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ABSTRACT 

This work is a collection of articles featuring applications of operations research primarily on 

solid organ transplantation.  At the time of writing, 111,434 Americans were waiting for a liver 

or kidney transplant. Only 26,901 transplants were performed last year – a consequence of the 

scarcity of organ donors and the lack of technologies that confer the same survival and quality of 

life as transplantation. 5,541 individuals died waiting for a transplant and 6,059 became too sick 

to receive one; and perhaps the most unfair hardship borne by many is that they must wait years 

more for a transplant than an equally sick patient somewhere else.  

The national organ procurement and transplantation network is the complex logistical system 

responsible for allocating organs obtained from deceased donors to potential recipients. 

Surprising to me also is that this system discarded 4,372 of the organs obtained last year. Most of 

these organs were of lesser quality but would have otherwise provided lifesaving benefits to 

patients. 

The first two chapters propose restructuring the national system for liver allocation with the aims 

of reducing geographic disparity in access to liver transplantation and annual mortality. The 

structures are based on principles from manufacturing and systems engineering and have graph-

theoretical and topological motivations. Using heuristics or stochastic, non-convex integer 

optimization, we obtain several new designs and test their performances with large-scale 

discrete-event simulations of the entire system.  The appendices include additional technical 

information.   These designs significantly reduced geographic disparity, total mortality, and 

sometimes average transportation cost. 
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The next two chapters investigate the decision-making of kidney transplant candidates.  The first 

of these develops a multi-state Semi-Markov process model of the patient’s overall experience as 

a candidate for transplantation.  The model calculates the average survival time for a newly listed 

patient that can then be used for delivering prognoses and benchmarking performance.  The 

following chapter responds to the discards of lesser quality organs by conducting individualized 

decision analyses that determine when it would be beneficial for a patient to accept such organs 

for transplantation. A comprehensive and realistic computation engine based on decision trees is 

constructed and demonstrated. 

The last chapter is unrelated to the others and presents a method based on robust optimization for 

dealing with well-known nuisance parameters in the conditional logit discrete-choice model used 

in applied microeconomics and marketing.   
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Improving Liver Allocation Using Optimized Neighborhoods 

 

  Liver transplantation is the only restorative therapy for irreversible and progressive liver 

failure1,2. The longevity and quality of life of the thousands of Americans listed with end-stage 

liver disease (ESLD) are significantly influenced by the performance of the national organ 

procurement and transplantation system.  For the 14,637 patients waitlisted in the United States 

(US) in 2014, the vast majority of organs for transplantation were obtained from deceased 

donors (6,449 of 6,729 transplants [96%])3-5.  Liver transplantation is thus marred by the 

shortage of available livers that are donated with 1,767 patients dying while waiting for a 

transplant in 2013 and an additional 1,223 patients removed from the waitlist because they 

become too sick while waiting4. Regrettably, the current structure of the liver allocation system 

allows geographic disparities in access to a transplant to exist among those with similar medical 

urgency6-8.   

The United Network for Organ Sharing (UNOS) is responsible for overseeing the 

national network for organ procurement and organ allocation, and for promoting organ donation. 

Within UNOS, the Liver and Intestinal Committee9 is actively seeking to resolve the disparity 

issue. The current proposal being put to public comment in August 2016 entails redistricting the 

nation into 8 districts in order to promote fairer distribution of transplanted organs10-14.  Mehrotra 

et al. affirmed the significance of the redistricting plan and its methodology but also argued for 

further independent testing and exploration of alternatives15,16. This article responds to 

invitations to provide such an alternative17. 

Current Liver Allocation: 

 Liver allocation in the US is overseen through two separate congressionally mandated 

contracts: the Organ Procurement and Transplantation Network (OPTN) currently held by 

UNOS; and the Scientific Registry of Transplant Recipients (SRTR) currently held by the 
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Minneapolis Medical Research Foundation. Input is solicited from the transplantation community 

with oversight provided by the Division of Transplantation within the Health Resources and 

Services Administration (HRSA) of the US Department of Health and Human Services (HHS)18-

20.  The current geographic structure for the OPTN divides the US into 11 regions, each of which 

is a grouping of several neighboring states. These regions are further subdivided into 58 Donor 

Service Areas (DSAs) total with the DSAs not necessarily having boundaries that correspond 

with state borders. Each DSA has a designated Organ Procurement Organization (OPO) that 

facilitates local procurement and allocation procedures. Allocation of livers is based primarily on 

a three-tier geographic system – local/regional/national (local refers to the DSA of the procuring 

OPO) 21. 

The OPTN follows certain policies in its operations. These policies mainly prioritize 

which candidates on the waitlist are offered an organ for transplantation in the three-tier system. 

The recent liver allocation policies and its history are summarized in22,23. Current policy adheres 

to the principles of transplanting “the sickest first” and that “organs and tissues ought to be 

distributed on the basis of objective priority criteria and not on the basis of accidents of 

geography”  as promulgated by HRSA and refined by the, Institute of Medicine, into the HHS 

Final Rule18. Compliance with the regulations is ongoing and has resulted in several incremental 

changes to liver allocation policy (e.g. Status 1, MELD, Share 15, Share 35)4,24,25.  The Model 

for End-stage Liver Disease (MELD) score, a predictor of 3-month mortality without liver 

transplantation, currently serves as the key metric for assessing medical urgency26-29; however, 

there is no similarly established standard for assessing geographic disparity in organ 

transplantation although several possibilities have been proposed30.  MELD scores range from 

6-40 points (more points implying greater urgency) and are based on laboratory values (INR, 

bilirubin, creatinine, and as of January 2016, sodium31-33).  However, point assignment is not 

purely model-based, as candidates may receive additional ‘exception points’ that augment their 
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MELD score based on circumstantial criteria (of which hepatocellular carcinoma (HCC) is a 

prominent example34). 

Table 1.1 provides an overview of current liver allocation. The geographic structure of 

the OPTN and the sharing policies together comprise how deceased donor-livers are allocated 

to recipients.   

Policy Initiatives: 

Despite existing organ sharing policies, there continues to be discrepancies across the 

58 DSAs in a number of metrics such as the mean MELD score at transplant (>10 points), 

transplant rates (> 20-fold)6, placement on waitlist (>14-fold)7, and deaths due to ESLD (> 19-

fold)35. The redistricting plan under consideration involves regrouping the DSAs into 8 districts 

instead of the current 11 UNOS regions10-14. The proposal has evolved over the past four years 

and was simulated under different sharing policies and compared with various alternatives.  The 

redistricting plan is based on an optimization model that solves for a new grouping of DSAs into 

districts where MELD at transplant across the DSAs in the district is as equal as possible 10.  

The plan is projected to reduce total mortalities while slightly increasing organ transport 

distances and times14.   

The methodology for redistricting demonstrates the value of optimization techniques, but 

some of its limitations ought to be addressed10.  We confine the critique to the proposed 

geographic structure (i.e. regrouping the 58 DSAs into 8 instead of 11 districts) rather than any 

specific sharing policy that was tested. Figure 1 demonstrates the chief structural shortcoming 

of the redistricting solution and the concept of districting in general.  We use Tennessee as an 

example. According to the redistricting plan, the OPO serving Western Tennessee will share 

organs with parts of Arkansas and Missouri rather than with Eastern Tennessee during regional 

allocation. Eastern Tennessee will instead share with parts of Illinois, Indiana, Kentucky, Ohio, 

and Wisconsin16.Since redistricting partitions the country into geographically disjoint subsets, 
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organs procured near district boundaries may be transported to recipients farther away whereas 

candidates with greater medical urgency who are also closer to the procuring DSA, but are out-

of-district, will not receive the organ. Unfortunately, this lack of connectivity among neighboring 

DSAs will be symptomatic of any redistricting plan. Concentric circles (where candidates within 

a specified physical radius of the donor hospital or procuring OPO are given additional priority) 

or momentarily granting out-of-district candidates that are closer to the donor hospital additional 

MELD points have been suggested to remedy this deficiency.  Additionally, the example also 

demonstrates that districts are imbalanced in the numbers of OPOs within the district and in the 

population sizes necessary for supporting donor pools. 

Interestingly, Tennessee in 1992 implemented a statewide sharing variance for kidney 

allocation (which proceeds similarly to liver allocation, but more closely follows a local-regional-

national setup without MELD-scoring).  The policy variance reduced geographic disparities in 

kidney transplant rates and ischemic times by allowing the OPOs in Tennessee to preempt 

regional allocation and share with each other before sharing with OPOs out-of-state36. This 

historical incident further motivates the value of the notion of a DSA’s neighborhood discussed 

in the following section.  

A second major structural deficiency of any districting solution is its inability to locally 

respond to changes in policies and/or practices that may occur within an ever evolving 

transplant system. The OPTN is a dynamic system in which the behaviors of OPOs and 

transplant centers change over time.  For example, the number of newly listed candidates 

needing a liver for transplant in each DSA from 2005-2015 fluctuated by approximately 15% 

year-to-year on average3.  Any revision to the districts in response to these inevitable organ 

supply-demand imbalances will simultaneously affect multiple DSAs. 

 We present an approach that retains attractive features of both redistricting and 

concentric circles and is also amenable to the current operation of the OPTN.  The framework is 
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based on mathematical theory in operations research that surmounts some of the 

aforementioned limitations of redistricting. 

Materials and Methods 

DSA/OPO Neighborhoods: 

The core concept of our proposal is to define regions as a specified set of neighboring 

DSAs for each DSA, instead of DSAs in a fixed district. A DSA’s set of neighbors is called that 

DSA’s neighborhood.  Liver allocation may proceed just as before, except that during regional 

allocation, organs are shared with the procuring OPO’s set of neighboring DSAs; thus 

maintaining the current local-regional-national hierarchy.  

Figure 1.2 depicts an example of a neighborhood for Western Tennessee. In contrast to 

Figure 1.1, where Eastern and Western Tennessee are separated during regional allocation 

under redistricting, Figure 1.2 shows that the DSAs in Western Tennessee’s neighborhood 

include its geographically immediate neighbors among others. The figure illustrates a 

neighborhood for a single DSA; each of the 58 DSAs has its own neighborhood. OPOs in each 

of these respective neighborhoods can be made to share with their geographically-immediate 

neighbors among others during regional allocation. This requirement forces neighborhoods of 

adjacent DSAs to “overlap”, i.e. two adjacent DSAs will have some neighbors in common.  This 

feature has an underpinning in the operations research literature on the theory of the design of 

manufacturing systems that are resilient to demand and supply uncertainty 37 38 39 40.  This 

literature discusses manufacturing systems and networks abstractly, but when translated into 

the context of the OPTN, recommends the following:  Increasing a DSA’s connectivity and 

creating overlapping neighborhoods promotes resilience in responding to demand and supply 

uncertainty; and balancing supply and demand across neighborhoods ensures greater equity. 

Interconnectivity is achieved by having each DSA’s neighborhood contain other nearby DSAs. 

Supply-demand balancing is discussed in the following subsection. 
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The neighborhoods concept provides additional rigor to and generalizes the concept of 

concentric circles, as geographically immediate neighbors of a procuring OPO are within its 

neighborhood during regional allocation.  Regions in the current OPTN and districts in the 

redistricting proposal are special types of neighborhoods that do not overlap; hence the 

neighborhoods framework also generalizes districting.   

Constructing the Neighborhoods: 

 Selecting which DSAs belong in each DSA’s neighborhood using multiple years of 

supply and demand data requires solving an optimization model. The neighborhood of a DSA 

identified from the optimization model forms the DSA’s region in a local-regional-national policy.   

An explicit mathematical formulation of the optimization model is included in the Supplement.   

Much like the geographic structure used in districting10, the neighborhoods can be 

constructed so that each of them has attractive properties. Table 1.2 summarizes the most 

important properties of the neighborhoods that were included in the modeling framework. They 

include that a neighborhood for each DSA contains its geographically-immediate neighbors; has 

relationships that are reciprocal or symmetric (i.e. DSA A is in DSA B’s neighborhood if and only 

if DSA B is in DSA A’s neighborhood); has a minimum and a maximum number of DSAs inside 

of it; attains a minimum population size; includes a minimum number of transplant centers; has 

bounded average organ travel distance/time; and is geographically contiguous. In the spirit of 

concentric circles, once geographically-immediate neighbors are included in a specific DSA’s 

neighborhood, the model will then consider including the geographically-immediate neighbors of 

those immediate neighbors, and so on; however, not all such neighbors are necessarily 

included and the model does not discriminate among neighbors at each stage. These properties 

promote resilience in the solution.   

In addressing disparity, we adopt a Rawlsian41 principle of justice in ensuring that the 

worst-off neighborhood is as close to the best-off neighborhood as possible. The model’s 
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objective is to balance the ratio of supply and demand across neighborhoods (not for a specific 

DSA).  Additionally, the model departs from that used in Gentry et al. in four important ways10. 

First, the model uses 10 years of historical supply and demand data to mitigate the uncertainty 

of annual changes in donor and listing rates. Second, demand in a specific year is measured by 

the number of waitlist additions to the liver transplantation list during that year. Other definitions 

for demand are possible. Third, the objective of the optimization model in Gentry et al. 10  

minimizes the sum of absolute deviations in the number of donors from demand across districts; 

it is preferable to minimize the ratios of supply and demand to avoid penalizing DSAs based on 

the number of donors and candidates that they have15.   Thus, for each neighborhood, the 

model considers the ratio of the supply of demand and its deviation from the ratio of the 

expected value of the nationally aggregated supply and demand. Fourth, it minimizes the 

expected value of the maximum of these deviations, where the expectation is taken over the 

years 2005-2014.   

We used Julia 0.3.10 and a commercial solver Gurobi 6.5 to solve the optimization 

model42,43. Hawaii and Puerto Rico were excluded from the model and their neighborhoods were 

defined to include the 4 closest DSAs in California and Florida respectively. Data on the 

numbers of transplant centers (as of 2015), population sizes (as of 2013), historical transplant 

volumes, and the numbers of organs recovered for transplant and the number of waitlist 

additions from 2005-2014 were obtained from UNOS and SRTR. Transport distances (miles) 

were calculated using latitudes and longitudes of donor hospitals and transplant centers via the 

method of geodesics in SAS 9.444.   

Simulating Neighborhood Solutions: 

  We test the performance of a neighborhoods solution from the optimization model in a 

simulation environment.  Unfortunately, to our knowledge, the architecture of the simulation tool 

used in the transplantation community, the Liver Simulated Allocation Model (LSAM v Aug 
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2014), does not allow for neighborhoods45.  We therefore programmed a discrete-event liver 

allocation simulator in Python 3, hereafter referred to as LivSim.  

LivSim approximates LSAM from information available in publically released sources.  

LivSim begins with an initial waitlist and takes three input streams: additions to the liver 

transplant waitlist, status updates of waitlist candidates; and arrivals of donors. LivSim then 

processes each of these events.  When candidates arrive to a particular DSA, they are assigned 

a MELD score, ABO blood type, Status 1 exception (yes or no), and HCC exception (yes or no).  

During a status update, LivSim updates the candidate’s MELD score and potentially removes 

the candidate from the waitlist or indicates their death.  After a donor arrives, the liver is 

assigned an ABO blood type and is offered to ABO blood type-compatible candidates in 

accordance with the sharing policies and geographic structure in place.  The current version of 

LivSim uses a reduced form of LSAM’s organ acceptance model to calculate whether a 

candidate accepts a liver for transplant. The acceptance model uses LSAM’s coefficients for 

whether the potential recipient is Status 1, the potential recipient’s waiting time, whether the 

potential recipient is listed in the DSA of the procuring OPO, and donor blood type and assumes 

all other patient attributes are held at the baseline.  These four sets of coefficients included are 

also the four most significant predictors in LSAM’s acceptance model. After LivSim processes 

these streams, it will calculate the post-transplant deaths and the average organ transport 

distance.  Organ transport distances are calculated by assuming that any organ traveling 

between any two DSAs travel (including within a DSA) the historical average amount of 

distance; distances are not calculated using donor hospitals and transplant centers.  The current 

version of LivSim operates at the DSA level and does not incorporate re-lists, re-transplants, 

and multiple transplants; it also assumes candidates will remain active on the waitlist once they 

are assigned a MELD score. 
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 The input files generated by LSAM input generator modules for waitlist, patient listing, 

patient status updates, and post-transplant survival are used. LivSim incorporates Status 1, 

HCC exceptions, Share 15, and Share 35 sharing policies in addition to MELD scoring with and 

without sodium. 

 We calibrate LivSim against LSAM by comparing results generated by both simulators 

on the same input data for the current geographic structure and sharing policies. 5-year 

(January 2010- December 2014) patient listing data and status updates were generated by the 

LSAM Candidate Generator and organ donor data were generated by the LSAM Donor 

Generator. 

Simulation Experiment for Comparing Geographic Structures: 

The simulation experiments using LivSim compare the performance of the geographic 

structures under the current allocation system, redistricting, the specific neighborhoods solution 

obtained, and national allocation. For each system, we assume that Status 1, Share 15, and 

Share 35 policies are in place; the experiment only varies the geographic structure employed.   

Performance Measures: 

We measure disparity by DSA mean transplant MELD standard deviation. DSA mean 

transplant MELD aims to measure the overall medical urgency of patients being transplanted 

and its standard deviation across DSAs measures geographic disparity in access to transplant. 

Additional important performance measures are waitlist and post-transplant mortalities, waitlist 

removals, and average organ transport distance. Average organ transport distances have 

implications for costs. The simulation experiment is conducted on the same input data used in 

the calibration with a 5-year run-length (January 2010- December 2014). Differences in the 

performance measures relative to current allocation and between redistricting and 

neighborhoods were computed and significance was assessed using two-tailed z-tests on 
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differences between replication means.  We performed 5 replications (25 replication-years) and 

modeled two cases: 

1) MELD without sodium: No candidate was excluded, even those with MELD exception 

points. HCC exceptions were included but the recent cap and delay policy was not 

incorporated46. 

2) MELD with sodium:  No candidate was excluded and it was assumed no exception 

points for non-HCC candidates were awarded, HCC exceptions were included but 

the recent cap and delay policy was not incorporated46. 

Results 

Calibration Results: 

  Table 1.3 presents the results of the calibration of LivSim against LSAM for current 

allocation.  LivSim’s results for all performance metrics except for average organ transport 

distance are within 10% relative error of LSAM.  LivSim overestimates average organ transport 

distances because it uses right-skewed DSA-to-DSA historical averages of distances rather 

than donor-hospital-to-transplant center distances. Actual distances are likely to be less than 

those reported. 

Neighborhood Solution Found: 

We found a neighborhood solution where each neighborhood had at least 9 transplant 

centers and population of 25 million; and the volume-weighted organ transport distance was 

less than 400 miles. Each DSA had at least 5 neighbors including itself and no more than 20 

neighbors including itself. Table 4 provides a listing of the DSA’s in each DSA’s neighborhood. 

Bounds on distance, transplant centers, population, and number of DSAs in the neighborhood 

may be adjusted. 

Simulation Experiment Results: 
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 Tables 1.5 and 1.6 present the 5-year comparative performances of the current 

allocation, redistricting, the neighborhood solution found, and national allocation for the cases of 

using MELD without sodium and with sodium respectively.  We emphasize results for the latter 

case since it is more representative of the most recent liver allocation policy.  All estimates are 

differences relative to current allocation.   

For standard deviation in DSA mean transplant MELD, in the case of MELD without 

sodium, redistricting and neighborhoods both achieve significant reductions in the standard 

deviation of mean transplant MELD of 0.48 and 0.50 points respectively (a 24% and 25% 

reduction with respect to current allocation) when compared to current allocation (p < 0.05).  In 

the case of MELD with sodium, both achieve significant reductions of 0.50 and 0.59 points 

respectively (a 25% and 29% reduction with respect to current allocation) (p < 0.05). Compared 

to redistricting in this case, neighborhoods significantly reduced disparity by an additional 17% 

(p < 0.05).  

Experiment results for either case demonstrate that both redistricting and neighborhoods 

achieve significant annual reductions in the total of post-transplant and waitlist mortalities 

compared to current allocation (p < 0.05), with neighborhoods saving an additional 20-25 lives 

annually compared to redistricting in both cases (p < 0.05). MELD with sodium scoring improves 

mortality reductions for all structures. Both redistricting and neighborhoods reduce waitlist 

removals by 40-55 each year compared to current allocation, but the finding was not significant 

(p > 0.05); additionally no significant difference was found between redistricting and 

neighborhoods in this regard.  

Redistricting will increase DSA mean transplant MELD by approximately 0.6 points in 

either case (p < 0.05), and neighborhoods will do so by 0.8 points in the case of MELD without 

sodium and 0.9 points in the case of MELD with sodium (p < 0.05) when compared with current 

allocation. The differences between redistricting and neighborhoods are also statistically 
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significant (p < 0.05).  Both structures will increase average organ transport distances compared 

to current allocation; redistricting by approximately 36 miles per organ, and neighborhoods by 

approximately 24 miles, or 33% less in the case of MELD without sodium while MELD with 

sodium scoring shows an increase of 43 and 36 miles respectively.  All differences in 

transportation distances between redistricting and neighborhoods with current allocation and 

among each other were significant (p < 0.05). 

Further analysis of the simulation results show that the benefits of neighborhoods are 

also borne more uniformly. For both the cases of MELD without sodium and MELD with sodium 

respectively, we calculated the DSA-ranges for waitlist mortalities; total miles procured organs 

are transported; and MELD at transplant.  The DSA-ranges are defined as the difference of the 

minimum number of waitlist mortalities (resp. total miles transported, average MELD at 

transplant) across DSAs from the maximum number of waitlist mortalities (resp. total miles 

transported, average MELD at transplant) across DSAs averaged over all replications. For 

MELD without sodium and with sodium, DSA-ranges for mortalities decreased by 13% and 15% 

respectively for neighborhoods relative to current allocation. This decrease is 11% and 12% 

respectively for redistricting.  Ranges in total miles transported fell by 12% in both cases for 

neighborhoods. However, they rose by 3% and 2% respectively for redistricting. The ranges for 

MELD at transplant fell by 12% and 17% respectively for neighborhoods. This reduction is 8% 

and 9% respectively for redistricting. All changes were statistically significant (p <0.001) relative 

to current allocation. Differences between redistricting and neighborhoods were significant for 

ranges of MELD at transplant in the case of MELD with sodium (p =0.004) and ranges of total 

miles transported for both cases (p <0.001). 

Discussion 

Optimally designed districts and neighborhoods both further the goals of transplanting 

the sickest first, reducing total mortalities, and promoting fairness in transplant access when 
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compared with the current allocation system. However, as the particular neighborhood solution 

demonstrates, interventions that exceed the redistricting structure in these aims are possible. 

Moreover, the neighborhood solution, while exhibiting smaller increases in average organ 

transport distances, exceeds redistricting in improvements on average DSA transplant MELD 

(especially in the MELD with sodium case where exceptions were not granted to most 

candidates); total mortalities; and DSA transplant MELD standard deviation.   

These advantages stem from the structural design. A neighborhood for a given DSA 

expands the DSA’s regional allocation and thereby results in more organs being directed to 

sicker candidates by sharing policies (e.g. Share 35).  The inclusion of geographically 

immediate neighbors of that DSA helps forestall rising organ transport distances. The 

neighborhoods are optimally constructed so that available organs for transplantation relative to 

demand are as equal as possible – thereby resulting in reductions to geographic disparity.  We 

emphasize that the framework is not specifying the number of organs an OPO will send to its 

region but merely ensuring similar opportunities to access organs from regional allocation.   

Also, the shapes of each neighborhood (with respect to compactness in historical-transplant 

volumes) may be further constrained with guidance from policymakers (e.g. use forecasted 

transplant volumes, contain a limited number of US states, have maximum geographic areas, 

etc.). 

The underlying optimization model confers the neighborhoods with additional resilience 

against uncertainty. Several trends (e.g. acute alcoholic hepatitis transplantation, healthcare 

reform, ex vivo liver perfusion, varying organ refusal rates, evolving community demographics, 

etc.) can cause unforeseen changes in donor organ supply and demand.  Historical variability in 

procurement rates and listing rates are incorporated so that a particular neighborhood solution 

remains the same as long as the ratios of donors to candidates at individual DSAs remain close 

to their 2005-2014 historical averages.  An advantage of using a stochastic rather than a 
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deterministic optimization methodology is that data forecasting procurement and listing rates 

may be used in lieu of historical data to construct the neighborhoods in future work – and such 

solutions would remain similarly stable during the forecast period. Should supply and demand 

change significantly from the forecasted values, the model can be adaptively used to specify a 

new set of neighbors without redesigning the borders.  

We emphasize that the results herein demonstrate the promise of the neighborhood 

framework more so than that of the particular geographic structure obtained. This framework is 

quite general and alternative solutions meeting different requirements of stakeholders may arise 

from it in future refinements. It is advisable for the transplantation community to compare the 

advantages and disadvantages of the neighborhood and redistricting frameworks relative to 

current allocation before enacting policy changes. Notably, neighborhoods are perhaps also 

amenable to current OPTN practice. From the perspective of an individual OPO, their activities 

remain much the same in relation to sharing, albeit with different neighbors. The only major 

operational change for the DSAs would be where the sharing of organs might occur during 

regional allocation.  Moreover, a remarkable advantage of the neighborhoods is that should the 

neighborhoods ever be modified in the future, it can be done so one OPO at a time and without 

disrupting the ongoing practices of other OPOs, whereas changing the districts in redistricting 

affects the operations of every OPO in the district.  However, whether such modifications can be 

made systematically and regularly is influenced by the culture of the OPTN and the ease of 

securing reform47. Inertia in this regard only underscores the importance of having the best 

possible solution at the outset.   

Limitations: 

 This study has some limitations. Foremost, the results asserting the improved 

performance of neighborhoods were based on our own simulator that only approximates LSAM. 

Differences in mortality and disparity estimates were due to omission of re-transplants/re-lists 
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and the use of less patient and donor characteristics in the current version of LivSim.  Transport 

distances provided by LivSim are conservative overestimates, so actual distances will be 

smaller. However, we treated all geographic structures consistently in the simulation 

experiment.  Lastly, the simulation experiment results are based on sharing policies at the time 

of writing.  Modifications of the sharing policies affect the performance of the geographic 

structures tested and the validity of comparisons among them.   

Future Work:  

This work focused on the geographic aspects of the OPTN’s design in a local-regional-

national framework under current policy at a systems-level. It did not consider changes in 

transplant centers’ and patients’ behaviors in response to the neighborhoods design. 

Incorporating behavioral models into the optimization framework to obtain a more refined 

solution requires further investigation. We believe, however, that the flexibility provided by the 

neighborhood structure will be an important factor in developing such a model. This flexibility 

can also be used for developing an allocation design that judiciously directs low quality livers to 

DSAs for rapid placement to reduce discards.  Sharing policies are also the counterparts of the 

geographic structures and help perfect liver allocation. For example, boosting local priority by 

assigning temporary MELD exception points is a possibility.  Such policies should be studied in 

conjunction with the geographic structures – and ideally, optimized with them simultaneously.   
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Table 1.1: Overview of Deceased Donor Liver Allocation Policy for Adult1 Recipients 

Deceased Donor Liver Prioritization2 

Local and Regional Status 1A or 1B Candidates 

Regional and Local  Candidates with MELD 35-40 

(i.e. local 40, regional 40, local 39, …) 

Local Candidates with MELD >  15 

Regional Candidates with MELD >  15 

National Status 1A or 1B Candidates 

National Candidates with MELD >  15 

Local Candidates with MELD < 15 

Regional Candidates with MELD <15 

National Candidates with MELD <15 

1Pediatric candidates are prioritized differently 

2Table presents overview of prioritization. Rules shown have minor modifications based 

on ABO blood type, donor-recipient compatibility, and multiple transplant recipients.   
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Table 1.2: Properties Ensured in Neighborhood Solutions 

 

 Formed using 10-year historical data: The DSA-neighborhoods are 

formed using a 10-year period (2005-2014) and hence incorporate 
uncertainty in organ availability and needs 

 Immediate Neighbors: DSAs have their geographically immediate 

neighbors in their neighborhood 
 Population: Each DSA’s neighborhood has a minimum population 

 Symmetry in DSA Relationships: DSA A has DSA B in its neighborhood 
if and only if DSA B has DSA A  in its neighborhood1 

 Density: Each DSA has a minimum and a maximum number of neighbors 
 Contiguity: Each DSA’s neighborhood is geographically contiguous1  
 Compactness: The average transport distance/time for a DSA’s 

neighborhood is bounded1 
 Transplant Centers: Each DSA’s neighborhood has a minimum number 

of transplant centers1  

 Possibility to generate a spectrum of solutions, instead of one: By 

parameter specifications, it is possible to generate many alternative 
solutions with different properties (e.g. average distance, mortality, 
disparity, etc.) to facilitate decision making. 

1Property also possessed by redistricting10. 
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Table 1.3: Calibration Results of LivSim vs. LSAM 

  LSAM   LivSim 

Category 
Current 

Allocation   
Current 

Allocation 

Annualized Waitlist and Post Transplant Deaths 2301.9 

 

2181.9 

Annualized Waitlist Deaths 1230.8 
 

1149.8 
Annualized Post Transplant Deaths 1071.1 

 

1032.1 

Annualized Waitlist Removals 3453.4 
 

3091.0 
DSA Mean Transplant MELD 23.32 

 
24.30 

DSA Mean Transplant MELD Standard Deviation 2.00 

 

2.03 

Average Organ Transport Distance (miles) 257   332 
Input data generated by LSAM Candidate and Donor generators for 2010-
2014 
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Table 1.4: Example Neighborhoods Solution1 

 

Procuring OPO
ALOB-OP1 Alabama Organ Center ALOB AROR FLUF GALL KYDA LAOP MOMA MSOP NCNC TNDS TNMS VATB

AROR-OP1 Arkansas Reg. Organ Recovery Agency ALOB AROR AZOB CORS IAOP ILIP INOP KYDA LAOP MOMA MSOP MWOB NEOR NMOP OKOP TNDS TNMS TXGC TXSA TXSB

AZOB-OP1 Donor Network of Arizona AROR AZOB CADN CAGS CAOP CASD CORS NMOP NVLV OKOP ORUO TXGC TXSA TXSB UTOP WALC

CADN-OP1 Donor Network West AZOB CADN CAGS CAOP HIOP NVLV ORUO WALC

CAGS-OP1 Sierra Donor Services AZOB CADN CAGS CAOP CASD HIOP NVLV ORUO UTOP WALC

CAOP-OP1 OneLegacy AZOB CADN CAGS CAOP CASD HIOP NVLV ORUO UTOP

CASD-IO1 Lifesharing - A Donate Life Org. AZOB CAGS CAOP CASD  HIO NVLV UTOP

CORS-OP1 Donor Alliance AROR AZOB CORS IAOP MNOP MOMA MWOB NEOR NMOP NVLV OKOP ORUO TXGC TXSA TXSB UTOP WALC WIUW

CTOP-OP1 LifeChoice Donor Services CTOP MAOB NJTO NYAP NYFL NYRT NYWN OHLP PADV PATF

DCTC-OP1 Washington Reg Transplant Community DCTC MDPC NCNC NJTO NYRT PADV PATF TNDS VATB

FLFH-IO1 TransLife FLFH FLMP FLUF FLWC GALL PRLL

FLMP-OP1 Life Alliance Organ Recovery Agency FLFH FLMP FLUF FLWC GALL PRLL

FLUF-IO1 LifeQuest Organ Recovery Services ALOB FLFH FLMP FLUF FLWC GALL PRLL SCOP TNMS

FLWC-OP1 LifeLink of Florida FLFH FLMP FLUF FLWC GALL PRLL

GALL-OP1 LifeLink of Georgia ALOB FLFH FLMP FLUF FLWC GALL KYDA MDPC MSOP NCCM NCNC PATF SCOP TNDS TNMS VATB

HIOP-OP1 Legacy of Life Hawaii CADN CAGS CAOP CASD HIOP

IAOP-OP1 Iowa Donor Network AROR CORS IAOP ILIP INOP MNOP MOMA MWOB NEOR OKOP WALC WIDN WIUW

ILIP-OP1 Gift of Hope AROR IAOP ILIP INOP MIOP MNOP MOMA NEOR OHLC OHOV TNMS WIDN WIUW

INOP-OP1 Indiana Donor Network AROR IAOP ILIP INOP KYDA MIOP MOMA MWOB OHLB OHLC OHLP OHOV TNMS WIDN WIUW

KYDA-OP1 KY Organ Donor Affiliates ALOB AROR GALL INOP KYDA MDPC MOMA NCCM NCNC NYFL NYWN OHLB OHLC OHLP OHOV PATF TNDS TNMS VATB

LAOP-OP1 Louisiana Organ Procurement Agency ALOB AROR LAOP MOMA MSOP MWOB NMOP OKOP TNDS TNMS TXGC TXSA TXSB

MAOB-OP1 New England Organ Bank CTOP MAOB NJTO NYAP NYFL NYRT NYWN OHLP PADV PATF

MDPC-OP1 The Living Legacy Foundation of MD DCTC GALL KYDA MDPC NCNC NJTO NYAP NYFL NYRT NYWN OHLB OHLP PADV PATF TNDS VATB

MIOP-OP1 Gift of Life Michigan ILIP INOP MIOP OHLB OHLC OHLP OHOV WIDN WIUW

MNOP-OP1 LifeSource Upper Midwest OPO CORS IAOP ILIP MNOP MOMA MWOB NEOR OKOP ORUO WALC WIDN WIUW

MOMA-OP1 Mid-America Transplant Svcs ALOB AROR CORS IAOP ILIP INOP KYDA LAOP MNOP MOMA MWOB OHLC OHLP OHOV OKOP TNMS WIDN WIUW

MSOP-OP1 Mississippi Organ Recovery Agency ALOB AROR GALL LAOP MSOP NCNC OKOP PATF TNDS TNMS TXGC VATB

MWOB-OP1 Midwest Transplant Network AROR CORS IAOP INOP LAOP MNOP MOMA MWOB NEOR OKOP TXGC TXSB WALC WIUW

NCCM-IO1 LifeShare of the Carolinas GALL KYDA NCCM NCNC PATF SCOP TNDS TNMS VATB

NCNC-OP1 Carolina Donor Services ALOB DCTC GALL KYDA MDPC MSOP NCCM NCNC OHLB PATF SCOP TNDS TNMS VATB

NEOR-OP1 Nebraska Organ Recovery System AROR CORS IAOP ILIP MNOP MWOB NEOR OKOP WALC WIUW

NJTO-OP1 NJ Organ and Tissue Sharing Network CTOP DCTC MAOB MDPC NJTO NYAP NYFL NYRT NYWN OHLP PADV PATF

NMOP-OP1 New Mexico Donor Services AROR AZOB CORS LAOP NMOP NVLV OKOP TXGC TXSA TXSB WALC

NVLV-OP1 Nevada Donor Network AZOB CADN CAGS CAOP CASD CORS NMOP NVLV ORUO UTOP WALC

NYAP-OP1 Ctr for Donation and Transplant CTOP MAOB MDPC NJTO NYAP NYFL NYRT NYWN OHLB OHLP PADV PATF TNDS VATB

NYFL-IO1 Finger Lakes Donor Recovery Network CTOP KYDA MAOB MDPC NJTO NYAP NYFL NYRT NYWN OHLB OHLP PADV PATF TNDS VATB

NYRT-OP1 LiveOnNY CTOP DCTC MAOB MDPC NJTO NYAP NYFL NYRT NYWN PADV PATF VATB

NYWN-OP1 Upstate NY Transplant Svcs CTOP KYDA MAOB MDPC NJTO NYAP NYFL NYRT NYWN OHLB OHLP PADV PATF TNDS VATB

OHLB-OP1 LifeBanc INOP KYDA MDPC MIOP NCNC NYAP NYFL NYWN OHLB OHLC OHLP OHOV PADV PATF TNDS VATB

OHLC-OP1 Life Connection of Ohio ILIP INOP KYDA MIOP MOMA OHLB OHLC OHLP OHOV WIUW

OHLP-OP1 Lifeline of Ohio CTOP INOP KYDA MAOB MDPC MIOP MOMA NJTO NYAP NYFL NYWN OHLB OHLC OHLP OHOV PADV PATF TNDS TNMS VATB

OHOV-OP1 LifeCenter Organ Donor Network ILIP INOP KYDA MIOP MOMA OHLB OHLC OHLP OHOV TNMS

OKOP-OP1 LifeShare Transplant Donor Svcs of OK AROR AZOB CORS IAOP LAOP MNOP MOMA MSOP MWOB NEOR NMOP OKOP ORUO TNMS TXGC TXSA TXSB UTOP WALC

ORUO-IO1 Pacific NW Transplant Bank AZOB CADN CAGS CAOP CORS MNOP NVLV OKOP ORUO UTOP WALC WIUW

PADV-OP1 Gift of Life Donor Program CTOP DCTC MAOB MDPC NJTO NYAP NYFL NYRT NYWN OHLB OHLP PADV PATF TNDS VATB

PATF-OP1 Center for Organ Recovery and Educ. CTOP DCTC GALL KYDA MAOB MDPC MSOP NCCM NCNC NJTO NYAP NYFL NYRT NYWN OHLB OHLP PADV PATF TNDS VATB

PRLL-OP1 LifeLink of Puerto Rico FLFH FLMP FLUF FLWC PRLL

SCOP-OP1 LifePoint, Inc. FLUF GALL NCCM NCNC SCOP VATB

TNDS-OP1 Tennessee Donor Svcs ALOB AROR DCTC GALL KYDA LAOP MDPC MSOP NCCM NCNC NYAP NYFL NYWN OHLB OHLP PADV PATF TNDS TNMS VATB

TNMS-OP1 Mid-South Transplant Foundation ALOB AROR FLUF GALL ILIP INOP KYDA LAOP MOMA MSOP NCCM NCNC OHLP OHOV OKOP TNDS TNMS VATB

TXGC-OP1 LifeGift Organ Donation Ctr AROR AZOB CORS LAOP MSOP MWOB NMOP OKOP TXGC TXSA TXSB

TXSA-OP1 Texas Organ Sharing Alliance AROR AZOB CORS LAOP NMOP OKOP TXGC TXSA TXSB

TXSB-OP1 Southwest Transplant Alliance AROR AZOB CORS LAOP MWOB NMOP OKOP TXGC TXSA TXSB

UTOP-OP1 Intermountain Donor Services AZOB CAGS CAOP CASD CORS NVLV OKOP ORUO UTOP WALC

VATB-OP1 LifeNet Health ALOB DCTC GALL KYDA MDPC MSOP NCCM NCNC NYAP NYFL NYRT NYWN OHLB OHLP PADV PATF SCOP TNDS TNMS VATB

WALC-OP1 LifeCenter Northwest AZOB CADN CAGS CORS IAOP MNOP MWOB NEOR NMOP NVLV OKOP ORUO UTOP WALC WIUW

WIDN-OP1 Wisconsin Donor Network IAOP ILIP INOP MIOP MNOP MOMA WIDN WIUW

WIUW-IO1 UW Health Organ and Tissue Donation CORS IAOP ILIP INOP MIOP MNOP MOMA MWOB NEOR OHLC ORUO WALC WIDN WIUW

DSAs Belonging to Procuring OPO's Neighborhood
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1Neighborhood solution found with requirements that neighborhoods have average 

volume-weighted organ transport distance less than 400 miles; and have at least 9 

transplant centers and population of 25 million. Each DSA has at least 5 neighbors 

including itself and no more than 20 neighbors including itself. Bounds on distance, 

transplant centers, and number of DSAs in the neighborhood may be adjusted. 
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Table 1.5: 5-Year Comparative Performance of Allocation Systems (MELD without 

sodium case) 1 

 Curre

nt 

Redistrictin

g
2 

Neighborhood

s
2 

Difference 

(Neighborhood

s-Redistricting) 

Nationa

l
2 

Annualize

d Waitlist 

and Post 

Transplan

t Deaths 

-- -23.1 
(0.050) 

-48.2 
(p < 0.001) 

-25.1 
(0.038) 

 

-237.6 
(p < 

0.001) 

Annualize

d Waitlist 

Deaths 

-- -32.6 
(0.005) 

-45.2 
(p < 0.001) 

-12.6 
(0.160) 

-155.3 
(p < 

0.001) 
Annualize

d Post 

Transplan

t Deaths 

-- +9.5 
(0.060) 

-3.0 
(0.314) 

-12.4 
(0.021) 

-82.3 
(p < 

0.001) 

Annualize

d Waitlist 
Removals 

-- -53.2 
(0.113) 

-46.7 
(0.144) 

+6.5 
(0.441) 

-143.2 
(p < 

0.001) 
DSA 

Mean 
Transplan

t MELD 

-- +0.6 
(p < 

0.001) 

+0.8 
(p < 0.001) 

+0.2 
(p < 0.001) 

+1.6 
(p < 

0.001) 

DSA 

Mean 

Transplan

t MELD 
Standard 

Deviation 

-- -0.48 
(p < 

0.001) 

-0.50 
(p < 0.001) 

-0.02 
(0.274) 

-0.8 
(p < 

0.001) 

Average 

Organ 

Transport 

Distance 
(miles)

 

 

-- +35.5 
(p < 

0.001) 

+24.3 
(p < 0.001) 

-11.3 
(p < 0.001) 

> +300 
(p < 

0.001) 

1P-Values in parentheses.  
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2All results obtained from LivSim for 2010-2014 and relative to current allocation. Input 

data generated by LSAM Candidate and Donor generators.  
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Table 1.6: 5-Year Comparative Performance of Allocation Systems (MELD with sodium 

case) 1 

 Curre

nt 

Redistrictin

g
2 

Neighborhood

s
2 

Difference 

(Neighborhood

s-Redistricting) 

Nationa

l
2 

Annualize

d Waitlist 

and Post 

Transplan

t Deaths 

-- -45.8 
(p < 

0.001) 

-64.2 
(p < 0.001) 

-18.4 
(0.014) 

-272.4 
(p < 

0.001) 

Annualize

d Waitlist 

Deaths 

-- -41.0 
(p < 

0.001) 

-56.2 
(p < 0.001) 

-15.1 
(0.004) 

-142.7 
(p < 

0.001) 
Annualize

d Post 

Transplan

t Deaths 

-- -4.8 
(0.218) 

-8.1 
(0.093) 

-3.3 
(0.293) 

-129.7 
(p < 

0.001) 

Annualize

d Waitlist 
Removals 

-- -41.3 
(0.174) 

-46.8 
(0.144) 

-5.5 
(0.450) 

-116.2 
(0.004) 

DSA 

Mean 

Transplan

t MELD 

-- +0.6 
(p < 

0.001) 

+0.9 
(p < 0.001) 

0.3 
(p < 0.001) 

+1.7 
(p < 

0.001) 

DSA 
Mean 

Transplan

t MELD 

Standard 

Deviation 

-- -0.50 
(p < 

0.001) 

-0.59 
(p < 0.001) 

-0.09 
(p < 0.001) 

-0.9 
(p < 

0.001) 

Average 
Organ 

Transport 

Distance 

(miles)
 

 

-- +43.4 
(p < 

0.001) 

+36.1 
(p < 0.001) 

-7.3 
(p < 0.001) 

> +300 
(p < 

0.001) 

1P-Values in parentheses.  
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2All results obtained from LivSim for 2010-2014 and relative to current allocation. Input 

data generated by LSAM Candidate and Donor generators.  
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Figure 1.1: Redistricting Limits Interconnectivity among Neighboring DSAs  

 
 
The OPO serving primarily Western Tennessee (green) also shares with OPOs in 
Arkansas and Eastern Missouri during regional allocation but not with the OPO serving 
primarily Eastern Tennessee (red) in the current 8-district redistricting plan. The OPO in 
Eastern Tennessee will potentially send organs as far as Wisconsin before Western 
Tennessee in the redistricting plan.  
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Figure 1.2: An Example of a DSA’s Neighborhood 

 
The OPO serving primarily Western Tennessee (green) now shares with neighboring 
DSAs including Eastern Tennessee (red) during regional allocation under the 
neighborhoods framework in contrast to redistricting in Figure 1.1. 
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Supplement: Formulation of Optimized Neighborhoods 
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A Concentric-Neighborhoods Solution to Disparity in Liver Access that 

contains current UNOS Districts 

 

  Addressing geographic disparities in access to liver transplantation has been a weighty 

predicament for policymakers in recent years48.  Since liver transplant is the unique restorative 

therapy for irreversible and progressive liver failure1,2, members of the transplantation 

community are understandably distressed that the current liver allocation system permits those 

with similar medical urgency in different parts of the US to experience varying transplant rates, 

waiting times, and mortality6-8.  However, the provision of this therapy relies almost exclusively 

on scarce deceased-donor resources (about 95% of all liver transplants annually since 20143), 

which are acquired through the generosity of organ donors and their families, in addition to the 

actions of donor hospitals and transplant centers and the efforts of 58 organ procurement 

organizations (OPOs) across the country. There are numerous publications detailing the extent 

of disparity in access6,7,35.   Notwithstanding an increase in the total number of organ donors, 

any liver redistribution policy must confront the dilemma between reducing geographic disparity 

in access through the reallocation of organs from regions of high supply relative to demand and 

mitigating reductions in local access to the resource for those sharing more, especially in rural 

and under-resourced parts of the country49.  Moreover, since redistribution likely entails more 

non-local transportation of organs, the latter half of the dilemma also includes controlling organ 

transport times, distances, availability of aircraft/crews, organ quality, and costs.   

The United Network for Organ Sharing (UNOS), the organization responsible for the 

organ procurement and transplantation network (OPTN) and for promoting organ donation, is 

keenly aware of these issues. The UNOS Liver and Intestinal Committee9 has the unenviable 

task of resolving the aforementioned dilemma. In August 2016, they put forth as a public 

comment a proposal to redistrict the OPTN into 8 districts in order to promote a fairer 

distribution of transplanted organs10-14.   The new proposal was polarizing48 in the liver 
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transplantation community with 8 of the 11 UNOS regions rejecting the proposal with nearly 

unanimous votes while 2 of 11 regions showed nearly unanimous voting in support of the 

proposal. Fervent denials arose from transplant centers, health-care professionals, and 

individuals from areas where transplant volumes were expected to decline and patient mortality 

to increase after redistricting50.  Mehrotra et al.16,51, numerous public comments50,  and recent 

meetings of the UNOS Liver and Intestinal Committee48 held that additional modeling 

frameworks warranted consideration.  

 Besides the redistricting and concentric circles proposals, another framework 

considered for further development by the members of the committee48 was a proposal of 

optimized neighborhoods52. The proposal introduced a framework that possessed concepts 

from both redistricting and concentric circles. The framework yielded an alternative design of the 

OPTN that would be more resilient to regional changes in demand and supply of deceased 

donor organs while also mitigating rising transport costs and reducing geographic disparity and 

annual mortalities. The work provided a demonstrative example of its conceptual promise but 

did not recommend a particular geographic structure or sharing policy for consideration.  This 

article presents a specific specialized neighborhoods construction that can become a potential 

starting point for a systematic development of a solution for resolving a complex problem that 

has polarized the community. The presented design incorporates feedback from members of 

the transplantation community and many aspects of the public comments. However, further 

refinements will be needed with better quantification of the community’s concerns, but they can 

be made within the framework of concentric neighborhoods presented here. Below, we 

summarize liver allocation; briefly recapitulate the concept of neighborhoods; describe 

refinements of the neighborhood concept that define concentric neighborhoods; and review the 

performance of concentric neighborhoods under different sharing policies using simulation. 

Summary of Liver Allocation 
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The current geographic structure for the OPTN divides the US into 11 UNOS regions 

and those regions are further subdivided into 58 Donor Service Areas (DSAs). Each DSA has a 

designated OPO that facilitates local procurement and allocation procedures. Allocation of 

deceased-donor livers is based upon a three-tier geographic system –- local/regional/national 

(local refers to the DSA of the procuring OPO) 21. Coupled with the geographic structure, the 

OPTN follows specific allocation rules or sharing policies that mainly prioritize which candidates 

are offered an organ for transplant.  These sharing policies and their accompanying rationale 

are detailed in Elwir and Lake22,23 and Trotter22.  

Patients are prioritized by their Model for End-stage Liver Disease (MELD) scores. 

MELD scores (ranging from 6-40 points) are predictors of 3-month mortality without liver 

transplantation and presumably indicate medical urgency26-29 based on lab values (INR, 

bilirubin, creatinine, and sodium31-33). Within the allocation framework, more than one-third of 

candidates receive additional points, known as exception points, because their original MELD 

scores may not accurately reflect their mortality risk.  Exception points are given to patients 

diagnosed with hepatocellular carcinoma (HCC) or hepatopulmonary syndrome along with other 

uncommon indications34,53. Collectively, liver allocation proceeds roughly as follows: (1) an offer 

is first made to Status 1 candidates regionally; (2) an offer is then made to regional candidates 

with the highest MELD scores > 35 with local priority if the top 2 candidates share the same 

MELD score but only one is in the allocating OPO [Share 35 policy]; (3) an offer is then made to 

local candidates with MELD scores 15-34 in the same DSA as the procuring OPO; (4) an offer is 

then made to regional candidates with MELD scores 15-34 in the same UNOS region as the 

procuring OPO; (5) an offer is then made to national candidates with Status 1 and then MELD 

scores 15-40; (6) an offer is then made to local candidates, followed by regional candidates, and 

lastly national candidates with MELD scores less than 15.  The threshold MELD score of 15 

used in these sharing policies is known as the Share 15 policy. 
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Explanation of an OPO’s Concentric Neighborhood 

 A concentric neighborhood is a special type of neighborhood52. The center of a 

concentric neighborhood is the  OPO where an organ is procured. A concentric neighborhood is 

constructed by adding OPOs/DSAs around the procuring OPO in a circular fashion until it meets 

the maximum distance and/or minimum population requirements. Geographic proximity is 

imposed to reduce travel distance and address concerns regarding local prioritization. The 

procuring OPO and the surrounding OPOs that define the concentric neighborhood acts as the 

region in the current local-regional-national allocation system –- that is, allocation proceeds as 

before with the exception that the OPOs and DSAs involved in this “regional allocation” are 

defined by the procuring OPO. Different relational requirements among the OPOs in a 

neighborhood can be incorporated using a general framework that yields several alternative 

designs for the OPTN. However, concentric neighborhoods are of particular interest because 

they allow OPOs to maintain relationships with nearby OPOs and transplant centers and they 

possess other benefits that may not be easily quantifiable.  

Materials and Methods 

Development of the Concentric Neighborhoods Structure: 

The UNOS Liver and Intestinal Committee requested the first author to provide 

neighborhoods satisfying the following constraints: 

1. Each DSA’s neighborhood has a minimum population of 12 million. 

2. Each neighborhood should be contiguous and avoid holes (i.e. each neighborhood 

ought to be as convex as possible). 

3. The average organ transport time for each neighborhood should be less than or 

equal to 3 hours. Observed average transport times may be less when sharing 

policies are applied.  
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Other public comments50 and notes from the UNOS Liver and Intestinal Committee48 were 

further incorporated. The public comments and notes reveal an apprehension for enacting 

sweeping structural changes to the OPTN. Unfortunately, redistricting10 or the demonstrative 

example of optimized neighborhoods provided by Kilambi and Mehrotra52 disrupt the existing 

regional relationships among OPOs and transplant centers.   

After conversations with several members of the liver transplantation community, we 

imposed the additional requirement on the neighborhoods solution: 

4. Every neighborhood of an OPO contains the OPO itself and the DSAs in its current 

UNOS Region.  For example, the DSA for Oregon is currently in UNOS Region 6 

with the DSA serving Washington, Idaho, Alaska, and Montana.  This particular 

solution has the feature that the neighborhood for Oregon includes this DSA in 

addition to other nearby DSAs (e.g. Northern California in region 5). 

By ensuring that each neighborhood of an OPO contains its original UNOS region, all OPOs 

and transplant centers that work together in the current system for regional allocation may 

continue working together in the future albeit with some new relationships. This requirement is 

included more so for facilitating implementation of a solution and it should not be construed that 

honoring extant OPO boundaries is in itself optimal.  

Since the public comments also raised concerns about organ supply and demand 

estimates used in the design of any “optimized” system, we combined the concept of 

neighborhoods with the concept of concentric circles. Concentric circles use constant radii that 

do not rely on estimates for organ supply and demand.  Given the expressed concerns 

regarding organ transport times in the public comments50 and the notes of the UNOS Liver and 

Intestinal Committee48, we introduced the following two versions of the proposed concentric 

neighborhoods structure: 
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5a. An OPO is allowed to have as many neighbors as possible. If an OPO’s physical 

address is within r (r = 400, 500, or 600) miles of a procuring OPO, then the former will 

be in the latter’s neighborhood and vice versa. 

5b. An OPO is allowed to have at most n (n=10) neighbors, including itself and the 

OPOs of the same UNOS region. If an OPO’s physical address is within r (r = 400, 500, 

or 600) miles of a procuring OPO, then the former will be in the latter’s neighborhood as 

long as it does not exceed the limit.  

In later discussion, we refer 5a as the unconstrained concentric neighborhoods structure and 5b 

as the constrained concentric neighborhoods structure. 

Possible values for r that we selected are 400, 500, or 600 miles. These values 

represent the flight distances for a standard jet used in procurement with a flight time less than 2 

hours. For example, with this feature, the direct distance between the LifeNet Health OPO 

serving Virginia in Virginia Beach, VA, and the Gift of Life Donor OPO serving Eastern 

Pennsylvania in Philadelphia, PA, is approximately 250 miles. Thus, Eastern Pennsylvania will 

be a potential neighbor of Virginia and Virginia will be a potential neighbor of Eastern 

Pennsylvania.  

The value for n that we selected is 10 since UNOS Region 3 has 10 OPOS, the most 

number out of the other regions. When implementing the constrained concentric neighborhoods 

structure, if an OPO has more than 10 potential neighbor OPOs, the potential neighbors are 

added to the OPO’s neighborhood in the following order until the limit is met: (1) the OPO itself, 

(2) OPOs of the same UNOS region, and (3) closest OPOs outside the UNOS region.   

By including nearby OPOs in the neighborhood, organs may be transported to 

candidates with higher MELD scores nearer to the procuring OPO during regional allocation 

without being transported farther away to candidates with lower MELD scores.  With some 
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exceptions, DSAs will have their geographically immediate neighbors in their neighborhood. 

Second, this requirement helps avoid neighborhoods with ‘holes’. 

  The structural properties of the concentric neighborhoods solution are summarized in 

Table 2.1. Figure 2.1 presents an example of the proposed concentric neighborhood for the 

OPO based in Eastern Pennsylvania using a radius of 600 miles and containing its current 

UNOS Region (Region 2). It is important to note that unlike the earlier optimized neighborhoods 

proposal52, these particular concentric neighborhood solutions are fully described by the 

requirements that OPOs within a specified radii are connected as in concentric circles and that 

each OPO’s neighborhood contains its original UNOS region. Therefore, there is no optimization 

employed nor does any particular solution herein allude to any metric for organ supply and 

demand. Moreover, for assessing geographic disparity, we follow the recent policy literature and 

consider equalizing average/median MELD at transplant across DSAs and reducing its standard 

deviation13.   

Two further changes are investigated within the concentric neighborhoods design 

obtained from the imposed requirements above. The first is to grant a 3- or 5-point proximity 

boost to MELD scores for patients listed in the OPO where the organ is procured. The reasons 

for this include the following: (1) avoiding unnecessary travel; (2) providing a buffer for possible 

differences in increased mortality arising from lower access to transplant in less populated 

areas;  and (3) maintaining the viability of low-volume transplant centers. The need to address 

such issues were raised in the public comments50. The second change is to increase the 

threshold in the Share 15 policy to a higher value. Since patients with lower MELD scores are 

expected to have longer survival times, geographic equity may be better served by directing 

organs to non-local candidates with greater MELD scores sooner. The effect of changing this 

threshold value is counterbalanced by the aforementioned conferral of proximity boosts to local 

candidates. 



 
 
 

49 
Simulating Neighborhoods Solutions:  

As previously described52, the Liver Simulated Allocation Model (LSAM v Aug 2014) 45, 

to our knowledge, cannot accommodate neighborhoods. We therefore tested the performance 

of the proposed concentric neighborhoods solution (relative to the current system) using an 

open-source discrete event simulator LivSim. For more information about LivSim, please refer to 

our previous work and the LivSim User Guide18,54. The software and the manual are accessible 

at https://github.com/kbui1993/LivSim-Codes. The current version of LivSim uses the same 

acceptance model as LSAM along with inactive waitlist candidates, relists, and re-transplants.  

Our simulation experiment is also similar to that of the previous publication52 and utilizes the 

same input data experimented in it.  Specifically, we used input data on patient listing, MELD 

progression, and organ donors from the LSAM Candidate Generator and the LSAM Donor 

Generator (v Aug 2014). The run-length was 5-years (Jan 2010 – Dec 2014) with 5 replications 

(25 replication-years). We incorporated  MELD-Na (i.e. MELD with sodium) and HCC 

exceptions including the cap-and-delay policy46. We assumed no exceptions (i.e. used lab 

MELD scores with sodium) for non-HCC candidates. Therefore, the MELD scores used in the 

simulation are adjusted for sodium and roughly correspond to using lab MELD scores for 

everyone except HCC patients (whose allocation MELD follows a predictable schedule). We 

focus our results on overall system performance rather than on specific diagnosis groups. The 

simulation measures disparity by standard deviation of DSA mean transplant MELD across 

DSAs and other important statistics such as waitlist and post-transplant mortalities, waitlist 

removals, average organ transport distances/times, and percentage of organ travelled by mode 

of transit. Differences in the non-transport performance measures between the current 

allocation system, neighborhoods, and redistricting were computed, and significance was 

assessed using two-tailed t-tests on differences between replication means with 24 degrees of 

freedom for the 25 replication-years. In particular, differences in the average of standard 
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deviations of mean and median DSA-MELD at transplant across replication-years were also 

computed using two tailed t-tests with 24 degrees of freedom.  Average transport metrics (e.g. 

mean distance traveled, mean travel time, mean share transported by airplane, etc.) were 

calculated over each 5-year replication and differences in means were assessed using  two-

tailed t-tests with 4 degrees of freedom.  We also compute percentage changes in each DSA’s 

transplant volume relative to its volume under the current system. 

Sharing Policies:  

We simulated the proposed concentric neighborhoods solution with several variations of 

the sharing and boosting policies. Additionally, we simulated 8-district redistricting10,12 with the 

same variations. We used the current system (i.e. the current 11 UNOS regions with the Share 

15 and Share 35 policies and no proximity boosts) for making baseline comparisons of the 

performance of the concentric neighborhoods. Specifically, for the Share 35 policy, we consider 

the current value of 35 and a value of 29, which is being considered by UNOS at the  time of 

writing55. For the Share 15 and boosting policies, we consider changing the thresholds to 18 and 

20 with 3- and 5-point boosts respectively to counterbalance increased travel with local priority. 

To assess the effects on geographic disparity of only changing the sharing policies for the 

current system, we conducted simulations of the current geographic structure (11 

districts/regions) with different values of the thresholds for Share 35 and Share 15 and of the 

proximity boosts. 

 We stress the importance of selecting the appropriate sharing in conjunction with some 

specificity to preserve the core geographical arrangement. In summary, we simulated various 

policies listed in Table 2.2.  

Results 
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Part (a) of Tables 2.3-9 summarize simulation results for interventions (i)-(xlvii). Part (b) of 

Tables 2.3-9 present the respective differences of the simulation results relative to the current 

system in addition to p-values for assessing statistical significance. 

 Modifications to Current System Policy without Neighborhoods. Tables 2.3a and 2.3b 

present the performance and comparative performances respectively for the current 11-districts 

with changes to the Share 15 policy and proximity boosts (Block I). Increasing the Share 15 

thresholds to either 18 or 20 decreases the number of waitlist deaths, significantly for policy (iii) 

(p < 0.05), and does not affect the number of post-transplant deaths significantly. Standard 

deviations in DSA-mean and median MELD at transplant are significantly reduced (p < 0.05). 

DSA-mean and -median MELD at transplant increase significantly as do the shares of organs 

transported by airplane and their travel distance (p < 0.05). Therefore, the simulation results 

show that the applications of 3-point and 5-point proximity boosts mitigate the rising shares of 

organs traveling by airplane and dampen mortality and geographic disparity reductions. 

Share 29/Share15/0-Point Boost on 8 Districts and Concentric Neighborhoods. Tables 

2.4a and 2.4b present the performance and comparative performances respectively for 8-district 

redistricting and unconstrained and constrained concentric neighborhoods with the Share 35 

policy threshold changed to 29 and no proximity boosts (Block II). The simulation results show 

important improvements by using the concentric neighborhoods structure. Unconstrained 

concentric neighborhoods of any radius further reduce total mortalities when compared to 

redistricting or the current system. However, the constrained versions nearly reduce as much 

total mortalities as the redistricting policy. Both unconstrained and constrained neighborhoods 

reduce geographic disparity compared to the current system at various levels of significance. 

DSA-mean and -median MELD at transplant increase significantly as do the shares of organs 

transported by airplane. However, transport distances and times by airplane are reduced in all 

policies of Block II. 
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Share 29/Share 18/3-Point Boost on 8 Districts and Concentric Neighborhoods. Tables 

2.5a and 2.5b present the performance and comparative performances respectively for 8-district 

redistricting and concentric neighborhoods with the Share 35 policy threshold changed to 29, 

Share 15 threshold raised to 18, and 3-point proximity boosts (Block III). Simulation results 

convey similar trends as the results for Block II.  The unconstrained concentric neighborhoods 

of any radius further reduce total mortalities when compared to redistricting or the current 

system, but the constrained concentric neighborhoods do not save as many lives as redistricting 

unless the radius is either 500 or 600 miles. All policies reduce geographic disparity compared 

to the current system at various levels of significance. DSA-mean and -median MELD at 

transplant increase significantly as do the shares of organs transported by airplane. However, 

transport distances and times by airplane are significantly reduced by the concentric 

neighborhoods solutions (p < 0.05). 

Share 29/Share 20/5-Point Boost on 8 Districts and Concentric Neighborhoods. Tables 

2.6a and 2.6b present the performance and comparative performances respectively for 8-district 

redistricting and concentric neighborhoods with the Share 35 policy threshold changed to 29, 

Share 15 threshold raised to 20, and 5-point proximity boosts (Block IV). Simulation results 

show similar trends as the results of Blocks II and III. Unconstrained concentric neighborhoods 

of any radius further reduce total mortalities when compared to redistricting or the current 

system, but the constrained neighborhoods of radii 400, 500, and 600 miles do not save as 

many lives as the redistricting policy. Nevertheless, all policies reduce geographic disparity 

compared to the current system at various levels of significance. DSA-mean and -median MELD 

at transplant increase significantly as do the shares of organs transported by airplane. However, 

transport distances and times by airplane are significantly reduced by the unconstrained 

concentric neighborhoods solutions (p < 0.05), but they increase for the constrained versions. 
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Share 35/Share 15/0-Point Boost on 8 Districts and Concentric Neighborhoods. Tables 

2.7a and 2.7b present the performance and comparative performances respectively for 8-district 

redistricting and concentric neighborhoods with no sharing policy changes (Block V). The 

simulation results highlight important improvements especially for the constrained neighborhood 

solutions compared to the Share 29 policies. Both unconstrained and constrained concentric 

neighborhoods of any radius further reduce total mortalities when compared to redistricting or 

the current system and reduce geographic disparity compared to the current system at various 

levels of significance. DSA-mean and -median MELD at transplant increase significantly as do 

the shares of organs transported by airplane. However, transport distances and times by 

airplane are significantly reduced in all policies of Block V (p < 0.05). 

Share 35/Share 18/3-Point Boost on 8 Districts and Concentric Neighborhoods. Tables 

2.8a and 2.8b present the performance and comparative performances respectively for 8-district 

redistricting and concentric neighborhoods with the Share 15 threshold raised to 18, and 3-point 

proximity boosts (Block VI).  The simulation results show similar improvements as the results of 

Block V. Both unconstrained and constrained concentric neighborhoods of any radius further 

reduce total mortalities when compared to redistricting or the current system and reduce 

geographic disparity compared to the current system at various levels of significance. DSA-

mean and -median MELD at transplant increase significantly as do the shares of organs 

transported by airplane. However, transport distances and times by airplane are significantly 

reduced for concentric neighborhoods solutions (p < 0.05). 

Share 35/Share 20/5-Point Boost on 8 Districts and Concentric Neighborhoods. Tables 

2.9a and 2.9b present the performance and comparative performances respectively for 8-district 

redistricting and concentric neighborhoods with the Share 15 threshold raised to 20, and 5-point 

proximity boosts (Block VII).  Simulation results show similar trends in non-transport statistics 

but different trends in transport statistics compared to the results for Blocks V and VI. The 
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unconstrained and constrained concentric neighborhoods of any radius further reduce total 

mortalities when compared to redistricting or the current system and reduce geographic 

disparity compared to the current system at various levels of significance. DSA-mean and -

median MELD at transplant increase significantly for both versions of concentric neighborhoods 

solutions. While the shares of organs transported by airplane increase significantly for the 

unconstrained concentric neighborhood solutions, they increase by less than a minimal value of 

0.15% for the constrained versions. Moreover, transport distances and times by airplane are 

significantly reduced for unconstrained concentric neighborhoods solutions (p < 0.05), but they 

increase significantly for the constrained versions (p < 0.05).  

Figures 2.2-4 depict the distribution of average MELD at transplant across DSAs for all of 

the above interventions. Figures 2.5-7 depict the percentage changes in DSA transplant volume 

for each policies. The changes in transplant volume are more compact in the concentric 

neighborhoods than in the 8-district redistricting, and depending on the radius and sharing 

policies selected, no DSA experience a loss of transplant volume greater than 25%. Although 

the 8-district solutions manage to save lives and reduce geographic disparity, the major 

disadvantage is its detrimental shift in the sharing of livers between DSAs within a district. This 

is indicated by the maximum organ volume gain/loss as we see from Figures 2.5-7 that a DSA 

can gain nearly 40% more organs while a DSA can lose at least 25% of its organs. On the other 

hand, the constrained concentric neighborhood structures with the Share 35 policy manage to 

cap losses at approximately 16%.  

Table 2.10 presents a subset of the concentric neighborhoods solutions with different levels 

of organ volume loss along with their statistics. We show that it is possible to obtain a solution 

where the organ volume loss is as low as nearly 10% while reduction in total mortalities, 

geographic disparity, and airplane travel time is possible. However, when trying to attain a more 

satisfactory reduction in one of these values, tradeoff between these values are inevitable. For 
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example, when relaxing the constraint of 10 DSAs per neighborhoods for the Share 35/Share 

15/0-Point Boost policy on the constrained 500-miles concentric neighborhoods map, the total 

mortalities, geographic disparity, and airplane travel time do decrease, but the organ volume 

loss increases. Therefore, reduction in total mortalities, geographic disparity, and airplane travel 

time requires shifts in the organ sharing flow between DSAs, but both reduction and organ 

volume change can be managed by tuning the parameters and combinations in concentric 

neighborhoods model.  

Discussion 

  With the feature that each OPO continues to work with its current regional partners and 

some nearby OPOs, a concentric neighborhoods solution serves to transplant the sickest 

candidates more quickly, reduce geographic disparity in access to liver transplant, and 

decreases annual mortalities regardless of the adjunct sharing policy tested. Allowing current 

transplant centers and OPOs to continue working with those with whom they have existing 

relationships is expected to make actual implementation easier. The essence of concentric 

circles also appears in the solution –- as the neighborhoods’ maps show that each OPO can 

share with several surrounding DSAs to extend supply. Despite a considerable increase in the 

geographic size of regions for many DSAs, which thereby increases in the percentage of organs 

transported by airplanes, the number of miles traveled by airplanes decreases significantly for 

most of the concentric neighborhoods solutions. For a given sharing policy, using larger radii for 

the concentric neighborhoods usually further reduced geographic disparity.  These particular 

concentric neighborhoods solutions were not constructed from a specific optimization model and 

also do not rely on demand or supply metrics which have changed considerably in the last 2 

years -- when record increases in OPO donation rates with absolute liver deceased donor 

numbers increasing from 6,744 donors in 2013 to 8,151 donors in 2016 

(https://optn.transplant.hrsa.gov/). It is important to reemphasize that unlike the redistricting 

https://optn.transplant.hrsa.gov/
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proposal52, this neighborhood solution was not obtained with reference to a mathematical model 

that optimized deviations in organ demand and supply rates.  The advantage of this position is 

that it avoids addressing contentious issues such as how to measure the need for organs at 

each DSA.  

The choice of the sharing policy reflects a balance between equity in access and resource 

utility. Raising the Share 15 threshold to either 18 or 20 may significantly reduce total mortalities 

and geographic disparity regardless of the geographic structure employed. Consequently, the 

policy change induces a larger percentage of organs traveling by airplane and possibly longer 

travel distances and times. The inclusion of proximity boosts aims to counterbalance the rising 

transport distances and times. Using concentric neighborhoods and raising the Share 15 

threshold along with providing a proximity boost offered the greatest reduction in geographic 

disparity of the interventions tested. Including the boost points when increasing the Share 15’s 

threshold attenuates the negative impact of broader sharing upon disadvantaged parts of the 

country where the population is medically underserved and potentially faces greater mortality 

when the local supply of organs is diminished. We strove to find a solution whose observed 

performance reduced disparity and mortality without significantly increasing logistic burden in 

the simulations. Moreover, the geographic structure obtained (i.e. the membership relations for 

each neighborhood) is itself agnostic to how MELD scores are used.  The impact of MELD 

scores and sharing policies, and thereby the observed performance of the entire intervention 

(i.e. geographic structure + sharing policy changes), are reflected in the simulation results and 

subject to the limitations thereof. 

Losses in transplant volume were of interest and concern in public comments50. When a 

fixed resource is being rationed, there will be net-gainers and net-losers with shifts in allocation.  

The Share 35 unconstrained concentric-neighborhoods solution with the 5-point proximity boost 

and Share 20 shows losses in transplant volumes for any DSA up to 20% of its current volume 
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from among the DSAs who will become the net supplier. The validity of this prediction depends 

on current organ acceptance behaviors being maintained. A significant loss in transplant volume 

may not be acceptable for transplant centers in certain DSA for several reasons, such as 

financial viability or access to transplants for the patients. However, the authors suggest that if 

an a priori cap on the losses is specified, refinements can be made to the concentric-

neighborhoods and the sharing policy presented here in order to reduce disparity while 

maintaining transplant volume losses within a specified range.  

On the other hand, the authors consider a simple refinement to the unconstrained 

concentric-neighborhoods solution, especially to address the issue of organ volume loss. Since 

the number of sharing partners per DSA resulting from the unconstrained concentric-

neighborhoods solution may be of concern, we impose the constraint that each DSA may have 

up to 10 sharing partners, resulting in the constrained concentric neighborhoods solution. From 

the simulation results, we observe that these solutions serve as intermediate solutions between 

their District 11 counterparts and their unconstrained counterparts. The constrained concentric-

neighborhoods solution managed to save more lives and reduce geographic disparity. For the 

most part, they also decreased the transport distance by airplanes. More significantly, while 

achieving these desired improvements, most of constrained concentric-neighborhoods solutions 

with Share 35 policy were able to cap their organ volume losses to at most 12%.  

Two additional contentious issues warrant additional comments. The first of these is how to 

expressly reward or penalize OPOs for their performance.  A major assumption in the simulation 

modeling is that the organ procurement and placement performance of high performing OPOs 

will not deteriorate due to sharing with additional partners. The quantitative modeling of this 

issue is desirable. Since the concentric neighborhoods design presented here only adds OPOs 

to the current 11-districts, it does not change any existing relationships an OPO leadership may 

have built with respect to organ procurement and placement. It only augments this relationship. 
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Additionally, a high-performing OPO may find it easier to share and help implement its best 

practices and share resources needed for organ procurement with its added neighbors due to 

geographical proximity. The second contentious issue is the use of allocation MELD at 

transplant as a metric for evaluating disparity. Alternative metrics are being developed by the 

liver transplant community, and the baseline solution presented here may be further refined with 

respect to these metrics. Since concentric neighborhoods preserve the OPO-OPO relationships 

and build additional relationships with the proximal neighbors, the concentric-neighborhoods 

approach has a distinct advantage over redistricting generated from an optimization model since 

in the latter case the districts can change significantly with the disparity metric used to generate 

demand for the objective function in an optimization model.  

We present the specific combinations of 3-point boosts/Share 18 and 5-point boosts/Share 

20 because they maintain a symmetric change to the current sharing policies and they have 

reduced geographic disparity compared to the current system in the simulations. Different 

combinations of the boosts and thresholds may be tested further. Furthermore, more specific 

“boost” might be created for each DSA, or even for specific ranges of MELD scores, when 

further considering this neighborhoods approach in the future. Ultimately, the choices for the 

radii between OPOs in this neighborhood solution, the appropriate value for the Share 15 

threshold, and magnitude of the proximity boosts all reflect a delicate balancing act.  

Since the volume of organs traveled by road may be of concern as indicated in the most 

recent Liver Committee discussion, a further refinement can be made by imposing a road 

distance radii within the concept of concentric neighborhood. For example, while the patients in 

the organ procuring OPO receive a 3- or 5-point boost, the patients listed within certain mile 

radius (or the immediate surrounding OPO’s) of the procuring OPO may be given a 2- or 3-point 

boost. In our testing, we were limited by the features implemented in LivSim.  
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The principal contributions of this article are that reducing the number of deaths, 

geographic disparity, and transport distance by airplanes with slight organ volume losses are 

possible without dismantling the current 11-UNOS regions but by augmenting them using the 

concept of concentric neighborhoods and/or by adjusting the Share 15 policy.  
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Table 2.1: Structural Properties of Concentric Neighborhood Solutions1 

 
 Maintains existing regional relationships: DSAs have their current 

UNOS region inside their neighborhood 
 Nearby and Immediate Neighbors: DSAs have all DSAs with OPO 

locations that are within r (r=400,500, or 600) miles in their neighborhood. 

DSAs usually have their geographically immediate neighbors in their 
neighborhood. 

 Population: Each DSA’s neighborhood has a minimum population of 12 

million 
 Contiguity: Each DSA’s neighborhood is geographically contiguous 
 Compactness: The average transport time for a DSA’s neighborhood is 

within 3 hours 
 Transplant Centers: Each DSA’s neighborhood has at least 8 transplant 

centers2 
1 Hawaii and Puerto Rico were not included in the model.  Their neighborhoods were 

defined as their current UNOS region. Neighborhoods do not refer directly to an 

optimization model. 

2 With exception for LifeCenter Northwest OPO (WALC) whose neighborhood contains 5 

transplant centers. 
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Table 2.2: List of Policies Simulated 

1
Unconstrained concentric neighborhood is abbreviated as Nbhd. (U).  

2
Costrained concentric neighborhood is abbreviated as Nbhd. (C). 

Policies Simulated 
 Current System (IV) Share 29/Share 20/5-Point Boost on 8 Districts 

and Concentric Neighborhoods 

(i) Share 35/Share 15 with 0 point boost and 
11 districts 

 (xx) Share 29/Share 20 with 5 point boost and 
8 districts 

(xxi) 
(xxii) 

Share 29/Share 20 with 5 point boost and 
400-mile Nbhd. (U) 

Share 29/Share 20 with 5 point boost and 
400-mile Nbhd. (C) 

(xxiii) 
(xxiv) 

Share 29/Share 20 with 5 point boost and 
500-mile Nbhd. (U) 
Share 29/Share 20 with 5 point boost and 
500-mile Nbhd. (C) 

(xxv) 
(xxvi) 

Share 29/Share 20 with 5 point boost and 
600-mile Nbhd. (U) 

Share 29/Share 20 with 5 point boost and 
600-mile Nbhd. (C) 

(I) Modifications to 11-District Policy without 
Neighborhoods 

(V) Share 35/Share 15/0-Point Boost on 8 Districts 
and Concentric Neighborhoods 

(ii) 
(iii) 
(iv) 
(v) 

Share 35/Share 18 with 0 point boost and 
11 districts 
Share 35/Share 20 with 0 point boost and 
11 districts 

Share 35/Share 18 with 3 point boost and 
11 districts 
Share 35/Share 20 with 5 point boost and 
11 districts 

(xxvii) Share 35/Share 15 with 0 point boost and 
8 districts 

(xxviii) 
(xxix) 

Share 35/Share 15 with 0 point boost and 
400-mile Nbhd. (U) 
Share 35/Share 15 with 0 point boost and 

400-mile Nbhd. (C) 

(xxx) 
(xxxi) 

Share 35/Share 15 with 0 point boost and 
500-mile Nbhd. (U) 
Share 35/Share 15 with 0 point boost and 
500-mile Nbhd. (C) 

(xxxii) 
(xxxiii) 

Share 35/Share 15 with 0 point boost and 
600-mile Nbhd. (U) 
Share 35/Share 15 with 0 point boost and 

600-mile Nbhd. (C) 

(II) Share 29/Share15/0-Point Boost on 8 Districts 
and Concentric Neighborhoods 

(VI) Share 35/Share 18/3-Point Boost on 8 Districts 
and Concentric Neighborhoods 

(vi) Share 29/Share 15 with 0 point boost and 8 

districts 

(xxxiv) Share 35/Share 18 with 3 point boost and 

8 districts 

(vii) 
(viii) 

Share 29/Share 15 with 0 point boost and 
400-mile Nbhd. (U) 
Share 29/Share 15 with 0 point boost and 
400-mile Nbhd. (C) 

(xxxv) 
(xxxvi) 

Share 35/Share 18 with 3 point boost and 
400-mile Nbhd. (U) 
Share 35/Share 18 with 3 point boost and 
400-mile Nbhd. (C) 

(ix) 
(x) 

Share 29/Share 15 with 0 point boost and 
500-mile Nbhd. (U) 
Share 29/Share 15 with 0 point boost and 

500-mile Nbhd. (C) 

(xxxvii) 
(xxxviii) 

Share 35/Share 18 with 3 point boost and 
500-mile Nbhd. (U) 
Share 35/Share 18 with 3 point boost and 

500-mile Nbhd. (C) 

(xi) 
(xii) 

Share 29/Share 15 with 0 point boost and 
600-mile Nbhd. (U) 
Share 29/Share 15 with 0 point boost and 
600-mile Nbhd. (C) 

(xxxix) 
(xl) 

Share 35/Share 18 with 3 point boost and 
600-mile Nbhd. (U) 
Share 35/Share 18 with 3 point boost and 
600-mile Nbhd. (C) 

(III) Share 29/Share 18/3-Point Boost on 8 Districts 
and Concentric Neighborhoods 

(VII) Share 35/Share 20/5-Point Boost on 8 Districts 
and Concentric Neighborhoods 

(xiii) Share 29/Share 18 with 3 point boost and 8 
districts 

(xli) Share 35/Share 18 with 3 point boost and 
8 districts 

(xiv) 
(xv) 

Share 29/Share 18 with 3 point boost and 
400-mile Nbhd. (U) 

Share 29/Share 18 with 3 point boost and 
400-mile Nbhd. (C) 

(xlii) 
(xliii) 

Share 35/Share 18 with 3 point boost and 
400-mile Nbhd. (U) 

Share 35/Share 18 with 3 point boost and 
400-mile Nbhd. (C) 

(xvi) 
(xvii) 

Share 29/Share 18 with 3 point boost and 
500-mile Nbhd. (U) 
Share 29/Share 18 with 3 point boost and 
500-mile Nbhd. (C) 

(xliv) 
(xlv) 

Share 35/Share 18 with 3 point boost and 
500-mile Nbhd. (U) 
Share 35/Share 18 with 3 point boost and 
500-mile Nbhd. (C) 
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Table 2.3a: 5-Year Performances of Current System and Current System with Modified Sharing 

Policies without Neighborhoods (Block I) 

 

 

 

Category 

Current 
System 
(Share 

15, 
Share 

35) 

(i) 

Share35, 
Share18, 

11 district, 
Local MELD 

Boost+0 

(ii) 

Share35, 
Share20, 

11 district, 
Local MELD 

Boost+0 

(iii) 

Share35, 
Share18, 

11 district, 
Local MELD 

Boost+3 

(iv) 

Share35, 
Share20, 

11 district, 
Local MELD 

Boost+5 

(v) 

Annualized Waitlist Removals 3128.60 3078.16 3044.2 3114.68 3113.32 

Annualized Total Deaths 2243.28 2218.36 2208.76 2249.52 2247.96 

Annualized Waitlist Deaths 1173.68 1127.2 1093.56 1165.16 1159.4 

Annualized Waitlist Relist Deaths 23.92 23.8 23.56 23.92 23.6 

Annualized Post Tx Deaths 996.12 1016.4 1038.92 1009 1014.36 

Annualized Post Re-Tx Deaths 49.56 50.96 52.72 51.44 50.6 

DSA Mean Transplant MELD 23.09 24.03 24.66 23.34 23.41 

DSA Mean Transplant MELD Std. 1.88 1.48 1.35 1.78 1.76 

DSA Median Transplant MELD 24.48 25.67 26.53 24.83 25.09 

DSA Median Transplant MELD Std. 2.84 2.06 1.55 2.65 2.59 

Avg. Organ Transport Distance (mi.) 

 
    

Ground Vehicle 33.34 33.77 34.20 33.01 32.62 

Helicopter 100.99 99.31 100.36 102.12 101.22 

Airplane 525.87 612.02 693.51 563.24 589.92 

Avg. Organ Transport Time (hr.) 

 
    

Ground Vehicle 0.78 0.79 0.80 0.78 0.77 

Helicopter 1.22 1.21 1.22 1.23 1.22 

Airplane 2.48 2.65 2.80 2.55 2.60 

Percentage of Organs Transported 

 
    

Ground Vehicle 46.94% 40.04% 33.92% 47.81% 48.41% 

Helicopter 0.68% 0.57% 0.41% 0.75% 0.75% 

Airplane 52.23% 59.24% 65.53% 51.30% 50.70% 
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Table 2.3b: 5-Year Comparative Performance between Current System and Current System with 

Modified Sharing Policies without Neighborhoods (Block I) 
 

 

*This indicates that difference has p-value less than 0.05 (p <0.05).  

 

  

 

Annualized Post Re-Tx Deaths --- +1.4 +3.16* +1.88* +1.04 

DSA Mean Transplant MELD --- +0.94* +1.57* +0.26* +0.32* 
DSA Mean Transplant MELD Std. --- -0.40* -0.53* -0.11 -0.12* 
DSA Median Transplant MELD --- +1.19* +2.04* +0.35* +0.61* 
DSA Median Transplant MELD Std. --- -0.78* -1.29* -0.19* -0.26* 

Avg. Organ Transport Distance (mi.) ---     

Ground Vehicle --- +0.43* +0.86* -0.33 -0.72* 

Helicopter --- -1.67 -0.63 +1.14 +0.23 
Airplane --- +86.15* +167.64* +37.37* +64.05* 

Avg. Organ Transport Time (hr.) ---     

Ground Vehicle --- +0.01* +0.02* -0.01 -0.01* 
Helicopter --- -0.01 0 +0.01 0 

Airplane --- +0.17* +0.33* +0.07* +0.12* 

Percentage of Organs Transported ---     

Ground Vehicle --- -6.90%* -13.02%* +0.87%* +1.46%* 

Helicopter --- -0.12%* -0.27%* +0.06%* +0.07%* 

Airplane --- +7.02%* +13.30%* -0.93%* -1.52%* 
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Table 2.4a: 5-Year Performances of Current System and Share 29/Share 15/0-Point Boost Policy 

on 8 Districts and Concentric Neighborhoods (Block II)  

  

 

Category 

Curre
nt 

Syste
m 

(Share 
15, 

Share 
35) 
(i) 

Share2
9, 

Share1
5, 

8 
district, 
Boost+

0 
(vi) 

Share2
9, 

Share1
5, 

400 mi.  

Nbhd. 
(U) 

Boost+
0 

(vii) 

Share2
9, 

Share1
5, 

400 mi.  

Nbhd. 
(C) 

Boost+
0 

(viii) 

Share2
9, 

Share1
5, 

500 mi.  

Nbhd. 
(U) 

Boost+
0 

(ix) 

Share2
9, 

Share1
5, 

500 mi.  

Nbhd. 
(C) 

Boost+
0 

(x) 

Share2
9, 

Share1
5, 

600 mi. 

Nbhd. 
(U), 

Boost+
0 

(xi) 

Share2
9, 

Share1
5, 

600 mi. 

Nbhd. 
(C), 

Boost+
0 

(xii) 

Annualized Waitlist Removals 
3128.6

0 3086.52 3101.84 3100.76 3077.48 3093.48 3062.20 3091.84 

Annualized Total Deaths 
2243.2

8 2216.24 2220.32 2215.56 2190.24 2208.68 2173.76 2215.2 
Annualized Waitlist 
Deaths 

1173.6
8 1128.04 1150.28 1138.88 1111.64 1134.56 1097.84 1134.16 

Annualized Waitlist Relist 
Deaths 23.92 23.52 24.04 22.76 22.88 23.40 22.20 23.24 

Annualized Post Tx 
Deaths 996.12 1014.60 997.72 1003.68 1003.88 1003.64 1002.28 1009.44 
Annualized Post Re-Tx 
Deaths 49.56 50.08 48.28 50.24 51.84 47.08 51.44 48.36 

DSA Mean Transplant MELD 23.09 23.76 23.26 23.61 23.87 23.61 24.08 23.64 

DSA Mean Transplant MELD Std. 1.88 1.59 1.80 1.77 1.70 1.83 1.64 1.83 

DSA Median Transplant MELD 24.48 26.01 24.92 25.59 26.27 25.61 26.69 25.73 

DSA Median Transplant MELD Std. 2.84 2.34 2.68 2.75 2.48 2.76 2.19 2.77 

Avg. Organ Transport Distance (mi.) 

  
 

  
   

Ground Vehicle 33.34 34.21 33.04 34.71 34.32 34.63 33.77 34.70 

Helicopter 100.99 103.96 103.89 105.54 104.66 104.40 103.77 105.47 

Airplane 525.87 507.88 454.37 468.38 451.53 469.74 465.80 468.56 

Avg. Organ Transport Time (hr.) 

  
 

  
   

Ground Vehicle 0.78 0.80 0.78 0.81 0.80 0.81 0.79 0.81 

Helicopter 1.22 1.24 1.24 1.25 1.25 1.25 1.24 1.25 

Airplane 2.48 2.44 2.33 2.37 2.33 2.37 2.36 2.37 

Percentage of Organs Transported 

  
 

  
   

Ground Vehicle 
46.94

% 39.39% 44.33% 38.22% 35.03% 37.90% 33.75% 37.63% 

Helicopter 0.68% 0.63% 0.71% 0.69% 0.52% 0.67% 0.50% 0.71% 

Airplane 
52.23

% 59.86% 54.81% 60.97% 64.34% 61.31% 65.65% 61.55% 
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Table 2.4b: 5-Year Comparative Performance between Current System and Share 29/Share 15/0-

Point Boost Policy on 8 Districts and Concentric Neighborhoods (Block II) 

 

*This indicates that difference has p-value less than 0.05 (p <0.05).  

 

 

Category 

Curre
nt 

Syste
m 

(Share 
15, 

Share 
35) 

(i) 

Share2
9, 

Share1
5, 
8 

district, 
Boost+

0 

(vi) 

Share2
9, 

Share1

5, 
400 mi.  
Nbhd. 

(U) 
Boost+

0 

(vii) 

Share2
9, 

Share1

5, 
400 mi.  
Nbhd. 

(C) 
Boost+

0 

(viii) 

Share2
9, 

Share1

5, 
500 mi.  
Nbhd. 

(U) 
Boost+

0 

(ix) 

Share2
9, 

Share1

5, 
500 mi.  
Nbhd. 

(C) 
Boost+

0 

(x) 

Share2
9, 

Share1

5, 
600 mi. 
Nbhd. 
(U), 

Boost+
0 

(xi) 

Share2
9, 

Share1

5, 
600 mi. 
Nbhd. 
(C), 

Boost+
0 

(xii) 

Annualized Waitlist Removals --- -42.08 -41 -27.84 -51.12 -35.12 -66.4 -36.76 

Annualized Total Deaths --- -27.04 -22.96 -27.72 -53.04 -34.6 -69.52 -28.08 
Annualized Waitlist 
Deaths 

--- 
-45.64 -49.84 -34.8 -62.04 -39.12 

-75.84* -39.52 

Annualized Waitlist Relist 

Deaths 

--- 
-0.4 -0.8 -1.16 -1.04 -0.52 

-1.72 -0.68 

Annualized Post Tx 
Deaths 

--- 
+18.48* +12.28 +7.56 +7.76 +7.52 

+6.16 +13.32 

Annualized Post Re-Tx 
Deaths 

--- 
+0.52 +0.52 +0.68 +2.28 -2.48* 

+1.88 -1.2 

DSA Mean Transplant MELD --- +0.68* +0.62* +0.52* +0.78* +0.52* +0.99* +0.56* 
DSA Mean Transplant MELD Std. --- -0.29* -0.13* -0.11 -0.18* -0.06 -0.25* -0.05 

DSA Median Transplant MELD --- +1.52* +1.44* +1.10* +1.79* +1.13* +2.21* +1.24* 
DSA Median Transplant MELD Std. --- -0.51* -0.21* -0.09* -0.36* -0.08 -0.65* -0.08 

Avg. Organ Transport Distance 
(mi.) 

--- 

 
 

  
 

  

Ground Vehicle --- +0.88* +0.78* +1.37* +0.98* +1.29* +0.43* +1.36* 
Helicopter --- +2.98* +4.01* +4.55* +3.67* +3.41* +2.79* +4.49* 
Airplane --- -17.99* -80.26* -57.50* -74.34* -56.14* -60.07* -57.31* 

Avg. Organ Transport Time (hr.) --- 

 
 

  
   

Ground Vehicle --- +0.02* +0.02* +0.03* +0.02* +0.02* +0.01* +0.03* 
Helicopter --- +0.02* +0.03* +0.03* +0.03* +0.02* +0.02* +0.03* 

Airplane --- -0.04* -0.16* -0.11* -0.15* -0.11* -0.12* -0.11* 

Percentage of Organs Transported --- 

 
 

  
   

Ground Vehicle 
--- 

-7.55%* 
-

10.46%* -8.72%* 
-

11.92%* -9.04%* 
-

13.19%* 
-9.32%* 

Helicopter --- -0.05% -0.12%* +0.01% -0.17%* 0% -0.19%* +0.03% 

Airplane 
--- +7.63%

* 

+10.61

%* 

+8.74%

* 

+12.11

%* 

+9.08%

* 

+13.42

%* 

+9.32%

* 
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Table2. 5a: 5-Year Performances of Current System and Share 29/Share 18/3-Point Boost Policy 

on 8 Districts and Concentric Neighborhoods (Block III) 

 

 

 

 
 
 
 
 
 

 
 
 
 

 

Category 

Current 
System 
(Share 

15, 
Share 

35) 

(i) 

Share29

, 
Share18

, 
8 

district, 
Boost+3 

(xiii) 

Share2
9, 

Share1

8, 
400 mi. 
Nbhd. 
(U), 

Boost+
3 

(xiv) 

Share2
9, 

Share1

8, 
400 mi. 
Nbhd. 
(C), 

Boost+
3 

(xv) 

Share2
9, 

Share1

8, 
500 mi. 
Nbhd. 
(U), 

Boost+
3 

(xvi) 

Share2
9, 

Share1

8, 
500 mi. 
Nbhd. 
(C), 

Boost+
3 

(xvii) 

Share2
9, 

Share1

8, 
600 mi. 
Nbhd. 
(U), 

Boost+
3 

(xviii) 

Share2
9, 

Share1

8, 
600 mi. 
Nbhd. 
(C), 

Boost+
3 

(xix) 

Annualized Waitlist Removals 
3128.60 3077.56 

3083.5

6 

3091.4

8 

3072.9

2 

3090.6

0 

3053.7

6 

3092.3

6 

Annualized Total Deaths 
2243.28 2224.12 

2207.7
2 2235.6 

2193.9
2 2220.8 

2179.5
6 2214.6 

Annualized Waitlist 
Deaths 1173.68 1130.04 

1120.6
0 

1141.2
8 

1112.8
0 

1132.7
2 

1100.1
2 

1135.7
2 

Annualized Waitlist Relist 

Deaths 23.92 23.12 23.40 22.40 23.04 22.88 22.40 23.32 
Annualized Post Tx 
Deaths 996.12 1020.12 

1012.0
4 

1019.4
8 

1009.6
0 

1015.0
0 

1007.4
8 

1004.9
6 

Annualized Post Re-Tx 
Deaths 49.56 50.84 51.68 52.44 48.48 50.20 49.56 50.60 

DSA Mean Transplant MELD 23.09 23.89 23.89 23.72 24.00 23.78 24.13 23.78 

DSA Mean Transplant MELD Std. 1.88 1.54 1.64 1.70 1.66 1.75 1.57 1.72 

DSA Median Transplant MELD 24.48 26.18 26.14 25.80 26.39 25.84 26.74 25.90 
DSA Median Transplant MELD 
Std. 2.84 2.18 2.38 2.53 2.25 2.54 2.02 2.51 

Avg. Organ Transport Distance 
(mi.) 

  

 

 

 

 

  

Ground Vehicle 33.34 33.61 33.49 33.92 33.44 33.84 33.20 33.84 

Helicopter 100.99 103.79 104.27 104.11 104.08 103.87 103.16 105.31 

Airplane 525.87 532.09 472.57 503.91 474.91 502.44 482.86 501.79 

Avg. Organ Transport Time (hr.) 

  

 

 

 

 

  

Ground Vehicle 0.78 0.79 0.79 0.80 0.79 0.79 0.78 0.79 

Helicopter 1.22 1.24 1.24 1.24 1.24 1.24 1.24 1.25 

Airplane 2.48 2.48 2.37 2.43 2.37 2.43 2.39 2.43 

Percentage of Organs Transported 

  

 

 

 

 

  

Ground Vehicle 46.94% 42.15% 39.69% 41.40% 38.16% 41.15% 36.96% 40.78% 

Helicopter 0.68% 0.69% 0.58% 0.71% 0.54% 0.72% 0.56% 0.72% 

Airplane 52.23% 57.04% 59.62% 57.78% 61.19% 58.00% 62.37% 58.37% 
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Table 2.5b: 5-Year Comparative Performances between Current System and Share 29/Share 18/3-

Point Boost Policy on 8 Districts and Concentric Neighborhoods (Block III) 

 
*This indicates that difference has p-value less than 0.05 (p <0.05).  
 

 
 
 
 
 
 

 
 
 
 
 
 

 

 

Category 

Current 
System 
(Share 

15, 
Share 

35) 
(i) 

Share29

, 
Share18

, 
8 

district, 
Boost+

3 
(xiii) 

Share2
9, 

Share1
8, 

400 mi. 
Nbhd. 
(U), 

Boost+

3 
(xiv) 

Share2
9, 

Share1
8, 

400 mi. 
Nbhd. 
(C), 

Boost+

3 
(xv) 

Share2
9, 

Share1
8, 

500 mi. 
Nbhd. 
(U), 

Boost+

3 
(xvi) 

Share2
9, 

Share1
8, 

500 mi. 
Nbhd. 
(C), 

Boost+

3 
(xvii) 

Share2
9, 

Share1
8, 

600 mi. 
Nbhd. 
(U), 

Boost+

3 
(xviii) 

Share2
9, 

Share1
8, 

600 mi. 
Nbhd. 
(C), 

Boost+

3 
(xix) 

Annualized Waitlist Removals --- -51.04 -45.04 -37.12 -55.68 -38 -74.84 -36.24 
Annualized Total Deaths --- -19.16 -35.56 -7.68 -49.36 -22.48 -63.72 -28.68 

Annualized Waitlist 
Deaths 

--- 
-43.64 -53.08 -32.4 -60.88 -40.96 

-73.56* -37.96 

Annualized Waitlist Relist 
Deaths 

--- 
-0.8 -0.52 -1.52 -0.88 -1.04 

-1.52 -0.6 

Annualized Post Tx 
Deaths 

--- 
+24* +15.92* +23.36* +13.48 +18.88* 

+11.36 +8.84 

Annualized Post Re-Tx 
Deaths 

--- 
+1.28 +2.12 +2.88* -1.08 +0.64 

0 +1.04 

DSA Mean Transplant MELD --- +0.81* +0.80* +0.63* +0.91* +0.69* +1.05* +0.70* 

DSA Mean Transplant MELD Std. --- -0.34* -0.24* -0.18* -0.22* -0.13* -0.31* -0.16* 
DSA Median Transplant MELD --- +1.69* +1.65* +1.31* +1.90* +1.36* +2.25* +1.42* 
DSA Median Transplant MELD 
Std. 

--- 
-0.67* -0.46* -0.31* -0.60* -0.31* 

-0.82* -0.33* 

Avg. Organ Transport Distance 
(mi.) 

--- 

 
 

 
 

 

  

Ground Vehicle --- +0.27 +0.15 +0.58* +0.10 +0.50* -0.14 +0.50* 

Helicopter --- +2.81* +3.29* +3.12* +3.09* +2.88* +2.17 +4.32* 
Airplane --- +6.22* -53.30* -21.96* -50.97* -23.43* -43.01* -24.08* 

Avg. Organ Transport Time (hr.) --- 

 
 

 
 

 

  

Ground Vehicle --- 0 0 +0.01* 0 +0.01* 0 +0.01* 
Helicopter --- +0.02* +0.02* +0.02* +0.02* +0.02* +0.02 +0.03* 
Airplane --- +0.01 -0.10* -0.04* -0.10* -0.04* -0.08* -0.04* 

Percentage of Organs Transported --- 

 
 

 
 

 

  

Ground Vehicle 
--- 

-4.80%* 
-

7.26%* 
-

5.55%* 
-

8.78%* 
-

5.80%* 
-9.98%* -

6.16%* 

Helicopter 
--- 

+0.01% 
-

0.11%* +0.02% 
-

0.14%* +0.04% 
-0.12%* +0.04% 

Airplane 
--- 

+4.81%* 
+7.40%

* 
+5.55%

* 
+8.96%

* 
+5.78%

* 
+10.14

%* 
+6.15%

* 
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Table2. 6a: 5-Year Performances of Current System and Share 29/Share 20/5-Point Boost Policy 

on 8 Districts and Concentric Neighborhoods (Block IV) 

 
 
 
 
 
 

 
 
 
 
 
 

 

 

Category 

Current 
System 
(Share 

15, 
Share 

35) 

(i) 

Share29

, 
Share20

, 
8 

district, 
Boost+5 

(xx) 

Share2
9, 

Share2

0, 
400 mi. 
Nhbd. 
(U), 

Boost+
5 

(xxi) 

Share2
9, 

Share2

0, 
400 mi. 
Nhbd. 
(C), 

Boost+
5 

(xxii) 

Share2
9, 

Share2

0, 
500 mi. 
Nbhd. 
(U), 

Boost+
5 

(xxiii) 

Share2
9, 

Share2

0, 
500 mi. 
Nbhd. 
(C), 

Boost+
5 

(xxiv) 

Share2
9, 

Share2

0, 
600 mi. 
Nbhd. 
(U), 

Boost+
5 

(xxv) 

Share2
9, 

Share2

0, 
600 mi. 
Nbhd. 
(C), 

Boost+
5 

(xxvi) 

Annualized Waitlist Removals 
3128.60 3078.24 

3079.5

2 

3092.4

4 

3066.5

6 

3090.6

0 

3066.2

8 

3087.1

6 

Annualized Total Deaths 
2243.28 2220 

2215.5
6 

2227.6
4 

2200.9
6 2220.8 

2182.1
6 2227.6 

Annualized Waitlist 
Deaths 1173.68 1130.56 

1125.1
2 

1138.9
6 

1116.8
0 

1132.7
2 

1098.2
0 

1136.7
6 

Annualized Waitlist Relist 

Deaths 23.92 23.12 22.88 23.12 22.36 22.88 22.36 23.00 
Annualized Post Tx 
Deaths 996.12 1014.16 

1016.2
0 

1013.6
0 

1011.1
2 

1015.0
0 

1012.3
2 

1015.9
6 

Annualized Post Re-Tx 
Deaths 49.56 52.16 51.36 51.96 50.68 50.20 49.28 51.88 

DSA Mean Transplant MELD 23.09 23.90 23.93 23.81 24.03 23.78 24.18 23.86 

DSA Mean Transplant MELD Std. 1.88 1.55 1.66 1.69 1.66 1.75 1.54 1.67 

DSA Median Transplant MELD 24.48 26.26 26.22 25.94 26.50 25.84 26.77 26.03 
DSA Median Transplant MELD 
Std. 2.84 2.09 2.19 2.36 2.07 2.54 1.86 2.35 

Avg. Organ Transport Distance 
(mi.) 

  

 

 

 

 

  

Ground Vehicle 33.34 33.33 33.07 33.42 33.23 33.84 32.79 33.48 

Helicopter 100.99 104.00 104.56 104.29 103.51 103.87 103.32 103.96 

Airplane 525.87 556.97 498.81 532.22 495.42 502.44 501.03 530.13 

Avg. Organ Transport Time (hr.) 

  

 

 

 

 

  

Ground Vehicle 0.78 0.78 0.78 0.79 0.78 0.79 0.78 0.79 

Helicopter 1.22 1.24 1.25 1.24 1.24 1.24 1.24 1.24 

Airplane 2.48 2.53 2.42 2.49 2.41 2.43 2.42 2.48 

Percentage of Organs Transported 

  

 

 

 

 

  

Ground Vehicle 46.94% 43.70% 41.46% 43.19% 40.04% 41.15% 38.89% 42.69% 

Helicopter 0.68% 0.70% 0.60% 0.76% 0.60% 0.72% 0.56% 0.74% 

Airplane 52.23% 55.47% 57.82% 55.94% 59.25% 58.00% 60.44% 56.44% 
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Table 2.6b: 5-Year Comparative Performances between Current System and Share 29/Share 20/5-

Point Boost Policy on 8 Districts and Concentric Neighborhoods (Block IV) 

 
*This indicates that difference has p-value less than 0.05 (p <0.05).  
 

 
 
 
 
 
 

 
 
 
 
 
 

 

Category 

Current 
System 
(Share 

15, 
Share 

35) 
(i) 

Share29
, 

Share20
, 

8 
district, 
Boost+5 

(xx) 

Share2
9, 

Share2
0, 

400 mi. 
Nhbd. 

(U), 
Boost+

5 
(xxi) 

Share2
9, 

Share2
0, 

400 mi. 
Nhbd. 

(C), 
Boost+

5 
(xxii) 

Share2
9, 

Share2
0, 

500 mi. 
Nbhd. 

(U), 
Boost+

5 
(xxiii) 

Share2
9, 

Share2
0, 

500 mi. 
Nbhd. 

(C), 
Boost+

5 
(xxiv) 

Share2
9, 

Share2
0, 

600 mi. 
Nbhd. 

(U), 
Boost+

5 
(xxv) 

Share2
9, 

Share2
0, 

600 mi. 
Nbhd. 

(C), 
Boost+

5 
(xxvi) 

Annualized Waitlist Removals --- -50.36 -49.08 -36.16 -62.04 -40.08 -62.32 -41.44 
Annualized Total Deaths --- -23.28 -27.72 -15.64 -42.32 -22.48 -61.12 -15.68 

Annualized Waitlist 
Deaths 

--- 
-43.12 -48.56 -34.72 -56.88 -39.52 

-75.48* -36.92 

Annualized Waitlist Relist 
Deaths 

--- 
-0.8 -1.04 -0.8 -1.56 -0.32 

-1.56 -0.92 

Annualized Post Tx 
Deaths 

--- 
+18.04* +20.08* +17.48* +15 +25.12* 

+16.2* +19.84* 

Annualized Post Re-Tx 
Deaths 

--- 
+2.6* +1.8* +2.4 +1.12 +1 

-0.28 +2.32 

DSA Mean Transplant MELD --- +0.82* +0.85* +0.73* +0.95* +0.75* +1.09* +0.77* 

DSA Mean Transplant MELD Std. --- -0.34* -0.22* -0.19* -0.22* -0.22* -0.34* -0.21* 
DSA Median Transplant MELD --- +1.78* +1.74* +1.46* +2.02* +1.50* +2.29* +1.54* 
DSA Median Transplant MELD 
Std. 

--- 
-0.75* -0.66* -0.49* -0.77* -0.50* 

-0.98* -0.49* 

Avg. Organ Transport Distance 
(mi.) 

--- 

 
 

 
 

 

  

Ground Vehicle --- -0.01 -0.27 +0.08 -0.11 +0.04 -0.55* +0.14 

Helicopter --- +3.02* +3.58* +3.31* +2.53* +4.17* +2.34 +2.98* 
Airplane --- +31.10* -27.06* +6.35* -30.45* +3.33 -24.84* +4.26* 

Avg. Organ Transport Time (hr.) --- 

 
 

 
 

 

  

Ground Vehicle --- 0 0 0 0 0 -0.01* 0 
Helicopter --- +0.02* +0.03* +0.02* +0.02* +0.03* +0.02 +0.02* 

Airplane --- +0.06* -0.05* +0.01* -0.06* +0.01* -0.05* +0.01* 

Percentage of Organs Transported --- 

 
 

 
 

 

  

Ground Vehicle --- -3.25%* -5.48%* -3.76%* -6.90%* -4.12%* -8.06%* -4.25%* 

Helicopter 
--- 

+0.02% -0.09%* 
+0.07%

* -0.09%* -0.06%* 
-0.12%* +0.06%

* 

Airplane 
--- 

+3.25%* 

+5.60%

* 

+3.72%

* 

+7.02%

* 

+4.09%

* 

+8.21%

* 

+4.22%

* 
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Table 2.7a: 5-Year Performances of Current System and Share 35/Share 15/0-Point Boost Policy 

on 8 Districts and Concentric Neighborhoods (Block V) 

 
 

 
 
 
 
 

 

Category 

Curre
nt 

Syste
m 

(Share 

15, 
Share 

35) 
(i) 

Share3
5, 

Share1
5, 
8 

district, 
Boost+

0 
(xxvii) 

Share3
5, 

Share1
5, 

400 mi. 
Nbhd. 

(U), 
Boost+

0 
(xxviii) 

Share3
5, 

Share1
5, 

400 mi. 
Nbhd. 

(C), 
Boost+

0 
(xxix) 

Share3
5, 

Share1
5, 

500 mi. 
Nbhd. 

(U), 
Boost+

0 
(xxx) 

Share3
5, 

Share1
5, 

500 mi. 
Nbhd. 

(C), 
Boost+

0 
(xxxi) 

Share3
5, 

Share1
5, 

600 mi. 
Nbhd. 

(U), 
Boost+

0 
(xxxii) 

Share3
5, 

Share1
5, 

600 mi. 
Nbhd. 

(C), 
Boost+

0 
(xxxiii) 

Annualized Waitlist Removals 
3128.6

0 3106.92 3101.84 3113.40 3094.64 3107.64 3086.56 3108.72 

Annualized Total Deaths 
2243.2

8 2238 2220.32 2224.6 2214.6 2225.2 2209.68 2224.36 

Annualized Waitlist 
Deaths 

1173.6
8 1153.68 1150.28 1157.16 1139.56 1159.00 1135.32 1160.64 

Annualized Waitlist Relist 
Deaths 23.92 23.92 24.04 24.08 23.92 23.72 23.60 23.88 
Annualized Post Tx 
Deaths 996.12 1010.40 997.72 992.68 1002.16 992.52 1002.44 991.08 

Annualized Post Re-Tx 
Deaths 49.56 50.00 48.28 50.68 48.96 49.96 48.32 48.76 

DSA Mean Transplant MELD 23.09 23.31 23.26 23.23 23.39 23.26 23.53 23.27 

DSA Mean Transplant MELD Std. 1.88 1.64 1.80 1.84 1.80 1.84 1.73 1.83 

DSA Median Transplant MELD 24.48 24.98 24.92 24.74 25.14 24.83 25.40 24.81 

DSA Median Transplant MELD Std. 2.84 2.54 2.68 2.75 2.63 2.74 2.53 2.73 

Avg. Organ Transport Distance (mi.) 

  
 

 
 

 

  

Ground Vehicle 33.34 33.18 33.04 33.28 32.90 33.22 32.68 33.29 

Helicopter 100.99 103.40 103.89 102.97 103.51 104.22 102.60 104.89 

Airplane 525.87 499.26 454.37 483.38 457.60 484.42 464.96 478.58 

Avg. Organ Transport Time (hr.) 

  
 

 
 

 

  

Ground Vehicle 0.78 0.78 0.78 0.78 0.78 0.78 0.77 0.78 

Helicopter 1.22 1.24 1.24 1.24 1.24 1.24 1.23 1.25 

Airplane 2.48 2.42 2.33 2.39 2.34 2.40 2.35 2.38 

Percentage of Organs Transported 

  
 

 
 

 

  

Ground Vehicle 
46.94

% 46.60% 44.33% 45.05% 43.62% 45.03% 43.34% 44.95% 

Helicopter 0.68% 0.80% 0.71% 0.80% 0.70% 0.78% 0.69% 0.77% 

Airplane 
52.23

% 52.47% 54.81% 54.02% 55.55% 54.05% 55.85% 54.14% 
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Table 2.7b: 5-Year Comparative Performances between Current System and Share 35/Share 15/0-

Point Boost Policy on 8 Districts and Concentric Neighborhoods (Block V) 

*This indicates that difference has p-value less than 0.05 (p <0.05). 

  

 

Category 

Curre
nt 

Syste
m 

(Share 
15, 

Share 
35) 
(i) 

Share3
5, 

Share1
5, 

8 
district, 
Boost+

0 
(xxvii) 

Share3
5, 

Share1
5, 

400 mi. 

Nbhd. 
(U), 

Boost+
0 

(xxviii) 

Share3
5, 

Share1
5, 

400 mi. 

Nbhd. 
(C), 

Boost+
0 

(xxix) 

Share3
5, 

Share1
5, 

500 mi. 

Nbhd. 
(U), 

Boost+
0 

(xxx) 

Share3
5, 

Share1
5, 

500 mi. 

Nbhd. 
(C), 

Boost+
0 

(xxxi) 

Share3
5, 

Share1
5, 

600 mi. 

Nbhd. 
(U), 

Boost+
0 

(xxxii) 

Share3
5, 

Share1
5, 

600 mi. 

Nbhd. 
(C), 

Boost+
0 

(xxxiii) 

Annualized Waitlist Removals --- -21.68 -26.76 -15.2 -33.96 -20.96 -42.04 -19.88 

Annualized Total Deaths --- -5.28 -22.96 -18.68 -28.68 -18.08 -33.6 -18.92 
Annualized Waitlist 

Deaths 

--- 
-20 -23.4 -16.52 -34.12 -14.68 

-38.36 -13.04 

Annualized Waitlist Relist 
Deaths 

--- 
0 +0.12 +0.16 0 -0.2 

-0.32 -0.04 

Annualized Post Tx 
Deaths 

--- 
+14.28 +1.6 -3.44 +6.04 -3.6 

+6.32 -5.04 

Annualized Post Re-Tx 

Deaths 

--- 
+0.44 -1.28 +1.12 -0.6 +0.4 

-1.24 -0.8 

DSA Mean Transplant MELD --- +0.22* +0.18* +0.14* +0.31* +0.18* +0.44* +0.18* 
DSA Mean Transplant MELD Std. --- -0.24* -0.08 -0.04 -0.08 -0.04 -0.15* -0.05 

DSA Median Transplant MELD --- +0.49* +0.44* +0.26* +0.66* +0.34* +0.91* +0.33* 
DSA Median Transplant MELD Std. --- -0.30* -0.16* -0.09* -0.21* -0.11* -0.31* -0.12* 

Avg. Organ Transport Distance (mi.) --- 

 
 

 
 

 

  

Ground Vehicle --- -0.16 -0.30* -0.06 -0.44* -0.12 -0.66* -0.05 
Helicopter --- +2.41* +2.91* +1.99* +2.52* +3.23* +1.61 +3.91* 
Airplane --- -26.61* -71.50* -42.49* -68.27* -41.45* -60.91* -47.29* 

Avg. Organ Transport Time (hr.) --- 

 
 

 
 

 

  

Ground Vehicle --- 0 -0.01* 0 -0.01* 0 -0.01* 0 
Helicopter --- +0.02* +0.02* +0.01* +0.02* +0.02* +0.01 +0.03* 
Airplane --- -0.06* -0.14* -0.08* -0.14* -0.08* -0.12* -0.09* 

Percentage of Organs Transported --- 

 
 

 
 

 

  

Ground Vehicle --- -0.35%* -2.61%* -1.90%* -3.33%* -1.91%* -3.61%* -2.00%* 

Helicopter 
--- +0.12%

* +0.03% 
+0.12%

* +0.01% 
+0.10%

* 
+0.01% +0.09%

* 

Airplane 
--- 

+0.24% 
+2.58%

* 
+1.79%

* 
+3.32%

* 
+1.82%

* 
+3.62%

* 
+1.92%

* 
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Table 2.8a: 5-Year Performances of Current System and Share 35/Share 18/3-Point Boost Policy 

on 8 Districts and Concentric Neighborhoods (Block VI) 

  

 

Category 

Curre
nt 

Syste

m 
(Share 

15, 
Share 

35) 
(i) 

Share3
5, 

Share1

8, 
8 

district, 
Boost+

3 
(xxxiv) 

Share3
5, 

Share1
8, 

400 mi. 
Nbhd. 
(U), 

Boost+
3 

(xxxv) 

Share3
5, 

Share1
8, 

400 mi. 
Nbhd. 
(C), 

Boost+
3 

(xxxvi) 

Share3
5, 

Share1
8, 

500 mi. 
Nbhd. 
(U), 

Boost+
3 

(xxxvii) 

Share3
5, 

Share1
8, 

500 mi. 

Nbhd. 
(C), 

Boost+
3 

(xxxviii
) 

Share3
5, 

Share1
8, 

600 mi. 
Nbhd. 
(U), 

Boost+
3 

(xxxix) 

Share3
5, 

Share1
8, 

600 mi. 
Nbhd. 
(C), 

Boost+
3 

(xl) 

Annualized Waitlist Removals 
3128.6

0 3094.64 3100.40 3103.68 3088.36 3108.72 3091.04 3101.92 

Annualized Total Deaths 
2243.2

8 2239.68 2223.12 2232.44 2214.68 2226.36 2215.08 2238.6 
Annualized Waitlist 
Deaths 

1173.6
8 1153.68 1149.32 1154.52 1139.48 1148.56 1134.56 1153.68 

Annualized Waitlist Relist 

Deaths 23.92 23.60 23.88 23.72 23.64 23.08 23.08 24.24 
Annualized Post Tx 
Deaths 996.12 1012.36 1000.92 1003.92 1002.16 1005.72 1008.76 1009.28 
Annualized Post Re-Tx 
Deaths 49.56 50.04 49.00 50.28 49.40 49.00 48.68 51.40 

DSA Mean Transplant MELD 23.09 23.49 23.45 23.39 23.49 23.41 23.55 23.41 

DSA Mean Transplant MELD Std. 1.88 1.64 1.74 1.76 1.74 1.78 1.72 1.73 

DSA Median Transplant MELD 24.48 25.20 25.21 25.05 25.33 25.05 25.48 25.08 

DSA Median Transplant MELD Std. 2.84 2.47 2.54 2.62 2.54 2.60 2.52 2.59 

Avg. Organ Transport Distance (mi.) 

  
 

 
 

 

  

Ground Vehicle 33.34 32.93 32.82 32.94 32.82 32.93 32.62 32.99 

Helicopter 100.99 102.30 103.26 103.45 102.46 103.81 102.41 104.06 

Airplane 525.87 529.59 488.15 516.15 480.73 515.56 482.89 512.27 

Avg. Organ Transport Time (hr.) 

  
 

 
 

 

  

Ground Vehicle 0.78 0.78 0.77 0.78 0.77 0.78 0.77 0.78 

Helicopter 1.22 1.23 1.24 1.24 1.23 1.24 1.23 1.24 

Airplane 2.48 2.48 2.40 2.46 2.38 2.46 2.39 2.45 

Percentage of Organs Transported 

  
 

 
 

 

  

Ground Vehicle 
46.94

% 47.19% 45.10% 46.16% 44.50% 46.09% 43.95% 45.95% 

Helicopter 0.68% 0.78% 0.74% 0.79% 0.71% 0.83% 0.71% 0.82% 

Airplane 
52.23

% 51.90% 54.01% 52.91% 54.66% 52.94% 55.19% 53.10% 
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Table 2.8b: 5-Year Comparative Performances between Current System and Share 35/Share 18/3-

Point Boost Policy on 8 Districts and Concentric Neighborhoods (Block VI) 

 

*This indicates that difference has p-value less than 0.05 (p <0.05).  

 

 
 
 
 
 
 

 
 
 
 
 

 

Category 

Curre
nt 

Syste
m 

(Share 
15, 

Share 
35) 
(i) 

Share3
5, 

Share1
8, 
8 

district, 

Boost+
3 

(xxxiv) 

Share3

5, 
Share1

8, 
400 mi. 
Nbhd. 
(U), 

Boost+
3 

(xxxv) 

Share3

5, 
Share1

8, 
400 mi. 
Nbhd. 
(C), 

Boost+
3 

(xxxvi) 

Share3

5, 
Share1

8, 
500 mi. 
Nbhd. 
(U), 

Boost+
3 

(xxxvii) 

Share3
5, 

Share1
8, 

500 mi. 
Nbhd. 
(C), 

Boost+

3 
(xxxviii

) 

Share3

5, 
Share1

8, 
600 mi. 
Nbhd. 
(U), 

Boost+
3 

(xxxix) 

Share3

5, 
Share1

8, 
600 mi. 
Nbhd. 
(C), 

Boost+
3 

(xl) 

Annualized Waitlist Removals --- -33.96 -28.2 -24.92 -40.24 -19.88 -37.56 -26.68 
Annualized Total Deaths --- -3.6 -20.16 -10.84 -28.6 -16.92 -28.2 -4.68 

Annualized Waitlist 
Deaths 

--- 
-20 -24.36 -19.16 -34.2 -25.12 

-39.12 -20 

Annualized Waitlist Relist 
Deaths 

--- 
-0.32 -0.04 -0.2 -0.28 -0.84 

-0.84 +0.32 

Annualized Post Tx 
Deaths 

--- 
+16.24* +4.8 +7.8 +6.04 +9.6 

+12.64 +13.16 

Annualized Post Re-Tx 
Deaths 

--- 
+0.48 -0.56 +0.72 -0.16 -0.56 

-0.88 +1.84 

DSA Mean Transplant MELD --- +0.40* +0.36* +0.30* +0.41* +0.32* +0.46* +0.32* 

DSA Mean Transplant MELD Std. --- -0.24* -0.14* -0.12 -0.14* -0.10 -0.17* -0.15* 
DSA Median Transplant MELD --- +0.71* +0.73* +0.56* +0.85* +0.57* +0.99* +0.60* 
DSA Median Transplant MELD Std. --- -0.38* -0.30* -0.23* -0.31* -0.24* -0.33* -0.26* 

Avg. Organ Transport Distance (mi.) --- 

 
 

 
 

 

  

Ground Vehicle --- -0.41* -0.52* -0.40* -0.52* -0.41* -0.72* -0.35 
Helicopter --- +1.31 +2.27 +2.47 +1.47 +2.82* +1.42 +3.08* 
Airplane --- +3.72 -37.72* -9.72* -45.14* -10.31* -42.98* -13.60* 

Avg. Organ Transport Time (hr.) --- 

 
 

 
 

 

  

Ground Vehicle --- -0.01* -0.01* -0.01* -0.01* -0.01* -0.01* -0.01 
Helicopter --- +0.01 +0.02 +0.02 +0.01 +0.02* +0.01 +0.02* 
Airplane --- 0 -0.08* -0.02* -0.09* -0.02* -0.09* -0.03* 

Percentage of Organs Transported --- 

 

 

 

 

 

  

Ground Vehicle --- +0.25% -1.84%* -0.79%* -2.44%* -0.85%* -2.99%* -1.00%* 

Helicopter 
--- +0.09%

* 
+0.06%

* 
+0.11%

* +0.02% 
+0.14%

* 
+0.03% +0.13%

* 

Airplane 
--- 

-0.33%* 
+1.78%

* 
+0.69%

* 
+2.43%

* 
+0.71%

* 
+2.97%

* 
+0.87%

* 
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Table 2 9a: 5-Year Performances of Current System and Share 35/Share 20/5-Point Boost Policy 
on 8 Districts and Concentric Neighborhoods (Block VII) 

 

 

 

Category 

Current 
System 

(Share 15, 
Share 35) 

(i) 

Share35, 
Share20, 
8 district, 
Boost+5 

(xli) 

Share35, 
Share20, 
400 mi. 

Nbhd. (U), 
Boost+5 

(xlii) 

Share35, 
Share20, 
400 mi. 

Nbhd. (C), 
Boost+5 

(xliii) 

Share35, 
Share20, 
500 mi. 

Nbhd. (U), 
Boost+5 

(xliv) 

Share35, 
Share20, 
500 mi. 

Nbhd. (C), 
Boost+5 

(xlv) 

Share35, 
Share20, 
600 mi. 

Nbhd. (U), 
Boost+5 

(xlvi) 

Share35, 
Share20, 
600 mi. 

Nbhd. (C), 
Boost+5 

(xlvii) 

Annualized Waitlist Removals 3128.60 3092.20 3100.96 3104.60 3083.76 3100.00 3086.36 3105.52 

Annualized Total Deaths 2243.28 2246.24 2224.08 2238.44 2215.44 2238.68 2204.76 2239.6 

Annualized Waitlist Deaths 1173.68 1151.88 1141.56 1151.72 1138.12 1153.88 1129.28 1153.12 
Annualized Waitlist Relist 
Deaths 23.92 23.84 23.92 24.12 23.52 23.40 23.88 23.88 

Annualized Post Tx Deaths 996.12 1020.20 1009.44 1012.36 1004.72 1010.40 1001.44 1011.96 

Annualized Post Re-Tx Deaths 49.56 50.32 49.16 50.24 49.08 51.00 50.16 50.64 

DSA Mean Transplant MELD 23.09 23.50 23.49 23.47 23.59 23.47 23.64 23.46 

DSA Mean Transplant MELD Std. 1.88 1.70 1.69 1.75 1.75 1.74 1.72 1.75 

DSA Median Transplant MELD 24.48 25.34 25.38 25.24 25.50 25.24 25.60 25.23 

DSA Median Transplant MELD Std. 2.84 2.38 2.48 2.54 2.47 2.56 2.45 2.59 

Avg. Organ Transport Distance (mi.) 

  
 

 
 

 

  

Ground Vehicle 33.34 32.72 32.53 32.89 32.59 32.92 32.47 33.06 

Helicopter 100.99 102.05 102.33 102.65 103.20 103.88 103.04 103.50 

Airplane 525.87 552.29 509.62 542.32 501.84 538.57 501.21 534.51 

Avg. Organ Transport Time (hr.) 

  
 

 
 

 

  

Ground Vehicle 0.78 0.77 0.77 0.78 0.77 0.78 0.77 0.78 

Helicopter 1.22 1.23 1.23 1.23 1.24 1.24 1.24 1.24 

Airplane 2.48 2.52 2.44 2.51 2.42 2.50 2.42 2.49 

Percentage of Organs Transported 

  
 

 
 

 

  

Ground Vehicle 46.94% 47.64% 45.82% 46.75% 45.09% 46.74% 44.45% 46.72% 

Helicopter 0.68% 0.80% 0.76% 0.85% 0.73% 0.80% 0.72% 0.79% 

Airplane 52.23% 51.43% 53.28% 52.26% 54.04% 52.32% 54.71% 52.34% 
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Table 2.9b: 5-Year Comparative Performances between Current System and Share 35/Share 20/5-

Point Boost Policy on 8 Districts and Concentric Neighborhoods (Block VII) 

 

*This indicates that difference has p-value less than 0.05 (p <0.05). 

  

 

Category 

Curre
nt 

Syste
m 

(Share 
15, 

Share 
35) 

(i) 

Share3
5, 

Share2
0, 
8 

district, 
Boost+

5 

(xli) 

Share3
5, 

Share2

0, 
400 mi. 
Nbhd. 
(U), 

Boost+
5 

(xlii) 

Share3
5, 

Share2

0, 
400 mi. 
Nbhd. 
(C), 

Boost+
5 

(xliii) 

Share3
5, 

Share2

0, 
500 mi. 
Nbhd. 
(U), 

Boost+
5 

(xliv) 

Share3
5, 

Share2

0, 
500 mi. 
Nbhd. 
(C), 

Boost+
5 

(xlv) 

Share3
5, 

Share2

0, 
600 mi. 
Nbhd. 
(U), 

Boost+
5 

(xlvi) 

Share3
5, 

Share2

0, 
600 mi. 
Nbhd. 
(C), 

Boost+
5 

(xlvii) 

Annualized Waitlist Removals --- -36.4 -27.64 -24 -44.84 -28.6 -42.24 -23.08 

Annualized Total Deaths --- 2.96 -19.2 -4.84 -27.84 -4.6 -38.52 -3.68 
Annualized Waitlist 
Deaths 

--- 
-21.8 -32.12 -21.96 -35.56 -19.8 

-44.4 -20.56 

Annualized Waitlist Relist 
Deaths 

--- 
-0.08 0 +0.2 -0.4 -0.52 

-0.04 -0.04 

Annualized Post Tx 
Deaths 

--- 
+24.08* +13.32 +16.24 +8.6 +14.28* 

+5.32 +15.84 

Annualized Post Re-Tx 
Deaths 

--- 
+0.76 -0.4 +0.68 -0.48 +1.44 

+0.6 +1.08 

DSA Mean Transplant MELD --- +0.41* +0.40* +0.39* +0.50* +0.39* +0.55* +0.38* 
DSA Mean Transplant MELD Std. --- -0.18* -0.19* -0.13* -0.13* -0.14* -0.17* -0.13* 
DSA Median Transplant MELD --- +0.86* +0.90* +0.76* +1.01* +0.76* +1.11* +0.75* 

DSA Median Transplant MELD Std. --- -0.46* -0.37* -0.30* -0.37* -0.29* -0.39* -0.25* 

Avg. Organ Transport Distance (mi.) --- 

 
 

 
 

 

  

Ground Vehicle --- -0.62* -0.82* -0.45* -0.75* -0.42* -0.87* -0.27 
Helicopter --- +1.07 +1.35 +1.67 +2.21* +2.90* +2.06 +2.52 
Airplane --- +26.41* -16.25* +16.45* -24.03* +12.70* -24.67* +8.64* 

Avg. Organ Transport Time (hr.) --- 

 

 

 

 

 

  

Ground Vehicle --- -0.01* -0.02* -0.01* -0.01* -0.01* -0.02* 0 
Helicopter --- +0.01 +0.01 +0.01 +0.02* +0.02* +0.01 +0.02 
Airplane --- +0.05* -0.03* +0.03* -0.05* +0.02* -0.05* +0.02* 

Percentage of Organs Transported --- 

 
 

 
 

 

  

Ground Vehicle 
--- +0.69%

* -1.13%* -0.19%* -1.85%* -0.21% 
-2.50%* -0.23%* 

Helicopter 
--- +0.12%

* 
+0.08%

* 
+0.17%

* 
+0.05%

* 
+0.12%

* 
+0.04% +0.11%

* 

Airplane 
--- 

-0.80%* 
+1.05%

* +0.03% 
+1.81%

* +0.09% 
+2.48%

* 
+0.12% 
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Table 2.10: 5-Year Performances of Selected Policies Based on Organ Volume Loss 

 

 

  

 

Policies Organ 

Volume 

Loss 

Relative 

to 

Current 

System 

Annualized 

Total 

Deaths 

DSA 

Median 

Transplant 

MELD 

DSA 

Median 

Transplant 

MELD Std. 

Avg. 

Airplane 

Transport 

Time (hr.) 

Percentage 

of Organs 

Transported 

by Airplane 

(xxxi) Share 
35/Share 15 

0-Point Boost  
500-mi. Nbhd. (C) 

-9.88% -18.08 +0.34 -0.11 -0.08 +1.82% 

(xxx) Share 
35/Share 15 
0-Point Boost 
500-mi. Nbhd. (U) 

-16.30% -28.68 +0.66 -0.21 -0.14 +3.32% 

(xxxii) Share 
35/Share 15 

0-Point Boost  
600-mi. Nbhd. (U) 

-19.47% -33.6 +0.91 -0.31 -0.12 +3.62% 
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Figure 2.1: Concentric Neighborhood for OPO serving Eastern Pennsylvania (PADV) 

 

 

 

 

 

 

 

 

 

 

 

 

The figure shows two versions of concentric neighborhood of 500-mile radius for the OPO 

serving Eastern Pennsylvania.  

Figure 2.1(a) shows the unconstrained concentric neighborhoods solution. This neighborhood 

contains the current UNOS region for the OPO (UNOS Region 2) and all OPOs whose physical 

addresses are within 500 miles of the OPO’s main address in Philadelphia.  

Figure 1(b) shows the constrained concentric neighborhoods solution. This neighborhood 

contains only 10 OPOs, where the first 5 are the current UNOS region for the OPO (UNOS 

Region 2) and the last 5 are the closest OPOs outside the UNOS region whose physical 

addresses are within 500 miles of the OPO’s main address in Philadelphia.  

 

  

Fig. 2.1(a) Fig. 2.1(b) 
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Figure 2.2: Mean Transplant MELD across DSAs of Current System with Modified Sharing 

Policies without Neighborhoods (Block I) 
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Figure 2.3: Mean Transplant MELD across DSAs for Current System and Share 29 

Policies on 8 Districts and Concentric Neighborhoods (Blocks II-IV) 
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Figure 2.4: Mean Transplant MELD across DSAs for Current System and Share 35 

Policies on 8 Districts and Concentric Neighborhoods (Blocks V-VII) 
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Figure 2.5: DSA Percentage Changes in Transplant Volume for Current System with 

Modified Sharing Policies without Neighborhoods (Block I) 
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Figure 2.6: DSA Percentage Changes in Transplant Volume for Share 29 Policies on 8 

Districts and Concentric Neighborhoods (Blocks II-IV) 
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Figure 2.7: DSA Percentage Changes in Transplant Volume for Share 35 Policies on 8 

Districts and Concentric Neighborhoods (Blocks V-VII) 
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Assessing Renal Transplant Candidate Survival at Listing Using a Risk-

Adjusted Multi-State Semi-Markov Model  

 

 The experience of patients who will list for a kidney transplant in the United 

States is a dynamic, multifaceted process. Initially, end-stage renal disease (ESRD) 

etiology and individual risk factors will determine the course of treatment and whether 

the individual is suitable for transplantation56.  However, once a patient lists for a 

deceased-donor transplant, progression is also influenced by the individual’s 

interactions with the organ procurement and transplantation network (OPTN)57. The 

OPTN is the complex logistical system tasked with allocating organs from deceased 

donors to eligible recipients.  Its daily operation depends on the collective decisions of 

organ procurement organizations (OPOs), transplant centers, donor hospitals, and 

supervisory bodies57. Thus, this system effectively decides when a patient receives an 

offer for a prospective graft of a given quality. Since donor quality affects transplant 

efficacy58 and extended time on dialysis exacerbates waitlist and post-transplant 

outcomes59-61, the characteristics of the system, in addition to individual clinical factors, 

necessarily also impact patient survival and predictions thereof.  

Unfortunately, the system does not operate uniformly, as individuals will face 

varying transplant rates, waiting times, and donor qualities depending on the OPO 

where they list30. Differences among transplant centers and OPO should therefore be 

incorporated in an individual-specific manner akin to the standard criteria used for 

assessing survival-benefits and risk-adjustments2,62.  Since these factors also affect 

outcomes, patients can be better informed about the consequences of listing at a 

particular transplant center by including them into survival time estimates. 
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Moreover, an assessment at listing of waitlist survival time and hence total 

survival time ought to adjust for the events that patients may experience throughout the 

process63. These events include removal from the waitlist, waitlist inactivity, and 

transplantation. Survival time estimates at listing are complicated by the various states 

patients must navigate over the course of their treatment and ESRD progression. A 

patient at the time of listing will be uncertain of his or her overall survival time and the 

times when a transplant will be available.  At the outset, several pathways to death are 

possible. For example, a patient may die after listing but before receiving a graft.  

Alternatively, a patient may receive a graft and then perhaps die some years later. More 

complicated pathways, which we consider sparingly in this article and leave to future 

work, are also possible. For instance, a patient may alternate between being active and 

inactive on the waitlist a few times, receive a graft that subsequently fails, and then re-

list for a transplant, receive a re-transplant, and then die (with the prospects of being 

inactive, being removed from the waitlist, or dying before re-transplantation). Of 

particular interest to a newly listed ESRD patient is the expected survival time he or she 

will experience regardless of the path undertaken.  

This article introduces the use of a multi-state Semi-Markov process (SMP) 

model for calculating expected survival time at listing.  The SMP abstracts the 

aforementioned events and consequences that a patient experiences during treatment.  

It incorporates risk-adjustments for relevant characteristics of transplant centers and 

OPOs in addition to standard criteria such as patient demographics and individual 

clinical factors (diagnoses, comorbidities, immunology, and functional status). 

Conditional on receiving a transplant, the model also adjusts for donor characteristics, 
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donor quality, and donor-recipient attributes. Using the model parameters, individual 

characteristics, potential donor characteristics, and OPO/transplant center 

characteristics, expected survival times are calculated.  These estimates may aid 

patient decision making with respect to treatment or listing at a particular center. 

As discussed below, a SMP is a stochastic process that generalizes continuous-

time Markov chains and is used in multi-state time-to-event modeling64,65.  The Concept 

section lays out the process modeling framework in a nontechnical manner and justifies 

the covariates used for the risk-adjustments. The Methods section and supplement 

summarize the mathematical model, distributional assumptions, expected survival 

calculations, data, and estimation. We provide results for risk-adjustments and provide 

example expected survival time calculations. The study population consists of all adult 

US kidney transplant candidates from January 2007 through December 2016 exclusive 

of those having prior transplants or requiring simultaneous/multiple transplants. 

Concept 

Multi-State Paradigm for a Waitlisted Patient  

 Figure 3.1 depicts an idealized, multi-state conception of the transplantation 

process from the waitlist candidate’s perspective.  Throughout this article, we maintain 

that the initial state is Waitlisted and motivate the work from the viewpoint of a newly 

listed kidney transplant candidate.  Candidates are held to be on the waitlist for as long 

as they are accruing priority for transplantation.  Although not shown in the figure, being 

waitlisted may be preceded by states describing chronic kidney disease progression 

into ESRD.  Patients may alternately transition between inactivity and being waitlisted.  

A waitlisted patient may then receive a transplant, die, or be removed from the waitlist 
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for another reason (e.g. their condition improves).  Transplanted recipients may 

experience graft failure and re-list (i.e. transition again to Waitlisted) or perhaps die. 

Death is as an absorbing state – once a candidate enters an absorbing state, he or she 

does not transition to other states.  All other states are known as transient states.  

 The complexity of the model in Figure 3.1 can make estimation and mathematical 

analysis more difficult. Because data on patients experiencing less common transitions 

(e.g. a removed patient whose condition first improves but then subsequently dies) are 

scarce, we make the following conventions and simplifying assumptions to create a 

process model with unidirectional transitions and a sole absorbing state (Death): 

1. The Waitlist state does not distinguish among inactive or active candidates.  

Time spent on the waitlist includes any time spent inactive (Convention). 

2. Patients receiving a transplant are assumed to neither re-list nor receive a re-

transplant (Assumption 1). 

3. Waitlisted patients who are removed because they became medically unsuitable 

for transplantation or too sick to transplant are assumed to die (Assumption 2). 

Figure 3.2 depicts the simplified modeling framework that we hereafter refer to 

almost exclusively.  Since approximately only 13% (ca. 1990-2000) of transplant 

recipients need re-transplantation in practice, the model should apply to the majority of 

candidates 66.  Moreover, the state diagram shown in Figure 3.2 is equivalent to that of 

the Illness-Death model used in the multi-state modeling and epidemiological literature 

64,67.  Competing risks models are also multi-state models  whereby a single state may 

have several transitions to multiple different states 64.  This is for instance useful to 

model patients that are only in the Waitlisted state 63,68, but with the disadvantage that 
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subsequent transitions from the Transplanted state to Death (i.e. post-transplant 

survival) cannot be easily included to calculate the overall survival time. 

The Semi-Markov Process Model for Waitlisted Patients 

 When in a particular transient state   before leaving for a state  , the amount of 

time a patient spends in state    is known as the sojourn time for state   given the 

following state  .  For example, the sojourn time for the Transplanted state (the following 

state is Death) represents post-transplant survival time.  The amount of time a patient 

spends in the initial state is known as the initial sojourn time, i.e. the amount of time the 

patient spends on the waitlist before transplantation or death.  This sojourn time does 

not represent just waitlist survival time, as a patient on the waitlist may receive a 

transplant, thereby transitioning to the Transplanted state before dying.  In fact, the 

notion of waitlist survival is somewhat ambiguous in the multi-state paradigm as two 

different pathways to death are possible and is partly the reason why competing events 

and multi-state time-to-event models must be considered. Sojourn times for each 

particular state   given the following state   may be nonnegative random variables with 

known distributions.     

Markov processes, particularly discrete- and continuous-time Markov chains have 

the property that the likelihood of transitioning into state   from state   only depends on 

the fact that a patient is at state   at the given moment and not which states the patient 

was in previously or for how long – that is, the likelihood of transitioning into state   from 

state   does not depend on the patient’s history. Imposing this requirement on the 

modeling framework would force all sojourn times to have exponential distributions. 
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Moreover, due to the memoryless property of exponential distributions, the hazard of 

time spent in state   before entering state   remains constant over time.   

The Markov requirement is untenable.  Hazards for each transition that are not 

constant over time are plausible and alone suffice to invalidate the assumption.  For 

example, given that the patient is waitlisted, the hazard of entering the Transplanted 

state ought to increase with time, as OPTN policies and procedures increasingly 

prioritize patients who have waited longer 57; moreover, the possibility of accelerated 

failure due to protracted time on dialysis or to aging challenges the assumption that 

transitions from either the Waitlisted or Transplantation states to Death have constant 

hazard 69,70.  

At a cost of additional complexity, (time-homogenous) SMPs, also known as clock-

reset models, relax the exponential property of Markov chains. While allowing for 

sojourn times with varying distributions and hazards for each transition, they maintain 

that the likelihood of transitioning into a state   depends only on the current state at the 

time of transition (hence the name Semi-Markov)71,72. The intuition for a SMP is as 

follows: a patient first enters state   and chooses to transition to some state   with 

probability    . Knowing that the patient will transition to   from  , he or she will then 

spend a random amount of time (sojourn time) in state    that follows some probability 

distribution      (e.g. exponential, Weibull, etc.). The sojourn time for each transition is 

governed by such a probability distribution. When the patient then enters the new 

state  , the clock or process resets. He or she is assigned the next state    with some 

probability    , and stays in state    for a time governed by the sojourn time 

distribution    . In the context of Figure 1, this means a newly listed patient may be 
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thought of as being assigned to a transplant or death at the outset. If the latter, the 

patient awaits death for a random amount of time; if the former, the patient waits for a 

transplant for a random amount of time, transitions to the Transplanted state whence 

the next state is chosen with some probability (here Death with probability 1). The 

patient then dies after a random amount of time (post-transplant survival).  

Expected Survival Time 

For newly listed patients, of particular interest is the expected amount of time that 

will elapse before death.  The absorption time is the amount of time a patient starting in 

the initial state (Waitlisted) takes to reach an absorbing state (Death).  The absorption 

time is agnostic towards the specific pathway (i.e. whether dying on the waitlist or after 

transplant) taken and provides an informative, prognostic assessment for individuals 

who are uncertain about their survival time.  

Risk-Adjustments for the Transitions 

 For each transition (Waitlisted -> Death, Transplanted->Death, and Waitlisted -

>Transplanted) we consider three classes of risk-adjustments: candidate 

characteristics, donor-recipient characteristics, and transplant center/OPO 

characteristics. The risk-adjustments indicate the relative hazard of undergoing each 

transition relative to the baseline.  Relative risk estimates for any transition to death 

provide mortality hazards and estimates for the Waitlisted ->Transplanted transition 

correspond to the hazard of receiving a graft whereby the failure event is kidney 

transplantation. 

 Candidate characteristics are included as risk-adjustments for all 3 transitions. 

Competing risks studies of waitlist mortality and risk-modeling by the Scientific Registry 
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of Transplant Recipients for post-transplant survival have already identified several 

variables for the 2 transitions leading to death 63,68,73.  Among them we selected age, 

gender, ethnicity, serum albumin, calculated panel reactive antibodies (both at listing 

and the most recent value while on the waitlist), BMI at listing, history of diabetes, 

peripheral vascular disease, any previous malignancy, and the diagnosis for kidney 

transplant. Functional status at listing has garnered interest recently for being a 

significant predictor of mortality and was also added 74. We also included the urban/rural 

status of the patient. Rural patients are defined as patients residing in a zip code not 

contained in a US metropolitan statistical area. Commonly observed disparities in 

access to transplantation based on ethnicity or rural status may affect the transitions 

from the Waitlisted state to the Transplanted state.   For instance, Axelrod et al 

demonstrated that candidates living in rural areas have reduced access to timely 

transplantation despite not having different outcomes than urban candidates 49  Vranic 

et al showed waiting time (i.e. sojourn time) disparities among different racial groups 75.   

 Donor and donor-recipient characteristics are included as risk-adjustments for 

the Transplanted->Death transition. These characteristics arise mainly from post-

transplant survival modeling, and include donor age, donor creatinine, whether the 

donor ABO blood type is identical to the recipient, the number of DR and HLA 

mismatches, and the kidney donor profile index (KDPI).  The KDPI is a risk-score 

ranging from 0-100 that indicates donor quality with higher scores indicating inferior 

quality 76. It is based on donor characteristics: age; height; weight; ethnicity; histories of 

hypertension and diabetes; cause of death, serum creatinine, Hepatitis C status, and 

the status of donation after circulatory death. We also include the recipient’s functional 
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status at the time of transplant. These characteristics are exclusive to post-transplant 

survival and may not be known to the patient at listing.  In such cases, these risk-

adjustments may be fixed to the baseline or the average for that patient’s transplant 

center or OPO when calculating expected survival times. 

    Studies have identified independent OPO and transplant center “effects” on 

patient survival and OPTN performance 77-79. The OPO effect marks the structural 

influence of the allocation system on the patient, as OPOs with diverse average waiting 

times and transplant volumes signify variation in the times patients must wait for an 

organ, and hence affect their hazard of entering the Transplanted or Death states from 

the waitlist. In contrast to the OPO effect, the influence of transplant centers can be 

better described as endemic rather than structural. Notwithstanding activities 

undertaken to increase organ donation, OPOs mainly perform as suppliers of a fixed 

resource, whereas transplant centers can be more responsive to the volume and the 

quality of the donors they accept from their OPO and even to the patients that they list. 

Thus, differences in transplant center volumes and waiting times could also indicate 

differences in practices, willingness to treat particular patients, and resources. 

Additionally, transplant centers must compete with each other for their volumes. 

Therefore, following previous work 77-79, we include the waiting times (averages) and 

transplant volumes for the patient’s OPO and transplant center in the risk-adjustments. 

We account for transplant center competition by including the number of transplant 

centers in the OPO in each patient’s risk adjustment.  Additionally, following Davis et al 

77, we also included the Herfindahl-Hirschman index (HHI) of the patient’s OPO, which 
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was calculated using the transplant centers in the OPO and their transplant volumes 

over the study period.   

Methods 

Modeling:  

Multi-state survival modeling with SMPs is an established topic.  The supplement 

provides the technical details for how the SMP is modeled; how the risk-adjustments are 

incorporated; and how both mean sojourn and absorption (i.e. survival) times are 

calculated. More detailed information about the theory of SMPs and similar stochastic 

processes, including competing risks and multiple-event survival models, are available 

in the references 64,65,71,72,80. 

We assume that the probability distributions describing the sojourn times for each 

transition follow a Weibull distribution with respective shape and scale parameters 

(Assumption 3). The Weibull family is useful for a few reasons.  First, it is a flexible 

family that allows for incorporation of risks with monotonic hazards.  Second, the 

Weibull distribution is one of the families of distributions that satisfy both the accelerated 

failure and proportional hazards paradigms.  Third, parametric models for survival after 

kidney transplant and time-to-transplant using the Weibull distribution have been used 

previously 70,81. 

We incorporate the risk-adjustments and estimate the SMP using Cox Semi-Markov 

models for each transition 65.  Cox Semi-Markov models entail fitting Weibull 

proportional hazards models for each transition where the dependent variables are the 

censored times to the failure events of interest (death or transplantation). We 

subsequently obtain coefficients for the risk adjustments, scale parameters, and shape 
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parameters for each transition. Following the proportional hazards assumption on 

sojourn times from the risk-adjustments (Assumption 4), we calculate individualized 

expected survival times. The details of these calculations are also included in the 

appendix. 

Data: 

 Data on all listed adult renal transplant candidates and organ donors in the US 

were provided by the United Network for Organ Sharing for January 2007 through 

December 2016 with updated statuses as of March 2017. We considered all adult 

candidates listed for a deceased-donor kidney transplant that had no previous 

transplants nor required multiple transplants.  

Estimation of the SMP transition probabilities and Cox Semi-Markov models  

were performed using SAS 9.4 44.  95% confidence intervals for the shape parameters 

were used to assess the appropriateness of exponential distributions for the sojourn 

times. Goodness of fit was assessed by comparison of the fitted and unfitted model 

AICs. 

Individualized Survival Time Calculations: 

 As an example, we consider a hypothetical patient profile – a 65-year old, rural, 

highly sensitized patient with diabetes and peripheral vascular disease.  We calculate 

overall expected survival time, expected time to death on the waitlist conditional on 

waitlist mortality, and expected post-transplant survival and time-to-transplant 

conditional on transplantation. Moreover, we consider scenarios where this patient is 

choosing among a low-volume transplant center with negligible waiting time; a high-

volume transplant center with a mean waiting time of 730 days; a high-volume 
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transplant center that is the only center in the OPO with a mean waiting time of 730 

days; and a high-volume transplant center with a mean waiting time of 730 days where 

the patient is assumed to receive a 95+ KDPI transplant. 

Results 

Table 3.1 summarizes the individual characteristics of the candidates used in the 

study (N=306,356). Each subsection below summarizes the findings and provides some 

context thereof. 

Semi Markov Process Parameters: 

 Table 3.2 presents the estimated transition probabilities and distributional fits.  

According to the model, a candidate at listing has an overall chance of 70.4% of ever 

receiving a graft and a 29.6% chance of dying on the waitlist (or being removed due to 

medical unsuitability or because he or she has become too sick to transplant).  The 

confidence intervals for Weibull shape parameter estimates reject the hypothesis that 

time-to-transplantation or time-to-death while on the waitlist has an exponential 

distribution at 5% significance, hence confirming that the Markov assumption was 

indeed inappropriate.  We did not reject that post-transplant survival time was 

exponentially distributed (i.e. confidence interval for respective shape parameter 

includes unity).  

Risk-Adjustments for Transition from Waitlisted to Transplanted: 

 Table 3.3 presents the risk-adjustments for patients transitioning from Waitlisted 

to Transplanted. A positive coefficient indicates a higher hazard of receiving a graft 

relative to baseline (and hence shorter waiting time or time-to-transplantation).  All 

estimates are statistically significant (p < 0. 05).  Higher initial CPRA scores and not 
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having blood type O decrease the risk of not receiving a graft. Moreover, patients aged 

35-65 have lower chances of being transplanted and patients aged 60 or over have a 

greater chance relative to the baseline. Candidates with reduced functional status or not 

having diabetes are also more likely to receive a graft. Non-white or rural candidates 

have lower chances of receiving a graft, which is consistent with a previous study 49. 

Candidates listing in OPOs with greater transplant volumes or longer waiting times 

experience increased chances of receiving a graft, but these effects are reversed at the 

transplant-center level.  Transplant centers with lower volumes or shorter average 

waiting times reduced time-to-transplantation.  

Risk-Adjustments for Transition from Waitlisted to Death: 

 Table 3.4 presents the risk-adjustments for patients transitioning from Waitlisted 

to Death. A positive coefficient indicates a higher mortality hazard relative to baseline 

(and hence shorter survival time).  The diagnosis categories were omitted for model 

stability. Most of the estimates are statistically significant (p < 0. 05) except for OPO 

waiting time, ABO blood type B, or for some of the ethnicities.  Also, rural patients 

exhibited higher mortality risk.  Otherwise, interpretations of the remaining estimates are 

consistent with clinical expectations except for BMI at listing; lower serum albumin 

levels, higher CPRAs, greater age, being male, having reduced functional status, and 

having peripheral vascular disease are all correlated with increased mortality risk.  

 Those listing at OPOs with higher volumes or at transplant centers with longer 

waiting times experience greater risk. Patients at centers with higher volume also exhibit 

increased risk, but this could be indicative of the larger, more varied populations high-
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volume centers may perhaps serve. Increased concentration of transplant volume via 

less transplant centers are also linked to increased mortality risk.    

Risk-Adjustments for Transition from Transplanted to Death: 

 Table 3.5 presents the risk-adjustments for patients transitioning from 

Transplanted to Death. A positive coefficient indicates a higher mortality hazard relative 

to baseline (and hence shorter post-transplant survival time). Most of the estimates are 

statistically significant (p < 0. 05) except for initial CPRA, rural status, ABO blood type, 

functional status at listing, some ethnicity and donor age categories, and the number of 

DR mismatches.  The non-significance of rural status is notable and consistent with 

Axelrod et al 49, as access to transplantation may be less relevant after transplantation. 

All transplant center and OPO characteristics were not statistically significant except 

transplant center volume, with higher volumes linked to reduced mortality. Otherwise, 

interpretations of the remaining estimates are consistent with expectations. Lower 

serum albumin levels, higher recent CPRAs, greater recipient age, being male, 

diabetes, having reduced functional status at the time of transplant, having peripheral 

vascular disease or previous malignancy are all correlated with increased mortality risk 

as expected. Moreover, increased HLA mismatches, donor age, recipient-donor ABO 

incompatibility, and higher KDPI scores also increase mortality risk as expected. 

Expected Survival Times at Listing: 

 Table 3.6 provides example calculations using the SMP for the hypothetical 

patient profile.  The patient faces greater waitlist mortality or time-to-transplantation at 

transplant centers with extended waiting times and volumes.  If it is known that the 

patient will accept a 95+ KDPI organ, post-transplant survival is subsequently adjusted 
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(reduced in Table 3.6).  The overall survival time is adjusted based on all of the 

information provided as well.  Computations for other profiles are possible, and a 

spreadsheet calculator is available from the authors upon request.   

Discussion 

Factors such as increased age, comorbidities and sensitization, usually led to 

higher mortality risk as expected. Similarly, reduced donor quality and functional status 

also heightened mortality risk after transplant.  Moreover, factors such as ABO blood 

type and sensitization, which are explicitly accounted for in OPTN guidelines in 

prioritizing patients for transplantation 57, also affect transplantation hazard in an 

intuitive manner. OPO adjustments for waiting time and transplant volume tended to 

have the opposite signs of their transplant center counterparts. This is perhaps 

suggestive of some attendant response of transplant centers to their environments. 

Only transplant center volume affected post-transplant survival with greater volumes 

leading to reduced mortality.  This could reflect the greater resources of larger 

transplant centers and their improved performance by having additional opportunities for 

learning-by-doing. OPOs with increased concentration of transplant volumes with higher 

HHI or a fewer number of transplant centers also increased the rate at which patients 

are transplanted, possibly indicating that transplant centers are better at exerting 

influence within the OPO and obtaining organs when competition is lacking.   

The risk-adjusted calculations herein facilitate individualized decision making by 

conferring a prognostic measurement of overall expected survival time and time-to-

transplantation. This information may be deployed in two ways: 1) assessments of 

potential outcomes for listing in particular OPO or transplant center, possibly through a 



 
 
 

99 

Web tool or United Network for Organ Sharing information technology systems; and 2) 

identification at listing of specialized donor criteria for the patient (e.g. acceptability of 

KDPI 85+ organs; suitability of living donors; etc.).  Lastly, the methodology of this 

article can be specialized to subpopulations (e.g. pediatric) or translated to other forms 

of transplantation (e.g. liver). 

This work has a few limitations.  First, while considering the bulk of a transplant 

candidate’s experience, we made simplifying assumptions about patient removals and 

inactivity that warrant greater examination. Second, some of the estimates, especially 

the expected survival times, need to be interpreted with caution when extrapolating 

beyond the study period and accuracy is subject to that of the regression models.  

Lastly, while the SMP employed herein is a general stochastic process that perhaps 

captures the most salient aspects of the transplantation process, the appropriateness of 

the distributional assumptions and even the Semi-Markov property itself may be further 

challenged.   
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Tables 

Table 3.1: Study Population Patient Characteristics (N=306,356)
1 

Category Value N %

Gender

Female 118,052 38.53

Male 188,304 61.47

Ethnicity

White 137,127 44.76

Black 89,353 29.17

Hispanic 52,969 17.29

Asian 20,889 6.82

American Indian/
Alaska Native 2,980 0.97

Native Hawaiian/Pacific Islander 1,354 0.44

Multiracial 1,684 0.55

Age at Listing

18-34 34,731 11.34

35-44 46,994 15.34

45-54 75,852 24.76

55-64 93,407 30.49

>65 55,372 18.07

Diabetes

No Diabetes 164,938 54.19

Type I 19,620 6.45

Type II 113,459 37.28

Other Type 2,377 0.78

Type Uknown 3,976 1.31

Missing 1,986

Diagnosis for Transplant

IGA Nephropathy 6,052 5.36

Focal Golumerular Sclerosis 7,494 6.64

Polycistic Kidneys 11,418 10.12

Hypertensive Nephrosclerosis 25,289 22.42

Diabetes Mellitus Type II 26,493 23.48

Other 36,068 31.97

Not reported/uknown 193,542

Functional Status at Listing 10% - Moribund, fatal processes progressing rapidly 250 0.08

20% - Very sick, hospitalization necessary: active treatment necessary 1,777 0.58

30% - Severely disabled: hospitalization is indicated, death not imminent934 0.31

40% - Disabled: requires special care and assistance 3,442 1.13

50% - Requires considerable assistance and frequent medical care 7,005 2.29

60% - Requires occasional assistance but is able to care for needs 18,054 5.91

70% - Cares for self: unable to carry on normal activity or active work 61,194 20.02

80% - Normal activity with effort: some symptoms of disease 85,134 27.86

90% - Able to carry on normal activity: minor symptoms of disease 77,522 25.37

100% - Normal, no complaints, no evidence of disease 35,459 11.60

Not reported/unknown 15,585

Peripheral Vascular Disease No 280,687 91.86

Unknown 6,170 2.02

Yes 18,707 6.12

Missing 792

ABO A 99,786 32.57

AB 11,526 3.76

B 45,635 14.90

O 149,409 48.77

Residence Urban 259,217 85.09

Rural 45,429 14.91
Missing 1,710

Calculated Panel Reactive Antibodies at Listing,

 [mean (standard deviation)] 3.92 (16.15)

Last Known Panel Reactive Antibodies,  

[mean (standard deviation)] 14.09 (28.38)  
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1
The sample includes adult kidney transplant candidates from Jan 2007-Dec 2016 excluding previous or 

multiple transplant candidates. Percentages do not include missing values and may not sum to 100 due 
to rounding.
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Table 3.2: Estimated Semi-Markov Process Model Parameters 

 

Parameter Transition Coefficient SE

Log(Scale) Parameters

Waitlisted -> Transplanted 4.80 0.05 4.71 4.90

Waitlisted -> Death 8.05 0.07 7.92 8.18

Transplanted -> Death 9.35 0.16 9.03 9.67

Shape Parameters

Waitlisted -> Transplanted 0.93 0.003 0.92 0.93

Waitlisted -> Death 1.06 0.004 1.06 1.07

Transplanted -> Death 0.9972 0.009 0.98 1.02

Transition Probabilities

Waitlisted -> Transplanted 0.704 0.001 --- ---

Waitlisted -> Death 0.296 --- --- ---

Transplanted -> Death 1.000 --- --- ---

Goodness of Fit

AIC 

(no covariates)

AIC 

(covariates)

Waitlisted -> Transplanted 519311.3 344987

Waitlisted -> Death 237941.5 220587.8

Transplanted -> Death 69918.7 64771.98

95% CI
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Table 3.3: Estimated Risk-Adjustments for Transition from Waitlist to Transplant 

Category Coefficient SE Chi-

Square

P-Value

Serum Albumin Level at Listing -0.082 0.006 172.27 <.0001

Calculated Panel Reactive Antibodies at Listing [0-100] 0.003300 0.000300 165.57 <.0001

Calculated Panel Reactive Antibodies (Last Known) [0-100] -0.003500 0.000200 504.67 <.0001

BMI at Listing -0.012000 0.000700 311.05 <.0001

Residence in Urban Zip Code Reference

Residence in Rural Zip Code -0.024 0.010 5.55 0.018

OPO 10-year transplant volume (number of organs '000s) 0.025 0.004 38.080 <.0001

OPO mean waiting time for transplant (days) 0.0002 0.0001 11.310 0.001

Transplant center 10-year transplant volume (number of organs '000s) -0.018 0.007 6.660 0.010

Transplant center mean waiting time for transplant (days) -0.002 0.000 1812.80 <.0001

Transplant center HHI Index [0-1] 0.087 0.025 12.09 0.001

Number of transplant centers in the OPO -0.006 0.002 9.11 0.003

Age at listing 18-34 years Reference

Age at listing 35-44 years -0.096 0.013 53.15 <.0001

Age at listing 45-54 years -0.096 0.013 58.80 <.0001

Age at listing 55-64 years -0.080 0.012 41.15 <.0001

Age at listing > 65 years 0.029 0.014 4.30 0.038

Male Reference

Female 0.034 0.008 18.63 <.0001

ABO = O Reference

ABO = A 0.171 0.008 462.90 <.0001

ABO = B 0.033 0.011 8.55 0.004

ABO = AB 0.433 0.016 713.44 <.0001

Functional Status at listing is 10% - Moribund, fatal processes progressing rapidly 2.128 0.124 292.90 <.0001

Functional Status at listing is 20% - Very sick, hospitalization necessary: active treatment necessary 2.636 0.040 4429.62 <.0001

Functional Status at listing is 30% - Severely disabled: hospitalization is indicated, death not imminent 2.292 0.054 1814.78 <.0001

Functional Status at listing is 40% - Disabled: requires special care and assistance 0.481 0.035 194.27 <.0001

Functional Status at listing is 50% - Requires considerable assistance and frequent medical care 0.306 0.026 137.56 <.0001

Functional Status at listing is 60% - Requires occasional assistance but is able to care for needs 0.163 0.018 82.50 <.0001

Functional Status at listing is 70% - Cares for self: unable to carry on normal activity or active work 0.084 0.013 44.28 <.0001

Functional Status at listing is 80% - Normal activity with effort: some symptoms of disease 0.075 0.012 40.95 <.0001

Functional Status at listing is 90% - Able to carry on normal activity: minor symptoms of disease 0.058 0.012 24.43 <.0001

Functional Status at listing is 100% - Normal, no complaints, no evidence of disease Reference

Patient has history of diabetes Reference

Patient does not have history of diabetes 0.181 0.012 239.23 <.0001

White Reference

Black -0.312 0.009 1102.61 <.0001

Hispanic -0.172 0.011 244.92 <.0001

Asian -0.294 0.016 324.01 <.0001

Native American, Native Hawaiian, or Pacific Islander -0.214 0.034 40.81 <.0001

Patient does not have peripheral vascular disease Reference

Patient has peripheral vascular disease -0.076 0.015 26.54 <.0001

Patient has no history of malignancy Reference

Patient has history of malignancy 0.065 0.014 22.95 <.0001

Diagnosis for transplant is other Reference

Diagnosis for transplant is unknown -3.871 0.018 46247.30 <.0001

Diagnosis for transplant is IGA NEPHROPATHY 0.039 0.017 5.03 0.025

Diagnosis for transplant is FOCAL GLOMERULAR SCLEROSIS -0.042 0.016 7.20 0.007

Diagnosis for transplant is POLYCYSTIC KIDNEYS -0.115 0.014 69.78 <.0001

Diagnosis for transplant is HYPERTENSIVE NEPHROSCLEROSIS -0.072 0.011 43.99 <.0001

Diagnosis for transplant is DIABETES MELLITUS - TYPE II 0.067 0.014 23.79 <.0001   
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Table 3.4: Estimated Risk-Adjustments for Transition from Waitlist to Death 
Category Coefficient SE Chi-

Square

P-Value

Serum Albumin Level at Listing -0.328 0.008 1588.10 <.0001

Calculated Panel Reactive Antibodies at Listing [0-100] 0.001000 0.000300 8.79 0.003

Calculated Panel Reactive Antibodies (Last Known) [0-100] 0.000500 0.000200 8.04 0.005

BMI at Listing -0.004700 0.000900 26.42 <.0001

Residence in Urban Zip Code Reference

Residence in Rural Zip Code 0.028 0.014 4.24 0.040

OPO 10-year transplant volume (number of organs '000s) 0.016 0.005 9.480 0.002

OPO mean waiting time for transplant (days) -0.00001 0.00008 0.010 0.929

Transplant center 10-year transplant volume (number of organs '000s) 0.089 0.009 100.640 <.0001

Transplant center mean waiting time for transplant (days) 0.001 0.000 69.70 <.0001

Transplant center HHI Index [0-1] -0.090 0.035 6.51 0.011

Number of transplant centers in the OPO -0.012 0.002 25.04 <.0001

Age at listing 18-34 years Reference

Age at listing 35-44 years 0.306 0.029 110.09 <.0001

Age at listing 45-54 years 0.721 0.027 739.31 <.0001

Age at listing 55-64 years 1.070 0.026 1713.91 <.0001

Age at listing > 65 years 1.397 0.026 2809.63 <.0001

Male Reference

Female -0.095 0.011 80.52 <.0001

ABO = O Reference

ABO = A -0.067 0.011 37.39 <.0001

ABO = B -0.003 0.014 0.05 0.821

ABO = AB -0.113 0.029 15.56 <.0001

Functional Status at listing is 10% - Moribund, fatal processes progressing rapidly 2.428 0.095 660.95 <.0001

Functional Status at listing is 20% - Very sick, hospitalization necessary: active treatment necessary 2.065 0.043 2294.67 <.0001

Functional Status at listing is 30% - Severely disabled: hospitalization is indicated, death not imminent 1.699 0.059 843.58 <.0001

Functional Status at listing is 40% - Disabled: requires special care and assistance 0.736 0.040 342.28 <.0001

Functional Status at listing is 50% - Requires considerable assistance and frequent medical care 0.608 0.028 460.13 <.0001

Functional Status at listing is 60% - Requires occasional assistance but is able to care for needs 0.428 0.022 394.37 <.0001

Functional Status at listing is 70% - Cares for self: unable to carry on normal activity or active work 0.289 0.016 318.22 <.0001

Functional Status at listing is 80% - Normal activity with effort: some symptoms of disease 0.109 0.016 47.41 <.0001

Functional Status at listing is 90% - Able to carry on normal activity: minor symptoms of disease -0.012 0.016 0.57 0.450

Functional Status at listing is 100% - Normal, no complaints, no evidence of disease Reference

Patient has history of diabetes Reference

Patient does not have history of diabetes -0.455 0.011 1785.26 <.0001

White Reference

Black -0.015 0.012 1.72 0.190

Hispanic -0.077 0.014 29.92 <.0001

Asian -0.236 0.023 110.27 <.0001

Native American, Native Hawaiian, or Pacific Islander 0.012 0.038 0.10 0.754

Patient does not have peripheral vascular disease Reference

Patient has peripheral vascular disease 0.122 0.017 53.25 <.0001

Patient has no history of malignancy Reference

Patient has history of malignancy
1 --- --- --- ---

Diagnosis for transplant is other Reference

Diagnosis for transplant is unknown
1 --- --- --- ---

Diagnosis for transplant is IGA NEPHROPATHY
1 --- --- --- ---

Diagnosis for transplant is FOCAL GLOMERULAR SCLEROSIS1 --- --- --- ---

Diagnosis for transplant is POLYCYSTIC KIDNEYS
1 --- --- --- ---

Diagnosis for transplant is HYPERTENSIVE NEPHROSCLEROSIS
1 --- --- --- ---

Diagnosis for transplant is DIABETES MELLITUS - TYPE II1 --- --- --- ---

1Omitted for numerical stability   
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Table 3.5: Estimated Risk-Adjustments for Transition from Transplant to Death  
Category Coefficient SE Chi-

Square

P-Value

Serum Albumin Level at Listing 

-0.181 0.019 94.81 <.0001

Calculated Panel Reactive Antibodies at Listing [0-100] -0.000800 0.000900 0.79 0.375

Calculated Panel Reactive Antibodies (Last Known) [0-100] 0.002700 0.000500 28.36 <.0001

BMI at Listing -0.005300 0.002200 5.82 0.016

Residence in Urban Zip Code Reference

Residence in Rural Zip Code 0.042 0.029 2.03 0.154

OPO 10-year transplant volume (number of organs '000s) 0.021 0.013 2.870 0.090

OPO mean waiting time for transplant (days) -0.00030 0.00020 1.770 0.183

Transplant center 10-year transplant volume (number of organs '000s) -0.055 0.022 6.230 0.013

Transplant center mean waiting time for transplant (days) -0.0002 0.0001 1.82 0.178

Transplant center HHI Index [0-1] 0.037 0.078 0.22 0.640

Number of transplant centers in the OPO 0.003 0.006 0.16 0.690

Age at listing 18-34 years Reference

Age at listing 35-44 years 0.354 0.068 26.95 <.0001

Age at listing 45-54 years 0.608 0.062 96.82 <.0001

Age at listing 55-64 years 1.024 0.060 288.25 <.0001

Age at listing > 65 years 1.446 0.062 541.10 <.0001

Male Reference

Female -0.167 0.025 45.63 <.0001

ABO = O Reference

ABO = A 0.025 0.025 1.04 0.307

ABO = B 0.009 0.036 0.06 0.809

ABO = AB -0.007 0.052 0.02 0.898

Functional Status at listing is 10% - Moribund, fatal processes progressing rapidly -0.174 0.302 0.33 0.565

Functional Status at listing is 20% - Very sick, hospitalization necessary: active treatment necessary 0.108 0.104 1.08 0.298

Functional Status at listing is 30% - Severely disabled: hospitalization is indicated, death not imminent 0.271 0.125 4.69 0.030

Functional Status at listing is 40% - Disabled: requires special care and assistance 0.225 0.101 5.02 0.025

Functional Status at listing is 50% - Requires considerable assistance and frequent medical care 0.180 0.076 5.68 0.017

Functional Status at listing is 60% - Requires occasional assistance but is able to care for needs 0.096 0.058 2.78 0.096

Functional Status at listing is 70% - Cares for self: unable to carry on normal activity or active work 0.056 0.043 1.65 0.199

Functional Status at listing is 80% - Normal activity with effort: some symptoms of disease 0.014 0.039 0.13 0.723

Functional Status at listing is 90% - Able to carry on normal activity: minor symptoms of disease -0.039 0.039 1.01 0.316

Functional Status at listing is 100% - Normal, no complaints, no evidence of disease Reference

Patient has history of diabetes Reference

Patient does not have history of diabetes -0.365 0.032 131.90 <.0001

White Reference

Black -0.047 0.029 2.67 0.102

Hispanic -0.325 0.038 74.16 <.0001

Asian -0.409 0.060 46.63 <.0001

Native American, Native Hawaiian, or Pacific Islander -0.192 0.107 3.23 0.072

Patient does not have peripheral vascular disease Reference

Patient has peripheral vascular disease 0.329 0.036 84.24 <.0001

Patient has no history of malignancy Reference

Patient has history of malignancy 0.140 0.035 15.77 <.0001

Diagnosis for transplant is other Reference

Diagnosis for transplant is unknown 0.098 0.048 4.13 0.042

Diagnosis for transplant is IGA NEPHROPATHY -0.770 0.093 68.13 <.0001

Diagnosis for transplant is FOCAL GLOMERULAR SCLEROSIS -0.174 0.061 8.21 0.004

Diagnosis for transplant is POLYCYSTIC KIDNEYS -0.498 0.055 82.23 <.0001

Diagnosis for transplant is HYPERTENSIVE NEPHROSCLEROSIS 0.049 0.034 2.05 0.152

Diagnosis for transplant is DIABETES MELLITUS - TYPE II 0.046 0.035 1.68 0.195
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Table 3.5 (Continued): Estimated Risk-Adjustments for Transition from Transplant to 

Death  
 

Category Coefficient SE Chi-

Square

P-Value

Number of DR mismatches > 0 -0.002 0.024 0.00 0.949

Number of HLA mismatches > 0 0.031400 0.010500 8.90 0.003

Donor creatnine level 0.070200 0.010100 47.83 <.0001

Donor age at listing 18-34 years Reference

Donor age at listing 35-44 years -0.027 0.033 0.65 0.421

Donor age at listing 45-54 years 0.111 0.031 12.91 0.000

Donor age at listing 55-64 years 0.117 0.038 9.470 0.002

Donor age at listing > 65 years 0.08020 0.06100 1.730 0.189

Functional Status at transplant (recipient) is 10% - Moribund, fatal processes progressing rapidly 1.674 0.148 127.150 <.0001

Functional Status at transplant (recipient) is 20% - Very sick, hospitalization necessary: active treatment necessary 1.075 0.096 125.82 <.0001

Functional Status at transplant (recipient) is 30% - Severely disabled: hospitalization is indicated, death not imminent 0.773 0.119 41.91 <.0001

Functional Status at transplant (recipient) is 40% - Disabled: requires special care and assistance 0.364 0.090 16.39 <.0001

Functional Status at transplant (recipient) is 50% - Requires considerable assistance and frequent medical care 0.555 0.071 61.01 <.0001

Functional Status at transplant (recipient) is 60% - Requires occasional assistance but is able to care for needs 0.332 0.055 36.28 <.0001

Functional Status at transplant (recipient) is 70% - Cares for self: unable to carry on normal activity or active work 0.267 0.045 35.75 <.0001

Functional Status at transplant (recipient) is 80% - Normal activity with effort: some symptoms of disease 0.132 0.041 10.25 0.001

Functional Status at transplant (recipient) is 90% - Able to carry on normal activity: minor symptoms of disease 0.020 0.043 0.22 0.640

Functional Status at transplant (recipient) is 100% - Normal, no complaints, no evidence of disease Reference

Donor and Recipient  have the same ABO blood type Reference

Donor and Recipient do not have the same ABO blood type -0.077 0.039 3.90 0.048

KDPI is 0- <70 Reference

KDPI is 70- <85 0.286 0.037 60.84 <.0001

KDPI is 85- <95 0.414 0.045 84.37 <.0001

KDPI is 95 or greater 0.5622 0.0619 82.6 <.0001  
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Table 3.6: Survival Time Calculations for Hypothetical Patient Profile  

 

Hypothetical Patient Profile 

Expected 
Time  

to 

Transplant1 

 

Expected 
Time  

to Waitlist 
Mortality2  

Expected 

Post-
Transplant 

Survival 
Time1 

 

Expected   
Absorption 

Time 
(Overall 
Survival 

Time)  

  

65-year old rural patient, sensitized 
(most recent CPRA =50), peripheral 

vascular disease, diagnosis for transplant 
is diabetes, low-volume transplant center 
with negligible waiting time, other 

characteristics set to reference category 
or 0 

153 days 
(0.42 years) 

701 days 
(1.92 
years) 

1,549 days 
(4.24 years) 

1,899 days 
(5.20 years) 

  

 
65-year old rural patient, sensitized 
(most recent CPRA =50), peripheral 

vascular disease, diagnosis for transplant 
is diabetes, high-volume transplant 
center with mean waiting time of 730 

days,  other characteristics set to 
reference category or 0 

710 days 
(1.94 years) 

420 days 

(1.15 
years) 

2,004 days 
(5.49 years) 

2,331 days 
(6.38 years) 

  

 
65-year old rural patient, sensitized 
(most recent CPRA =50), peripheral 

vascular disease, diagnosis for transplant 
is diabetes, listed at only center in OPO 
at a high-volume transplant center, with 

mean waiting time of 730 days,  other 
characteristics set to reference category 

or 0 

650 days 
(1.78 years) 

462 days 
(1.27 
years) 

1,926 days 
(5.27 years) 

2,277 days 
(6.23 years) 

  

 
65-year old rural patient, sensitized 

(most recent CPRA =50), peripheral 
vascular disease, diagnosis for transplant 
is diabetes, high-volume transplant 

center with mean waiting time of 730 
days, patient will receive a KDPI 95+ 

transplant,  other characteristics set to 
reference category or 0 

710 days 

(1.94 years) 

420 days 
(1.15 

years) 

1,140 days 

(3.12 years) 

1,723 days 

(4.72 years) 

  

 

  

 

 

  

1Conditional on receiving a transplant 
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2Conditional on dying on the waitlist or being removed due to medically unsuitability or because too sick 

for transplant 
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Figure 3.1: Process Diagram of Candidates Listed for a Kidney Transplant  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Candidates begin in the Waitlisted stated whence they can transition to the Inactive, 
Waitlist Removal, Transplanted, or Death states.  From the Transplanted state 
candidates may transition to Death or re-list for a re-transplant.  Candidates may also 
reenter the Waitlisted state and await transplantation after being inactive or temporarily 
removed.  From any state, is possible to transition to Death. 
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Figure 3.2: Simplified Process Diagram Used in Study 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Simplified diagram of the process shown in Figure 3.1. Time candidates spend being 
inactive is included during their time in the Waitlisted state.  Removals from the waitlist 

due to medical unsuitability or from being too sick to transplant are considered deaths.  
Re-lists and re-transplants are also not considered, as indicated by the unidirectional 
arrows. 
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Supplement: Technical Methods 

Multi-state survival modeling with SMPs is an established topic. For more 

detailed information about the theory of SMPs and similar stochastic processes, please 

consult the references 64,65,71,72,80.  Competing risks and multiple-event survival models 

are also referred to in this literature. Our brief presentation of the theory and estimation 

follows that of Krol and Saint-Pierre, although the notation has been altered 80. 

Homogenous Semi Markov Process:  

 Consider a Markov renewal process         where                 

    and     denote the sequence of transition times. The sequence 

             is the embedded, time-homogenous discrete-time Markov chain taking 

values over a finite state space with transition probabilities:                    . 

The state space being the Waitlisted, Transplanted, and Death states in Figure 2. 

Define the SMP kernel function as                                  

             where            represents the     inter-arrival time (   ). 

Moreover, from the Semi-Markov property we have that                      

       . A SMP is defined as        where                           . 

Suppose that given a state   and a following state   the distribution for the sojourn 

time for the transition is       . The following relates sojourn times, the SMP kernel 

function, and transition probabilities of the embedded discrete-time Markov chain: 

                             
      

   
 

Note that the sojourn time distributions do not depend on  , but do depend on the time 

elapsed since the previous state, the previous state, and the following state (this is 
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known as a homogenous SMP). Moreover, we define        to be the hazard function 

associated with the sojourn time distribution for transitions from state    to   (this notation 

differs from 80, where   is used to refer to the related SMP transition-hazard rate and   

to the sojourn time hazard rate.)   

Cox Proportional Hazards Semi-Markov Models with Weibull Sojourn Times: 

 Given prior knowledge of the probability distributions describing the sojourn times 

for each transition, we can estimate the aforementioned transition probabilities and the 

parameters describing the shape and scale of the distributions. We now introduce the 

following assumption: 

1. For each ordered pair of states   and   we require that the sojourn time for the 

corresponding transition be distributed Weibull with scale parameter       and 

shape parameter       (Assumption 3). That is, the hazard function for the 

sojourn time distribution for transitions from state    to   may be written as: 

       
    

   
(

 

   
)

     

 

The Weibull family is useful for a few reasons.  First, it is a flexible family that allows for 

incorporation of risks with monotonic hazards.  Second, the Weibull distribution is one of 

the families of distributions that satisfy both the accelerated failure and proportional 

hazards paradigms.  Third, parametric models for survival after kidney transplant and 

time to transplant using the Weibull distribution have been used previously 70,81. Lastly, 

a notable special case is when      , which corresponds to the exponential distribution 

with scale parameter    .  In the unlikely case that all sojourn distributions are indeed 

exponential and are independent of the following state, the SMP can be reduced to a 
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continuous-time Markov chain.  We estimate the shape and scale parameters for each 

transition  

 The risk-adjustments and any covariates that are thought to affect the sojourn 

times for each transition may also be incorporated into the framework with the 

assumption of proportional hazards (Assumption 4)80. Let     be a vector of covariates 

for the corresponding transition and     be the vector of regression coefficients 

describing relative risk. Covariates and risk-adjustments may differ for each transition.  

If        is understood as the baseline hazard for sojourn time given state   and entering 

state  , then the hazard rate may be written as: 

 ̃  (      )           (   
    )          

 Joint estimation of all the parameters in the multi-state model can be 

cumbersome with large datasets; so we estimate the SMP using Cox Semi-Markov 

models for each transition 65. For each transition, we fit a parametric Weibull survival 

model where the dependent variable is the censored time to the failure event of interest 

(death or transplantation) and obtain estimates of the respective scale and shape 

parameters for that transition.  Relative and baseline hazard estimates following the 

proportional hazards assumption are recovered from the model coefficients for each 

transition. The transition probabilities of the embedded discrete-time Markov Chain are 

calculated using the sample proportions of transitions from one state to the next. 

Calculation of Mean Absorption Times: 

 The moments for absorption times of general SMPs can be complicated and 

require solving integral equations of the Laplace transformations for the sojourn times. 

However, for the special case with a single absorbing state, the computation is simpler. 
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Let       denote the Waitlisted, Transplanted, and Death states in the SMP respectively. 

Equation 1 yields the expected time until absorption: 

                                                                

The probabilities     are the transition probabilities for the embedded discrete-time 

Markov chain. The values     are the mean sojourn times for the transitions.  

 Given the Weibull parameterization, the mean sojourn times can be calculated 

analytically.  For a Weibull distribution with scale parameter     and shape 

parameter    , Equation 2 computes the mean: 

        (  
 

   
)           

where      is the gamma function. For calculating the mean sojourn times of a particular 

transition for a patient with any risk profile, consider a patient with transition-specific 

characteristics     and let        (   
    ): 

 ̃                
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The last integral can be computed using Equation 2 by recognizing that it is the formula 

for the mean of a Weibull random variable with scale parameter    

  

       and shape 

parameter    . 
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Evaluation of Accepting Kidneys of Varying Quality for Transplantation or 

Expedited Placement with Decision Trees  

 

Over 20 million adult Americans suffer from some form of kidney disease 82. When this 

condition progresses to End-Stage Renal Disease (ESRD), patients may receive renal 

replacement therapy through dialysis and/or seek a kidney for transplantation.  Kidneys 

recovered from deceased donors are distributed by the Organ Procurement and Transplantation 

Network (OPTN).  More than 90,000 patients are presently waiting to receive a kidney for 

transplant (KT)83. Outcomes, such as longevity, quality of life, morbidity, as well as cost are 

better for patients who receive a KT compared to those remaining on dialysis61,62,84-87. The need 

for kidney-organs is critical, given that only 18,598 adult and pediatric KTs occurred in 201588.  

Surprisingly, hundreds of procured kidneys are discarded each year; 3,806 of the 14,637  

kidneys recovered from adult deceased donors were discarded in 2015 83. In the same year, 

4,981 patients died on the waitlist and 4,154 became too sick to transplant88. Such distressing 

figures compel reexamination of the decision-making for placing these organs. 

 The discard of a deceased-donor kidney is a potential result of the allocation process.   

The US is divided into 11 regions, each often a grouping of multiple states that are further 

subdivided into 58 Donor Service Areas (DSAs) 89. Each DSA has a designated Organ 

Procurement Organization (OPO) that facilitates kidney allocation and kidney procurement 

within its locality.  After an organ of adequate quality is recovered by an OPO, it is typically first 

offered to waitlisted patients within the DSA of procurement. If no recipient is found locally, the 

organ is offered to waitlist candidates within the same region followed by candidates waitlisted 

nationally.  If no recipient is found, then the kidney is discarded57.  At each step patients are 

ranked based on time on dialysis, sensitization, previous living kidney donation, and for potential 
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recipients of the highest-quality organs, estimated post-transplant survival90. Moreover, 

transplant centers and their patients may reject an offer for a KT, after which it will be offered to 

the next candidate. However, after actual procurement there is a limited time (0-48 hours) 

during which the kidney can be used and hence there is a practical limit on the number of offers 

that can be made. Extended ischemic times negatively impact patient outcomes after KT and 

thereby also affect the acceptability of a kidney once it is procured from the donor91,92.   

Causes for the Discards 

 Kidneys procured from deceased donors are not all of equal quality.  The kidney quality 

presently measured and reported by the OPTN since December 2014 uses a prognostic score 

for kidney graft failure known as the Kidney Donor Profile Index (KDPI)58.  The KDPI is based on 

donor characteristics including age, height, weight, ethnicity, hypertension status, diabetes 

status, Hepatitis C status, cause of death, and serum creatinine levels and ranges from 0 to 

100.  Higher KDPI scores signify lower kidney quality and hence worse potential graft 

outcomes
76

. For kidneys with KDPI 0-20, a longevity matching score estimating post-transplant 

survival and pediatric priority is used for allocation.  For kidneys with KDPI 21-34, longevity 

matching and estimated post-transplant survival scores are not used, but pediatric candidates 

continue to receive priority.  Allocation of organs with KDPI 35-85 follows the typical 

aforementioned sequence and organs with KDPI greater than 85 are initially offered both locally 

and to the region. 

 Deceased-donor kidneys that have been biopsied or have KDPI scores of 85 or greater 

exhibit significantly higher risk of discard (31.4% for biopsied kidneys and 59.1% of kidneys with 

KDPI 85+ ) relative to kidneys with KDPI scores of 0-85 (2.3-17.8%)88.  However, there is 

established evidence that even high-KDPI organs confer substantial survival benefits to 

recipients relative to remaining on dialysis93 –implying that routine discards are perhaps 

squandering an invaluable resource.  While the actual reasons remain speculative, several 
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transplant professionals have attributed the phenomenon partly to the regulatory environment 

surrounding transplant centers94-97.  Kidney transplant centers are overseen by the United 

States Department of Health and Human Services and by the Centers for Medicare and 

Medicaid Services (CMS) 20.  The conditions of participation set by CMS evaluate the 

performance of transplant centers regularly based on risk-adjusted 1-year patient and graft 

survival.  The risk-adjustments are based on characteristics of the transplanted recipient and 

donor. There is no adjustment for the deaths of patients that occur while on the waitlist.  

Therefore, transplant centers may have an incentive to be cautious or risk-averse in accepting 

kidneys95,96,98,99. 

Suggested Solutions 

Remedying the issue has led to considerable investigation over the past few years.  

Besides revisiting allocation rules90 and transplant center regulations94, two targeted 

interventions aimed at specific populations have been proposed.  First, dual kidney 

transplantation (i.e. transplanting a patient in need of two kidneys) of high-KDPI organs has 

demonstrated success in conferring significant survival benefits to affected individuals100-106. 

Second, preemptive transplantation, dual transplantation, or expediting the placement of 

marginal/high-KDPI organs, particularly for those who are at increased risk of not surviving until 

their first offer for a KT (e.g. elderly patients, candidates at centers with long waiting times, 

diabetics) has also garnered interest93,107,108. 

The Need for an Individualized Decision Framework 

Past work thus has convincingly shown that high-KDPI organs can benefit some patient 

and ought not to be rejected outright. We emphasize “some” to make the essential qualification 

that such a patient is not necessarily a patient who is soon due for a KT by following the typical 

procedures for organ allocation.  The decision to accept an organ now for KT or wait for a better 

offer in the future is inherently an individual-level dilemma that governs the patient regardless of 
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whichever subpopulation he or she may belong to.  For example, Massie et al calculate that it is 

more advantageous with respect to 5-year survival for 50-year old patients at transplant centers 

with median waiting times greater than 33 months to accept organs with KDPI 91-10093.  While 

the authors in no way advocate doing as such, forming policy prescriptions based on such 

rulesets needs to be approached with caution.  Although it may be true for the intended 

population of 50-year olds at such transplant centers that transplantation of high-KDPI organs 

leads to favorable outcomes, it may not indeed be the best course of action for an individual 

patient to accept such an organ.  The individual’s evaluation will depend on his or her 

preferences, how long he or she has already waited, and the likelihood of better opportunities 

that may present themselves in the future.  For example, a 50-year old patient at a busy center, 

who has accrued sufficient priority for transplant, may be better served by rejecting an organ 

with KDPI 90+ at the given time because a better offer will soon become available. Massie et al 

recognize the importance of incorporating individual waiting time into decision analyses and 

correctly observe that the appropriate counterfactual for evaluating the benefit of accepting a KT 

offer is not survival on the waitlist, but survival accounting for future offers93. 

The individual’s dilemma is defined by an inter-temporal comparison of the benefits of 

accepting a given offer for a KT now versus that of deferring.  Because this decision is fraught 

with uncertainties regarding the timing of future offers and survival benefits, calculation of the 

opportunity cost of rejecting an offer for a KT has eluded quantification. Instead, the decision 

customarily relies on clinical experience and judgment.  This article focuses on developing 

objective criteria that more accurately quantifies the consequences of that decision.   

We employ a methodology using decision trees109 – which, for example, are used by 

computers to make complex decisions. The aim of the analysis is to estimate 2 quantities: the 

value of accepting an offer for a KT of given quality now, and the value of rejecting that offer.  

The latter valuation is contingent on the survival benefits of offers in the future. The Concept 
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section and Supplement A highlight our understanding of the decision process undertaken by 

health-care providers, patients, and transplant professionals.  It also illustrates a decision tree 

for accepting/rejecting a KT offer and walks the reader through a simplified decision analysis in 

a non-technical manner. The Methods section and Supplement B operationalize the decision 

analysis mathematically and explains how the valuations are computed.  The valuations are 

linked to individual survival estimates that incorporate relevant factors including patient 

demographics, diagnoses, comorbidities, immunology, etc. as well as donor characteristics, 

donor-recipient attributes, KDPI, and transplant center/OPO characteristics.  The Results 

section demonstrates the methodology for an actual patient. The Discussion section explains 

how the methodology may be used to identify candidates for expedited placement of marginal 

quality organs. 

We emphasize that the work below outlines the construction of a computation engine 

that calculates the benefits of accepting a given offer or rejecting it.  The goal is to provide an 

objective evaluation of the consequences of that decision but not to make a recommendation. 

That choice depends on the risk-attitudes of the decision maker and is ultimately left to the 

patient.  

Concept 

Prior to constructing a decision tree, it was necessary to identify the critical moments in 

the decisions made by transplant centers, OPOs, and the OPTN. In the autumn of 2016, we 

held structured and unstructured interviews with the clinical faculty, nurses, and staff of the 

Comprehensive Transplant Center at Northwestern University in Chicago, Illinois; organ 

procurement executives and administrators from the Gift of Hope OPO serving Illinois; and other 

transplant professionals.  The purpose of the interviews was to identify the appropriate time in 

the process for rendering a decision analysis.  Supplement A presents summaries of the 
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processes undergone before evaluating offers for a KT and provides flowcharts depicting the 

steps.   

Typically before an organ is procured, DonorNet, an information technology system used 

by the OPTN, ranks patients for allocation based on blood type, age, sensitization, antigen 

compatibility, KDPI, previous transplant, prior living donor status, and post-transplant survival (if 

applicable) as discussed above.  The system then issues provisional offers to high-ranking 

patients.  Transplant centers for these patients then have an opportunity to respond to these 

offers with either a rejection or provisional acceptance.  A provisional acceptance for a given 

patient may still not materialize into a KT if another higher ranked patient accepts; however, an 

affirmative reply to a provisional offer is necessary if a KT is ever to take place.  Therefore, the 

analysis focuses on evaluating all of the provisional offers a patient may receive and thereby 

covers any offers that would indeed lead to a KT when no higher ranked patient accepts. 

Figure 4.1 presents a simplified, 2-stage decision tree analysis of 2 provisional offers as 

an example.    The first stage (Stage 0) represents the current offer.  The second stage (Stage 

1) occurs sometime after the first stage when the last offer is received.  Suppose the patient 

currently has an offer for a high-KDPI organ but not a low-KDPI organ (i.e. receives a high-KDPI 

organ with probability 1 and a low-KDPI organ with probability 0).  The value of accepting the 

high-KDPI organ now is a post-transplant survival benefit of 3 years. The value of rejecting this 

offer is more difficult to calculate because it depends on what may happen in Stage 1 and 

because getting a low-KDPI offer later or even surviving until Stage 1 is uncertain at Stage 0. 

Suppose that the patient knows that there is a 90% chance of reaching Stage 1 where she will 

receive offers for both a high-KDPI organ and low-KDPI organ with equal probability (i.e. 50%).  

Receiving a low-KDPI organ at this time yields a post-transplant benefit of 4 years and similarly 

2 years for a high-KDPI transplant.  The reduced post-transplant survival benefits at this stage 

may be indicative, for example, of inferior outcomes from protracted dialysis. Furthermore, 
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suppose that if she rejects any offer in Stage 1, that she will then survive on dialysis for only 1 

year. Conditional on reaching Stage 1, the patient is better off (with respect to survival) 

obtaining either a high-KDPI or low-KDPI KT, as it offers an expected survival benefit of 3 years 

(versus the 1 year benefit from rejecting all Stage 1 offers and remaining on dialysis).  

Thus, accepting the current offer for a high-KDPI KT in Stage 0 nets a 3 year benefit, 

and conditional on reaching Stage 1, the best course of action taken subsequently will also yield 

a 3 year expected benefit. However, since there is a risk of not surviving until Stage 1, the value 

of rejecting the current offer is discounted to 2.7 years (3 0.9 + 0 0.1) [death is assigned a 

value of 0].  Thus, the foregoing analysis has yielded the two quantities of interest in this study; 

the patient must decide between accepting the high-KDPI KT now for an immediate benefit of 3 

years or deferring and obtaining an expected benefit of 2.7 years. We refrain from going further, 

as the decision is now left to the patient, but a risk-neutral patient interested in maximizing their 

expected survival ought to accept the high-KDPI KT now instead of rejecting (3 vs. 2.7)110.  

However, a patient willing to risk waiting may try for a low-KDPI KT in Stage 1 and thus reject 

the current offer.  

Methods 

The decision tree requires the following pieces of information for each stage: 1) post-

transplant survival benefits; 2) waitlist survival benefits; 3) probabilities of surviving on the 

waitlist until the next stage; and 4) the probability distributions for KDPI. The following 

subsections informally describe how the information is obtained.  A mathematical formulation of 

the tree and the technical details are available in Supplement B.   

We maintain the viewpoint of a patient who has just received their first provisional offer 

and knows the KDPI and characteristics of the current donor. Usually, only the donor profile of 

the current offer will be known with certainty. We conduct a counterfactual analysis of the impact 

of different KDPI transplants at different times by assuming the same donor profile (except for 



 
 
 

122 

KDPI) for all future stages. The value of death is by convention assumed to be 0. We also use 4 

KDPI quality ranges: KDPI 0-70, KDPI 70-85, KDPI 85-95, and KDPI 95+.   Analyses of OPTN 

match-run data from 2007-2016 revealed that approximately 75% of all candidates had finished 

considering any provisional offers within 750 days after the first offer. They received at least 2-

10 provisional offers per week over the duration. We consequently employed a 101-stage 

decision tree with 7 days in between stages (duration = 700 days .  

Post-Transplant Survival Benefit 

 Post-transplant survival benefits are estimated from standard proportional hazards 

survival models using widely available software44. The model specification includes 

accumulated waitlist time at transplant, KDPI, and characteristics relevant to post-transplant 

survival such as patient characteristics (e.g. demographics, diagnoses, comorbidities, etc.) and 

characteristics of the patient’s transplant center or OPO.  Additionally, donor and donor-recipient 

characteristics are included; Table 4.1 provides a full list. Multiple benefit measurements are 

possible, such as, mean post-transplant survival, median survival, or  -quantile survival time 

(       corresponds to median). For a given stage, KDPI-quality range, and all other 

characteristics, we measure the post-transplant survival benefit as the median post-transplant 

survival time. Moreover, the post-transplant survival benefits adjust for the amount of time the 

patient has spent on the waitlist until the particular stage. 

Waitlist Survival Benefit and Waitlist Survival Probabilities 

If the patient rejects all offers in all stages, a terminal benefit for continuing on the waitlist 

must be assigned.  We define this terminal benefit to be the median survival time on the waitlist 

less the sum of accumulated waiting time and the duration of the decision tree (700 days).  If 

this terminal benefit is 0 or negative, then the patient receives no benefit from continuing dialysis 

and was better off with respect to median survival time in accepting an offer for KT at some 
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previous stage. Moreover, the terminal benefit is conditional on the patient having already 

survived for some time on dialysis prior to the first provisional offer. 

Waitlist survival benefits are estimated from standard proportional hazards using widely 

available software44. The model specification includes patient characteristics (e.g. 

demographics, diagnoses, comorbidities, etc.) and characteristics of the patient’s transplant 

center or OPO; Table 4.1 provides a full list.  Again, benefit measurements using the mean 

waitlist survival or different quantiles may be used. For each successive stage, we use the 

waitlist survival function (conditioned on the patient surviving until the first provisional offer) to 

calculate the probability that the given patient will survive on the waitlist until that stage. 

Probability Distribution of KDPI 

 For each stage we compute the probability that the offer will be in a given KDPI quality 

range using Poisson count models with specific patient, transplant center, and OPO 

characteristics111 (Table 4.1 provides a full list). The characteristics include some of the previous 

factors used in the preceding survival models and describe procedural aspects that influence 

the likelihood of receiving a provisional offer. For example, OPTN policies expressly use 

calculated panel reactive antibodies (CPRA) and the individual’s ABO blood type to rank 

candidates57.   Other related, but implicit factors might be the OPO’s transplant volume or mean 

waiting time.   KT candidates are subject to the vicissitudes of the OPTN that are driven by the 

complex interactions among donors, donor hospitals, transplant centers, and OPOs. These 

institutions and related policies effectively determine the quality of any provisional offer. 

Moreover, the likelihood of receiving an organ of particular quality changes in successive stages 

because the candidate accrues priority and is less likely to be a preempted by a higher-ranking 

patient seeking a better quality organ.  

Computation of the Values of Accepting an Offer and Rejecting 
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 Once the information in the preceding subsections is obtained, the decision tree can be 

evaluated via backwards recursion or dynamic programming112.  We use the DTREE procedure 

in SAS to solve the tree44 and obtain the two principal quantities of interest – the value of 

accepting the current offer for a KT and the value of rejecting it, contingent on valuations of 

subsequent offers at later stages. 

Implementation 

We programmed the decision tree including all survival-benefit computations and offer 

count models in SAS 9.444. Survival data on all adult KT candidates and organ donors in the US 

were provided by the United Network for Organ Sharing (UNOS) for January 2007 through 

December 2016 with updated statuses as of March 2017 (10 years).  The sample included all 

adult candidates listed for a deceased-donor KT that had no previous transplants nor required 

multiple transplants. Covariates shown in Table 4.1 were selected after consulting the 

literature63,68,73-75,77-79,96. The count models were estimated using match-run data for the same 

period. Supplement C provides the coefficients and goodness-of-fit statistics for the survival 

models and count models 

Application of the Decision Tree 

 We consider a 60 year-old female candidate in the dataset that lives in an urban area 

and suffers from diabetes and peripheral vascular disease, but is able to carry out normal 

activities with minor symptoms of disease. Her most recent CPRA score is 13, serum albumin 

level is 3.7, and BMI is 22.1. She is currently listed at Transplant Center A and has already 

waited 365 days.  Transplant center A has a mean waiting time of 33 months (990 days), large 

annual transplant volumes, and is located in an OPO with over 5 centers.  This center is 

considering a provisional offer for this patient from an ABO-compatible donor aged 33 years old 

with 5 HLA mismatches and 2 DR mismatches. We consider this donor profile with different 

KDPI ranges and assumed that future donors have a similar profile. 
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 Sensitivity analyses of the results were performed using the 95% confidence intervals for 

the pre- and post-transplant median survival times. Two additional trees, one populated with all 

the worst-case, lower-bound median survival times from the confidence intervals, and one 

similarly populated with all the best-case, upper-bound median survival times were constructed 

and solved. We report the ranges of the values of acceptance and rejection thereby obtained.  

Results 

 Table 4.2 presents the patient’s valuations for accepting or rejecting the current offer by 

the donor’s KDPI, which were rendered in about 1 minute on a standard laptop (time exclusive 

of survival model estimation).  Figure 4.2 shows the SAS output of the tree, truncated at the 

beginning and end. The patient’s median survival time on dialysis is 1,445 days, and she will 

therefore obtain a terminal benefit of 380 days if she rejects all offers for the 700 days and never 

receives a KT, but only if she survives for the duration, for which she has a 63.7% chance of 

doing so.   

The value of accepting the current offer for a 95+ KDPI organ, for example, is 2,961 

days and the value of rejecting is 3,092 days.  The best course of action will depend on her own 

assessment, but if she were risk-neutral or at least not too risk-averse, she ought to be inclined 

to reject the offer.   

Table 4.3 shows the amount of time that must elapse before the acceptance value for a 

given KDPI KT exceeds the rejection value. This information applies in prognostic situations 

where the candidate is presumed to only receive offers of a given quality and better quality 

offers only much afterwards.  For example, if she only receives KDPI 95+ offers from similar 

donors, then it will take approximately 13 weeks before the value of acceptance exceeds the 

value of rejection – that is, if she is not expected to receive higher quality offers for much more 

than 13 weeks, then she may benefit from this KT now on average.    Similarly, she can afford to 

wait 8 more weeks for a better offer if she is only receiving offers for KDPI 85-95; and it is 
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usually beneficial to accept the highest-quality organs as soon as they are offered. Thus, to 

facilitate better decision making, it is worthwhile to communicate to her both the information in 

Figure 4. 2 and Tables 4.2-3. 

Discussion 

This patient may indeed not be best served by a well-intended policy that urges elderly 

diabetics at transplant centers with long waiting times to accept high-KDPI organs or something 

similar. Once candidates survive long enough to begin receiving provisional offers, there is 

lessened incentive to forego better quality offers in the near future and a strong impetus to reject 

low-quality organs. 

This analysis may be applied in two ways.  First, the usefulness of the decision tree for 

real-time evaluation of provisional offers is clear provided the information can be relayed to the 

patient or health-care provider in a timely and understandable manner. Ideally, transplant 

centers can integrate such an engine into their procedure for responding to offers or even have 

such estimates calculated in DonorNet automatically. Supplement B provides some suggestions 

for how the modeling may be strengthened to account for uncertainty of characteristics for future 

donors.  However, among the donor covariates included, KDPI is exceedingly the most 

influential component of the donor profile that affects post-transplant survival; so, limiting the 

focus to KDPI alone should not severely affect the applicability of the results.  

Second, the tree may be used as a prognostic tool to identify potential candidates for 

expedited placement of high-KDPI organs. Each stage of decision tree need not correspond to a 

bona fide provisional offer, but instead be interpreted as a hypothetical point in time where a 

patient may receive a KT. The decision tree can then still be computed when no offers are 

actually expected.  For instance, suppose that the aforementioned patient has now been listed 

at Transplant Center B for 365 days instead. Moreover, we may even require that the she has 

the same profile as before and that Transplant Center B has the same characteristics as 
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Transplant Center A.  However, suppose she has not yet received her first provisional offer.  

Her results from Figure 4.2 and Tables 4.2-3 still apply even if she receives offers only 

hypothetically. Since the value of acceptance of a 95+ KDPI donor will exceed the value of 

rejection in 13 weeks, we can deduce the following: if Transplant Center B is confident that she 

will not receive an offer for a better quality organ or even any offer at all for the next 13 or more 

weeks, then she may be a reasonable candidate for an expedited high-KDPI KT now.  This 

subtle difference between these two scenarios alters her incentives (i.e. reject 95 KDPI+ at 

Center A, consider expedited placement of 95 KDPI+ at Center B) and underscores the 

essence of her dilemma.  

The decision tree retains applicability despite focusing exclusively on provisional offers. 

Since an offer for a KT that would actually materialize will follow the first provisional offer, the 

patient is not harmed if she had accepted the expedited placement at Center B, as that KT 

would still have occurred after 13 weeks or more.  Additionally, while at Transplant Center A, 

she has every incentive to act as if every provisional offer would materialize into a KT or 

otherwise lose an opportunity for a potential survival benefit.  

It is the prognostic application of the decision tree that could help reduce the number of 

discards by bolstering expedited placements of high-KDPI organs to patients with sufficiently 

low priority.  Candidates expected to receive offers soon may have too strong of an incentive to 

reject them. These patients are not bound by the need for greater efficiency in the system and 

perhaps should not be.  A policy solution to address the discards, however, will need to balance 

individual autonomy and the broader welfare. At the very least, an individualized decision 

framework will aid transplant candidates to do the best for themselves in any likely policy 

environment, and if used to identify individuals, not populations, for expedited placement as just 

described, bolster organ utilization.   
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This work provides a comprehensive treatment of the patient’s dilemma for accepting 

kidneys of varying quality that retains both methodological rigor and clinical relevance. However, 

we do reiterate the necessary distinction between presenting the information and making the 

decision; the latter should always emphasize patient preferences and the results of any decision 

tree should not be construed to the contrary. 
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Table 4.1: List of Covariates Included in the Decision Tree Analysis
 

Category Waitlist Survival 

Benefit

Post-Transplant 

Survival Benefit

Offer 

Count 

Models

Waiting time at Transplant X

Elapsed time since 1st Offer X

Serum Albumin Level at Listing X X

Calculated Panel Reactive Antibodies at Listing [0-100] X X X

Calculated Panel Reactive Antibodies (Last Known) [0-100] X X X

BMI at Listing X X

Residence in Urban Zip Code X X

Residence in Rural Zip Code X X

OPO 10-year transplant volume (number of organs) X X X

OPO mean waiting time for transplant (days) X X X

Transplant center 10-year transplant volume (number of organs) X X X

Transplant center mean waiting time for transplant (days) X X X

Transplant center competition in OPO HHI Index [0-1] X X X

Number of transplant centers in the OPO X X X

Age at listing 18-34 years X X X

Age at listing 35-44 years X X X

Age at listing 45-54 years X X X

Age at listing 55-64 years X X X

Age at listing > 65 years X X X

Male X X

Female X X

ABO = O X X X

ABO = A X X X

ABO = B X X X

ABO = AB X X X

Functional Status at listing is 10% - Moribund, fatal processes progressing rapidly X X

Functional Status at listing is 20% - Very sick, hospitalization necessary: active treatment necessary X X

Functional Status at listing is 30% - Severely disabled: hospitalization is indicated, death not imminent X X

Functional Status at listing is 40% - Disabled: requires special care and assistance X X

Functional Status at listing is 50% - Requires considerable assistance and frequent medical care X X

Functional Status at listing is 60% - Requires occasional assistance but is able to care for needs X X

Functional Status at listing is 70% - Cares for self: unable to carry on normal activity or active work X X

Functional Status at listing is 80% - Normal activity with effort: some symptoms of disease X X

Functional Status at listing is 90% - Able to carry on normal activity: minor symptoms of disease X X

Functional Status at listing is 100% - Normal, no complaints, no evidence of disease X X

Patient has history of diabetes X X

Patient does not have history of diabetes X X

White X X

Black X X

Hispanic X X

Asian X X

Native American, Native Hawaiian, or Pacific Islander X X

Patient does not have peripheral vascular disease X X

Patient has peripheral vascular disease X X

Patient has no history of malignancy X X

Patient has history of malignancy X X

Diagnosis for transplant is other X X

Diagnosis for transplant is unknown X X

Diagnosis for transplant is IGA NEPHROPATHY X X

Diagnosis for transplant is FOCAL GLOMERULAR SCLEROSIS X X

Diagnosis for transplant is POLYCYSTIC KIDNEYS X X

Diagnosis for transplant is HYPERTENSIVE NEPHROSCLEROSIS X X

Diagnosis for transplant is DIABETES MELLITUS - TYPE II X X  
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Table 4.1 (Continued): List of Covariates Included in the Decision Tree Analysis
 

Category Waitlist Survival 

Benefit

Post-Transplant 

Survival Benefit

Offer 

Count 

Models

Number of DR mismatches > 0 X

Number of HLA mismatches > 0 X

Donor creatnine level X

Donor age at listing 18-34 years X

Donor age at listing 35-44 years X

Donor age at listing 45-54 years X

Donor age at listing 55-64 years X

Donor age at listing > 65 years X

Functional Status at transplant (recipient) is 10% - Moribund, fatal processes progressing rapidly X

Functional Status at transplant (recipient) is 20% - Very sick, hospitalization necessary: active treatment necessary X

Functional Status at transplant (recipient) is 30% - Severely disabled: hospitalization is indicated, death not imminent X

Functional Status at transplant (recipient) is 40% - Disabled: requires special care and assistance X

Functional Status at transplant (recipient) is 50% - Requires considerable assistance and frequent medical care X

Functional Status at transplant (recipient) is 60% - Requires occasional assistance but is able to care for needs X

Functional Status at transplant (recipient) is 70% - Cares for self: unable to carry on normal activity or active work X

Functional Status at transplant (recipient) is 80% - Normal activity with effort: some symptoms of disease X

Functional Status at transplant (recipient) is 90% - Able to carry on normal activity: minor symptoms of disease X

Functional Status at transplant (recipient) is 100% - Normal, no complaints, no evidence of disease X

Donor and Recipient  have the same ABO blood type X

Donor and Recipient do not have the same ABO blood type X

KDPI is 0- <70 X

KDPI is 70- <85 X

KDPI is 85- <95 X

KDPI is 95 or greater X  
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Table 4.2: Individualized Values of Accepting or Rejecting the Current Offer Given KDPI1 

KDPI 

Range of 

Initial 

Offer Stage

Accumulated Waiting Time

(days)

Time Elapsed

(days)

Value of Accepting Offer

 [range] 

(days)

Value of Rejecting Offer

 [range] 

(days)

95+ 0 365 0

2961 

[2774,3064]

3092 

[2964,3230]

85-95 0 365 0

2995

[2930,3268]

3092 

[2964,3230]

70-85 0 365 0

3042

[2989,3268]

3092 

[2964,3230]

0-70 0 365 0

3268

[3072,3268]

3092 

[2964,3230]

Terminal 1065 700 ---

380

[274,508]  
1Results for a 60 year-old, diabetic female transplant candidate who has already waited 365 

days at a high-volume transplant center with mean waiting time of 33 months. Value of 
acceptance for current offer (Stage 0) assumes transplant of given KDPI with probability 
1.Ranges calculated based on sensitivity analyses using lower- and upper-bound benefit 
estimates. 
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 Table 4.3: Elapsed Times Whens Value of Acceptance Exceeds Value of Rejection by 

KDPI Range
1
 

KDPI Range 

Elapsed Time When 
Acceptance of Offer 

Exceeds Rejection Value 

[range] 
(days) 

0-70 

0  

[0,0] 

70-85 

 
28  

[0,28] 

85-95 

 
56  

[0,56] 

95+ 

 

91  
[91,133] 

 

1
Results for a 60 year-old, diabetic female transplant candidate who has already waited 365 days             

at a high-volume transplant center with mean waiting time of 33 months.  Elapsed times are when value 
of acceptance exceeds value of rejection given all previous offers were of that quality. 
Ranges calculated based on sensitivity analyses using lower- and upper-bound benefit estimates. 
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Figure 4.1: Example 2-Stage Decision-Tree Analysis for Evaluating Offers of Varying 

Quality 
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Figure 4.2: Truncated Output from Decision Tree 

 
Truncated results for a 60 year-old, diabetic female transplant candidate who has 
already waited 365 days at a high-volume transplant center with mean waiting time of 
33 months. Shows current offer (Stage 0) and terminal stages (Stage 100) occurring 
weekly 700 days later.  
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Supplement A: Candidate Kidney Decision Offer Process 

Prior to constructing a decision model, it was necessary to identify the critical moments 

in the processes undertaken by transplant centers, OPOs, and the OPTN. In the autumn of 

2016, we held structured and unstructured interviews with the clinical faculty, nurses, and staff 

of the Comprehensive Transplant Center at Northwestern University in Chicago, Illinois; organ 

procurement executives and administrators from the Gift of Hope OPO serving Illinois; and other 

transplant professionals.  The purpose of the interviews was to construct flowcharts of the 

process.   

Figure 4.3 depicts a diagram of the patient’s experience from listing to receipt of an 

organ offer.  After referral to a transplant center, multidisciplinary teams assess patients’ 

suitability for a KT and evaluate any contraindications.  If the patient is listed, a KDPI range for 

offers that the patient may be willing to accept in the future can be then set. After listing, the 

patient will be monitored in intervals chosen by both OPTN and clinical guidelines and at the 

discretion of transplant centers.  Monitoring includes assessment of patient status and 

immunology including unacceptable antigens.  Patients who are due for an offer soon may be 

monitored more frequently.  During this time, patients may be temporarily deactivated from the 

waitlist for various reasons and even delisted if they develop conditions that prohibit 

transplantation.  Transplant centers may have different protocols or exclude some types of 

donors (e.g. HIV donors). So when an organ is about to be procured by an OPO, a computer 

system (DonorNet) verifies that the donor meets transplant center criteria and performs a virtual 

cross-match.  The virtual cross-match ranks patients for organ allocation based on blood type, 

age, sensitization, antigen compatibility, KDPI, previous transplant, prior living donor status, and 

post-transplant survival (if applicable) as discussed above.  The system then issues provisional 

offers to high-ranking patients.  If possible, and depending on the practices of the OPO or donor 

hospital, a physical cross-match of the donor’s and high-ranking, potential recipients’ tissues is 
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conducted.  Information about the donor is updated in DonorNet in real-time (e.g. KDPI, donor 

characteristics, biopsy results if any, etc.).  However, the timing of the physical cross-match or 

biopsy results (if even performed) may be before, after, or simultaneously occurring while 

provisional offers are being considered or before or after the organ is physically removed from 

the donor – the circumstances vary for each particular situation. 

After a provisional offer, transplant center professionals (e.g. staff, nurses, nephrologists, 

surgeons, etc.) reassess patient suitability while considering any information about the donor 

that has been obtained; if the offer seems promising and likely to materialize, they will contact 

the patient to discuss the offer and obtain informed consent.  If the patient assents, the 

transplant may occur if no higher-ranking patient accepts the offer.  If the patient declines the 

offer, the transplant center or patient may reevaluate their criteria for accepting an organ in the 

future and potentially filter similar donors automatically in the future for that patient. 

Figure 4.4 depicts more details about the offer process from the OPO’s perspective.  

The OPO ideally obtains authorization and tissues for cross-matching from the donor before 

physically removing the organ.  When the virtual cross-match is conducted, all transplant 

centers locally are notified unless 3 of the highest-ranking patients are not listed locally.  

Transplant centers have 1 hour to acknowledge the receipt of the provisional offer and an 

additional hour to deliver a provisional acceptance. Meanwhile, the OPO or sometimes donor 

hospital prepare the physical cross-match tray, procure the organ, and take a biopsy (the exact 

timing and sequence of these varies in each circumstance). If no patient is found, the OPO 

elects to either discard the organ or extend the match-run. Physical cross-matching may take a 

few hours and is limited by the number of samples that can be tested at once.  Alternatively, the 

OPO may expedite the placement or direct the organ non-locally via UNOS and DonorNet if 

either a recipient is found or if some transplant center is willing to accept the organ. The organ 

will be discarded if no willing recipient or transplant center can be found. 



 
 
 

137 

We acknowledge that Figures 4.3 and 4.4 may not be representative of the practices of 

all transplant centers and OPOs. Processes are subject to changes in OPTN policies, 

information technology systems, and clinical practice.  However, our discussions with 

professionals indicated that the foregoing described the events adequately at a high level.  Most 

importantly, they identify that from the perspective of the patient, the most critical time for a 

decision evaluation is when a provisional offer is received.  A provisional offer may not 

materialize into a KT if accepted; however, an evaluation for all provisional offers covers the 

offers that do indeed lead to a KT when no higher-ranking patient is found before 

transplantation. 



 
 
 

138 

Figure 4.3: Flowchart of Candidates Listed for a Kidney Transplant from Listing to Organ 

Offer 
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Figure based on interviews conducted with Comprehensive Transplant Center at 
Northwestern University and the Gift of Hope Organ Procurement Organization in 
Autumn 2016. May not be representative of all transplant centers or organ procurement 
organizations. Subject to change as processes may be modified. 
 
Abbreviations: CPRA – calculated panel reactive antibodies; HLA – human leukocyte 
antigen; HepC – Hepatitis C; EPTS – Estimated post-transplant survival score; KDPI – 
kidney donor profile index; OPO – organ procurement organization; Tx Center – 
Transplant center 
 
Dashed arrows represent variable timing in the events. 
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Figure 4.4: Flowchart of Organ Procurement Organization’s Handling of a Donated 

Kidney for Transplant 
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Figure based on interviews conducted with Comprehensive Transplant Center at 
Northwestern University and the Gift of Hope Organ Procurement Organization in 
Autumn 2016. May not be representative of all transplant centers or organ procurement 
organizations. Subject to change as processes may be modified. 
 
Abbreviations: DH – Donor Hospital; OPO – Organ Procurement Organization; OR – 
operating room; UNOS – United Network for Organ Sharing 
 
Dashed arrows represent variable timing in the events. 
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Supplement B: Technical Methods 

The decision tree requires the following pieces of information for each stage: 1) post-

transplant survival benefits; 2) dialysis/waitlist survival benefits; 3) probabilities of surviving on 

the waitlist until the next stage; and 4) the probability distributions for KDPI. We now extend the 

decision tree to any number of stages and provide the details to make the analysis clinically 

relevant. We maintain the viewpoint of a patient who has just received their first provisional offer 

and knows the KDPI and characteristics of the current donor with certainty.   

Preliminaries 

 The value of death is by convention assumed to be 0.  We measure time in days 

elapsed from the first provisional offer.  Let                denote the   stages of the 

decision tree.  Let     be the number of days between stages, chosen as finely as we like.  

Suppose the candidate has already accumulated    days of time on the waitlist when the first 

offer is made. Let            denote the possible KDPI quality ranges – for example, we use 4 

ranges:   for KDPI 0-70,   for KDPI 70-85,   for KDPI 85-95, and   for KDPI 95+.  Further, let   

denote a profile vector describing any patient characteristics relevant to either post-transplant or 

waitlist survival except for time on the waitlist (e.g. demographics, diagnoses, comorbidities, 

etc.).  These profiles may also include the characteristics of the patient’s transplant center or 

OPO.  Furthermore, let   denote a profile vector of donor and donor-recipient characteristics 

relevant to post-transplant survival except KDPI.  Lastly, let   be a quantile of interest.  For 

example, the median corresponds to       . 

Post-Transplant Survival Benefit 

 Let                     be the sequence of profiles describing the donor that is 

considered at each stage. Usually, only the donor profile of the current offer,    , will be known 

with certainty. There are several ways to deal with unknown donor profiles at successive stages, 

including using simulation or the average donor profile for that patient’s transplant center or 
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OPO.  Additionally, a counterfactual analysis of the impact of different KDPI transplants at 

different times using similar donors can be performed by using the same donor profile for all 

stages – that is, by assuming       for        . 

 Let                             denote the post-transplant survival for a KT with 

KDPI range  , performed after   days of time on the waitlist, on a patient with profile    using 

donor profile  .  Suppose that a transplant with KDPI range   occurs after it was accepted in the 

    stage of the decision tree using donor profile   .  Since the KT occurs after the patient has 

waited       days, the survival for this patient profile at this stage would be given 

by                   . Consequently, multiple benefit measurements for assessing the value 

of a KT of given quality   at stage   can be derived as       : 

 

 -Quantile Survival Time Benefit (       corresponds to median post-transplant survival time): 

 

          {                      } 

 

Mean Survival Time Benefit: 

       ∫                     

 

 

 

The foregoing measurements can be obtained from standard parametric and proportional 

hazards survival models using widely available software44.  

Waitlist Survival Benefit and Waitlist Survival Probabilities 

Let   be the survival time of the candidate since being on the waitlist or on dialysis.  For 

a patient with profile   and accumulated waiting time   , let                 be the waitlist 

survival function.        may be computed using standard parametric or proportional hazards 

survival models using widely available software44. Moreover, because the patient has already 
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survived for some amount of time before the first offer,  , we condition the survival time on this 

fact. Suppose       then: 

              
             

         
 

        

         
 

      

         
   ̃         

Thus, at the time of the current offer, the probability of surviving until stage   is defined as: 

       ̃          

If the patient rejects all offers in all stages, a terminal benefit for continuing on the waitlist 

must be assigned.  Let          be the time that has elapsed after all offers have been 

exhausted.  Let    denote either the mean or  -quantile survival time on dialysis (conditional on 

surviving for at least    and calculated from  ̃).  The terminal benefit earned after rejecting 

offers in all   stages is: 

       {         } 

If the total of the initial waiting time and mean or  -quantile survival is less than or equal to  , 

then the patient receives no benefit from continuing dialysis and was better off with respect to 

survival time in accepting an offer for KT at some previous stage. 

Probability Distribution of KDPI 

 Let        be the probability that an offer in stage   has KDPI range  .  The value of 

      is presumably   for each range   but for the KDPI range corresponding to the current 

offer. Candidates are subject to the vicissitudes of the OPTN that are driven by the complex 

interactions among donors, donor hospitals, transplant centers, and OPOs. These institutions 

and related policies effectively determine the quality of any provisional offer. Moreover, the 

likelihood of receiving an organ of particular quality changes in successive stages because the 

candidate accrues priority and is less likely to be a preempted by a higher-ranking patient 

seeking a better quality organ. However, the probability of survival until the next will also 

decrease.   
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 Let   be a vector of patient, transplant center, and OPO characteristics and     be the 

time that has elapsed since the first offer.  The characteristics may include some of the previous 

factors used in the preceding survival models and ought to describe procedural aspects that 

influence the likelihood of entering a match-run and receiving a provisional offer. For example, 

OPTN policies expressly use calculated panel reactive antibodies (CPRA) and the individual’s 

ABO blood type to rank candidates57.   Other related, but implicit factors might be the OPO’s 

transplant volume or mean waiting time. Unfortunately, just as for donor profiles, relevant donor-

recipient characteristics for future offers, such as the number of mismatches, cannot be known 

with certainty. A definitive treatment of such would entail simulation of possible future match-

runs; so, we therefore resort to approximations of the probabilities using Poisson count models 

using specific patient, transplant center, and OPO characteristics111: 

 Assumption: A patient at a transplant center and OPO with characteristics    and 

elapsed time    receives provisional offers for KDPI ranges   following independent (not 

homogenous) Poisson Processes with mean number of offers        .   

The probabilities of the KDPI for stages              may then be estimated as: 

      
         

∑          
 
   

 

The mean number of offers for each quality range may be estimated via Poisson regressions 

where      and    represent the regression coefficients44: 

  ̂                   
    

Computation of the Values of Accepting an Offer and Rejecting 

 We now unify the preceding subsections; let       ∑             
   .  The function  

     represents the expected post-transplant survival benefit from a KT at stage  , and      in 

particular is one of the principal quantities of interest in the study – the value of accepting the 
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current offer for a KT.  To obtain the value of rejecting the offer, we first compute the value 

function     : 

     {  
   {                        }         

      
 

The value function encapsulates the notion that the value of the current decision is contingent 

on valuations of subsequent offers at later stages, i.e.      depends on       .  Evaluating 

the value function can be achieved via backwards recursion or dynamic programming112.  The 

DTREE procedure in SAS can also be used to solve the model44.  The computation of 

           yields the second principal quantity of interest – the value of rejecting the current 

offer.  The term      measures the value of rejecting the offer conditional on reaching stage 1, 

which is subsequently discounted by the probability of surviving until Stage 1. 
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Supplement C: Modeling Results 

Offer Models 

For each of the KDPI ranges, candidates received approximately 0-10 provisional 

offers a week after their first offer (i.e. the computer system had selected the patient; the 

vast majority of the offers did not materialize into a KT). All predictors were statistically 

significant as were overall Pearson chi-squared and deviance statistics for goodness of 

fit (p < 0.001).  Median absolute deviations in the predicted number of offers from the 

actual number were 23.5 per patient respectively. Median absolute percentage errors 

were 73.5%.   Further analysis of the match-run data revealed that approximately 75% 

all candidates had finished considering any provisional offers within 750 days after the 

first one. We consequently employed a 101-stage decision tree (       with 7 days in 

between stages (           .  
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Analysis Of Maximum Likelihood Parameter Estimates KDPI 0-70 

Parameter   DF Estimate Standard 

Error 

Wald 95% 

Confidence Limits 

Wald 

Chi-

Square 

Pr > ChiSq 

Intercept   1 2.9940 0.0025 2.9891 2.9989 1447834 <.0001 

Elapsed Time   1 0.0008 0.0000 0.0008 0.0008 4712173 <.0001 

CPRA Listing   1 -0.0054 0.0000 -0.0055 -0.0054 28203.2 <.0001 

Recent CPRA   1 -0.0119 0.0000 -0.0120 -0.0119 736903 <.0001 

OPO Transplant 

Volume 

  1 0.0000 0.0000 0.0000 0.0000 194.91 <.0001 

OPO Mean 

Waiting Time 

  1 0.0000 0.0000 0.0000 0.0000 18.42 <.0001 

Tx Center 

Transplant 

Volume 

  1 0.0002 0.0000 0.0002 0.0002 187945 <.0001 

Tx Center Mean 

Waiting Time 

  1 0.0003 0.0000 0.0003 0.0003 8591.08 <.0001 

OPO HHI   1 -0.2046 0.0020 -0.2085 -0.2007 10531.7 <.0001 

Number of 

Transplant 

Centers in OPO 

  1 0.0174 0.0001 0.0172 0.0177 17086.0 <.0001 

Age 35-45   1 0.0147 0.0010 0.0127 0.0167 204.65 <.0001 

Age 45-55   1 0.0192 0.0009 0.0174 0.0211 416.79 <.0001 

Age 55-65   1 -0.0023 0.0009 -0.0041 -0.0005 6.26 0.0123 

Age 65+   1 0.0159 0.0010 0.0139 0.0179 243.01 <.0001 

ABO A 1 0.2783 0.0006 0.2771 0.2795 198124 <.0001 

ABO AB 1 0.1981 0.0013 0.1956 0.2006 24106.3 <.0001 

ABO B 1 -0.9017 0.0010 -0.9036 -0.8998 858045 <.0001 

Scale   0 1.0000 0.0000 1.0000 1.0000     
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Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF 

Deviance 18E4 7762750.7021 42.5531 

Scaled Deviance 18E4 7762750.7021 42.5531 

Pearson Chi-Square 18E4 7413186.8272 40.6369 

Scaled Pearson X2 18E4 7413186.8272 40.6369 

Log Likelihood   53491208.628   

Full Log Likelihood   -4372010.637   

AIC (smaller is better)   8744055.2733   

AICC (smaller is better)   8744055.2767   

BIC (smaller is better)   8744227.2145 
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Analysis Of Maximum Likelihood Parameter Estimates KDPI 70-85 

Parameter   DF Estimate Standard 

Error 

Wald 95% 

Confidence Limits 

Wald 

Chi-

Square 

Pr > ChiSq 

Intercept   1 2.9853 0.0030 2.9794 2.9912 986653 <.0001 

Elapsed Time   1 0.0007 0.0000 0.0007 0.0007 2663687 <.0001 

CPRA Listing   1 -0.0050 0.0000 -0.0051 -0.0050 16899.2 <.0001 

Recent CPRA   1 -0.0127 0.0000 -0.0127 -0.0127 557007 <.0001 

OPO Transplant 

Volume 

  1 0.0000 0.0000 0.0000 0.0000 9542.72 <.0001 

OPO Mean 

Waiting Time 

  1 -0.0003 0.0000 -0.0003 -0.0003 2464.63 <.0001 

Tx Center 

Transplant 

Volume 

  1 0.0002 0.0000 0.0002 0.0002 148472 <.0001 

Tx Center Mean 

Waiting Time 

  1 0.0001 0.0000 0.0001 0.0002 1586.33 <.0001 

OPO HHI   1 -0.3980 0.0024 -0.4027 -0.3933 27467.2 <.0001 

Number of 

Transplant 

Centers in OPO 

  1 -0.0044 0.0002 -0.0047 -0.0041 735.59 <.0001 

Age 35-45   1 0.0702 0.0013 0.0677 0.0727 3026.38 <.0001 

Age 45-55   1 0.1368 0.0012 0.1345 0.1391 13845.7 <.0001 

Age 55-65   1 0.1469 0.0011 0.1447 0.1492 16843.8 <.0001 

Age 65+   1 0.1773 0.0012 0.1748 0.1797 20548.9 <.0001 

ABO A 1 0.2337 0.0007 0.2323 0.2352 97782.2 <.0001 

ABO AB 1 0.1330 0.0015 0.1299 0.1360 7454.71 <.0001 

ABO B 1 -0.8199 0.0011 -0.8221 -0.8176 527249 <.0001 

Scale   0 1.0000 0.0000 1.0000 1.0000     
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Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF 

Deviance 18E4 6393513.8341 35.0474 

Scaled Deviance 18E4 6393513.8341 35.0474 

Pearson Chi-Square 18E4 6116150.0161 33.5269 

Scaled Pearson X2 18E4 6116150.0161 33.5269 

Log Likelihood   34238731.762   

Full Log Likelihood   -3647998.513   

AIC (smaller is better)   7296031.0258   

AICC (smaller is better)   7296031.0292   

BIC (smaller is better)   7296202.9670   
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Analysis Of Maximum Likelihood Parameter Estimates KDPI 85-95 

Parameter   DF Estimate Standard 

Error 

Wald 95% 

Confidence Limits 

Wald 

Chi-

Square 

Pr > ChiSq 

Intercept   1 2.9379 0.0037 2.9306 2.9452 622028 <.0001 

Elapsed Time   1 0.0008 0.0000 0.0008 0.0008 2448612 <.0001 

CPRA Listing   1 -0.0055 0.0000 -0.0056 -0.0054 14016.9 <.0001 

Recent CPRA   1 -0.0132 0.0000 -0.0132 -0.0132 434078 <.0001 

OPO Transplant 

Volume 

  1 0.0000 0.0000 0.0000 0.0000 914.01 <.0001 

OPO Mean 

Waiting Time 

  1 -0.0009 0.0000 -0.0009 -0.0009 18457.4 <.0001 

Tx Center 

Transplant 

Volume 

  1 0.0003 0.0000 0.0003 0.0003 162283 <.0001 

Tx Center Mean 

Waiting Time 

  1 -0.0006 0.0000 -0.0006 -0.0006 18923.0 <.0001 

OPO HHI   1 -0.8903 0.0029 -0.8960 -0.8845 91598.8 <.0001 

Number of 

Transplant 

Centers in OPO 

  1 0.0023 0.0002 0.0019 0.0027 149.55 <.0001 

Age 35-45   1 0.2867 0.0019 0.2830 0.2903 23885.1 <.0001 

Age 45-55   1 0.6372 0.0017 0.6339 0.6404 146868 <.0001 

Age 55-65   1 0.8378 0.0016 0.8346 0.8409 270146 <.0001 

Age 65+   1 0.9731 0.0017 0.9698 0.9764 334863 <.0001 

ABO A 1 0.1272 0.0009 0.1254 0.1290 19048.4 <.0001 

ABO AB 1 0.0758 0.0019 0.0721 0.0796 1582.83 <.0001 

ABO B 1 -0.8008 0.0014 -0.8035 -0.7982 351208 <.0001 

Scale   0 1.0000 0.0000 1.0000 1.0000   
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Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF 

Deviance 18E4 9276853.1777 50.8530 

Scaled Deviance 18E4 9276853.1777 50.8530 

Pearson Chi-Square 18E4 11627361.300 63.7378 

Scaled Pearson X2 18E4 11627361.300 63.7378 

Log Likelihood   24362612.916   

Full Log Likelihood   -5010950.801   

AIC (smaller is better)   10021935.602   

AICC (smaller is better)   10021935.606   

BIC (smaller is better)   10022107.544 
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Analysis Of Maximum Likelihood Parameter Estimates KDPI 95+ 

Parameter   DF Estimate Standard 

Error 

Wald 95% 

Confidence Limits 

Wald 

Chi-

Square 

Pr > ChiSq 

Intercept   1 3.2290 0.0043 3.2206 3.2374 568000 <.0001 

Elapsed Time   1 0.0007 0.0000 0.0007 0.0007 1846130 <.0001 

CPRA Listing   1 -0.0056 0.0001 -0.0057 -0.0055 11954.6 <.0001 

Recent CPRA   1 -0.0132 0.0000 -0.0132 -0.0131 349746 <.0001 

OPO Transplant 

Volume 

  1 0.0000 0.0000 0.0000 0.0000 542.27 <.0001 

OPO Mean 

Waiting Time 

  1 -0.0012 0.0000 -0.0012 -0.0012 24870.4 <.0001 

Tx Center 

Transplant 

Volume 

  1 0.0003 0.0000 0.0003 0.0003 232099 <.0001 

Tx Center Mean 

Waiting Time 

  1 -0.0010 0.0000 -0.0010 -0.0010 44067.7 <.0001 

OPO HHI   1 -1.4812 0.0034 -1.4879 -1.4745 185513 <.0001 

Number of 

Transplant 

Centers in OPO 

  1 -0.0134 0.0002 -0.0138 -0.0130 3966.71 <.0001 

Age 35-45   1 0.3984 0.0022 0.3940 0.4027 31950.4 <.0001 

Age 45-55   1 0.8329 0.0020 0.8289 0.8368 173127 <.0001 

Age 55-65   1 1.0673 0.0019 1.0634 1.0711 300782 <.0001 

Age 65+   1 1.2309 0.0020 1.2270 1.2348 375568 <.0001 

ABO A 1 0.0512 0.0010 0.0493 0.0532 2618.35 <.0001 

ABO AB 1 0.0444 0.0021 0.0403 0.0485 457.79 <.0001 

ABO B 1 -0.6500 0.0014 -0.6527 -0.6473 219134 <.0001 

Scale   0 1.0000 0.0000 1.0000 1.0000     
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Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF 

Deviance 18E4 10723438.830 58.7827 

Scaled Deviance 18E4 10723438.830 58.7827 

Pearson Chi-Square 18E4 14597256.172 80.0178 

Scaled Pearson X2 18E4 14597256.172 80.0178 

Log Likelihood   18877046.092   

Full Log Likelihood   -5653302.295   

AIC (smaller is better)   11306638.590   

AICC (smaller is better)   11306638.593   

BIC (smaller is better)   11306810.531 
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Post-Transplant Survival Model 

Model Fit Statistics 

Criterion Without 

Covariates 

With 

Covariates 

-2 LOG L 178624.79 173024.03 

AIC 178624.79 173148.03 

SBC 178624.79 173584.76 

 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 5600.7642 62 <.0001 

Score 6089.1314 62 <.0001 

Wald 5240.2510 62 <.0001 
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Parameter DF Parameter 

Estimate 

Standard 

Error 

Chi-

Square 

Pr > ChiSq Hazard 

Ratio 

Waiting Time 1 0.0002838 0.0000251 128.1480 <.0001 1.000 

Serum Albumin Level at Listing  1 -0.17845 0.01847 93.3800 <.0001 0.837 

Calculated Panel Reactive Antibodies 

at Listing [0-100] 

1 -0.0004738 0.0008500 0.3107 0.5773 1.000 

Calculated Panel Reactive Antibodies 

(Last Known) [0-100] 

1 0.00286 0.0005004 32.6000 <.0001 1.003 

BMI at Listing  1 -0.00485 0.00220 4.8669 0.0274 0.995 

Residence in Rural Zip Code 

 

1 0.04178 0.02910 2.0613 0.1511 1.043 

OPO 10-year transplant volume 

(number of organs) 

1 0.0000276 0.0000125 4.8474 0.0277 1.000 

OPO mean waiting time for 

transplant (days) 

1 -0.0002410 0.0001931 1.5565 0.2122 1.000 

Transplant center 10-year transplant 

volume (number of organs) 

1 -0.0000513 0.0000218 5.5310 0.0187 1.000 

Transplant center mean waiting time 

for transplant (days) 

1 -0.0003249 0.0001331 5.9589 0.0146 1.000 

Transplant center HHI Index [0-1] 1 0.03282 0.07833 0.1756 0.6752 1.033 

Number of transplant centers in the 

OPO 

1 -0.00111 0.00617 0.0320 0.8580 0.999 

Age at listing 35-44 years 1 0.33986 0.06788 25.0682 <.0001 1.405 

Age at listing 45-54 years 1 0.58886 0.06134 92.1726 <.0001 1.802 

Age at listing 55-64 years 1 1.02116 0.05933 296.2118 <.0001 2.776 
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Parameter DF Parameter 

Estimate 

Standard 

Error 

Chi-

Square 

Pr > ChiSq Hazard 

Ratio 

Age at listing > 65 years 1 1.46514 0.06053 585.9092 <.0001 4.328 

Female 1 -0.17574 0.02469 50.6673 <.0001 0.839 

ABO = A 1 0.03365 0.02471 1.8541 0.1733 1.034 

ABO = B 1 0.00624 0.03630 0.0296 0.8635 1.006 

ABO = AB 1 0.02150 0.05173 0.1728 0.6776 1.022 

Functional Status at listing is 10% - 

Moribund, fatal processes 

progressing rapidly 

1 0.02434 0.29915 0.0066 0.9351 1.025 

Functional Status at listing is 20% - 

Very sick, hospitalization necessary: 

active treatment necessary 

1 0.20148 0.10422 3.7375 0.0532 1.223 

Functional Status at listing is 30% - 

Severely disabled: hospitalization is 

indicated, death not imminent 

1 0.38906 0.12554 9.6049 0.0019 1.476 

Functional Status at listing is 40% - 

Disabled: requires special care and 

assistance 

1 0.33743 0.10046 11.2827 0.0008 1.401 

Functional Status at listing is 50% - 

Requires considerable assistance 

and frequent medical care 

1 0.27656 0.07580 13.3106 0.0003 1.319 

Functional Status at listing is 60% - 

Requires occasional assistance but is 

able to care for needs 

1 0.17617 0.05792 9.2519 0.0024 1.193 

Functional Status at listing is 70% - 

Cares for self: unable to carry on 

normal activity or active work 

1 0.12627 0.04319 8.5458 0.0035 1.135 
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Parameter DF Parameter 

Estimate 

Standard 

Error 

Chi-

Square 

Pr > ChiSq Hazard 

Ratio 

Functional Status at listing is 80% - 

Normal activity with effort: some 

symptoms of disease 

1 0.05832 0.03919 2.2152 0.1367 1.060 

Functional Status at listing is 90% - 

Able to carry on normal activity: 

minor symptoms of disease 

1 -0.00665 0.03924 0.0287 0.8654 0.993 

Patient does not have history of 

diabetes 

 

1 -0.36502 0.03150 134.2980 <.0001 0.694 

Black 1 -0.05008 0.02854 3.0795 0.0793 0.951 

Hispanic 1 -0.33320 0.03758 78.5935 <.0001 0.717 

Asian 1 -0.41095 0.05957 47.5944 <.0001 0.663 

Native American, Native Hawaiian, 

or Pacific Islander 

1 -0.18182 0.10668 2.9049 0.0883 0.834 

Patient has peripheral vascular 

disease 

 

1 0.36666 0.03587 104.5098 <.0001 1.443 

Patient has history of malignancy 

 

1 0.16269 0.03509 21.4911 <.0001 1.177 

Diagnosis for transplant is unknown 1 0.07729 0.04821 2.5706 0.1089 1.080 

Diagnosis for transplant is IGA 

NEPHROPATHY 

1 -0.75963 0.09280 67.0023 <.0001 0.468 

Diagnosis for transplant is FOCAL 

GLOMERULAR SCLEROSIS 

1 -0.17190 0.06053 8.0636 0.0045 0.842 

Diagnosis for transplant is 1 -0.51347 0.05454 88.6468 <.0001 0.598 
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Parameter DF Parameter 

Estimate 

Standard 

Error 

Chi-

Square 

Pr > ChiSq Hazard 

Ratio 

POLYCYSTIC KIDNEYS 

Diagnosis for transplant is 

HYPERTENSIVE NEPHROSCLEROSIS 

1 0.03544 0.03376 1.1022 0.2938 1.036 

Diagnosis for transplant is DIABETES 

MELLITUS - TYPE II 

1 0.04222 0.03523 1.4364 0.2307 1.043 

Number of DR mismatches > 0 1 0.00418 0.02378 0.0308 0.8606 1.004 

Number of HLA mismatches > 0 1 0.03021 0.01056 8.1879 0.0042 1.031 

Donor creatnine level 1 0.06571 0.01043 39.6845 <.0001 1.068 

Donor age at listing 35-44 years 1 -0.03060 0.03320 0.8493 0.3568 0.970 

Donor age at listing 45-54 years 1 0.11265 0.03073 13.4354 0.0002 1.119 

Donor age at listing 55-64 years 1 0.12146 0.03808 10.1715 0.0014 1.129 

Donor age at listing > 65 years 1 0.08257 0.06110 1.8262 0.1766 1.086 

Functional Status at transplant 

(recipient) is 10% - Moribund, fatal 

processes progressing rapidly 

1 1.75570 0.14630 144.0073 <.0001 5.787 

Functional Status at transplant 

(recipient) is 20% - Very sick, 

hospitalization necessary: active 

treatment necessary 

1 1.13481 0.09529 141.8188 <.0001 3.111 

Functional Status at transplant 

(recipient) is 30% - Severely 

disabled: hospitalization is indicated, 

death not imminent 

1 0.84616 0.11970 49.9745 <.0001 2.331 

Functional Status at transplant 1 0.37370 0.08966 17.3700 <.0001 1.453 
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Parameter DF Parameter 

Estimate 

Standard 

Error 

Chi-

Square 

Pr > ChiSq Hazard 

Ratio 

(recipient) is 40% - Disabled: 

requires special care and assistance 

Functional Status at transplant 

(recipient) is 50% - Requires 

considerable assistance and 

frequent medical care 

1 0.56096 0.07077 62.8316 <.0001 1.752 

Functional Status at transplant 

(recipient) is 60% - Requires 

occasional assistance but is able to 

care for needs 

1 0.33170 0.05507 36.2861 <.0001 1.393 

Functional Status at transplant 

(recipient) is 70% - Cares for self: 

unable to carry on normal activity or 

active work 

1 0.27597 0.04448 38.4991 <.0001 1.318 

Functional Status at transplant 

(recipient) is 80% - Normal activity 

with effort: some symptoms of 

disease 

1 0.14143 0.04103 11.8820 0.0006 1.152 

Functional Status at transplant 

(recipient) is 90% - Able to carry on 

normal activity: minor symptoms of 

disease 

1 0.02683 0.04280 0.3930 0.5307 1.027 

Donor and Recipient do not have the 

same ABO blood type 

 

1 -0.06632 0.03915 2.8705 0.0902 0.936 

KDPI is 70- <85 1 0.26392 0.03665 51.8524 <.0001 1.302 

KDPI is 85- <95 1 0.39690 0.04499 77.8163 <.0001 1.487 

KDPI is 95 or greater 1 0.54758 0.06175 78.6353 <.0001 1.729 
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Waitlist Survival Model 

Model Fit Statistics 

Criterion Without 

Covariates 

With 

Covariates 

-2 LOG L 873669.46 838719.60 

AIC 873669.46 838799.60 

SBC 873669.46 839142.25 

 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 34949.8641 40 <.0001 

Score 30619.4992 40 <.0001 

Wald 15178.4550 40 <.0001 
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Parameter DF Parameter 

Estimate 

Standard 

Error 

Chi-

Square 

Pr > ChiSq Hazard 

Ratio 

Serum Albumin Level at Listing  1 -0.30212 0.00867 1213.2882 <.0001 0.739 

Calculated Panel Reactive 

Antibodies at Listing [0-100] 

1 0.0003794 0.0003486 1.1842 0.2765 1.000 

Calculated Panel Reactive 

Antibodies (Last Known) [0-100] 

1 0.0006470 0.0002027 10.1851 0.0014 1.001 

BMI at Listing  1 -0.00206 0.0009515 4.6982 0.0302 0.998 

Residence in Rural Zip Code 1 0.01890 0.01434 1.7387 0.1873 1.019 

OPO 10-year transplant volume 

(number of organs) 

1 5.86114E-6 5.53E-6 1.1233 0.2892 1.000 

OPO mean waiting time for 

transplant (days) 

1 -0.0003561 0.0000849 17.5915 <.0001 1.000 

Transplant center 10-year 

transplant volume (number of 

organs) 

1 0.0001227 9.31411E-6 173.4995 <.0001 1.000 

Transplant center mean waiting 

time for transplant (days) 

1 0.0004555 0.0000583 61.0069 <.0001 1.000 

Transplant center HHI Index [0-1] 1 -0.10256 0.03777 7.3723 0.0066 0.903 

Number of transplant centers in 

the OPO 

1 -0.01171 0.00260 20.2663 <.0001 0.988 

Age at listing 35-44 years 1 0.38354 0.03104 152.6652 <.0001 1.467 

Age at listing 45-54 years 1 0.84545 0.02808 906.6640 <.0001 2.329 

Age at listing 55-64 years 1 1.21601 0.02720 1999.1702 <.0001 3.374 

Age at listing > 65 years 1 1.49923 0.02753 2964.6986 <.0001 4.478 
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Parameter DF Parameter 

Estimate 

Standard 

Error 

Chi-

Square 

Pr > ChiSq Hazard 

Ratio 

Female 1 -0.12102 0.01129 114.7953 <.0001 0.886 

ABO = A 1 -0.02541 0.01167 4.7373 0.0295 0.975 

ABO = B 1 -0.00676 0.01496 0.2039 0.6516 0.993 

ABO = AB 1 -0.02752 0.03053 0.8126 0.3674 0.973 

Functional Status at listing is 10% - 

Moribund, fatal processes 

progressing rapidly 

1 2.35792 0.10022 553.4967 <.0001 10.569 

Functional Status at listing is 20% - 

Very sick, hospitalization 

necessary: active treatment 

necessary 

1 2.01826 0.04554 1964.5368 <.0001 7.525 

Functional Status at listing is 30% - 

Severely disabled: hospitalization 

is indicated, death not imminent 

1 1.62487 0.06204 685.8816 <.0001 5.078 

Functional Status at listing is 40% - 

Disabled: requires special care and 

assistance 

1 0.69819 0.04233 272.0255 <.0001 2.010 

Functional Status at listing is 50% - 

Requires considerable assistance 

and frequent medical care 

1 0.54397 0.03015 325.4560 <.0001 1.723 

Functional Status at listing is 60% - 

Requires occasional assistance but 

is able to care for needs 

1 0.41908 0.02299 332.4243 <.0001 1.521 

Functional Status at listing is 70% - 

Cares for self: unable to carry on 

normal activity or active work 

1 0.27149 0.01725 247.6084 <.0001 1.312 
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Parameter DF Parameter 

Estimate 

Standard 

Error 

Chi-

Square 

Pr > ChiSq Hazard 

Ratio 

Functional Status at listing is 80% - 

Normal activity with effort: some 

symptoms of disease 

1 0.10282 0.01682 37.3632 <.0001 1.108 

Functional Status at listing is 90% - 

Able to carry on normal activity: 

minor symptoms of disease 

1 -0.01719 0.01743 0.9728 0.3240 0.983 

Patient does not have history of 

diabetes 

1 -0.42356 0.01124 1419.0016 <.0001 0.655 

Black 1 0.03599 0.01244 8.3715 0.0038 1.037 

Hispanic 1 -0.04511 0.01504 8.9945 0.0027 0.956 

Asian 1 -0.15851 0.02391 43.9602 <.0001 0.853 

Native American, Native Hawaiian, 

or Pacific Islander 

1 0.04979 0.04014 1.5386 0.2148 1.051 

Patient has peripheral vascular 

disease 

1 0.21202 0.01782 141.5691 <.0001 1.236 

Patient has history of malignancy 

 

1 -14.52410 74.60811 0.0379 0.8456 0.000 

Diagnosis for transplant is 

unknown 

1 -15.22713 108.27140 0.0198 0.8882 0.000 

Diagnosis for transplant is IGA 

NEPHROPATHY 

1 -15.26794 88.93700 0.0295 0.8637 0.000 

Diagnosis for transplant is FOCAL 

GLOMERULAR SCLEROSIS 

1 -15.44090 74.60766 0.0428 0.8360 0.000 

Diagnosis for transplant is 

POLYCYSTIC KIDNEYS 

1 -15.49553 45.54913 0.1157 0.7337 0.000 
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Parameter DF Parameter 

Estimate 

Standard 

Error 

Chi-

Square 

Pr > ChiSq Hazard 

Ratio 

Diagnosis for transplant is 

HYPERTENSIVE NEPHROSCLEROSIS 

1 -15.95108 41.73614 0.1461 0.7023 0.000 
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Robust and Stochastic Scaling of the Conditional Logit Choice Model  

 

1. Background 

The need to account for heterogeneity in discrete choice modeling, particularly in 

data arising from discrete choice experiments, has garnered widespread interest 113-115.  

Two types of heterogeneity are commonly considered, preference heterogeneity, which 

describes respondent-specific variations in marginal utilities for individual attributes, and 

scale (variance) heterogeneity (or heteroscedasticity), which is thought to describe 

unattributed errors to the experimental stimulus 116. Several explanations for the errors, 

which are mainly of a cognitive nature, have been proposed 117-119.  These may include 

respondent inattention, task miscomprehension, or diffidence in alternative selection. 

From a mathematical standpoint, scale heterogeneity is formulated as an individual-

specific, or perhaps as even an alternative- and attribute-specific heteroscedasticity in the 

variances of the unobserved errors of the respondent’s random utility function (hence its 

alternative name) 120. 

Heterogeneity affects the consistency of estimates retrieved from standard choice 

models 121. Quantities derived from these estimates such as choice probabilities and even 

marginal rates of substitution (e.g. willingness-to-pay estimates) in some cases, may 

exhibit biases 121,122.   Models such as the conditional logit require homogeneity in order 

to be well-specified. Econometricians have thus devised extensions of the conditional 

logit in ever-increasing generality to relax assumptions.  The mixed logit accommodates 

heterogeneity and more general substitution patterns by introducing mixing distributions 

for each parameter that can be used to approximate wide classes of random utility 
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functions 123,124. Moreover, by allowing for general correlation structures across the 

unobserved errors, both scale and preference heterogeneity may indeed be accounted for 

by the model when applied empirically, but with the qualification that the heterogeneity 

cannot be attributed to either particular source 114. Extensions of conditional logit 

specifically targeting various forms of scale heterogeneity include the nested logit, error-

components logit, latent class models, and the generalized multinomial logit have been 

presented in the literature and the references therein 113,116,125-127.  While empirical 

estimates from these models may sometimes be interpreted to identify scale heterogeneity 

apart from preference heterogeneity, it is questionable whether they actually do so 

without making a priori assumptions about the data 128. 

Given the empirical difficulty of disentangling scale heterogeneity and preference 

heterogeneity, this article adopts a more basic, naïve viewpoint to better understand the 

former.  We instead pose the question, “what could happen to the conditional logit 

coefficients if they were all interacted with unknown, multiplicative terms that took 

values over some specified set?”   Further, we could also examine whether the quality of 

the estimates, as measured by goodness-of-fit, deteriorate as these interactive terms are 

systematically varied. Presuming that preference heterogeneity is not present in the data, 

we show that this amounts to conducting a sensitivity analysis of model estimates with 

respect to a rescaling of the coefficients and attributes.  In the setting where scale 

heterogeneity is individual-specific, we may explore how the estimated coefficients of the 

conditional logit choice model change when the normalization constants for an individual 

takes values from some known distribution for the population. Alternatively, we may not 

know the particular distribution of the constants, but still be able to claim that they lie in 
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some set. In this context, we can calculate conditional logit coefficients for the worst case 

choice of the scaling parameters – the worst case being the one that minimizes goodness-

of-fit. 

Computationally, choice model estimates arise as solutions to optimization 

problems. The fields of stochastic optimization and robust optimization allow us to assess 

the sensitivity of the coefficients in a precise manner. In this article, we consider the 

underlying likelihood maximization problem for the conditional logit and introduce 

parameters scaling the attribute coefficients in individuals’ indirect utility functions.  

Variation in these parameters represents heterogeneity, specifically scale heterogeneity in 

some contexts when preference heterogeneity is absent. Next, we solve the likelihood 

maximization problem for two cases: 1) when the scaling parameters are stochastic and 

take values from a known distribution and 2) when the distribution of the scaling 

parameters are unknown, but take values over a set for which we compute the worst-case 

goodness-of-fit. The first case yields a stochastic optimization problem and the second 

case a robust optimization problem. We discuss the theory and algorithms for solving 

each of these problems. Using simulated discrete choice experiment data, we focus on a 

special case of the scaling problems that deal with the normalization constants used to 

obtain the standard conditional logit. For the experiments, we assess the sensitivity of the 

conditional logit and the scaling models as the normalization constants vary across 

individuals. 

Throughout this article, we focus on the conditional logit due to its analytic and 

computational tractability.  Ideally, sensitivity analyses would be performed on more 

sophisticated models. While treatment of preference heterogeneity rather than scale 
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heterogeneity is likely of greater empirical consequence 129, for clearer exposition of the 

ideas, we assume that preference heterogeneity does not exist in the data. Lastly, our 

work is primarily motivated by data typically generated in discrete choice experiments 

and stated-preference contexts although many of the arguments also carry over to 

revealed-preference settings. 

 

2. Theory 

2.1 The Conditional Logit Likelihood 

A complete derivation of random utility choice models and the conditional logit 

model from multi-attribute utility theory are found in standard texts on the subject 

120,125,130. We denote   as the set of individuals. We assume that each individual evaluates 

exactly one choice task although panel data may also be incorporated.  Let    be the 

space of attributes and    be a finite set of alternatives available to individual   . 

Next,       we define        to be the attributes (including alternative-specific 

constants) describing alternative   for individual  . Let     {   } denote whether 

individual   chooses alternative  . Preferences are described by an indirect utility function 

that is linear in the parameters:        
   ,                 where      is the 

parameter-vector of interest and     is a stochastic error term. Suppose the     are 

independent Gumbel random variables with expectation 
 

   
 and variance 

  

    
  where   is 

the Euler-Mascheroni constant ( 0.57721) and     are positive constants. The probability 

that individual   selects alternative   is given as: 

         ∏
         

 
    

∑          
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The standard conditional logit is obtained when it is assumed           ,      . 

The corresponding likelihood and log-likelihood functions are: 

     ∏ ∏
           

∑                

   

       
 

     ∑ ∑    [        (∑           
    

)]
       

 

 and for each individual  : 

   

      ∑    [        (∑           
    

)]
    

 

 

Scale heterogeneity occurs when the     depart from standard distributional 

assumptions.  The     are normalization constants necessary for normalizing the data and 

generally are not separately identifiable from   113. They may be interpreted as either 

scaling the coefficients   or scaling the attribute data as well.   

2.2 Scaling of the Conditional Logit Likelihood 

We now analyze a generalized individual-specific scaling of   and the attribute 

data. Let                     
  be a vector with positive components. Further, denote  
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 as a diagonal      matrix and define the following functions: 
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Observe that              .  The functions    parameterize an arbitrary 

scaling of the coefficients and attributes.  As a special case,       with      

implements an individual-specific renormalization of the error terms in the conditional 

logit model. Since the variances of the error terms are never known empirically, we are 

particularly interested in the dependence of the maximum likelihood estimate of   when 

  takes values from a known distribution (the stochastic case) or when the distribution of 

  may not be known, but takes values in some known set (the robust case). 

  The function    is concave in   (for fixed    and is concave in   (for fixed   . 

McFadden established that         is concave for general attribute data (   denotes the 

attribute data explicitly)  131. The composition of a concave function with an affine 

function is concave 132, and since                     is therefore concave in  . A 

substitution argument that rescales the data demonstrates that    is also concave in  : 

Proposition:         is concave in   (for fixed   . 

Proof:  

      Define              . 

       ∑        

 

   

         

         ∑    [         (∑           
    

)]
    

                  

 

2.3 Likelihood Optimization 

Let   be a convex subset of   . Solving the following convex programming 



 
 
 

174 

problem yields the (possibly constrained) maximum likelihood estimate for   : 

   
   

       ∑      
   

 

(1) 

Readers familiar with predictive learning and regularization techniques may also consider 

an alternative formulation. If the components of   are nonzero, then the preceding 

problem is equivalent to minimizing the AIC loss function with a regularization term: 

   
   

       ‖ ‖   ∑      
   

 

where ‖ ‖  denotes the  -norm. This equivalent convex minimization problem alludes to 

an information theoretic interpretation of the optimization models in the following 

sections and possibly also to different algorithms for predicting choice, although such a 

viewpoint likely takes one outside the random utility framework. 

 

2.4 Stochastic Scaling 

Suppose that the distribution of   for a particular individual   is given by       

and that the distributions are independent across observations.  Depending on the 

interpretation of heterogeneity, the    may characterize unobserved influences on the 

respondents’ cognitive responses to the attribute information or on the part-worth of the 

attributes themselves via incorporation of random effects. The most natural approach is to 

maximize the expected log-likelihood with convex stochastic programming: 

   
   

       [∑        
   

]            
   

    ∑ ∫              
   

    

(2) 
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From an information theory perspective, the objective is to minimize the expected 

information loss in the data arising from variation in   or from scale heterogeneity in the 

appropriate contexts. This problem is not novel, as it bears strong resemblance to 

maximum simulated likelihood and Bayesian methods for modeling heterogeneity124,133. 

In fact, it is a very restrictive mixed model that incorporates observation-specific, random 

scaling of the attribute data. 

2.4 Robust Scaling 

 Unfortunately, due to present empirical inability to distinguish preference and 

scale heterogeneity, it is unlikely that the exact distributions of    can be known with any 

certainty in applications.  Robust optimization is applicable to situations when the data 

for optimization problems are uncertain134. Such uncertainty may arise from the 

impossibility of measuring characteristics of the respondents’ environment, cognitive 

processes, and tastes without error. For example, the structural reliability of the bridge 

may depend on uncertain parameters with unknown distributions such as wind speed, etc.  

An engineer maximizing the reliability of the bridge would not only consider the average 

values of these parameters, but seek to ensure that reliability is maximized for a worst-

case wind speed. Of course, it is too conservative to consider ‘any’ wind speed, but 

perhaps only consider speeds that can take values in some pre-specified set, known as the 

uncertainty set. This exercise then ‘immunizes’ the quality of the solution from 

deteriorating as long as the parameters stay within the uncertainty set, a feature referred 

to as ‘robustness’ in the literature.  

 Specifically, suppose      is allowed to take values over an uncertainty set 

    
 . Further, assume that   is a polytope (i.e. a compact, convex polyhedron that 



 
 
 

176 

can be described using a finite number of linear inequalities). The simplest example is 

when   is a  -dimensional hypercube, that is, each component of   is expected to be in 

some known interval,      [     ] where            {      }  Furthermore, we 

assume, for reasons soon made clear, that               .  Define         

∑           . The conditional logit model with robust scaling may be written as the 

following robust program: 

   
   

       
   

           

(3) 

The max-min structure of Problem 3 is recurring feature in robust optimization. 

The information theory interpretation states that were are minimizing the AIC for the 

value of   in   that yields the maximum information loss. Naturally, the maximum log-

likelihood value and hence goodness-of-fit for the solution   arising from the worst-case 

choice of   will be no better than an optimal solution for   pertaining to different values 

of   in  . This is known as the ‘price of robustness’.  Therefore, the choice of   is 

critical in applications.  A very conservative choice of   (i.e a large uncertainty set) 

could potentially result in a poor fit, although in many empirical applications, this is 

unlikely 134.  However, Problem 3 guarantees that the goodness-of-fit obtained from 

fitting this model is a lower-bound for the goodness-of-fit obtained using the actual value 

of   , provided the actual value of   is in   . When   {          }, Problem 3 

simplifies into Problem 1, the standard conditional logit choice model.  This is referred to 

as the nominal case in the literature.   The aforementioned guarantee implies that when 

             , the goodness-of-fit of the solution obtained from Problem 3 is a lower 
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bound for that of the standard conditional logit. If the results of the solution to Problem 3 

are similar to the nominal case, and the researcher believes the actual value of   to be 

in  , then the researcher can be extra confident of the quality of the model in the nominal 

case.  

2.5 A Special Case of Scaling 

Problems 2 and 3 both deal with general scaling of the choice model coefficients 

and attributes.  A more concrete, univariate special case of the problem can provide some 

understanding of heterogeneity. For example, the variances of the error-terms      for 

individual   and alternative   were normalized arbitrarily by unknown positive constants 

     in the derivation of the conditional logit.  We can re-parameterize the log-likelihood 

to assess the sensitivity of the model to this normalization:   

 ̅      ∑ ∑    [           (∑              
    

)]
       

 

Again,     yields the standard conditional logit model. The parameter   may be given 

a distribution  , yielding a special case of Problem 2: 

   
   

    ∫  ̅            

(4) 

Empirically, such models can be motivated from combining data from various 

sources, such as revealed- and stated-preference data 122. Alternatively, the variances of 

the error term and resulting normalization constants may be treated as having an 

unknown distribution. Moreover, we may wish to immunize the conditional logit against 

departures from the assumption that   is indeed unity. Let   be an interval [     ] such 

that          . Problem 3 specializes to: 
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     ̅      

(5) 

3. Algorithms 

This section outlines solution methods for Problems 2 and 3. Readers familiar 

with simulated maximum likelihood, numerical integration, and Monte-Carlo techniques 

will recognize the methods for Problem 2. The algorithm for Problem 3 is more involved, 

but still tractable due to the concavity properties of    established above. 

3.1 Algorithm for Stochastic Scaling 

Problem 2 is a standard convex stochastic programming problem and may be 

solved via the Sample Average Approximation Method (SAA) 135. For each individual  , 

we sample    independent replications of   from      . We then solve the following 

convex programming problem:  

   
   

    ∑   ∑
 

  

  

    
   

  (     ) 

where    
denotes the     replication for individual  . This convex program can be solved 

by standard optimization solvers found in widely available software.  Moreover, under 

some regularity conditions, by the law of large numbers,  ∑
 

  

  
      (     ) converges 

almost surely to       [       ] as      135. 

3.2 Algorithm for Robust Scaling 

For treatment of solution algorithms for Problem 3, the problem may be recast as 

the equivalent semi-infinite convex program: 
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Cutting surface algorithms for solving more general versions these problems and 

additional conditions required for convergence have been studied 136,137.  An outline of 

the method is provided below: 

1. Initialize with the nominal case by setting     and    {          }. 

2.  Solve the following convex programming problem and obtain solutions     

and   : 

   
       

 

                 

 

 

3. Solve                 and obtain the solution   . 

4. If             , we may terminate the algorithm and report the solutions 

        and   . Otherwise, set         {  }, increment  , and go to Step 

2.  

The complexity of the above algorithm is determined by the difficulty of solving 

the optimization problem in Step 3 – which requires the minimization of a concave 

function. There is an extensive literature on algorithms for minimizing concave functions 

over convex sets 138. Additionally, it may not always be necessary to always solve this 

minimization problem.  An oracle that can find    with             or can otherwise 

determine that no such    exists may be used in lieu of the concave minimization 

problem in Step 3. 
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The algorithm may be further simplified by exploiting that   is concave in   (for 

fixed  ) and that   is a polytope.  It is well-known that a concave function over a 

polytope attains its minimum value at one of the vertices 139.  Therefore, if we let    be 

the set of vertices of  , we need only to solve the following convex programming 

problem (with a finite number of constraints) once to obtain a solution to Problem 3:  

   
       

 

                  
 

Such a strategy requires prior enumeration of the vertices of the polytope. 

Unfortunately, enumeration is not always viable as the number of possible vertices may 

increase exponentially in the dimension of the polytope. However, for cases when   is 

low-dimensional, this may be a good option. 

4. Experiment Methods 

4.1 Choice Data Creation 

We demonstrate the above methods for special-case Problems 4 and 5 using data 

from a simulated discrete choice experiment.  We consider a two-alternative unlabeled 

design with three attributes (one 3-level attribute and two 2-level attributes with no 

alternative-specific constants).  Coding the attributes using binary variables, we used 

SAS 9.4 to construct a D-efficient fractional factorial design consisting of 24 choice tasks 

under the null hypothesis that      140. Preferences were describe using a utility 

function linear in the attributes and parameters (    .  The parameter vector was 

normalized so that ‖ ‖   .  

Choice data was generated for 1000 respondents who were assumed to view the 

full experimental design once.  Individual-specific scale heterogeneity was incorporated 



 
 
 

181 

into the simulation via a population-distribution for the individual-specific normalization 

constants   . We denote the lognormal distribution with location parameter   and shape 

parameter   as          .  These parameters describe inherent scale heterogeneity in 

the population.  Lesser values of   correspond to larger expected variances in 

unobservable errors during utility elicitation. Greater values for    correspond to greater 

variability in these variances across individuals. Samples of    were generated for each 

individual corresponding to different choices of   and   .  Using the calculated utilities 

for each design alternative and the sampled values of   , we generated the responses for 

each choice task124.   

We next solved Problems 4 and 5 when      (i.e. no constraints on  ) using 

the algorithms in Section 3. For each scaling model, we considered choice datasets 

arising from two scenarios, one where      and one where     .  Choice data 

generation and the optimization models below were conducted in MATLAB 2017.  The 

code for the experiments is available on the author’s website. 

4.2 Experiment Methods for the Stochastic Case 

  For the stochastic case, Problem 4, we assumed that      was also characterized 

by a lognormal distribution:             and sampled 100 draws from      (  =100).   

For both scenarios when      or     , we assessed the behavior of the 

coefficients, errors, and log-likelihoods of the stochastic scaling and conditional logit 

models. Errors were calculated using the square roots of the trace elements of the inverse 

Hessian at the optimal solution for each problem.  Additionally, we performed sensitivity 

analyses when the distribution was incorrectly specified (i.e.      or       ) and 

when small samples (10 individuals) were used.   
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4.3 Experiment Methods for the Robust Case 

For the robust case, Problem 5, we considered a similar experiment, albeit without 

being aware of suitable distributions for  . We examined scenarios when      or 

    . We estimate the conditional logit and robust scaling models on each of these 

datasets and compare the coefficients, log-likelihoods, and errors. Additionally, we 

consider different uncertainty sets   for  , i.e. intervals [     ] with different values for 

   and   . We chose                 and              ).  Although any 

appropriate values for     and    may be chosen, we selected these because if the true 

population distribution of   is indeed          , then  [   [     ]]  0.95.  Thus, for 

this experiment, we can interpret   as reflecting the need to immunize against departures 

of   from unity 95% of the time – although a probabilistic interpretation of the 

uncertainty set is not necessary.  

5. Results 

5.1 Experiment Results, the Stochastic Case 

The numerical experiments suggested that as     , magnitudes of the 

coefficients of the conditional logit and stochastic scaling models increased. Calculated 

errors increased for the models increased as well.  Coefficients for the stochastic scaling 

model could be farther away from the actual values unless sufficiently large samples 

were employed. Table 5.1 presents a representative example from this scenario. Figure 

5.1 depicts the results in utility-space where calculated utilities of the design alternatives 

using the coefficients for each model are shown. 

Table 5.1: Representative Results, Stochastic Scaling and Conditional Logit when 
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Figure 5.1: Representative Results, Stochastic Scaling and Conditional Logit 

when      

 

For the scenario when     , the numerical results suggest that the magnitudes 

of the coefficients and calculated errors for the stochastic scaling model vanish. 

Variability in the log-likelihoods values for the stochastic scaling model also appear to be 

Actual

Conditional 

Logit 1 Error

Stochastic 

Scaling 1 Error

μ/μ' 0.00 --- --- --- ---

τ2 /τ'2 0.50 --- --- --- ---

β(1) -0.80 -0.89 0.04 -0.47 0.03

β(2) -0.20 -0.25 0.03 -0.12 0.02

β(3) -0.40 -0.39 0.04 -0.23 0.03

β(4) 0.40 0.44 0.05 0.23 0.03

LL(0) --- -16635.53 --- -16635.53 ---

LL(β) --- -15413.35 --- -15839.07 ---

Actual

Conditional 

Logit 2 Error

Stochastic 

Scaling 2 Error

μ/μ' -1.00 ---

τ2 /τ'2 0.50 ---

β(1) -0.80 -2.02 0.04 -3.29 0.08

β(2) -0.20 -0.64 0.03 -0.87 0.05

β(3) -0.40 -0.89 0.05 -1.61 0.09

β(4) 0.40 0.98 0.06 1.61 0.11

LL(0) --- -16635.53 -16635.53 ---

LL(β) --- -12425.77 -13322.69 ---
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less than that of the conditional logit as     . Table 5.2 and Figure 5.2 similarly 

present representative findings.  

Table 5.2: Representative Results, Stochastic Scaling and Conditional Logit when 

     

 

   

Figure 5.2: Representative Results, Stochastic Scaling and Conditional Logit 

when      
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Results for misspecifications of the stochastic scaling model or behavior in small 

samples for either scenario were ambiguous. The stochastic scaling model is very 

sensitive to the choices of    and     and whether these match the actual values of   and 

  . Under ideal conditions and sample sizes, the stochastic model can potentially match 

the actual values more closely than the conditional logit, a finding somewhat consistent 

with previous work that mixed-models incorporating some random effects can model the 

data better129.  Additionally, as    increases, which represents greater heterogeneity in 

normalization constants across individuals, the coefficients may vanish as noted 

elsewhere124. Lesser values of  , which may be interpreted as greater expected cognitive 

errors in the absence of preference heterogeneity, can potentially undermine the quality 

of the experimental stimulus for respondents. Comparisons of the conditional logit with 

the scaling model for different values of    and     may be used to assess the sensitivity 

of the results. 

5.2 Experiment Results, the Robust Case 

The numerical experiments suggested that as     , magnitudes of the 

coefficients and from the conditional logit and robust scaling models increased as in the 

stochastic case. Coefficients for the conditional logit and robust scaling model were very 

similar.   While the calculated errors for the conditional logit decreased, it was ambiguous 
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how the calculated errors for the robust scaling model changed. The calculated errors for 

coefficients for the robust scaling model were initially smaller, but grew larger than those 

of the conditional logit as     .  As expected, the log-likelihood values for the robust 

scaling model were less than those of the conditional logit, but the robust scaling model 

had less variability in the log-likelihoods than the conditional logit as       for fixed 

  . Table5. 3 and Figure 5.3 present representative results. 

Table 5.3: Representative Results, Robust Scaling and Conditional Logit when 

     

 

 

Figure 5.3: Representative Results, Robust Scaling and Conditional Logit when 
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For the scenario when     , coefficients for conditional logit and robust 

scaling models remained very close, although were potentially different than the actual 

values. Calculated errors for the robust scaling model did not vary monotonically in any 

clear way as     ; although, variability in the log-likelihoods was less than the 

conditional logit as     . Table 5.4 and Figure 5.4 present representative results. 

Table 5.4: Representative Results, Robust Scaling and Conditional Logit when 
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Figure 5.4: Representative Results, Robust Scaling and Conditional Logit when 

     

 

For both scenarios, the lesser variability in the log-likelihood in the robust scaling 

model and its similarity to the coefficients of the conditional logit seemed to hold for 

small samples.  However, it is not always the case that the coefficients for the conditional 
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logit and robust scaling model will agree.  Coefficients for the robust scaling model 

diverge from the conditional logit as      and      .  This scenario represents a 

situation where variances of unobserved errors grow without bound for each individual 

respondent with little variation across respondents. Of course, such a scenario likely 

indicates some failure in the choice experiment or study design. Table 5.5 and Figure 5.5 

present such a case. 

Table 5.5: Example Divergence of Robust Scaling Model when      and  

     

 

Figure 5.4: Example Divergence of Robust Scaling Model when      and  

     

 

5.3 Discussion of Results 
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The above results demonstrate the well-known inconsistency of the conditional logit 

model in the presence of heterogeneity. The behavior of models that attempt to rescale 

the attributes is sensitive to the distribution of the normalization constants – which in 

these particular experiments signify scale heterogeneity. In the stochastic case, attempts 

to match the heterogeneity in the normalization constants required a priori knowledge 

that would likely be unavailable in empirical contexts.  This sensitivity should bode 

caution for researchers interpreting the results of mixed models.  

The divergence of the robust model from the conditional logit when      and 

     present an interesting case when the expected unobserved errors increase for all 

respondents with little variation across the normalization constants.  Thus, divergence of 

the two models can possibly serve as an empirical test for whether the normalization 

constants indeed depart from unity and whether individuals are even responsive to 

experimental stimulus. 

It is important to note that these models, as noted in the literature, cannot in empirical 

settings separately identify from where heterogeneity arises.  For the above experiments, 

heterogeneity may be safely interpreted as scale heterogeneity as it is being explicitly 

controlled as such. However, empirical confounding of preference and scale 

heterogeneity complicates interpretations. In fact, additional rudimentary experiments 

performed with preference heterogeneity (i.e. using choice data generated with 

stochastic  ) sometimes produced similar coefficient and utility estimates in the 

conditional logit and scaling models. A researcher only witnessing the model estimates 

will not be able to ascertain the source of heterogeneity, and any subsequent explanations 

are subject to assumptions on the data generating process.    
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6. Conclusions and Future Work 

This work presented models for assessing the influence of the general scaling of 

the attributes and parameters in the conditional logit model.  Extensions of scaling to 

more general models such as the random parameters logit are also possible. The scaling 

of the parameters is treated generally and independently of any interpretation.  The 

experiments, however, provide a concrete application of the scaling models in 

understanding scale heterogeneity. To our knowledge, the robust scaling model is the first 

introduction of robust optimization in the choice modeling literature.  The purpose of 

robust optimization is to incorporate data uncertainty into choice model inferences 

without parameterizing distributions for the data.  This is promising for choice models 

that rely on various distributional assumptions on the errors and functional forms of 

utility.  Ongoing work in distributionally robust optimization and robust utilities may 

prove beneficial in the future 141-144. 
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Appendix: LivSim UserGuide 

 

For the latest version of LivSim and the UserGuide, please refer to the following link: 

https://github.com/LivSim2017/LivSim-Codes. 

The following is the UserGuide as of January 2017: 

LivSim User Guide 

Vikram Kilambi1, 2,* PhD Candidate, Kevin Bui, 1,2, MS, and Sanjay Mehrota1, 2 PhD Candidate 
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 1 BACKGROUND 

1.1 Purpose of Software 
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LivSim is an extensible, open-source discrete event simulation of the allocation of livers 

in the US Organ Procurement and Transplantation Network (OPTN).  The most recent version, 

LivSim 1.11, is written for Python 3.4.2 and  is designed to work in tandem with the Liver 

Simulated Allocation Model (LSAM) (v. Aug 2014)45 as a separate module.  LSAM is the 

standard simulation tool in the transplantation community used to assess alternative liver 

allocation policies.  Unfortunately, hypothetical liver allocation policies that substantially alter 

the geographic aspects of organ procurement are not implementable in current versions of 

LSAM. Specifically, LSAM requires that transplant centers be uniquely assigned to a donor 

service area (DSA), and that DSAs be uniquely assigned to a region or district.  Moreover, the 

source code for LSAM is not publicly available and therefore precludes evaluation of some 

designs for the OPTN such as that of optimized neighborhoods145. 

The intended purpose of LivSim is to provide an open-source alternative to LSAM that 

enables the testing of more general geographic structures.  Like LSAM, it simulates the liver 

transplantation waitlist, estimates outcomes of transplant candidates and recipients, and evaluates 

the performance of liver allocation policies.  While LivSim may be used as a standalone 

simulation environment, it works best when used in conjunction with LSAM input data.  This 

guide aims to familiarize users with the architecture of LivSim. 

1.2 Overview of LSAM 

For a detailed description of LSAM and its architecture, please refer to45.  LSAM is an event-

sequenced Monte Carlo simulation of the OPTN. Let    and    be the starting time and ending 

times of a LSAM run respectively (      ).  There are two types of input data: parameters 

describing the structure and policies of the system; and input streams identifying the times for 
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the events such as candidate arrivals, organ arrivals, candidate status progressions, deaths of graft 

recipients not on the waiting list, relisting of recipients whose grafts fail, and status progressions 

for relisted graft recipients. Every LSAM run is parameterized by the initial liver transplantation 

waitlist at    (i.e. a list of candidates on the waitlist in addition to their individual characteristics 

as of   ); the geographic relations among transplant centers, DSAs, and regions including the 

modes of transport, transport distances, and transport times from transplant centers to donor 

hospitals; allocation rules and sharing policies; organ acceptance models; and post-transplant 

survival/graft failure models.   

LSAM executes a schedule of events in time-order through an event handler.  These 

events are generated from schedules collated from the following input streams: 1) a schedule of 

arrival times for new candidates joining the waitlist during       ] in addition to their individual 

characteristics at the scheduled time of listing; 2) a schedule of arrival times for new organs 

during      ] and donor characteristics at time of donation. During an organ arrival event, 

LSAM applies the allocation rules and organ acceptance model to select a candidate on the 

waitlist to receive an organ; 3) a schedule of status progressions for each candidate on the 

waitlist during      ].  These status changes may include indications for death, removal from 

waitlist for any other reason except transplant, and changes to individual characteristics (e.g. 

model-for-end stage liver disease [MELD] scores). Moreover, if a candidate receives a 

transplant, all future status changes for that candidate are nullified. If the candidate is 

subsequently relisted after receiving a transplant, they will be randomly assigned a status change 

schedule from a special collection of status change schedules for this purpose. 

The Scientific Registry of Transplant Recipients (SRTR) provides default input data 
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based on both historical data and hypothesized models in standard installations of LSAM.  Users 

may also generate their own input data or create new input data using the separate LSAM 

Candidate Generator and Donor Generator modules.  Also, the LSAM user guide provides a 

detailed description of input generation45 and highlights some important caveats for users who 

generate their own input streams, especially from historical data.   

 At the end of a simulation-run, LSAM will output the waiting list at   , the characteristics 

of patients who had received grafts as of   , the characteristics of candidates who died or were 

removed from the waiting list for any other reason except transplantation during      ], and the 

characteristics of donors whose livers were transplanted during      ]. LSAM will also produce 

summary statistics derivable from this information (e.g. number of discards, number of local 

transplants, pre-transplant mortalities at various MELD thresholds, etc.). 

1.3 Other Work 

Although LSAM is the simulation environment favored by the clinical community for its 

comprehensiveness and is the de facto benchmarking tool for liver allocation, it was the 

operations research community that pioneered the use of discrete event simulation for modeling 

OPTN performance.  Pritsker et al., as early as 1995, employed an overall architecture that is 

similar to most implementations thereafter, including LSAM and LivSim146.  Kreke et al., 

Shechter et al., and Iyer et al., have all focused on incorporating more accurate biological 

modeling of individual end-stage liver disease progression into the simulation logic147-149. 

Taranto et al. and Zenios et al. developed additional applications for kidney allocation prior to 

the introduction of the kidney-pancreas simulated allocation model (KPSAM) – the counterpart 

of LSAM used for kidney allocation150,151.  
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1.4 LivSim versus LSAM 

Please refer to the following sections for details regarding LivSim’s architecture. LivSim 

approximates LSAM from information available in publicly released sources.   LivSim, unlike 

LSAM, operates primarily at the DSA/OPO level. The simulation maintains lists of transplant 

candidates, recipients, and donors, initializes with a starting waitlist, and takes three input 

streams: additions to the liver transplant waitlist, status updates/progressions of waitlist 

candidates, and arrivals of organs. LivSim then processes each of these events similarly to 

LSAM.   

When candidates arrive to a particular DSA, they are assigned a MELD score, ABO 

blood type, Status 1 exception (yes or no), and HCC exception (yes or no).  During a status 

progression, LivSim updates the candidate’s MELD score and potentially removes the candidate 

from the waitlist or indicates their death.  After a donor arrives, the liver is assigned an ABO 

blood type and is offered to ABO blood type-compatible candidates in accordance with the 

sharing policies and geographic structure in place. Moreover, LivSim will determine whether this 

candidate will relist, and if necessary return the candidate to the waitlist after calculating the time 

until graft failure. The candidate is eligible for another transplant after this time, and as in 

LSAM, relists at a MELD score of 32.  Other attributes for candidates and donors may be 

defined. LSAM (v Aug 2014) input files are compatible with LivSim 1.11, but need to be 

formatted prior to running LivSim. 

When using LSAM input files, LivSim 1.11 will also use LSAM’s organ acceptance 

model to calculate whether a candidate accepts a liver for transplant. It does so by scanning the 

LSAM input files for the potential recipient’s full set of characteristics (instead of only the 
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selected aforementioned characteristics [MELD, ABO, Status1, HCC, etc.]) at the time of the 

offer and calculates the acceptance probability. If LSAM inputs are unavailable, the user may use 

a reduced form of LSAM’s acceptance model. This reduced model uses LSAM’s coefficients for 

whether the potential recipient is Status 1, the potential recipient’s waiting time, whether the 

potential recipient is listed in the DSA of the procuring OPO, and donor blood type, and assumes 

all other patient attributes are held at the baseline.  These four sets of coefficients included are 

also the four most significant predictors in LSAM’s acceptance model. 

After LivSim processes these streams, it will produce the following output: 

1. DSA-average MELD at transplant and standard deviation 

2. DSA-median MELD at transplant and standard deviation 

3. Number of transplants by year and DSA 

4. Number of waitlist mortalities by year and DSA 

5. Number of waitlist  removals by year and DSA 

6. Average transplant waiting time by year and DSA 

7. Numbers of procured organs directed or received by a specific DSA from each other 

DSA by year and DSA 

Moreover, if using LSAM input data, LivSim can calculate the following after post-processing: 

8. The number of post-transplant and post-re-transplant mortalities by year  

9. Numbers of relists and re-transplants by year 

10. Average organ transport distances, times, and mode of transport (drive, plane, or 

helicopter) by year 
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Details regarding these calculations are described in the following sections.  LivSim 

shares with LSAM several important limitations. Foremost, the existence of biases or omissions 

in the input streams for patient arrivals, status changes, and donor arrivals affect the quality of 

the results.  For example, users wishing to use historical data must generate hypothetical status 

progressions for candidates after the actual transplant date, as no such status changes would be 

available in historical data. Additionally, LivSim 1.10 and LSAM do not allow for multiple-

organ transplants, listing at multiple centers, and split liver transplants. It is also assumed that the 

parameter input data governing the allocation rules and the geographic relationships among 

transplant centers, donor hospitals, DSAs, and OPOs do not change during a run.  Different 

transplant centers are presumed to have the same acceptance practices.  However, the author 

believes LivSim is extensible enough to surmount these limitations if necessary.  

The primary differences between LivSim and LSAM are the former’s ability to 

incorporate general geographic structures, its focus on OPO/DSA level modeling, simplified (but 

extensible) use of patient and donor characteristics, and reliance on LSAM input data for 

acceptance modeling and post-processing. Also, LivSim assumes a relist candidate survives until 

re-transplant.  

2 LIVSIM 

2.1 Preliminaries 

2.1.1 Installing the Software 

LivSim was developed in Python 3.4.2rc1 within the PyCharm Community Edition 4.03 

integrated development environment.  The user should be able to implement the code in most 

Python environments.  Libraries from standard Python installations include heapq, datetime, 
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operator, sys, queue, csv, and copy. Additional libraries are also needed to run LivSim and are 

available in most standard scientific installations of Python. These include Numpy 1.9.1 and 

Scipy 0.14.0. 

The source code is organized into the following *.py files: 

Table 1: LivSim Source Code 

LIVSIM SOURCE CODE FILES 

Standard Files (Require LSAM Acceptance Model) 

1. LivSimPlayback_1_11.py 

2. InputData_LivPlayback_1_11.py 

Post-Processing Files (Require LSAM Input Files) 

3. PostTransplantDeathsEstimator.py 

4. DistanceEstimator.py 

5. OutcomesEstimator_Relists_Regrafts.py 

Old Standard Files (Do Not Require LSAM Input Files) 

6. LivSimPlayback_1_06.py 

7. InputData_LivPlayback_1_06.py 

 

The most recent versions of the standard files require LSAM’s acceptance model.  However, this 

acceptance model can be replaced with a reduced-form model given in Subsection 2.5 below. 

 The first standard file, LivSimPlayback_1_11.py, is the most important component of 

LivSim. It contains the source code for the simulation engine, event processing, data 
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calculations, and output generation.  The code is discussed in great detail in the sections below.  

The second file, InputData_LivPlayback_1_11, loads the input data.  It is called by 

LivSimPlayback_1_11.py when the simulation initializes. 

The files PostTransplantDeathsEstimator.py, DistanceEstimator.py, and 

OutcomesEstimator_Relists_Regrafts.py are used for post-processing to calculate the number of 

post-transplant and post-re-transplant mortalities by year, numbers of relists and re-transplants by  

 

 year, and average organ transport distances, times, and mode of transport.  These are 

described in detail in Section 3. 

An older version of LivSim, as featured in LivSimPlayback_1_06.py and 

InputData_LivPlayback_1_06.py, are also included for reference and do not require LSAM’s 

files for execution.  Moreover, this version was used to generate the results founds in145. 

 2.1.2 Input Data and Formatting  

This section describes the input data for LivSim and subsequent post-processing. The 

following table lists the input files used by LivSim: 

Table 2: LivSim Input Files 
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The following provides detail on how each input file is formatted. Single-row tables describe 

Input File Description 

distancetimes.txt Organ transport distance/time by DSA. 

Used in post-processing 

Donors_Accept.txt Donor File generated by LSAM or 

LSAM donor generator without header.  

Used for acceptance model 

Donors.txt Organ arrival event input data 

DSA_AvgTimes.txt Historical average transport time by 

DSA 

Input_Acceptance.txt Coefficients for acceptance model  

Input_Acceptance_Status1.txt Coefficients for acceptance model for 

Status 1 patients 

Input_Geography.txt Geographical structure matrix. Used to 

define regions, neighborhoods, districts, 

etc.  

Input_Relist.txt Input distribution for the probability 

patient will relist  

Input_SPartners.txt Geographical structure matrix. Used to 

add sharing partners to geographical 

structure. 

Patients.txt Patient arrival event input data 

Patients_Accept.txt Patient File generated by LSAM or 

LSAM donor generator without header.  

Used for acceptance model 

Status.txt Patient status progression event input 
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what the various data columns represent. All files are tab delimited unless specified otherwise.  

0. DSAs and organ procurement organizations (OPOs) are numbered in LivSim 

accordingly:  

Table 3: DSA Labels and ID Codes 

DSA DSA id 

ALOB-OP1 Alabama Organ Center 0 

AROR-OP1 Arkansas Reg. Organ Recovery Agency 1 

AZOB-OP1 Donor Network of Arizona 2 

CADN-OP1 Donor Network West 3 

CAGS-OP1 Sierra Donor Services 4 

CAOP-OP1 OneLegacy 5 

CASD-IO1 Lifesharing - A Donate Life Org. 6 

CORS-OP1 Donor Alliance 7 

CTOP-OP1 LifeChoice Donor Services 8 

DCTC-OP1 Washington Reg Transplant Community 9 

FLFH-IO1 TransLife 10 

FLMP-OP1 Life Alliance Organ Recovery Agency 11 

FLUF-IO1 LifeQuest Organ Recovery Services 12 

FLWC-OP1 LifeLink of Florida 13 

GALL-OP1 LifeLink of Georgia 14 

HIOP-OP1 Legacy of Life Hawaii 15 

IAOP-OP1 Iowa Donor Network 16 

ILIP-OP1 Gift of Hope 17 

INOP-OP1 Indiana Donor Network 18 

KYDA-OP1 KY Organ Donor Affiliates 19 

LAOP-OP1 Louisiana Organ Procurement Agency 20 

MAOB-OP1 New England Organ Bank 21 

MDPC-OP1 The Living Legacy Foundation of MD 22 

MIOP-OP1 Gift of Life Michigan 23 

MNOP-OP1 LifeSource Upper Midwest OPO 24 

MOMA-OP1 Mid-America Transplant Svcs 25 

MSOP-OP1 Mississippi Organ Recovery Agency 26 

MWOB-OP1 Midwest Transplant Network 27 

NCCM-IO1 LifeShare of the Carolinas 28 

NCNC-OP1 Carolina Donor Services 29 

NEOR-OP1 Nebraska Organ Recovery System 30 

NJTO-OP1 NJ Organ and Tissue Sharing Network 31 
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NMOP-OP1 New Mexico Donor Services 32 

NVLV-OP1 Nevada Donor Network 33 

NYAP-OP1 Ctr for Donation and Transplant 34 

NYFL-IO1 Finger Lakes Donor Recovery Network 35 

NYRT-OP1 LiveOnNY 36 

NYWN-OP1 Upstate NY Transplant Svcs 37 

OHLB-OP1 LifeBanc 38 

OHLC-OP1 Life Connection of Ohio 39 

OHLP-OP1 Lifeline of Ohio 40 

OHOV-OP1 LifeCenter Organ Donor Network 41 

OKOP-OP1 LifeShare Transplant Donor Svcs of OK 42 

ORUO-IO1 Pacific NW Transplant Bank 43 

PADV-OP1 Gift of Life Donor Program 44 

PATF-OP1 Center for Organ Recovery and Educ. 45 

PRLL-OP1 LifeLink of Puerto Rico 46 

SCOP-OP1 LifePoint, Inc. 47 

TNDS-OP1 Tennessee Donor Svcs 48 

TNMS-OP1 Mid-South Transplant Foundation 49 

TXGC-OP1 LifeGift Organ Donation Ctr 50 

TXSA-OP1 Texas Organ Sharing Alliance 51 

TXSB-OP1 Southwest Transplant Alliance 52 

UTOP-OP1 Intermountain Donor Services 53 

VATB-OP1 LifeNet Health 54 

WALC-OP1 LifeCenter Northwest 55 

WIDN-OP1 Wisconsin Donor Network 56 

WIUW-IO1 UW Health Organ and Tissue Donation 57 

 

1. distancetimes.txt 

Table 4: distancetimes.txt Data 

DSA id of 

donor hospital 

DSA id of 

transplant 

center 

Historical 

average 

transport 

distance (miles) 

Historical 

average 

transport  

time (hours) 

 

Transport mode 

Driving =0 

Helicopter=1 

Airplane=2 
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There are multiple records for each pair of DSAs corresponding to an alternate donor 

hospital to transplant center combinations. The source of this data is from LSAM. 

2. Donors_Accept.txt 

This file is generated by LSAM.  Please refer to the LSAM user guide45 for a description 

of the columns.  This file should have no headers. It is “|” delimited.  

3. Donors.txt 

Table 5: Donors.txt Data 

 

Replication # DSA id DSA id Donor 

arrival time 

(years) 

Donor ABO 

blood type 

0=A 

1=AB 

2=B 

3=O 

Organ id 

 

This input files provides the input stream for organ arrival events by describing the organ 

arrival time, DSA id, and donor blood type. The replication number indicates which 

replication the event will be read by LSAM; the DSA id indicates which DSA/OPO 

procures the organ, and arrival time indicates the time LivSim should schedule the event.   

IMPORTANT NOTE: It is important that the organ id for the donor matches the 

corresponding Donor ID in the LSAM-generated Donors_Accept.txt.  LivSim will rely on 

this correspondence to calculate a high-dimensional acceptance model using LSAM’s 

inputs. Moreover, this file should be sorted by organ arrival times.  LivSim also reads 
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each line individually.  There is no logic for skipping lines. For example, if the file 

contains 2 replications of 2 year data, but LivSim is only told to perform 2 replications of 

1 year using this file, then LivSim will fail because it will expect the first line after the 

first replication of the first year to be the first line of the second replication of the first 

year.   

4. DSA_AvgTimes.txt 

58 58 matrix of historical average transport times.  Entry     corresponds to the 

transport hours from DSA with DSA id   to the DSA with DSA id  .  This matrix is based 

on historical OPTN data for 1988-2014 and is not necessarily symmetric.  

5. Input_Acceptance.txt 

Table 6: Input_Acceptance.txt Data 

Coefficient Data LSAM Variable 

-3.9696 Constant Constant 

-0.0021956 Patient OfferNum 

0.00093769 Patient can_bili 

0.13715 Patient CANHX_EXC_DIAG_HCC2 

0.0019133 Patient can_min_wgt 

-0.34554 Patient CAN_PREV_TX 

-0.0033197 Organ don_bun 

-0.00021398 Organ don_sgpt 

0.7619 Patient local 

-0.025285 Patient traveltime 

-0.00023373 Patient t_CAN_LISTING_DT 

0.6677 Organ don_abo_b 

0.75528 Organ don_abo_ab 

-0.11586 Organ don_protein_urine_yes 

0.18977 Organ don_ebna_pos 

0.27843 Organ don_anti_hyperten_yes 

0.10697 Organ don_insulin_yes 

-0.18242 Organ don_meet_cdc_high_risk_y 

-0.54685 Organ don_non_hr_beat_y 

-0.51637 Organ don_li_biopsy_yes 
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0.01748 Organ don_race_p 

-0.0074625 Organ don_race_h 

0.048221 Organ don_death_mech_gunshot 

-0.082015 Organ don_death_circum_natural 

0.11223 Organ don_hist_cancer_no 

-0.050175 Patient can_abo_o 

-0.03899 Patient can_acpt_abo_incomp_y 

-0.13962 Patient can_acpt_li_seg_y 

-0.18497 Patient can_acpt_hbc_pos_y 

-0.046836 Patient can_acpt_hcv_pos_y 

0.10345 Patient can_malig_y 

-0.31748 Patient CANHX_DIAL_PRIOR_WEEK_y 

0.043042 Patient don_pat_gender_match 

0.84707 Patient abo_compat 

0.003028 Patient labmeld 

1.0889 Patient status1b 

-0.15437 Patient don_can_wgt_ratio_gt_p50 

0.0024235 Patient labmeld_gt_p40 

0.020667 Patient labmeld_gt_p50 

0.017413 Patient labmeld_gt_p60 

0.050458 Patient match_meld_gt_p10 

-0.040086 Patient match_meld_gt_p90 

-0.015695 Patient diffmatchlabmeld_gt_p30 

-0.0020132 Organ don_age_in_months_gt_p30 

-0.0000687 Organ don_age_in_months_gt_p70 

0.062528 Organ don_li_biopsy_macro_fat_miss 

-0.0000273 Patient can_max_mile_gt_p40 

0.0015365 Patient can_min_age_gt_p40 

0.0017957 Patient can_hgt_cm_gt_p10 

0.00000322 Patient can_bili_gt_p10 

-0.0101 Patient can_sodium_gt_p10 

 

This file contains in the leftmost column of numerical coefficients, LSAM’s acceptance 

model. 

6. Input_Acceptance_Status1.txt 

Table 7: Input_Acceptance_Status1.txt Data 

Coefficient Data Variable 
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-1.3617 Constant Constant 

0.0018831 Patient can_min_age 

0.0013077 Patient can_min_wgt 

-0.49647 Organ DON_EXPAND_DON_KI 

-0.088581 Patient traveltime 

0.19018 Organ don_anti_htlv_neg 

-0.024067 Organ don_li_biopsy_yes 

-0.012836 Patient can_acpt_abo_incomp_y 

0.015191 Patient abo_compat 

-0.015954 Patient don_can_hgt_ratio_gt_p40 

-0.1603 Patient don_can_hgt_ratio_gt_p50 

-0.049985 Patient don_can_wgt_ratio_gt_p20 

-0.0066923 Organ don_wgt_kg_gt_p30 

0.00011147 Patient can_bili_gt_p50 

0.0048161 Patient can_bili_gt_p60 

 

This file contains in the leftmost column of numerical coefficients, LSAM’s acceptance 

model for Status 1 patients. 

7. Input_Geography.txt 

This is a 58 58 matrix providing the geographical relationships amongst OPOs that 

defines regions, districts, or neighborhoods.  Entry     takes value 1 if DSA with DSA id 

  shares with the DSA with DSA id   when an organ is procured in the latter during 

regional allocation.  This matrix is not available in LSAM in full generality and hence 

was the reason LivSim was created.  

8. Input_Relist.txt 

This file contains the lower bound, upper bound, and mean for the uniformly distributed 

probability that a transplanted patient will be relisted.  The current values are based on 

average, historical OPTN data 1988-2014. 

9. Input_SPartners.txt 
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This is a 58 58 matrix adding DSA sharing partners to existing geographical 

relationships amongst OPOs.  Entry     takes value 1 if DSA with DSA id   shares with 

the DSA with DSA id   when an organ is procured as a sharing partner.  Although this 

matrix is read by LivSim, it is not required to actually use it unless the user wishes to 

study sharing partners.    

10. Patients.txt 

Table 8: Patients.txt Data 

 

This input files provides the input stream for patient arrival events by describing the 

patient arrival time, DSA id, patient blood type, starting allocation MELD (6-40), starting 

lab MELD, whether patient receives an HCC exception, whether the patient receives a 

Status 1 exception, starting lab sodium value, and whether patient is inactive. Status 1A 

and Status 1B patients are treated identically.  The replication number indicates which 

replication the event will be read by LSAM; the DSA id indicates which DSA/OPO lists 

the patients, and arrival time indicates the time LivSim should schedule the event.   

IMPORTANT NOTE: It is important that the patient id for the patient matches the 

Replication# Patient 

id 

DSA 

id 

DSA 

id 

Patient 

Arrival 

Time 

(years) 

Patient 

ABO 

blood 

type 

0=A 

1=AB 

2=B 

3=O 

Patient 

Allocation 

MELD 

 

Patient 

Lab 

MELD 

Patient 

HCC 

Status 

0=No 

1=Yes 

 

Status1 

0=No 

1=Yes 

 

Sodium 

Score 

Inactive 

0=No 

1=Yes 
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corresponding candidate ID in the LSAM-generated Patients_Accept.txt.  LivSim will rely 

on this correspondence to calculate a high-dimensional acceptance model using LSAM’s 

inputs. Moreover, this file should be sorted by patient arrival times.  LivSim also reads 

each line individually.  There is no logic for skipping lines. For example, if the file 

contains 2 replications of 2 year data, but LivSim is only told to perform 2 replications of 

1 year using this file, then LivSim will fail because it will expect the first line after the 

first replication of the first year to be the first line of the second replication of the first 

year.   

11. Patients_Accept.txt 

This file is generated by LSAM.  Please refer to the LSAM user guide45 for a description 

of the columns.  This file should have no headers. It is “|” delimited.  

12. Status.txt 

Table 9: Status.txt Data 

Replication# Patient 

id 

Status 

Event 

Time 

(years) 

Dies 

0=No 

1=Yes 

Removed 

from 

waitlist 

0=No 

1=Yes 

Updated 

Allocation 

MELD 

Updated 

Lab 

MELD 

Updated 

Sodium 

Score 

DSA 

id 

DSA 

id 

Updated 

Inactive 

Status 

0=No 

1=Yes 

This input files provides the input stream for status progression events for a particular 

patient.  Each row updates a given patient’s MELD scores, sodium scores, and inactive 

statuses at a particular DSA.  Additionally, a status update event may indicate that the 

particular patient dies or is removed from the waitlist. Death or waitlist removal nullifies 

all other updates to MELD scores, sodium, etc. at the time of the death or removal and 

afterwards.  The replication number indicates which replication the event will be read by 
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LSAM; the DSA id and patient id indicates which patient is to be updated, and the status 

event time indicates the time LivSim should schedule the update event.   

IMPORTANT NOTE: This file should be sorted by status event times.  LivSim also 

reads each line individually.  There is no logic for skipping lines. For example, if the file 

contains 2 replications of 2 year data, but LivSim is only told to perform 2 replications of 

1 year using this file, then LivSim will fail because it will expect the first line after the 

first replication of the first year to be the first line of the second replication of the first 

year.   

13. status_times.txt 

This file is used only for post-processing. The first column is the patient id and the 

second column is the status event time (years).  These columns should match the second 

and third columns from Status.txt.   

14. step_survival.txt 

Table 10: step_survival.txt Data 

This file is used only for post-processing for post-transplant outcomes. Given individual 

characteristics, a step probability is calculated that determines the number of days 

survived after transplant.  Group probability can be ignored.  The source of this data is 

from LSAM’s post-transplant survival model. 

Step Probability Days Survived after 

Transplant 

Group Probability 

 

15. survivalcoefficents.txt 
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Table 11: survivalcoefficents.txt Data 

Coefficient Data LSAM Variable 

0.096521 Organ don_race_black 

0.231046 Organ don_race_hispanic 

0.136725 Organ don_race_not_wbh 

0.115276 Organ don_cod_cerebro_stroke 

0.495574 Organ don_non_hr_beat_y 

0.071974 Organ don_li_biopsy_y 

0.135386 Organ don_diab_y 

0.104547 Organ don_anti_hcv_pos 

-0.18468 Organ don_age_lt_18 

0.069699 Organ don_age_40_50 

0.215867 Organ don_age_50_60 

0.442272 Organ don_age_60_70 

0.53747 Organ don_age_ge_70 

0.048991 Organ don_hgt_per_10cm_dec 

0.187979 Patient can_race_black 

-0.12496 Patient can_race_hispanic 

-0.11149 Patient can_race_not_wbh 

0.357815 Patient can_life_support_y 

0.117489 Patient can_prev_abdom_surg_y 

0.178723 Patient can_prev_abdom_surg_m 

0.296156 Patient can_dgn_hcv 

-0.11892 Patient can_dgn_chol 

0.019462 Patient can_dgn_ahn 

0.03673 Patient can_dgn_met_dis 

0.445674 Patient can_dgn_mal_neo 

0.118069 Patient can_dgn_other 

0.206299 Patient can_dial_y 

0.111769 Patient can_prev_malig_m 

0.157912 Patient can_prev_malig_y 

0.476963 Patient can_prev_li 

-0.22144 Patient can_ln_albumin 

0.040675 Patient can_albumin_m 

0.140549 Patient can_ln_creat 

0.349983 Patient can_creat_m 

-0.10011 Patient can_age_lt_18 

0.21622 Patient can_age_18_25 

0.002244 Patient can_age_25_35 

-0.10293 Patient can_age_45_55 

-0.02486 Patient can_age_55_65 

0.165089 Patient can_age_ge_65 
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0.069976 Patient regional 

0.184682 Patient national 

0.185855 Patient can_diab_ty_any 

0.225524 Patient can_growth_fail 

0.157561 Patient can_ascites_y 

0.155651 Patient can_portal_vein_y 

 

This file is used only for post-processing for post-transplant outcomes. The leftmost 

column of numerical coefficients is from LSAM’s post-transplant survival model. 

16. Waitlist_matchmeld.txt 

Table 12: Waitlist_matchmeld.txt Data 

 

Patient 

id 

DSA 

id 

Patient 

Arrival 

Time 

(years) 

ABO 

blood 

type 

0=A 

1=AB 

2=B 

3=O 

Patient 

Starting 

MELD 

Patient 

HCC 

Status 

0=No 

1=Yes 

Status1 

0=No 

1=Yes 

 

Sodium 

Score 

DSA 

id  

Inactive 

0=No 

1=Yes 

 

This input files provides the initial waitlist by describing the patient arrival time, DSA id, 

patient blood type, starting MELD, whether patient receives an HCC exception, whether 

the patient receives a Status 1 exception, starting lab sodium value, and whether patient is 

inactive. Status 1A and Status 1B patients are treated identically. Waiting times are 

negative numbers, indicating that patient arrived before initialization of the simulation at 

time  . The characteristics describe the patient at the initialization of the simulation.  

Starting MELD values may be either lab MELD or allocation MELD values depending 

on the user’s preferences. 
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2.1.3 InputData_LivPlayback_1_11.py 

This file loads and shapes the input data for use by the simulation. It is called by 

LivSimPlayback_1_11.py during the initialization of the simulation.  The variable i_initial in 

Line 2 toggles whether an initial waitlist should be loaded (all other input data will be loaded).  

Lines 6-46 read the input files in the preceding subsection. Lines 48-EOF load the initial waitlist.  

As described in the following section, LivSim treats patients and donors as class objects.  The 

OPTN is represented as a list of 58 lists where each list corresponds to the transplant-candidate 

waiting list at a particular DSA.  Loading the initial waitlist instantiates patient-objects with 

characteristics as described by the columns of Table 12.  These objects are then added to a list in 

the OPTN data structure.   

When reading input data, LivSim follows certain conventions regarding missing values, 

values out of range, etc.: 

1. Individuals with empty sodium scores are assigned sodium values of 137 (the highest 

effective sodium value as per UNOS guidelines at time of writing). 

2. Allocation MELD scores range from 6-40. 

3.  Status 1 candidates are given allocation MELD scores of “41”. This is a 

programming convention.   

4. Lab-, allocation-, and sodium- MELD scores are assigned based on the options 

selected (discussed in the next subsection). 

5. If patients receive HCC exceptions, they are assigned MELD scores based on the 

HCC MELD schedule and selected options (discussed in the next subsection). 
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2.1.4 Running the Software 

This subsection describes running LivSim.  Post-processing is described in Section 3.  

After ensuring that the input files have been formatted properly, the user needs to follow the 

following steps: 

1. Ensure directory pathnames in Lines 6-51 in InputData_LivPlayback_1_11.py all 

correspond to the appropriate input files. 

2. Ensure directory pathnames in Lines 799-825 in LivSimPlayback_1_11.py all 

correspond to the desired locations for the simulation output files. 

3. Ensure pathname in Line 689 of LivSimPlayback_1_11.py maps to 

InputData_LivPlayback_1_11.py or similar file. 

4. In Lines 24-43 in LivSimPlayback_1_11.py, select the options desired for the 

simulation run: 

a. seed: Seed for random number generation  

b. maxtime: Desired run-length (years) 

c. nreps: Number of desired replications 

d. clock: Starting clock time (default is 0 and should not usually be changed) 

e. oid: Starting organ id number (default is 0 and should not usually be changed) 

f. maxrejects: Maximum number of offers that should be made to eligible ABO-

compatible candidates for a single donated liver before the liver is discarded. 

g. regionalsharing: Toggles full-regional allocation (i.e. no local allocation) if 

value is 1. 

h. sodium: Applies MELD-Na in lieu of traditional MELD if value is 1. 
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i. capanddelay: Applies “cap-and-delay” policy for HCC exceptions value is 1. 

j. spartners: Toggles sharing-partner allocation if value is 1. 

k. localboost: Number of boost points awarded to allocation MELD awarded to 

local candidates during allocation (default is 0). 

l. regionalboost: Number of boost points awarded to allocation MELD awarded 

to regional candidates during allocation (default is 0). 

Afterwards, the user may run the program by executing LivSimPlayback_1_11.py.  The user will 

receive messages with time-stamps when the 1) Simulation input and initializations are 

complete, 2) after each replication has finished, and 3) when the simulation terminates. 

 

 

2.1.5 Output Formatting 

This section describes the output files generated by LivSim.  Output files are usually organized 

by year. The following provides detail on how each input file is formatted. Single-row tables 

describe what the various data columns represent. All files are tab delimited unless specified 

otherwise. IMPORTANT NOTE: Depending on your environment, the first row (or sometimes 

first 58 rows if the output file consists of concatenated matrices) may be all 0s or non-numeric 

values.   

1. Output_deaths.txt 

Table 13: Output_deaths.txt Output 
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#of Deaths Year Replication # 

 

2. Output_mr_disparity_mean.txt 

Table 14: Output_mr_disparity_mean.txt Output 

DSA Average  

Mortality Rate  

Year Replication # 

DSA average mortality rate is calculated as the ratio of the number of deaths in a year to 

the sum of the waitlist arrivals that year and number of candidates at the start of the year. 

3. Output_mr_disparity_std.txt 

Table 15: Output_mr_disparity_std.txt Output 

DSA Mortality Rate  

Standard Deviation 

Year Replication # 

Calculated as the standard deviation of the DSA average mortality rates. 

4. Output_meld_disparity_mean.txt  

Table 16: Output_meld_disparity_mean.txt Output 

DSA Transplant MELD  

Average 

Year Replication # 

Output is the Average MELD at transplant over the year for non-Status 1 candidates 

averaged across DSAs. 

5. Output_meld_disparity_std.txt  

Table 17: Output_meld_disparity_std.txt Output 

Standard Deviation of Year Replication # 
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Average 

DSA Transplant MELD  

Output is the standard deviation of DSA-average MELD at transplant for the year across 

DSAs (for non-Status 1 candidates). 

6. Output_meld_median_mean.txt  

7. Table 18: Output_meld_median_mean.txt Output 

DSA Transplant MELD  

Median 

Year Replication # 

Output is the Median MELD at transplant over the year for non-Status 1 candidates 

averaged across DSAs. 

8. Output_meld_median_std.txt  

Table 19: Output_meld_median_std.txt Output 

Standard Deviation of  

DSA Transplant MELD  

Median 

Year Replication # 

Output is the standard deviation of DSA-median MELD at transplant for the year across 

DSAs (for non-Status 1 candidates). 

9. RawOutput_ydeaths.txt  

Table 20: RawOutput_ydeaths.txt Output 

Year Replication# Replication# Deaths in 

DSA id=0 

Deaths in 

DSA id=1 

… Deaths in 

DSA 

id=57 
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10. RawOutput_ytransplants.txt  

Table 21: RawOutput_ytransplants.txt Output 

Year Replication# Replication# Transplants 

in DSA 

id=0 

Transplants 

in DSA 

id=1 

… Transplants 

in DSA 

id=57 

 

11. RawOutput_yarrivals.txt  

Table 22: RawOutput_yarrivals.txt Output 

Year Replication# Replication# Patient 

Arrivals in 

DSA id=0 

Patient 

Arrivals in 

DSA id=1 

… Patient 

Arrivals in 

DSA 

id=57 

 

12. RawOutput_ycandidates.txt  

Table 23: RawOutput_ycandidates.txt Output 

Year Replication# Replication# Candidates 

in DSA 

id=0 

Candidates 

in DSA 

id=1 

… Candidates 

in DSA 

id=57 

Output is the number of candidates at the beginning of the year. 

13. RawOutput_yremoved.txt  

Table 24: RawOutput_yremoved.txt Output 

Year Replication# Replication# Patients Patients … Patients 
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removed 

in DSA 

id=0 

removed 

in DSA 

id=1 

removed 

in DSA  

id=57 

Output is the number of waitlist candidates removed from waitlist during the year due to 

any reason except death or transplant. 

14. RawOutput_ywait.txt  

Table 25: RawOutput_ywait.txt Output 

Year Replication# Replication# Accumulated 

total 

transplant 

waiting time 

in DSA id=0 

Accumulated 

total 

transplant 

waiting time 

in DSA id=1 

… Accumulated 

total 

transplant 

waiting time 

in DSA  

id=57 

Individual transplant waiting time is calculated as the difference in simulation clock times 

(years) between time of patient listing and time of transplant.  Accumulated total 

transplant waiting time is the sum of all such waiting times of patients transplanted in that 

DSA during the year.  The user must divide by the number of transplants to obtain the 

average waiting time per transplant. 

15. RawOutput_yMELD.txt  

Table 26: RawOutput_yMELD.txt Output 

Year Replication# Replication# Accumulated 

total 

Accumulated 

total 

… Accumulated 

total 
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transplant 

MELD in 

DSA id=0 

transplant 

MELD in 

DSA id=1 

transplant 

MELD in 

DSA  

id=57 

Accumulated total transplant MELD is the sum of all MELD scores of patients 

transplanted in that DSA during the year.  The user must divide by the number of 

transplants to obtain the average MELD per transplant. 

16. RawOutput_DSAs.txt  

This is a 58 58 matrix summarizing organ sharing across all years and replications.  

Entry     represents the number of livers procured from DSA with DSA id   that were 

transplanted in the DSA with DSA id   across all years and replications.   

17. RawOutput_DSAs2.txt  

This is a 58 58    array where   is the number of replication-years (i.e. a 5-year 5-

replication run yields 25 replication-years) summarizing organ sharing. Entry        

represents the number of livers procured from DSA with DSA id   that were transplanted 

in the DSA with DSA id   up to replication-year  . This array is provided in addition with 

the RawOutput_DSAs.txt so that the user may analyze organ sharing patterns over time if 

they so wish. 

18. RawOutput_removals.txt  

Table 27: RawOutput_removals.txt Output 

Year Replication# Removal 

Time 

Removed 

Patient 

Patient 

Allocation 

Patient 

Lab 
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ID MELD MELD 

 

Output file contains information of any patient removed for any reason other than 

transplant/death for further analysis. 

19. RawOutput_TxID.txt  

Table 28: RawOutput_TxID.txt Output 

Year Replication# Transplant 

Time 

Transplant 

Patient 

ID 

Regional 

Transplant 

0=No 

1=Yes 

National 

Transplant 

0=No 

1=Yes 

 

Output file contains information of any patient transplanted for further analysis.  This 

does not include those who were ever or would have been relisted.  Regional transplant 

refers to non-local but regional transplant (i.e. organ came from same region, district, or 

neighborhood). 

20. RawOutput_DoID.txt  

Table 29: RawOutput_DoID.txt Output 

Year Replication# Transplant 

Time 

Transplant 

Patient 

ID 

Donor 

ID 

 

Output file contains information of any patient transplanted (and link to corresponding 

donor) for further analysis.  This does not include those who were ever or would have 
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been relisted.   

21. RawOutput_yrelists.txt  

Table 30: RawOutput_yrelists.txt Output 

Year Replication# Replication# Relists in 

DSA id=0 

Relists in 

DSA id=1 

… Relists in 

DSA 

id=57 

Output is the number of candidates that relisted for transplant during the year by DSA. 

22. RawOutput_yregrafts.txt  

Table 31: RawOutput_yregrafts.txt Output 

Year Replication# Replication# Regrafts 

in DSA 

id=0 

Regrafts 

in DSA 

id=1 

… Regrafts 

in DSA 

id=57 

Output is the number of relisted candidates that received a re-transplant during the year 

by DSA. 

23. RawOutput_TxIDregraft.txt  

Table 32: RawOutput_TxIDregraft.txt Output 

Year Replication# Re-

Transplant 

Time 

Re-

Transplant 

Patient 

ID 

Regional 

Re-

Transplant 

0=No 

1=Yes 

National 

Re-

Transplant 

0=No 

1=Yes 

 

Output file contains information of any patient re-transplanted for further analysis.  
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Regional transplant refers to non-local but regional transplant (i.e. organ came from same 

region, district, or neighborhood). 

24. RawOutput_DoIDregraft.txt  

Table 33: RawOutput_DoIDregraft.txt Output 

Year Replication# Re-

Transplant 

Time 

Re-

Transplant 

Patient 

ID 

Donor 

ID 

 

Output file contains information of any patient re-transplanted (and link to corresponding 

donor) for further analysis.   

25. RawOutput_Relistid.txt  

Table 34: RawOutput_Relistid.txt Output 

Year Replication# 1st 

Transplant 

Time 

Patient 

ID 

Patient 

Allocation 

MELD at 

1st 

Transplant 

Time 

Patient 

Earliest 

Re-

Transplant 

Time 

 

Output file contains information of any patient re-listed.  As described below, whether a 

patient will relist is determined at time of the first transplant.  The earliest re-transplant 

time is the time that the 1st graft will fail and that the patient will be eligible for a re-
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transplant.  

2.2 Architecture  

2.2.1 Simulation Engine 

Lines 12-92 and Lines 686-EOF in LivSimPlayback_1_11.py 

 Figure 1 depicts the schematic for LivSim. The engine first initializes with all global 

variables and options set; next, calls InputData_LivPlayback_1_11.py to read the input data; and 

sets pointers for reading the patient arrival, organ arrival, and status progression input streams. 

 Next, the replication is initialized (clock is set to starting value and replication statistics 

are initialized).  Prior to processing the input streams for any replication, the starting waitlist is 

copied from memory.  The engine then reads the lines corresponding to the pointers for the 

patient arrival, organ arrival, and status progression input streams.  Using the event times in the 

input files, it then determines the next event (or whether the next event is the end-of-year event).  

Based on the determination, the engine generates an event notice for the event and passes 

relevant data for the event (e.g. event type, event time, DSA event occurs, etc.).  The event notice 

is added to a queue (called the calendar) and the pointer for the input stream from which the 

event was read is advanced one line.  Event notices are added to the calendar until all events for 

the replication have been scheduled. 

 Lastly, once all events have been loaded onto the calendar, the engine continuously pops 

an event from the calendar and calls a function for the particular event as described by the event 

notice until it is empty.  After the calendar becomes empty, the end-of-replication event is 

triggered and replication statistics are cleared.  If all replications have finished, the engine writes 

all of the output files and the simulation terminates.   
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2.2.1 Simulation Engine Classes and Data Structures 

 LivSim has some object-oriented programming features and important data structures: 

1. Event Object Class 

Lines 16-22 in LivSimPlayback_1_11.py 

This class of objects is that of the event notices that are loaded onto the calendar.  They 

have three methods: 1) event type (e.g. “Organ Arrival”), 2) event time (time to be 

executed on the simulation clock), and 3) event information (any data that needs to 

passed to the event function).  By default, the engine will pass the entire line read from 

the input stream as the event information.  The user can modify the event information 

method to pass additional information, characteristics, etc. when the calendar calls the 

function associated with the event type.  Provided each line of the input file for the 

corresponding stream has the necessary extra column data, users can refer to the 

appropriate column of the event information to pass additional information.   

2. Global Variable Class 

Lines 24-74 in LivSimPlayback_1_11.py 

LivSim follows the convention of maintaining all global variables in a single object class 

G.  Class G contains all the options listed in Section 2.1.4 in addition to the array 

dimensions of the output files listed in Section 2.1.5. 

3. SimStat Class 

Lines 75-92 in LivSimPlayback_1_11.py 

This class is used to maintain performance measures and statistics during a replication.  

Its individual methods are the statistics such as the number of transplants that occurred 

during that replication-year, number of patient arrivals during that replication-year.  
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Instantiations of this class may be modified by other events and during the end-of-year 

event, however each such instantiation is deleted at the end of the replication. 

4. OPTN Data Structure 

Line 724 in LivSimPlayback_1_11.py and Lines 48-158 in 

InputData_LivPlayback_1_11.py 

This is a list of lists with dimension  , where   is the number of DSAs.  Each element 

contains a list of patient-class objects that represent the candidates listed at a particular 

DSA.  At the beginning of each replication, the data structure is initialized with a copy of 

the starting waitlist.  During organ allocation, this data structure is temporarily copied (to 

pass by value in Python). 

2.2.2 Entity Classes 

LivSim has two important entities: patients and organs (i.e. donors): 

1. Patient Object Class 

Lines 93-112 in LivSimPlayback_1_11.py 

Every instantiation of this class represents a patient.  Upon construction, they are 

endowed with methods for the patient’s id, DSA, and create time.  Patient objects are 

created during the patient Arrival Event and creation of the initial waitlist.  Information to 

populate the methods and attributes comes from the event information when scheduling 

these events and thereby the input files corresponding to the patient arrivals and initial 

waitlist.  The id and DSA methods give the patients their unique identifiers and locations 

and are used to refer to the patients during various function calls.  The create time 

method gives in simulation clock units, the time the patient object was created (i.e. 



 
 
 

236 

listed).  Other methods describe patient characteristics and include: ABO blood type; 

allocation MELD score; lab MELD score; HCC exception status; Status1; sodium score; 

waitlist inactive status; whether the patient is a relisted patient; and the time at which a 

patient is eligible for a re-transplant (relistTxTime). 

2. Organ Object Class 

Lines 113-121 in LivSimPlayback_1_11.py 

Every instantiation of this class represents an organ.  Upon construction, they are 

endowed with methods for the organ’s id and DSA. Organ objects are created during the 

Organ Arrival Event and exist only until the organ is either allocated or discarded.   

Information to populate the methods and attributes comes from the event information 

when scheduling these events and thereby the input files corresponding to the organ 

arrivals input stream.  The id and DSA methods give the organs their unique identifiers 

and locations and are used to refer to the donors during various function calls. 

Additionally, organs are endowed for an attribute for ABO blood type. 
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Figure 1: LivSim Architecture  
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2.3 Events and Subordinate Functions  

This section summarizes the various events processed by LivSim.  As described above, 

LivSim executes each event as a function call when the corresponding event notice is retrieved 

from the calendar.  Each event/function takes the event information as an input (and does not 

necessarily return anything). 

2.3.1 Arrival (Patient) 

Lines 351-403 in LivSimPlayback_1_11.py 

This event instructs LivSim to create a patient with particular characteristics and add the 

patient to the waitlist.  First, a patient object is created and assigned an id, DSA, and create time 

in addition to Status 1 (yes/no), ABO blood type, HCC exception status, sodium value, lab 

MELD, allocation MELD, and waitlist active inactive status as per the function input. 

LivSim will use allocation MELD to prioritize patients for transplantation. The user may 

wish to incorporate sodium MELD (MELD-Na) in one of two ways 1) ensure allocation MELD 

corresponds to MELD-Na in input streams or 2) toggle the sodium option in the global variables.  

If using the latter, the simulation will first truncate sodium values to the interval [       ] and 

use lab MELD to calculated MELD-Na in accordance with the following equation32:  

                              (                      )             

Additionally, all allocation MELD scores (regardless of the sodium update) are rounded to the 

nearest integer and truncated to the interval [    ].  By convention, Status 1 candidates are 

assigned an allocation MELD of 41.  If the patient is receiving an HCC exception, then either the 
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patient is retains their allocation MELD score, if the cap and delay option is also toggled, then 

patient’s allocation MELD is the minimum of their lab MELD or 2846.  After allocation MELD 

is assigned, the patient is then added to the OPTN data structure (at the place corresponding the 

patient’s DSA) and statistics regarding the number of arrivals for the year and number of 

candidates currently in the OPTN are updated.  

2.3.2 Progression 

Lines 404-473 in LivSimPlayback_1_11.py 

This event instructs LivSim to retrieve a particular patient from the OPTN data structure 

and update the patient’s characteristics.  These updates are passed in the event information for 

this event and thereby from the progression/status change input stream data. First, LivSim 

searches the element of the OPTN data structure corresponding to the patient’s DSA for the 

patient object.  If the patient has relisted for transplant, then this event is skipped.  Additionally, 

if the patient is indicated to die or be removed from the waitlist, the patient object is deleted; 

statistics regarding the number of deaths/removals that year and the numbers of candidates 

currently in the OPTN are all updated; and the event then terminates. 

Otherwise, the patient’s lab MELD, allocation MELD, sodium, and inactive statuses are 

updated in accordance with the event information.  If the sodium option is toggled, sodium 

values will be truncated to the interval [       ]  and allocation MELD will be then updated 

according to Equation 1 for non-HCC and non-Status 1 candidates (and subsequently rounded to 

the nearest integer in [    ] . If the cap and delay option is toggled, HCC patients’ allocation 

MELD will be updated according the following schedule46: 
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Table 35: Allocation MELD Updates for HCC Patients with Cap and Delay 

Waiting Time Allocation MELD Update 

0-0.5 years Maximum of 28 or old allocation MELD 

> 0.5 years – 0.75 years Maximum of 29 or old allocation MELD 

> 0.75 years – 1.00 years Maximum of 31 or old allocation MELD 

> 1.00 years – 1.25 years Maximum of 33 or old allocation MELD 

> 1.25 years – 1.50 years Maximum of 34 or old allocation MELD 

>1.50 years Minimum of 40 or old allocation MELD +1 

 

2.3.3 Organ Arrival 

Lines 474-581 in LivSimPlayback_1_11.py 

This event instructs LivSim to create an organ with particular characteristics and attempt 

to allocate the organ.  First, an organ object is created and assigned an id, DSA, and ABO blood 

type using the event information.  This event then calls the Allocate function and the dependent 

MatchRun, MatchCheck, and Offer functions that allocate the organ.  Organ allocation in LivSim 

follows the schematic shown in Figure 2. 

If a candidate for the organ is not found, the event ends.  Otherwise, the Allocate function 

will return the id and DSA of the accepting patient for transplant.  The corresponding patient 
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object is retrieved from the OPTN data structure.  If this is the 1st transplant for the patient, then 

using the uniform distribution provided in Item 8 of Section 2.1.2, LivSim determines whether 

the patient will ever relist.  If the patient will not relist or just received a re-transplant, then the 

patient object is deleted from the OPTN data structure, statistics regarding the number of 

transplants, transplant MELD, waiting time, local/national transplant, supplying DSA, and 

transplanting DSA are recorded, and the event ends (separate statistics are kept for re-

transplants).  If the patient relists, the patient object’s Relist method is updated to the value 1 and 

the RelistTxTime method is assigned a value equal to the simulation clock plus an increment.  

The increment represents the time until the first graft fails and whereby the patient becomes 

eligible for a re-transplant.  This increment is assigned with the following empirical distribution 

based on OPTN data5: 

Table 36: LivSim First Graft Failure Times for Re-Transplant 

Increment (Graft Failure Time) Probability 

5 years 0.60 

2 years 0.20 

1 year 0.20 

 

Thereafter, the patient is assigned an allocation MELD of 32 (as is the convention in LSAM) and 

the event concludes.   

2.3.4 The Allocate, MatchRun, MatchCheck, and Offer Functions 

Allocate (Lines 123-216), MatchRun (Lines 217-236), MatchCheck (237-259), and Offer 
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(Lines 260-348) in LivSimPlayback_1_11.py 

 

 The first of these, the Allocate function is called by the OrganArrival event.  The 

function takes the organ object passed from the OrganArrival event and returns a dummy value 

indicating the organ was unable to be allocated or the patient id and DSA of an accepting patient.  

The purpose of the function is to create the match-run list for the allocation (the offer list), pass it 

to the MatchRun function, and return the results from MatchRun.  First, this function copies the 

element of OPTN data structure corresponding to the DSA where the organ was procured (the 

local list). It adds any local score boosts (if specified in the options).  Second, it copies the 

elements of the OPTN data structure corresponding to the DSAs in the 

region/district/neighborhood/sharing partner community for regional allocation and applies any 

regional score boosts if applicable (the regional list).  Other remaining elements are copied (the 

national list). 

 The next steps depend on the sharing policy specified. If regional sharing is toggled, the 

local and regional lists are combined, sorted by allocation MELD, and then added to a sorted 

national list to yield the offer list.  However, by default, LivSim implements the Share 15 and 

Share 35 policies for liver allocation22,23.  The local and regional lists will be partitioned into 

three lists: one having candidates with allocation MELD > 35, one with allocation MELD 15-34, 

and one with allocation MELD <15.  The national list will be partitioned into a list of candidates 

with allocation MELD > 15 and a list with candidates with allocation MELD <15.  These lists 

are then sorted and recombined to yield the offer list that matches the policy.   
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 The second function, MatchRun, takes the offer list and organ object from the Allocate 

function, executes the offers, and returns the results back to the Allocate function.  A local 

variable, noffers, counts how many offers have been made. The global variable, maxrejects, 

specifies the maximum number of offers that can be made before the organ is discarded.  While 

offers can be made, the MatchRun traverses the patient objects on the offer list.  When doing 

this, it first calls the third function, MatchCheck, and passes the current patient object.  The 

MatchCheck function’s purpose is for compatibility/cross-matching/eligibility checking of 

patient and organ.  It returns the value 0 if the patient is incompatible or ineligible or 1 if the 

patient is eligible in compatible.  The user may specify whatever criteria they wish, but by 

default, the MatchCheck function checks whether the patient is ABO blood type compatible with 

the organ, the patient does not have an inactive waitlist status, and if patient has or will relist, 

that his or her first graft has failed (i.e. the simulation clock has exceeded RelistTxTime) 

 If MatchCheck returns 0, then MatchRun will continue traversing the patient objects on 

the offer list.  If MatchCheck returns 1, then it will make an offer the patient, by calling the Offer 

function.  The Offer function’s role is to take the offered organ and current patient object as 

input, apply the acceptance model, and return the results to MatchRun.   

 IMPORTANT: The default acceptance model is reproduction of LSAM’s acceptance 

model and requires LSAM files to run (Items 2, 5, 6, and 11 in Section 2.1.1).  Using the id 

variables contained in the donor and patient objects, this function will retrieve additional 

characteristics of the organ and patient from the LSAM file that are not explicitly modeled in 

LivSim. If the vector of patient and organ characteristics are denoted as   (from Items 2 and 11) 

and the coefficients are denoted as   (from items 5 and 6), then the acceptance probability is 
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calculated using standard logistic regression: 

            
         

           
                              

A separate set of patient and organ characteristics and coefficients are used for Status 1 patients; 

however the acceptance probability is also calculated following Equation 2.  Once the acceptance 

probability is calculated, a random uniform number is generated. If the random number is less 

than or equal to            , then the organ is accepted.  Otherwise, it is rejected by the patient. 

A reduced-form acceptance model not requiring LSAM’s inputs is provided in the Appendix. 

 Once an acceptance-rejection decision is made, the result is returned to the MatchRun 

function.  If it is an acceptance, MatchRun stops traversing the offer list, returns the accepting 

patient’s id and DSA to the Allocate function and thereupon to LivSim’s OrganArrival call. If it 

is a rejection, MatchRun increments noffers and continues traversing the offer list or returns that 

it was not able to find a recipient to the Allocate function if the maximum number of offers were 

reached.  Note that noffers is only incremented when Offer returns a negative decision, not when 

MatchCheck returns a negative decision – that is, offers are only counted as such if there was an 

opportunity for them to be rejected by the patient. 
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Figure 2: Organ Allocation in LivSim 



 
 
 

246 

 

 

2.3.4 End-of-Year 
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Lines 582-674 in LivSimPlayback_1_11.py 

This event occurs after each replication-year and instructs LivSim to calculate annual 

statistics, to write current annual statistics to the simulation output, and to initialize annual 

statistics for the following replication year.  

2.3.5 End-of-Replication 

Lines 675-681 in LivSimPlayback_1_11.py 

This event occurs after each replication.  Currently, it only produces a time-stamp of 

when the replication completed.  This event is included for users wishing to add extra 

functionality or replication-dependent statistics to LivSim. 

2.4 Modifying LivSim 

 This section provides tips for users wishing to modify LivSim.  They are not meant to be 

comprehensive or taken as the only way to implement the modification, but are the author’s 

opinions on the best course of action. 

1. Modifying geographic structures 

The advantage of LivSim is that geographic structures are modeled 

mathematically as binary relations (i.e. directed graphs) on the set of DSAs.  This 

generality allows users to specify different regional systems, networks, topologies, etc. at 

the DSA/OPO level 

2. Adding new events 

This has to be done carefully.  The first step is to create properly formatted input 
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files containing the input streams.  It is suggested to use a format similar to the existing 

input files. For example, the first columns should contain the Replication number, DSA, 

and the event time followed by the event information.  Second, 

InputData_LivPlayback_1_11.py must be modified to read to extra input file and if 

necessary, format it. Third, a pointer variable and index corresponding to the dimension 

the input file must be created prior to scheduling in the simulation engine.  Third, the 

scheduling logic must be modified to advance the newly created pointer, to determine the 

event time, determine whether this event precedes or follows other events, and to pass the 

event information and event name to the calendar. This should be straightforward and 

closely resemble the code for the other events.  Lastly, the user has to write a new 

function User_Event() or some other valid name that will be executed each time the 

corresponding event notice is retrieved from the calendar. 

3. Adding new donor or patient characteristics 

Adding characteristics is simple.  The user can just provide additional methods to 

the patient or organ entity classes that correspond to the desired characteristics.  Potential 

examples are transplant centers and donor hospitals.  Although LivSim was first written 

and implemented at the DSA level, it is extensibility allows transplant centers and donor 

hospitals to be modeled as characteristics of patients and donors.  This can provide 

additional enrichment to the acceptance models, allocation rules, and geographic sharing 

structures. 

4. Modifying sharing policies or allocation rules 

If the user wishes to keep existing sharing policies (e.g. Share 15 and Share 35) 

but change the respective thresholds, this can be done my modifying the corresponding 
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constants in the Allocate function.  If the user wishes to make any other changes to how 

the match run is created, changing how the offer list is compiled and sorted is also 

straightforward. The user can sort by another characteristic (instead of allocation MELD), 

compile lists in different order (e.g. Share 35 national, followed by MELD 15-35 local, 

etc.) Additionally, if the user wishes to alter compatibility/cross-matching criteria, this 

can be accomplished by adding additional constraints to the MatchCheck function. 

The Offer function is general.  The user can replace it with a very general 

acceptance model (e.g. transplant-center specific), function, or even another decision 

simulation provided that it returns the final outcome of the acceptance/rejection decision.   

5. Add additional statistics 

Adding additional statistics needs to be carefully done as well.  First, the user will 

need to modify the global variable class and specify the dimensions of the output for the 

statistic. The dimensions should account for additional columns to make the output 

meaningful, for example, the simulation replication and year.  Second, if the statistics is 

be updated after each replication or replication-year, it needs to be added to the SimStat 

class. Third, the statistic, if again replication- or replication-year-dependent, needs to be 

initialized at the beginning of each replication when an instance of SimStat is created. 

Fourth, the code for calculating the statistic will be required.  This step will vary based on 

the purpose and nature of the statistic, but code will likely have to be added to some event 

call (e.g. the number of patient arrivals is updated during the patient Arrival event).  

Fifth, if the statistic is replication-year or replication dependent, the statistic will have to 

be processed during the End-of-Year or End-of-Replication events respectively. 

Processing entails the formatting the statistic (e.g. adding headers and helpful columns 
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such as the replication number, etc.); the writing of the statistic to the output; and clearing 

or re-initializing the statistic for the next replication or replication-year. If not replication-

dependent, the statistic can be written directly to the output when calculated. Lastly, the 

user then needs to add code at the end of the simulation to write the output to the 

appropriate directory. 

3 POSTPROCESSING 

The standard files for LivSim estimate OPTN behavior and waitlist outcomes.  Analysis 

of transplant outcomes is done outside LivSim through post-processing of LivSim output using 

LSAM input files.  Output delivered from post-processing includes: 

1. The number of post-transplant and post-re-transplant mortalities by year  

2. Numbers of relists and re-transplants by year 

3. Average organ transport distances, times, and mode of transport (drive, plane, or 

helicopter) by year 

The files used for each of these items are found in PostTransplantDeathEstimator.py, 

OutcomesEstimator_Relists_Regrafts.py, and DistanceEstimator.py and are discussed below. 

3.1 POST-TRANSPLANT OUTCOMES 

 The source code for calculating post-transplant outcomes is in 

PostTransplantDeathEstimator.py. The user will need the following files from both LivSim and 

LSAM to run the code: 

FROM LIVSIM: Items 23, 24, and 25 from Section 2.1.3 and Items 13, 14, and 15 from Section 
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2.1.2 

FROM LSAM: The input files for patients, status changes, and the initial waitlist. 

The donor id  and patient id variables in both files must match.  The modules will scan the 

LSAM files to retrieve appropriate donor and patient characteristics for the survival 

computations. After obtaining the necessary files, the user will have to modify the pathnames in 

PostTransplantDeathEstimator.py.  Next, the user will have to select the number of replications 

to bootstrap, nreps, and the run-length (years) in which survival will be assessed, maxtime.  

Afterwards, running the code will return the average number of post-transplant mortalities by 

replication and the standard error. 

 Calculation of post-transplant survival in LivSim matches that of LSAM45.  The survival 

model is a Cox model step function that determines patient survival according to:  

                                  (3) 

where   is the survival time,      is the baseline-survival step-function,   is the vector of 

covariates in the survival model, and   is the corresponding coefficient-vector for the covariates.  

The list of covariates and their coefficients are provided in Table 11.  Consider a partition of the 

interval  [    ̅ into   subintervals [      [       [      ]̅ and let each subinterval   be 

associated with a survival probability   . The step-function      returns    such that   

[        .  Moreover, it is assumed that        ,     , and   =0  (i.e. the set of   ’s 

partition the interval [    ). 

 For each transplant event, the remaining survival time is calculated by sampling value   
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from a standard uniform distribution and inverting the complementary cdf of  : 

                   (
     

   
)               (3) 

where     is defined by the authors as    where   is      {   (
     

   
)  [        }  Each 

replication performed will sample a different value of   and calculate the survival time   for that 

transplant recipient. If the sum of   and the current time of transplant is less than maxtime, death 

for the corresponding recipient during the time period is indicated.   

3.2 RELIST AND RE-TRANSPLANT OUTCOMES 

The source code for calculating relist and re-transplant outcomes is in 

OutcomesEstimator_Relists_Regrafts.py.  The structure of the code is very similar to that of the 

calculation for post-transplant outcomes discussed in the previous section.  The user will need 

the following files from both LivSim and LSAM to run the code: 

FROM LIVSIM: Items 19 and 20 from Section 2.1.3 and Items 13, 14, and 15 from Section 2.1.2 

FROM LSAM: The input files for patients, status changes, and the initial waitlist. 

The donor id  and patient id variables in both files must match.  The modules will scan the 

LSAM files to retrieve appropriate donor and patient characteristics for the computations. After 

obtaining the necessary files, the user will have to modify the pathnames in 

OutcomesEstimator_Relists_Regrafts.py.  Next, the user will have to select the number of 

replications to bootstrap, nreps, and the run-length (years) in which survival will be assessed, 

maxtime.  These selections affect the computation for the average number of re-transplant 

mortalities by replication and the standard error. Also, the user will have to input the probability 
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that a relist candidate will die on the waitlist (dprob, default is about 15.2% based on OPTN 

data). 

 This code performs two calculations: the average number of mortalities for relist 

candidates and the average number of post-transplant mortalities for re-transplant candidates.  

The latter calculation proceeds exactly similar to the post-transplant survival calculation 

discussed in the previous section.    For the former calculation, any candidate that either was 

relisted (but not re-transplanted) or flagged by LivSim during the main run that he or she will 

eventually relist will be considered.  The code will first determine whether the candidate was 

relisted (i.e. 1st graft failed before the end of the run or equivalently that the candidate’s 

RelistTxTime method is less than maxtime).  Next, using a uniformly distributed random 

number  , the code will indicate that the candidate’s death if    dprob.  The computation will 

be repeated for the selected number of replications and the average number of mortalities and 

standard errors will be reported. 

3.3 DISTANCE-RELATED OUTCOMES 

The source code for calculating transport times, distances, and mode is found in 

DistanceEstimator.py.  The user will need the following files from both LivSim and LSAM to 

run the code: 

FROM LIVSIM: Item 20 from Section 2.1.3  

FROM LSAM: The input files for patients, status changes, the initial waitlist, and the 

distance/times file containing the transport distances/times/modes for each transplant center-

donor hospital combination. 
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The donor id  and patient id variables in both files must match.  The modules will scan the 

LSAM files to retrieve appropriate donor and patient characteristics for the survival 

computations. 

 An alternative version of the code not requiring LSAM data, but using DSA-to-DSA 

averages instead of transplant center-donor hospital combinations is available in the Appendix.  

This code will only require Items 20 and 24 from Section 2.1.3 and Item 1 in Section 2.1.2.  

Moreover, if the user wishes to calculation distance-related measures for re-transplants, Item 20 

may be replaced with Item 24 from Section 2.1.3. 

After obtaining the necessary files, the user will have to modify the pathnames in 

DistanceEstimator.py.  The code will then process each transplant event that occurred during the 

main LivSim run.  For each transplant event, it will retrieve a corresponding donor hospital -

transplant center combination from the LSAM files.  Users may also request that a random donor 

hospital-transplant center combination with the constraints that the donor hospital and transplant 

centers are located in the DSAs corresponding to the organ’s and patient’s DSA method 

respectively.  Using a donor hospital-transplant center combination, the code will determine the 

transport time, distance, and mode (helicopter, drive, and airplane) for the transplant event.  

After processing all the transplant events, the code will output summary statistics for the average 

transport distance, average transport time, percentage driven, percentage flown by helicopter, 

and percentage flown by airplane. 

4 APPENDIX 

4.1 Reduced Form Acceptance Model 
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This alternative acceptance model and code may be used to avoid using LSAM inputs. 

The acceptance model uses LSAM’s coefficients for whether the potential recipient is Status 1, 

the potential recipient’s waiting time, whether the potential recipient is listed in the DSA of the 

procuring OPO, and donor blood type and assumes all other patient attributes are held at the 

baseline.  These four sets of coefficients included are also the four most significant predictors in 

LSAM’s acceptance model. 

Table 37: Reduced Form Acceptance Model Coefficients 

Characteristic Coefficient 

Constant -2.88843 

Status 1 = True 1.0889 

Local Transplant = True 0.7619 

Donor Blood Type = AB 0.75528 

Donor Blood Type = B 0.6677 

Waiting Time (years) -0.08531145 

 

def Offer(offered_organ, matching_recipient): 

    #This function offers an organ to a patient and returns information based 

on acceptance/rejection 

    accept =1 

    #Generate acceptance decision 

    r1 = nump.random.uniform(0,1,1) 

 

    #Characteristcs 

    patientx = [1, matching_recipient.Status1, int(matching_recipient.DSA == 

offered_organ.DSA),int(1== offered_organ.ABO),int(2== 

offered_organ.ABO),(Sim.clock-matching_recipient.create_time)] 

    accept_prob = nump.exp(nump.dot(patientx,AcceptanceModel)) / 

(1+nump.exp(nump.dot(patientx,AcceptanceModel))) 

    #accept_prob = .05 

    accept = int(r1 <= accept_prob) 

    #Return information based on decision 
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    if accept ==1: 

        return [1,0,matching_recipient.DSA, matching_recipient.id] 

 

    else: 

        return [0,1,[],[]] 

 

 

4.2 Alternative Distance Code 

An alternative version of the distance code not requiring LSAM data, but using DSA-to-

DSA averages instead of transplant center-donor hospital combinations is available in the 

Appendix.  This code will only require Items 20 and 24 from Section 2.1.3 and Item 1 in Section 

2.1.2.   

#This code estimates distances, times, and mode of transport 

import numpy as nump 

import time 

import csv 

import scipy as scip 

import datetime 

import operator 

import sys 

import queue 

from copy import deepcopy 

from matplotlib.dates import strpdate2num 

 

#Paramters 

ndsa =58 

nump.random.seed(7777) 

nreps =5 

 

 

#Load data from LivSimPlayback 

transplants = nump.loadtxt("RawOutput_DSAs.txt") 

 

#Load distance-time-mode data 

data = nump.loadtxt("distancetimes.txt") 

 

 

 

 

 

#Setup data 

dis_data = [[[] for i in range(0,ndsa)] for j in range(0,ndsa)] 
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time_data = [[[] for i in range(0,ndsa)] for j in range(0,ndsa)] 

mode_data = [[[] for i in range(0,ndsa)] for j in range(0,ndsa)] 

 

 

for i in range(0,nump.shape(data)[0]): 

    opo = int(data[i,0]) 

    txdsa =  int(data[i,1]) 

    dis_data[opo][txdsa].append(data[i,2]) 

    time_data[opo][txdsa].append(data[i,3]) 

    mode_data[opo][txdsa].append(data[i,4]) 

 

#Prepare Output 

distances = [] 

times = [] 

drives =[] 

helicopters = [] 

airplanes = [] 

 

 

 

#Perform Estimation 

txtotal = (nump.sum(transplants)) 

 

for n in range(0,nreps): 

    moment1_distance  =0 

    moment1_time  =0 

 

    count_drive  =0 

    count_helicopter  =0 

    count_airplane  =0 

 

    for i in range(0,ndsa): 

        for j in range(0,ndsa): 

            if int(transplants[i,j]) <=0: 

                pass 

            else: 

                for k in range(0,int(transplants[i,j])): 

                    #Select random donor-hospital and tx-ctr combination 

                    if len(dis_data[i][j]) >0: 

                        randindex = 

nump.random.choice(list(range(0,len(dis_data[i][j])))) 

 

                        #Update Stats 

                        moment1_distance = moment1_distance + 

dis_data[i][j][randindex] 

 

                        moment1_time = moment1_time + 

time_data[i][j][randindex] 

 

 

                        count_drive  =count_drive + 

int(mode_data[i][j][randindex]==0) 

                        count_helicopter  =count_helicopter + 

int(mode_data[i][j][randindex]==1) 
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                        count_airplane  =count_airplane + 

int(mode_data[i][j][randindex]==2) 

 

    distances.append(moment1_distance/txtotal) 

    times.append(moment1_time/txtotal) 

    drives.append(count_drive/txtotal) 

    helicopters.append(count_helicopter/txtotal) 

    airplanes.append(count_airplane/txtotal) 

 

#Output Results 

output1 = ["Distances (Avg, SE)", 

nump.mean(distances),nump.std(distances)/nump.sqrt(nreps)] 

output2 = ["Times (Avg, SE)", 

nump.mean(times),nump.std(times)/nump.sqrt(nreps)] 

output3 = ["Drive% (Avg, SE)", 

nump.mean(drives),nump.std(drives)/nump.sqrt(nreps)] 

output4 = ["Helicopter% (Avg, SE)", 

nump.mean(helicopters),nump.std(helicopters)/nump.sqrt(nreps)] 

output5 = ["Airplane% (Avg, SE)", 

nump.mean(airplanes),nump.std(airplanes)/nump.sqrt(nreps)] 

 

final_output = [output1,output2,output3,output4,output5] 

 

text_file = open("Output_distancestimesmodels.txt", "w") 

for item in final_output: 

  text_file.write("%s\n" % item) 

 

 

 

 

 

 


