens, are gels.  Changes in the 

viscoelastic properties of the lens can lead to the loss of accommodation, or its 
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refractive power, while changes in its permeability can create the onset of a mature 

cataract [78].  Liquefaction of the vitreous body – i.e. when the gel deteriorates to a 

liquid phase – is believed to play an important role in retinal detachment.  This process 

is presumably related to gel syneresis, where the vitreous body shrinks as a result of 

fluid escaping from its collagenous network, but additional results are needed in order 

to fully support this assumption [78].  Measuring the transport properties and 

mechanical properties of these gels could therefore have potential clinical applications.  

Additionally, an understanding of bulk properties in gels is applicable to the 

development of controlled drug delivery systems that are used in pharmaceutical [79, 

80] and cosmetic [81] applications.  Quantifying the bulk transport properties of gels is 

essential in each of these situations.   

      Measurement of the transport properties of polymer gels has traditionally been 

accomplished by light scattering or by direct mechanical measurement.  For example, 

Hecht et al. [82]  used inelastic light scattering to measure the cooperative diffusion 

coefficient, Dc, for a series of polyacrylamide hydrogels that were swollen in water.  

Values obtained for Dc ranged from 10-11 to 5x 10-11 m2/s.  Absolute scattering intensity 

measurements were also used to measure the longitudinal modulus, EL [61, 83].  

However, the nature of these measurements is limited to transparent samples, since 

light scattering is not possible for opaque gels, such as in the case of a cataract that 

affects the lens of the eye.  These types of gels can be tested using mechanical methods, 

such as those utilized in rheology [58] or the techniques developed by Scherer [84].  
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Unfortunately, shear rheological methods that do not have a hydrostatic component are 

not sensitive to solvent flow, and the beam bending techniques developed by Scherrer 

are difficult to apply to materials with low elastic moduli such as polymer gels.  

Because of these limitations, we extend an established contact mechanics method, 

which has been shown to measure elastic constants, to include the determination of 

solvent flow. 

      Based on a contact mechanics analysis developed by Hui, et al. [35], a 

technique is presented here that is ideally suited for characterizing transport properties 

of polymer gels for which light scattering techniques cannot be used to quantify the 

effective pore size.  In Hui’s work it was shown that stress relaxation experiments 

utilizing a cylindrical punch geometry, illustrated schematically in Figure 3.1(a), can 

be used to determine the permeability, compressibility, cooperative diffusion 

coefficient, Poisson’s ratio and shear modulus of a gel.  Although this technique proves 

to be very useful in theory, it is very difficult to perform experimentally.  Therefore, a 

similar but simpler geometry has been developed.  This study utilizes a flat, circular 

punch, in addition to flat, rectangular punch, to characterize the transport and 

mechanical properties of a polymer gel.  These geometries are depicted in Figures 

3.1(b) and 3.1(c), respectively. 
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3.2 EXPERIMENTAL METHODS 

The model system chosen for this study is a poly(n-isopropyl acrylamide) 

(pNIPAM) gel.  pNIPAM is used because of its unique phase behavior and physical 

properties.  These gels have generated much interest in the medical community, largely 

because of their phase behavior [37, 85-87].  pNIPAM gels undergo a reversible phase 

transition at a lower critical solution temperature (LCST) of ~33oC  in aqueous 

solutions, a temperature close to the human body  [88].  Below the LCST the polymer 

networks swell with solvent, resulting in clear, homogeneous gels, with water 

molecules forming cage-like structures around hydrophobic groups of the pNIPAM 

macromolecules [89, 90].  The effective pore size in this situation is the average 

distance between intermolecular contacts, ξ, a polymer solution property often referred 

to as the correlation length [8, 91].  For typical polymer concentrations, ξ is of the order 

of 3 nm.  Above the LCST, the gel dehydrates and phase separates, forming a 

heterogeneous, opaque structure.  Phase separation occurs when the structure of the 

water molecules around the hydrophobic groups is disrupted, causing these 

hydrophobic groups to associate[90].  The collapse of the network leads to polymer-

rich and solvent-rich regions throughout the gel.  In these phase-separated gels, cross-

links in the network, rather than polymer chain overlap, determine the pore size, d, 

which is unknown but expected to be substantially larger than 3 nm.  The definition of 

d is defined more quantitatively in Section 3.1.  The transition from a swollen, 
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homogeneous gel at T=22oC to a shrunken, heterogeneous gel at T=39oC is depicted in 

the photographs in Figure 3.2.  Schematics in the figure show the gel with an effective 

pore size ξ below the LCST and a pore size of d above the LCST. 

In our experiments, pNIPAM gels are formed by free-radical copolymerization 

of N-isopropyl acrylamide (NIPAM) monomer in aqueous media in the presence of a 

commercial cross-linking agent.  The pNIPAM gels are prepared in small disk-shaped 

moulds.  Gel synthesis is based upon a combination of methods as described in 

previous papers [92, 93].  Details of sample preparation are as follows:  0.7920g 

commercial N-isopropyl acrylamide (NIPAM) monomer, 0.0133g methylene 

bis(acrylamide) (MBA), a cross-linking agent, and  0.0040g ammonium peroxidisulfate 

(APS), an initiator, are dissolved in 10 mL of 0.1 M phosphate buffer saline (Na2B4O7, 

ph=7.4) solution.  The solution is bubbled with N2 gas for 15 minutes to eliminate 

oxygen, and is brought into a N2 rich glove bag to prevent oxygen inhibition of the 

polymerization reaction.  In the N2-rich environment, 4 mL of the monomer-containing 

solution is transferred to a vial and 9.6 µL of Tetramethylethylenediamine (TEMED) 

was added to it.  The mixture is then micropipetted into a 3 cm polystyrene Petri dish 

and allowed to gel for 24 hours at 22oC in the glove bag.  After complete gelation, the 

samples are taken out of the N2 rich environment and the gels are saturated with a 0.147 

mM HCl solution to remove any unreacted reagents in each sample.  The extraction 

fluid is exchanged 2-3 times over a period of 24 hours.  The gels are stored in the PBS 

solution until the mechanical tests are performed.  
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In the indentation experiments an indenter is brought into contact with a thin 

layer of a pNIPAM gel, using a probe tack apparatus [48] that is shown schematically 

in Figure 3.3.  The testing apparatus consists of a linear inchworm stepping motor with 

a velocity range of 4.0 nm/s-2.0 mm/s that controls the motion of the attached indenter.  

As the indenter comes into contact with a layer of gel in an environmental chamber, a 

load transducer monitors the normal force, while a fiber optic displacement sensor 

records the normal displacement.  These devices are controlled and integrated from a 

personal computer running National Instruments LabView software.    

As depicted in Figures 3.1(b) & 3.1(c), two indenter geometries are used in our 

experiments:  a rigid flat, circular punch (a = 0.39 mm or a = 3.0 mm) and a custom-

designed flat, rectangular surface (a = 0.17 mm, L = 20.3 mm).   These geometries 

provide a constant contact area during a compression test and can be used to separate 

sources of stress relaxation when compared with one another.  These types of indenters 

are particularly useful in experiments where standard imaging techniques cannot be 

utilized to observe changes of contact area in the sample.    

We subject the gel to a two-step displacement history in the linear elastic 

regime.  Figure 3.4 illustrates the time dependence of the load and displacement for a 

typical experiment.  First, the rigid indenter is brought into contact with the sample 

until a predefined maximum compressive load is reached.  The displacement is then 

fixed for 1000 seconds as the gel relaxes due to solvent flow and viscoelastic relaxation 

of the gel network.  Immediately following this period of stress relaxation, 



71 

 

displacement oscillations with a 20 µm amplitude are applied at frequencies ranging 

from 1.0 Hz to 0.002 Hz.  The quantitative interpretation of our results requires that we 

be working in the linear elastic regime, which in turn requires that the overall 

displacement, δ, not substantially exceed the punch dimension, a.  Relationships 

between load and displacement for the same gel at 22 °C and at 39 °C are shown in 

Figure 3.5.  Strain hardening effects become important for δ/a > 3 at 22 °C, and for δ/a 

> 1.7 at 39 °C.  In addition, the elastic modulus of the gel is four times larger at 39 °C 

than at 22 °C.  The oscillatory experiments measure an effective tangent modulus, 

obtained from the slopes of the load/displacement curves.  The boxes in Figure 3.5 

correspond to the regimes in which the oscillatory experiments were conducted for this 

gel.  At room temperature the oscillatory experiments were performed at the limit of the 

linear regime of the gel response, whereas the higher temperature oscillatory 

measurements were performed in a regime where some effects from strain hardening 

might be expected.  The remainder of the experiments described here are all conducted 

in the linear regime.   

If we ignore the effect of solvent flow for now and assume the material is 

incompressible with a Poisson’s ratio of ν = 0.5, the relationship between load and 

displacement for the circular punch (Fig. 1b) can be written as follows[66]: 

 2
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where fc  is the following geometric confinement factor determined by the ratio of the 

indenter radius to the gel thickness, h [94]: 

 ( )31 1.33( / ) 1.33( / )cf a h a h= + +  (3.2) 

 

The gel thickness, h, in our case is approximately 3 mm.    

 

3.3 THEORETICAL TREATMENT 

3.3.1 Relaxation Behavior of Gel 

In order to describe the sensitivity of these experiments to solvent flow, we 

begin by assuming that solvent flow is the only factor responsible for the observed 

stress relaxation.  Under conditions of pure shear, where there is no pressure gradient to 

drive solvent flow, there is no stress relaxation, and the material is characterized by a 

time-independent shear modulus, G.  Under compressive loading conditions, however, 

the effects of solvent flow cause the gel to respond differently at short times as opposed 

to long times.  Figure 3.6 is a schematic illustration of the load response of a gel that is 

characterized by a single relaxation time, τ.  In this idealized case the gel is 

instantaneously loaded to an initial, maximum load, P0, at t=0.  At very long times (t → 

∞) the load relaxes to a plateau value, P∞.  At t=0, the gel acts as an incompressible 
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elastic solid with a Poisson’s ratio, ν, of 0.5.  At t=∞, the material is compressible, and 

behaves in a way that is qualitatively similar to a sponge from which water has been 

squeezed.  The Poisson’s ratio of this ‘relaxed’ gel is less than 0.5 and is defined here 

as ν∞. 

The ratio of the relaxed and instantaneous loads is independent of the contact 

dimension of the indenter, and is given by the ratio of the relevant compressive moduli 

for plane strain conditions. For ν = 0.5 at t = 0 and ν = ν∞ at t = ∞ we have[35]: 
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−

. (3.3) 

The characteristic time, τ, required for the load to relax from P0 to P∞ is the diffusion 

time corresponding to a diffusion distance comparable to the punch dimensions: 
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 (3.4) 

where a is the width of the rectangular indenter, and the radius of the circular indenter.  

This equation indicates that the timescale of the experiment is dependent on the contact 

area of the indenter.  Since viscoelastic effects characterized by a time-dependent shear 

modulus are independent of the contact area, Equation (3.4) provides a means for 

experimentally distinguishing between effects due to solvent flow and effects due to 

viscoelastic relaxation of the polymer network.  A distinguishing feature of effects due 



74 

 

to solvent flow is that the time dependence of the stress relaxation depends on the 

characteristic punch dimension.  Different punch sizes are used in our experiments for 

this reason.   

Once Dc is obtained from the relaxation behavior of the gel, we can analyze this 

information to extract information about the pore size of the gel.  The connection is 

through the following expression for Dc: [77]: 

 p L
c

D E
D

η
=  (3.5) 

where EL is the longitudinal elastic modulus, Dp is the permeability of the gel, and, η is 

the viscosity of the solvent.  The longitudinal elastic modulus determines the elastic 

response of a uniaxially compressed gel that maintains a constant cross-sectional area, 

and is related to the shear modulus and relaxed Poisson’s ratio as follows[83]: 

 2 (1 )
1 2L
G vE

v
∞
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−
=

−
. (3.6) 

The value of Dp is determined from Darcy’s Law, which governs the movement of 

liquid in porous media.  Applied to gels , Darcy’s Law states that the solvent flux, J, is 

proportional to the pressure gradient in the liquid, p∇  [36, 95]:   

 pD
J p

η
= − ∇  (3.7) 
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where η is the viscosity of the liquid.  By analogy to Poiseuille’s law for flow through a 

pipe, DP is predicted to be proportional to the to the characteristic cross-sectional area 

of a pore[36].  In our case we use this proportionality to define the pore size, d: 

 pd D≡ .  (3.8) 

Rearrangement of Equations (3.4) , (3.5), and (3.8) leads to: 

 
2

L

a
E d
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 

ητ . (3.9) 

Equation (3.9) indicates that the pore size of a gel can be predicted if the contact 

dimensions of the indenter are known, and the relaxation time due to solvent flow can 

be measured accurately.  

 

3.3.2 Oscillatory Response 

The relaxation time in our experiments is measured indirectly, by measuring the 

phase angle obtained during the oscillatory portion of the experiment.  This approach 

maximizes our sensitivity to the relatively low levels of dissipation that are typically 

observed.  We apply a steady state sinusoidal displacement, δss, of the following form: 

 ( ) ( )cosss t tω ωδ δ= , (3.10) 

The resulting steady state oscillatory load, Pss has the following general form: 
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 ( ) ( )cosss t tP Pω ω + ∆= , (3.11) 

where ∆ is the phase angle characterizing the response, which is equal to zero in the 

absence of solvent flow or viscoelastic relaxation of the gel.  The data plotted in Figure 

3.7 were obtained from the same gels used to generate the data shown in Figure 3.5.  

For a given experiment, the values of ∆ is related to the relative energy dissipated 

during each cycle: 

 
Pd

sin
Pω ω

δ

π δ
∆ = ∫v . (3.12) 

The shear modulus is determined by the relative values of Pω and δω.   For a flat, 

circular punch (Figure 3.1(b)), the modulus is given by the following version of 

Equation (3.1): 

 4
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, (3.13) 

where νeff is an effective Poisson’s ratio that is bounded by the limiting values of 0.5 

(high frequencies) and ν∞ (low frequencies).   

For an indenter shaped with a flat rectangular surface (where L>>a), the 

modulus is obtained from the following approximate expression [63]: 
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where L is the length of the rectangular punch and a is its half-width. 

 

3.4 RESULTS AND DISCUSSION 

3.4.1 Measured Elastic Moduli and Phase Angles 

Elastic moduli obtained from oscillatory tests performed at 22oC and 39oC are 

shown in Figure 3.8.  At room temperature, the results from different punch geometries 

illustrate the near-perfectly elastic character of the gels, and show that Equations (3.13) 

and (3.14) provide a consistent description of the elastic response of these materials.  

The primary advantage of the rectangular punch geometry is that measurable forces can 

be obtained with a very small punch dimension by working with a large aspect ratio, 

L/a.  One disadvantage of this geometry is that great care must be used to keep the 

punch edge parallel to the surface of the gel, so that a uniform displacement is applied 

along the entire length of the indenter.  Another disadvantage of the rectangular punch 

geometry is that the sample must be macroscopically homogeneous over the entire 

length of the punch.  We were not able to obtain this degree of homogeneity with the 

gels at 39 °C.  For this reason we only used the smaller circular punch at the high 

temperatures, from which we were able to obtain reproducible modulus data.  The shear 

moduli plotted in Figure 3.8 were approximated by neglecting the effects of solvent 

flow, i.e., by taking νeff = 0.5 in Equations (3.13) and  (3.14).  This is a very good 

approximation when the phase angles are small, as is indeed the case in our 
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experiments.  These phase angles, obtained from Equation (3.12), are plotted in Figure 

3.9. 

 

3.4.2 Calculation of Phase Angles 

In the case where the energy dissipation is entirely due to solvent flow, a 

predictive model for the phase angles can be developed.  We begin by defining the 

following response function Y(t), which describes the response to a step function 

loading of the sample: 

 ( ) ( ) ( )0 0
0

( ) 1
P t

Y t Y Y F tλ λ
δ

≡ = − + . (3.15) 

where Y0 describes the instantaneous response λ describes the fractional relaxation due 

to solvent flow: 

 0

0

P P
P

λ ∞−
≡ . (3.16) 

The generalized treatment presented here is valid for any value of λ.  However, for an 

elastic half space (a/h <<1) we note that λ can be obtained from Equation (3.3): 
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F(t) is a general function that defines the time dependence of the relaxation, and is 

defined so that F(0) = 1 and F(∞) = 0.  The value of Y(∞), which we refer to as Y∞, is 

equal to Y0(1-λ). 

The time-independent term on the right hand side of Equation (3.15) gives an 

elastic contribution to the stress that is in phase with the applied displacement.  Linear 

superposition is used to obtain the contribution of the time-dependent term in Equation 

(3.15) to the steady state oscillatory response.  If we consider the following steady-state 

oscillatory displacement function: 

 ( ) i t
ss t e ω

ωδ δ= , (3.18) 

the resulting steady state force is: 
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The phase angle is given by:   

 Imtan
Re

ss

ss

P
P

∆ ≡ . (3.20) 

To access the phase angle from the relaxation curve, Equation (3.19) can be written in 

the form of a Fourier transform.  Recall that for a function φ(ω), the Fourier transform 

is defined  

 ( ) ( ) ie dωβφ ω φ β β
∞

−

−∞

≡ ∫� . (3.21) 
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If we define  
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≡  <

     
               

, (3.22) 

then Equation (3.19) becomes:  

 ( ) ( )( ) i t
ssP t i Y e tω

ωωφ ω δ∞ = + 
� . (3.23) 

From Equation (3.20), the phase angle can be written as:  

 
Re ( )

tan
Im ( )Y

ω φ ω

ω φ ω∞

  ∆ ≡
 −  

�

�  (3.24) 

The specific functional form of the unit force response, Y(t),  depends on the 

loading geometry, and is not generally available.  However, for an indenter with 

circular cross section against a thick elastic layer (a/h << 1), Lin et al. have obtained 

the following expression for Y(t) [64]:  

 

 1 2( ) 8 1 ( ( ))
2(1 )

vY t Ga erf f
v

κ
 −

≅ − − 
. (3.25) 

where 

 ( )3/ 2( ) 0.23 0.02f κ κ κ κ= − +  (3.26) 

and  κ  is the normalized time: 
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 2
cD t

a
κ ≡ . (3.27) 

Applying Equation (3.24) to the parameters in Equation (3.15) that specify the load 

relaxation function, the phase angle is: 

 Im ( )tan
(1 ) Re ( )

I
I

λ ω
λ λ ω

∆ =
− +

 (3.28) 

where I(ω) for our geometry is: 

 [ ]
0

( ) 1 ( ( ) i tI i erf f e dtω ω κ
∞

− Ω≡ −∫ . (3.29) 

And  Ω as the normalized angular frequency: 

 
22

c

a a
D d G

 Ω ≡ =  
 

ω ληω  (3.30) 

Combination of the above equations leads to the following approximate expression for 

the phase angle for a flat circular punch, with details of the derivation given in the 

appendix: 

 
2

2 2

1 1tan
2 1 1 1

+ Ω −
∆ ≈

+ Ω − + Ω +

λ

λ
 (3.31) 

Equation (3.31) is a central theoretical result of this paper, which relates a measurable 

phase angle to the relaxed Poisson ratio (through λ) and the pore size (through Ω). 
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Values of the phase angle obtained from Equation (3.31) are plotted as a 

function of Ω in Figure 3.10, for different values of the relaxed Poisson’s ratio, ν∞.  

Equation (3.17) was used to obtain values of λ from ν∞.  In order to estimate the values 

of Ω that are expected to correspond to our room temperature experiments, we use 

previously measured values of Dc (10-11 to 5x 10-11 m2/s) for gels in good solvent 

conditions[82] and the values of a (0.17 − 3.0 mm), and ω (0.01 - 8 s-1) used in our 

experiments.  In this way we estimate values for Ω in our room temperature 

experiments that range from 6 to 7x106.  The predicted value of ν∞ for a polymer gel 

swollen to equilibrium in its own solvent is 0.25, although higher values are generally 

obtained experimentally[61, 83].  It is not surprising, therefore, to obtain phase angles 

from our experiments at room temperature that are very low in all cases as estimated 

from Equation (3.31).  The values of Ω for the smallest punch dimensions that we are 

able to utilize experimentally are still too large for these room temperature experiments, 

where the effective pore size is only a few nanometers.  The situation at the higher 

temperatures is more favorable. Here, the increase observed at the lowest phase angles 

is a potential consequence of solvent flow.  To quantify this effect in more detail we 

use the following approximation of Equation (3.31) that is valid for Ω >> 1: 

 1 2tan
2

d G
a

 ∆ ≈ =  Ω  
λ λ

ηω
. (3.32) 
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The solid line in Figure 3.9 represents 32 5.6 10d G x
a

−  = 
 

λ
η

.  With G = 1.2x104 Pa, a 

= 390 µm, η = 10-3 Pa-s, the corresponding value of d λ  is 0.44 nm.  Because 

viscoelastic contributions (i.e, a time dependence of the shear modulus, G) will increase 

the measured phase angle, this value of d λ  is an upper bound.  The magnitude of this 

upper bound is sufficient to make some statements about the transport properties of the 

gel above the LCST.  Specifically, the picture of an interconnected network of pores 

with a characteristic size larger than the correlation length, ξ of the homogeneous gel is 

not consistent with our data.  Suppose, for example, that the pore size were equal to the 

correlation length of 3 nm obtained from direct measurements of the collective 

diffusion coefficient for polymer solutions of concentrations comparable to the ones 

studied here[96].  From this we obtain an upper bound of 0.02 for λ, which in turn 

corresponds to a lower bound of 0.49 for the relaxed Poisson ratio, ν∞..  This calculated 

value of ν∞. is greater than the values measured for actual polymer gels, which range 

from a theoretical value of ν∞.=0.25 for good solvent conditions, up to a maximum of 

about 0.4[61, 83], and indicates that the gel above the LCST behaves more like an 

incompressible solid, in which water does not have time to escape from the network.  

However, the thermodynamic penalty for expulsion of water from the gel decreases 

above the transition temperature, and ν∞ is determined by the ability to expel solvent 

from the solvent rich regions of the gel.  One expects that ν∞ must decrease even 
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further under these conditions, which is inconsistent with the lower limit of 0.49 that 

we obtain from our data.  On the contrary, our result is consistent with the formation of 

a closed cell network, where the solvent rich regions are not interconnected.  This result 

has important implications for the formation of these gels, and explains why the gels do 

not shrink by continuous expulsion of solvent from the solvent rich domains when the 

temperature is increased above the transition temperature. 

 

3.5 CONCLUSIONS 

A theoretical framework for studying the transport properties and mechanical 

behavior of gels at small strains has been developed, and used to interpret model 

experiments performed with poly(n-isopropyl acrylamide) gels. Energy dissipation 

from solvent flow can be differentiated from network viscoelasticity when various 

indenter sizes are used to probe a gel under compression.  At small strains, the elastic 

constants for the gel below the lower critical solution temperature were shown to be 

independent of punch size and frequency.  Because our experimental testing apparatus 

is sensitive to very small phase angles, we were able to show that solvent transport 

through the gels above the critical solution temperature is inhibited in comparison to 

the transport rate at low temperatures, where local phase separation is not observed. 
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Figure 3.1.  Indenter geometries used in the experiments. 
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Figure 3.2.  Photographs and schematic illustrations of the gel structure 
for pNIPAM above and below the critical temperature. 
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Figure 3.3.  The probe tack apparatus. 
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Figure 3.4.  Load (P) vs. displacement (δ) histories for a typical 
experiment. 
. 
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Figure 3.5.  Load-displacement relationship illustrating the onset of 
nonlinear response for large δ/a using a 0.39 mm radius circular punch 
and a pNIPAM gel:  (a) 22oC, a/h = 0.137; (b) 39oC, a/h = 0.179.  The 
boxes on the graph indicate the regimes in which the oscillatory 
experiments were conducted (Figure 3.6). The dashed lines represent 
the linear response given by Equations (3.1) and (3.2). 
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Figure 3.6.  Idealized relaxation behavior of an elastic gel under 
compression. 
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Figure 3.7.  Oscillatory load-displacement behavior at ω = 0.50 s-1 for a 
pNIPAM gel, using a circular punch with a = 390 µm:  (a) 22oC ; (b) 
39°C.  
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Figure 3.8.  Values of the shear modulus obtained from application of 
Equation (3.13) to data obtained from the oscillatory experiments.   
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Figure 3.9.  Phase angles obtained from application of Equation (12) to 
the oscillatory data. The solid line is the prediction of Equation 32, with 
d/λ1/2 = 0.44 nm.  
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Figure 3.10.  Calculated phase angles as a function of the normalized 
angular frequency from Equation (3.31), for different values of the 
relaxed Poisson’s ratio. 
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CHAPTER 4 

MECHANICAL CHARACTERIZATION OF 

SILICONE GEL LAYERS 

 

4.1 INTRODUCTION 

 Understanding the properties of highly deformable materials, such as 

elastomers and polymer gels, at large strains is an important avenue to explore in 

materials science.  From a mechanical perspective, the deformation of these materials 

can no longer be explained by the theories of linear elasticity.  The stress concentration 

at the point of deformation is largely dependent on intrinsic material parameters.  The 

structure of a material, for example, plays a role in this type of behavior.   

Consider the difference in mechanical response of two samples:  a physically 

cross-linked polymer gel versus a chemically cross-linked rubber elastomer at small 

and large strains.   In a low strain experiment, the deformations are often small enough 

that the structure of either material is not affected by the deformation time scale.  This 

response is expected when the materials are tested in the linear elastic regime.   Upon 

extended deformation, the response of the materials will vary.   At high strains, the 

chains in the polymer gel will separate, resulting in flow and permanent deformation.  

The rubbery polymer chains, on the other hand, will be restricted by the physical cross-



98 

 

links in the system and will rapidly recover upon removal of the stress applied[54]  In 

each case, the strength of the bond plays an important role in the behavior of the 

material at extended strains.  Such a response is difficult to predict and is very 

important in applications where appreciable stresses are used. 

Standard methods to measure large deformations of soft materials often are in 

tension[97, 98].  Devices, such as tensile testers, are often employed.  In tensile testing, 

experimental difficulties are present for weaker gels due to the geometries of the 

samples.  Common geometries for tension tests include gel strips, dumbbells or 

cylinders [99, 100]. Clamping a weak gel to the testing apparatus leads to preferential 

failure at the point that it is attached  [100], whereas adhesion to the surface of the 

tensile tester becomes an issue when attaching cylindrical samples of gel to the plates 

of an Instron apparatus.  To overcome these difficulties, biaxial tensile experiments can 

be performed but boundary effects limit the test region to a small portion of the sample 

[101].  Another approach is to utilize ring-shaped geometries of gel samples [100]; 

however, deflection due to viscoelastic flow or gel syneresis in very soft materials is 

still of concern.  In this respect, compression experiments pose less experimental 

difficulties. 

Although it is much easier to compress a cylindrical sample of gel, there are still 

difficulties in practicality to obtain meaningful data over a large range of strains.  If a 

cylindrical sample of gel with a Poisson’s ratio of 0.5 is placed between two parallel 

plates and undergoes uniaxial compression in the z-direction, the gel will act 
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incompressibly.  The biaxial extension in the x- and y- directions will be related to the 

uniaxial extension in the z-direction.  However, this extension will only occur if there is 

no friction between the interface of the gel surface and the plates.  If there is a 

component of friction, the response of the sample will be dominated by this force.  The 

gel will bulge and a barrel-shaped sample will result [102].  Furthermore, the limitation 

of these classic compressive tests is that a localized area of the sample cannot be 

probed, especially when a gel is not homogeneous in nature.  This drawback can also be 

limiting to applications in medicine [103] and food [104], where the local strength of a 

material is important for safety or texture, respectively.   

One solution to these issues is to utilize a compression experiment with a flat 

punch probe, as seen in Figure 2.5.  In our work, we conduct experiments in this 

geometry because they can be performed very easily when the radius of the indenter is 

small compared to the dimensions of the sample.  Although a consequence of this 

indentation technique is that the strain field is not uniform, material properties can be 

probed locally and transparency of the material is not necessary for contact area 

measurements.  By applying this geometry, a single sample and instrument can be 

utilized to measure small and large scale deformation of a material; however, caution 

must be exercised beyond the non-linear regime, since strain fields are difficult to 

quantify.  For this reason, we utilize elastomeric gels as model systems because their 

response will remain elastic until fracture.  By utilizing these materials and the flat 

punch probe technique, our aim is to characterize the mechanical properties of soft 
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materials over a large range of stresses prior to fracture.  Our intention is to gain a 

better understanding of how these responses change as a result of material structure and 

geometry. 

 

4.2 METHODS 

4.2.1 Model Systems 

The materials chosen to model deformation at over a range of stresses prior to 

fracture are a series of chemically cross-linked poly(dimethylsiloxanes) (PDMS) gels, 

commonly referred to as silicone gels.   We utilize silicone gels because they are 

frequently used in experiments as a simple model network to understand much more 

complicated systems [105] and  are widely used due to their physical and mechanical 

properties.  In the microelectronics industry, for example, PDMS is a superior choice as 

an encapsulant in packaging due to its high resistivity and thermal stability [106].  

PDMS is also chemically inert and serves as an excellent barrier to water, making it 

well suited for applications such as adhesives, coatings, sealants [105], and potentially, 

cosmetics [107].  Because the materials in these applications often undergo appreciable 

stresses, we utilize silicones as a simple model elastic system to investigate the role of 

the network in relation to an added sol fraction under large scale deformation.  

Understanding this behavior provides insight into failure phenomena and the network 

properties for highly, elastic gels.        
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4.2.2 Chemistry  

Silicone gels were prepared by a hydrosilation reaction [28], as shown in Figure 

4.1.  The reaction first begins by combining various fractions of vinyl-terminated 

poly(dimethylsiloxane) (PDMS) and end capped tri-methyl poly(dimethylsiloxanes).  A 

tetrafunctional silane is added to the solution as a cross-linker and the vinyl-terminated 

poly(dimethylsiloxane) (PDMS) reacts with it to form a siloxane network.  Because the 

end capped tri-methyl poly(dimethylsiloxanes) contains no functional groups to create 

cross-links for a network, it becomes the sol fraction of the newly formed gel [24].  The 

chosen catalyst for the reaction is a platinum(II) complex, which has been reported to 

have a 90% rate of conversion [22].  The above reagents were all obtained from Gelest, 

Inc.    

 

4.2.3 Sample Preparation 

Two sets of samples were prepared.  For the first group, six different molecular 

weights of vinyl-terminated PDMS were chosen to represent samples without added sol 

fraction.  The molecular weights of vinyl-terminated PDMS ranged from 500 g/mol to 

117000 g/mol and are listed in Table 4.1.  For the second set of samples, a series of 

twelve silicones with various amounts of added sol fraction were prepared.  These 



102 

 

samples are listed in Table 4.2.  Preparation for these silicones with added sol fraction 

is detailed below, since the samples of Table 4.1 are made in a similar manner.   

From Table 4.2, duplicates of twelve samples the size of sterile Nalgene Petri 

dish were prepared, using a method similar to the technique described by Larsen et 

al[24].  Standard vinyl-terminated PDMS solutions were initially made for the base 

network, and the weight percentage of sol was added accordingly.  For our systems, 

three vinyl-terminated PDMS prepolymers with molecular weights of 500g/mol (V05), 

28,000 g/mol (V31), and 117,000 g/mol (V46) and three tri-methyl PDMS prepolymers 

with molecular weights of 1250 g/mol (T11), 28000 g/mol (T31), and 139,000 g/mol 

(T51) were chosen.  The tri-methyl PDMS prepolymers were added in weight fractions 

of 0.20, 0.40, and 0.50 of the total solution.  In vinyl-terminated PDMS solutions where 

no tri-methyl PDMS prepolymers were added, the gel formed will be referred to as 

‘neat.’        

To standardize the base network for each series of samples, 500 mL of a 

selected vinyl-terminated PDMS was poured into a clean glass beaker and 200 ppm of 

tetrakis(dimethylsiloxy)silane (hardener) was added to it.  This solution was thoroughly 

mixed for about 3-5 minutes and 60 mL quantities of this solution were divided into 12 

Al dishes.  

A pre-measured amount of tri-methyl PDMS was then added to the vinyl-

terminated PDMS and mixed with an Al spatula.  Mixing time varied from 3-5 minutes.  

When the prepolymers and hardener were thoroughly mixed, catalyst was added into 
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solution and mixed for another 3-5 minutes.  After mixing, 30 mL of solution was 

poured into a mould and immediately placed under vacuum for times ranging from 10 

seconds to 15 minutes, depending on the viscosity of the solution.  The samples were 

placed in an oven at 82oC for 24 hours to ensure complete curing.     

Because of the sensitivity of the reaction, issues with premature and incomplete 

curing were encountered.  Premature curing was a problem due to the working time 

required.  Preparation for one set of samples often took approximately 10-20 minutes, 

depending on the viscosity and molecular weight of the PDMS involved.  When no 

additional sol was added to a sample solution, cure times were faster for the lower 

molecular weight samples compared to high molecular weight samples.  Occasionally, 

a solution would completely cure before it could be poured into the mold.  When sol 

was added to vinyl-terminated PDMS, cure times were comparable to the neat gels; 

however, mix times increased due to the differences in viscosity between the two 

materials.  Minimizing the amount of working time and delaying the addition of 

catalyst is suggested to avoid premature curing.   

One method to deal with the problem of incomplete curing was to mix the 

solutions by hand.  Manual mixing of the solutions prevented the reaction from being 

accelerated, as this problem was especially prevalent in synthesizing the silicone 

networks with low molecular weight strands.    In these cases, use of a blade mixer 

caused the mixture to cure before it could be poured into a mould.  For silicones with 

high molecular weight chains, hand mixing was a better alternative to using the blade 
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mixer because the total quantity of hardener and catalyst required for these reactions 

was only a small fraction of the total solution.  High molecular weight silicones made 

with the blade mixer would not cure because it was difficult to tell if even dispersion of 

hardener or catalyst occurred throughout the mixture.   

Furthermore, the issue of incomplete curing could be resolved if the 

contamination of the catalyst was minimized.  Because the catalyst mechanism requires 

that a metal ion both coordinate the olefin and cleave the Si-H bond[22], the catalyst is 

easily contaminated when it is in contact with trace elements of sulfur, tin, or nitrogen.  

Use of latex gloves and wooden spoons, as well as some plastic cups, where tin is used 

as a catalyst, can prevent the silicone from curing.  To minimize contamination, Al 

trays and beakers were used in sample preparation and Al spatulas were used for 

mixing.  Sterile Nalgene brand Petri dishes were also used as molds and did not pose a 

problem with curing. Between each batch of samples, the spatulas and beaker were 

cleaned in a solution of methyl-ethylketone and sonicated for 10 minutes at a solution 

temperature of 30oC to prevent contamination.   

Incomplete curing, however, could not be resolved for several of the samples 

containing 50% sol fraction.  Curing, for example, was difficult for mixtures containing 

a tri-methyl prepolymer solution with very short chain lengths (e.g. T11) and a vinyl-

terminated prepolymer solution with very long polymer chains (e.g. V46).  The 

problem of curing in this situation is likely to be attributed to the high fraction of tri-
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methyl PDMS present, which inhibits cross-linking and entanglement formation in the 

network, and the low cross-link density of vinyl-terminated PDMS.          

 

4.2.4 Methods 

Compression tests of the prepared silicone gels were performed on a flat punch 

probe apparatus and Test Resources 200R Research Universal Test System, as seen in 

Figure 4.2 and Figure 4.3.    As described in previous chapters and seen in Figure 4.3, 

the flat punch indenter consists of Burleigh inchworm motor attached to a Lucas 

Schaevitz 50 gm load cell.  An indenter is attached below the load cell and a Philtec 

optical displacement sensor determines the amount of distance the motor travels.   To 

replicate the experiments performed on the flat punch probe apparatus at Northwestern 

University, a Test Resources 200R System was modified to expand the capabilities of 

the instrument.  A 250 gm load cell (Test Resources 200R) was used to measure the 

silicone gels and an indenter adapter, as seen in Figure 4.2, was custom built and fitted 

to the instrument for compression tests.  The displacement resolution of the Test 

Resources 200R Test System is 0.1 µm, whereas the optical displacement sensor on the 

probe tack apparatus has a resolution of 0.38 µm.   

Utilizing these instruments, the mechanical response of the samples was 

determined by performing a series of stress relaxation tests using an indenter with a 

radius of 0.39 mm.  In one type of stress relaxation test, the indenter was brought into 
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contact with the gel, loaded to a maximum compressive force, held for 1000s, and then 

retracted from the gel.  The maximum compressive loads set for these experiments 

were 100 mN and 2000 mN.  In another experiment, the maximum load was set to 2000 

mN and a series of stress relaxation tests were performed at 500 s intervals in the same 

spot.  Experiments on both these devices were performed at a loading and unloading 

rate of 25 microns/s. 

Shear moduli of the samples were measured with a Rheometrics ARES 

rheometer in a torsion geometry.  A strain sweep for temperatures of -60oC, -40oC, and 

20oC was initially performed on rectangular samples cut from the moulds.  Frequency 

sweeps from 0.1 Hz to 1 Hz were performed at 20oC.  The storage modulus (G’), loss 

modulus (G”), and the loss tangent (tan δ) were determined from the data collected.   

After compression and rheological testing, Soxhlet extractions of the silicones 

were performed for 48 hours in toluene.  A Büchi heating bath and vacuum controller 

was used to extract solvent out of the samples.  The samples were then air dried for 24 

hours and placed in a vacuum oven for 24 hours at 120oC.  The weight loss of the bar 

and the amount of solvent extracted was recorded.  A compression test using the Test 

Resources 200R system was performed on the extracted samples.     
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4.3 RESULTS AND DISCUSSION 

A typical loading-unloading graph of a silicone sample is illustrated in Figure 

4.4.   The regions in which our gels were measured are highlighted in the figure.  

Region (a) represents the small strain response of the gel, whereas region (b) marks a 

large deformation region of the sample.   The dashed line in this figure acts as a guide 

for the eye and demonstrates where linear elastic behavior of the sample is expected, as 

well as where it begins to deviate.  From these types of measurements, the mechanical 

properties obtained from (a) allowed us to probe the linear elastic behavior of our 

samples, while the response at (b) gave us an indication of how the gels behaved 

beyond the Hookean regime.  Based on such measurements, we were able to 

characterize each individual gel from a mechanical standpoint over a range of stresses 

prior to fracture and determine how its structure and geometry affected its response.  In 

particular, the effect of molecular weight, the addition of sol fraction, the role of 

entanglements, and the geometry of the sample were determined for our samples and 

are detailed below. 

 

4.3.1 Molecular Weight and Structure  

Characterization of the neat gels over a range of stresses was first performed to 

understand how molecular weight and structure affects their mechanical properties.  
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Additionally, the results of these experiments were used to calibrate our measurements 

on the different instruments.  

 The value of shear modulus, G*, was first determined for each of the neat gels.  

These values were calculated from data obtained in the flat punch compression tests 

with the assumption that the material is incompressible (Poisson’s ratio, ν, is 0.5) and 

that each sample is perfect end-linked.   From the corresponding load, P, and 

displacement, δ, G* is [71] could be calculated as: 

 *
8 c

PG
a

af
hδ

 =  
 

, (4.1) 

when the punch radius, a ,is 0.39 mm.  fc  in the above equation is the geometric 

confinement factor determined by the ratio of the indenter radius to the gel thickness, h 

[66]: 

 ( )31 1.33( / ) 1.33( / )cf a h a h= + + . (4.2) 

Results of these measured shear moduli are plotted in Figure 4.5.  The moduli 

data from Figure 4.5 assume that our samples are perfectly end-linked and that the 

existence of impurities in our neat gels are insignificant, two assumptions that are 

consistent to similar previous studies[26-28, 108, 109].  As a comparison for the 

methods and instruments used, the G* values of these gels are plotted against literature 

values  for tetrafunctional end-linked PDMS networks [26, 44].   One result that can be 
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concluded from Figure 4.5 is that the measured values of G* from the compression 

tests agree with literature and rheology.    

Additionally, Figure 4.6 further supports that the existence of impurities in our 

neat gels are insignificant and that our gels are nearly ideal.   Figure 4.6 shows the 

corresponding average percent of extracted material for each sample and indicates that 

the measured reaction conversion in our samples is noted to be greater than 90%.  

Impurities in the reactants are attributed to the unreacted, extracted material, since 

several studies have shown that commercially available oligomeric PDMS reactants 

have 2-5% of 300-1500 molecular weight impurities[26-28].  Because it has been 

shown that such impurities do not have a significant impact on the properties of the 

higher molecular weight samples [26],  these results allow us to assume that the 

presence of  defects will not affect our measurements from a mechanical standpoint.   

Our results can therefore be interpreted based on the theory of rubber elasticity to our 

measurements  

Based on these results, Figure 4.5 also demonstrates the presence of 

entanglements in the network.  Interpenetrating entanglements become more prominent 

than covalent cross-links in controlling the modulus of polymer networks with network 

strands that exceed 28,000 gm/mol.  An entanglement plateau, Ge, of approximately 

1.0x105 Pa is determined from Figure 4.5, which is consistent to the value of  Ge 

=2.0x105 Pa reported by Patel, et al. for linear PDMS melts of molecular weights above 

20,000 g/mol [44]. 
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  The modulus in our gels becomes nearly independent of molecular weight of the 

network strands between cross-links in the limit of very long network strands. As noted 

in Chapter 2, this behavior is consistent with the expected modulus of an entangled 

polymer network, whose sum can be approximated as (1) the affine, or small scale, 

deformation of the cross-links, Gx, and (2) an additional contribution to the modulus 

due to topolographic entanglements, Gx  [28, 110, 111]: 

 x e
x e

RT RTG G G
M M

ρ ρ
≈ + = +  (4.3) 

For polymer networks with low molecular weight between cross-links, (Mx> Me), the 

modulus is controlled by cross-links and G ≅ Gx. For networks with high molecular 

weight between cross-links, (Mx< Me), entanglements dominate and G ≅ Ge.  This 

behavior also is consistent with the expected response of polymer melt experiments at 

short time scales, where a temporary entanglement network is said to be formed due to 

the topological constraints that each polymer chain imposes on each other [112].    

Such an effect of molecular weight and structure on mechanical properties is not 

limited only to the small strain regime.  At a stress of 4.2x106 Pa, which is greater than 

the moduli value of the samples found in Figure 4.5, the response of the silicones is 

correlated to their molecular weights.  As plotted in Figure 4.7,  a greater percentage of 

relaxation is observed as the molecular weight of the sample increases.  The exception 

to this behavior is noted for the 28,000 g/mol sample, which relaxes to a lower value of 

stress than the 49,000 g/mol or 72,000 g/mol sample during the duration of the 
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experiment.  Although the 28,000 g/mol sample has a molecular weight lower than the 

72,000 g/mol sample, the average percent of extracted material for the 28,000 g/mol 

sample is the largest by comparison in the samples tested, as indicated in Figure 4.6.   

This value indicates a weaker network possibly due to contamination of the sample 

during preparation. 

The results of the neat gel indentation experiments indicate that the techniques 

and instruments applied to small strain measurements can be extended to characterizing 

silicone samples at higher stresses.  The influence of molecular weight on the 

mechanical properties of silicones has also been shown.  Furthermore, the results serve 

as a basis for comparison for probing the behavior of the elastomers when a sol fraction 

is added to them.   

 

4.3.2 The Addition of Sol Fraction 

As a comparison to three selected neat gels, the shear moduli of the gels with 

added sol fraction were measured.  The small strain response of the 800g/mol (V05), 

28,000 g/mol (V31) and 117,000 g/mol (V46) based vinyl silicones with added 

trimethyl-terminated PDMS are plotted in Figure 4.8(a), (b), and (c), respectively.   

From these results, the difficulty in synthesizing silicones with low molecular 

weight network chains is illustrated in Figure 4.8(a).  The measured shear modulus of 

the V05 samples range from 4x105 Pa to 3.3x104 Pa and are quite scattered.    Because 



112 

 

the working time in preparing these samples is on the order of 15 minutes before 

gelation occurs, there is little time to thoroughly mix the sample before the reaction 

begins.  Use of a blade mixer is not possible because the mechanical energy from a 

blade mixer accelerates the reaction.  The samples often gelled before even distribution 

of the catalyst could occur. These results indicate that poor mixing leads to incomplete 

cross-linking in the samples.        

In contrast, the moduli measurements of the V31 and V46 gels are more 

reproducible and consistent, as shown in Figure 4.8(b) and Figure 4.8(c).  In these 

gels, shear modulus values decrease as sol fraction increases. However, the reported 

behavior is independent of the chain length of the added tri-methyl PDMS.  For V31, 

the measurements decrease linearly from 7.5x104 Pa for a sample with no added sol 

fraction to 1.3 x104 Pa for a sample with 50% capped PDMS added to it.  Likewise, a 

sample with 100% V46 has an approximate value of 6.7x104 Pa, whereas a sample with 

50%V46-50% TXX has an estimated measured value of 1x104 Pa.   

One explanation for the behavior depicted in Figure 4.8(b) and Figure 4.8(c) is 

that the effect of added sol to the base vinyl-terminated PDMS network is comparable 

to the response of large quantities of unreacted material in the sample.  A comparison 

of results from previous work [26-28, 113]on tetrafunctional end-linked PDMS 

networks demonstrates that an increase in the unreacted material within a sample will 

decrease the modulus of a sample.  A study of imperfect networks formed by end-

linking various concentrations of mixtures of a difunctional PDMS with 
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monofunctional PDMS also follows a similar trend [44].  As networks become more 

imperfect, the shear modulus drops linearly due to the addition of pendant chains in the 

system [44].   

Another way to describe this system is to consider it as a covalently cross-linked 

vinyl-terminated PDMS base network interpenetrated by a tri-methyl PDMS network of 

entangled chains.  Like an interpenetrating network, the effective load transfer occurs 

between the two networks [34, 114] and the effective modulus will have a linear 

relationship of the moduli of the two networks weighted by their volume fraction.    

Because the tri-methyl PDMS is not chemically cross-linked, the addition of tri-methyl 

PDMS decreases the effective modulus of the base network.  At high stresses, the effect 

is magnified, as shown in Figure 4.9(a) and Figure 4.9(b).  The stress relaxation 

experiments of Figure 4.9(a) and Figure 4.9(b) show that a gel with increasing sol 

fraction with a very long chain length (>28,000 gm/mol) causes greater relaxation of 

the gel.     

 

4.3.3 Entanglements and Polymer Chains At High Stresses 

Further characterization of two silicone gels was performed using repeated 

stress relaxation experiments to probe the effect of entanglements and polymer chains 

at stresses beyond their moduli values.  Results of these experiments are illustrated in 

Figure 4.10(a) for the V31 base network with no added sol fraction and Figure 4.10(b) 
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for the corresponding gel with 20% added T31.  In each sample, there is an increasing 

plateau stress with repeated loading of the indenter, indicating accumulated damage in 

the gel network.  In the first two cycles, the irreversible behavior may be due to the 

movement of entanglements and the uncoiling of the polymer chains.  Upon further re-

loading to the same maximum load, polymer chains are stretched taut.  This behavior 

has been suggested for fracture experiments in gelatin gels [115]  and can be further 

demonstrated by Figure 4.11, where failure of the sample occurs after loading it for a 

500 s cycle and waiting 24 hours before repeating the experiment in the same spot.  

From these experiments, it is evident that entanglements and polymer chain stretching 

play an important role in the elastic response of the material.   

 

4.3.4 Geometric Confinement  

Because our gels are highly deformable, one consequence of mechanically 

characterizing our samples is to consider the geometric confinement of the elastic layer 

under compression.  As noted in Equation (4.2) and in Chapter 2, modifications are 

necessary in calculating mechanical constants when an elastic layer of gel can no longer 

be approximated as an infinite half-space.  This aspect is especially important in our 

experiments, since our gels are deformed at stresses beyond the linear elastic regime.  

At such large stresses, the length scale of the contact area will surpass the dimensions 

of elastic layer of the gel, which will result in an increase in the stiffness of the gel[70].   
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Because the effect of the substrate on the elastic layer must be taken in account 

in our experiments, the degree of confinement of the gel can be determined with respect 

to the contact radius, a.  We utilize this value because of its effect in the Hertz elasticity 

analysis, found in Equation (2.31).  In this Equation, an indenter becomes ‘sharp’ when 

its indenter radius, r, approaches 0 at a fixed contact, a.  Note that the indenter radius is 

for a spherical indenter in this situation.  At this limit, the higher contact pressures 

result in stress singularities and an alteration of the stress fields at the point of contact.  

The material therefore ‘sees’ a different stress field than that is predicted from the 

Hertzian analysis.  The contact radius, a, which in our case is also the punch size, can 

therefore be scaled by the thickness, h, of the elastic layer to form a dimensionless ratio 

of a/h.  This ratio gives us an indication of how stiff the material will become when the 

samples are of finite size, since the stress fields will be altered.  The a/h parameter was 

first proposed by Gent and Shultz [116]to describe the effective modulus of confined 

rubber blocks.   

To understand the effect of confinement, the elastic layer is modeled over small 

and large deformations.  Our focus in these models is on the actual displacement of the 

punch relative to the thickness of the sample, or δ/h, since, a larger displacement of the 

punch will lead to a more confined gel.  Utilizing this dimension, the a/h parameter can 

be applied to determine the effective strain the material ‘sees’ at these displacements.  

A schematic of these dimensions is illustrated in Figure 4.12(a).   
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In our models, we assume that there are no frictional forces between the 

substrate and gel, as well between the punch and gel.  Although it is likely that the 

substrate will not be frictionless, this assumption is likely valid for the punch.  At small 

strains, the thickness of the sample is very large compared to the punch radius (h>>a) 

and the punch displacement (h>>δ).  Ignoring the a/h correction, the resulting load can 

be modeled as the elastic half-space result [66] 

 8P Ga= δ  (4.4) 

The stress is then: 

 2

8P G
a a

δ =  π π  
 (4.5) 

At large deformations, the stress can be assumed to be dominated by biaxial extension 

of the material under the punch itself.  Using the Neohookean model, the equation for 

the stress 

 ( )2
2 1/P G

a
= µ − µ

π
 (4.6) 

where µ is the extension ratio.  Based on the Figure 4.12(a),  

 ( ) / 1 /h h hµ = − δ = − δ  (4.7) 

Upon substitution of (4.7) into (4.6),. the load becomes  

 ( )
( )

2

22

hP hG
a h h

 − δ
= − 

 π − δ 
 (4.8) 

A sensible approximation of the load at large strain is to add both contributions: 
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 ( )
( )

2

22

8 hP hG
a a h h

 − δδ = + −   π π   − δ 
 (4.9) 

In terms of the a/h parameter and the displacement of the indenter relative to its 

thickness (δ/h), 

 
( )22

8 1 11 1
( / ) 1 /

P
a G h a h h

 δ
= + − − π π − δ 

 (4.10) 

A plot of P/πa2G  vs. δ/h, from Equation (4.10) for the a/h ratios of 0.1, 0.2, and 0.5 is 

shown in Figure 4.12(b).  As seen from this graph, the degree of confinement is 

greatest when a small indenter is displaced close to the substrate at high loads (i.e. 

when a/h →0 and δ/h≈1).  In contrast, geometric confinement is negligible when the 

elastic layer can be considered a half-space and the Hertzian analysis is valid.  As noted 

above, this approximation occurs when a is large (a/h→1) and the strains applied are 

small (δ/h≈0).  For our studies, a/h can be approximated by the solid line, representing 

a/h=0.1.  At very large deformations, the confinement effect would be magnified, since 

the a/h curves converge asymptotically.  The results of this analysis indicate that stress 

distributions in these situations are altered when the material is confined to a thin layer 

and the substrate needs to be taken into account.   
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4.4 CONCLUSIONS 

By utilizing a flat punch probe indentation technique, silicone based gels were 

characterized over a range of stresses prior to fracture.  In particular, the effect of 

molecular weight, the addition of sol fraction, the role of entanglements, and the effect 

of geometric confinement on their mechanical properties was determined for our 

samples. 

The effect of molecular weight and structure was determined by probing the 

small strain response and large scale deformation behavior of tetrafunctional end-linked 

silicones with molecular weights ranging from 800 g/mol to 117,000 g/mol.  An 

entanglement plateau of approximately 1.0x105 Pa is found to dominate in samples with 

high molecular weights (>28,000 g/mol).  High stress tests of these neat gels indicate 

that greater relaxation will occur with longer chain lengths.  Extractions of the samples 

indicate that there is greater than 90% reaction conversion for our samples and that 

impurities in our samples can be neglected.   

The addition of sol to three base networks with molecular weights of 500 g/mol, 

28,000 g/mol and 117,000 g/mol altered the mechanical properties of the silicones 

when compared to the corresponding neat gel.  At small strains, increasing the amount 

of added sol fraction in a gel weakened the network and caused the modulus to drop.  

The value of the modulus measured was found to be independent of the weight of the 

sol fraction added.  Similar behavior was noted for stress relaxation tests at high 

stresses.   
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A comparison of repeated stress-relaxation experiments between a neat gel and 

a corresponding sample with 20% added solvent suggests that a form of irreversible 

damage accumulation occurs.  One possibility that this behavior may occur is due to the 

role of entanglement motion and polymer chain extension at high stresses.  The 

behavior of these samples suggests that the gel network plays a relatively significant 

role in the elastic response of the sample at large stresses.   

A model for geometric confinement of the elastic layer under large scale 

deformation was also determined.  Utilizing a Neohookean model for large strains, the 

degree of confinement could be described by the punch size and is dependent on the 

displacement of the indenter relative to the thickness of the sample.    At very large 

deformations, the confinement effect is magnified and the stress distributions in these 

situations would be affected by the substrate.  These results of these experiments and 

model are of potential importance when understanding the fracture behavior of gels.      
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Molecular Weight 

(g/mol) 
Sample 
Name 

500 V05 
6000 V21 
28000 V31 
49000 V35 
72000 V42 
117000 V46 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4.1.  Vinyl-terminated PDMS samples with no added sol fraction.  

. 
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Table 4.2.  Silicone samples with added sol fraction. 
 

V46 0.5 T51 .50 12 

V46 0.6 T51 .40 11 

V46 0.8 T51 .20 10 

V46 1  0 9 

V31 0.5 T31 .50 8 

V31 0.6 T31 .40 7 

V31 0.8 T31 .20 6 

V31 1  0 5 

V05 0.5 T11 .50 4 

V05 0.6 T11 .40 3 

V05 0.8 T11 .20 2 

V05 1  0 1 

Base 
Network 

Fraction of  
Base Network

Type of SolSol FractionSample 
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Figure 4.1.  Silicone chemistry.  Vinyl-terminated PDMS is 
hydrosilated with a cross-linker, tetrakis(dimethylsiloxy)silane to form a 
branched PDMS network.  A silicone gel is formed when tri-
methylsiloxy  terminated PDMS  (TXX) is added in increments of 0%, 
20%, 40%, 50% by weight to form a sol fraction. 
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Figure 4.2.  Test Resource 200R System with 250 gm load cell. 
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Figure 4.3.  The probe tack apparatus.   
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Figure 4.4.  Elastic and large scale deformation regions of silicone.  (a) 
The dashed line indicates where behavior of the sample deviates from 
elastic behavior to plastic deformation.  (b) Large deformation region of 
the sample. 
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Figure 4.5.  The modulus of varying molecular weights of silicone with 
no added sol component.  Crosses (X) indicate values found in the 
literature. The base networks  highlighted in the figure indicate the 
chosen weights in which  20%, 40%, and 50% by weight of  tri-methyl 
terminated PDMS were added in later experiments. 
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Figure 4.6.  Extraction data for silicones with no added sol fraction. 
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Figure 4.7.  High stress response of the gels.  The longer the chain 
length between cross-links, the greater the relaxation.  The effect of 
unreacted material in the 28,000 g/mol sample is apparent under large 
deformations.   
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Figure 4.8.  Modulus measurements when tri-methyl PDMS is added 
vinyl-terminated  PDMS base networks of   (a) 800 g/mol (V05)  (b) 
28,000 g/mol (V31), and (c) 117,000 g/mol (V46).  
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Figure 4.9.  A comparison of large stress measurements for (a) 28,000 
g/mol (V31) and (b) 117,000 g/mol (V46) when sol fractions of 20% 
and  40%  are added. 
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Figure 4.10.  Evidence of polymer chain elongation from repeated 
stress-relaxation measurements focused on one point on a sample.  For a 
V31 base network with (a) no sol fraction added and (b) 20% T31 
added.  
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Figure 4.11.  Failure of silicone with no sol added after repeated loading 
on same point. There is a 24 hour period of time between Trial 1 and 
Trial 2.   
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Figure 4.12.  The effect of geometric confinement.   
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CHAPTER 5 

DEFORMATION AND FAILURE MODES OF  

SILICONE GEL LAYERS  

 

5.1 INTRODUCTION 

Historically, research on the fracture of soft solids, particularly polymer gels, 

has often been neglected.  Studies on fracture in the past primarily focused on brittle 

solid materials, such as metals and ceramics [72].  The slow growth of interest in this 

field can be attributed to the view that polymers are mechanically weak and therefore, 

not useful in areas where the fracture properties are relevant.  The moduli of these soft 

materials ranges from ~ 103 to 106 Pa as compared to metals, which have moduli on the 

order of 1012 [66].  However, as the need for lightweight, cost-effective, mechanically 

robust soft materials increases due to the demands of technology, polymer gels are 

becoming more popular in industrial applications.  As a result, there is increased 

interest in the topic of fracture in these highly, deformable materials [52].   

In the past, studies were primarily focused on cohesive failure within a 

polymeric system, such as vulcanized rubber and polyurethanes.  For example, 

extensive research on the fracture energies and strength of elastomers has been 

performed by Gent, et al. [30, 32, 117], whereas the processes of fracture on such 

highly elastic materials has been noted in the classic paper by Lake and Thomas [54].  
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Such studies often required an incision to be made in the sample to form notch-type 

tests [118] and include typical geometries such as trouser [119] or edge-crack test 

pieces [12] to study tearing.  Current studies of a similar nature have shifted to 

understanding the failure mechanisms of biopolymers [115] and the effect of solvent in 

crack tips [120].   

More recently, fracture research on polymeric materials has been driven by the 

aspect of adhesion [65, 121].  Failure mechanisms and processes of soft solids have 

been studied for geometries that include peel tests[65, 122], dual cantilever beams [123, 

124], adhering spheres[65], and indenters [65] on viscoelastic bodies.  Polymer gel 

research in this area has been applied to understanding debonding mechanisms in 

pressure sensitive adhesives[125] and the adhesion of thin polymer films [126].  Most 

of the experimental research on such soft systems has primarily focused their physical 

properties [58, 127].   

Despite this growing interest in the failure of soft materials, there have been 

very few studies on the indentation fracture of soft solid elastic layers in 

compression[128].  When polymeric materials are tested in this geometry, they usually 

act as a soft substrate and are coated with a thin brittle layer to simulate dental 

coatings[129, 130], so little is known about the failure of these materials independent of 

the coating. The closest fracture studies of polymer gels which apply indentation 

techniques have focused on the puncture of biological tissues and silicone rubbers to 

understand the wounding of skin and the breaking of latex gloves [101, 131-133].  



139 

 

These experiments are often performed in geometries in which the material is not fully 

supported by a rigid substrate [101, 131, 132].  Figure 5.1 depicts this geometry, which 

has been adapted from the work of Shergold and Fleck, as well as Nyguen and Vu-

Khanh [132, 133].  Simulations have been performed to understand the failure of 

materials in this geometry [133].   

Such experiments are useful in providing insight into the fracture processes of 

soft solids, however their geometries limit the types of materials that can be tested.  

One drawback to the puncture experiments is that a material used cannot sag under its 

own weight for the duration of the experiment.  Highly, deformable soft solids would 

be difficult to use, as well as gels with a high sol fraction or those that may dry out 

during testing.  Furthermore the samples would have to be large enough so that the 

chosen indenter is much smaller than the sample size to avoid edge effects.  Another 

disadvantage in using the particular setup performed by Shergold and Fleck is that the 

velocity of the punch cannot be controlled[132].  In situations where these conditions 

cannot be met, a more controlled geometry is necessary.  Minimization of these issues 

is possible if we apply indentation fracture to an elastic layer on a substrate.   

In this work, we utilize this indentation geometry on thick polymer gel layers on 

a rigid substrate and apply compressive stresses on our gels to induce failure.  In doing 

so, we explore the mechanisms of fracture in highly, deformable solids and understand 

how the addition of  sol fraction affects failure.  Although computational feasibility 

studies have been performed on biological tissues utilizing a similar approach[101], 
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there is still little experimental work that has been done for this particular geometry.  

Since most current studies in this area apply spherical indenters to determine the 

nonlinear properties of such materials[101], our approach complements these studies 

and provides another perspective in understanding the bulking behavior of soft matter.  

Furthermore, our interest in this geometry stems from its potential avenues for 

applications.  For example, this geometry can be used to model the behavior of bulk 

tissue in biological systems.  The results of our experiments may help develop 

improved prosthodontic treatment procedures, and allow better management of soft-

tissue recovery following trauma[134]. Additionally, the indentation fracture of a 

highly compliant solid in this geometry can be used to simulate chewing and 

understand food texture in soft solids [135]. 

 

5.2 EXPERIMENTAL 

5.2.1 Systems of Interest 

Silicone based gels were chosen as model systems for these experiments due to 

their highly elastic network and their ubiquity in the medical and dental community.    

In particular, the gels labeled Samples 5 and 6 in Table 4.2 were selected for 

indentation fracture experiments, since they had been well-characterized.  As noted 

before, the network of the gels was formed from vinyl-terminated PDMS prepolymers 

with a molecular weight of 28,000 g/mol (V31).  Tri-methyl PDMS prepolymers with a 
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molecular weight of 28,000 g/mol (T31) were added at a fraction of 20% by weight 

during sample preparation to form silicone gel systems.  The sample without this sol 

fraction is referred to as the neat gel, and the one with 20% added sol fraction as the 

modified gel.      

 

5.2.2 Methods 

 Fracture experiments were performed on the flat punch probe apparatus that is 

described in Chapters 3 and 4.  Modifications of this apparatus were taken to account 

for the large range of stresses necessary for fracture.  For example, a 1 kg load cell 

(Sensotec) was used to measure the force applied to the system, instead of a 50 gm 

device (Lucas Schaevitz).  The use of smaller stainless steel indenters with radii of 0.17 

mm and 0.21 mm were tested to induce larger stresses at lower loads; however, bowing 

of these indenter shafts at such high loads resulted.  An indenter with a radius of 0.39 

mm was chosen to avoid this issue.  Additionally, a side camera was attached to the 

device to take photographic images of these experiments.  A schematic of the sample 

geometry is depicted in Figure 4.3. 

         Compressive loads that induced indentation fracture were applied to the silicone 

gels.  The method consisted of compressing the gels at a rate of 25 µm/s with a flat 

punch probe indenter to a maximum load and then holding it in place for 1000s at a 

constant displacement.  At the end of 1000s, the gel was unloaded at the rate of 25 
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µm/s.  To determine the range of stresses required to test each sample, a maximum 

force of 8.0 N, which corresponds to the upper range of our load cell, was first applied 

to the gel. If fracture could be induced, the maximum stress applied was decreased in a 

stepwise manner until failure did not occur in the sample.  When a range of stresses was 

determined at which failure would occur, an array of loads was selected for our 

experiments.   For each load chosen, the value was programmed into LabView and the 

test was repeated five times on different points of the sample due to the statistical 

nature of fracture.  

 

5.3 RESULTS AND DISCUSSION 

5.3.1 Delayed Fracture Behavior 

From our data, a generalized delayed fracture event was noted for both the neat 

and modified gels.  The typical stress, σ, versus time, t, response of a silicone sample 

that has undergone fracture in our strain–controlled experiments is illustrated in Figure 

5.2.  From this graph, a number of features can be defined as the gel is held at a 

constant displacement, δ, for the duration of 1000s.  Upon loading, the indenter 

compresses the gel to a maximum stress, σm.  For a period of time, tf , the transient 

stress in the gel relaxes to a value of σf, the stress at failure.  tf can be defined as the 
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time to fracture and is the time if takes for the stress to relax from σm to σf.  At σf, a 

signature of fracture occurs and the stress in the gel is relieved to a plateau stress of σinf.  

As alluded to Figure 4.12, the details of the fracture event depend on the relative 

displacement at which it occurs, since large deformations can confine the elastic layer.  

The load-displacement graph of Figure 5.3 demonstrates two different loading 

conditions in which the delayed fracture event is induced.  The maximum 

displacements of two points of the neat gel are depicted.  The indenter in each case is 

loaded onto the gel to a maximum load, held for 1000s, and unloaded.    The dotted line 

represents loading conditions of the indenter when it is far from the bottom edge of the 

elastic layer (δ<h), whereas the solid line designates applied displacements of the 

indenter close to undeformed thickness of the gel layer, h, (δ≈h).  The fracture modes at 

these two different loading conditions are noted below.     

 

5.3.1.1 Fracture at δ<h 

At stresses where the indenter is held at displacements far from the substrate 

(δ<h), crack initiation occurs from a pre-existing surface flaw outside of the contact 

area.  This behavior is noted in side-view images of the silicone sample in Figure 5.4, 

whose data correspond to the dotted line in Figure 5.3.  As observed in Figure 5.4(a), a 

crack forms at the top half of the indenter after holding the indenter at 2 N.  Retraction 

of the indenter leaves a silhouette of a Hertzian cone crack, as seen Figure 5.4(b).  This 
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failure behavior is consistent with the experiments and simulations performed by Chai 

and Lawn[129] in which top-surface ring cracks were found to dominate crack 

initiation in very thick brittle coatings on complaint substrates utilizing a blunt indenter.    

Based on these observations, a general failure mode can be used to describe the 

behavior of an indenter compressing on an elastomeric layer.  Figure 5.5 schematically 

illustrates this crack initiation behavior. (Figure 5.5 (a)) An indenter of radius a, is 

initially loaded to an elastic gel layer of thickness, h.  (Figure 5.5 (b)) The sample is 

held at a constant stress and pre-present surface flaws are subjected to tensile stresses 

outside the contact zone.  (Figure 5.5 (c)) At some point, a favorably located flaw, 

represented by the X, will initiate a crack.  (Figure 5.5 (d)) A ring crack propagates 

incrementally downward in the rapidly weakening tensile field and the gel relaxes 

upward along the indenter.  (Figure 5.5 (e)) The crack stops growing when there is no 

longer sufficient strain energy available to drive the crack.  (Figure 5.5 (f))  Unloading 

of the indenter results in a Hertzian cone crack.   

 

5.3.1.2 Fracture at δ≈h 

At stresses where the indenter is held at displacements near the substrate (δ≈h), 

crack initiation is induced at the corner of the indenter.  Corresponding to the data 

obtained from the solid line in Figure 5.3, Figure 5.6 demonstrates the photographic 

evidence from the side-view camera of this response in a silicone gel compressed to a 
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σm of 1.26x107 Pa, which is equivalent to a load of 6 N.  Initially, the gel is loaded and 

held to a maximum load of 6 N and relaxes for a time, tf, as seen in Figure 5.6(a).  Note 

the evolution of a cone-like structure at the bottom of the indenter with time.  At σf, a 

ring crack forms and propagates along the shaft of the indenter (Figure 5.6(b)).  The 

formation of a ring crack column around the indenter is consistent to the observations 

of Shergold and Fleck in their puncture experiments[131, 132].  Retraction of the 

indenter leaves a silhouette of the crack as the volume of gel that was displaced returns 

to its original position (Figure 5.6 (c)). 

An explanation of this behavior can be formed if we extend the general failure 

mode of an elastomeric layer to the highly confined volume of gel in these experiments.  

In these experiments, a top surface defect at the corner of the flat punch induces a ring 

crack to form, since the stresses are highest at those points of the indenter [63].  Figure 

5.7 demonstrates this behavior.  (Figure 5.7 (a)) At first, an elastic silicone layer of 

thickness, h, is compressed by an indenter with a radius of 2a.  The gel is held at a 

constant load.  (Figure 5.7 (b))  Stresses at the point of contact are highest around the 

corner of the indenter, marked by Xs.  (Figure 5.7 (c)) Eventually, a surface ring crack 

forms around the corner of the punch indenter and (Figure 5.7 (d)) the crack will 

propagate downward in the tensile field.  (Figure 5.7 (e)) Since the crack cannot 

continue through the rigid substrate, the shape of the cracked material relaxes around 

the length of the indenter.  (Figure 5.7 (f)) Unloading of the indenter results in a crack 

with a length, l. 
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The images of  Figure 5.6 and the above analysis strongly suggest that the 

behavior of the highly confined volume of elastic gel is therefore similar in nature of 

thin brittle coatings on a substrate, even though it  has been noted that the substrate 

controls the stress level of the thin coating[129].   In work performed by Chai and Lawn 

[129], top ring cracks were observed in crack initiation of ultrathin brittle films when 

blunt indenters were used. This response is similar to the initiation of the crack by the 

corner of the indenter in our samples.  Furthermore, though-thickness ring cracks were 

observed transversely along the entirety of thin ceramic films, where the radius of the 

ring crack in their samples was approximately equal to the radius of the area of 

contact[129].  In our samples, similar behavior is noted in Figure 5.8, where the 

average crack length, lavg, of five samples is taken for each specific maximum stress, 

σmax, plotted and normalized by the thickness, h, of the sample.  Unfilled circles 

represent the gels with no additional sol fraction and filled circles represent those with 

sol in this graph.  The data taken for this graph assumes that the overall fractured 

sample relaxes so that the crack tip can be imaged.    

 

5.3.2 General Delayed Fracture Properties  

Based on the above analysis, we now look at the specific properties which can 

be attributed to the delayed fracture response of elastomeric gels.  We focus primarily 

on the gels in which failure occurs when δ≈h, since our data for these gels are 
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statistically significant.   Several common characteristics are found among the gels 

when the applied maximum stress, σmax, are compared to the failure characteristics 

identified in Figure 5.2.  

Prior to failure, the amount of time for viscoelastic relaxation in the gels is 

shortened at higher loads.  Such a characteristic is demonstrated in Figure 5.9, where 

time to failure is plotted against the maximum applied stress.  The gel with no added sol 

fraction is represented by solid bars and the sample with  20% added sol is represented 

by the crosshatched ones.  From this plot, it is evident that there is a decrease in the 

time to failure, tf, as a larger maximum stress is applied in both gels.  This trend 

indicates that the relaxation of the polymer chains in the network of the two gels is time 

dependent prior to fracture. 

At and after fracture, a general correlation is also observed between the 

maximum stress applied, σmax, to both the failure stress, σf , and  the plateau stress, σinf, 

respectively.  A linear relationship for these properties of the elastomers is shown in 

Figures 5.10 and 5.11.  In these graphs, unfilled circles denote data for the neat gel, 

while crosses represent the modified gel.  Two filled circles represent the samples from 

Figure 5.3, one that fails from a surface flaw and the other from the edge crack, and are 

highlighted for comparison.  A dotted line is drawn on the plots, representing σmax =σf 

=σinf, as a guide for the eye.  This line indicates the expected behavior of a purely 

elastic solid in which there is no viscoelastic component contributing to stress 

relaxation or when there is no fracture that occurs.   
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From these plots, a predication can be made for the relaxation behavior and the 

stress released from delayed fracture of elastomeric gels in general.  As shown in 

Figure 5.10,  there is evidence from our measurements that relaxation occurs at a 

specific fractional value of its applied maximum stress;  a ratio can therefore be 

determined for σf  to σmax by fitting a linear curve through the origin for each set of 

data.  For our elastomer gels, this value ranges from approximately 10%-20%, as noted 

in Table 5.1, and implies that the majority of viscoelastic relaxation of our elastomeric 

gels is from the gel network.  This property prior to fracture is similar to the behavior 

seen in alginate gels at large strains, where the maximum stress  applied to these 

materials decayed to 0.5 of its original value after 500 s[48].  After fracture, Figure 

5.11 demonstrates that the total stress released from the resulting crack for each 

individual elastomer is nearly constant, since the resulting σinf increases proportionally 

to a greater applied σmax.  That is, a finite amount of stress can be released, since the 

maximum length the crack can propagate is from the bottom surface of the gel to its top 

surface.  Further evidence of this behavior is supported from the crack lengths shown in 

Figure 5.8, which are also nearly constant for each individual gel sample at the varying 

maximum displacements. A resulting ratio of σinf  to σmax can also be determined for 

our gels in a similar manner described for σf /σmax . Values of σinf /σmax are shown in 

Table 5.1.  These general characteristics provide insight into mechanisms of fracture 

resistance and are useful in characterizing the effect of sol fraction in our systems.   
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5.3.3 Effect of Sol 

The addition of sol to a silicone network changes the response of the gels at 

fracture.  Although it has been shown in Chapter 4 that the modulus of a silicone 

decreases with increasing sol fraction, the addition of sol to a gel toughens it at stresses 

large enough to induce fracture.   

A toughing effect is observed when comparing the delayed fracture 

characteristics noted in Figure 5.2 and the crack lengths of the gels.  For example, a 

comparison of failure times for the samples provides evidence that tf  decreases for each 

range of applied stresses when added sol exists in the gel, as demonstrated in Figure 

5.9.  One implication of this result is that the sol delays crack initiation by 

strengthening defects within the gel network. Furthermore, the statistical data in Table 

5.1 strongly suggests similar behavior.  The contribution of strength from the sol to the 

network is observed when comparing the values of σinf/σmax, the percentage of residual 

stress left after fracture, of the two samples.  Despite a lower cross-link density in the 

gel with 20% sol fraction, this modified sample exhibits the greatest percent of residual 

stress.  The difference between σf /σmax  and σinf /σmax  also suggests toughening as well.  

As noted in the last column of Table 5.1, this value, which provides an indication of the 

fractional stress relaxation due to the formation of the crack, is larger for the neat gel.  

The amount of stress that is released from the fracture event in the modified gel with 

sol fraction is less than that of the neat elastomer.  One explanation for this behavior is 

that the sol prevents the crack growth due to its incompressibility.  Additional evidence 
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of crack blunting by the sol is illustrated in Figure 5.8, where the fraction of cracking 

in the gel after it has been unloaded is less in the modified gel.   

 

5.3.4 Mechanisms for Fracture Resistance 

Since the delayed failure event occurs in both gel systems, it is evident that 

fracture resistance of the material is primarily related to the strength of the polymer 

chain network.  The mechanisms resisting crack initiation must therefore either absorb 

or dissipate energy from the system of polymer chains.  Such mechanisms can be 

attributed to chain scission [115],  entanglements[136],  and viscous dissipation from 

the network.   

 The mechanisms resisting fracture contribute primarily to the value of time to 

failure, demarcated as tf in Figure 5.9, in the delayed failure process.  Resistance to 

failure  in our case may result from a multiple-step process.  Initially, the chains 

organize themselves to minimize the energy of the system as the maximum load is 

applied.  As time progresses, there is viscoelastic loss from the strands in the network.  

The polymer chains are then stretched and a form of strain hardening occurs, where 

stress relaxation plateaus.  This effect is supported by the results in Figures 4.10 and 

4.11, which demonstrates the irreversibility of stress relaxation in the gel with 

successive loading cycles and the eventual weakening of the gel to fracture.  The 

polymer chains or a subsection of the chains are possibly extended, creating resistance 
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to fracture [54].  Furthermore, entanglements with the gel act as effective cross-links 

[136] and chain pullout from surrounding section of the polymer matrix may occur 

before fracture is initiated [115].   

The damage from applied stress can lead to fracture.  The chains that lie in the 

fracture plane are ruptured, leading to the formation of a ring  crack.  This rupture 

behavior has been observed by Baumberger, et al. in hydrogels [115, 120], and is 

supported by the Lake and Thomas theory, which noted that both chains and bonds 

needed to be fully extended for rupture to occur.   

In the modified gels, a surprising result from our experiments is that the added 

sol fraction creates greater resistance to fracture, even though it lowers the modulus of 

the gel at small strains.  At stresses close to failure, the sol toughens the network prior 

to crack initiation and blunts crack growth.  As noted before, the longer times to failure 

in Figure 5.9 suggest that the sol prevents crack initiation.  It is possible that the 

solvent-network motion prevents failure by providing easier access for chain pull-out 

from another fracture plane.  This notion can be deduced from experiments performed 

by Baumberger , which found that high  viscosity solvents will increase the energy 

required for failure in a soft solid [120].  Furthermore, the difference in crack lengths in 

Figure 5.8 suggests that the sol fraction prevents crack growth.  Elastic blunting of the 

crack may result [56],  since the sol may be considered as an incompressible material.  

It is possible that the added sol fraction prevents the volume of gel to be displaced from 

underneath the indenter prior to fracture.   As it is difficult to fully probe the effect of 
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solvent independent of the network, the role of the sol in relation to the network in a 

polymer gel needs to be explored with further experimentation.   

 

5.4 CONCLUSIONS 

A delayed indentation fracture response was observed and characterized in 

silicone gels under constant strain with a rigid flat punch probe.  This response can be 

defined by a characteristic time to failure, which is the time it takes for a gel to fail 

catastrophically from the point of maximum loading.    
Two modes of failure were observed, depending on the confinement of the 

elastic layer.  When the indenter is held at displacements far from the substrate (δ<h), a 

surface flaw initiates a ring crack that leads to the formation of a Hertzian cone crack.  

The crack in this case grows transversely until it reaches the edge of the weakening 

tensile field.   When the indenter is held at displacements near the substrate (δ≈h), crack 

initiation is induced by the high tensile stresses around the corner of the flat punch 

probe.  A ring crack is formed and the gel eventually relaxes along the shaft of the 

indenter to relieve the high stresses produced from loading.  The overall fractured gel 

relaxes with retraction of the indenter and a crack length that is close to the thickness of 

the sample appears.  The modes of fracture observed are similar those seen in thick and 

ultrathin brittle films [129].      
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From our analysis, the delayed fracture event is likely related to the strength of 

the polymer chain network.  From our large deformation experiments in Chapter 4, 

fracture resistance mechanisms can be attributed to chain stretching [115],  

entanglements[136],  and viscous dissipation from the network.   The addition of sol 

also toughens the gel and creates resistance to fracture.  An increase in added sol 

fraction leads to a larger load required for failure and results in shorter crack lengths 

after the fractured gel is allowed to relax.  Crack blunting may occur due to the 

incompressibility of the sol or the movement of the polymer chains in the solvent.   
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Table 5.1.  Comparison of average fractional relaxation values for silicone 
samples.   
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Figure 5.1.  Common indentation geometry for soft solids.  Note that the 
sample is not fully supported by a substrate. 
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Figure 5.2.  Typical delayed fracture response.  The gel is loaded to a  
maximum stress, σmax, and relaxes for a time, tf.  At σf, a crack forms 
and the gel eventually relaxes to a plateau stress, σinf.
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Figure 5.3.  Load-displacement curves for a silicone with no added sol 
fraction.  The solid line represents the response of  the gel when the 
indenter is close to the substrate at maximum applied stress and 
corresponds to Figure 5.2.  The dotted line designates delayed fracture 
behavior when the maximum displacement of the indenter is far from the 
substrate.  The data were taken at two different points on the same gel.     
.   

-1000

0

1000

2000

3000

4000

5000

6000

0 2 4 6 8 10 12

P/
πa

2 
(P

a)

δ/a



158 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4.  Observed failure behavior of gel when indenter is far from 
substrate. Side-view images are based on silicone with no added sol 
fraction. (a) Upon loading and holding the gel at 2 N, fracture of the gel 
occurs at the top half of the indenter.  (b) Retraction of the indenter 
leaves a silhouette of a Hertzian cone crack. .
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Figure 5.5.  Schematic of flaw induced crack initiation behavior. (a) An 
indenter of radius a, is initially loaded to an elastic gel layer of thickness, 
h.  (b) The sample is held at a constant stress.  Pre-existing surface flaws 
are subjected to tensile stresses outside the contact zone. (c) At some 
point, a favorably located flaw, represented by the X, will initiate to 
crack.  (d) The crack will propagate incrementally downward in the 
rapidly weakening tensile field. (e) Crack growth stops when there is no 
longer sufficient strain energy to drive it.  The gel will relax around the 
indenter.  (f) Unloading of the indenter results in a Hertzian cone crack.   
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Figure 5.6.  Observed failure behavior of gel when indenter is close to 
bottom substrate. Side view images are of a gel with 20% sol fraction 
and correspond to Figure 5.2   (a)  The gel is loaded and held to a  
maximum load of 6 N and relaxes for a time, tf..  (b)  At σf, a crack 
forms and propagates along shaft of indenter. (c) Retraction of indenter 
leaves a silhouette of crack. 

(a) (b) (c)(a) (b) (c)
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Figure 5.7.  Schematic of edge induced crack initiation. (a) An elastic 
silicone layer of thickness, h, is compressed by an indenter with a 
diameter of 2a. (b) The gel is held at a constant load.  Stresses at the 
point of contact are highest around the corner of the indenter, marked by 
Xs.  (c) Eventually, a surface ring crack forms around the crack of the 
punch indenter. (d) The crack will propagate downward in the tensile 
field. (e) Since the crack cannot continue through the rigid substrate, the 
gel relaxes along the shaft of the indenter. (f) Unloading of the indenter 
results in crack with a length, l.   
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Figure 5.8.  Normalized average crack length, lavg/h as a function of 
maximum stress, σmax. Unfilled circles (○) represent the gels with no 
additional sol fraction and the boxes with crosses represent those with 
sol.  l is defined as the crack length from the top of the sample to the 
crack tip,  as measured from Figure 5.7(f).  This value is normalized by 
the height of the sample, h, and assumes that the overall fractured 
sample relaxes so that the crack tip can be imaged.  
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Figure 5.9.  Relationship of time to failure, tf, and applied maximum 
stress, σmax.  Filled bars represent samples with no sol fraction; cross-
hatched bars represent silicones with 20% sol.   
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Figure 5.10.  Stress at failure, σf  as a function of applied maximum 
stress, σmax. Unfilled circles (○) denote gels with no sol fraction and 
crosses (X) are those with added sol in this graph. Filled circles (●) 
represent the samples from Figure 5.3, which have no added sol 
fraction.  The dashed line represents behavior expected for a purely 
elastic solid. 
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Figure 5.11.  Plateau stress, σinf  as a function of applied maximum 
stress, σmax. Unfilled circles (○) represent gels with no sol fraction; 
crosses (X) are those with 20% sol.  Filled circles (●) represent the gels 
from Figure 5.3, which have no sol fraction added to them. 

 

0

5 106

1 107

1.5 107

2 107

0 5 106 1 107 1.5 107 2 107

No Sol
20% Sol

σ in
f (P

a)

σ
max

 (Pa)



 

 

166

 

 

 

 

 

 

 

CHAPTER 6 

SUMMARY AND FUTURE WORK 

Equation Chapter (Next) Section 1



 

 

167

CHAPTER 6 

SUMMARY AND FUTURE WORK 

 

6.1 SUMMARY OF THESIS 

In this work, our goal was to explore the properties of cross-linked polymer gels 

from a mechanical perspective.   Our work primarily focused on understanding the 

response of polymer gels over a range of stresses and at fracture using indentation 

techniques.  Specifically, we developed novel experimental methods that allowed us to 

explore the effect of solvent in cross-linked gels at small and large stresses, as well as 

determine the mechanisms at failure of soft materials under compression.  These 

techniques were a consequence of adapting existing theories in civil engineering, 

theoretical and applied mechanics, chemical engineering, and metallurgy to soft 

materials and indentation.  The results of these methods and experiments are 

summarized in the following sections.  

 

6.1.1 Solvent Flow and Linear Viscoelasticity 

  Initially, the effect of solvent on the response of gels was probed at small 

strains. In these experiments, a polymer gel was considered a form of porous media, 

where internal movement of the solvent within the gel network was similar to that of 
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water in a permeable soil.  Alluding to the principles of soil consolidation [77] and 

Darcy’s Law[137], a novel technique was presented that was ideally suited for 

characterizing the mechanical and transport properties of polymer gels in the linear 

elastic regime.  

In this technique, a flat, circular punch and a flat, rectangular punch were used 

to probe the response of gels under oscillatory loading conditions.  Solvent transport 

within the gel was assumed to be driven by gradients in hydrostatic pressure, giving rise 

to a dissipative response quantified by the phase lag between the punch displacement 

and the resulting load.  By comparing results for different punch sizes, it was possible 

to differentiate between dissipation resulting from internal solvent flow and dissipation 

due to the viscoelastic character of the polymer network itself.   

Use of the technique was illustrated with pNIPAM gels, a hydrogel that is often 

studied due its potential for biomedical applications [37].  This particular material was 

chosen due to the phase separation that occurs above its critical solution temperature of 

35oC.  At temperatures below 35oC, the elastic constants for the gel at small strains 

were shown to be independent of punch size and frequency.  Above 35oC, we were able 

to show that solvent transport through the gels was inhibited in comparison to the 

transport rate at low temperatures, where local phase separation was not observed.  The 

experimental testing apparatus is sensitive to very small phase angles, and this 

technique could be applied to other heterogeneous gels. 
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6.1.2 Mechanical Characterization of Elastomeric Gels 

The experimental investigations were extended to include the deformation 

behavior of elastomeric gels prior to fracture.     By utilizing a flat punch probe 

indenter, silicone based gels were characterized to understand the influence of structure 

and geometry on their mechanical properties.  These systems were selected because 

they were able to deform at high strains without failing, and could be potentially useful 

to model biological tissues 

Tetra-functional end-linked silicone based systems with molecular weights 

ranging from 800 g/mol to 117,000 g/mol were chosen to determine the effect of 

molecular weight and structure on the mechanical properties of the system.  Modulus 

measurements indicated that cross-linking dominated the small strain response of the 

silicones when molar mass strands in the network were below 28,000 g/mol.  For strand 

molecular weights above this value, entanglements governed the elastic behavior and a 

plateau value of the shear modulus was obtained.  However, this effect was not 

observed in the viscoelastic relaxation of these gels at high stresses.  Longer chained 

networks led to a greater fractional relaxation due to a lower cross-link density.  These 

results were supported by extraction data, which indicated that the amount of 

unintentional sol from unreacted PDMS correlates to the relaxation behavior of the 

silicone network.   

The addition of sol to three base networks with molecular weights of  500 

g/mol, 28,000 g/mol and 117,000 g/mol altered the mechanical properties of the 
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silicones when compared to the corresponding neat gels.  At small strains, a decrease in 

modulus was noted as more sol fraction was added; however, the value of the modulus 

measured was found to be independent of the weight of the sol fraction added.   At high 

stresses, the fractional relaxation of the gels is greatest for the samples with higher 

molecular weights.  It was also noted that measurements of 500 g/mol silicone system 

were not reproducible.   

Repeated stress-relaxation experiments of two gels further suggested that the gel 

network plays a relatively significant role in the elastic response of the sample at large 

stresses.  A form of damage accumulation was observed, which could possibly lead to 

failure.  

Characterization of these elastomeric gels ends with a model that considers 

geometric confinement of the elastic layer under large scale deformation.  The degree 

of confinement is described by the ratio of the punch size to the sample thickness (a/h) 

and is dependent on the normalized displacement of the indenter into the sample (δ/h).  

Utilizing a Neohookean model for large strains, an indication of how stiff the material 

will become over a range of stresses is determined.  At very large deformations, the 

confinement effect is magnified.  The results from this model, as well as those 

presented from the experiments, provide insight into stresses which can lead to failure 

of the elastomeric gels.   
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6.1.3 Fracture Mechanisms and Polymer Gels 

To complete the picture of the mechanical response of polymer gels under 

compression, we applied indentation fracture to our elastomeric gels using a blunt 

indenter.  Based on the results from Chapter 4, we chose two model systems for 

comparison:  one silicone network and a corresponding gel with added 20% sol 

fraction.  Indentation fracture experiments were performed on these systems with a flat 

punch probe.   

A delayed fracture response was characterized in both elastomeric gel systems.  

The typical delayed failure response occurs after the sample is compressed to a 

maximum stress and held at a constant displacement.  Viscoelastic relaxation of the gel 

occurs until it catastrophically fails.  The characteristic time it takes for crack initiation 

to occur is defined as the time to failure.   The characteristic properties of delayed 

fracture are correlated to maximum stress applied.   

Images and measurements of the gels indicated that delayed fracture is related 

to the effect of confinement in the elastic layer.  When the indenter was far from the 

bottom of the gel and the elastic layer is very thick, surface flaws initiate fracture.  A 

ring crack led to the formation of a Hertzian cone crack due to the stress fields in  the 

gel.  When the indenter was near the bottom surface of the gel and the elastic layer was 

confined underneath the probe, the high tensile stresses around the corner of the flat 

punch probe give way to the formation of a ring crack.  The gel relaxes along the shaft 

of the indenter to relieve the high stress fields in this geometry.  After the retraction of 
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the indenter, the resulting crack from the relaxed fractured gel is close to the thickness 

of the sample.  These modes of fracture observed were similar those seen in thick and 

ultrathin brittle films [129].      

Mechanisms leading to fracture resistance  in the polymer chain network could 

be attributed to entanglements[136], and viscous dissipation from the network.   The 

addition of sol was observed to toughen the gels, giving longer failure times and 

shortened resulting crack lengths.   Crack blunting due to the incompressibility of the 

sol or an ease of movement of the polymer chains in the sol are possible.  More 

experimentation is required to understand the effects of added sol fraction.  These 

experiments provide the groundwork in predicting the mechanical response of soft, 

high deformable materials.    

 

6.1.4 Main Points 

From this research, a set of analytic tools based on a simple indentation 

technique has been provided to predict the mechanical response of polymer gels over a 

large range of stresses and at fracture.   At small strains, the differentiation of solvent 

flow from viscoelasticity of a gel network was shown to be possible utilizing different 

punch sizes.  At larger stresses and fracture, a delayed failure response of polymer gel 

layers was observed.  The modes of failure are dependent on the geometry of the 

system.  The addition of sol fraction in a gel was noted to toughen its network and play 
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an important role at these deformations.  These results are useful in predicting the 

mechanical response of polymer gels when blunt indentation is considered.  Further 

work in this area of research will improve the existing mechanical models and 

techniques applied to such materials.   

 

6.2 RECOMMENDED FUTURE WORK 

Based on the above results, a number of possible avenues for research can be 

taken to extend this work.  These areas include further characterizing our existing 

systems, changing the geometry of our experiments, and applying our techniques to 

other soft material systems.  Taking these opportunities will further increase our general 

knowledge of the mechanics involved when dealing with compressed gels and soft 

materials.    

 

6.2.1 Further Characterization and Modeling of Gel Studies 

One natural extension of this study is to further characterize our gels through 

experimentation and modeling.  In doing so, we can create a more complete picture of 

our work and understand the limits of our models.  In this section, we look to see how 

this can be done for our two chosen model systems using the flat punch probe 

geometry.         
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For the pNIPAM gels, indentation experiments conducted at stresses close to 

the failure stress would be useful.  At room temperature, these experiments would 

complement the theories and models described by Hui, et al. [35] and Lin[64] for small 

strain behavior.   From a mechanical perspective, indentation experiments on pNIPAM 

at stresses inducing fracture could also be compared to those of elastomer systems that 

were described in Chapter 5.   

For the silicone gels, further characterization can lead us to gain a better 

understanding of the effect of sol fraction on an elastomeric network, as well as the 

stress fields within such a system.  As noted in Chapter 5, it was evident that an added 

sol fraction led to tougher gels and a delayed fracture response.  This behavior is also 

evident in Figure 6.1, where preliminary experiments indicate that a corresponding 

V31 gel with 40% sol fraction fails at higher stresses than those that were tested.  This 

property was first observed when determining the range of stresses in which our gels 

would fail.  It was noted that gels with 0% and 20% added sol fraction failed at 

maximum loads ranging between 4.0N to 8.0N, while gels with 40% added sol fraction 

did not fracture within the range of our load cell  

To further explore the cause of this response, the de-coupling of network and 

solvent effects of the silicone gels is necessary at such high stresses. One method to do 

this is to perform fracture experiments on all the gels that were characterized in Chapter 

4.  Based on these experiments, we could determine how the cross-link density and 

molar mass of the polymer chains would affect the response at failure.  These 
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experiments could be complemented by additional fracture studies performed after 

extraction of the sol component, as well as tests that vary the rate of loading on the 

sample.  Results of these experiments would give us insight into the network response.   

The stress fields of the indenter displaced in the gel could also be further 

modeled to determine how geometric confinement of the elastic layer affects fracture 

behavior.  Modeling of stress fields of the flat punch indenter close to the substrate 

would provide us one method to determine network behavior in these types of 

geometries.  Moreover, solvent effects at these large deformations could be modeled as 

an extension of the existing small strain studies performed by Lin, et al[64].  These 

studies could be compared to large deformation and failure experiments of silicone gel 

thin films, as well as birefringence studies of the elastic layers of varying thicknesses.   

Further characterization and modeling of these materials lays the groundwork 

for general models of soft systems over a large range of stress and a range of 

thicknesses.  These models would be invaluable in situations where the prediction of a 

soft material is necessary, whether it involves utilizing a hydrogel for dental sutures or 

determining the response of a silicone network that has not fully cured, and would 

extend the models of indentation fracture to include other soft materials.       
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6.2.2 Indentation Studies in Other Geometries 

Another extension of our experiments is to apply alternate indenter geometries 

to our compression tests.  Common to our experiments was the utilization of a circular, 

flat punch probe with a contact radius of 0.39 mm to perform indentation.  Elements of 

this idea were integrated in Chapter 3, when probing the transport properties of 

hydrogels.  However, our attempts to move away from the flat probe punch were 

unsuccessful due to the inhomogeneity of the gels and the alignment of the indenter.  

An interesting approach to the small strain and fracture studies is to utilize indenters 

with smaller punch radii.   

One possibility is to use circular, punch probes with contact radii that are 

significantly less than 0.39 mm.  In determining internal transport of hydrogels, a 

smaller contact area would decrease the relaxation time of the gel, as noted in Equation 

(3.9) lessening the distance of travel of the solvent underneath the punch.  This solution 

would possibly resolve the issue of a discernable phase angle when comparing punch 

sizes.  Furthermore, the homogeneity of the pore size in a gel would be less of a 

concern.  For the fracture experiments, the use of a smaller punch radius would resolve 

the issues of reaching the limits of our load cell, which were problematic when a 

corresponding gel of our samples with 40% sol fraction was tested.  A smaller contact 

area would decrease the maximum load required to fracture a gel; however, care would 

have to be taken to prevent the indenter from bowing.  For our small strain experiments 
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and for softer polymer gels, mechanical measurements could be made from punch sizes 

that were on the order of those used in nanoindentation.     

To minimize the contact radius of an indenter, another possibility is to use a 

‘sharp’ indenter.  By definition, the circular, flat punch probe used in our experiments is 

a blunt indenter.  The indenter would become a ‘sharp’ contact at the limits of Equation 

(2.31), where a stress singularity is formed as the contact pressure increases and the 

indenter size decreases.  The behavior of our materials was analogous to the studies of 

thick brittle coatings performed by Chai and Lawn [129].  It would be interesting to see 

if a blunt contact would behave in a similar manner as a sharp indenter [130]. 

Utilization of a sharp indenter in large scale deformation and fracture 

experiments on an elastic substrate would then allow us to see if plastic-like behavior 

ever occurs in these and other soft material systems.  Characterization of materials in 

this geometry has been performed on metals and ceramics [74] but has yet to be done 

on polymer gels and other soft materials.  These studies would open up a whole new 

understanding of the fracture behavior of soft materials.      

 

6.2.3 Compression Studies of Other Materials  

As a more complete picture of our chemically cross-linked model systems is 

formed, an interesting aspect of our research would be to apply our indentation 

experiments, particularly the large stresses and fracture studies, to other highly 
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compliant materials.   Alternate materials that are well-suited for this geometry include 

physically cross-linked gels, double network hydrogels, and biological tissues.  

The use of physically cross-linked gels would allow us to further understand the 

nature of large scale deformation and fracture in these types of networks.  One such 

system of interest in our experiments are thermoreversible, self-assembling acrylic 

triblock copolymer gels [9, 58].   In these systems, a gel is formed by dissolving the 

midblock with a selected solvent.  A polymer network is formed from the self-

aggregation of the endblocks and the bridging of midblocks between these domains.  At 

very high stresses and fracture, it would be expected that the gels may fail as a result of 

viscoplastic chain pull-out, as noted by Baumberger, et al. [115].  However, it has been 

has been shown that the degree of midblock stretching increases for gels with relatively 

large aggregation numbers and short midblocks[9].  Further investigations on such 

materials would lead to a better understanding of the mechanical response of physically 

cross-linked polymer gels.   Moreover, an understanding of triblock hydrogels, such as 

those with poly(lactide) endblocks, would be well-suited as tissue engineering models, 

since their modulus is similar to that of soft tissue[138, 139]. 

Indentation fracture experiments would also be of interest in interpenetrating 

network hydrogels.  Double network hydrogels can be made from a two-step 

polymerization process, where a tightly-cross-linked network is formed first and  

followed by the synthesis of a loosely-cross-linked network[139].   The resulting gels 

that are formed are very tough with fracture strengths of 17 MPa[140].    In these gels, 
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it has been noted that the mechanical strength is not simply attributed to chemical 

cross-linking or physical entanglements between the two networks, since double 

network gels with loosely cross-linked networks exhibited greater strength[140].   

Instead, the molecular weight of the second linear polymer chain in these networks 

determines the strength of the system, since these polymer chains are noted to 

entangled within themselves[141].  A comparative study of indentation fracture 

between these interpenetrating systems and the silicone gels would allow us to 

understand the effect of unreacted PDMS on our systems.  In the case of our gels, the 

unreacted PDMS could be treated as an interpenetrating network.   

An application of indentation experiments to biological tissue is another avenue 

of research.  One extension of our research is to apply the indentation fracture 

experiments to mammalian skin.  Since our silicone gels have Young’s moduli that are 

close to the values of skin obtained by Shergold and Fleck[131, 132], we can utilize our 

experiments on soft tissue and understand their behavior prior to fracture. These 

experiments would complement existing research on the puncture mechanisms of 

skin[132] by utilizing a method that is able to control the rate of penetration in the 

material.  Such experiments would benefit the medical community and biomedical 

research.  
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Figure 6.1.  Time of failure with increasing sol fraction in gel.
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APPENDIX A 
 

Derivation of Equation (3.31) 
  

 To determine the phase angle over a continuous frequency spectrum, we begin by 

rewriting Equation (3.29) in the following way: 

 ( ) ( )
0 0

( ) 1 ( ) 1 ( )i T iI i erf f e d erf f de κκ κ κ
∞ ∞

− Ω − ΩΩ = Ω − = − −      ∫ ∫      (A.1) 

Integration of Equation (A.1) by parts gives the following expression: 

 ( ) ( )( ) ( )( )
0

0

1 1i iI erf f e e d erf fκ ωκκ κ
∞∞

− Ω −   Ω = − − + −   ∫  (A.2) 

With ( )( ) ( )( ) ( )
22 fd erf f e df− κ κ = κ  π

, we have: 

 
2( )

0

2( ) 1 '( )i fI e e f dκ κ κ κ
π

∞
− Ω −Ω = − ∫ , (A.3) 

with f' defined as the differential of f.   

Equation (A.3) is a general expression relating I(Ω) to f(κ).  In order to obtain 

an approximate relationship for I(Ω) for a circular punch in contact with an elastic half 

space, we retain only the first term in Equation (3.26) for f(κ), to obtain the following: 
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 ( ) 21

0 0

1 2 1( ) 1 1 1
1

i
i xe eI d e dx

i

κ κ

κ
π κ π

∞ ∞− Ω −
− + ΩΩ ≅ − = − = −

+ Ω∫ ∫ .    (A.4) 

With 1 Reii θ+ Ω = , Equation(A.4) becomes: 

 1/ 2( ) 1 cos sin
2 2

I R i−  Ω ≅ − −  
θ θ . (A.5) 

With 21R = + Ω , ( ) ( )sin / 2 1 cos / 2θ = − θ , ( ) ( )cos / 2 1 cos / 2θ = + θ  and 

2cos 1/ 1θ = + Ω , we obtain: 

 
( ) 1/ 42

2 2

1 1 1( ) 1 1 1
2 1 1

I i
−  + Ω    

 Ω = − + − −   
 + Ω + Ω    

. (A.6) 

Equation (3.31) for the phase angle is obtained by substitution of Equation (A.6) into 

Equation (3.28). 
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