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Abstract

This dissertation leverages methodologies from computer science to understand sources of

complexity in economic theory. Chapter 1 considers time complexity: how much time is

needed to make a decision. Chapters 2 and 3 consider informational complexity: how much

and what kind of data is needed to make a decision. I argue that this line of work is critical

for our understanding of economic behavior. The fact that economic models often assume

agents are capable of very complex behaviors can lead to predictions and policy recommen-

dations that are themselves quite complex. Through applications in decision theory and

mechanism design, this work aims to help distinguish predictions and recommendations that

are unrealistically complex from those that are at least plausible.
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Preface

This dissertation leverages methodologies from computer science to understand sources of

complexity in economic theory. Chapter 1 considers time complexity: how much time is

needed to make a decision. Chapters 2 and 3 consider informational complexity: how much

and what kind of data is needed to make a decision. I consider the implications of these

different sources of complexity for different economic settings. Chapter 1 focuses on appli-

cations in decision theory and behavioral economics, whereas Chapters 2 and 3 focus on

applications in mechanism design.

In Chapter 1 on “Computationally Tractable Choice”, I develop theoretical foundations

for behavioral heuristics by bringing powerful models of computation to decision theory.

Specifically, I propose a new kind of axiom – computational tractability – and apply it to a

model of choice under risk. This axiom is quite weak: it only rules out behaviors that are

thought to be implausible for any algorithm to exhibit in a reasonable amount of time. If

a decisionmaker could make intractable choices, we could convert those choices into efficient

solutions to problems of significant importance to science and industry, for which no efficient

solutions are known.

First, I use this framework to show that, under standard rationality assumptions, com-

putational constraints necessarily lead to forms of choice bracketing (a common behavioral

heuristic). If a decisionmaker’s choices are rational (i.e. maximize expected utility) and

tractable, I show that her choices are observationally equivalent to forms of choice bracket-

ing. Equivalently, I show that expected utility maximization is intractable unless the utility

function satisfies a strong separability property. This demonstrates that even mild com-

putational constraints can substantially sharpen our predictions about the decisionmaker’s

behavior relative to rationality alone.

Second, I use these results to give a formal justification for behavior that violates the
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expected utility axioms. Consider a decisionmaker who wants to maximize the expected

value of an objective function that happens to be intractable. For many such objective

functions, I show that a computationally-constrained decisionmaker cannot simultaneously

(i) guarantee any non-zero fraction of her optimal payoff and (ii) have revealed preferences

that satisfy the expected utility axioms. Then I show that the decisionmaker can guarantee a

reasonable payoff, but only by using heuristics that an outside observer would not recognize

as rational.

The remaining chapters lay the foundation for a theory of data-driven mechanism design.

Both consider incomplete information games between a policymaker who sets a policy, an

agent who responds, and a hidden state of nature. In line with the longstanding Wilson

critique, these papers take the position that neither policymakers nor agents are likely to

have a perfect understanding of the world. But, in contrast to more conservative approaches

in robust mechanism design, they do not insist on mechanisms that are entirely detail-

free. Instead, they observe that any available data can be used by the policymaker to (i)

learn about the world and (ii) make more credible assumptions about the agent’s beliefs.

Formalizing this requires new ideas from statistical learning.

In Chapter 2 on “Mechanisms for a No-Regret Agent” (with Jason Hartline and Aleck

Johnsen), we replace common knowledge with common history: data accumulated over time

through repeated interaction between the policymaker and agent. The state is revealed after

every period, but we make no other assumptions on the state-generating process. We develop

calibrated policies that adapt to historical data over time, assuming the agent does the same,

even if the data is highly non-stationary. This requires new behavioral assumptions that build

on prior work on learning in games and capture ideas like “rationality” and “unpredictability”

in a fully ex post sense.

In Chapter 3 on “Mechanism Design with a Common Dataset”, I replace common knowl-

edge with a common dataset: a random sample of states. The high-level idea is straight-
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forward: if the data convincingly demonstrates some fact about the world, the agent should

believe that fact. To formalize this, I rely on tools from statistical learning theory that

characterize the complexity of learning an optimal response to a given policy. I propose a

penalized policy that performs well under weak assumptions on how the agent learns from

data, where policies that are too complex are penalized if they lead to unpredictable responses

by the agent. This leads to new insights in models of vaccine distribution, prescription drug

approval, performance pay, and product bundling.
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Chapter 1

Computationally Tractable Choice

1.1 Introduction

Any decisionmaker has a limited amount of time to make decisions, whether that means

seconds or a lifetime. Yet, making good decisions can be time-intensive. This paper explores

the implications of these two facts by integrating computational constraints into decision

theory.

For context, observe that making good decisions can be especially time-intensive when

considering many related decisions at once. For example, consider a consumer choosing from

hundreds of products in a grocery store or an investor trading in dozens of assets. To ensure

that they make decisions in a reasonable amount of time, people tend to narrowly frame

their choices; they rely on heuristics like choice bracketing or mental accounting to break

down complicated decisions into many simpler ones (see e.g. Tversky and Kahneman 1981;

Rabin and Weizsäcker 2009). This can have a meaningful economic impact (see e.g. Choi

et al. 2009; Hastings and Shapiro 2018).

To better understand these heuristics – and the broader implications of computational

constraints for behavior – I propose a model of computationally tractable choice. Specifically,

I impose an axiom of computational tractability in a model of choice under risk. This axiom is

quite weak: it only rules out behaviors that are thought to be implausible for any algorithm

to exhibit in a reasonable amount of time. If a decisionmaker could make intractable choices,

we could convert those choices into efficient solutions to problems of significant importance
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to science and industry. Despite great effort, there are no known efficient solutions to these

problems.

I use this framework of computationally tractable choice to obtain two kinds of results.

First, I show that, under standard rationality assumptions, computational constraints nec-

essarily lead to forms of choice bracketing. If a decisionmaker’s choices are rational (i.e.

maximize expected utility) and tractable, I show that her choices are observationally equiv-

alent to forms of choice bracketing. Equivalently, I show that expected utility maximization

is intractable unless the utility function satisfies a strong separability property. This demon-

strates that even mild computational constraints, like tractability, can substantially sharpen

our predictions about the decisionmaker’s behavior relative to rationality alone.

Second, I use these results to give a formal justification for behavior that violates the

expected utility axioms. Suppose a decisionmaker wants to maximize the expected value of

a given objective function. If her objective function is not separable, my earlier results imply

that exact optimization is intractable. What are the implications for her behavior? For

many objective functions, I show that a computationally-constrained decisionmaker cannot

simultaneously (i) guarantee any non-zero fraction of her optimal payoff and (ii) have revealed

preferences that satisfy the expected utility axioms. The decisionmaker can guarantee a

reasonable payoff, but only by using heuristics that an outside observer would not recognize

as rational.

I now discuss the model and results in more detail.

Model. I consider a model of choice under risk. A decisionmaker cares about high-

dimensional random vectors X = (X1, . . . , Xn). A choice correspondence maps a menu

of feasible options to the decisionmaker’s choices X from that menu. This correspondence

must be defined over at least all binary menus, as well as product menus in which it is feasible

(but not necessarily optimal) to choose Xi independently of Xj. I call choices rational if
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they maximize expected utility for some continuous utility function (von Neumann and O.

Morgenstern 1944).

I refer to two running examples: one represents utility functions that satisfy a symmetry

property; another represents utility functions that do not. This distinction will soon be use-

ful. In the first example, an investor has preferences over income Xi from assets i = 1, . . . , n.

In the second example, a consumer has preferences over consumption bundles, where Xi

represents the quantity consumed of good i. In general, the decisionmaker’s choices are

symmetric if she is indifferent between the vectors (Xi, Xj) and (Xj, Xi). Symmetry may be

plausible for investors: income from one asset i is interchangeable with income from another

asset j. It is not plausible for consumers: commodities are not usually interchangeable.

Next, I introduce computation. The decisionmaker’s choices are generated by a Turing

machine, a powerful model of computation used in computational complexity theory to study

what algorithms can and cannot do. Given an appropriate description of a menu, the Turing

machine outputs a choice from that menu within a certain amount of time. This represents

the state of the art: up to variations, the Turing machine is the most powerful model of

computation to date. The Church-Turing thesis captures the sense in which the Turing

machine is thought to be universal.1

A choice correspondence is tractable if it can be generated by a Turing machine within

a reasonable amount of time. I use a definition of “reasonable” that has proven itself useful

in computer science. The decisionmaker is allowed to take longer when facing a menu that

is more complicated to describe, but the time taken must grow at most polynomially in

the length of the description.This definition is used in computational complexity theory to
1Strictly speaking, it is not necessary for choices to be generated by a Turing machine for the results in

this paper to hold. All that is necessary is that people with access to a computer are unable to efficiently
solve problems that are thought to be fundamentally hard. On the other hand, suppose some person can
make choices that I label intractable. Then, using the results in this paper, we could leverage that person’s
choices to efficiently solve problems that are thought to be fundamentally hard. If anything, that would
increase the significance of this paper.
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distinguish problems that computers can plausibly solve from ones that they cannot. I pair

this definition with computational hardness conjectures, like P 6= NP. Conjectures like

these are commonly used in computational complexity theory to argue that computational

problems are intractable.

Next, I consider what this framework can tell us about behavior.

Narrow Choice Bracketing. First, I ask: what are the implications of rationality,

tractability, and symmetry for behavior? This case is a useful warmup for the next re-

sult, which drops the symmetry assumption. It is also important in its own right, as the

investor example illustrates.

The answer to my question is “narrow choice bracketing”. A decisionmaker narrowly

choice brackets if her choice Xi does not depend on her choice Xj. This procedure is well-

defined (but not necessarily optimal) on product menus. Theorem 1 shows that rational,

tractable, and symmetric choice correspondences are observationally equivalent to narrow

choice bracketing. Figure 1.1 illustrates. Equivalently, this result shows that expected utility

maximization is intractable unless the utility function is additively separable, i.e. u(x) =

u1(x1) + . . .+ un(xn).

It is worth emphasizing that this result is quite strong, despite the fact that (as I argued

earlier) the tractability assumption is remarkably weak. Without tractability, the agent is

restricted to any continuous and symmetric utility function. Additive separability is much

stronger than that. For example, if the investor cares about total income X1 + . . . + Xn,

additive separability implies risk neutrality.2 The strength of this result illustrates two things:

(i) tractability can significantly sharpen our predictions about behavior, and (ii) rationality

appears to be a strong assumption, in the presence of computational constraints that are
2Keep in mind that this is a model of choice under risk. The von Neumann-Morgenstern utility function

is cardinal, not ordinal. Monotone transformations of additively separable utility functions are generally not
additively separable.
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Narrow choice
bracketing

Rational Tractable

Symmetric

Figure 1.1: This diagram depicts the space of choice correspondences. The blue region
consists of rational choice correspondences, the red region consists of tractable choice cor-
respondences, and the yellow region consists of symmetric choice correspondences. The
intersection of these three regions corresponds to narrow choice bracketing.

often missing from our models but likely to bind in practice. I will substantiate the second

point after completing the analysis of rational and tractable choice.

Next, I generalize Theorem 1 by dropping the symmetry assumption.

Dynamic Choice Bracketing. I generalize choice bracketing to dynamic choice bracket-

ing. In the spirit of dynamic programming, the decisionmaker considers choices Xi sequen-

tially. Her choice of Xi only depends on a small number of choices Xj that she has not yet

considered, even if it depends on more choices Xk that she has already considered. These

heuristics preserve the computational advantages of choice bracketing but allows for richer

patterns of behavior.

I illustrate dynamic choice bracketing in a simple example. I cannot use the investor

example, because investor choices are likely to be symmetric, in which case dynamic choice

bracketing is equivalent to narrow choice bracketing.Instead, consider the consumer example.

Let the consumer have preferences over (i) location, (ii) sunscreen, and (iii) winter coats.

Even if her preferences over sunscreen and coats are separable, the availability of sunscreen

may influence her need for a coat by affecting where she wants to live. She can dynamically
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Dynamic choice
bracketingRational Tractable

Figure 1.2: This diagram depicts the space of choice correspondences. The blue region con-
sists of rational choice correspondences and the red region consists of tractable choice corre-
spondences. The intersection of these two regions corresponds to dynamic choice bracketing.

bracket her choices by making a consumption plan conditional on her location, consistent

with narrow choice bracketing, and only then deciding where to live.

Theorems 2 and 3 show that any rational and tractable choice correspondence is obser-

vationally equivalent to dynamic choice bracketing.3 Figure 1.2 illustrates. As in Theorem

1, it is useful to restate this result in terms of a separability property. Theorem 2 shows

that expected utility maximization is intractable unless the utility function is Hadwiger sep-

arable. This property is a novel relaxation of additive separability that allows for some

complementarity and substitutibility across decisions, but limits their frequency. Like addi-

tive separability, this is a strong restriction relative to rationality, which only requires that

the utility function be continuous.

Together, Theorems 1, 2, and 3 form the first main contribution of this paper. They artic-

ulate the implications of computational constraints for behavior under standard rationality

assumptions. In doing so, they demonstrate that a behavioral heuristic – choice bracketing

– is not only consistent with but predicted by an essentially standard model of choice with

mild computational constraints.

Next, I turn to the second main contribution, which builds on these results.
3More precisely, it corresponds to relatively narrow dynamic choice bracketing. Dynamic choice bracketing

can be broad or narrow, just as choice bracketing can be broad or narrow. This will be clear later in the
paper.
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Choice Trilemma. Having explored the implications of tractability for rational choice, I

can now revisit a normative question: should a decisionmaker satisfy the expected utility

axioms?

To formalize this, suppose a decisionmaker intrinsically wants to maximize the expected

value of a given objective function. If her objective happens to be Hadwiger separable,

Theorem 3 implies that her optimal choices are tractable. If not, Theorem 2 implies that

optimization is intractable. In that case, the decisionmaker could still make choices that

appear rational to an outside observer, insofar as they can be rationalized by preferences that

satisfy the expected utility axioms. However, her revealed preferences would not match her

true preferences. Alternatively, she could turn to approximation algorithms that guarantee

her a positive fraction of her optimal payoff. However, her choices may not appear rational

to an outside observer.

Theorem 4 shows that, for many objective functions, no rational and tractable choice

correspondence can guarantee a non-zero fraction of the decisionmaker’s optimal payoff.

However, there do exist tractable approximation algorithms that can guarantee a meaningful

fraction of her optimal payoff. These approximation algorithms violate the expected utility

axioms: they do not maximize expected utility for any continuous utility function. They

range from greedy algorithms that violate the continuity axiom to randomized algorithms

that involve stochastic choice.

Altogether, my results imply an impossibility result, or choice trilemma, that relates three

properties of choice. Figure 1.3 illustrates.4 For many objectives, a choice correspondence

can be tractable and approximately optimal, in that it guarantees a meaningful fraction

of the optimal payoff (e.g. one-half or two-thirds). It can be tractable and rational if the

agent is willing to dynamically choice bracket, in which case her revealed preferences are
4This figure was inspired by a similar figure in Akbarpour and Li (2020). The same is true for the term

“trilemma”.
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Hadwiger separable. But it cannot satisfy all three properties at once. Given tractability,

choice correspondences that perform well according to the decisionmaker’s true objective

cannot be rationalized by preferences that satisfy the expected utility axioms.

approximation
algorithms

Rational

Tractable
Approx.

optimal

dynamic
choice

bracketing

exactly
optimal

∅

Figure 1.3: This diagram depicts the choice trilemma. The blue region connecting rational-
ity and approximate optimality includes the traditional assumption of exact optimization.
The green region connecting tractability and approximate optimality corresponds to ap-
proximation algorithms studied in computer science. The red region connecting rationality
and tractability corresponds to dynamic choice bracketing. The ∅ symbol says that the
intersection of all three regions is empty.

Related Literature. This paper contributes to three research efforts within economics. I

briefly discuss the related literature now, and provide a more detailed discussion in section

1.6.

First, I contribute to the literature on bounded rationality. Previous work has intro-

duced computational models of behavior in specific economic settings, such as repeated

games, learning, and contracting (see e.g. Rubinstein 1986, A. Wilson 2014, Jakobsen 2020,

respectively). Many papers rely on specialized models of computation, like finite automata,

that rule out behaviors that anyone with access to a computer should be capable of. In
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contrast, I apply a very general model of computation to a very general model of choice, and

still manage to obtain strong results.

The most related paper on bounded rationality is Echenique et al. (2011). Their revealed

preference approach to computational complexity anticipates the tractability axiom in this

paper. In a model of consumer choice, they show that, if a finite dataset of choices can

be rationalized at all, then it can be rationalized by tractable preferences. In contrast, I

consider a model of choice under risk and find that tractability rules out preferences that

are not Hadwiger separable.

Second, I contribute to the subfield of economics and computation, which uses models

from computer science to gain insight into economic phenomena. Computational complexity

theory has been applied to classic problems like mechanism design, Nash equilibrium, and

learning (see e.g. Nisan and Ronen 2001, C. Daskalakis et al. 2009, Aragones et al. 2005,

respectively). In the same spirit, I apply similar methods to another classic problem: choice

under risk.

Third, I contribute to the literature on choice bracketing and related phenomena. There

is a sizable experimental and non-experimental literature that finds empirical evidence of

narrow framing, including choice bracketing, mental accounting, and myopic loss aversion.

There is also a small but growing theoretical literature that includes an axiomatic foundation

without computational constraints (Zhang 2021) and models of rational inattention (Köszegi

and Matějka 2020; Lian 2020).

Overview for Computer Scientists. The computational results in this paper appear to

be new and may be of independent interest to theoretical computer scientists.

I prove dichotomy theorems, in the sense of Schaefer (1978). I consider a large class

of computational problems that correspond to expected utility maximization on product

menus. Let u-EUM denote expected utility maximization with symmetric utility function
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u. Restricting attention to symmetric utility functions u, Theorem 1 shows that if u is not

additively separable then u-EUM is NP-hard. Proposition 2 shows that if u is additively

separable then u-EUM is tractable.

I can generalize to asymmetric utility functions if I model the decisionmaker as a Turing

machine with advice, following the literature on non-uniform complexity. If the non-uniform

exponential-time hypothesis holds, Theorem 2 shows that if u is not Hadwiger separable

then u-EUM is not tractable. Theorem 3 shows that if u is Hadwiger separable then u-EUM

is tractable.

Theorem 3 is especially noteworthy as a fixed-parameter tractability result. I propose

a graph-theoretic measure of how separable a utility function is, based on the Hadwiger

number. Holding that measure fixed, I show that a suitable dynamic programming algorithm

can efficiently maximize expected utility. This appears to be distinct from existing graph-

based dynamic programming algorithms that rely on stronger sparsity assumptions based

on treewidth.

Finally, Theorem 4 establishes a gap like the revelation gap of Feng and Hartline (2018),

except even larger. I identify objective functions u where there exist constant factor approxi-

mation algorithms to u-EUM. However, unless NP ⊂ P/poly, there exists no constant factor

approximation algorithm that satisfies a standard rationality property.

Organization. The paper is organized as follows. Section 1.2 introduces the model of

choice under risk and specializes it to high-dimensional settings. Subsections 1.2.2 through

1.2.5 introduce the computational model of choice, along with the necessary background

for readers new to computational complexity. Section 1.3 relates rationality, tractability,

and symmetry to narrow choice bracketing, and additive separability. Section 1.4 relates

rationality and tractability to dynamic choice bracketing, and Hadwiger separability. Section

1.5 establishes the choice trilemma. Section 1.6 surveys the related literature. Section 1.7
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concludes. Omitted proofs can be found in Appendix ??.

1.2 Model

I introduce a standard model of choice under risk and specialize it to focus on high-dimensional

problems where a decisionmaker has many decisions to make. Then I formalize choice as a

computational problem, introducing the necessary definitions and concepts along the way.

A decisionmaker is tasked with choosing a lottery X from a finite menu M of feasible

lotteries. The lottery X is a random variable that takes on values in a compact space of

outcomes X . Formally, let (Ω,F , P ) be a probability space where the sample space Ω = [0, 1]

is the unit interval, F is the Borel σ-algebra, and P is the Lebesgue measure. A lottery X

is a map from the sample space Ω to the outcome space X . I restrict attention to lotteries

that can be described using a finite number of characters, in the following sense.

Assumption 1. I restrict attention to lotteries X whose support is finite and, for every

outcome x in the support, X−1(x) is a finite union of intervals (open or closed).

A choice correspondence c describes the agent’s behavior. If the agent is presented with

menu M , then c(M) describes her choices from that menu. Formally, a collection of menus

M describes the universe of possible menus an agent may be presented with. A choice

correspondence c maps menus M ∈M to lotteries X ∈M , where c(M) ⊆M and c(M) 6= ∅

for every M ∈ M. That is, the agent’s choices X ∈ c(M) must be belong to menu M , and

the agent always chooses at least one lottery X ∈ M from every menu M ∈ M. If c(M)

contains two or more lotteries, this is interpreted as the agent being indifferent between those

lotteries,

The collection M is interpreted as a collection of menus that the decisionmaker could

potentially be faced with. This is a potential outcomes interpretation, where c(M) is the

decisionmaker’s choice in the hypothetical where she is presented with menu M .
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Definition 1. A choice correspondence c is rational if there exists a continuous, cardinal

utility function u : X → R such that

∀M ∈M, c(M) = arg max
X∈M

E[u(X)]

This is the notion of rationality that was axiomatized by von Neumann and O. Mor-

genstern (1944) (see Mas-Collell et al. 1995, chapter 6 for a standard textbook treatment).

As usual, this does not mean that the decisionmaker explicitly performs any calculations,

or that the decisionmaker has an intrinsic objective function that she wants to maximize.

It only says that the agent’s behavior can be rationalized by preferences that satisfy the

expected utility axioms. In that case, they can be represented as if they maximize expected

utility for some continuous utility function u that is u is revealed from the agent’s choices.

Many behavioral heuristics are rational under this definition, include satisficing, consider-

ation sets, and choice bracketing (see Proposition 2). However, the revealed utility function

u may appear odd or detached from the agent’s economic incentives.5 That is not a problem

for this paper: the less restrictive the definition of rationality, the stronger my results.

Assumption 2. The collection M includes all binary menus (i.e. those with at most two

lotteries).

This assumption ensures that a rational choice correspondence c uniquely identifies its

revealed utility function u, up to affine transformation.

1.2.1 High-Dimensional Choice

I specialize this model of choice under risk to focus on high-dimensional choices. This is

intended to capture settings in which a decisionmaker is tasked with making many different
5For example, the utility function u that rationalizes choice bracketing may not respect the fungibility

of money. If the outcome X ∈ Rn is a vector of incomes from n assets, u may depend on more than total
income X1 + . . .+Xn.
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decisions. Many settings have this flavor. Consider a consumer that decides how much to

purchase of many different goods, or an investor that decides how much to invest in many

different assets.

Outcomes x are arbitrarily high-dimensional vectors. I restrict attention to rational-

valued vectors, i.e. xi ∈ Q, because they can always be described by a finite number of

characters. Formally, the set X n of n-dimensional outcomes is

X n = {x ∈ Q ∩ [0, 1]∞ | xi = 0,∀i > n}

The outcome space X is the union of n-dimensional outcomes for all n >∞. Formally,

X =
∞⋃
n=1

X n

There is an implicit assumption being made here. Consider a consumer with preferences

over bundles X. I assume that her preferences over goods i < n do not depend on whether

there are n or N goods available, if she consumes none of goods n + 1, . . . , N either way

(that is, if xi = 0 for i = n+ 1, . . . , N). In other words, if she prefers apples to oranges in a

local corner store, she should not change her mind when purchasing those two items from a

large grocery store.

A lottery over n-dimensional outcomes is effectively an n-dimensional random vector

X = (X1, . . . , Xn, 0, 0, . . .)

where the partial lotteries Xi : Ω → [0, 1] are univariate random variables. These partial

lotteries Xi may be correlated, since they are defined on the same sample space Ω.

A partial menu Mi is a finite set of partial lotteries Xi.
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Definition 2. A product menu M is the Cartesian product of n partial menus Mi, i.e.

M = M1 × . . .×Mn × {0} × {0} . . .

In a sense, product menus are the simplest kind of high-dimensional menu. The fact that

it is possible to choose Xi ∈ Mi independently of Xj ∈ Mj means that a decisionmaker can

narrowly frame her choices without violating feasibility constraints. For that reason, product

menus are typically used in lab experiments that study choice bracketing (see e.g. Tversky

and Kahneman (1981), Rabin and Weizsäcker (2009)).

Assumption 3. The collectionM of menus includes all product menus.6

This assumption does not restrict the decisionmaker to product menus. The collection

M must include binary menus and product menus (assumptions 2 and 3). But it can also

include menus of other kinds, like menus with budget constraints. Enlarging the collection

M can only shrink the set of utility functions u for which expected utility maximization is

tractable.

1.2.2 Choice as Computation

From a computational perspective, a choice correspondence c describes a computational

problem.7 A menu is a particular instance of that problem. Choice is a process by which the

decisionmaker takes in a description of the menuM and outputs a chosen lottery X ∈ c(M).

I model the decisionmaker as a Turing machine TM whose choice correspondence cTM

reflects the output of TM. A Turing machine is an abstract model of computation that

takes in a string of characters and outputs another string. As depicted in figure 1.2.2, a
6This can be weakened slightly. I only require the collectionM to include all product menusM consisting

of binary partial menus Mi = {Xi, X
′
i}.

7In general, a choice correspondence may or may not be an optimization problem, but any rational choice
correspondence is an optimization problem since it is equivalent to expected utility maximization.
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Figure 1.4: A depiction of a Turing machine, in the process of reading entry 1 on its tape.

Turing machine consists of a program, a read/write head, and an input/output tape. The

tape is infinite and represents memory. The head can either modify a given entry of the

tape, move to the next entry of the tape, or move to the previous entry of the tape. The

program maintains a finite set of states and specifies a transition function. The transition

function maps the current state and the symbol on the current entry of the tape to a new

state and instructions for the head (shift left, shift right, or overwrite the current entry).

The initial contents of the tape represent the input and the program ends when a terminal

state is reached. The output is whatever is left on the tape.8

The Turing machine is a mathematically precise way to describe an algorithm, making

it possible prove results about what algorithms can and cannot do. As such, the reader is

welcome to think of the Turing machine as an algorithm written in their favorite all-purpose

programming language, like Python or Java. This is typically how Turing machines are

thought about in computer science. After all, most programming languages are Turing-

complete, which means that they can simulate any Turing machine. Conversely, the Church-

Turing thesis asserts that any physically-realizable computer can be simulated by a Turing

machine.

In modeling the decisionmaker as a Turing machine, I rely on a hypothesis that the cog-
8For a more formal definition of the Turing machine, please refer to any textbook on computational

complexity (e.g. S. Arora and Barak 2009, ch.1). Note that there are many variations on this model, but
most are formally equivalent.



CHAPTER 1. COMPUTATIONALLY TRACTABLE CHOICE 31

nitive process underlying human choice can be efficiently simulated with a Turing machine.

The analogy between the human brain and computation is not new to this work. Researchers

in computational neuroscience and elsewhere have long found value in taking an algorithmic

perspective on the nervous system (see e.g. Papadimitriou et al. 2020). It is beyond the

scope of this paper to evaluate whether that analogy is apt. However, it seems clear that

computational constraints are binding on the human brain, and the Turing machine is the

most compelling model of computation we have to date.

1.2.3 Representing Menus

Having modeled the decisionmaker as a Turing machine, I need to represent menus in a form

that is legible to her. I describe a menu M with a string s(M) of length `(M), written in

a standard alphabet. In principle, this could also be used to represent visual input from

scanning a restaurant menu or a shelf on the grocery store, or audio input from hearing a

list of options described.

The description s(·) is an essential primitive of this model. The same menu M described

in two different ways may have different computational properties. The following example

illustrates.

Example 1. This example conveys how the complexity of choice may depend on how the

menuM is described. Suppose an investor is offered a share in a large holding company that

consists of n subsidiaries. If she accepts, she receives payments XA, where XA
i denotes the

share of profits from subsidiary i. If she rejects, she receives payments of 0.

The investor’s choice is not especially complex if the holding company describes the

earnings potential of each of its subsidiaries in a natural way. For example, for each subsidiary

i, the holding company could describe each partial lottery XA
i in order from i = 1 to i = n.

It can describe partial lotteries as a list of claims like “in the event that ω ∈ [a, b], income is
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Xi(ω) = xi.”

The investor’s choice is more complex if the holding company tries to obfuscate. For

example, it could say “profits are high (xi = 1) if a particular instance of the traveling

salesman problem can be solved with a route of length k; otherwise profits are low (xi = 0).”

This would be sensible if, for example, the subsidiaries are trucking and shipping companies

where the ability find quick routes that visit multiple locations will directly affect profitability.

However, if the investor needs to solve the traveling salesman problem in order to decide

whether to invest, she is unlikely to invest optimally, because that problem is thought to be

fundamentally hard.9

I resolve this challenge by assuming, wherever possible, that menus are described in a

simple and systematic way. This biases my results towards being more conservative. After

all, it would be easy to argue that a choice correspondence is intractable if the menus are

presented in complicated or obfuscatory ways. Instead, I show that a choice correspondences

are intractable despite the fact that menus are presented in straightforward ways.

First, I specify the description s(M) of binary menus M .

Assumption 4. Let M be a binary menu.

1. Describe n-dimensional outcomes x as a list of values x1, . . . , xn in decimal notation.

2. Describe partial lotteries Xi as a list of triples [xi, a, b] where [a, b] ∈ Ω is an interval

of the sample space Ω = [0, 1] where Xi(ω) = xi.10

3. Describe n-dimensional lotteries X as an ordered list of partial lotteries X1, . . . , Xn.

4. The description s(M) is an ordered list of lotteries X ∈M .
9Thanks to Ehud Kalai for providing this example. Lipman (1999) studies a related problem where a

decisionmaker does not know all of the logical implications of the information she is presented with.
10This list is always finite, due to assumption 1.
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Next, I specify the description s(M) of product menus M . This description is efficient

since it takes advantage of the simple structure of product menus. In contrast, it would be

very inefficient to describe a product menu M in the way that I describe binary menus: list

every lottery X ∈M .11

Assumption 5. Let M be an n-dimensional product menu.

1. Describe partial lotteries as in assumption 4.

2. Describe partial menus Mi as a list of partial lotteries Xi.

3. The description s(M) is an ordered list of partial menus M1, . . . ,Mn.

My results hold for any function s(·) that is consistent with these two assumptions. To

be clear, if the collectionM includes menus M ′ that are neither binary nor product menus,

the set of tractable choice correspondences will generally depend on how s(M ′) is defined.

But my results only depend on how binary and product menus are described.

The description length `(M) is bounded by a function of three parameters. Let lotteries

X ∈M be n-dimensional. Let partial lotteries Xi be measurable with respect to m intervals

[ai, bi] ∈ Ω in the sample space. Finally, let partial menus Mi consist of k lotteries. Then

`(M) = O(nmk)

In contrast, the size of a product menu M is O(kn). This difference is what makes high-

dimensional optimization hard: product menus that can be described in only O(n) characters

require the agent to choose from as many as kn lotteries
11For example, suppose that each partial menuMi = {XA

i , X
B
i } is binary. The first entry in the list would

be XA
1 , X

A
2 , X

A
3 , . . ., the second entry would be XB

1 , X
A
2 , X

A
3 , . . ., the third entry would be XA

1 , X
B
2 , X

A
3 , . . .,

and so on. This is incredibly inefficient. For example, there would be 2n−1 redundant descriptions of the
partial lottery XA

i .
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1.2.4 Computationally Tractable Choice

A choice correspondence c is computationally tractable if there exists an algorithm that

computes the agent’s choice c(L) from any given menu L within a reasonable amount of

time.

Formally, the time it takes for the agent to make a choice cTM(M) from menu M is

the number of steps taken by TM before it arrives at its output. Let runtimeTM(M) de-

note that number of steps. It is natural that an agent should take more time to make a

decision on menus that have more lotteries or are otherwise more complicated. For this

reason, time constraints restrict how quickly the runtime increases as the menu becomes

more complicated.

Definition 3. A time constraint T is a function T : N → R+ that maps a menu M ’s

description length `(M) to a maximum allowable runtime, T (`(M)).

A Turing machine TM satisfies a time constraint T in a strong sense if

runtimeTM(M) ≤ T (`(M)) ∀M ∈M (1.1)

In a moment, I will use this to define a strong axiom of computational tractability.

It is also possible to satisfy a time constraint T in a weaker sense. This reflects the

notion that a decisionmaker may be adapted to a world in which menus M never exceed a

certain description length `(M). For example, one could hypothesize that the human brain

has evolved over time to choose over bundles with n ≤ N goods, where N is the maximum

number of goods that the consumer will ever encounter. As we will see in section 1.4, it can

sometimes help to know N before commiting to an algorithm for making choices, irrespective

of how large N is.

Formally, a Turing machine satisfies the time constraint in a weak sense if it requires
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additional input, called advice, to meet that constraint. An advice string Aj is associated

with a menu M with description length `(M) = j. This could reflect the output of any

pre-processing the decisionmaker does after learning the description length `(M) but before

learning the menu M . The Turing machine receives a menu-advice pair
(
M,A`(M)

)
as its

initial input, and satisfies time constraint T if

runtimeTM

(
M,A`(M)

)
≤ T (`(M)) ∀M ∈M (1.2)

I will use this to define a weak axiom of computational tractability.12

In order to define computational tractability, I need to specify a time constraint. This

involves taking a stand on what constitutes “a reasonable amount of time.” In doing so, I try

to adhere to two guiding principles. First, I want to err on the side of being conservative.

I prefer to label implausible behavior as tractable in order to avoid ruling out plausible

behavior as intractable. Second, I want to defer whenever possible to the current state of

the art in computer science.

Definition 4. The choice correspondence cTM is strongly tractable if the Turing machine

TM satisfies (1.1) for some time constraint T (k) that grows at most polynomially in k.

Definition 5. The choice correspondence cTM is weakly tractable if the Turing machine TM

satisfies (1.2) for some time constraint T (k) and advice Ak that grow at most polynomially

in k.

The notion that “polynomial time” defines the boundary between tractable and in-

tractable is common in computational complexity theory. This reflects a belief that any

algorithm whose runtime is exponential in k will take an unreasonable amount of time
12In computational complexity theory, Turing machines with advice are studied in the literature on non-

uniform time complexity. They are formally related to boolean circuits, another general model of computation
used in computer science (S. Arora and Barak 2009, ch.6).
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unless k is quite small. Clearly the converse is not true: an algorithm whose runtime is

polynomial in k need not be quick. For example, an algorithm that requires O(k100) steps

runs in polynomial time but is unlikely to be feasible in practice. Furthermore, even O(k)

problems, like adding two numbers, can be challenging for human beings if k is large. In

that sense, both definitions of tractability rule out only the very hardest problems.

It is also worth emphasizing that this is an asymptotic notion of computational tractabil-

ity. The time constraint bounds the rate at which the runtime increases as the description

length increases. There are good reasons for taking an asymptotic perspective. First, it does

not force us to make a precise assessment of how quickly the decisionmaker can process infor-

mation. From an asymptotic perspective, an intractable problem is intractable regardless of

whether the decisionmaker is a child or an expert aided by a supercomputer. Second, it does

not force us to specify exactly how complicated the decisionmaker’s menu M is. Suppose

M is an n-dimensional product menu, reflecting n individual decisions. How many decisions

does a person face in her lifetime? Clearly n is large; even a consumer entering a grocery

store faces hundreds if not thousands of products. Specifying exactly how large n is seems

both hopeless and unnecessary.

Finally, I stress that computational tractability – like other axioms – is a restriction on

the choice correspondence c rather than on the menu M or the choice c(M). Tractability

constraints how the decisionmaker’s choices vary as the menu changes. This is very different

from other constraints, like a budget constraint, which restrict the lotteries that the agent

can choose from. One implication of this is that there is no unambiguous sense in which an

agent can maximize expected utility “subject to” a time constraint.13 The following example

clarifies.

13The exception is if we know that the agent is running a particular search algorithm. If it hasn’t stopped
after T iterations, we can insist that it return the best option identified so far. It may be possible to formulate
interesting models along these lines, but it would require going beyond computational constraints. We would
need to hypothesize that decisionmakers use a particular algorithm to make choices.



CHAPTER 1. COMPUTATIONALLY TRACTABLE CHOICE 37

Example 2. I claim that tractability has no implications for choice c(M) in a fixed menu

M . To see this, suppose that lottery X ∈ M is optimal in M according to some objective.

There exists a tractable choice correspondence c that chooses X from M . The algorithm

simply memorizes the answer: if the input menu M ′ is M , output X, otherwise output the

entire menu M ′. This choice correspondence chooses optimally in M , but may not optimize

in other menus.

This observation can be strengthened. Given a tractable choice correspondence c that

fails to maximize expected utility on some finite collectionM′ of menus, it is always possible

to create a new, tractable choice correspondence c′ that outputs the optimal choice for menus

M ∈ M′ and outputs c(M) for menus M /∈ M′. The algorithm for c′ takes the algorithm

for c and carves out an exception for every menu M ∈M′.

Clearly, these algorithms do not scale. But they underscore a key point: tractability

axioms constrain how choices vary across the entire collectionM of potential menus. They

do not constraint choice within a given menu.

1.2.5 Computational Hardness Conjectures

Most results in computational complexity theory rely on computational hardness conjectures,

and this paper is no exception.14 The most well-known of these conjectures is P 6= NP. In

this subsection, I will state this conjecture, as well as two refinements.

These conjectures relate to an important class of computational problems that arise in

mathematical logic. I introduce these problems not only because they are necessary to state

the conjectures, but because they will come up again when proving results in sections 1.3

and 1.4.
14This is also true for many applications of computer science in economics. For example, the celebrated

result that finding Nash equilibria is computationally-hard relies on the conjecture that PPAD 6= FP (C.
Daskalakis et al. 2009).
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The satisfiability problem (SAT) asks whether a logical expression is possibly true, or

necessarily false. To define it, I need to introduce a few objects. A boolean variable v ∈

{true, false} can be either true or false. A literal is an assertion that v is true (v) or false

(¬v). A clause CL is a sequence of literals combined by “or” statements. For example,

CL = (v 1 ∨ ¬v 2 ∨ v 3)

A boolean formula BF in conjunctive normal form (CNF) is a sequence of clauses combined

by “and” statements. For example,

BF = CL1 ∧ CL2

Finally, BF is satisfiable if there exists an assignment of values to v 1, . . . , vn such that

BF = true.

Definition 6. The computational problem SAT asks whether a given formula is satisfiable.

There are many variants of SAT. An especially important one is 3-SAT, which restricts

attention to formulas where each clause has exactly three literals.

Definition 7. The computational problem 3-SAT asks whether a given formula

BF = CL1 ∧ . . . ∧ CLm

is satisfiable, where each clause CLj has exactly three literals.

The famous P 6= NP conjecture has many equivalent formulations, including the follow-

ing.

Conjecture 1 (P 6= NP). There is no Turing machine that solves 3-SAT in polynomial

time.
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Cook (1971) showed that a Turing machine that could solve 3-SAT in polynomial time

could solve any problem in the complexity class NP in polynomial time. Roughly, NP

consists of all computational problems whose solutions can be verified in polynomial time.

In contrast, the class P consists of all problems whose solutions can be obtained in polynomial

time. In other words, P = NP would mean that if it’s easy to verify a solution, then it is

easy to obtain a solution.

Beginning with Karp (1972), computer scientists have shown that P 6= NP is equivalent

to the non-existence of a polynomial-time algorithm for hundreds of other notoriously hard

problems. That is, if there exists a polynomial-time algorithm for any of these problems, then

P = NP. The fact that efficient algorithms have not been found for any of these problems,

despite their scientific and industrial importance, has led to a widespread belief that P 6= NP.

For example, in a 2018 poll of theoretical computer scientists, 88% of respondents believed

P 6= NP (Gasarch 2019).

There are many refinements of P 6= NP, two of which will be useful in this paper. These

are stronger conjectures (they imply P 6= NP), but they can be motivated in similar ways.

Conjecture 2 (NP 6⊂ P/poly). There is no Turing machine that solves 3-SAT in polynomial

time with at most polynomial-size advice.

Karp and Lipton (1980) showed that if this conjecture were false, it would imply a partial

collapse of the so-called polynomial hierarchy (also see S. Arora and Barak (2009), section

6.4).

Conjecture 3 (Nonuniform Exponential Time Hypothesis, NU-ETH). There is no Turing

machine that solves 3-SAT in subexponential time with at most polynomial-size advice.

This is a refinement of the better-known exponential time hypothesis. Please note that

there are different variants of the NU-ETH used in the literature.



CHAPTER 1. COMPUTATIONALLY TRACTABLE CHOICE 40

I rely on these conjectures to prove my results. I use the weakest conjecture, P 6= NP, to

motivate narrow choice bracketing. I use the strongest conjecture, the NU-ETH, to motivate

dynamic choice bracketing. I use the intermediate conjecture, NP 6⊂ P/poly, to establish

the choice trilemma. These conjectures are sufficient but it is not clear whether the latter

two are necessary.

1.3 Narrow Choice Bracketing

This section relates narrow choice bracketing to rational, strongly tractable, and symmetric

choice correspondences. I begin with a formal definition of narrow choice bracketing and an

informal explanation of the role it plays in reducing the computational complexity of choice.

First, let ci(M) ⊆ Mi denote the decisionmaker’s partial choices from a product menu

M .15

Definition 8. A choice correspondence c is narrowly bracketed on product menus M if the

partial choices ci(M) only depend on the partial menu Mi.

This definition of narrow bracketing does not imply that the agent is optimizing in any

sense. Typically, we associate narrow choice bracketing with a decisionmaker that is optimiz-

ing within each bracket. This corresponds to choice correspondences that are both rational

and narrowly bracketed, and is indistinguishable from expected utility maximization with

an additively separable utility function.

Definition 9. A utility function u is additively separable if there exist univariate functions

ui : [0, 1]→ R such that, for any outcome x ∈ X ,

u(x) =
∞∑
i=1

ui(xi)

15Formally, if X ∈ c(M) is a lottery chosen from menu M , then Xi ∈ ci(M).
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Proposition 1. A choice correspondence c is rational and narrowly bracketed if and only if

it reveals a continuous and additively separable utility function.

Narrow choice bracketing reduces the effective dimension of a high-dimensional optimiza-

tion problem. To see why dimensionality drives computational hardness, consider brute-force

search, a simple algorithm that optimizes within a menu M by searching over every lottery

X ∈ M and evaluating its expected utility E[u(X)]. The number of lotteries X ∈ M that

need to be evaluated is kn, where lotteries X ∈M are n-dimensional and partial menus Mi

consist of k partial lotteries. If partial lotteries Xi are measurable with respect to the same

m intervals in the sample space, the runtime is on the order of O(mkn). However, recall that

the description length `(M) of a product menu M is on the order of O(nmk). Clearly, mkn

is not a polynomial function of nmk. Moreover, it is the dimension n, rather than quantities

k or m, that is the key bottleneck.

A decisionmaker that narrowly choice brackets avoids this bottleneck, by transforming

one n-dimensional optimization problem into n 1-dimensional optimization problems. Brute-

force search on each partial menu Mi only needs to evaluate k partial lotteries. Since there

are n partial menus, the total runtime is on the order of O(nmk). This is polynomial in the

description length.

Proposition 1 shows that narrow choice bracketing is without loss of optimality when

the utility function u is additively separable. In that case, it is not necessary to evaluate

every lottery ` ∈ M to be confident that one has made the optimal choice. Likewise, if the

utility function u is increasing, then narrow choice bracketing is optimal on deterministic

product menus. By deterministic, I mean that they consist of sure outcomes x ∈ M rather

than lotteries X. In that case, optimization is straightforward because there is no trade-off:

simply choose the highest xi ∈Mi in each partial menu. Of course, this is true only because

M is a product menu.

However, narrow choice bracketing is suboptimal in general. The following example
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illustrates.

Example 3. A decisionmaker cares about bundles of fruit, where xi denotes the quantity

consumed of fruit i. She faces partial menus with two partial lotteries each. Their outcomes

depend on a coin that can turn up heads (ω ≤ 0.5) or tails (ω > 0.5) with equal probability.

For each fruit i, the decisionmaker can choose between a partial lottery XH
i that returns one

unit of fruit i if the coin turns up heads, and XT
i that returns one unit of fruit i if the coin

turns up tails. Formally,

XH
i (ω) =


1 ω ≤ 0.5

0 ω > 0.5

XT
i (ω) =


0 ω ≤ 0.5

1 ω > 0.5

Suppose the decisionmaker can only consume one fruit before it spoils. She is indifferent

between fruits, so her utility function is

u(x) = max
i
xi

It is optimal to hedge, by choosing partial lotteries that are negatively correlated. If n = 2,

this can be achieved by choosing (XH
1 , X

T
2 ) or (XT

1 , X
H
2 ). This guarantees the decisionmaker

a payoff of 1, whereas any other feasible lottery give the decisionmaker a payoff of 0.5.

However, a decisionmaker that narrowly brackets her choices will evaluate partial lotteries

only by their marginal distributions.16 For each fruit i, she will be indifferent between XH
i

and XT
i . Her choices c(M) include lotteries that obtain only half the optimal payoff.17

In section 1.5, I show a much stronger result: even if we allow for dynamic choice brack-

eting, we can always find a product menu where the decisionmaker strictly prefers a lottery
16Indeed, narrow choice bracketing is closely related to correlation neglect (see e.g. Zhang 2021). However,

narrow choice bracketing may be suboptimal even if partial lotteries are independent (see e.g. Rabin and
Weizsäcker 2009).

17Of course, one could easily perturb the lotteries to break indifference in favor of the suboptimal lotteries.
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that obtains a negligible fraction of the optimal payoff. This holds for a much larger class of

utility functions.

1.3.1 Representation Theorem

My first theorem shows that brute-force search, although naive and impractical, is effectively

the best we can do unless u is additively separable. That is, there is no clever way to avoid

the bottleneck associated with the dimension n, unless P = NP.

To state my theorem, I need to define two more properties: symmetry, and efficient

computability of the utility function. Symmetry is an assumption of theorem 1, whereas

efficient computability is an implication.

Symmetry says that relabeling coordinates does not affect choice. More formally, for any

n and permutation k1, . . . , kn of 1, . . . , n, an outcome x′ is a permutation of lottery x if

x′ = (xk1 , . . . , xkn , xn+1, . . .)

A menu M ′ is a permutation of menu M if

M ′ = {(Xk1 , . . . , Xkn , Xn+1, . . .) | X ∈M}

Definition 10. A choice correspondence c is symmetric if c(M) = c(M ′) for any permuta-

tion M ′ of M . A utility function u is symmetric if u(x) = u(x′) for any permutation x′ of

x.

For example, symmetry is plausible when each coordinate xi of the outcome corresponds

to income from some source i. If the decisionmaker only cares about a function of total

income, i.e.

u(x) = f (x1 + x2 + . . .)
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then her utility function satisfies symmetry.

Next, a utility function u is efficiently computable if there exists a reasonably quick

algorithm that computes u(x) with at most ε imprecision. The caveat is that utility functions

are only identified up to affine transformations, so at best we can compute a normalized

utility function. Given utility function u over n-dimensional outcomes x, the normalized

utility function un is:

un(x) =
u(x)−minx u (x1, . . . , xn, 0, 0, . . .)

maxx u (x1, . . . , xn, 0, 0 . . . , )−minx u (x1, . . . , xn, 0, 0, . . .)

where the vector 1, . . . , 1 is of length n. For any n-dimensional menu M , this is obser-

vationally equivalent to u because cardinal utility functions are only defined up to affine

transformations. Effectively, this renormalizes the utility function separately for each n.

Definition 11. A utility function u is efficiently computable if there exists a Turing machine

that takes in a constant ε ∈ [0, 1] and n-dimensional outcome x ∈ X , and then outputs a real

number y such that the normalized utility function un satisfies

y − ε ≤ un(x) ≤ y + ε

with runtime O(poly(n, 1/ε)).

I stress that efficient computability of the utility function is much weaker than tractability

of the choice correspondence, and unrelated to separability. It is essentially a regularity

condition: typical utility functions will satisfy it, irrespective of whether expected utility

maximization is tractable. Intuitively, being able to calculate utility for a given outcome is

very different from being able to choose the best lottery amongst a large set of lotteries.

Theorem 1 gives the main direction of my representation theorem. It associates rational,

tractable, and symmetric choice correspondences with additively separable utility functions.
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As I showed in proposition 1, this is indistinguishable from narrow choice bracketing.

Theorem 1. Let choice correspondence c be rational, strongly tractable, and symmetric. If

P 6= NP then c reveals an additively separable, symmetric, and efficiently computable utility

function.

This theorem accomplishes two things. First, it provides a foundation for narrow choice

bracketing as observed in lab experiments (symmetry is plausible in experiments where

outcomes are monetary). Second, it provides a very strong restriction on the utility function

based on relatively weak assumptions. Consider again the decisionmaker who only cares

about total income, i.e.

u(x) = f (x1 + x2 + . . .)

Theorem 1 suggests that expected utility maximization is tractable only if f is linear. That

is, either the decisionmaker fails to maximize expected utility, or she is risk-neutral. Risk

neutrality is often seen as a strong assumption, but in this case it is a straightforward

implication of theorem 1. In fact, it would take special justification to argue that this

decisionmaker is not risk-neutral, and yet somehow still capable of maximizing expected

utility.18

Next, I provide a partial converse: when the utility function is additively separable,

expected utility maximization is tractable on product menus.

18For example, one justification could be that expected utility maximization is tractable within a restricted
collection of menusM′, and only those menus are relevant to a given model. Verifying that expected utility
maximization is tractable within a proposed model strikes me as a good practice for authors, in the same
spirit as robustness checks.
With that said, this justification is not bullet-proof from a normative perspective. If we know that the

decisionmaker is failing to optimize somewhere then why is it safe to assume that the decisionmaker is
optimizing anywhere? Recall example 2. It is always possible to specialize an algorithm so that it optimizes
in a particular menu or finite set of menus. But the cost of this is a slower runtime. Maximizing expected
utility within collection M′ may involve trading quick and optimal choices in menus M ′ ∈ M′ for slower
and potentially suboptimal choices in some menu M ∈ M. How does one argue that menu M ′ should be
prioritized over menu M?
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Proposition 2. Let the utility function u be additively separable and efficiently computable.

Then expected utility maximization is strongly tractable on the collection of product menus.

Proposition 2 follows from the fact that narrow choice bracketing is without loss of

optimality for additively separable utility functions, and can be implemented in polynomial

time. This argument does not generalize because narrow choice bracketing is only defined

on product menus.19

1.3.2 Proof Outline of Theorem 1

I now outline the proof of Theorem 1, which relies on two key lemmas and two minor ones.

In the next subsection, I illustrate how the key lemmas are proven in two special cases.

Recall the satisfiability problems introduced in section 1.2.5. I will make use of two

variants.

Definition 12. The computational problems MAX 2-SAT (MIN 2-SAT) takes a boolean

formula

BF = CL1 ∧ . . . ∧ CLm

with variables v1, . . . , vn, where each clause CLj has exactly two literals, representing distinct

variables. It outputs the maximum (minimum) number of clauses that can be simultaneously

satisfied, i.e.

max
v1,...,vn

m∑
j=1

1(CLj = true)

Garey et al. (1976) showed that there does not exist a polynomial-time algorithm for

MAX 2-SAT unless P = NP. Later, Kohli et al. (1994) proved the analogous result for MIN

2-SAT.
19On ternary menus M , expected utility maximization is strongly tractable even if u is not additively

separable. A simple brute-force search algorithm can evaluate each of the three lotteries X ∈M and choose
the best one. This evaluation can be done quickly as long as u is efficiently computable.
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The high-level structure of the proof is an algorithmic reduction, which is a particular kind

of proof by contradiction. I show that solving MAX 2-SAT (or MIN 2-SAT) can be reduced

to solving expected utility maximization for utility function u. More precisely, a polynomial-

time algorithm for the latter can be used as a subroutine to construct a polynomial-time

algorithm for the former. Of course, this contradicts P 6= NP.

Although each reduction is unique, algorithmic reductions are the prototypical proof

technique in computational complexity theory. What distinguishes this result is that it is

not enough to establish just one reduction, for some utility function u. I need to show that

polynomial-time reductions exist for every symmetric utility function u, armed only with

the knowledge that u is symmetric and not additively separable. In that sense, I need to

prove a dichotomy theorem (c.f. Schaefer 1978), which characterizes the time complexity of

a large class of computational problems.

The first lemma establishes a useful fact about additively separable utility functions.

Lemma 1. Let u be a symmetric utility function. Then u is additively separable iff there do

not exist constants a, b ∈ Q and an outcome x ∈ X such that

u(a, a, x3, x4, . . .) + u(b, b, x3, x4, . . .) 6= u(a, b, x3, x4, . . .) + u(b, a, x3, x4, . . .)

The next two lemmas establish polynomial-time reductions for two different cases. It

follows from Lemma 1 that these cases are collectively exhaustive.

Lemma 2. Suppose a tractable choice correspondence c maximizes expected utility, where

there exist constants a, b ∈ Q and an outcome x ∈ X such that

u(a, a, x3, x4, . . .) + u(b, b, x3, x4, . . .) > u(a, b, x3, x4, . . .) + u(b, a, x3, x4, . . .)

Then there exists a polynomial-time algorithm for MAX 2-SAT.
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Figure 1.5: The high-level structure of the reduction algorithm used in Lemma 2 (Lemma 3).
The function f maps formulas into product menus M . The choice correspondence c maps
menus M into lotteries XM that maximize expected utility. The function g maps lotteries
X into true/false assignments to v 1, . . . , vn that solve MAX (MIN) 2-SAT. Since f and g
can be computed in polynomial-time, this algorithm has polynomial runtime if and only if c
is tractable.

Lemma 3. Suppose a tractable choice correspondence c maximizes expected utility, where

there exist constants a, b ∈ Q and an outcome x ∈ X such that

u(a, a, x3, x4, . . .) + u(b, b, x3, x4, . . .) < u(a, b, x3, x4, . . .) + u(b, a, x3, x4, . . .)

Then there exists a polynomial-time algorithm for MIN 2-SAT.

The high-level structure of the proof of Lemma 2 (Lemma 3) is illustrated in figure 1.3.2.

The goal is to construct a reduction algorithm that solves MAX (MIN) 2-SAT, using an

algorithm that maximizes expected utility as a subroutine.

This algorithm is tied to a specific utility function u, and is well-defined whenever u

is symmetric but not additively separable. First, I define a function f that maps a given

formula BF into a product menus M . The partial menus Mi are binary, and consist of two

partial lotteries: XT
i that will represent a “true” value for v i and XF

i that will represent

a “false” value for v i These partial lotteries are constructed in the proof, and depend on

BF through the function f . Second, I compute the agent’s choice X = c(M) from menu

M . Third, I define a function g that maps lotteries X to true/false assignments. This

is straightforward: v i = 1 if and only if Xi = XT
i . Finally, I verify that this algorithm

satisfies a special property: assignment g(c(f(BF ))) solves MAX (MIN) 2-SAT if the choice



CHAPTER 1. COMPUTATIONALLY TRACTABLE CHOICE 49

correspondence c maximizes expected utility.

The rest of the argument is proof by contradiction. If maximizing expected utility were

tractable for any utility function that is symmetric but not additively separable, the reduc-

tion algorithm runs in polynomial time. The reason is that f and g can be computed in

polynomial time, and polynomial functions are closed under composition. Of course, that

leads to a contradiction. The reduction algorithm is a polynomial-time algorithm for MAX

(MIN) 2-SAT. But this contradicts P 6= NP, as discussed above.

The final step in proving Theorem 1 is to verify efficient computability.

Lemma 4. A choice correspondence that is rational and strongly tractable reveals an effi-

ciently computable utility function.

The proof of Lemma 4 transforms the choice-generating algorithm into a utility-computing

algorithm. I associate a utility level y ∈ [0, 1] with lottery Xy that outputs the least desirable

outcome with probability y and the most desirable outcome with probability 1 − y. Then

I assign outcome x a utility u(x) = y if the agent chooses x when offered {x,Xy−ε}, but

chooses Xy+ε when offered {x,Xy+ε}. This argument relies on assumption 2 which ensures

that binary menus are represented in the collectionM.

1.3.3 Proof of Special Cases

I consider two special cases that illustrate how I prove lemma 2, which is similar to how I

prove lemma 3. I leave the full proofs to appendix ??.

Maximum Utility. First, I show that maximizing expected utility with

u(x) = max
i
xi
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is intractable, assuming P 6= NP. This turns out to be straightforward, so it is a useful

warmup.

Let BF be a boolean formula with n variables v 1, . . . , vn and m clauses CL1, . . . ,CLm.

Each clause has at most two literals, which I can write as

CLj = v j1 ∨ v j2

The auxilliary variables v jk are meant to represent literals v i or ¬v i for the original n

variables. Given this formula, MAX 2-SAT solves

max
v i∈{true, false}

m∑
j=1

1(CLj) = max
v i∈{true, false}

m∑
j=1

1 (v j1 ∨ v j2)

= max
v i∈{true, false}

m∑
j=1

max {1 (v j1) ,1 (v j2)} (1.3)

where the indicator satisfies 1(true) = 1 and 1(false) = 0. Compare this with expected utility

maximization with the n-dimensional product menu described in the previous subsection,

i.e.

max
Xi∈{XT

i ,X
F
i }

E[max {X1, . . . , Xn}] (1.4)

These optimization problems are already quite similar. It only remains to define the partial

lotteries XT
i , X

F
i in a way that makes them equivalent.

The high-level idea behind the partial lottery XT
i is that it chooses a random clause j to

evaluate. It returns xi = 1 if setting v i = true makes CLj true, and otherwise returns xi = 0.

Similarly, XF
i returns xi = 1 if setting v i = false makes CLj true, and otherwise returns

xi = 0. The decisionmaker will end up choosing the lottery X that maximizes the probability

that a randomly-chosen clause j is true under assignment f(X). But this is equivalent to

maximizing the number of clauses j that are true under f(X), i.e. solving MAX 2-SAT.
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Clause 1 Clause mClause 2

...

Clause 3

0 1/m 2/m 3/m
m− 1

m
1

Figure 1.6: This diagram depicts the sample space Ω = [0, 1], broken up into m intervals of
equal size. Interval j is associated with clause j.

Formally, I divide the sample space Ω into m equally-sized intervals. Figure 1.3.3 illus-

trates. When ω falls in the jth interval, i.e. ω ∈ [(j − 1)/m, j/m), define

XT
i (ω) =


1 v j1 = v i

1 v j2 = v i

0 otherwise

XF
i (ω) =


1 v j1 = ¬v i

1 v j2 = ¬v i

0 otherwise

It follows that

E[max {X1, . . . , Xn}] =
1

m

m∑
j=1

E

[
max {X1, . . . , Xn} | ω ∈

[
j − 1

m
,
j

m

)]

=
1

m

m∑
j=1

E

[
max {1 (v j1 | f(X)) ,1 (v j2 | f(X))} | ω ∈

[
j − 1

m
,
j

m

)]

=
1

m

m∑
j=1

max {1 (v j1 | f(X)) ,1 (v j2 | f(X))}

where (v jk | f(X)) refers to the value of auxilliary variable v jk given the assignment

v 1, . . . , vn = f(X)

This is proportional to the objective (1.3) of MAX 2-SAT. Therefore, the lottery X that

maximizes expected utility (1.4) also leads to an assignment f(X) that solves MAX 2-SAT.
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Quadratic Utility. Next, I show that maximizing expected utility with

u(x) = (x1 + x2 + . . .)2

is intractable, assuming P 6= NP. This builds on the same structure as the previous case,

but is somewhat more involved. Essentially, the goal is to manipulate this utility function

into something that looks like maximum utility.

The previous construction no longer works, but it is instructive to see why. Consider a

clause CLj = x1 ∨ x2. If I choose partial lotteries XT
1 , X

T
2 representing true assignments to

both variables x1 and x2, then expected utility conditional on the interval associated with

clause j is

(1 + 1)2 = 4

If I instead choose partial lotteries XT
1 , X

F
2 where variable x2 is now false, that conditional

expected utility becomes

(1 + 0)2 = 1

In both cases, clause j would be true under assignment f(X). However, expected utility

assigns a higher payoff when both literals in clause j are true, compared to when only one is

true. Essentially, expected utility corresponds to a multi-valued or fuzzy logic where clause

j is merely “somewhat true” if only one literal is true.

To address this, I need to refine the construction. First, I rewrite each clause CLj in its

disjunctive normal form, i.e.

CLj = (v j1 ∧ v j2) ∨ (¬v j1 ∧ v j2) ∨ (v j1 ∧ ¬v j2)

Next, I take each interval in the sample space Ω and break it down into three subintervals.

Each subinterval corresponds to one term in the disjunctive normal form of CLj. Figure
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Clause j = v j1 ∨ v j2

...0
j − 1

m
1...

v j1 ∧ v j2 ¬v j1 ∧ v j2 v j1 ∧ ¬v j2

j − 2/3

m

j − 1/3

m

j

m

Figure 1.7: This diagram depicts the sample space Ω = [0, 1], broken up into 3m intervals of
equal size. Each triple of intervals is associated with a clause. Within each triple associated
with clause j, the three intervals correspond to the three terms in the disjunctive normal
form of clause j.

1.3.3 illustrates. This enriched state space will offer additional degrees of freedom to turn

the expected quadratic utility function into something that mimics the maximum utility

function.

The high-level idea behind the partial lottery XT
i is similar to before. It evaluates a

random entry in the disjunctive normal form of clause j. If setting v i = true does not falsify

that entry, it returns a positive value (the precise value depends on the entry selected).

Otherwise, it returns zero. The lottery XF
i is defined analogously. I claim that, as before,

the decisionmaker will end up choosing the lottery X that maximizes the probability that a

randomly-chosen clause j is true under assignment f(X).

To define these partial lotteries, fix a constant γ ∈ (0, 1). When ω falls into the first

subinterval associated with clause j, set

XT
i (ω) =


γ v j1 = v i

γ v j2 = v i

0 otherwise

XF
i (ω) =


γ v j1 = ¬v i

γ v j2 = ¬v i

0 otherwise
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When ω falls into the second subinterval associated with clause j, set

XT
i (ω) =


1 ¬v j1 = v i

1 v j2 = v i

0 otherwise

XF
i (ω) =


1 ¬v j1 = ¬v i

1 v j2 = ¬v i

0 otherwise

When ω falls into the third subinterval associated with clause j, set

XT
i (ω) =


1 v j1 = v i

1 ¬v j2 = v i

0 otherwise

XF
i (ω) =


1 v j1 = ¬v i

1 ¬v j2 = ¬v i

0 otherwise

Now, consider the decisionmaker’s expected utility from lottery X, conditioned on the

interval associated with clause j. That is,

E

[
(X1 + . . .+Xn)2 | ω ∈

[
j − 1

m
,
j

m

)]
(1.5)

When the assignment f(X) makes both variables in clause j true, expected utility (1.5)

equals

A :=
1

3

(
(γ + γ)2 + (0 + 1)2 + (1 + 0)2

)
=

4γ2

3
+

2

3
(1.6)

When the assignment f(X) makes v j1 true but v j2 false, expected utility (1.5) equals

B :=
1

3

(
(γ + 0)2 + (1 + 1)2 + (0 + 0)2

)
=
γ2

3
+

4

3
(1.7)

Since u is symmetric, this is also true if f(X) makes v j2 true but v j1 false. Finally, when
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f(X) makes neither entry in clause j true, expected utility (1.5) equals

C :=
1

3

(
(0 + 0)2 + (1 + 0)2 + (0 + 1)2

)
=

2

3
(1.8)

Since γ > 0, it is clear that the last case (1.8) (where clause j is false) delivers lower expected

utility than the three other cases (where clause j is true). To finish the construction, we

need to ensure that the expected utility is the same in any case where the clause j is true.

Setting (1.6) equal to (1.7) and solving for γ yields

γ =

√
2

3

Given this value of γ, the previous argument goes through.20 The lottery X that maximizes

expected quadratic utility in this menu also yields an assignment f(X) that solves MAX

2-SAT.

This section only proved lemma 2 for two special cases. The full proof in appendix ?? has

a similar structure. As long as the utility function is symmetric and not additively separable,

it is possible to make an argument along these lines.

1.4 Dynamic Choice Bracketing

This section relaxes the symmetry assumption of section 1.3, in order to complete the char-

acterization of rational and tractable choice. In particular, I show that rational and tractable

choice corresponds to dynamic choice bracketing, a novel generalization of choice bracket-

ing. Equivalently, it corresponds to expected utility maximization with a Hadwiger separable
20One concern is that γ is an irrational number, and therefore lacks a finite decimal representation. But

it is not necessary to set γ to be exactly this number. All that is needed is for the discrepancy between (1.6)
and (1.7) to be less than 1/m times the difference between (1.6) and (1.8), as well as the difference between
(1.7) and (1.8). This ensures that the discrepancy will not affect the optimal choice. It can be achieved with
a γ that has O(logm) digits.
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utility function, where Hadwiger separability is a novel relaxation of additive separability.

I begin with two examples, which demonstrate that the conclusion of theorem 1 no longer

holds when the symmetry assumption is relaxed. More precisely, a utility function need not

be additively separable in order for expected utility maximization to be tractable.

Example 4. Suppose the decisonmaker is choice bracketing, but less narrowly than in section

1.3. She partitions dimensions i = 1, . . . , n into mutually exclusive brackets B1, . . . , Bm. For

each bracket Bj, she maximizes expected utility according to a utility function uj that is

defined over the coordinates i ∈ Bj. Let k = maxj |Bj| be the size of the largest bracket.

For concreteness, consider a consumer choosing from eight available products: cereal,

napkins, milk, ground beef, chicken, jam, apples, oranges. The consumer has four brackets.

The first bracket consists of breakfast foods (cereal, milk, jam). The second bracket is just

napkins. The third bracket consists of raw meat (ground beef, chicken). The fourth bracket

consists of fruits (apples, orange). The consumer’s revealed utility function is

u(x) = u1(x1, x3, x6) + u2(x2) + u3(x4, x5) + u4(x7, x8)

where xi denotes the amount of product i she consumes. Each bracket includes natural

complements (e.g. cereal and milk) or substitutes (e.g. apples and oranges). But across

brackets, the consumer ignores any complementarity or substitutability.

Although u is not additively separable in example 4, expected utility maximization is

tractable as long as the bracket size does not grow too quickly with the number of products

n. Formally, it is tractable as long as k = O(log n).21 I call this relatively narrow choice

bracketing.
21It is always possible to optimize within each bracket by brute-force search. The runtime of the algorithm

will be exponential in k, where k is the size of the largest bracket. When k = O(log n), a runtime that is
exponential in k is only polynomial in n. Therefore, brute-force search can maximize expected utility in
polynomial time.
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Example 5. Suppose the decisionmaker is willing to narrowly bracket decisions i = 2, . . . , n,

but only after conditioning on decision 1.

For concreteness, consider an individual whose first decision is where she wants to live.

Then she must decide how much of several different products to acquire: gasoline, snow boots,

swimsuits, gardening tools, hammocks, etc. These products lack obvious complementarities

or substitutabilities, so the consumer is willing to evaluate each product without considering

the others. However, her preferences over all of these products depend on where she lives.

For example, she may value gasoline more in Los Angeles than in Chicago, but snow boots

more in Chicago than Los Angeles. The decisionmaker’s revealed utility function is

u(x) = u2(x1, x2) + u3(x1, x3) + u4(x1, x4) + u5(x1, x5) + u6(x1, x6) + . . .

This decisionmaker cannot evaluate one product separately from another. For example,

she cannot fully separate gasoline from snow boots. If gasoline were unavailable, then she

probably would not move to Los Angeles, which might make her value snow boots more.

Although u is not additively separable in example 5, expected utility maximization is

tractable. It is straightforward to maximize expected utility in polynomial time using back-

wards induction. There are two steps to this algorithm:

1. Conditional on her choice X1, compute her optimal choices X∗2 (X1), . . . , X∗n(X1), i.e.

X∗i (X1) ∈ arg max
Xi∈Mi

E[ui(X1, Xi)]

2. Choose X1 to maximize expected utility, given her planned choices X∗2 , . . . , X∗n, i.e.

E[u (X1, X
∗
2 (X1), . . . , X∗n(X1))]
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This is not choice bracketing, but it has a similar flavor. For each product i = 2, . . . , n, the

decisionmaker brackets together her consumption decision Xi with her location decision X1.

Then, when the time comes to choose X1, she does not need to reconsider her consumption

decisions. After all, she has already determined her choices X∗2 , . . . , X∗n as a function of X1.

1.4.1 Dynamic Choice Bracketing

These examples are both special cases of what I call dynamic choice bracketing.

Dynamic choice bracketing is a family of algorithms that combine principles of dynamic

programming with principles of choice bracketing. Like choice bracketing, it may selectively

ignore links between decisions i and j. Unlike choice bracketing, the relevant brackets may

change in the process of making the choice. For instance, this is what happened in example

5.

The formal definition of dynamic choice bracketing is given below (see algorithm 1). It

represents a family of algorithms mapping product menusM to lotteries X ∈M , which have

a particular form. These algorithms visit coordinates 1, . . . , n in a prespecified order. The

goal for each coordinate i is to define a function X∗i (·) that maps choices Xj to a choice Xi.

As more coordinates are visited, the algorithms redefines X∗i (·) so that it remains a function

of unvisited coordinates. Eventually, the algorithms visit all coordinates, and the functions

X∗i (·) have no remaining arguments. The output is simply X∗1 , . . . , X∗n.

The brackets in dynamic choice bracketing are not as neatly defined as in choice brack-

eting. In particular, they are dynamic. I say that coordinate i belongs to bracket Bi, where

Bi = {i} ∪ Si ∪ Ii

consists of i’s successors and indirect influencers, as defined in algorithm 1. Although coor-

dinate i’s predecessors j ∈ Pi also enter into value function Vi, the decisionmaker does not
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Input: product menu M .

Process: visit coordinates i ∈ {1, . . . , n} in a prespecified order. At each i:

1. Specify the successors Si of i.

This is some subset of the unvisited coordinates j.

2. Identify the predecessors Pi of i.

This is the subset of visited coordinates j where the choice X∗j (·) depends on Xi.

3. Specify value function Vi that depends on i, successors Si, and predecessors Pi, i.e.

Vi (Xi, XSi , XPi) ∈ R

4. Identify the indirect influencers Ii of i.

This is the subset of unvisited coordinates j where choice X∗k(·) depends on Xj for
predecessors k ∈ Pi.

5. Define the choice X∗i (·) as a function of successors and indirect influencers.

This is done by optimizing the value function as follows:

X∗i (XSi , XIi) ∈ arg max
Xi∈Mi

Vi
(
Xi, XSi , X

∗
Pi

(Xi, XIi)
)

6. Redefine the choices X∗j for predecessors j ∈ Pi by replacing Xi with X∗i (·), i.e.

X∗j (XSi , XIi) := X∗j (X∗i (XSi , XIi) , XIi) ∀j ∈ Pi

Output: (X∗1 , . . . , X
∗
n) ∈ X . This is well-defined because, once all coordinates have

been visited, choices X∗i (·) have no remaining arguments.

Algorithm 1: A prototypical dynamic choice bracketing algorithm.
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need to reconsider those choices: they are given by X∗j (Xi, XPi) as a function of i and its

predecessors.

As with choice bracketing, dynamic choice bracketing is only a meaningful restriction

when the brackets are small.22 In this case, the size of the largest bracket (or bracket size) is

k = max
i
|Bi|

Definition 13. A choice correspondence c is consistent with relatively narrow dynamic

choice bracketing if it can be generated by some specification of algorithm 1 with bracket size

O(log n)

where n is the dimension of the menu M .

1.4.2 Hadwiger Separability

Previously, I related narrow choice bracketing to additive separability, and used theorem 1

to motivate additive separability. In that same spirit, I will relate dynamic choice bracketing

to Hadwiger separability. In the next subsection, I use theorem 2 to motivate Hadwiger

separability.

Hadwiger separability is a relaxation of additive separability. It captures a sense in

which most pairs (xi, xj) are evaluated separately from each other, but not necessarily all.

Its advantage relative to additive separability is that it preserves computational tractability

while being capable of modeling a much richer class of phenomena. Nonetheless, it is still

quite restrictive, especially in combination with other assumptions like symmetry.
22When k = n, dynamic choice bracketing includes backwards induction, which can be used to maximize

expected utility for any utility function u. Of course, backwards induction will not necessarily run in
polynomial time.
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Example 4, with n = 8.

1 2

3

4

56

7

8

Example 5, with n = 6.

1

2 3 4 5 6

Figure 1.8: The inseparability graphs Gn(u) associated with utility functions in Example 4
and 5.

The first step to defining Hadwiger separability is to define a pairwise notion of separa-

bility.

Definition 14. A utility function u is (i, j, n)-separable if there exist functions ui, uj such

that, for all n-dimensional outcomes x,

u(z) = ui(xi, x−ij) + uj(xj, x−ij)

The second step is introduce a graph that identifies which pairs (i, j, n) are not separable.

Definition 15. The inseparability graph Gn(u) of utility function u is an undirected graph

with n nodes. There is an edge between nodes i and j if and only if u is not (i, j, n)-separable.

Figure 1.8 depicts the inseparability graphs associated with Example 4 and 5. As we will

see, these are also examples of sparse graphs.

The utility function u is Hadwiger separable if its inseparability graph Gn(u) quickly

becomes sparse as n grows large. To formalize this, I need a measure of graph sparsity. It

turns out that the right measure was formulated by Hadwiger (1943) to state his longstanding

conjecture about the chromatic number of graphs. It refers to a concept called graph minors.
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1. Let G be the following graph.

1 2

45

36

2. Delete vertex 4.

1 2

45

36

3. Contract the edge between vertices 1 and
2.

1 2

5

36

4. Obtain the minor G′ of G.

1

5

36

Figure 1.9: In this example, I find the Hadwiger number of the graph G. The minor G′ is
complete and has four vertices. In fact, this is the largest complete minor, so Had(G) = 4.

Definition 16. Let G′ be a subgraph of the undirected graph G. Then G′ is a minor if it

can be formed from G by some sequence of the following two operations:

1. Delete a node i and all of its incident edges (i, j).

2. Contract an edge (i, j). This deletes nodes i, j and replaces them with a new vertex k.

It also replaces any edges (i, l) and (j, l) with a new edge (k, l).

Definition 17. Let G be an undirected graph. The Hadwiger number Had(G) of G is the

number of nodes in its largest complete minor.23

Figure 1.9 illustrates these definitions, through an example.

Definition 18. The function u is Hadwiger separable if

Had(Gn(u)) = O(log n)
23A complete graph (or minor) is one in which all nodes share an edge.
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Hadwiger separability is an asymptotic property, like computational tractability. How-

ever, it is often easy to verify whether a utility function is Hadwiger separable or not.24 Take

Example 4 and 5, whose inseparability graphs are depicted in Figure 1.8. In Example 4, the

Hadwiger number is the size k of the largest bracket. This is consistent with Hadwiger sep-

arability if and only if choice bracketing is relatively narrow, i.e. k = O(log n). In Example

5, the Hadwiger number is 1, independently of n. Clearly this is consistent with Hadwiger

separability.

Hadwiger separability may appear quite general, but it is not. Compared to additive

separability, it is capable of modeling a richer set of preferences, such as preferences involving

a limited number of complementarities and substitutions between goods. However, it remains

restrictive in the sense that “most” utility functions are not Hadwiger separable. In fact, if

we restrict attention to symmetric utility functions, Hadwiger separability is equivalent to

additive separability.

Proposition 3. A symmetric utility function is Hadwiger separable iff it is additively sepa-

rable.

Proof. See Figure 1.10.

Finally, I relate dynamic choice bracketing with Hadwiger separability.

Proposition 4. Let c be a rational choice correspondence. If c reveals a Hadwiger separable

utility function, then it can be generated by relatively narrow dynamic choice bracketing. If

the NU-ETH holds then the converse is also true.

This relationship is not obvious, in contrast to the relationship between narrow choice

bracketing and additive separability. It will become clearer in the proof outline of theorem

3.
24 In general, computing the Hadwiger number is NP-hard (Eppstein 2009). However, for any inseparability

graph Gn(u) and constant C, it is possible to determine whether Had(Gn(u)) ≤ C log n within O(poly(n,C))
time. This follows from a fixed parameter tractability result of Alon et al. (2007).
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An empty graph G, with Had(G) = 0.

1 2

3

4

56

7

8

A complete graph G, with Had(G) = 8.

1 2

3

4

56

7

8

Figure 1.10: When the function u is symmetric, the inseparability graph Gn(u) is either
empty or complete. If Gn(u) is empty (left), then u is additively separable. If Gn(u) is
complete (right), then Had(Gn(u)) = n and therefore u is not Hadwiger separable. It follows
that Hadwiger separability is equivalent to additive separability when u is symmetric.

1.4.3 Representation Theorem

Theorem 2 shows that rational and weakly tractable choice implies expected utility maxi-

mization with a Hadwiger separable utility function. This result relies on the non-uniform

exponential time hypothesis (NU-ETH). Theorem 3 gives a partial converse: expected utility

maximization is weakly tractable on product menus when the utility function is Hadwiger

separable.

These results refer to weak tractability, whereas my earlier results (theorem 1, proposition

2) referred to strong tractability. This has three implications. First, it makes the hardness

result (theorem 2) stronger and the partial converse (theorem 3) weaker. Second, I rely

on stronger computational hardness conjectures. Third, I use a relaxed notion of efficient

computability.

Definition 19. A utility function u is efficiently computable with advice if it satisfies defi-

nition 11 with a Turing machine that has access to O(poly(n, 1/ε))-size advice.

Theorem 2. Let choice correspondence c be rational and weakly tractable. If the NU-ETH

holds, then c reveals a Hadwiger separable utility function, which is efficiently computable
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with advice.

This result essentially implies theorem 1 as a corollary. Suppose that the choice cor-

respondence c is symmetric, as well as rational and weakly tractable. By theorem 2, u is

Hadwiger separable. Since u is also symmetric, proposition 3 implies that u is additively

separable. That is the conclusion of theorem 1. The only remaining differences are that

theorem 1 made a stronger tractability assumption and relied on a weaker computational

hardness conjecture.

I argue that theorem 2 is tight by providing a partial converse.

Theorem 3. Let the utility function u be Hadwiger separable and efficiently computable with

advice. Then expected utility maximization is weakly tractable on the collection of product

menus.

Next, I outline the proofs of theorems 2 and 3. The full proofs are left to appendix ??.

1.4.4 Proof Outline of Theorem 2

The argument is similar to the reduction argument in Theorem 1, only more involved. Most

of the work is done by the following lemma, which plays the same role here that Lemmas 2

and 3 played in the proof of Theorem 1.

Lemma 5. Suppose a weakly tractable choice correspondence maximizes expected utility,

where

dn := Had(Gn(u))

Then there exists an O(poly(n))-time algorithm to solve MAX 2-SAT for any boolean formula

with at most dn variables. This algorithm uses at most O(poly(n))-size advice.

For the purposes of solving MAX 2-SAT, the utility function u is effectively dn-dimensional.

In other words, even if u is separable across some dimensions, it is effectively high-dimensional
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as long as its inseparability graph has a large complete minor.

The advice in Lemma 5 provides two kinds of information. First, it describes the largest

complete minor of the inseparability graph Gn(u). This is the same minor that is used to

define the Hadwiger number, and it has exactly dn nodes. Second, it identifies points where

the utility function u is not (i, j, n)-separable. To define this precisely, I need additional

notation.

Definition 20. An n-dimensional outcome x and quadruple a1, a2, b1, b2 ∈ [0, 1] constitute

a violation of (i, j, n)-separability if

u (. . . , xi−1, a1, xi+1, . . . , xj−1, a2, xj+1, . . .) + u (. . . , xi−1, b1, xi+1 . . . , xj−1, b2, xj+1, . . .)

6= u (. . . , xi−1, a1, xi+1, . . . , xj−1, b2, xj+1, . . .) + u (. . . , xi−1, b1, xi+1, . . . , xj−1, a2, xj+1, . . .)

(1.9)

Lemma 6. A utility function u is (i, j, n)-separable iff there exists no violation of (i, j, n)-

separability.

The algorithm in Lemma 5 takes a violation of (i, j, n)-separability as advice, for every

pair of dimensions i, j ≤ n where u is not (i, j, n)-separable.

Lemma 5 has two immediate corollaries.

Corollary 1. Suppose a weakly tractable choice correspondence maximizes expected utility,

where

Had(Gn(u)) = Ω(poly(n)) (1.10)

Then there exists a O(poly(n))-time algorithm for MAX 2-SAT with n variables. This algo-

rithm uses at most O(poly(n))-size advice.

This contradicts NP 6⊂ P/poly and will be useful in the proof of Theorem 4.
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Corollary 2. Suppose a weakly choice correspondence c maximizes expected utility, where

Had(Gn(u)) = ω(log n) (1.11)

Then the there exists a O(2o(n)-time algorithm for 3-SAT with n variables. This algorithm

uses at most O(poly(n))-size advice.

This completes the proof of Theorem 2: the conclusion of Corollary 2 contradicts the

NU-ETH, and the only utility functions that do not satisfy condition (1.11) are Hadwiger

separable.

1.4.5 Proof Outline of Theorem 3

To prove Theorem 3, I construct a dynamic choice bracketing algorithm that maximizes

expected utility in polynomial time as long as the utility function u is Hadwiger separable.

In order to define the algorithm, I need to review another measure of graph sparsity called

contraction degeneracy, which turns out to be closely related to the Hadwiger number.

Definition 21. Let G be an undirected graph.

1. The degree of node i is the number of nodes j 6= i with which i shares an edge.

2. The contraction degeneracy cdgn(G) is the smallest number d such that every minor

G′ of G has a vertex with degree less than or equal to d.

Lemma 7. The utility function u is Hadwiger separable if and only if

cdgn(Gn(u)) = O(log n)

I define algorithm 2 on the next page. This algorithm takes in a product menu M and

outputs a lottery X∗ ∈ M . It is parameterized by a utility function u and the contraction
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degeneracy d of the inseparability graph Gn(u). The algorithm requires a description of the

inseparability graph Gn(u) as advice, as well as any advice needed to efficiently compute the

utility function u.

After reading the description of algorithm 2, it may be useful to refer to Figure 1.11

for a more concrete example. The figure depicts nine iterations of the algorithm on a nine-

dimensional product menu. It shows how the predecessors, successors, and indirect influ-

encers are defined in terms of the inseparability graph Gn(u), and how these sets change as

the algorithm iterates.

Algorithm 2 is at least superficially consistent with dynamic choice bracketing. How-

ever, it is not immediately clear that it is well-defined. There are two steps that require

clarification. First, I show that step 1 is always possible, and can be done in polynomial

time.

Lemma 8. Let G be an undirected graph with contraction degeneracy d. There exists a

polynomial-time algorithm that converts G into an directed acyclic graph ~G by assigning a

direction to each edge in G, where each node i has at most d outgoing edges.

Next, I show that step 5d will never return an error.

Lemma 9. Let G be an undirected graph with contraction degeneracy d. Let ~G be the

directed acyclic graph from Lemma 8. There exists a node i in ~G that has at most d indirect

influencers.

I show that this algorithm is consistent with dynamic choice bracketing.

Lemma 10. Algorithm 2 is a special case of Algorithm 1.

I show that this algorithm is optimal.

Lemma 11. Algorithm 2 maximizes expected utility. That is, it outputs a lottery X∗ ∈ c(M)

that maximizes expected utility.



CHAPTER 1. COMPUTATIONALLY TRACTABLE CHOICE 69

Input: product menu M .

Advice:

1. Inseparability graph G := Gn(u) with contraction degeneracy d.

2. Any advice needed to efficiently compute the utility function u.

Process:

1. Convert the undirected graph G into a directed acyclic graph ~G by assigning a
direction to each edges in G. Each node in ~G has at most d outgoing edges.

2. Do a topological sort of ~G. Without loss of generality, assume that the coordinates
i = 1, . . . , n are already sorted correctly.

3. Define a frontier F ⊆ {1, . . . , n} that is initially empty. Later, this will keep track of
unvisited nodes i that are successors to some visited node j.

4. Let i be the smallest unvisited node in ~G.

5. (a) The successors Si are unvisited nodes where G contains an edge between i and j.

(b) The predecessors Pi are visited nodes j where X∗j (·) depends on Xi.

(c) The indirect influencers Ii are frontier nodes j ∈ F where G contains a path
between i and j that does not pass through F .

(d) If there are more than d indirect influencers, i.e. |Ii| > d, repeat step 5 with the
smallest unvisited node j > i.

(e) Define
Vi(Xi, XSi , XPi) = E[u (Xi, XSi , XPi , 0, 0, . . .)]

That is, the value function equals expected utility under the (potentially false)
assumption that Xj = 0 for all coordinates j /∈ {i} ∪ Si ∪ Pi.

6. Run steps 5 and 6 of the dynamic choice bracketing algorithm (1).

7. Label node i as visited. Update the frontier F by adding Si and deleting i, i.e.

F := (F ∪ Si) \ {i}

Return to step 4 if any unvisited nodes remain in ~G.

Output: (X∗1 , . . . , X
∗
n) ∈ X . This is well-defined because, once all coordinates have

been visited, choices X∗i (·) have no remaining arguments.

Algorithm 2: A dynamic choice bracketing algorithm that maximizes expected utility.
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Iteration 1

S1 = {2, 3}, P1 = ∅, I1 = ∅
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Iteration 2

S2 = {6}, P2 = ∅, I2 = ∅
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Iteration 3

S3 = {6}, P3 = ∅, I3 = ∅
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Iteration 4

S4 = {5}, P4 = {1}, I4 = {5}
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Iteration 5

S5 = {6, 8}, P5 = {1, 4}, I5 = ∅
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Iteration 6

S6 = {9}, P6 = {2, 3, 5}, I6 = {8}
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Iteration 7

S7 = ∅, P7 = ∅, I7 = ∅
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Iteration 8

S8 = {9}, P8 = {5}, I8 = {9}
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Iteration 9

S9 = ∅, P9 = {6, 8}, I9 = ∅
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Figure 1.11: Each diagram depicts the directed graph ~G for some iteration of algorithm
2. The node i that is currently being visited is blue. The frontier nodes F have a dashed
outline. The predecessors Pi are red, and all other visited nodes are grey. The successors Si
are green. The indirect influencers Ii are yellow. A node j ∈ Si ∩ Ii is green on the interior
and yellow on the exterior, like node 5 in iteration 4. The bracket size is three because there
are never more than three nodes in {i} ∪ Si ∪ Ii.
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It only remains to show that Algorithm 2 runs in polynomial time. The key step is

to show that the algorithm’s runtime depends exponentially on d, but polynomially on all

other relevant parameters. This is known as a fixed-parameter tractability result, because

the algorithm is efficient as long as the parameter d is held fixed.

As before, let M be an n-dimensional product menu where partial menus Mi consist of

k partial lotteries Xi, and each Xi is measurable with respect to the same m intervals in the

sample space.

Lemma 12. Algorithm 2 has a runtime of

O(poly(n,m, k) · poly(k)d) (1.12)

Finally, recall that u is Hadwiger separable. Therefore, d = O(log n) by Lemma 7.

Plugging this into expression (1.12) yields a runtime of

O(poly(n,m, k))

which completes the proof.

1.5 Choice Trilemma

In this section, I establish the choice trilemma. The choice trilemma suggests that the

decisionmaker may actually be better off if she is willing to violate the rationality axioms.

To motivate the exercise, consider a thought experiment. A decisionmaker intrinsically

cares about expected utility for some utility function ū, but is computationally constrained.

I refer to ū as her objective function, to distinguish it from the revealed utility function

u. The objective function is what the decisionmaker intrinsically cares about, like profits or
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pleasure, whereas revealed utility is any utility function that rationalizes the decisionmaker’s

choices.

In the presence of computational constraints, maximizing expected utility according to

ū may be intractable. Theorem 2 implies that it will be intractable whenever ū is not

Hadwiger separable. In that case, the decisionmaker has one of two options. First, she can

make choices that are both tractable and rational, in that they satisfy the expected utility

axioms, or equivalently, they maximize expected utility for some utility function u. Since

these choices are tractable, it must be that u 6= ū. Second, she can make choices that are

tractable but violate the expected utility axioms.

When optimal choice according to ū is intractable, the decisionmaker may settle for

tractable choices that are only approximately optimal. For example, she may prefer a choice

correspondence that guarantees her at least half of the optimal payoff in any given menu,

relative to one that may perform even worse. Theorem 4 shows that it is possible for the

decisionmaker to make tractable and approximately optimal choices, but only if she is willing

to violate the expected utility axioms. In other words, she will appear irrational to an outside

observer.

To reason about approximate optimality, I need to quantify “approximately”. For that

purpose, I turn to the approximation ratio. This measure of approximate optimality is widely

used in computer science to evaluate approximation algorithms for intractable problems.

Within economics, it has been applied to the literature on mechanism design (e.g. Hartline

and Lucier 2015, Feng and Hartline 2018, Akbarpour, Kominers, et al. 2021).

I make the following assumption in order to simplify the definition of the approximation

ratio.

Assumption 6. Let ū be the objective function. Then ū(0, 0, . . .) = 0 and ū(x) ≥ 0 for all

x ∈ X .
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Definition 22. Let ū be a objective function. Then APXū
n(c) denotes the approximation

ratio achieved by a choice correspondence c, where

APXū
n(c) ≤ E[ū(c(M))]

maxX∈M E[ū(X)]

for any n-dimensional product menu M .

Theorem 4 has two parts. The first part shows that it is not possible for a choice

correspondence to simultaneously be rational, tractable, and approximately optimal. The

second part shows that it is possible to be tractable and approximately optimal if one is

willing to drop rationality.

Theorem 4. If NP 6⊂ P/poly, there exists a objective function ū where the following are

true.

1. Let the choice correspondence c be rational and weakly tractable. Then c fails to achieve

any constant approximation ratio, i.e.

lim
n→∞

APXū
n(c) = 0

2. There exists a strongly tractable (but not rational) choice correspondence c′ where

APXū
n(c′) ≥ 1/2

In fact, the result is stronger than the theorem statement implies. The proof is construc-

tive and identifies a large class of utility functions where the result applies. For example,

this class includes

ū(x) =
√
x1 + x2 + . . .
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I outline the proof in the next subsection.

The choice trilemma refers to the fact that the decisionmaker may care about three

properties: rationality, tractability, and approximate optimality. She can satisfy rationality

and approximate optimality by maximizing expected utility with respect to her objective

function. She can satisfy rationality and tractability by dynamically choice bracketing, as

established by Theorem 3. This is only optimal when the objective function is Hadwiger

separable, as established by Theorem 2. She can satisfy tractability and approximate opti-

mality, as I show in Theorem 4. But she cannot satisfy all three properties at once, as I also

show in Theorem 4.

The choice trilemma implicitly assumes that the approximation ratio is a reasonable way

to measure approximate optimality. However, I do not claim that it is the only way. In

particular, we might be concerned if different ways of measuring approximate optimality

led to radically different conclusions. Fortunately, I can strengthen theorem 4 to partially

address this concern. I begin with a property that any measure of approximate optimality

should satisfy: respect for weak dominance.

Definition 23. Let c, c′ be choice correspondences. Then c′ weakly dominates c if

E[ū(c′(M))] ≥ E[ū(c(M))]

for all product menus M , where the inequality is strict for at least one menu.

The next corollary strengthens theorem 4. Rather than compare a rational and tractable

choice correspondence c with a tractable and approximately optimal choice correspondence

c′, it compares c with a tractable and approximately optimal choice correspondence c′′ that

weakly dominates c. In that sense, any reasonable measure of approximate optimality should

agree that c′′ is weakly better than c. The approximation ratio is only used to break ties; it

gives a sense in which c′′ is strictly better than c.
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Figure 1.12: This figure plots the approximation ratio (y-axis) against the dimension n
(x-axis). It depicts the so-called greedy algorithm in red, and the class of dynamic choice
bracketing algorithms in blue, for a particular hedonic utility function. The greedy algorithm
violates the expected utility axioms but guarantees a 1/2 approximation, irrespective of n.
However, with dynamic choice bracketing, the approximation ratio vanishes as n grows. The
same is true of any rational and tractable choice correspondence, which can be represented
as dynamic choice bracketing, by theorem 2.

Corollary 3. Let ū be an efficiently computable objective function where theorem 4 holds.

Let the choice correspondence c be rational and strongly tractable. If NP 6⊂ P/poly, there

exists a strongly tractable (but not rational) choice correspondence c′′ that weakly dominates

c, where

APXū
n(c′′) ≥ 1/2

Proof. Let c′ be defined as in the statement of theorem 4. Let c′′ be generated by the following

algorithm. First, given a product menu M , compute X ∈ c(M) and X ′ ∈ c′(M). Second,

evaluate E[ū(X)] and E[ū(X ′)], and choose the better of the two lotteries {X,X ′}.

1.5.1 Proof Outline of Theorem 4

Here, I give a high-level outline of how to prove theorem 4. Figure 1.12 illustrates.
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First, I show that rational and weakly tractable choice correspondences may not even be

approximately optimal, when n is large. Clearly, this is not always true. If the objective func-

tion ū is Hadwiger separable, then theorem 3 implies that expected objective maximization

is weakly tractable. However, this is true whenever ū satisfies the following property.

Definition 24. The objective function ū is ε-sublinear for some constant ε > 0 if

ū(1, . . . , 1︸ ︷︷ ︸
n times

, 0, . . .) = O
(
n1−ε)

Lemma 13. Let the objective function ū be symmetric, ε-sublinear, and strictly increasing.25

Let the choice correspondence c be rational and weakly tractable. If NP 6⊂ P/poly then

APXū
n(c) = Õ(n−ε)

That is, no rational and weakly tractable choice correspondence guarantees a constant

approximation. As n grows, the approximation ratio converges to zero. The rate of con-

vergence is determined by ε. Intuitively, for any given n, objective functions ū that are

more sublinear will be harder to approximate with a rational and weakly tractable choice

correspondence.

Next, I turn to the second part of theorem 4. I present a greedy algorithm (3) that

generalizes Johnson’s (1974) approximation algorithm for MAX SAT.

The greedy algorithm has a lexicographic flavor. In the first iteration, the decisionmaker

chooses the partial lottery X1. Rather than anticipate her remaining choices, she incorrectly

assumes that eventual outcome x will be zero-valued in all other dimensions, i.e. xi = 0 for

i ≥ 2. She then maximizes expected objective under that assumption. In the ith iteration,

the decisionmaker chooses the partial lottery Xi. Now, she takes into account her choices
25By increasing, I mean that ū(x) > ū(x′) whenever xi > x′i for some i.
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Parameters: objective function ū that is efficiently computable.

Input: product menu M .

Process: iterate over i = 1, . . . , n. For each i, define

X∗i ∈ arg max
Xi∈Mi

E
[
ū
(
X∗1 , . . . , X

∗
i−1, Xi, 0, 0, . . .

)]
Output: (X∗1 , . . . , X

∗
n) ∈M

Algorithm 3: A greedy approximation algorithm.

X∗1 , . . . , X
∗
i−1, but she incorrectly assumes that her eventual outcome x will be zero-valued

in all dimensions j > i.

Despite appearing naive, the greedy algorithm guarantees a 1/2-approximation when the

objective function ū satisfies a diminishing returns property. Roughly, an decisionmaker that

prefers outcome x to x′ should not prefer x + x′′ to x′ + x′′ even more after she is given a

lump sum of x′′.

Definition 25. The objective function ū features diminishing returns if

ū(x)− ū(x′) ≥ ū(x+ x′′)− ū(x′ + x′′) ∀x, x′, x′′ ∈ X

Johnson (1974) showed that a similar greedy algorithm guarantees a 1/2-approximation

for MAX 2-SAT. His proof applies almost immediately to this setting when ū is the maximum

objective function ū(x) = maxi xi. It turns out that this result holds more generally. I show

that this result requires only two properties of the objective function: that ū is non-decreasing

and has diminishing returns.

Lemma 14. Let objective function ū be non-decreasing with diminishing returns, and effi-

ciently computable. Then the greedy algorithm (3) guarantees a 1/2-approximation.
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Theorem 1 follows immediately from lemmas 14 and 13. Furthermore, these results

identify a large class of objective functions ū in which theorem 1 holds. These are objective

functions ū that are symmetric, strictly increasing, and ε-sublinear, with diminishing returns.

There are many natural objectivey functions that all of these assumptions. For example,

consider objective functions of the form

ū(x) = f

(
n∑
i=1

xi

)

where f is strictly increasing. These satisfy diminishing returns when f is concave, and are

ε-sublinear as long as

f(z) = O(z1−ε)

This requirement is not much stronger than strict concavity. For example,

f(z) =
√
z

is 1/2-sublinear.

I conclude with a remark on the greedy algorithm and its interpretation. In principle,

the greedy algorithm can be understood as maximizing expected “utility” with respect to the

limit of a sequence of utility functions, i.e.

lim
ε→0+

[
ū(x1, 0, 0, . . .) + ε · ū(x1, x2, 0, 0, . . .) + ε2 · ū(x1, x2, x3, 0, 0, . . .) + . . .

]
This limiting behavior reflects lexicographic revealed preferences and violates the expected

utility axioms because it violates the continuity axiom.26

This raises a natural question: is theorem 4 driven by approximation algorithms that

could be rationalized, if only we dropped the continuity axiom? The answer is no; the
26For a survey of lexicographic choice under uncertainty, see Blume et al. 1989.
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greedy algorithm is not the only approximation algorithm, and it does not appear to be the

best one. For example, the algorithm in Corollary 3 weakly dominates the greedy algorithm

and violates the weak axiom of revealed preference (since the utility function varies based

on the menu).

Likewise, in appendix ?? gives a randomized algorithm that guarantees a (1− 1/e) ap-

proximation in the special case of the maximum objective function. This is better than the

1/2 approximation established in lemma 14 for the greedy algorithm. Moreover, because the

algorithm is randomized, the decisionmaker makes stochastic choices. This is an even further

departure from standard rationality assumptions than the greedy algorithm or the algorithm

in Corollary 3.27

1.5.2 Proof of Lemma 13

In this subsection, I prove lemma 13, which shows that rational and weakly tractable choice

correspondences can be poor approximations. I leave the proof of lemma 14 to the appendix.

Let c be a rational and weakly tractable choice correspondence with revealed utility

function u. Let ū be a payoff function that is symmetric, ε-sublinear, and strictly increasing.

I want to construct a menu M where c(M) performs poorly relative to the optimal choice,

according to ū.

The first step is to simplify the agent’s behavior by focusing on coordinates i over which

the revealed utility function u is additively separable. To do this, I use the concept of graph

coloring.

Definition 26. Let G be an undirected graph. Let C be a set of colors.

1. A C-coloring of G is map f from nodes i ∈ {1, . . . , n} to colors in C where adjacent

nodes have different colors: if nodes i and j share an edge then f(i) 6= f(j).
27Technically, my model assumes that the algorithm generating the decisionmaker’s choices is deterministic.

But I show in appendix ?? that my results do not change if the decisionmaker is allowed to randomize.
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Figure 1.13: This diagram depicts a graph with a chromatic number of 3. On the left is
the original graph. On the right is the graph where each node is assigned a color from the
set {red, blue, green}.

2. The chromatic number of G is the size of the smallest set C such that a C-coloring

exists.

Figure 1.13 illustrates. Let N be the set of nodes i that are assigned the most common

color in a minimal coloring of the inseparability graph Gn(u). For example, in figure 1.13,

we could define N = {1, 6, 7} or N = {2, 4, 8} or N = {3, 5, 9} because all three colors have

the same number of nodes. Let S be the set of nodes i where i ∈ N and

u(0, . . . , 0︸ ︷︷ ︸
i− 1 times

, 1, 0, 0, . . .) ≥ u(0, 0, . . .)

If u is nondecreasing, then S = N . In general, S may be a strict subset of N . For now,

assume that at least half the elements of N are in S, i.e. |S| ≥ |N |/2. The other case is

even easier, and I return to it at the end of the proof.

Let d be the number of nodes in S. For convenience, let S = {1, . . . , d} be the first d

nodes. This is without loss of generality because ū is symmetric.

Restricting attention to nodes i with the same color is useful because those nodes can

be separated from one another. Formally, I claim that there exist functions u1, . . . , ud such
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that, for any d-dimensional consequence x,

u(x) =
d∑
i=1

ui(xi)

This follows from the fact that any two nodes i, j ∈ S cannot share an edge in the insep-

arability graph Gn(u). Otherwise, they could not have the same color according to a valid

C-coloring. Since none of the first d nodes share an edge, the inseparability graph Gd(u) is

empty, and therefore u is additively separable over d-dimensional consequences x.

Next, I construct a product menu M where the choice correspondence c will perform

poorly. For all dimensions i > d, let Mi = {0} consist of a single partial lottery that always

returns xi = 0. For all dimensions i ≤ d, let Mi = {XG
i , X

B
i } consist of two partial lotteries.

For all i ≤ d, let

XG
i (ω) =


1 ω ∈

[
i−1
d+2

, i
d+2

)
0 otherwise

XB
i (ω) =


1 ω ≥ d

d+2

0 otherwise

Note that XB
i delivers a higher expected value than XG

i , but the partial lotteries XG
i are

negatively correlated with each other while the partial lotteries XB
i are positively correlated.

I claim that the choice correspondence c will choose the partial lottery XB
i over XG

i for

each i. Compare the expected utility of XB
i , i.e.

E
[
ui
(
XB
i

)]
=

(
2

d+ 2

)
· ui(1) +

(
d

d+ 2

)
· ui(0)

with expected utility of XG
i , i.e.

E
[
ui
(
XG
i

)]
=

(
1

d+ 2

)
· ui(1) +

(
d+ 1

d+ 2

)
· ui(0)
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Since ui(1) ≥ ui(0) for all i ∈ S, it is clear that XB
i is better according to u. Because u is

additively separable across i ∈ S, the decisionmaker ignores the correlation across dimensions

i.

Unfortunately, always choosing XB
i is suboptimal from the perspective of the payoff

function ū. The expected payoff will be

(
2

d+ 2

)
· ū(1, . . . , 1︸ ︷︷ ︸

d times

, 0, 0) +

(
d

d+ 2

)
· ū(0, 0, . . .) =

(
2

d+ 2

)
·O(d1−ε)

= O(d−ε) (1.13)

where the first equality follows from sublinearity and the fact that ū(0, 0, . . .) = 0. However,

the expected payoff from always choosing XG
i is

(
2

d+ 2

)
· ū(0, 0, . . .) +

d∑
i=1

(
1

d+ 2

)
· ū(0, . . . , 0︸ ︷︷ ︸

i− 1 times

, 1, 0, 0, . . .) =

(
d

d+ 2

)
· ū(1, 0, 0, . . .)

= Θ(1) (1.14)

The first equality follows from symmetry and the fact that ū(0, 0, . . .) = 0. The second

equality follows from the fact that ū is strictly increasing, and therefore ū(1, 0, 0, . . .) >

ū(0, 0, . . .).

Divide (1.13) by (1.14) to show that the approximation ratio is at most

APXū
n(c) = O(d−ε)

However, the lemma claimed that the approximation ratio is at most O(n−ε). Therefore,

I still need to show that n = Õ(d). To do this, I need to introduce one more property of

graphs, closely related to contraction degeneracy (21).
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Definition 27. Let G be an undirected graph. The degeneracy dgn(G) is the smallest number

d such that every subgraph of G has a node with degree less than or equal to d.

Szekeres and Wilf (1968) show the chromatic number of a graph G is at most 1+dgn(G).

By the pigeonhole principle, the number of nodes i ∈ N must be at least

n

1 + dgn(G)

By assumption, at least half of these nodes i satisfy ui(1) ≥ ui(0). Therefore, the number of

nodes i ∈ S is at least

d ≥ n

2 + 2dgn(G)
(1.15)

Finally, I can bound the degeneracy as follows.

dgn(Gn(u)) ≤ cdgn(Gn(u))

= Õ (Had(Gn(u)))

= O(log n) (1.16)

The first line follows immediately from the definitions of degeneracy and contraction degen-

eracy (21). The second line follows from lemma 7. The third line follows from theorem 2.

Note that this third line, which is absolutely essential, is the only time I use the fact that c

is weakly tractable.

Combining (1.15) and (1.16) gives

d ≥ n

O(log n)
= Õ(n)

which is what I sought to show.

All that remains is to consider the case where ui(0) > ui(1) for more than half of the
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nodes i ∈ N . I claimed this case was even easier. Redefine S as the set of all nodes i where

i ∈ N and ui(0) > ui(1). Redefine XB
i (ω) = 0 for all ω ∈ [0, 1], and let XG

i be defined

as above. The choice correspondence c will still choose XB
i over XG

i . The decisionmaker’s

expected payoff

E
[
ū
(
XB

1 , . . . , X
B
n

)]
can only decrease relative to my original construction, but the expected payoff

E
[
ū
(
XG

1 , . . . , X
G
n

)]
will stay the same. The rest of my argument goes through verbatim.

1.6 Related Literature

This work contributes to three research efforts. First, it contributes to the literature on

bounded rationality, which incorporates cognitive limitations into economic models. Sec-

ond, it contributes to the subfield of economics and computation, which uses computational

complexity to gain insight into economic phenomena. Third, it contributes to the sizable

literature in behavioral economics on choice bracketing and related phenomena.

Bounded Rationality. There is a longstanding effort to incorporate bounded rationality

in economic modeling. Here, I emphasize work that is methodologically similar to mine.

Echenique et al. (2011) also consider a model of computationally-constrained consumer

choice. Thet develop a “revealed preference approach to computational complexity” in re-

sponse to alternative approaches used in prior work. They propose only ruling out utility

functions for which maximization is computationally hard and evaluate the implications

for observed behavior. Their definition of tractability is similar to mine: a utility func-
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tion over bundles is tractable if there exists a polynomial-time algorithm that maximizes

the consumer’s utility subject to budget constraints. The main difference in our definitions

that Echenique et al. (2011) interpret choices as a dataset, whereas I work with a choice

correspondence.28

Directionally, my paper is very much aligned with Echenique et al. (2011). The results

are quite different, however. Echenique et al. (2011) consider a classic model of budget-

constrained consumer choice. They show that tractability does not meaningfully constrain

behavior: any rationalizable dataset is consistent with a tractable utility function. In con-

trast, I consider a model of choice under risk and show that tractability has significant

implications for behavior.

Gilboa, Postlewaite, et al. (2021) also study computationally-constrained consumer choice,

but take a different approach. In their model, the utility derived from consumption is a prop-

erty of the menu that the agent faces, in contrast to the revealed preference approach that

Echenique et al. (2011) and I take. In this formulation, the authors show that the consumer’s

problem is NP-hard. The authors argue that, as a result, consumers may turn to heuris-

tics like mental accounting. My results show that these kinds of arguments for behavioral

heuristics can actually be formalized, by imposing computational tractability as an axiom.

Other researchers have used Turing machines to study the computability of choice (Richter

and Wong 1999a), equilibria (Richter and Wong 1999b), and repeated game strategies (An-

derlini and Sabourian 1995). Computability is a much weaker property than computa-

tional tractability. It asks whether behavior can be generated by a Turing machine, whereas

tractability asks whether behavior can be generated by a Turing machine with a reasonable

runtime.
28In their model, the dataset consists of observed choices c(M1), . . . , c(Mk) for k distinct menus. In

my model, the choice correspondence c describes the choices c(M) that the agent would make, if she
were presented with the menu M . The interpretation is similar to the potential outcomes framework in
econometrics.
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Beyond Turing machines, researchers have used specialized models that impose more

structure on how the agent generates her choices. Some of these models are borrowed from

computer science, like perceptrons (Rubinstein 1993) and finite automata (e.g. Rubinstein

1986, A. Wilson 2014). Other models are original, and capture forms of procedural reasoning

(e.g. Mandler et al. 2012, Mandler 2015), costly reasoning (e.g. Gabaix et al. 2006, Ergin and

Sarver 2010), incomplete reasoning (e.g. Lipman 1999, Jakobsen 2020), or limited attention

(e.g. Gabaix 2014).

It is tempting to use more specialized models of computation in order to obtain stronger

results (although the representations in this paper are already quite strong). After all, the

Turing machine is a general model of computation, and computations that are easy for a

computer may be challenging for a human. However, most individuals and firms have access

to computers and are free to use them to support their decisionmaking. It would be odd

if a theory of computationally-constrained choice could not account for decisionmakers who

take advantage of modern computing power.

Economics and Computation. The notion that computational constraints bind on eco-

nomic phenomena is widely accepted in the interdisciplinary subfield of economics and com-

putation. Most famously, computational complexity theory has had a big impact on mecha-

nism design, where optimal mechanisms are often intractable (e.g. Nisan and Ronen 2001).

However, both economists and computer scientists have applied this framework to many

other topics, like equilibrium (e.g. Gilboa and Zemel 1989, C. Daskalakis et al. 2009), learn-

ing (Aragones et al. 2005), social learning (Hązła et al. 2021), testing (Fortnow and Vohra

2009), and rationalizing choices (Apesteguia and Ballester 2010). Most of these papers, like

mine, rely on an expansive interpretation of the Church-Turing thesis that uses the Turing

machine to model behavioral or social processes.

This subfield also inspired the choice trilemma, which takes the perspective of approxi-
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mation algorithms in order to critique the expected utility axioms. Feng and Hartline (2018)

take the same perspective to critique the revelation principle in mechanism design. In prior-

independent settings, they show that designers may obtain a better approximation to their

objective if they are willing to use non-revelation mechanisms. Specifically, they find that

the revelation gap is between 1.013 and e in the setting they study, whereas a value of 1

means no gap. In the settings identified in Theorem 4, the approximation gap grows to ∞

as n→∞.

Choice Bracketing and Related Phenomena. There is considerable empirical support

for choice bracketing and other forms of narrow framing, like mental accounting (Thaler

1985) and myopic loss aversion (Benartzi and Thaler 1995). Read et al. (1999) coined the

term “choice bracketing” as a way to explain behavior observed in prior experiments (e.g.

Tversky and Kahneman 1981). Since then, behavioral experiments have highlighted potential

factors that influence choice bracketing, including choice complexity (Stracke et al. 2017),

cognitive ability (Abeler and Marklein 2016), framing (Brown et al. 2021), and the desire

for self control (Koch and Nafziger 2019).

Choice bracketing and other forms of narrow framing seem to be economically mean-

ingful. Observational studies have found evidence for narrow framing in taxi services (e.g.

Camerer et al. 1997; Martin 2017), eBay bidding (Hossain and Morgan 2006), savings be-

havior Choi et al. (2009), food stamp expenditures (Hastings and Shapiro 2018), and MBA

admissions (Simonsohn and Gino 2013). Others have proposed narrow framing as an ex-

planation for stock market non-participation (Barberis et al. 2006) and the equity premium

puzzle (Benartzi and Thaler 1995).

Moreover, choice bracketing can lead to surprising behavior. For example, Rabin and

Weizsäcker (2009) consider a decisionmaker choosing from a product menu. Their model

specializes mine by assuming that partial lotteries Xi, Xj are independent of each other and
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that the decisionmaker cares about total income, i.e. X1 + . . . + Xn. Unless the decision-

maker’s preferences satisfy constant absolute risk aversion, the authors show that she will

violate first order stochastic dominance in some menu. Then they provide experimental

evidence that many decisionmakers narrowly bracket their choices to the point where they

choose dominated lotteries.

In light of this empirical evidence, researchers have proposed various theories of choice

bracketing and mental accounting. Zhang (2021) provides an axiomatic foundation for nar-

row choice bracketing, by relaxing the independence axiom and introducing an axiom of

correlation neglect. Lian (2020) conceptualizes a decisionmaker as a narrow thinker if she

uses different information to make different decisions, and formulates a model of rational

inattention where the decisionmaker chooses what information to use for each decision. Sim-

ilarly, Köszegi and Matějka (2020) develop a model of rational inattention to understand

mental accounting. Finally, Koch and Nafziger (2016) takes a different approach, justifying

choice bracketing as a commitment device.

1.7 Conclusion

In this paper, I propose a new theoretical framework for studying computationally-tractable

choice. Specifically, I apply a remarkably powerful model of computation, the Turing ma-

chine, to a quite general model of choice under risk. With these ingredients, I address two

problems. First, I provide a formal justification for the claim that computational constraints

lead to forms of choice bracketing (Theorems 1, 2, 3). Second, I provide a formal justifica-

tion for behavior that violates the expected utility axioms (Theorem 4). I summarize these

results as a choice trilemma (Figure 1.3).

These results show the potential value of computational tractability to economic the-

ory. First, by recognizing computational constraints as binding on the world around us,
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we can make sharper predictions about economic behavior. The first step to realizing this

potential is to formulate computational constraints correctly, as an axiom that restricts how

choices vary across counterfactual menus. Then we can impose tractability on top of other

assumptions, like rationality, to obtain useful representations and sharper predictions. Sec-

ond, computational tractability clarifies the meaning of other assumptions in our models.

For example, it seems natural to assume that investors only care about total income, but

not if this implies risk neutrality. More generally, it seems natural to assume that choices

reveal preferences that satisfy the expected utility axioms, but not if this means that she is

making choices that are objectively worse than they need to be (Theorem 4).

Since P. A. Samuelson (1938), economic theory has typically associated rationality with

“exact maximization of revealed preferences”. The choice trilemma suggests that, instead,

the decisionmaker should prioritize “approximate maximization of hedonic preferences” where

hedonic preferences reflect the decisionmaker’s intrinsic objective function (if she has one).

In the the presence of computational constraints, revealed preferences cannot match he-

donic preferences unless the objective function is Hadwiger separable. For that reason, it

is generally not clear why revealed preferences should exist at all. Presumably, the deci-

sionmaker’s priority is to perform well according to her hedonic preferences (if they exist),

irrespective of whether an outside observer would be able to make sense of her choices (see

e.g. Manski 2011). Theorem 4 sharpens this argument by showing that, in fact, it is in the

decisionmaker’s best interest to make choices that do not reveal preferences that satisfy the

expected utility axioms.

To develop alternative definitions of rationality that are more compatible with computa-

tional constraints, it may be useful to learn from the “beyond worst-case analysis” literature

in computer science (see e.g. Roughgarden 2021). It is common in computer science to

evaluate algorithms on their runtime in the worst-case instance. Consider an algorithm A

that takes one minute to solve 99% of inputs and one year for 1% of inputs (assuming a
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measure over inputs). The worst-case runtime is one year. But a decisionmaker that does

not have a year to deliberate might use another algorithm A′: see whether A returns an

answer within a minute, otherwise choose something suboptimal. This is optimal 99% of the

time, suboptimal 1% of the time, and takes about a minute. Perhaps A′ should be regarded

as rational, even though strictly speaking it cannot be rationalized.
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Chapter 2

Mechanisms for No-Regret Agents1

2.1 Introduction

Mechanism design is a branch of economic theory concerned with the design of social insti-

tutions. It encompasses a wide range of phenomena that have historically been of interest to

economists, including, but not limited to, auctions (Myerson 1981; Vickrey 1961), matching

markets (Gale and Shapley 1962; A. E. Roth 1982), taxation (Mirrlees 1971), contracts (Ross

1973; Spence and Zeckhauser 1971), and persuasion (Kamenica and Gentzkow 2011).

Despite this field’s potential, it is often unclear whether and how mechanisms derived from

economic theory can be implemented in practice. In particular, one modeling practice stands

out as a barrier to implementation: the common prior assumption. Many mechanism design

problems are only interesting in the presence of uncertainty, and this uncertainty is typically

modeled as stochasticity. The state of the world is drawn according to some distribution

and, importantly, the distribution is commonly known by the designer and all participants

in the mechanism.2

This paper will dispense with the common prior assumption. In its place, we consider a

model of adversarial online learning where the principal and a single agent are learning about

the state, over time, using data. The static mechanism design problem is a Stackelberg game

of incomplete information. The principal chooses a policy p, the agent chooses a response
1Joint work with Jason Hartline and Aleck Johnsen. See Camara et al. (2020) for a published version.
2This assumption is limiting in two ways. First, mechanisms based on a common prior may not be

practicable, because they rely on knowledge that a real-world designer is unlikely to possess. Second, even
if the designer knows the distribution (resp. has beliefs), the participants may not arrive with the same
knowledge (resp. share those beliefs).
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r, nature chooses a state y, and payoffs are realized. In the online problem, this game is

repeated T times, where state yt is revealed at the end of period t. The sequence of states is

arbitrary and the principal’s mechanism should perform well without prior knowledge of the

sequence. The principal’s present choices can affect the agent’s future behavior; this makes

mechanism design a reinforcement learning problem in our model.

In the absence of distributional assumptions, standard restrictions on the agent’s be-

havior, like Bayesian rationality, become toothless. In its place, we define counterfactual

internal regret (CIR) and assume that the agent obtains low CIR. This is an ex post def-

inition of rationality that includes Bayesian rationality (with a well-calibrated prior) as a

special case. We develop data-driven mechanisms that are guaranteed to perform well under

our behavioral assumptions. Specifically, we prove upper bounds on the principal’s regret

from following our mechanism, relative to the single fixed policy that performs best in hind-

sight. Our results take the form of reductions from the principal’s problem to robust versions

of static mechanism design with a common prior.

Running Example. Bayesian persuasion is a model of strategic communication, due to

Kamenica and Gentzkow (2011). It has received considerable attention from economists

and, more recently, algorithmic game theorists (e.g. Dughmi and Xu 2016, Cummings et al.

2020). It is a useful test case for our framework because (a) it is interesting even with only

one agent, (b) the optimal solution varies with the agent’s beliefs, and (c) it has the potential

to be widely applicable.3

Our running example is adapted from Kamenica and Gentzkow (2011). A drug company

(the principal) seeks approval from a regulator (the agent) for a newly-developed drug.

The state y ∈ {High,Low} describes the drug’s quality. Neither the regulator nor the
3Bayesian persuasion has been used to study a wide range of topics, including recommendation systems

(Mansour et al. 2016), traffic congestion (Das et al. 2017), congested social services (Anunrojwong et al.
2020), financial stress-testing (Goldstein and Leitner 2018), and worker motivation (Ely and Szydlowski
2020).
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company know the quality in advance. The company needs to design a clinical trial that will

generate (possibly noisy) information about the drug’s quality. Roughly, a trial p specifies

the probability p(m, y) of sending a message m to the regulator, conditional on the drug

quality y. Informally, the message describes the outcome of the trial. After hearing the

message, the regulator decides whether to approve the drug. The regulator receives a payoff

if it approves a high-quality drug or rejects a low-quality drug. The company receives a

payoff if the regulator approves, regardless of quality. Its challenge is to design a clinical

trial that convinces the regulator to approve as many drugs as possible.

To predict behavior in incomplete-information games, we need to make assumptions

about how the agents deal with uncertainty. The common prior is one such assumption.

In our running example, the common prior would specify a probability q ∈ [0, 1] that the

drug is high quality. Consider the case q = 1/3. If the company does not run a trial –

e.g. it recommends “approve” in every state – the regulator would never approve, as the

drug is more likely to be low quality than high quality ex ante. If the company runs the

most thorough trial possible – e.g. it recommends “approve’ if and only if the drug is high

quality – the regulator would approve with probability 1/3. Finally, consider the optimal

trial. The optimal trial always recommends “approve” if the drug is high quality. If the drug

is low quality, it recommends “approve” and “reject” with equal probability. After hearing

“approve”, the regulator’s posterior puts equal weight on both states, and so it might as well

approve. Here, the regulator approves with probability 2/3.

Online Mechanism Design. In our model, both the company and the regulator would

be learning about drug quality over time. New drugs arrive sequentially. For each drug,

the company designs a clinical trial and generates a message. The regulator hears the

message and decides whether to approve. Regardless of whether the drug is approved, both

parties eventually learn the drug’s true quality, and the next drug arrives. The company’s
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strategy, called amechanism, maps the drug (i.e. state) history and the approval decision (i.e.

response) history to a trial for the current drug. The regulator’s strategy, called a learning

algorithm or learner, maps the drug quality history and the trial (i.e. policy) history to

an approval decision for the current drug. This model is online because the company and

regulator must make decisions while the drugs are still arriving. It is adversarial in the sense

that we impose no assumptions on the sequence of drugs, and so any results (e.g. claiming

that a mechanism performs well) must hold for all such sequences.

The company’s problem is to develop a mechanism that performs as well as the best-

in-hindsight trial. That is, the company should not regret following its mechanism relative

to any simple alternative where it picks the same trial p in every period. To evaluate what

would have happened under an alternative sequence of trials, the company must take into

account how the regulator’s behavior would have changed. Therefore, the company faces a

reinforcement learning problem and its benchmark corresponds to the notion of policy regret

in the literature on bandit learning with adaptive adversaries (e.g. R. Arora, O. Dekel,

et al. 2012). In that setting, R. Arora, O. Dekel, et al. (2012) show that guaranteeing

sublinear (policy) regret is generally impossible.4 This fact precludes a simple solution to

the company’s problem; we must constrain the regulator’s behavior.5

The standard way to constrain the regulator/agent’s behavior – i.e. to capture “self-

interest” in the absence of a meaningful notion of ex ante optimality – is to impose upper

bounds on the agent’s regret. This will be our approach as well. We build on existing
4R. Arora, O. Dekel, et al. (2012) obtain positive results when the adversary satisfies a bounded memory

assumption. Ryabko and Hutter (2008) obtain positive results under a different kind of assumption, that
the environment is sufficiently “forgiving” of mistakes. These papers reflect two prominent approaches in
reinforcement learning: (a) restricting attention to Markov decision processes, and (b) assuming an ability
to “reset” the problem (Kearns et al. 1999).

5R. Arora, Dinitz, et al. (2018) consider policy regret in a repeated game and use the self-interest of the
adaptive adversary to motivate behavioral restrictions. This is reminiscent of a literature on multi-agent
reinforcement learning when the state is Markovian (Buşoniu et al. 2010; Hu and Wellman 1998; Littman
1994; Uther and Veloso 2003). Unlike these papers, we do not have the ability in our model to advise all
participants simultaneously.



CHAPTER 2. MECHANISMS FOR NO-REGRET AGENTS 97

no-regret assumptions, in ways that are intended to refine and better motivate those as-

sumptions.

No-Regret Agents. Two notions of regret have been used historically: external and in-

ternal (or swap) regret (ER and IR). For example, Nekipelov et al. (2015) show how ER

bounds combined with bidding data can be used to partially identify bidder valuations in a

dynamic auction. Braverman et al. (2018) consider a dynamic pricing problem against no-ER

agents.6 Their analysis is generalized by Deng et al. (2019), who study repeated Stackelberg

games of complete information. Furthermore, the literature on no-regret learning in games

has established that if agents satisfy a no-ER (resp. no-IR) property in a repeated game,

the empirical distribution of their actions will converge to a coarse correlated equilibrium

(resp. correlated equilibrium) (Blum, Hajiaghayi, et al. 2008; Foster and Vohra 1997; Hart

and Mas-Colell 2001; Hartline, Syrgkanis, et al. 2015).

Both ER and IR can be thought of as “non-policy” regret, because they do not take

into account how the agent’s behavior affects the behavior of others. The justification for

these regret bounds is that (a) they are satisfied by well-known learning algorithms (see e.g.

Littlestone and Warmuth 1994 for ER), and (b) they generalize optimality conditions asso-

ciated with a stationary equilibrium. Nonetheless, these regret bounds can be problematic.

Effectively, they assume that agents are (a) sophisticated enough to obtain low non-policy

regret, but (b) not aware that their true objective is policy regret. Keep in mind that an

agent who minimizes policy regret can easily obtain high non-policy regret, and thereby

violate the regret bounds.

To avoid this problem, the principal in our model can commit to a mechanism that is
6In their model, the agent is “learning” an appropriate response to the principal’s pricing strategy. If the

agents use naive mean-based learners, Braverman et al. (2018) provide a mechanism that extracts the full
surplus. In particular, the agent fails to anticipate the mechanism that the principal is using. As they point
out, this leads to odd behavior: the agent may purchase goods at a price exceeding her valuation. In our
setting, the agent does not face uncertainty with respect to the mechanism; instead, she faces uncertainty
with respect to the state sequence.
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nonresponsive to the agent’s behavior: the policy pt depends on the state history but not

on the agent’s response history. When mechanisms are nonresponsive, non-policy regret

and policy regret coincide for the agent. Then, bounds on the agent’s regret are permissive

assumptions that allow a wide range of sophisticated and self-interested behavior, including

Bayesian rationality. Keep in mind, there is no need to resort to responsiveness if nonre-

sponsive mechanisms tightly bound the principal’s regret.7

Counterfactual Internal Regret. Without constraints on the agent’s behavior, an early

mistake by the principal can result in a permanent, undesirable shift in the agent’s behavior.

As we will see, this can occur when the agent behaves as if she has additional information

about the state of the world that is not accounted for in our description of the model. The

agent can make the principal’s problem infeasible if she is willing to exploit her information

selectively, i.e. based on the principal’s choice of policies. Unfortunately, neither no-ER nor

no-IR assumptions can rule out selective use of information.

Our notion of rationality requires the agent to fully and consistently exploit her infor-

mation, regardless of the principal’s chosen policies. Existing benchmarks like external and

internal regret cannot capture this requirement. To see why, it helps to consider the fable of

the tortoise and the hare. Both animals have an hour to traverse a one-mile track. For the

tortoise, this requirement is feasible and binding: finishing in time means hustling, without

substantial breaks or detours. For the hare, however, the requirement is hardly restrictive: it

may stop for a break, walk rather than run, or even run around in circles while still finishing

the race in time. Benchmarks like external or internal regret imply reasonable behavior for

an uninformed agent (i.e. the tortoise). But for an informed agent (i.e. the hare), these
7This approach seems spiritually similar to that of Immorlica, Mao, et al. (2020), who develop mecha-

nisms that incentivize efficient social learning. By restricting attention to simple disclosures (i.e. unbiased
subhistories), they significantly simplify the agents’ inferential problem and can motivate a permissive notion
of frequentist rationality. Having restricted disclosure in this manner, they nonetheless design mechanisms
with optimal rates of convergence.
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benchmarks are easy enough to satisfy that it may engage in all kinds of frivolous behavior

– possibly to the detriment of the principal.

The solution to our analogy is to strengthen the hare’s benchmark. If the hare has to

traverse the track in three minutes, it needs to hustle, like the tortoise. Similarly, if the agent

has to obtain no-regret with her information as additional context, this would preclude the

kind of frivolous behavior that makes the principal’s problem infeasible. Of course, setting

this benchmark requires us to know the nature and quality of the agent’s information, just as

we needed to know the top speed of the hare. The idea behind counterfactual internal regret

is that we can identify the agent’s information with her past behavior under counterfactual

mechanisms. Intuitively, any information that is useful should eventually reveal itself through

variation in behavior.

Main Results. This paper considers three variations on our model: one where the princi-

pal knows the agent’s information, one where the agent has no private information, and one

where the agent may have private information. In each case, we propose a mechanism and

bound on the principal’s regret in terms of the agent’s counterfactual internal regret (CIR).

Our first mechanism is intended as a warmup. It requires oracle access to the agent’s

information and has poor performance in finite samples, but avoids some complications asso-

ciated with information asymmetry between the principal and agent. First, the mechanism

produces a calibrated forecast of the state in the current period using off-the-shelf algorithms,

using the oracle as additional context for the forecast. Then, it chooses the worst-case opti-

mal policy in a (hypothetical) ε-robust version of the common prior game. In that game, the

agent’s response only needs to be ε-approximately optimal, and the mechanism substitutes

its forecast for the prior.

Theorem 5 bounds the principal’s regret under this mechanism, under some restrictions

on the stage game. Suppose there are nY states, nP policies, and nR responses. Fix a
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parameter ε > 0 (controlling robustness) and δ > 0 (controlling the fineness of a grid). Our

bound is

O(ε)︸︷︷︸
cost of ε-robustness

+
1

ε

 O(CIR)︸ ︷︷ ︸
agent’s regret

+ Õ

(
δ1−nYnYn

2nP
R

T 1/4

)
︸ ︷︷ ︸

forecast miscalibration

+ O
(
δ1/2
)︸ ︷︷ ︸

approximation error

 (2.1)

If the agent satisfies no-CIR, i.e. CIR → 0 as T → ∞, then the principal’s regret vanishes

in T as long as ε, δ → 0 at the appropriate rates. Moreover, the principal’s average payoffs

converge to a natural benchmark: what he would have obtained in a stationary equilibrium

of the repeated game with a common prior (the empirical distribution conditioned on agent’s

information).

Our second mechanism applies when the agent is as uninformed as the principal. This

mechanism is identical to the first, except its forecast does not use information revealed by

the learner. We formalize “uninformedness” by assuming that the agent’s external regret is

non-negative (in conjunction with no-CIR). Theorem 6 bounds the principal’s regret under

this mechanism, under some additional restrictions on the stage game. Our bound is

O(ε)︸︷︷︸
cost of ε-robustness

+
1

ε

 O(CIR)︸ ︷︷ ︸
agent’s regret

+ Õ

(
δ1−nYnY
T 1/4

)
︸ ︷︷ ︸

forecast miscalibration

+ O
(
δ1/2
)︸ ︷︷ ︸

approximation error

 (2.2)

Compared to (2.1), this drops the exponential dependence on the number nP of policies. This

is because the principal’s forecast does not need to take into account the agent’s information,

which significantly reduces the forecast miscalibration in finite samples.

Our third mechanism applies even when the agent is more informed than the principal.

Here, we consider an “informationally robust” version of the stage game, due to Bergemann

and Morris (2013), where the agent receives a private signal from an unknown information

structure. Like before, we formulate an ε-robust version of this game, where the agent’s
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response need only be ε-approximately optimal. Our mechanism is identical to the second

mechanism, except that it chooses the worst-case optimal policy in the ε-informationally-

robust game instead of the ε-robust game.

Theorem 7 bounds the principal’s regret under this mechanism, under some restrictions

on the stage game. Let π̂T denote the empirical distribution of states y1:T . Given a common

prior π, let ∇(π) be the difference between the principal’s maxmin payoff and his maxmax

payoff across all possible information structures. Roughly, our bound is

∇(π̂T )︸ ︷︷ ︸
cost of informational robustness

+ O(ε)︸︷︷︸
cost of ε-robustness

+
1

ε

 O(CIR)︸ ︷︷ ︸
agent’s regret

+ Õ

(
δ1−nYnY
T 1/4

)
︸ ︷︷ ︸

forecast miscalibration

+ O
(
δ1/2
)︸ ︷︷ ︸

approximation error


(2.3)

Unlike (2.1) and (2.2), the principal’s regret does not vanish as T → ∞. However, it is

vanishing up to the cost of informational robustness ∇(π̂T ) that would also be present under

a common prior, if the agent were more informed than the principal.

Finally, although our focus is not on computational complexity, the reader should note

that the computational tractability of our mechanisms will depend critically on our ability

to solve robust mechanism design problems under a common prior. So, while our bounds on

the principal’s regret apply to a large class of games, evaluating tractability may require a

case-by-case analysis.

Additional Related Work. Within computer science, many researchers share our goal

of replacing prior knowledge in mechanism design with data. The literature on sample

complexity in mechanism design allows the principal to learn the state distribution from i.i.d.

samples (Balcan, Blum, Hartline, et al. 2008; Cole and Roughgarden 2014; J. Morgenstern

and Roughgarden 2015; Syrgkanis 2017). Here, the data arrives as a batch rather than online,

there is no repeated interaction and the question of responsiveness does not arise. However,
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there has also been work that applies online learning to auction design (e.g. C. Daskalakis

and Syrgkanis 2016; Dudík et al. 2017) and Stackelberg security games (e.g. Balcan, Blum,

Haghtalab, et al. 2015). Here, agents are either short-lived or myopic, whereas our agent is

long-lived and potentially forward-looking.

These papers can avoid the agent’s learning problem because they emphasize applications

where the agent does not face uncertainty, or where truthfulness is a dominant strategy. In

contrast, Cummings et al. (2020) and Immorlica, Mao, et al. (2020) study problems that are

closer to our own, insofar as both the principal and the agent must learn from data. They

impose behavioral assumptions that are suited for i.i.d. data, whereas our model generalizes

to adversarial data.

Within economics, research has focused on relaxing prior knowledge, rather than replacing

it entirely. Part of the literature on robust mechanism design relaxes the common prior to

some kind of approximate agreement on the distribution (Artemov et al. 2013; Jehiel, Meyer-

ter-Vehn, and Moldovanu 2012; Meyer-ter-Vehn and Morris 2011; Ollár and Penta 2017; Oury

and Tercieux 2012). Our approach will suggest ε-robustness and ε-informational-robustness

as alternatives to “approximate agreement”.

Organization. Section 2.2 introduces the stage game and ε-robustness. Section 2.3 intro-

duces the repeated game. Section 2.4 defines external, internal, and counterfactual internal

regret. Section 2.4 presents our mechanism and regret bounds when the agent’s learner is

known. As preparation for the remaining results, section 2.5 introduces the stage game with

private signals. Section 2.4 presents our mechanism and regret bounds when the agent is

uninformed. Section 2.4 presents our mechanism and regret bounds when the agent may be

more informed than the principal. Section 2.9 concludes with a discussion of open problems.

Appendix B.1 applies these results to two special cases: our running example, and a

principal-agent problem. Appendix B.2 considers the complexity of the agent’s learning
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problem. Appendix B.3 describes our forecasting algorithms in more detail. Appendix B.4

relaxes some of the restrictions on the stage game and generalizes our results. Appendix B.5

collects proofs.

2.2 Stage Game

Our model features three participants: a male principal, a female agent, and nature. As

advertised, we are interested in a repeated interaction between these participants. To begin

with, however, we describe the stage game, which will constitute a single-round of the re-

peated game. In the stage game, the principal moves first and commits to a policy p ∈ P .

Next, the agent observes the policy p and then chooses a response r ∈ R. Utility functions

depend on the response r, the policy p, and an unknown state of the world y ∈ Y , chosen by

nature. Formally, the agent’s utility function is U : R×P ×Y → [0, 1] while the principal’s

utility function is V : R×P × Y → [0, 1].

Assumption 7 (Regularity). We impose the following regularity conditions.

1. The state space Y is finite.

2. The response space R is a compact space with metric dR.

3. The policy space P is a compact space with metric dP .

4. The utility U is equi-Lipschitz continuous in (r, p) for Lipschitz constants KU
R and KU

P ,

i.e.

∀y ∈ Y : |U(r, p, y)− U(r̃, p̃, y)| ≤ KU
RdR(r, r̃) +KU

P dP(p, p̃)

5. The utility V is equi-Lipschitz continuous in (r, p) for Lipschitz constants KV
R and KV

P ,

i.e.

∀y ∈ Y : |V (r, p, y)− V (r̃, p̃, y)| ≤ KV
RdR(r, r̃) +KV

P dP(p, p̃)
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Later on, we will use covers to convert infinite action spaces into discrete approximations.

For example, our running example involved an infinite policy space.

Definition 28 (Covers). Let X be a metric space with metric dX . Generally, lower case

letters x denote elements of X while upper case letters X denote subsets.

1. Fix δX > 0. Let the partition CX be a δX cover of X . That is, for every set X ∈ CX , any

two elements x, x̃ ∈ X must be within distance δX of one another, i.e. dX (x, x̃) < δX .

2. To reduce notation, we also let CX denote a discretized subset of X . That is, for each

set X ∈ CX , choose a unique x ∈ X to represent X. In that case, we say x ∈ CX .

3. Let x ∈ X and x̃ ∈ CX . We say that x̃ is the discretization of x if x, x̃ belong to the

same subset X ∈ CX .

We will refer to covers CP of the policy space (with metric dP), CR of the response space

(with metric dR), and C∆(Y) of the state distributions ∆(Y) (with the l1 metric).8 Of course,

if the underlying set X is finite to begin with, we can simply set δX = 0 and let CX = X .

The stage game plays an important role in our analysis. Two of our results (theorems 5

and 6) are best understood as reducing the online mechanism design problem to the simpler

task of finding a “locally-robust” policy in the stage game. In the locally-robust problem,

we maintain the traditional common prior assumption: that is, the state y is drawn from a

commonly known distribution π. However, we relax the assumption that the agent maximizes

her expected utility Ey∼π[U(r, p, y)]. Instead, she chooses a response (or a distribution µ over

responses) that guarantees her an expected utility that is within an additive constant ε of the

optimum. Since this assumption only partially identifies the agent’s behavior, the principal’s

utility can take on a range of values. The principal’s worst-case utility from following policy
8Note that P, R, ∆(Y) are all compact. Therefore, we can always construct a finite cover.
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p is described by the function

αp(π, ε) = min
µ∈∆(R)

Ey∼π[Er∼µ[V (r, p, y)]] s.t. max
r̃∈R

Ey∼π[U(r̃, p, y)]−Ey∼π[Er∼µ[U(r, p, y)]] ≤ ε

and his best-case utility is described by

βp(π, ε) = max
µ∈∆(R)

Ey∼π[Er∼µ[V (r, p, y)]] s.t. max
r̃∈R

Ey∼π[U(r̃, p, y)]−Ey∼π[Er∼µ[U(r, p, y)]] ≤ ε

The worst-case optimal (or ε-robust) policy, defined below, is one of two main ingredients in

our proposed mechanisms (the other is a calibrated forecasting algorithm).

Definition 29 (ε-Robustness). The ε-robust policy is worst-case optimal over all response

distributions µ that achieve at least the agent’s optimal expected utility minus ε. Formally,

policy is

p∗(π, ε) ∈ arg max
p∈P

αp(π, ε)

Definition 30 (Cost of ε-Robustness). Fix a distribution π and parameter ε > 0. The cost

of ε-robustness is the distance between the principal’s best-case utility (under the best-case

optimal policy) and worst-case utility (under the worst-case optimal policy). Formally,

∆(π, ε) = max
p∈P

βp(π, ε)− αp∗(π,ε)(π, ε)

The cost of ε-robustness will be a key variable in our upper bounds on the principal’s

regret in the repeated game. It will be convenient to assume that this cost is growing at

most linearly in ε, although this assumption is not really necessary (see appendix B.4).

Assumption 8. For any distribution π, ∆(π, ε) = O(ε).

Finally, the following lemma will be important to our results. Suppose that the principal

misjudges the agent. Instead of choosing a response that achieves at least her optimal
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expected utility minus ε, the agent only achieves her optimal expected utility minus ε + ε̃,

for ε̃ > 0. Nonetheless, if the principal uses the ε-robust policy, his utility degrades smoothly

in the residual ε̃.

Lemma 15. Assume regularity (assumption 7). For any distribution π, policy p, and con-

stants ε, ε̃ > 0, the principal’s worst-case and best-case utilities satisfy

αp(π, ε+ ε̃) ≥ αp(π, ε)−
ε̃

ε
and βp(π, ε+ ε̃) ≤ βp(π, ε) +

ε̃

ε

Appendix B.1 describes two well-known special cases of our model: Bayesian persuasion

and the principal-agent problem. For each case, we provide a simple example, check that

the example satisfies all relevant assumptions, and evaluate our results. In that sense, these

examples serve as sanity checks for the rest of the paper, which involves assumptions and

solutions that are sometimes rather abstract.

2.3 Repeated Game

In the repeated game, the stage game is repeated T times. In period t, the principal chooses

policy pt, the agent chooses response rt, and nature chooses the state yt. At the end of period

t, the state yt is revealed to both the principal and the agent.

The agent’s repeated game strategy (henceforth, learner L) maps the state history y1:t−1,

the response history r1:t−1, the policy history p1:t−1, and the current policy pt to a distribution

µt over responses. Formally, the response distribution in the tth period is given by9

Lt : Y t−1 ×Rt−1 × P t → ∆(R)

9The fact that the response distribution µt may depend on realized response history r1:t−1 allows the
learner to introduce correlation between responses across time, if desired.
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The principal’s repeated game strategy (henceforth, mechanism σ) maps the state history

y1:t−1, the response history r1:t−1, and the policy history p1:t−1 to a distribution νt over

policies. Formally, the policy distribution in the tth period is given by

σt : Y t−1 ×Rt−1 × P t−1 → ∆(P)

Our goal is to design a mechanism σ∗ that the principal would not regret using, relative

to a finite set of alternative mechanisms. Regret – which we define momentarily – measures

the gap in performance between σ∗ and the alternative mechanism σ that performed best in

hindsight, given the realized sequence of states y1:T . We consider a simple set of alternative

mechanisms, corresponding to some finite set of fixed policies P0 ⊆ P that the principal

wishes to consider.10 Formally, by a fixed policy p, we mean a constant mechanism σp that

selects the same policy

σpt (y1:t−1, r1:t−1, p1:t−1) = p

in all periods t and for all histories.

To define the principal’s regret, we need notation for the agent’s behavior under the

proposed mechanism σ∗, as well as under the counterfactual mechanisms σp. Fix the state

sequence y1:T . Let µ∗t describe the agent’s behavior under σ∗, i.e.

µ∗t = Lt
(
y1:t−1, r

∗
1:t−1, p

∗
1:t

)
given the realized history of responses r∗1:t−1 and policies p∗1:t under σ∗. Let µ

p
t describes the

agent’s behavior under σp, i.e.

µpt = Lt(y1:t−1, r
p
1:t−1, (p, . . . , p︸ ︷︷ ︸

t times

))

10Many of our results and definitions can be adapted to any finite set of nonresponsive mechanisms.
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given the realized history of responses rp1:t−1 under σp.

Definition 31 (Principal’s Regret). The principal’s regret relative to the best-in-hindsight

fixed policy p ∈ P0 is

RegretPn (L, y1:T ) = sup
p∈P0

1

T

T∑
t=1

(
Er∼µpt [V (r, p, yt)]− Er∼µ∗t

[
V (r, σ∗(y1:t−1, r

∗
1:t−1, p1:t−1), yt)

])
The mechanism σ∗ satisfies no-regret if the principal’s regret is o(1), i.e. it vanishes as

T → ∞. Recall that the no-regret mechanism design problem is infeasible without further

assumptions on the learner L. The following proposition formalizes this simple observation.

Proposition 5 (Impossibility Result for Unrestricted Learners). In our running example,

for every mechanism σ∗, there exists a learner L along with a state sequence y1:∞ such that

the principal’s regret does not vanish, i.e.

lim
T→∞

RegretPn (L, y1:T ) > 0

2.4 Behavioral Assumptions

In this section, we develop a restriction on the learner L that captures “rational” behavior

by the agent, without requiring assumptions on the state sequence y1:T . In particular, we

build on no-regret assumptions pioneered in the literature on learning in games.

In online learning, regret measures how much better or worse off the agent would have

been had she followed the best-in-hindsight “simple” strategy instead of her learner. Different

notions of regret correspond to different definitions of simplicity. All of the regret notions

used in this paper will be special cases of contextual regret, defined as follows. Given a

sequence z1:T of variables in some arbitrary set Z, contextual regret considers a strategy

“simple” if, for any two periods t and τ , sharing the same context zt = zτ implies taking the
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same response rt 6= rτ .

Definition 32. Given a sequence z1:T of covariates, the agent’s contextual regret relative

to a best-in-hindsight modification rule h : Z → R is

CR(p1:T , y1:T ) = max
h

1

T

T∑
t=1

(U(h(zt), pt, yt)− U(rt, pt, yt))

Note that, unlike our definition of the principal’s regret, the agent’s contextual regret

does not take into account how changes in her past behavior would have also affected the

principal’s behavior. This omission is justified when the mechanism is nonresponsive.

Definition 33 (Responsiveness). A mechanism σ is nonresponsive if

σt(y1:t−1, r1:t−1, p1:t−1) = σt(y1:t−1, r̃1:t−1, p1:t−1)

for any period t, state history y1:t−1, policy history p1:t−1, and response histories r1:t−1, r̃1:t−1.

Our mechanisms will be nonresponsive. This is a design choice, not an assumption. In

restricting attention to nonresponsive mechanisms, we simplify the agent’s problem and make

our behavioral assumptions more credible. If our mechanisms were responsive, non-myopic

agents would not necessarily satisfy no-regret as defined above. For example, an agent might

decide to forgo an otherwise-optimal response if she believes said response would trigger

an undesirable policy by the principal going forward.11 This behavior would be perfectly

reasonable but could cause the agent to accumulate regret. Finally, as it turns out, even

nonresponsive mechanisms can guarantee vanishing principal’s regret in two of the scenarios

we study (sections 2.5 and 2.7). In these scenarios, there is limited room for responsive

mechanisms to improve our guarantees.
11For instance, in models of repeated sales, a buyer may refuse to purchase a good at a reasonable price

if she believes that holding out will cause the seller to reduce prices in the future (Devanur et al. 2019;
Immorlica, Lucier, et al. 2017).
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In the remainder of this section, we define three special cases of contextual regret: external

regret (ER), internal regret (IR), and counterfactual internal regret (CIR).

2.4.1 External Regret

In our model, external regret is contextual regret where the policy pt is the context in period

t. That is, no-ER requires the agent to perform as well as the best-in-hindsight mapping

from policies pt to responses rt. Now, why should external regret include the policy as

context? Basically, because our stage game is an extensive form. Technically-speaking, a

strategy in the stage game is not simply a response; it is a function from the observed policy

to a response. Our definition of external regret compares the agent’s performance to the

best-in-hindsight strategy in the stage game.12

An immediate difficulty with defining ER is that the set P may be continuous.13 For

instance, this is true in our running example. To ensure that the agent’s learning problem is

feasible in that case, we allow the agent to group together nearby policies according to the

cover CP (defined in section 2.2), and consider regret with respect to this coarser context. Of

course, when the policy space P is finite, there is no need for this, and we can set CP = P .

Definition 34 (External Regret). The agent’s external regret (ER) relative to the best-in-
12Suppose that, instead, we compared the agent’s performance to the best-in-hindsight response r ∈ R.

Defining external regret in this way would confound variation in policies with variation in the state, and
could lead to odd behavior. For example, consider the“mean-based” learner in Braverman et al. (2018),
which never deviates far from the response that maximizes the agent’s empirical utility. In that paper, the
learner engages in odd behavior, like spending more than the agent’s valuation.
Our definition is more similar to that of Hartline, Johnsen, et al. (2019), where agents following a dashboard

provided by the mechanism will best respond to an allocation rule given the empirical value distribution,
rather than best respond to the empirical bid distribution. This way, the agent adapts sensibly to changes
in the principal’s policy.

13If P is continuous, the policy pt may be unique in every period t = 1, . . . ,∞. In that case, requiring
no-ER would be equivalent to requiring ex post optimality. That is unreasonably strong.
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hindsight modification rule h : CP → R is

ER(p1:T , y1:T ) = max
h

1

T

T∑
t=1

(U(h(pt), pt, yt)− U(rt, pt, yt))

Note the slight abuse of notation. By h(pt), we mean h(Pt) where Pt is the unique set in the

partition CP that contains pt.

Although common in the literature (e.g. Nekipelov et al. 2015, Braverman et al. 2018),

no-ER assumptions are insufficient for our problem. They do not circumvent the impossibility

result (proposition ??) that motivated us to restrict the agent’s behavior in the first place.

In particular, this is because they fail to rule out certain pathological behaviors. Because

these pathological behaviors are clearly not in the agent’s best interest, we also conclude

that no-ER fails to rule out “irrational” behavior and is therefore not a good definition of

“rationality”. The following proposition (and its proof) clarifies the issue.

Proposition 6 (Impossibility Result for No-ER Learners). In our running example, for

every mechanism σ∗, there exists a learner L that guarantees no-ER on all state/policy

sequences, i.e.

lim
T→∞

sup
p̃1:T ,ỹ1:T

EL[ER(p̃1:T , ỹ1:T )] = 0

along with a state sequence y1:∞ such that the principal’s regret does not vanish, i.e.

lim
T→∞

RegretPn (L, y1:T ) > 0

2.4.2 Internal and Counterfactual Internal Regret

Before defining CIR, we provide a brief intuition: what went wrong with external regret?

Recall the tortoise and hare analogy in the introduction. For a behavioral assumption to

rule out pathological behaviors, it may have to adapt to the information of the agent (or the
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speed of the animal).

What do we mean by information? Implicit in most stochastic models is the idea that the

state is fundamentally unpredictable. But there is no ex ante sense in which the deterministic

sequence y1:T is predictable or not. In particular, the agent may behave as if she possesses

“private information” about the sequence of states that goes beyond the “public information”

inherent in the description of the model. In practice, the agent may have access to data

that the principal lacks, notice a pattern that did not occur to the principal, or succeed

through dumb luck. Formally, this reflects an adversary who simultaneously chooses the

state sequence y1:T and the learner L to cause the mechanism σ∗ to underperform. In

particular, even though the agent may not observe yt when choosing a response rt, this

cannot prevent the adversary from “correlating” rt and yt.14

No-CIR requires the agent to consistently and fully exploit her private information. In

the spirit of revealed preference, private information is identified with her behavior across

counterfactual mechanisms. Intuitively, if the agent is able to distinguish between periods t, τ

and finds it useful to do so, then her behavior should also differ between those two periods.

If her behavior under one mechanism reveals private information, this information should

also be accessible to her under a different mechanism. This logic allows us to define a purely

ex post notion of rationality that does not refer to the agent’s beliefs or to a distribution

over state sequences.

No-CIR refines no-IR, a weaker condition that was developed in the literature on calibra-

tion (e.g. Foster and Vohra 1997). Internal regret is contextual regret where the context is

the agent’s own behavior r1:T . To ensure that the agent’s learning problem is feasible when
14To be clear, this “correlation” is non-causal. For example, the adversary might choose a state sequence

such that yt = 1 on even periods and yt = 0 on odd periods, and a learner L such that rt = 1 on even
periods and rt = 0 on odd periods. Empirically-speaking, there would be a correlation between the states
and the responses. However, if we subsequently changed the value of state yt in some period t, this would
not affect the response rt, because the state is not observed and cannot affect the output of the learner L.
That is, there is no causal relationship between rt and yt.
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the response space R is continuous, we allow the agent to group together nearby responses

according to the cover CR, and consider regret with respect to this coarser context. Of course,

when the response space R is finite, as in our running example, there is no need for this,

and we can set CR = R.

Definition 35 (Internal Regret). The agent’s internal regret (IR) relative to the best-in-

hindsight modification rule h : SP × SR → R is

IR(p1:T , y1:T ) = max
h

1

T

T∑
t=1

(U(h(pt, rt), pt, yt)− U(rt, pt, yt))

Like earlier, note the slight abuse of notation. By h(pt, rt), we mean h(Pt, Rt) where (Pt, Rt)

is the unique set in the collection CP × CR that contains (pt, rt).

Counterfactual internal regret is contextual regret where the context is the concatenation

of: the policy p∗t under the proposed mechanism σ∗; the agent’s behavior r∗1:T under σ∗; and

her counterfactual behavior rp1:T under the fixed policies p ∈ P0. The following definitions

formalize this.

Definition 36 (Information). Let the information partition be

I = SP︸︷︷︸
policy p∗t

× SR︸︷︷︸
response r∗t

× (SR)|P0|︸ ︷︷ ︸
responses rpt for p ∈ P0

and let the information It in period t be the unique set in I that satisfies

It 3 (p∗t , r
∗
t , (r

p
t )p∈P0)

Note that, by definition, the same information It is available to the agent regardless of

whether the principal follows our mechanism σ∗ or deviates to some fixed policy p ∈ P0.
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Intuitively, the principal’s choice of mechanism should not affect what information the agent

has available.

Definition 37 (Counterfactual Internal Regret). The agent’s counterfactual internal regret

(CIR) relative to the best-in-hindsight modification rule h : I → R is

CIR(p1:T , y1:T ) = max
h

1

T

T∑
t=1

(U(h(It), pt, yt)− U(rt, pt, yt))

The discussion in the proof of proposition ?? clarifies how no-CIR rules out the kinds

of pathological or irrational behavior that no-ER fails to rule out. In the next section, we

will see the crucial role that no-CIR plays in our proving our bounds on the principal’s

regret. The essential property is that, conditional on information It, the agent chooses a

roughly constant response that is approximately best-in-hindsight for whichever mechanism

the principal is considering.

2.5 Mechanism for an Informed Principal

Our first result should be viewed as pedagogical. It bounds the principal’s regret under a

mechanism that requires oracle access to the agent’s learner. This requirement is unrealistic

and will be removed in sections 2.5 and 2.6. Likewise, the bound itself will feature an

exponential dependence on the size of the policy space. This dependence will also be removed

in later sections.

Definition 38 (Information Oracle). The information oracle Ωt : P → I specifies the

information It that the learner L would generate in period t given any policy pt ∈ P and the

realized history.

This case is a convenient starting point because it avoids the bulk of the information

asymmetries between the principal and the agent that our later results need to address. That
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follows from the fact that any private information generated by the learner can be anticipated

by the principal with access to the information oracle. This case is also a convenient point

of departure from the common prior assumption because it permits a wider range of agent

behavior without relaxing the principal’s knowledge of said behavior. To be clear, under

a common prior, the fact that the principal knows the agent’s prior means that he also

has precise knowledge of the agent’s learner. In addition, since the agent is Bayesian, the

agent does not find it beneficial to randomize and her learner will typically be deterministic.

Essentially, the common prior provides an information oracle for free.

Mechanism 1. Let the distribution πt be a forecast of the state yt generated by a calibrated

forecasting algorithm that uses the agent’s information as context.

• Our forecasting algorithm applies a generic no-internal-regret algorithm due to Blum

and Mansour (2007) in an auxilliary learning problem where the action space consists

of discretized forecasts π ∈ C∆(Y) and the loss function is the negated quadratic scoring

rule S. In each period, the algorithm makes a prediction πt and incurs loss −S(πt, yt).

Further details as well as rates of convergence are in appendix B.3.

• The context is the vector of outputs Ω(p) of the information oracle under discretized

policies p ∈ CP . The forecasting algorithm is run separately for each context.

Fix a parameter ε̄ > 0. In period t, the informed-principal mechanism σ∗ chooses the dis-

cretization of the ε̄-robust policy p∗(πt, ε̄) that treats the forecast πt as a common prior.

Before stating the theorem in full, we present the reasoning behind the result and clarify

the components of the regret bound, as well as the assumptions required. First, we require

some additional notation. Let “t ∈ I” indicate that information I is present in period t, i.e.

It = I. Let nI =
∑T

t=1 1(t ∈ I) indicate the number of periods with information I. Let π̂I
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be the empirical distribution conditioned on the agent having information I, i.e.

π̂I(y) =
1

nI

∑
t∈I

1(yt = y)

We begin with a straightforward but important observation: across all periods t ∈ I,

the agent’s response r∗t is roughly constant, as are her counterfactual responses rpt under

fixed policies p ∈ P0. By regularity (7), slight variations in responses have correspondingly

slight impacts on the agent’s and principal’s utility. Suppose that these responses are exactly

constant, i.e. rt = rI . Note that pt = pI is exactly constant as well, across these time periods,

for all constant mechanisms σp as well as the proposed mechanism σ∗, which uses discretized

policies. With everything constant, the principal’s average utility across context I takes on

a familiar form:
1

nI

∑
t∈I

V (rI , pI , yt) = Ey∼π̂I [V (rI , pI , y)]

Similarly, the agent’s average utility is

1

nI

∑
t∈I

U(rI , pI , yt) = Ey∼π̂I [U(rI , pI , y)]

Essentially, within each context I, we have recreated the stage game with common prior π̂I .

The agent accumulates regret

εI = max
r̃

Ey∼π̂I [U(r̃, p, y)]− Ey∼π̂I [U(rI , p, y)]

Under mechanism 1, the principal chooses (roughly) the ε̄-robust policy for the forecast

πt. Suppose for the moment that the forecasts are also roughly constant for all periods t ∈ I,

i.e. πt = πI . Since the forecast is calibrated and uses information It as context, πI cannot be

too far in the l1 distance from π̂I (this is essentially the definition of calibration, and follows
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from results in appendix B.3). It follows from regularity that the ε̄-robust policy for πI is

nearly ε̄-robust for π̂I .

At this point, the principal has (roughly) applied the ε̄-robust policy for the empirical

distribution π̂I , to an agent that obtains regret εI . In that sense, the principal has misjudged

the agent’s capacity to make mistakes. However, recall lemma 15: this affects the principal’s

best-case and worst-case utilities by at most εI/ε̄. It follows that, roughly-speaking, the

principal’s utility is not much worse than the worst-case optimal utility. At the same time,

it cannot be much better than the best-case optimal utility. More precisely,

max
p̃
βp̃(π̂I , ε̄) +

εI
ε̄
≥ Ey∼π̂I [V (rI , pI , y)] ≥ max

p̃
αp̃(π̂I , ε̄)−

εI
ε̄

(2.4)

By assumption 8, the difference between the upper bound and the lower bound is

O(ε̄) +O
(εI
ε̄

)
(2.5)

This pins down the principal’s utility under mechanism 1. Moreover, the upper bound in

(2.4) also applies to any constant mechanism σp for p ∈ P0. Therefore, (2.5) also bounds

the regret accumulated by the principal in context I.

This brings us to our key assumption: the agent’s CIR is at most some constant ε.

Assumption 9 (Bounded CIR). Let y1:T be the realized state sequence and let p∗1:T be the

policy sequence generated by the proposed mechanism σ∗. There exists a constant ε ≥ 0 such

that

ε ≥ CIR(y1:T , p
∗
1:T ) and ε ≥ CIR(y1:T , p, . . . , p︸ ︷︷ ︸

t times

), ∀p ∈ P0

Remark 1. It is worth emphasizing that this bound applies only to the realized state

sequence y1:T . That is, the agent does not need to perform well over all state sequences,

and her objective need not be worst-case regret minimization. If the agent is Bayesian, for
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example, she will obtain low CIR as long as her beliefs are well-calibrated.

Since CIR is contextual regret with information It as context, bounded CIR ensures that

ε ≥ 1

T

∑
I∈I

nIεI

Combine this with our bound (2.5) on the agent’s regret εI in the context of information I,

and it follows that the principal’s regret is bounded above by

O(ε̄) +O
(ε
ε̄

)

To transform this intuition into a result, we need to address an assumption made along the

way: that the forecast πt is roughly constant across all periods t ∈ I. This is not necessarily

true. The adversary can choose a sequence of states y1:T that makes the principal appear

more informed than the agent. Indeed, variation in forecasts can be interpreted as private

information of the principal, even if it is spurious. On the other hand, any variation in πt

that affects the policy pt will also be included in the agent’s information It. What remains

is variation in πt that does not affect the policy – useless information from the principal’s

perspective, but not necessarily useless to the agent. If the principal expects the agent to

exploit this information and the agent does not, this can lead to a suboptimal policy choice.

The following assumption restricts attention to stage games where this problem does not

arise; that is, the agent’s failure to exploit information that is useless to the principal does not

affect the principal’s utility. In appendix B.4, we avoid this restriction by instead assuming

that the principal – using our publicly-announced mechanism – is not more informed than

the agent.

Assumption 10. Let ε > 0. Let π and π̃ be distributions in the stage game. If the ε-robust

policies under π and under π̃ are close to one another, then they are also close to the ε-robust
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policy under any convex combination of these distributions. Formally, for any λ ∈ [0, 1],

dP (p∗(π, ε), p∗ (λπ + (1− λ)π̃, ε)) = O (dP (p∗(π, ε), p∗(π̃, ε)))

The following theorem formalizes the preceding discussion and bounds the principal’s

regret under mechanism 1.

Theorem 5. Assume regularity (assumption 7), restrictions on the stage game (assump-

tions 8, 10), and ε-bounded CIR (assumption 9). Let σ∗ be the mechanism 1. Given

access to the information oracle, for any constant ε̄ > 0, the principal’s expected regret

Eσ∗
[
RegretPn (L, y1:T )

]
is at most

O(ε̄)︸︷︷︸
cost of ε̄-robustness

+
1

ε̄
·
(

O(ε)︸︷︷︸
agent’s regret

+ Õ

(
T−1/4

√
|Y||C∆(Y)||CR|(|P0|+|CP |)/2

)
︸ ︷︷ ︸

forecast miscalibration

+O
(
δ

1/2
∆(Y)

)
+O(δR) +O(δP)︸ ︷︷ ︸

discretization error

)

Remark 2. Here are a few comments on this result.

1. The bound depends on the size of the partitions CP , CR, and C∆Y . However, if we

define these partitions to be as small as possible, we can replace these terms with the

covering numbers of P , R, and ∆(Y), respectively. In that sense, our finite sample

bounds will deteriorate as one increases the complexity of the action and state spaces.

2. Furthermore, if we define these partitions to be the smallest possible, then theorem 5

implies that the principal’s regret vanishes if T →∞ and ε, ε̄, δ∆(Y), δP , δR → 0 at the

appropriate rates. It also follows from the proof that the principal’s payoffs converge

to a natural benchmark: what he would have obtained in a stationary equilibrium of

the repeated game where it is common knowledge that yt is drawn independently from
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the empirical distribution π̂It . Formally,

1

T

T∑
t=1

V (rt, pt, yt)−
1

T

∑
I∈I

nI max
p∈P

βp(π̂I , 0)→ 0

3. Finally, note the exponential dependence on the number of alternative mechanisms |P0|

and the size of the policy space cover |CP |. This dependence, which is not present in

theorems 6 and 7, reflects the fact that the mechanism 1 uses the agent’s information It

as context for its forecast πt. Since our bound is uniform across all learners that satisfy

ε-bounded CIR on the realized state sequence y1:T , it must accommodate learners that

generate a lot of information, regardless of whether that information is useful. As

mentioned at the beginning of this section, this is another reason why the “informed

principal” setting seems less compelling than the settings studied in sections 2.7 and

2.8.

2.6 Stage Game with Private Signals

In general, we cannot expect the principal to have access to an information oracle. Fortu-

nately, we can still construct mechanisms σ∗ that obtain vanishing or bounded principal’s

regret without any knowledge of the learner. However, in order to state the relevant assump-

tions (sections 2.7 and 2.8) and describe the mechanism (section 2.8), we need to consider

scenarios where the agent has private information that the principal lacks. This requires a

brief detour. In this section, we revisit the stage game in order to introduce terminology

that reflects agent’s private information.

Suppose that the state y is drawn from a known distribution π, but the agent has access

to a private signal I ∈ I generated by the information structure γ.

Definition 39 (Information Structure). An information structure is a function γ : I×Y →
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[0, 1] where γ(·, y) is a probability distribution over I.

The game proceeds as follows. First, nature chooses a hidden state y ∼ π. Second, the

principal chooses a policy p. Third, the agent observes a signal I ∼ γ(·, y) and chooses a

response rI . For instance, if the agent maximizes her expected utility, her responses after

signals I would be

rI ∈ arg max
r̃I∈R

Ey∼π
[
EI∼γ(·,y)[U(r̃I , p, y)]

]
Finally, the state y is revealed and payoffs are determined.

As in section 2.2, suppose the agent does not necessarily maximize her expected utility.

Instead, she chooses responses rI (or distributions µI over responses) that guarantees her an

expected utility that is within an additive constant ε of the optimum. For a given information

structure γ, the principal’s worst-case utility from following policy p is described by

αp(π, γ, ε) = min
µI∈∆(R)

Ey∼π
[
EI∼γ(·,y)[Er∼µI [V (r, p, y)]]

]
subject to max

r̃I∈R
Ey∼π

[
EI∼γ(·,y)[U(r̃I , p, y)]

]
− Ey∼π

[
EI∼γ(·,y)[Er∼µI [U(r, p, y)]]

]
≤ ε

and his best-case utility is described by

βp(π, γ, ε) = max
µI∈∆(R)

Ey∼π
[
EI∼γ(·,y)[Er∼µI [V (r, p, y)]]

]
subject to max

r̃I∈R
Ey∼π

[
EI∼γ(·,y)[U(r̃I , p, y)]

]
− Ey∼π

[
EI∼γ(·,y)[Er∼µI [U(r, p, y)]]

]
≤ ε

Note that α(π, ε), the worst-case utility in the stage game without a private signal, is equiv-

alent to α(π, γ, ε) when γ is uninformative. The same applies to β.

Recall that our theorem 5 could be interpreted as reducing the online mechanism design

problem to the simpler task of finding a ε-robust policy in the stage game without a private

signal. The same is true of our next result, theorem 6. In contrast, theorem 7 reduces the
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online problem to solving for a robust policy when the agent has a private signal generated by

an unknown information structure. This corresponds to notion of informational robustness

introduced by Bergemann and Morris (2013) and applied by Bergemann, Brooks, et al.

(2017), applied to our single-agent setting.

Definition 40 (ε-Informational-Robustness). The worst-case optimal (or ε-informationally-

robust) policy for an unknown information structure γ is

p†(π, ε) ∈ arg max
p∈P

inf
γ
αp(π, γ, ε)

Definition 41 (Cost of ε-Informational-Robustness). Fix a distribution π and parameter

ε > 0. The cost of ε-informational-robustness is the distance between the principal’s best-case

utility (under the best-case optimal policy (for the best-case information structure) and worst-

case utility (under the worst-case optimal policy for the worst-case information structure).

Formally,15

∇(π, ε) = max
p∈P

sup
γ
βp(π, γ, ε)−max

p∈P
inf
γ
αp(π, γ, ε)

Let ∇(π) = ∇(π, 0) denote the cost of informational robustness in the traditional setting

where the agent is optimizing exactly (ε = 0). It will be convenient to assume that the cost is

growing at most linearly in ε, although this assumption is not really necessary (see appendix

B.4).

Assumption 11. For any distribution π, ∇(π, ε) = ∇(π) +O(ε).

Finally, we verify that lemma 15 still applies in the presence of private signals.

15Why do we evaluate the cost of informational robustness under the worst-case information structure?
Because the regret guarantee that we obtain in theorem 7 applies uniformly across all learners L. As we
will see, different learners will induce different empirical information structures γ. Our cost of informational
robustness must accommodate the worst-case information structure, which loosely corresponds to the worst-
case learner.
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Lemma 16. Assume regularity (assumption 7). For any distribution π, information struc-

ture γ, policy p, and constants ε, ε̃ > 0, the principal’s worst-case and best-case utilities

satisfy

αp(π, γ, ε+ ε̃) ≥ αp(π, γ, ε)−
ε̃

ε
and βp(π, γ, ε+ ε̃) ≤ βp(π, γ, ε) +

ε̃

ε

2.7 Mechanism for an Uninformed Agent

Our second result bounds the principal’s regret under a mechanism that does not require

detailed knowledge of the learner L. Instead, this result assumes that the agent is not more

informed than the principal. To begin, the mechanism is as follows.

Mechanism 2. Let the distribution πt be a forecast of the state yt.

• Our forecasting algorithm applies a generic no-internal-regret algorithm due to Blum

and Mansour (2007) in an auxilliary learning problem where the action space consists

of discretized forecasts π ∈ C∆(Y) and the loss function is the negated quadratic scoring

rule.

Fix a parameter ε̄ > 0. In period t, the uninformed-agent mechanism σ∗ chooses the dis-

cretization of the ε̄-robust policy p∗(πt, ε̄) that treats the forecast πt as a common prior.

What does it mean for an agent to be uninformed? Following the intuition developed in

section 2.4, the agent’s behavior cannot reveal an understanding of the state sequence that

goes far beyond the principal’s forecast. This can be formalized by adding a lower bound on

the agent’s ER to our upper bound on the agent’s (counterfactual) IR.16

16Although they study a different problem, Blum, Gunasekar, et al. (2018) also use lower bounds on ER
to prove results, exploiting the fact that exponential weights guarantees non-negative expected ER (Gofer
and Mansour 2016).
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Assumption 12 (Lower-Bounded ER). Let y1:T be the realized state sequence and let p∗1:T be

the policy sequence generated by the proposed mechanism σ∗. There exists a constant ε̃ ≥ 0

such that

ER(y1:T , p
∗
1:T ) ≥ −ε̃ and ER(y1:T , p, . . . , p︸ ︷︷ ︸

t times

) ≥ −ε̃, ∀p ∈ P0

While there is no a priori sense in which the deterministic sequence y1:T is predictable or

not, this combination of bounds can be seen as an ex post definition of unpredictability. Intu-

itively, if an agent fully exploits the information she reveals under the proposed mechanism

σ∗ (no-IR) without outperforming the best use of public information (non-negative ER),

her private information cannot be particularly useful. Fully exploiting useless information

generally means ignoring it.

To see this, suppose the policy p is fixed and that the learner obtains non-positive IR

and non-negative ER. It is trivial to show that IR is non-negative and bounded below by

ER, so it follows that the learner’s IR and ER both equal zero. In turn, IR and ER can only

be equal when the best-in-hindsight responses conditional on the context (i.e. the learner’s

response) are the same in every context. That is, the context is useless. To achieve zero

IR, the learner’s response must equal some best-in-hindsight response conditional on the

context. If the best-in-hindsight response is unique, this means that the learner’s response

is the same in every period.

What this amounts to, essentially, is that our reasoning for theorem 5 largely applies

to theorem 6. Let us recall the first steps of that argument. Previously, we considered all

periods t ∈ I with information I as context. It followed immediately from the definition

of information that the agent’s responses rt were roughly some constant rI . Furthermore,

since the principal’s forecasts used It as context, the constant policy pI was calibrated to the

empirical distribution π̂I .

Now, our mechanism does not have access to It and is not calibrated to π̂I . Instead, for
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every policy context P ∈ ΣP , it is calibrated to the empirical distribution π̂P conditioned on

pt ∈ P . Formally,

π̂P (y) =
1

nP

∑
t∈P

1(yt = y)

where t ∈ P indicates pt ∈ P and nP is the number of periods t ∈ P . The policy context P

is coarser than information I, by definition of the latter. So, the principal behaves as if the

agent shares his prior π̂P , while the agent behaves as if she receives I as a private signal.

This is where non-negative ER comes in. The agent’s information I is useless to her.

If there is a unique best-in-hindsight response within policy context P , then the agent will

choose roughly the same response rt = rP in every period t ∈ P . In other words, the

policy context P coincides with the agent’s information I, and the principal is correct in

assuming that the agent (roughly) optimizes against the empirical distribution π̂P . Our

previous argument goes through.

Again, we just assumed that there is a unique best-in-hindsight response within policy

context P . What if this is not the case, i.e. the best-in-hindsight response is not unique?

In general, the argument breaks down. The agent can condition her action on her private

information I, which no longer necessarily coincides with P . To be clear, this private signal

I remains useless to the agent. Moreover, the ε̄-robust policy is by definition robust to

multiplicity of best responses. However, if the agent’s best response is correlated with the

state, this can undermine the principal’s utility even if it does not affect the agent’s.17

The following assumption restricts attention to stage games where this issue does not

arise. Informally, it asserts that if a private signal is useless to the agent, then it has limited

relevance to the principal, assuming that the principal is following (nearly) optimal policies.
17For example, consider a stage game with a binary response r ∈ {0, 1}, a binary state y ∈ {0, 1}, and a

binary policy p ∈ {Risky,Safe}. The agent’s utility is always zero. The principal’s utility under the risky
policy is 1 if r = y and −1 otherwise. It is slightly negative under the safe policy. If y is drawn from the
uniform distribution, and the agent optimizes without a signal, then the principal prefers the risky policy. If
the agent receives a signal that is perfectly correlated with the state, and sets r = 1− y, then the principal
prefers the safe policy.
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Formally, the value of information structure γ to the agent in the stage game with common

prior π and policy p is

φp(π, γ) = max
r,rI∈R

Ey∼π
[
EI∼γ(·,y)[U(rI , p, y)]− U(r, p, y)

]
This is the expected utility of the agent that optimizes given information structure γ minus

the expected utility of the agent if she does not receive a private signal.

Assumption 13. Let π be a distribution, ε > 0 be a constant, and γ be an information

structure (intuitively, one that is not useful to the agent).

1. If the principal uses ε-robust policy p∗(π, ε), his maxmin payoff without γ, i.e. αp∗(π,ε)(π, ε),

is not much larger than his maxmin payoff with γ, i.e. αp∗(π,ε)(π, γ, ε). That is,

αp∗(π,ε)(π, ε)− αp∗(π,ε)(π, γ, ε) = O
(
φp∗(π,ε)(π, γ)

)
+O(ε)

2. The principal’s maxmax payoff with γ under any policy p ∈ P, i.e. βp(π, γ, ε), is

not much larger than his maxmax payoff without γ under the best-case policy, i.e.

maxp̃∈P βp̃(π, ε). That is,

βp(π, γ, ε)−max
p̃∈P

βp̃(π, ε) = O (φp(π, γ)) +O(ε)

Both parts of assumption 13 would be immediate if the information structure γ were

uninformative, because the left-hand sides would be non-positive. Basically, we require

useless (to the agent) private signals to be similar to uninformative private signals in these

two respects.

Finally, we are ready to bound the principal’s regret under mechanism 2.
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Theorem 6. Assume regularity (assumption 7), restrictions on the stage game (assumptions

8, 10, 13), ε-bounded CIR (assumption 9), and ε̃-lower-bounded ER (assumption 12). Let

σ∗ be the uninformed-agent mechanism 2. For any constant ε̄ > 0, the principal’s expected

regret Eσ∗
[
RegretPn (L, y1:T )

]
is at most

O(ε̄)︸︷︷︸
cost of ε̄-robustness

+ O(ε̃)︸︷︷︸
agent’s information

+
1

ε̄
·
(

O(ε)︸︷︷︸
agent’s regret

+ Õ
(
T−1/4

√
|Y||C∆(Y)|

)
︸ ︷︷ ︸

forecast miscalibration

+O
(
δ

1/2
∆(Y)

)
+O(δR) +O(δP)︸ ︷︷ ︸

discretization error

)

Remark 3. If we define the partition C∆Y to be the smallest possible, then theorem 6

implies that the principal’s regret vanishes if T → ∞ and ε, ε̄, ε̃, δ∆(Y), δP , δR → 0 at the

appropriate rates. It also follows from the proof that the principal’s payoffs converge to a

natural benchmark: what he would have obtained in a stationary equilibrium of the repeated

game where it is common knowledge that yt is drawn independently from the empirical

distribution π̂Pt . Formally,

1

T

T∑
t=1

V (rt, pt, yt)−
1

T

∑
P∈CP

nP max
p∈P

βp(π̂P , 0)→ 0

2.8 Mechanism for an Informed Agent

In section 2.4, we assumed that the principal knows the agent’s learner L. The implication of

this assumption is that the principal is as informed as the agent. In section 2.5, we assumed

that the agent is as uninformed as the principal. In this section, we allow the agent to be

more informed than the principal. This generality comes at a cost: we no longer ensure

vanishing principal’s regret. Instead, we show that, in the limit, the following mechanism

guarantees regret that is no greater than the cost of informational robustness.
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Mechanism 3. Let the distribution πt be a forecast of the state yt.

• Our forecasting algorithm applies a generic no-internal-regret algorithm due to Blum

and Mansour (2007) in an auxilliary learning problem where the action space consists

of the discretized forecasts π ∈ C∆(Y) and the loss function is the negated quadratic

scoring rule.

Fix a parameter ε̄ > 0. In period t, the informed-agent mechanism σ∗ chooses the discretiza-

tion of the ε̄-informationally-robust policy p†(πt, ε̄) that treats the forecast πt as a common

prior.

Theorem 7 builds on the same reasoning as theorems 5 and 6. First, we need to adapt

assumption 10 to the case with private signals.

Assumption 14. Let ε > 0. Let π and π̃ be distributions in the stage game. If the ε-

informationally-robust policies under π and under π̃ are close to one another, then they

are also close to the ε-informationally-robust policy under any convex combination of these

distributions. Formally, for any λ ∈ [0, 1],

dP
(
p†(π, ε), p† (λπ + (1− λ)π̃, ε)

)
= O

(
dP
(
p†(π, ε), p†(π̃, ε)

))
Next, recall how, in the previous section, we were concerned that the principal’s policy

pt in period t was calibrated to the empirical distribution π̂P given policy context P ∈ CP

(where t ∈ P ) rather than the empirical distribution π̂I given information I = It. There, we

resolved that problem by assuming the agent was uninformed (non-negative ER). Here, our

solution is even simpler: choose a policy pt that is robust to the agent’s private information

I, whatever that may be.

To be more precise, recall that the policy context P is coarser than information I. We

can interpret periods t ∈ I as those periods in which the agent received a private signal
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I. By looking at the frequency of information I within policy context P , we can define an

empirical information structure γ̂P using Bayes’ rule, i.e.

γ̂P (I, y) =
nI π̂I(y)

nP π̂P (y)
· 1(I ⊆ P )

where I ⊆ P is shorthand for t ∈ I =⇒ t ∈ P . Before, we could roughly approximate

principal’s and agent’s utility as their expected utility in the stage game where the state y

was drawn from the empirical distribution π̂I . Now, the approximation is the expected utility

in the stage game where y ∼ π̂P and the agent receives private signal I from the empirical

information structure γ̂P . Of course, the principal’s policy pt is robust to all information

structures γ, including γ̂P .

Next, we formalize this discussion and bound the principal’s regret under mechanism 3.

Theorem 7. Assume regularity (assumption 7), restrictions on the stage game (assumptions

11, 14), and ε-bounded CIR (assumption 9). Let σ∗ be the informed-agent mechanism 3. For

any constant ε̄ > 0, the principal’s expected regret Eσ∗
[
RegretPn (L, y1:T )

]
is at most

1

T

∑
P∈CP

nP∇(π̂P ) +O(ε̄)︸ ︷︷ ︸
cost of ε̄-informational-robustness

+
1

ε̄
·
(

O(ε)︸︷︷︸
agent’s regret

+ Õ
(
T−1/4

√
|Y||C∆(Y)|

)
︸ ︷︷ ︸

forecast miscalibration

+O
(
δ

1/2
∆(Y)

)
+O(δR) +O(δP)︸ ︷︷ ︸

discretization error

)

Remark 4. In contrast to our previous results, this regret bound does not vanish. However,

if we define the partition C∆Y to be the smallest possible, the bound does converge to

1

T

∑
P∈CP

nP∇(π̂P )

as T → ∞ and ε, ε̄, δ∆(Y), δP , δR → 0 at the appropriate rates. This is the best possible
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guarantee in a stationary equilibrium of the repeated game where (a) it is common knowledge

that yt is drawn independently from the empirical distribution π̂Pt and (b) the agent has

access to an unknown information structure γ.

2.9 Conclusion

We studied single-agent mechanism design where the common prior assumption is replaced

with repeated interaction and frequent feedback about the world. Our primary motivation

was to remove a barrier (the common prior) that makes it difficult to implement mechanisms

in practice. However, we also want to emphasize that this work can be viewed as a learning

foundation for (robust) mechanism design. Indeed, our results show that policies similar to

those predicted by a common prior can perform well even without making any assumptions

about the data-generating process. This lends credibility to researchers who invoke the

common prior for tractability, but do not expect it to be taken literally. However, there are

two caveats.

1. Our policies are robust to agents that behave suboptimally by up to some ε > 0. In

contrast, most papers on local robustness involve an optimizing agent with misspecified

beliefs (e.g. Artemov et al. 2013; Meyer-ter-Vehn and Morris 2011; Oury and Tercieux

2012). These notions coincide sometimes but not always. In addition, our policies

sometimes require informational robustness (Bergemann and Morris 2013).

2. The number of interactions T required for our mechanisms to approximate the static

common prior game may be large. In particular, our bounds depend on features of

the stage game, like the size of the policy and response spaces, and the number of

states. These features may also affect the agent’s learning rate, which in turn affects

our bounds. In that sense, the common prior assumption may be less appealing in

more games that are more complex.
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Further Work. There are several directions in which to generalize and improve this work.

To begin, it is not clear whether our finite sample bounds have a tight dependence on the

number of periods T and various other parameters. For example, is it possible to remove the

exponential dependence in theorem 5 on the size of the policy space?18 In addition, there

may be opportunities for tightening our results in less abstract settings where the stage game

has more structure.

Our analysis was restricted to single-agent problems. Suppose there are multiple agents.

From the perspective of any one agent, her opponents correspond to adaptive adversaries

(c.f. R. Arora, Dinitz, et al. 2018) whose future behavior is influenced by the agent’s present

response. However, if the number of participants is large and the mechanism’s outcome

preserves the differential privacy of each agent’s response history (c.f. Manski and Tetenov

2007), the behavioral assumptions developed here may also be suitable for the multi-agent

setting.

We assumed that the principal and agent observe the state after every interaction, but

this may be unrealistic in many applications. For instance, in contract theory the state is

a function from the agent’s actions to outcomes. Let us briefly refer to the principal-agent

problem in appendix B.1.2. There, if the agent chooses to work, we do observe whether the

project succeeds or not. However, we may not learn whether the project would have suc-

ceeded had the agent shirked. To mitigate this issue, we could consider the case with bandit

feedback, where participants observe their own payoffs but not the state. The challenge with

bandit feeback is that it requires responsive mechanisms, as the mechanism must depend on

the principal’s payoffs, which in turn depend on the agent’s response.19

18One approach the principal might take is to attempt to discern the agent’s beliefs from the description
of her learner L, and substitute those beliefs for his own forecast. If successful, this would tie the principal’s
forecast miscalibration to the agent’s counterfactual internal regret.

19Relatedly, Balcan, Blum, Haghtalab, et al. (2015) consider a repeated Stackelberg game where the state
is the agent’s private type. The principal receives bandit feedback: he never observes the type directly but
can infer it from the agent’s behavior. The issues associated with responsiveness do not arise in this model
as the agent is myopic (or more precisely, there is a sequence of short-lived agents).
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In section 2.8, where the agent may be more informed than the principal, the principal’s

regret did not vanish but rather converged to the cost of informational robustness under

a common prior. There is reason to believe that this result is not tight. Although the

principal will never have access to the private signal I of the agent, he may attempt to

learn (via the agent’s past behavior) about the information structure γ that generates it.

In turn, the agent may anticipate this and attempt to manipulate the principal’s policy by

feigning (partial) ignorance of her private signal. This suggests a less conservative definition

of informational robustness, where the principal learns the quality of any information that

the agent decides to exploit. However, in the repeated game, this approach would require

responsive mechanisms.

As the last two paragraphs illustrate, we need a theory of behavior for responsive mecha-

nisms. The no-regret conditions used here and elsewhere are not as well-motivated when the

mechanism (or adversary) is responsive, insofar as they do not generalize traditional ratio-

nality assumptions. Extending the logic of no-regret conditions to a larger set of mechanisms

– but not necessarily all mechanisms – is a clear priority for further work.



CHAPTER 2. MECHANISMS FOR NO-REGRET AGENTS 133



CHAPTER 2. MECHANISMS FOR NO-REGRET AGENTS 134



135

Chapter 3

Mechanism Design with a Common Dataset

3.1 Introduction

It is a truism in economics that beliefs are important determinants of behavior. In any

number of settings, ranging from vaccine distribution to compensation policy, understand-

ing agent’s beliefs can make the difference between a successful policy and one that fails

dramatically. Unfortunately, in many instances, the rich behavioral or survey data needed

to identify agents’ beliefs may not be available. This can limit our ability to provide clear

policy recommendations.

While existing modeling techniques can circumvent our ignorance of agents’ beliefs, they

are widely recognized as imperfect. On one extreme, it is common to assume that the

agent shares the policymaker’s beliefs or that she knows the data-generating process. These

assumptions have been criticized as unrealistic, both in economic theory (e.g. R. Wilson 1987,

Bergemann and Morris 2005) and in econometrics (e.g. Manski 1993, Manski 2004a). On

the other extreme lie robust solution concepts that make no assumptions about the agents’

beliefs. But these solution concepts lead to unreasonably conservative recommendations in

many applications.

This paper proposes a new, less extreme approach: rather than assume a common prior

belief, assume access to a common dataset. The high-level idea is straightforward. If the

data convincingly demonstrates some fact about the world, the agent should believe that

fact. But if there is insufficient data to reach a particular conclusion, the agent’s beliefs are
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undetermined.

I formalize this approach by integrating a model of statistical learning into mechanism

design. To develop this approach, I restrict attention to single-agent problems where a

policymaker commits to a policy, an agent responds, and payoffs are determined by a state

of nature. Both the policymaker and agent have access to an i.i.d. dataset that they can use

to learn about the distribution of the state. Regret bounds limit how suboptimal the agent’s

action can be with respect to the true distribution. A regret bound is feasible if even an

ignorant agent can satisfy it using off-the-shelf learning rules. Typical regret bounds tighten

as the sample size grows.

I derive feasible regret bounds and propose penalized policies that highlight new tradeoffs

for the policymaker. Policy choices can influence the complexity of the agent’s learning

problem, which in turn affects her regret bound. Policies that are too complex, in a precise

sense, can increase the likelihood that the agent makes a mistake, as well as the severity

of that mistake. Penalized policies implicitly penalize complexity, by guarding against the

worst-case mistake by the agent.

I propose a data-driven penalized policy and present the key technical results of the

paper. Since the optimal penalized policy depends on the true data-generating process, it is

generally not feasible. However, the policymaker can learn from the common dataset, just

like the agent. The fact that the policymaker is learning at the same time as the agent poses

theoretical challenges that appear to be new to both statistics and economics. Nonetheless,

I develop a data-driven penalized policy and characterize its rate of convergence, which is

approximately optimal. In the limit as the sample size grows, this policy coincides with the

optimal policy under the common prior.

Finally, I show that penalization can lead to new insights through illustrative examples.

Specifically, I consider models of vaccine distribution, prescription drug approval, perfor-

mance pay, and product bundling. This framework captures important dimensions of policy
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complexity and highlights trade-offs that are obscured by both the common prior and robust

solution concepts.

Model. I consider a rich class of incomplete information games where a policymaker com-

mits to a policy and a single agent responds. Payoffs are determined by the policy, the

response, and a hidden state of nature. The state is drawn from some unknown distribu-

tion. This setup captures a number of classic design problems in economics, like monopoly

regulation, Bayesian persuasion, and contract design. Traditionally, these models are solved

by assuming the state distribution is common knowledge, or that the policymaker and the

agent have common prior beliefs.

Rather than assume a common prior belief, I assume that both the policymaker and the

agent have access to a common dataset. This dataset consists of n i.i.d. draws from the state

distribution. Both participants have strategies that map the data to actions. If there were

only one participant, this would be a standard statistical decision problem (see e.g. Wald

1950, Manski 2004b).

Agent’s Behavior. The goal of this paper is to produce a strategy for the policymaker

that performs well under reasonable assumptions on the agent’s behavior. To formalize these

assumptions, I adapt ideas from statistical learning theory.

I impose bounds on the agent’s regret that vary with sample size and the policymaker’s

strategy. Regret measures how suboptimal the agent’s strategy is, in expectation, according

to the true distribution. An agent that knows the true distribution can guarantee zero regret.

An agent whose beliefs are only somewhat misspecified will obtain low regret. An agent who

fails to learn from the available data, or has deeply misspecified beliefs, will obtain high

regret.

I restrict attention to feasible regret bounds. These are regret bounds that the agent can
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satisfy using off-the-shelf heuristics like empirical utility maximization, even if she has no

prior knowledge of the true distribution. I do not assume that the agent uses these heuristics.

Instead, I assume that she does not underperform these heuristics. She can be Bayesian or

non-Bayesian, well-informed or poorly-informed, and still satisfy a feasible regret bound.

I provide sufficient conditions for a regret bound to be feasible by borrowing a central

concept from statistical learning theory: Rademacher complexity. This measures the com-

plexity of a statistical learning problem. Naturally, an agent facing a more complex learning

problem should be more likely to accumulate regret. Since the agent’s learning problem is

linked to the policy choice, Rademacher complexity captures a form of policy complexity

from the agent’s perspective.

To complete the specification of the sufficient condition, I introduce a new concept called

sample privacy. This concept is closely related to differential privacy (Dwork, McSherry,

et al. 2006). It measures how aggressively the policymaker makes use of the realized sample.

Sample privacy is a bridge between traditional statistical learning problems and economic

problems where multiple participants learn from the same data. The agent’s learning problem

looks more traditional if the policymaker limits how aggressively he uses the available data,

and standard tools like Rademacher complexity remain useful.

Penalized Policy. This model formalizes a sense in which complex policies are undesirable.

Policies that are more complex or more sensitive to the data lead to looser regret bounds. As

a result, the agent’s behavior becomes less predictable. For a policymaker that is concerned

with worst-case guarantees, less predictable behavior can only make him worse off.

I propose penalized policies as a way to handle this new trade-off. To make the agent’s

behavior more predictable, a policymaker can set policies that are simpler and less sensitive

to the data. But these changes can be costly. A penalized policy balances the advantages of

complexity with the disadvantages of unpredictability. More precisely, it evaluates policies
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according to the policymaker’s payoff under the worst-case agent response that respects the

regret bound. This implicitly penalizes policies that are too complex for the agent, given the

amount of data available.1

Data-Driven Penalized Policy The optimal penalized policy can generate useful in-

sights, but it still depends on the true distribution. Fortunately, this paper shows that it is

possible to approximate the optimal penalized policy by using the available data.

Specifically, I construct a data-driven penalized policy. There are three steps. First,

it evaluates the policymaker’s expected payoff with respect to the empirical distribution.

Second, it adds white noise to the policymaker’s payoff, following the exponential mechanism

of Manski and Tetenov (2007). Third, it estimates the set of behaviors that satisfy the agent’s

regret bound, and optimizes against the worst case behavior in this estimated set.

Theorem 8 shows that the data-driven penalized policy satisfies sample privacy. They

key challenge here is that sample privacy is a property of the policymaker’s strategy, but

I cannot define the strategy without specifying sample privacy parameters for the agent’s

regret bound.

Theorem 9 shows that the rate of convergence of the data-driven penalized policy is

approximately optimal. First, I show that the policymaker’s expected payoff converges as

the sample size grows. More precisely, it converges to his optimal payoff in a hypothetical

model where both participants know the true distribution. Next, I evaluate the rate of

convergence. The optimal rate is that of the optimal penalized policy, where the policymaker

knows the true distribution but the agent is still learning. If the optimal rate is n−γ, I show

that the data-driven penalized policy converges at a n−
γ

1+2γ rate. In typical applications

where γ = 1/2, the rate of convergence is n−1/4.
1This is an important point of contrast with the large literature on penalization and regularization in

statistics. Here, the goal is not to penalize policies that are too complex for the policymaker to learn
effectively. Instead, the policymaker wants to penalize policies that complicated the agent’s learning problem.
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Illustrative Examples. I show that penalized policies can provide new insights in four

examples.

First, I consider a model of vaccine distribution. Here, the penalized policy waits for

statistically-significant clinical trial results before distributing vaccines. While this is com-

mon practice, it has been criticized (Wasserstein and Lazar 2016) and conflicts with the rec-

ommendations of the treatment choice literature (Manski 2019). My model offers a strategic

reason to insist on statistical significance: the population needs to be convinced of vaccine

quality. People may not take up the vaccine if it has not been proven effective beyond a

reasonable doubt. If there are fixed costs to vaccine distribution, this outcome is worse than

not distributing the vaccine at all.

Second, I consider a model of prescription drug approval by a regulator. Here, the

penalized policy restricts doctors’ ability to prescribe drugs that haven’t been proven effective

in clinical trials. Limiting the number of drugs approved reduces the risk that doctors fall

prey to false positives, in which an ineffective drug appears to be effective by random chance.

The penalized policy sets a standard for approval that increases as more drugs are approved,

as in stepwise methods for multiple hypothesis testing (e.g. Holm 1979, Romano and Wolf

2005). In contrast, alternative approaches lead to extreme recommendations. If the doctors

knew the true distribution of treatment effects, the optimal policy would approve all drugs.

Meanwhile, robust policies approve no drugs at all.

Third, I consider a model of performance pay. An employer incentivizes an employee

to exert costly effort by paying wages contingent on observed performance. If both partici-

pants know the distribution of performance conditional on effort, the optimal contract only

compensates the employee at extreme levels of performance. The payment conditional on

extreme performance may be extreme as well. In my model, this does not work well. Given

limited data, it is not clear that it is worth investing effort for a small chance of receiving

a bonus. To address this, the penalized contract caps and flattens the wage schedule. As
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before, wages are zero until performance reaches a threshold, at which point they jump and

remain flat. But the threshold is lower and the payments smaller, allowing the agent to

obtain moderate wages for moderate performance.

Finally, I consider a model of product bundling. A firm has several products for sale and

wants to sell them in a way that maximizes expected profit. Here, the penalized policy favors

selling large bundles of products, or even bundling all products together into a grand bundle.

The reason for this is that consumers learn about their value for the product through reviews.

If there are many products, but few reviews per product, consumers can be confident in the

value of the grand bundle while being uncertain about the value of any given product. In

that case, all else equal, it is easier to convince consumers to buy the bundle. I contrast this

conclusion with prior work that recommends selling all items separately (Carroll 2017).

Related Literature This work contributes to three research efforts. For robust mecha-

nism design, it is a principled way to interpolate between two extremes: the common prior

and prior-freeness. In that respect, I share a goal with Artemov et al. (2013) and Ollár and

Penta (2017), although my methods are quite different. For learning in games, I provide a

convenient behavioral assumption that relies on tools from statistical learning theory. Liang

(2020) studies a similar model but takes a more abstract approach to modeling agent be-

havior. For data-driven mechanism design, I study scenarios in which the agent is learning

from data, not just the policymaker. Related work includes Camara et al. (2020), Cummings

et al. (2020), and Immorlica, Mao, et al. (2020).

I leave a more detailed discussion of the prior literature to Section 3.7.

Organization. I introduce the model in Section 3.2. Section 3.3 formalizes the behavioral

assumptions, with Rademacher complexity defined in Subsection 3.3.2 and sample privacy

in Subsection 3.3.3. Section 3.4 defines the penalized policy. Section 3.5 proposes and



CHAPTER 3. MECHANISM DESIGN WITH A COMMON DATASET 142

evaluates the data-driven penalized policy. Section 3.6 presents four illustrative examples.

Section 3.7 discusses related literature. Section 3.8 concludes. Omitted proofs can be found

in Appendix ??.

3.2 Model

This paper studies Stackelberg games of incomplete information. There are two players: a

policymaker and an agent. The policymaker moves first and commits to a policy p ∈ P . After

observing the policy p, the agent chooses a response r ∈ R, or possibly a mixed response

πr ∈ ∆(R). Finally, the state of nature s ∈ S is drawn from a distribution πs ∈ ∆(S). The

policymaker’s utility is given by uP (p, r, s) and the agent’s utility by uA(p, r, s).

So far, this setup is quite general. It can be used to model a variety of single-agent

problems in mechanism design, contract design, information design, and other areas of in-

terest to economists. Features like transfers, messages between the policymaker and agent,

and asymmetric information about the state can be incorporated by defining the policy and

response spaces appropriately.2

I maintain the following assumption throughout the paper.

Assumption 15. The space P consists of nP <∞ policies and utility functions uA, uP are

bounded.

The reader is welcome to think of P as a discrete approximation to an infinite policy

space. Assumption 15 also ensures that, for any fixed policy p, the maximum variation in

each participant’s utility function is finite. Let i ∈ {A,P} indicate the agent or policymaker,
2For example, if the policymaker has access to transfers, then the policy p must specify the transfers

made (if any). Alternatively, if the agent has private information about some aspect of the state s, then her
response r should map that information to some action. Finally, if the agent reports her private information
to the policymaker, then p should map that report to some action.



CHAPTER 3. MECHANISM DESIGN WITH A COMMON DATASET 143

and define

∆i(p) = sup
r,s

ui(p, r, s)− inf
r,s
ui(p, r, s) <∞ (3.1)

I will impose additional regularity assumptions, as needed, later on in the paper.

Common Knowledge. One way to solve this model is to assume that both the policy-

maker and the agent know the distribution πs, or equivalently, that πs represents their shared

prior belief over the state s. Here, the agent is free to choose any response r that maximizes

her expected utility, i.e.

r ∈ arg max
r′

Eπs
[
uA(p, r′, s)

]
(3.2)

In turn, the policymaker chooses a policy p that maximizes his expected utility after taking

into account how the agent will respond.

If equation (C.14) has multiple solutions, then the policymaker may not know which

response r the agent will choose. One way to deal with this is to specify a tie-breaking

rule that determines which response r the agent chooses when she is indifferent between

multiple responses.3 Another approach is to remain agnostic to how the agent breaks ties and

optimize against the worst-case best response. In that case, the policymaker can guarantee

an expected utility of

CK(πs) = max
p

min
r

Eπs
[
uP (p, r, s)

]
(3.3)

s.t. r ∈ arg max
r′

Eπs
[
uA(p, r′, s)

]
3A typical tie-breaking rule assumes that the agent breaks ties in favor of the policymaker. This assump-

tion is convenient in games with an infinite policy space because it ensures that an optimal policy exists.
Furthermore, it is often innocuous insofar as small perturbations of the optimal policy can be used to break
indifferences in favor of the policymaker with negligible loss of optimality. Here, the policy space is finite
so existence of an optimal policy is not an issue. Furthermore, in games where the favorable tie-breaking
assumption is innocuous, the common prior benchmark will be roughly the same regardless of whether I
assume favorable tie-breaking or not.
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I refer to CK(πs) as the common knowledge benchmark.

The common knowledge assumption has two obvious drawbacks. First, the optimal policy

will generally depend on the true distribution πs and the policymaker may not know πs. If

our goal is to consult the policymaker, we cannot recommend a policy to him that relies

on information that he does not have access to. Second, the agent may not know the true

distribution πs. In that case, she may choose responses r that are suboptimal in the sense

that they do not solve equation (3.2), and the policy that solves (3.3) may no longer be

optimal.

Similar issues arise when the distribution πs is interpreted as a common prior belief. The

policymaker may not be willing to specify a prior belief over the state s, or be concerned

that his beliefs are too uninformed. The agent may not agree with the policymaker’s prior

belief, especially if that belief is not well-informed.

Prior-Free Solution Concepts. Another way to solve this model is to not make any

assumptions about the agent’s beliefs π̃. These approaches are called prior-free, belief-free,

or belief-robust.

Suppose the policymaker knows the true distribution πs, but does not know anything

about the agent’s beliefs. In that case, the maximin policy maximizes the policymaker’s

worst-case expected utility. That is,

MM(πs) = max
p

min
π̃s,r

Eπs
[
uP (p, r, s)

]
(3.4)

s.t. r ∈ arg max
r′

Eπ̃s
[
uA(p, r′, s)

]
The objective is evaluated with respect to the worst-case belief π̃s ∈ ∆(S).

There are alternatives to the maximin policy. For example, the minimax regret policy

minimizes the policymaker’s worst-case regret from following policy p, rather than the policy
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p′ that would have been optimal given the agent’s response r. That is,

MR(πs) = min
p

max
π̃s,r

(
max
p′,r′

Eπs
[
uP (p′, r′, s)

]
− Eπs

[
uP (p, r, s)

])
(3.5)

s.t. r, r′ ∈ arg max
r′

Eπ̃s
[
uA(p, r′, s)

]
Again, the objective is evaluated with respect to the worst-case belief π̃s ∈ ∆(S).

The advantage of maximin and minimax regret policies are that they do not require

the agent to know the true distribution πs, or to agree with the policymaker’s beliefs. The

disadvantage is that they can be extremely conservative: MM(πs) or MR(πs) may only be

a small fraction of CK(πs). This is especially true in applications like contract design and

Bayesian persuasion where the agent’s optimal response varies considerably in her beliefs

over the state.

Common Dataset. I propose a third way to solve this model: one that avoids key draw-

backs of the two existing approaches. Rather than assume common knowledge of the dis-

tribution, I assume access to a common dataset. Formally, a dataset consists of n i.i.d.

observations of the state, i.e.

S1, . . . , Sn ∼ πs

Each participant’s strategy is now a statistical decision rule. The policymaker’s strategy

maps the dataset to a distribution over policies:

σPn : Sn → ∆(P)

The realized policy is

Pn ∼ σPn (S1, . . . , Sn)

The agent’s strategy maps the dataset and the policymaker’s policy to a distribution over
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responses:

σAn : Sn × P → ∆(R)

The realized response is

Rn ∼ σAn (S1, . . . , Sn, Pn)

Both Pn and Rn are random variables, because (i) they depend on the random sample and

(ii) the policymaker and agent may use mixed strategies.

Remark 5. It is worth emphasizing that this dataset is ideal in several ways.

1. First, the states of nature Si are directly observed. This is a good starting point because

the data clearly identifies the distribution πs. In practice, however, the state of nature

may not be observed directly, and the distribution πs may not be point identified by

the available data. That raises the additional hurdle of partial identification.

2. Second, the observations Si are drawn independently from the true distribution πs.

This is a standard assumption, but may not hold in dynamic environments where his-

torical data does not fully reflect the present. It is possible to drop this assumption

with an alternative approach developed in Camara et al. (2020). However, that ap-

proach requires the policymaker to interact repeatedly with the same agent. Here, I

only require a single interaction.

3. Third, the dataset is available to both participants. More precisely, any data that

the policymaker uses must also be available to the agent (it is not a problem if the

agent has access to additional data). In some cases, the policymaker may be able to

guarantee that this assumption holds by sharing his data with the agent. In other

cases, the policymaker may prefer to keep the data confidential.

These are important caveats, but at least they are explicit. By being explicit about what

data is available, it is possible to have a productive discussion over what the participants are
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likely to know and what they may not know. In contrast, common knowledge assumptions

bypass any discussion of how the policymaker and agent actually arrived at said knowledge.

In the next section, I propose new rationality assumptions that restrict the agent’s strat-

egy σAn .

3.3 Agent’s Behavior

I propose new rationality assumptions that restrict the agent’s behavior. The basic idea

is that, since she has access to a dataset, the agent should not underperform standard

heuristics for learning from data. I formalize this assumption by introducing feasible regret

bounds. Then I provide sufficient conditions for a regret bound to be feasible.

The key object of interest is the agent’s regret, which captures how suboptimal her strat-

egy is.4

Definition 42. The agent’s regret is the difference between her optimal expected utility and

the expected utility she achieves by following her strategy σAn . Formally,

RegretAn
(
σAn , σ

P
n , π

s
)

= max
r

Eπs
[
uA(Pn, r, s)

]
− Eπs

[
uA(Pn, Rn, s)

]
To be clear, expectations are taken with respect to the state s, the realized sample

S1, . . . , Sn, and any internal randomization associated with mixed strategies. The sample

S1, . . . , Sn comes in through the realized response Rn and policy Pn.

It turns out that a refined notion of regret will be more useful. The policymaker not

only cares about whether the agent makes mistakes, but also about how those mistakes are

correlated with the policies that he chooses.

4This is not the same as the ex-post notion of regret used in the literature on learning in games.
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Definition 43. The agent’s conditional regret is her regret conditional on the realized policy

Pn = p.

RegretAn
(
σAn , σ

P
n , π

s | Pn = p
)

= max
r

Eπs [u(p, r, s)]− Eπs [u(p,Rn, s) | Pn = p]

To be clear, this is not related to contextual regret, or regret conditioned on private

information (as in Camara et al. 2020). The realized policy does not convey any information

about the distribution πs that the agent does not already have access to. However, the

realized response Rn and the policy Pn may be correlated because they depend on the same

random sample. So the conditional expectation

Eπs [u(p,Rn, s) | Pn = p]

may be different from the unconditional expectation used to define regret.

3.3.1 Regret Bounds

A regret bound B
(
σPn , π

s, p
)
is a function of the policymaker’s strategy σPn , the realized

policy Pn = p and the distribution πs that bounds the agent’s conditional regret. The agent

is allowed to use any strategy σAn that satisfies

RegretAn
(
σAn , σ

P
n , π

s | Pn = p
)
≤ B

(
σPn , π

s, p
)

This is an upper bound: it is always possible that the agent outperforms this bound. In

particular, an agent that knows the true distribution πs will satisfy this bound because her

regret is zero.

Remark 6. Allowing the agent to obtain positive regret (or conditional regret) is one way
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to relax the prior knowledge assumption. I argue that this approach has several important

advantages.

1. I do not require the researcher to specify a set of prior beliefs that the agent could

reasonably possess (see e.g. Artemov et al. 2013, Ollár and Penta 2017).5 This is

difficult to do without guidance on which prior beliefs are reasonable. In contrast,

I can provide guidance for how to choose regret bounds by considering measures of

statistical complexity.

2. I do not rule out the possibility that the agent is Bayesian or that she has prior knowl-

edge about the distribution πs that goes beyond the common dataset. For example,

the unbiased inference procedures in Salant and Cherry (2020) rule out this possibility.

Regret bounds are intended to relax standard assumptions, not to contradict them.

3. I do not require the agent to be Bayesian: she is welcome to use strategies σAn that

are not consistent with Bayesian updating, as long as they satisfy the regret bound.

Non-Bayesian (e.g. frequentist) methods for learning from data are commonly used in

practice, including by empirical economists. It is reassuring that regret bounds allow

for this possibility.

Not all regret bounds are compelling. I restrict attention to feasible regret bounds, which

the agent can satisfy even if she has no prior knowledge of the distribution πs.

Definition 44. A regret bound B is feasible given policymaker’s strategy σPn if there exists

an agent strategy σ̃An such that, for all policies p and distributions π̃s,

RegretAn
(
σ̃An , σ

P
n , π̃

s | Pn = p
)
≤ B

(
σPn , π̃

s, p
)

5This often involves committing to a metric ρ on the space of beliefs, and assuming that the agent’s
beliefs are within some distance ε of the true distribution. That approach is consistent with a regret bound
for reasonable choices of ρ where optimizing against approximately correct beliefs leads to approximately
optimal responses.
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The strategy σ̃An may be distinct from the agent’s actual strategy σAn .

Feasible regret bounds make for reasonable rationality assumptions. After all, an agent

whose strategy σAn systematically underperforms a feasible regret bound would benefit from

deviating to the strategy σ̃An that satisfies it. This deviation would reduce her regret, or

equivalently, increase her expected utility according to the true distribution. It would require

no prior knowledge of the distribution πs, since σ̃An does not depend on πs.

Infeasible regret bounds, however, make for dubious rationality assumptions. In that

case, there does not exist a single strategy σ̃An that satisfies the regret bound across all

distributions π̃s. It is still possible for the agent to satisfy the regret bound under the true

distribution πs, but she would need prior knowledge about πs that goes beyond the dataset.

Although I do not want to rule out the possibility that the agent has prior knowledge, I also

do not want to require prior knowledge.

3.3.2 Rademacher Complexity

In this subsection, I provide a sufficient condition for a regret bound to be feasible in the

special case where the policymaker ignores the data. I begin by defining Rademacher com-

plexity, a key concept from statistical learning theory, and stating the sufficient condition.

Then I provide intuition.

A Rademacher random variable σ is uniformly distributed over {−1, 1}.

Definition 45 (Bartlett and Mendelson 2003). The Rademacher complexity induced by

policy p is

RCAn (p, πs) = Eπs

[
max
r

1

n

n∑
i=1

σi · uA (p, r, Si)

]
where σ1, . . . , σn are i.i.d. Rademacher random variables.

The policymaker’s strategy σPn is constant if there exists a distribution πp ∈ ∆(P) such
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that, for all sample realizations S1, . . . , Sn,

σPn (S1, . . . , Sn) = πp

Proposition 7. Let the policymaker’s strategy σPn be constant. Then B is a feasible regret

bound if

∀p, π̃s, B
(
σPn , π̃

s, p
)
≥ 4RCAn (p, π̃s)

The Rademacher complexity bounds the agent’s regret if she uses a particular strategy

called empirical utility maximization. This strategy will play the role of σ̃An in the definition

of feasibility.

Definition 46. Empirical utility maximization σ̂An is an agent strategy. It chooses the

response r that maximizes the agent’s expected utility with respect to the empirical distribution

π̂s. Formally,

σ̂n (S1, . . . , Sn) ∈ arg max
r

1

n

n∑
i=1

uA (Pn, r, Si)

Let R̂n = σ̂n (S1, . . . , Sn) denote the empirical utility maximizer.

If the policymaker’s strategy σPn is constant, then

∀p, π̃s, RegretAn
(
σ̂An , p, π̃

s
)
≤ 4RCAn (p, π̃s) (3.6)

This follows immediately from well-known results in Bartlett and Mendelson (2003).

Intuitively, Rademacher complexity measures the potential for empirical utility maxi-

mization to overfit to sampling noise. First, it trivializes the agent’s learning problem by

randomizing the sign of the agent’s utility function. That is, it replaces the utility function

uA(p, r, s) with σ · uA(p, r, s), where σ is a Rademacher random variable. This modified

learning problem is trivial since all responses are equally good: expected utility is zero for
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every response r, i.e.

Eπs
[
σ · uA(p, r, s)

]
= 0

Second, Rademacher complexity asks how much the empirical utility maximizer R̂n will

overfit to this modified problem. Formally, the empirical utility is

1

n

n∑
i=1

σi · uA (p, r, Si)

where σi are i.i.d. Rademacher random variables. For any given response r, the empirical

utility is zero in expectation. On the other hand, the empirical utility of R̂n will generally

have a positive expected value in finite samples. This expected value is the Rademacher

complexity, and reflects how severely the agent can be misled by the sampling noise in

σ1, . . . , σn.

Note that the Rademacher complexity will typically converge to zero as n→∞. In other

words, the agent’s learning problem typically becomes easier as she obtains more data. In

addition, the Rademacher complexity generally depends on the policy p. The policymaker

can increase or decrease the Rademacher complexity through his choice of policies.

3.3.3 Sample Privacy

In this subsection, I generalize the sufficient condition for a regret bound to be feasible. The

condition in proposition 7 only applies when the policymaker ignores the data. I show that

a similar condition applies as long as the policymaker does not use the data too aggressively.

I formalize this requirement through a new concept called sample privacy.

Definition 47. The policymaker’s strategy σPn satisfies (ε, δ)-sample privacy if there exists

an event E ⊆ Sn where (i) E occurs high probability, i.e.

Prπs [(S1, . . . , Sn) ∈ E] ≥ 1− δ
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and (ii) after conditioning on E, the sample is nearly independent of the realized policy, i.e.

(S1, . . . , Sn) ∈ E =⇒ Prπs [Pn = p | S1, . . . , Sn] ≤ eε · Prπs [Pn = p | E]

Note that the realized policy Pn may be random even after conditioning on the sample

S1, . . . , Sn, if the policymaker uses a mixed strategy.

The concept is closely related to differential privacy (Dwork, McSherry, et al. 2006).

When applied to the policymaker’s strategy σPn , differential privacy ensures that the realized

policy Pn does not change much when any one observation Si = s is replaced with another

value Si = s′. In contrast, sample privacy ensures that the policy Pn does not change much

when the entire sample S1, . . . , Sn is dropped and replaced with a new sample S ′1, . . . , S ′n.

Critically, the new sample is drawn from the same distribution πs as the original sample.

If the policymaker’s strategy σPn is constant then it satisfies (0, 0)-sample privacy. This is

because the realized policy Pn is independent of the sample S1, . . . , Sn. Indeed, proposition 7

applies to any strategy σPn that satisfies (0, 0)-sample privacy. From that perspective, propo-

sition 8 shows that the lower bound in proposition 7 increases smoothly as the parameters

(ε, δ) increase.

Proposition 8. Let the policymaker’s strategy σPn satisfy (ε, δ)-sample privacy. Then B is

a feasible regret bound if

∀p, π̃s, B
(
σPn , π̃

s, p
)
≥ 4eε · RCAn (p, π̃s) + δ ·∆A(p)

The proof shows that if the policymaker’s strategy σPn satisfies sample privacy then

conditioning on Pn = p does not have a meaningful impact on any moment of the sample.

In particular, the agent’s conditional regret is a moment of the sample. There is a similar

result in differential privacy (Dwork and A. Roth 2014, section 2.3.1).
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The fact that sample privacy is needed at all suggests an important difference between

a standard learning problem and the concurrent learning problem that I study. From the

agent’s perspective, a standard learning problem is one in which her utility function uA(p, r, s)

does not depend on the realized sample S1, . . . , Sn. But when the policymaker is learning

concurrently, the agent’s utility function uA(Pn, r, s) depends on the sample through the

realized policy Pn. Standard techniques for bounding the agent’s regret may no longer

apply. I give a concrete example of this in section 3.6.2.

3.4 Penalized Policy

This model formalizes a sense in which complex policies are undesirable. As policies become

more complex, feasible regret bounds tend to loosen, and the agent’s behavior becomes less

predictable. I propose a penalized policy that balances the advantages of complexity with

the disadvantages of unpredictability. I show that penalization can lead to new insights in

four illustrative examples.

First, I restrict attention to regret bounds B that take on a particular form. I require a

distribution-free upper bound on the Rademacher complexity, i.e.

RCAn (p) ≥ max
πs
RCAn (p, πs) (3.7)

It follows immediately from proposition 8 that

B
(
σPn , p, π

s
)

:= eε · RCAn (p) + δ ·∆A(p)

is a feasible regret bound.

Remark 7. There are many well-known distribution-free upper bounds on the Rademacher

complexity, based on measures like the VC dimension, Pollard’s pseudo-dimension, and the



CHAPTER 3. MECHANISM DESIGN WITH A COMMON DATASET 155

covering number. For example, a useful bound due to Massart (2000) applies to finite

response spaces with nR <∞ elements. In that case,

RCAn (p) := ∆A(p) ·
√

2 lnnR
n

is an upper bound on the Rademacher complexity.

These regret bounds are convenient because they only depend on the policy p and privacy

parameters (ε, δ). Assuming I can guarantee sample privacy, this makes it possible to evaluate

the policymaker’s utility from a given policy p without having to consider the strategy σPn

that generated that policy. In particular, I can evaluate the policymaker’s utility with respect

to the worst-case mixed response πr that satisfies the agent’s regret bound:

WCn(p, ε, δ, πs) = min
πr

Eπs,πr
[
uP (p, r, s)

]
(3.8)

s.t. max
r′

Eπs
[
uA (p, r′, s)

]
− Eπs,πr

[
uA (p, r, s)

]
≤ 4eε · RCAn (p) + δ ·∆A(p)

The mixed response πr reflects the marginal distribution of the realized response Rn condi-

tional on the realized policy Pn = p.6 Intuitively, an agent may choose an optimal response

with high probability, when the realized sample is representative, and a suboptimal response

with low probability, when the realized sample is misleading, and still be nearly-optimal in

expectation.

If the policymaker knew the true distribution πs, he could solve for the optimal penalized

policy. In this case, the agent is still learning from the dataset, but the policymaker can

ignore the realized sample and guarantee (0, 0)-sample privacy.

6Only the marginal distribution is relevant because the sample does not directly enter into the policy-
maker’s utility. The sample only affects the distribution of the realized policy Pn, which I have already
conditioned on.
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Definition 48. An optimal penalized policy is any policy p that solves

OPn(πs) = max
p

WCn(p, 0, 0, πs) (3.9)

In section 3.5, I develop a strategy for the policymaker that approximates the optimal

penalized policy by learning from the available data. For now, I focus on the optimal

penalized policy.

I call these penalized policies because the worst-case objective implicitly penalizes policies

that the agent perceives as more complex, as measured by the Rademacher complexity. As

in penalized regression and other forms of regularization in statistics, penalization biases the

policymaker towards policies that are less complex. However, there is a key difference. In

statistics, policies are considered complex if they make the policymaker’s learning problem

hard. Here, policies are considered complex because they make the agent’s learning problem

hard.

From the perspective of microeconomic theory, penalization is interesting because it

highlights a new tradeoff related to policy complexity. The more complex a policy, the

looser the regret bound, and the less predictable the agent’s behavior. If the policymaker

is ambiguity-averse, he will tend to choose policies that are less complex than if we had

assumed common knowledge. This is especially pronounced when the sample size n is small.

3.5 Data-Driven Penalized Policy

It is useful to study the optimal penalized policy to understand the qualitative effect of

penalization on policymaking, but the optimal penalized policy is not feasible unless the

policymaker knows the distribution πs in advance. In this section, I show that it is possible

to approximate the optimal penalized policy using the available data.
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I construct a strategy P̂n for the policymaker. This modifies the naive estimator that

evaluates the policymaker’s worst-case utility with respect to the empirical distribution π̂s,

i.e.

WCn(p, ε, δ, π̂s) = min
πr

Eπ̂s,πr
[
uP (p, r, s)

]
(3.10)

s.t. max
r′

Eπ̂s
[
uA (p, r′, s)

]
− Eπ̂s,πr

[
uA (p, r, s)

]
≤ 4eε · RCAn (p) + δ

For many problems in statistics, econometrics, and machine learning, replacing the true

distribution with the empirical distribution is enough to come up with a good estimator.

In this model, where the agent is learning in addition to the policymaker, two changes are

needed.

First, I conservatively estimate the set of mixed responses that meet the agent’s regret

bound. The naive estimator assumes that the agent’s empirical regret, i.e.

max
r′

Eπ̂s
[
uA (p, r′, s)

]
− Eπ̂s,πr

[
uA (p, r, s)

]
satisfies the regret bound B. However, B is a bound on the agent’s regret evaluated with

respect to the true distribution πs. If the sample is unrepresentative, mixed responses πr

that satisfy the regret bound may violate the constraint in equation (3.10) because their

empirical regret overestimates their true regret. In that case, the constraint rules out mixed

strategies that the agent might use.

I can address this by adding a buffer to the regret bound, so that the empirical regret

minus the buffer is unlikely to overestimate the true regret. Let α ∈ (0, 1) be a tuning

parameter. Define the buffer as follows:

BFRn = 8

√
2 ln 4

n
+ 8

√
−2 ln exp(−nα)

n
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Lemma 17. With probability exceeding 1 − nP exp(−nα), the buffer exceeds the difference

between empirical and true regret. That is,

4RCAn (p, πs) + BFRn ≥
∣∣ (max

r′
Eπ̂s
[
uA (p, r′, s)

]
− Eπ̂s,πr

[
uA (p, r, s)

])
−
(

max
r′

Eπs
[
uA (p, r′, s)

]
− Eπs,πr

[
uA (p, r, s)

]) ∣∣
for all mixed responses πr and policies p,

Second, I introduce white noise into the objective WCn(·) order to control the sample

privacy of P̂n. The challenge here is that there is an inherent circularity. Sample privacy is

a property of the policymaker’s strategy σ̂Pn , but in order to define σ̂Pn I need to specify the

privacy parameters (ε, δ) in the agent’s regret bound. I address this challenge in theorem 8.

More concretely, I ensure sample privacy by adapting the exponential mechanism pro-

posed by Manski and Tetenov (2007). Let β ∈ (0, α/2) be another tuning parameter. I add

noise from the Gumbel distribution into the policymaker’s objective function, i.e.

νn(p) ∼ Gumbel
(
0, n−β

)
For any given ε > 0, this estimator will satisfy (ε, δn)-privacy, where δn depends on tuning

parameters α, β, ε and is decreasing exponentially in n. More precisely,

δn = nP exp

(
− ε2

2K2
· nα−2β

)
(3.11)

where the constant K is defined by

K := max
p

max

{
2∆P (p)2

8
√

2
,∆P (p)

}
(3.12)

Incorporating this into equation (??) gives a noisy, conservative estimate of the worst-case
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utility.

ŴCn(p) = min
πr

Eπ̂s,πr
[
uP (p, r, s)

]
+ νn(p) (3.13)

s.t. max
r′

Eπ̂s
[
uA (p, r′, s)

]
− Eπ̂s,πr

[
uA (p, r, s)

]
≤ (4eε + 4) · RCAn (p) + δn ·∆A(p) + BFRn

Definition 49. The data-driven penalized policy P̂n solves

P̂n ∈ arg max
p

ŴCn(p) (3.14)

To summarize, P̂n depends on three tuning parameters. The parameter α ∈ (0, 1) controls

how quickly the buffer BFRn vanishes as n grows. The parameter β ∈ (0, α/2) controls how

quickly the privacy-preserving noise vanishes as n grows. The parameter ε > 0 controls how

the two dimensions of sample privacy are balanced; decreasing ε means increasing δn, and

vice-versa.

The next theorem verifies that this estimator obtains the privacy guarantees that were

assumed in its definition. It holds for any fixed ε > 0, with δn defined according to equation

(3.11).

Theorem 8. The estimator P̂n guarantees (ε, δn)-sample privacy.

This result holds under very weak assumptions on the underlying game (assumption 15),

which makes it challenging to prove. I outline the proof in subsection 3.5.3.

3.5.1 Convergence

I show that, in the limit as the sample size grows, the policymaker’s payoff under P̂n converges

to his optimal payoff in a model where the distribution is common knowledge. That is,



CHAPTER 3. MECHANISM DESIGN WITH A COMMON DATASET 160

common knowledge is the limiting phenomenon under P̂n, despite the challenges that arise

when the policymaker and agent are learning simultaneously.

This requires a regularity condition that ensures that the agent and policymaker can learn

the optimal response and policy in the easy case where their opponent is not also learning.

The condition ensures that the Rademacher complexity of both the agent and policymaker’s

learning problem vanishes at a reasonable rate as the sample size grows.

Definition 50. The policymaker’s Rademacher complexity is defined over all policy-response

pairs, i.e.

RCPn (πs) = Eπs

[
sup
p,r

1

n

n∑
i=1

σi · uP (p, r, Si)

]

where σ1, . . . , σn are i.i.d. Rademacher random variables.7

Assumption 16. The agent and policymaker’s Rademacher complexity vanish at the typical

Õ(n−1/2) rate, where the tilde in Õ means “up to log factors”. More precisely:

1. There exists a constant KA such that

RCAn (p) ≤ KAn−1/2 log n

for all policies p and sample sizes n, where KA does not depend on p or n.

2. There exists a constant KP such that

RCPn (πs) ≤ KPn−1/2 log n

for all distributions πs and sample sizes n, where KP does not depend on πs or n.
7I use this quantity to bound the generalization error of P̂n. More precisely, for any given policy p,

the generalization error is the difference between the performance of policy p according to the empirical
distribution π̂s and its actual performance under the true distribution πs. Note that this error will generally
depend on the agent’s response r. To account for this, the policymaker’s Rademacher complexity takes a
supremum over responses r in addition to policies p. This ensures that the bound on the generalization error
holds regardless of what the agent’s response is or how it is influenced by the data.
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This assumption is both easy to satisfy and stronger than necessary. It is easy to satisfy

because it holds whenever the agent’s response space is finite. It also holds whenever the

relevant optimization problems have a finite VC dimension, or a finite pseudo-dimension.

And the assumption is stronger than necessary because the Õ(n−1/2) rate is not needed for

proposition 9. I do make use of this rate for theorem 8, in order to give concrete rates of

convergence for my estimator.

Proposition 9 establishes convergence. It refers to three quantities of interest. First, the

common knowledge benchmark CK(πs) (equation 3.3) describes the policymaker’s optimal

payoff when the distribution πs is common knowledge. Second, the optimal penalized bench-

mark OPn(πs) (equation 3.9) describes the policymaker’s optimal payoff when he knows the

distribution πs but the agent is still learning. Third, the performance of the data-driven

penalized policy P̂n is given by

Eπs

[
WCn

(
P̂n, ε, δn, π

s
)]

It is easy to see that

Eπs

[
WCn

(
P̂n, εn, δn, π

s
)]
≤ OPn(πs) ≤ CK(πs)

I show that all three quantities coincide in the limit as n→∞.

Proposition 9. Both the performance of P̂n and the optimal penalized benchmark converge

to the common knowledge benchmark, as n→∞. That is,

lim
n→∞

Eπs

[
WCn

(
P̂n, ε, δn, π

s
)]

= lim
n→∞

OPn(πs) = CK(πs)

I outline the proof in subsection 3.5.4.
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3.5.2 Rate of Convergence

Establishing convergence is not enough to argue that the data-driven penalized policy P̂n

is a practical solution to the policymaker’s problem. At a minimum, P̂n should have a

reasonable rate of convergence. In this subsection, I show that the rate of convergence of P̂n

is approximately as good as the rate of convergence of the optimal penalized policy. To do

this, I need a richness assumption that rules out cases where the agent is indifferent between

all of her responses.

First, I observe that there are games in which P̂n cannot possibly have a good rate of

convergence. This is because even the optimal penalized policy has a poor rate of conver-

gence.

Proposition 10. For any γ > 0, there exists a game where the optimal penalized benchmark

has at best an n−γ rate of convergence. That is,

OPn(πs) = CK(πs)− Ω
(
n−γ
)

Furthermore, this game satisfies all of my regularity assumptions.

This result appears to be quite pessimistic, but it is not all that surprising. There happen

to be games where the policymaker cannot guarantee the ideal outcome unless the agent has

very precise distributional knowledge. In these cases, slow rates of convergence are inevitable.

But that speaks to the fundamentals of the game itself, rather than to the quality of P̂n as

a strategy.

A more instructive question is to ask how P̂n’s rate of convergence compares to optimal

penalized benchmark.

Definition 51. Let γ > 0 be the largest real number such that the optimal penalized bench-
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mark converges to the common knowledge benchmark at the rate n−γ. That is,

OPn(πs) = CK(πs)−O(n−γ)

Loosely, the richness assumption requires that, for any distribution π̃s and policy p, the

agent’s best response r must be strictly better than her worst response r′.

Assumption 17. For every distribution π̃s and policy p, there exist responses r, r′ such that

Eπ̃s

[(
uA (p, r, s)− uA (p, r′, s)

)2
]
≥ C2

for some constant C > 0 that does not depend on π̃s, p, r, r′.

Theorem 9 says that P̂n’s rate of convergence is approximately optimal. I characterize

the rate of convergence in terms of its tuning parameters and then show how to optimize

them.

Theorem 9. The performance of P̂n converges to the common knowledge benchmark at the

rate:

Eπs

[
WCn

(
P̂n, ε, δn, π

s
)]

= CK(πs)−O
(
n−min(γ(1−α),β)

)
I outline the proof in subsection 3.5.4.

The next corollary describes the rate of convergence when the tuning parameters are

optimized. Generally, my estimator will only approximate the optimal rate of convergence

n−γ, with the difference reflecting the cost of sample privacy.

Corollary 4. For any ε > 0, there exist parameter values α, β such that

Eπs

[
WCn

(
P̂n, ε, δn, π

s
)]

= CK(πs)−O
(
n

γ
1+2γ

−ε
)

Proof. Set β = γ/(1 + 2γ) and let α be slightly larger than 2β.
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For example, suppose that the optimal penalized benchmark converges at a typical n−1/2

rate. Then P̂n’s rate of convergence can be set arbitrarily close to n−1/4.

Remark 8. Theorem 9 can be understood as a possibility result. It says that P̂n achieves

a particular rate of convergence. But it does not claim that this rate of convergence is the

best possible. It relies on explicit finite sample bounds, but does not evaluate whether they

are tight enough to be useful in practice. It provides limited guidance on how to choose

the tuning parameter α in finite samples, and no guidance on how to choose ε because it

does not affect the rate of convergence.8 Answering these questions effectively would likely

require putting more structure on the underlying game.

3.5.3 Proof Outline of Theorem 8

The proof of theorem 8 relies on four lemmas, some of which are applications of known

results. The key challenge is that ŴCn(·) is not a friendly object. It is a constrained

minimization problem where the empirical distribution enters into both the objective and

the constraint. And it has little structure, because I made few assumptions on the game

between the policymaker and the agent.

The first step is to show that the objective ŴCn(·) falls within a distance t of its mean,

with high probability. This will be used to establish that ŴCn(·) satisfies a sample privacy

property, which immediately implies that P̂n satisfies that property. Intuitively, if ŴCn(·)

varies substantially with the sample, then a substantial amount of noise νn(·) will be needed

to ensure privacy. This first step will limit how much ŴCn(·) varies with the sample.

I rely on a concentration inequality due to McDiarmid (1989), applied to this setting. It
8All else equal, it is better if ε is small, but it does not need to be small in order for the results to hold.

It only needs to be constant. The reason is that the empirical regret bound depends on ε through

eε · RCAn (p)

This term vanishes as n grows because the Rademacher complexity vanishes as n grows.
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relies on a bounded differences property that I will substantiate later on in this proof.

Lemma 18 (McDiarmid 1989). Suppose that ŴCn(p) has the bounded differences property,

where changing the ith sample realization from s to s′ will change its value by at most c.

Formally,

ŴCn(p | S1, . . . , Si−1, s, Si+1, Sn)− ŴCn(p | S1, . . . , Si−1, s
′, Si+1, Sn) ≤ c (3.15)

Then the following concentration inequality holds. For any t > 0,

Pr
[
ŴCn(p)− E

[
ŴCn(p)

]
≥ t
]
≤ exp

(
− 2t2

nc2

)

where the probability and expectation are over the sampling process.

It follows from McDiarmid’s inequality and the union bound that

Pr
[
∃p ∈ P , ŴCn(p)− E

[
ŴCn(p)

]
≥ t
]
≤ nP exp

(
− 2t2

nc2

)
(3.16)

where nP is the number of policies in P .

Condition (3.16) is enough to guarantee sample privacy. This follows from the same rea-

soning that Manski and Tetenov (2007) use to establish differential privacy of the exponential

mechanism.

Lemma 19. Let c ensure the bounded differences property (3.15). For any t > 0, P̂n satisfies

(ε, δ)-sample privacy where

ε = 2tnβ and δ = nP exp

(
− 2t2

nc2

)

To establish the bounded differences property, I rely on the robustness lemma of Camara

et al. (2020). Keep in mind that changing a sample realization Si affects not only the
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objective in ŴCn(p), but also the constraint. Since the game between the policymaker and

agent is largely arbitrary, the impact of tightening or relaxing the constraint can be difficult

to capture. However, it is possible to derive a loose bound that does not depend at all on

the underlying structure of the game. It only relies on the fact that the worst case is being

evaluated with respect to mixed strategies.

To state the robustness lemma, I need additional notation. Consider the policymaker’s

worst-case utility when the agent’s regret is bounded by a constant b ≥ 0, i.e,

WC(p, b, πs) = min
πr

Eπs,πr
[
uP (p, r, s)

]
(3.17)

s.t. max
r′

Eπs
[
uA (p, r′, s)

]
− Eπs,πr

[
uA (p, r, s)

]
≤ b

Lemma 20 (Camara et al. 2020). The worst-case utility WC(p, b, πs) decreases smoothly in

the bound b. That is, for any constants b′ > b > 0,

WC(p, b′, πs) ≥WC(p, b, πs)−∆A(p)

(
b′ − b
b

)

I use this result to establish and quantify the bounded differences property, as follows.

Lemma 21. The random variable ŴCn(p) satisfies the bounded differences property as long

as

c ≥ ∆A(p)

(
2∆P (p) · n−1

(4eε + 4) · RCAn (p) + δ + BFRn

)
+ ∆P (p) · n−1

Now, I can define the parameter c. Recall from lemma 19 that δ depends on c. To

avoid a circular definition, c should not depend on δ. Moreover, c should not depend on the

particular policy p, which depends on δ indirectly through the strategy σ̂Pn . By lemma 21
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and simple inequalities, it is sufficient to set

c ≥ max
p

(
∆A(p)

(
2∆P (p) · n−1

(4eε + 4) · RCAn (p) + BFRn

)
+ ∆P (p) · n−1

)

Technically, I could define c as the right-hand side on this expression and be done. But I will

use a slightly looser bound for the sake of interpretability. Recall the constant K defined in

equation (3.12). It is sufficient to set

c := Kn−
1+α
2

The last step of the proof is to derive δn. Recall from lemma 19 that P̂n satisfies (ε, δ)-

sample privacy where, after plugging in the value of c,

ε = 2tnβ and δ = nP exp

(
−2t2

K2
· nα
)

Since this holds for any value t > 0, I can invert the equation ε = 2tnβ to find the value

t = ε/(2nβ) that keeps the parameter ε constant. Plugging this value of t into δ gives me δn,

as defined in equation (3.11). This completes the proof of theorem 8.

3.5.4 Proof Outline of Theorem 9

The proof of theorem 9 has to contend with the same high-level challenge as the proof of

theorem 8: namely, ŴCn(·) is not a friendly object. First, I prove proposition 9, which

establishes convergence. Then I build on this argument to prove theorem 9.

To prove proposition 9, I need some way to characterize P̂n’s performance. I do this by

substituting its actual performance, which is hard to describe, with its estimated performance

ŴCn

(
P̂n

)
. The estimated performance is easier to work with because that is what P̂n is

maximizing. The next lemma shows that this substitution is justified.
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Lemma 22. The estimated performance ŴCn

(
P̂n

)
determines a lower bound on the actual

performance of P̂n. More precisely,

Eπs

[
WCn

(
P̂n, ε, δn, π

s
)]
≥ ŴCn

(
P̂n

)
−nP

√
3 ·n−β− 2RCPn (πs)−nP exp(−nα) ·max

p
∆P (p)

This lower bound reflects three observations. First, by construction, ŴCn(p) erred on

the side of being too conservative with respect to the agent’s empirical regret bound. All

else equal, this would mean that ŴCn(p) should lower bound WCn(p) with high probability.

Second, ŴCn(p) involves sampling noise. This can lead to generalization error, where the

policymaker expects a policy to perform better than it does. I can bound the generalization

error using the policymaker’s Rademacher complexity. Finally, ŴCn(p) involves privacy-

preserving noise. By construction, this is vanishing as the sample size grows.

In light of this lemma, in order to prove proposition 9 it is enough to show that

lim
n→∞

Eπs

[
ŴCn

(
P̂n

)]
= CK(πs)

This is true because the privacy-preserving noise is vanishing as n→∞, the policymaker’s

empirical utility is converging in probability to his expected utility according to the true

distribution, and the regret bound is vanishing as n→∞. In particular, Berge’s maximum

theorem implies that the policymaker’s worst-case utility is continuous with respect to the

regret bound.

Next, I turn to theorem 9.

I just showed that the empirical regret bound in the definition of ŴCn(p) (3.13) is vanish-

ing as the sample size grows. Similarly, the regret bound in the definition of WCn(p, 0, 0, πs)

is vanishing as the sample size grows. For a given sample size n, these bounds will take

on different values. In general, they will shrink at different rates. And one bound involves
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empirical regret while the other involves regret with respect to the true distribution.

Despite these differences, we need to compare ŴCn(p) with WCn(p, 0, 0, πs) to prove a

result. As in theorem 8, these objects are too abstract to characterize directly. However, I can

compare one abstract object with another: ŴCn(p) for sample size n with WCm(p, 0, 0, πs)

for a smaller sample sizem. The idea is that ifm is sufficiently small compared to n, then the

regret bound for WCm(p, 0, 0, πs) is more conservative than the empirical regret bound for

ŴCn(p), even though the latter would be much more conservative ifm = n. After accounting

for some other differences, I can show that ŴCn(p) is comparable to WCm(p, 0, 0, πs). Since

I know the rate of convergence for the latter in m, I can determine the rate of convergence

for the former in n.

The next lemma formalizes this argument.

Lemma 23. The estimated performance ŴCn

(
P̂n

)
with sample size n is comparable to the

strategically-regularized benchmark with sample size

m = Θ(n1−α)

evaluated with respect to the true distribution. More precisely,

Eπs

[
ŴCn

(
P̂n

)]
≥ SRm(πs)− nP

√
3 · n−β − 2RCPn (πs)− nP exp(−nα) ·max

p
∆P (p)

This result relies critically on another lemma that may be of independent interest. It is

a lower bound on Rademacher complexity that makes use of Khintchine’s inequality. This

is the only part of the proof that relies on assumption 17.

Lemma 24. Recall the constant C in assumption 17. For any policy p and distribution πs,
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the Rademacher complexity is bounded below by

RCAn (p, πs) ≥ C

2
√

2n
(3.18)

Combining lemma 23 with lemma 22, we have

Eπs

[
WCn

(
P̂n, ε, δn, π

s
)]
≥ SRm(πs)−O

(
n−β

)
−O

(
n−

1/2
)

= CK(πs)−O
(
m−γ

)
−O

(
n−β

)
−O

(
n−

1/2
)

= CK(πs)−O
(
m−γ

)
−O

(
n−β

)
= CK(πs)−O

(
n−γ(1−α)

)
−O

(
n−β

)
= CK(πs)−O

(
n−min(γ(1−α),β)

)
The second line follows from assumption 51. The third line removes lower-order terms. The

fourth line plugs in the value m = Θ
(
n2(1−α)

)
. The last line takes the maximum over the

two rightmost terms, and completes the proof of theorem 9.

3.6 Illustrative Examples

I argue that penalization can lead to new insights in four illustrative examples: vaccine dis-

tribution, prescription drug approval, performance-based pay, and product bundling. These

examples are not intended to be as general or realistic as possible. Instead, they are meant

to convey a core insight that motivates the use of penalized policies in similar applications.

3.6.1 Vaccine Distribution

I present a model of vaccine distribution where penalization can motivate a common practice:

insisting on statistically-significant clinical trial results before delivering medical treatments.
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Decision-making based on statistical significance is hard to justify (e.g. Wasserstein and

Lazar 2016) and conflicts with the recommendations of the treatment choice literature (e.g.

Manski 2019). Likewise, existing solution concepts (e.g. common knowledge, maximin,

and minimax regret) do not support this practice. But penalization does. The intuition is

that, when vaccine quality is not common knowledge, skepticism among the population can

undermine a vaccine rollout. Since vaccine distribution involves fixed costs, it may be better

to wait until clinical trial results are sufficiently persuasive before attempting to vaccinate

the population.

Model. Consider a town of m agents that is afflicted by a disease. A new vaccine is

being developed to treat this disease. However, in order to distribute this vaccine, the

policymaker must invest in a treatment center at a fixed cost c. Given the treatment center,

the policymaker can treat each agent at zero marginal cost. Therefore, the policymaker must

decide whether to provide treatments (T = 1) at cost c, or not to treat (T = 0).

An agent’s outcome Y depends on both whether she is treated, and whether she complies

with the treatment. Let C = 1 indicate compliance, and C = 0 indicate noncompliance.

Let Y1 denote her outcome conditional on being successfully treated and let Y0 denote her

outcome otherwise. For simplicity, I assume that the agent has no private information about

her outcome, so that compliance C is independent of the outcomes Y0 and Y1.

It remains to specify payoffs and the dataset. The agent tries to maximize her expected

outcome:

E[Y | C, T ] = E[Y0 + C · T · (Y1 − Y0) | C, T ] = ω0 + ω1 · C · T

The parameter ω1 is called the average treatment effect (ATE). The policymaker wants to

maximize the expected welfare minus costs, i.e.

mE[Y | C, T ]− c
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Both the policymaker and the agents have access to clinical trial data where compliance is

guaranteed. This includes n treated outcomes Y i
1 and n untreated outcomes Y i

0 . The key

summary statistic is the sample average treatment effect, i.e.

ω̂1 =
1

n

n∑
i=1

Y i
1 −

1

n

n∑
i=1

Y i
0

This is a sufficient statistic for both the policymaker and the agent to optimize.

Existing Solution Concepts. To establish that penalization leads to a new insight, I

first need to evaluate what existing solution concepts recommend.

Claim 1. The optimal common knowledge policy treats iff the ATE exceeds the per-capita

cost, i.e.

ω1 ≥
c

m

Proof. The agent complies with the treatment iff ω1 ≥ 0 and, given compliance, the policy-

maker prefers to treat whenever the ATE exceeds the per-capita costs.

Claim 2. The maximin policy never treats.

Proof. If the policymaker treats, he incurs a cost c > 0 and the agents may not comply

anyways, leading to a negative payoff in the worst case. By not treating, he guarantees a

payoff of zero.

Claim 3. The minimax regret policy never treats iff the ATE exceeds twice the per-capita

cost, i.e.

ω1 ≥
2c

m

Proof. If the policymaker does not treat, the maximum regret mω1 − c occurs when the

agents would have complied with treatment. If he does treat the population, the maximum
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regret c occurs when the agents decide not to comply. The policymaker treats iffmω1−c ≤ c,

or ω1 ≤ 2c/m.

None of these solutions justify statistically-significant clinical trial results as a precondi-

tion for treatment. Furthermore, this conclusion does not depend on the assumption that

the policymaker knows the true distribution. The literature on treatment choice has studied

problems like these, under the assumption that compliance is independent of sample size.

It recommends statistical decision rules like empirical welfare maximization (e.g. Manski

2004b, Stoye 2009, Kitagawa and Tetenov 2018, Mbakop and Tabord-Meehan 2021). In this

case, the empirical welfare maximizer under common knowledge would treat iff the sample

ATE exceeds cost per-capita, i.e.

ω̂1 ≥
c

m
(3.19)

This rule follows the preponderence of the evidence but does not insist on statistical sig-

nificance. In particular, the threshold for treatment does not vary with the sample size

n.

Optimal Penalized Policy. Penalization will motivate a form of statistical significance

because, in this model, a treatment is only successful if agents agree to comply with said

treatment. When clinical trial results are not statististically significant, agents may be

sufficiently uncertain that they decide not to comply, even if compliance is optimal under

the true distribution.

To substantiate this intuition, I solve for the optimal penalized policy. To define a regret

bound, I assume that the ATE is bounded, i.e. ω1 ∈ [ω1, ω̄1] where ω̄1 > c/m > ω1, and I

define

RCAn (T = 0) := 0 and RCAn (T = 1) :=
(ω̄1 − ω1)

√
2 ln 2√

n

This is a valid upper bound on the Rademacher complexity (see Massart’s lemma in remark
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7).

Claim 4. The optimal penalized policy treats iff

ω1 ≥
c

m
+O

(
n−1/2

)
Proof. The policymaker never treats if ω1 < c/m, since his payoff would be negative re-

gardless of whether the agents comply. Suppose ω ≥ c/m. Given treatment, the maximum

probability q of non-compliance that satisfies the regret bound solves

q · ω1 + (1− q) · 0 =
(ω̄1 − ω1)

√
2 ln 2√

n

where the left-hand side is the agent’s regret and the right-hand side is the regret bound.

This leaves

q =
(ω̄1 − ω1)

√
2 ln 2

ω1

√
n

The policymaker’s worst-case payoff from treatment is (1 − q)m · ω1 − c. Plugging in the

value of q, he prefers to treat iff

mω1

(
1− (ω̄1 − ω1)

√
2 ln 2

ω1

√
n

)
− c ≥ 0

This simplifies to

ω1 ≥
c

m
+

(ω̄1 − ω1)
√

2 ln 2√
n

The O(n−1/2) term is analogous to a critical value. In that sense, the optimal penalized

policy insists that the difference between the ATE and the per-capita cost exceeds that

critical value. Of course, this requires the policymaker to know the true distribution. In
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general, he would have to evaluate the sample ATE rather than the true ATE, in line

with the data-driven penalized policy developed in section 3.5. But the essential intuition

survives.

3.6.2 Prescription Drug Approval

In a model of prescription drug approval by a regulator, I show that strategic regularization

restricts doctors’ ability to prescribe drugs that have not been proven effective in clinical

trials. The threshold for approval increases as more drugs are approved. This is similar to

stepwise methods for multiple hypothesis testing (e.g. Holm 1979, Romano and Wolf 2005).

In contrast, in models with a common prior or rational expectations, the optimal policy

is to approve all drugs. Essentially, this delegates the decision to doctors, who are better

informed than the regulator. In my model, however, doctors may prescribe ineffective drugs

if the clinical trial returns a “false positive” where an ineffective drug appears to be effective

by random chance. Limiting the number of drugs approved can reduce the risk of false

positives, and provide better welfare guarantees.

Model. A population of patients is afflicted by a disease. There arem treatments available,

as well as a placebo. As in the previous example (section 3.6.1), let ωj ∈ [ω, ω̄] be the average

treatment effect (ATE) of treatment j. The placebo’s treatment effect is normalized to zero.

In addition, patients incur a private cost cj ∈ [0, c̄] from treatment j, where the maximum

cost c̄ > ω̄ exceeds the maximum treatment effect. For example, this could represent the

patient’s copay for a prescription drug. The patients are nonstrategic and accept whatever

treatment is offered.

There is a regulator (policymaker) who approves treatments and a doctor (agent) who

prescribes them. Formally, the regulator specifies a set A ⊆ {1, . . . ,m} of approved treat-

ments. Then the doctor either prescribes a treatment j ∈ A to a given patient, or prescribes
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the placebo j = ∅. Formally, the doctors response r is a choice function, mapping sets A to

treatments j ∈ A ∪ {∅}.

Both participants have access to clinical trial data with sample size n, where ω̂j is the

sample ATE of treatment j. Both participants want to maximize the patient’s expected

outcome minus costs, i.e. ωj − cj for the chosen treatment j. But the doctor has an

informational advantage. She knows patient costs cj at the time of treatment choice, but

the regulator does not.

There are many reasonable ways to accommodate the uncertainty in the costs cj. I

assume that the policymaker evaluates his worst-case regret with respect to these costs (not

necessarily with respect to the agent’s beliefs). That is,

uP (A, r, ~ω) = max
~c

(
max
A′

(
ωr(A′) − cr(A′)

)
−
(
ωr(A) − cr(A)

))

Existing Solution Concepts. I first establish what existing solution concepts recom-

mend, before moving onto the optimal penalized policy.

Claim 5. The optimal common knowledge policy approves all treatments.

Proof. If the ATEs are common knowledge, the doctor will choose the treatment j that

maximizes outcome minus costs, i.e. ωj − cj. The regulator prefers this to any other policy.

If he excludes a treatment j, it is always possible that treatment j was the only treatment

with low costs, e.g. where cj = 0 and ci = c̄ for i 6= j. In that case, the regulator may regret

excluding treatment j.

These same conclusion holds if the regulator does not know the true disribution, as long

as the doctor does. In that case, the regulator has even more incentive to defer to the doctor.

Claim 6. The maximin policy approves no treatments.
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Proof. Suppose the approved set A is nonempty. The worst case outcome occurs when

all treatments j ∈ A share the maximum cost, cj = c̄, and the doctor chooses the worst

treatment j ∈ A because she believes it to be highly effective. The regulator’s utility is

min
j∈A

ωj − c̄

This is always negative, since ωj < c̄. It is better to not approve any treatments, since this

at least guarantees non-negative utility for the regulator.

Claim 7. The minimax regret policy approves no treatments.

Proof. Suppose that all treatments have zero cost and the doctor believes they have zero

effectiveness. Let j∗ be the treatment with the highest ATE.

Suppose the regulator deviates from approvals A to approvals A′ that includes j∗. The

doctor breaks her indifference in favor of the placebo when presented with A, but breaks her

indifference in favor of treatment j∗ when presented with A′. The regulator’s regret is given

by ωj∗ = maxj ωj. Therefore, his worst-case regret is bounded below by ωj∗ . In contrast,

approving no treatments guarantees that the regulator’s regret is bounded above by ωj∗ .

Therefore, approving no treatments minimizes worst-case regret.

Optimal Penalized Policy. Penalization will motivate policies that are less extreme and

more realistic, where the regulator approves some treatments but not all. The intuition is

that the doctor faces a multiple testing problem. The more treatments are approved, the

greater the chances of a false positive – a treatment that appears to be effective but is not.

Approving too many treatments can cause doctors to prescribe false positives with high

probability.
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To substantiate this intuition, I solve for the optimal penalized policy, where

RCAn (A) :=
(ω̄ − ω)

√
2 ln (|A|+ 1)√
n

As in the previous subsection, this bound follows from Massart’s lemma (remark 7). Note

that the regret bound is increasing in the |A| of approved treatments.9

The optimal penalized policy begins by ordering treatments according to their ATE. Let

ω(k) denote the kth highest ATE.

Claim 8. The optimal penalized policy approves the kth best treatment iff

ω(k) ≥
(ω̄ − ω)

√
2 ln(k + 1)√
n

Proof. To derive the optimal penalized policy, I refer to two terms that reflect the regulator’s

regret with respect from the unknown cost. First, the regulator’s regret from not approving

treatment j will be ωj in the worst case. This occurs when treatment j has zero cost and all

other treatments have maximum cost. It follows that worst-case regret is at least maxj /∈A ωj.

Second, the regulator’s regret from approving a treatment j will be RCAn (A) in the worst

case. Suppose A is nonempty. This level of regret can be achieved by setting the cost of all

treatments that the doctor does not choose to c̄, and the cost of the treatment j that the

doctor does choose to cj = ωj +RCAn (A). The doctor will be indifferent between treatment

j and the placebo. At the same time, the RCAn (A) is an upper bound on the regulator’s

regret, because that is an upper bound on the agent’s regret and both participants care

about welfare.

The optimal penalized policy minimizes the larger of these two regret terms. It begins
9The agent’s response space is technically larger than |A| + 1 since it consists of maps from A to either

a treatment j ∈ A or the placebo. But for a fixed policy A, it is without loss to restrict attention to |A|+ 1
unique actions.
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by ordering treatments according to their ATE. The regulator approves the best treatment

iff

ω(1) ≥
(ω̄ − ω)

√
2√

n

Similarly, the regulator approves the kth best treatment iff

ω(k) ≥
(ω̄ − ω)

√
2 ln(k + 1)√
n

As in section 3.6.1, treatments are approved only if they reach a critical value. More

treatments are approved as the sample size n grows, since the critical value decreases ac-

cording to O(n−1/2). Moreover, the critical value is increasing in the number of treatments

already approved. As I mentioned earlier in this section, this is similar to stepwise methods

for multiple hypothesis testing. That is not surprising, because the motivation for limiting

the number of approved drugs is precisely to ensure that doctors are not misled by false

positives.

Role of Sample Privacy. In Subsection 3.3.3, I claimed that bounds from statistical

learning theory on the agent’s regret may not be valid if the policymaker is also learning

from data. This model of prescription drug approval makes that clear. I elaborate below.

The doctor’s regret from expected utility maximization can vary significantly based on

how the regulator uses the sample. Suppose the regulator approves a single treatment j

independently of the sample. The doctor’s regret will be on the order of O
(
n−1/2

)
. That

is the bound implied by Massart’s lemma (remark 7). Alternatively, suppose that regulator

only approves the empirical utility maximizer, i.e. arg maxj ω̂j. In that case, the doctor’s

choice is the same as if all treatments had been approved, and her regret will be on the

order of O
(
n−1/2 logm

)
. Again, that is the bound implied by Massart’s lemma (remark 7).
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The dependence on m reflects a multiple testing problem that arises even though the agent

only has two choices: the approved treatment and the placebo. It arises because the choice

presented to her is correlated with the sample.

Sample privacy means that, with some probability, the regulator is not selecting the k

treatments whose sample ATE is highest. More generally, it is well-known that using data

to determine the hypotheses one wants to test will threaten the validity of those tests. There

are several ways to get around this. For example, the regulator could use his prior beliefs to

fix the k most promising treatments that he wants to evaluate and approve. In contrast, the

approach that I develop in Section 3.5.1 is data-driven, and uses sample privacy to control

how aggressively the data is used.

3.6.3 Performance Pay

Third, I consider a model of performance pay. An employer incentivizes an employee to exert

costly effort by paying wages contingent on observed performance. Here, penalization caps

and flattens the wage schedule. Wages are zero until performance reaches some threshold.

At that point, they jump and remain flat. The employee receives moderate pay, but with

high probability.

In contrast, the common knowledge solution recommends very high pay, but only if the

employee attains the best possible performance is obtained. In the penalized model, this

does not work well. If historical data is limited, it may not be obvious to the employee that

it is worth investing effort for a small chance of receiving the bonus. Flatter contracts may

be less potent, but they provide clearer incentives.

This insight contributes to the recent literature in robust contract design (e.g. Carroll

2015; Carroll and Meng 2016a,b; Dütting et al. 2019) that, in turn, builds on previous

attempts to explain the ubiquity of simple contracts (e.g. Holmstrom and Milgrom 1987,

1991). In particular, Holmstrom and Milgrom (1991) motivate fixed wages when the principal
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is unable to measure some dimensions of the agent’s performance. The optimal penalized

contract developed here suggests that learnability may be another motivation.10

Model. I define a simple principal-agent problem, along the lines of Sappington (1983). A

principal wants to incentivize the agent to take desirable actions. The timing of the game is

as follows: first, the principal commits to a wage schedule or contract w; second, the agent

takes a hidden action a; third, the principal observes an outcome x and pays the agent a

wage w(x).

Let X = {x1, . . . , xm} ⊆ R be a finite outcome space, in increasing order. Outcomes are

determined, stochastically, by the agent’s hidden action. Let A = {0, 1} be a binary action

space, where a = 0 indicates no effort and a = 1 indicates effort. The agent incurs a cost

of effort c > 0. Let πx0 be the outcome distribution conditional on no effort. Let πx1 be the

outcome distribution conditional on effort. I assume both distributions have full support.

Let Xa ∼ πxa denote the realized outcome when the agent takes action a.

I restrict attention to conditional distributions that satisfy a monotone likelihood ratio

property.

Assumption 18. The likelihood ratio `(x) = πx1 (x)/πx0 (x) is weakly increasing in x.

Before the agent acts, the principal commits to a wage function w : X → R+.11 By

definition, the wage function satisfies limited liability (i.e. w(x) ≥ 0 for all x ∈ X ). Both the

agent and the principal are risk-neutral. Given action a and outcome x, the agent’s utility

is w(x)− c · a while the principal’s utility is x− w(x).
10Relatedly, Valenzuela-Stookey (2020) proposes an axiomatic model where an agent’s evaluation of lot-

teries may be imprecise. He motivates his axioms in a frequentist model of learning. He applies his represen-
tation towards a general principal-agent problem where, if the agent is suitably cautious, optimal contracts
correspond to step functions. In the principal-agent model that I consider, the optimal contract is a step
function even in the standard case where the agent knows the true distribution.

11The reader is welcome to treat wages as dollar-valued in order to ensure that the policy space is finite,
as specified in assumption 15. This does not meaningfully affect the analysis.
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Let Xa
1 , . . . , Y

a
n ∼ πxa be i.i.d. samples of outcomes for each action a ∈ {0, 1}. For

example, this could be data that a manager collects through personal experimentation, or

through costly monitoring of past employees, and shares with his current employees.

Existing Solution Concepts. I first establish what existing solution concepts recom-

mend, before moving onto the optimal penalized policy. These results will refer to a zero

contract w, which sets, for all xi ∈ X , w(xi) = 0.

The optimal common knowledge contract makes a recommendation that seems extreme:

pay the agent if and only if the realized performance is the highest possible.

Claim 9. The optimal common knowledge contract is either the zero contract, or sets

∀xi ∈ X w(xi) =


c

πx1 (xi)−πx0 (xi)
i = m

0 i < m

For the the prior-free solution concepts, on the other hand, there is often no contract

that guarantees effort by the agent.

Claim 10. The maximin contract is the zero contract.

Proof. Suppose the agent beliefs that the outcome distribution does not depend on effort,

i.e. πx0 = xx1 . Then no contract can incentivize her to put in effort. Since the outcome

distribution has full support, any non-zero contract would make positive payments for no

change in effort.

Claim 11. Let πx1 be the uniform distribution. If the number of outcomes m is sufficiently

large, then the minimax regret contract is the zero contract.

Proof. Let w be the minimax regret contract. Suppose the agent believes that putting in

effort guarantees outcome xi and not putting in effort guarantees outcome xj < xi (satisfying
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assumption 18). Let qi = mini′ Prπx1 [xi′ ] be the probability of outcome xi The principal can

incentivize the agent by paying her cost c conditional on outcome xi. This costs him qic in

expectation, and he benefits from the surplus generated by the agent’s effort.

If the contract w does not incentivize effort under these beliefs, then regret is the surplus

Eπx [X
1 −X0] plus the expected wages Eπx [w(X1)] minus qic. I claim that the contract w

cannot incentivize effort when m is large. In order to guarantee effort across all choices of

xi, the contract would need to ensure that w(xi) = w(xj) + c for all i, j < i. In particular,

set j = i−1 and invoke limited liability to see that w(xi) = c · i. As m→∞, the wages paid

at any i > m/2 grows to infinity as well. This contradicts the optimality of the contract w.

It follows that, for large m, regret is the surplus Eπx [X
1 −X0] plus the expected wages

Eπx [w(X1)] minus qic. For the uniform distribution, qi = q does not depend on the contract,

To minimize regret it suffices to minimize the expected wages, by letting w be the zero

contract.

Optimal Penalized Contract. The optimal penalized policy caps and flattens the op-

timal common knowledge contract. This makes the incentives for effort less potent, but it

also makes them clearer. Given limited data, the agent is still able to determine that effort

is optimal.

To substantiate this intuition, I solve for the optimal penalized policy, where

RCAn (w) :=
(

max
i
w(xi)

)
·
√

2 ln 2
√
n

As in the previous subsections, this bound follows from Massart’s lemma (remark 7). Note

that the regret bound is increasing in the maximum wage, i.e. maxiw(xi).

Claim 12. The optimal penalized contract is a threshold contract. More precisely, it op-

timizes the following contract across all maximum wages w̄ and probabilities q of effort.
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Define

αj =

c+ w̄

(
4
q
·
√

2 log 2
n
−
∑m

i=j+1 (πx1 (xi)− πx0 (xi))

)
πx1 (xj)− πx0 (xj)

Let k be the largest j such that `(xj) > 1 and αj ≤ w̄. If no such integer exists, set w(x) = 0

for all outcomes x ∈ X . Otherwise, set w(xi) to equal w̄ if i > k, αk if i = k, and 0 if i < k.

The optimal penalized contract identifies the maximum wage as an hindrance to learn-

ability. When wages conditional on high performance are very large, small changes in the

perceived probability of high performance conditional on effort can have a large impact on

the perceived utility of effort. For that reason, the principal would have to add a premium

to the agent’s wages in order to ensure that the agent puts in effort. This makes the contract

actuarially less appealing. On the other hand, if the maximum wage is capped, then the per-

ceived utility of effort is less sensitive to beliefs. The premium needed to incentivize effort is

smaller. The optimal penalized policy balances the benefits of higher maximum wages with

the costs identified here.

3.6.4 Product Bundling

Finally, I consider a model of product bundling. A firm has several products for sale and

wants to sell them in a way that maximizes expected profit. When the sample size is small,

the penalized policy only offers large bundles of products, rather than selling them separately.

This contrasts with prior work that recommends selling items separately (e.g. Carroll 2017).

In my model, the reason for bundling is that consumers learn about their value for the

product through reviews. If there are many products, but few reviews per product, consumers

can be confident in the value of a large bundle while being uncertain about the value of any

given product. In that case, all else equal, it is easier to convince consumers to buy the

bundle.
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Model. There are n goods, one seller, and one buyer. The buyer has preferences over

bundles x ∈ {0, 1}n of goods. The seller can offer a menuM consisting of bundles x at prices

p, i.e. (x, p) ∈M . The seller cannot prevent the buyer from buying more than one good. If

(x, p), (x′, p′) ∈M then for bundle

x′′ = (max{x1, x
′
1}, . . . ,max{xm, x′m})

there exists a price p′′ ≤ p + p′ such that (x′′, p′′) ∈ M . The buyer’s value for each of the

goods is described by a vector v ∈ [0, v̄]n. Her utility from choosing a bundle (x, p) ∈M is

uA(M, (x, p), v) = v · x− p

The seller cares about profits and, for simplicity, has zero costs of production. His utility is

p.

To relax the assumption that the buyer knows her value from product j, I assume that

she knows her ranking relative to other agents. More precisely, she knows the quantile qj of

her value vj in the marginal distribution πvj . Given menuM and a chosen bundle (x, p) ∈M ,

the buyer at quantile q = (q1, . . . , qm) receives a payoff of

UA (q,M, (x, p), πv) :=
m∑
j=1

xj · inf {u ∈ R | q ≤ Prπv [vj ≤ u]} − p

The quantile is her private type. If she knows πvj then she knows the value she derives

from product j. If she is uncertain about πvj , then she faces uncertainty about her value.

For example, a Netflix user might understand that she is particularly predisposed towards

science fiction, but not know whether the quality of a particular science fiction movie.

The following assumption will be convenient later on.

Assumption 19. The marginal distributions πvj have well-defined density functions fj.
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There exists a constant K > 0 where fi(vj) ≥ K is bounded below by that constant on

its support [0, v̄].

I assume that there is a common dataset consisting of product reviews. Each review of

product j is a single observation of the value vj of the product to the user that reviewed it.

Each product has n reviews. This data identifies the marginal distributions πvj , but not the

joint distribution of the value profiles v. This is because I do not observe a n users observing

m products, but rather nm users observing 1 product each. Arguably, this better reflects

the kind of review data that would be available in practice.

Since only the marginal distributions are identified by the available data, I do not assume

that the seller knows the joint distribution. Instead, I follow Carroll (2017) in assuming that

the seller knows (at most) the marginal distributions. He evaluates his profits with respect

to the worst-case joint distribution that is consistent with the true marginal distributions.

Existing Solution Concepts. I first establish what existing solution concepts recom-

mend, before moving onto the optimal penalized policy. I rely on Carroll’s (2017) character-

ization of the optimal menu when the marginal distributions are common knowledge.

Claim 13 (Carroll 2017). Selling each product separately is an optimal common knowledge

menu. That is, each product j can be purchased individually at a price pj. The price of a

bundle x is the sum of prices
∑m

j=1 xjpj of the constituent goods.

The maxmin criterion is useless here because it fails to distinguish between any menus.

Claim 14. Every menu is a maxmin menu.

Proof. Suppose the buyer believes that the distribution πvj assigns probability one to vj = 0.

In that case, no menu can guarantee a positive payoff.

The minimax regret criterion is only marginally more useful. It does not distinguish

between menus that only sell the grand bundle and menus that also sell the goods separately.
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It specifies a price for the grand bundle that depends on the maximum value v̄. If we allow

v̄ → ∞, the price of any bundle x in the menu grows to infinity, regardless of whether

consumers are likely to have these extreme values.

Claim 15. A menu is a minimax regret menu iff the price of the grand bundle is mv̄/2.

Proof. Let M be a menu. Suppose the buyer believes that the distributions πvj assigns

probability one to vj = v̄. The seller regrets not choosing a menu M ′ that offers the grand

bundle at pricemv̄. Specifically, his regret fromM ismv̄ minus the price of the grand bundle

in M .

Suppose the buyer believes that the distributions πvj assigns probability one to values

that make the buyer exactly indifferent between buying and not buying the grand bundle in

M . In particular, by the definition of menus, I can set values such that the buyer is exactly

indifferent between buying and not buying any bundle (x, p) ∈ M . She breaks indifferences

in favor of not buying. The seller regrets not choosing a menu M ′ that offers the grand

bundle at an ε discount, for arbitrarily small ε > 0. This would generate profits arbitrarily

close to the price of the grand bundle in M , whereas M generates zero profits. Therefore,

the seller’s regret from M is price of the grand bundle in M .

Altogether, the maximum regret is minimized when the menuM splits the difference and

offers the grand bundle at price mv̄/2.

Optimal Penalized Menu. In contrast to the previous results, the optimal penalized

policy will recommend bundling when the sample size is small. To formalize this, I need to

define the penalized policy in a setting where the agent cares about quantile, rather than

expected utility.

First, I redefine regret. Let xn denote the bundle that the buyer purchases, as a function
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of the realized sample. Given menu M , the buyer’s quantile regret is

Q-Regret(M, q, πv) = max
(x,p)∈M

UA (q,M, (x, p), πv)− UA (q,M, xn, π
v)

Next, I specify a bound B on quantile regret. Let H > 0 be a constant and let K be

defined as in assumption 19. Then

B(M, q, πv) := 4HK−1

√
ln 2 + ln |M |+ lnn

n

The following proposition implies that this regret bound is feasible in the spirit of Definition

44.

Claim 16. There exists a constant H > 0 and a buyer’s strategy xn such that

Q-Regret(M, q, πv) ≤ 4HK−1

√
ln 2 + ln |M |+ lnn

n

The constant H varies with model parameters (v̄, m, and K) but does not depend on πs or

M .

The key feature of the regret bound B is its dependence on the menu size |M |. This has

immediate implications. If the seller only offers the grand bundle, then |M | = 1 and the

term ln |M | = 0 in the bound disappears. On the other hand, if the seller sells every item

separately, then |M | = 2m and the term ln |M | = m in the bound is equal to the number

of products. As such, if there are many products, selling separately could mean much less

predictable buyer behavior compared to only offering the grand bundle.

The next claim formalizes this intuition with a limiting argument. It refers to the menu

MS in which all goods are sold separately (so |MS| = 2m).

Claim 17. Let M be an optimal penalized menu. For every sample size n and fraction
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α ∈ (0, 1), there exists a sufficiently large number m of products such that the menu size |M |

is less than an α-fraction of the menu size from selling separately, i.e.

|M |
|MS|

≤ α

Proof. Suppose for contradiction that |M | ≥ α|MS|, i.e. |M | ≥ α2m. As m→∞, the regret

bound grows to infinity since |M | grows to infinity. This causes the worst-case payoff to fall

to zero. However, offering only the grand bundle at a suitable price sets |M | = 1 and ensures

a positive profit (by assumption 19). This contradicts the optimality of M .

3.7 Related Literature

This work contributes to three research efforts. For robust mechanism design, it is a prin-

cipled way to interpolate between two extremes: the common prior and prior-freeness. For

learning in games, it provides a convenient behavioral assumption that does not rely on

agents using a particular model or estimator. For data-driven mechanism design, it extends

existing work to settings where the agent is learning, not just the policymaker. Below, I

elaborate on each of these contributions.

Robust Mechanism Design. Robust mechanism design tries to relax the common prior

assumption, as well as other knowledge assumptions used in mechanism design.

Initially, this literature focused on prior-free solution concepts that assumed no distri-

butional knowledge whatsoever. Early on, Bergemann and Morris (2005) and Chung and

Ely (2007) gave prior-free foundations for ex post incentive compatibility as a solution con-

cept.12 These papers worked with Harsanyi type spaces, where type profiles encode both
12Later contributions moved beyond ex post incentive compatibility (e.g. Börgers and Smith 2014, Börgers
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the distribution of the state (or payoff type) as well as agents’ higher-order beliefs. They

sought to implement a social choice correspondence in any Bayes-Nash equilibrium of any

type space.13

Prior-free solution concepts and the common prior assumption are two extreme cases,

but there is a rich terrain that lies between them. For example, Oury and Tercieux (2012)

propose continuous implementation. Given a type space that satisfies the common prior,

the designer wants to implement a social choice correspondence in all type spaces that are

arbitrarily close to the original one. Other researchers take a similar approach (e.g. Meyer-

ter-Vehn and Morris 2011, Jehiel, Meyer-ter-Vehn, and Moldovanu 2012). Alternatively,

Artemov et al. (2013) assume ∆-rationalizability (Battigalli and Siniscalchi 2003), where it

is commonly known that the state distribution belongs to some pre-specified set ∆. In a

similar spirit, Ollár and Penta (2017) assume that only pre-specified moments of the state

distribution are common knowledge.

My work can also be seen as straddling the divide between prior-freeness on the one hand

and the common prior on the other.14 It is clearly inspired by the robustness literature, but

its methods are different. Rather than specify a moment restriction or set ∆ of plausible

distributions, I assume that the agent has access to a dataset with sample size n. The

parameter n controls how knowledgeable the policymaker and agent are supposed to be.

It is a principled way to interpolate between prior-freeness (n = 0) and the common prior

(n = ∞). This is true regardless of whether the dataset is interpreted literally (as in this

paper), or as a stylized model of shared experience.

2017).
13Prior-free approaches also developed in algorithmic game theory (Goldberg et al. 2006). This work

focused on prior-free approximations to Bayesian-optimal mechanisms, whereas the economics literature
focused on worst-case optimal mechanisms and characterizing which social choice correspondences were
implementable.

14Granted, I avoid some of the issues related to strategic uncertainty that the prior literature has to deal
with, due to my focus on single-agent mechanism design problems. But my learning-theoretic approach to
relaxing the common prior assumption also seems to be compatible with multi-agent settings (c.f. Liang
2020).
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My model has three advantages relative to the nearest alternatives, namely Artemov et al.

(2013) and Ollár and Penta (2017). First, it has few tuning parameters. The only parameter

related to beliefs is the sample size n. Second, it makes it easier to decide “how much”

robustness is required. I posit that researchers find it easier to gauge whether a sample size

(or rate of convergence) is reasonable for their setting of interest, compared to an arbitrary

set of beliefs or a set of moment restrictions. Third, it has a clear learning foundation. This

is important because “robust” predictions can be quite sensitive to how one departs from the

common prior assumption, so we need a good justification if we want to prioritize one over

the other.15

Learning in Games. The literature on learning in games tries to replace prior knowledge

or equilibrium assumptions with a more explicit process of learning from historical data.

It is useful to divide this literature along two dimensions. First, whether data arises from

repeated interaction (i.e. online learning) or random sampling (i.e. batch learning). Second,

whether agents are learning about each other’s strategies or about the state of nature. I

am primarily concerned with models where agents learn about the state of nature through

random sampling.

Liang (2020) is particularly relevant to my work. The author also studies incomplete

information games where agents learn about the state through a finite dataset. In her

model, agents adopt learning rules from a prespecified class of learning rules. If the learning

rules are consistent, and converge uniformly, then predicted behavior is compatible with

the common prior assumption in the limit as the sample size grows. In finite samples,

predictions that hold under the common prior assumption (like the no-trade theorem) might

not be necessarily true.
15For example, if departures are defined using the product topology on the universal type space, then even

small departures from the common prior can lead to drastic changes in predicted behavior (Lipman 2003;
Rubinstein 1989; Weinstein and Yildiz 2007). In contrast, under the strategic topology, small departures
from the common prior lead to small changes in predicted behavior (Chen et al. 2010; E. Dekel et al. 2006).
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However, this paper differs from Liang (2020) in two respects. First, I commit to a

particular class of learning rules: those that satisfy my regret bound. This class contains

all learning rules that perform at least as well as empirical utility maximization, given the

true distribution. By identifying a natural class of learning rules, I reduce the burden on

researchers who want to use Liang’s method. Second, my goal is policy design rather than

predicting behavior. The new insights from my model do not come from agents learning

per se. Instead, they come from the fact that policy choices can impact how quickly agents

learn.

Researchers have also looked at the implications of statistical complexity for economic

behavior. Some of this work considers the trade-off, from the agent’s perspective, of choosing

more or less complex statistical models to estimate (e.g. Al-Najjar and Pai 2014, Olea et al.

2021). Other work studies models of bounded rationality that can be motivated as a response

to statistical complexity (e.g. Valenzuela-Stookey 2020, Jehiel 2005). In contrast, my work

looks at how policy choices can make the agent’s learning problem more or less complex.

Furthermore, I do not assume that the agent is frequentist or that she relies on a particular

statistical model.

Finally, researchers have also studied environments where agents’ beliefs may not con-

verge. This could be due to bounded rationality (Aragones et al. 2005; Haghtalab et al.

2021) or the fact that the environment is hopelessly complicated (Mailath and L. Samuelson

2020; Al-Najjar 2009). In particular, Al-Najjar (2009) relies on the notion of VC dimension,

which is closely linked to the notion of Rademacher complexity used in this paper. Aside

from this, however, the focus of these papers is different from my own. My assumptions

imply that the agent can learn her optimal response to any policy, given sufficient data.

Data-driven Mechanism Design. The literature on data-driven mechanism design fuses

robust mechanism design with learning in games. The goal is to combine microeconomic
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theory with data to provide more concrete policy recommendations. There is not much

interaction between this literature and prior work in structural econometrics, presumably

because it is driven by a community of computer scientists and microeconomic theorists,

rather than empirical economists. As a result, the methods are somewhat different. The

focus tends to be decision-theoretic, in line with Manski (2019), and there is less emphasis

on estimating model parameters per se.

One prominent line of work studies the sample complexity of auction design. Here, the

auctioneer lacks prior knowledge of the distribution of bidder values. Instead, he has access

to a dataset, usually consisting of i.i.d. draws from the value distribution. A typical question

is how many draws are needed in order for the auctioneer to guarantee near-optimal revenue

with high probability (e.g. Balcan, Blum, Hartline, et al. 2008, Cole and Roughgarden

2014). Many of these papers rely on measures of learning complexity, like covering numbers

(Balcan, Blum, Hartline, et al. 2008), pseudo-dimension (J. Morgenstern and Roughgarden

2015), and Rademacher complexity (Syrgkanis 2017). Gonçalves and Furtado (2020) use

more familiar econometric methods towards a similar end.

These papers are focused on the auctioneer’s learning problem, but ignore the bidders’

learning problems. This is possible because of the application that they emphasize: auctions

with dominant strategies, where agents have independent private values. In that context,

there is no need for agents to learn about the value distribution. But this is not true

in general. For example, in models with interdependent values, implementating reasonable

outcomes in dominant strategies may be impossible (Jehiel, Meyer-ter-Vehn, Moldovanu, and

Zame 2006). Alternatively, consider problems like monopoly regulation, contract design, or

Bayesian persuasion. In these problems, the agent’s optimal action depends on her beliefs

over a hidden state of nature.

There is some prior work where both the policymaker and the agents are learning from

data. For example, Camara et al. (2020) also study a single-agent policy design problem.
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Their model incorporates online learning, where data is generated over time through repeated

interaction, and the data-generating process is arbitrary. In contrast, I consider batch learn-

ing, where data is generated from random sampling. Furthermore, Cummings et al. (2020)

and Immorlica, Mao, et al. (2020) consider agents that are learning from i.i.d. samples,

respectively, in models of price discrimination and social learning. Both papers assume that

agents’ beliefs converge to the true distribution at a reasonable rate. In contrast, I assume

that the agent’s regret converges to zero at a reasonable rate. Although these assumptions

should be mutually compatible, the advantage of regret bounds is that they make explicit

how policies affect the complexity of the agent’s learning problem.

3.8 Conclusion

I proposed a modeling assumption that replaces common knowledge with a common dataset.

I studied this in the context of incomplete-information games where a policymaker commits

to a policy, an agent responds, and both are able to learn from the available data. I formalized

the modeling assumption using concepts like regret, Rademacher complexity, and sample

privacy. I showed that policies that are too complex in a precise sense can be suboptimal

because they lead to unpredictable behavior. I proposed penalized policies and motivated

them through theoretical guarantees and illustrative examples.

The most important – and challenging – direction for future work is to turn this method-

ology towards real applications. One approach is to find highly-structured, data-rich settings

where the data-driven penalized policy developed in this paper can actually be used. Partic-

ularly promising areas may lie in education or healthcare, where rich value-added measures

have been used for policies like teacher compensation. Another approach is to treat penal-

ization as desirable even in the absence of an explicit dataset. Here, the dataset would be

seen as a metaphor for experiences that shape the agent’s beliefs. Lab experiments could



CHAPTER 3. MECHANISM DESIGN WITH A COMMON DATASET 195

be used to determine whether policies that are more complex (in the sense of this paper)

actually lead to suboptimal responses.

Bringing this method to any serious application will likely also require theoretical exten-

sions. For example, there may be settings where the distribution is only partially identified,

where there are multiple agents interacting strategically, or where more efficient estimators

can take advantage of particular problem structure. These are all worthwhile open questions.
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Appendix A

Omissions from Chapter 1

A.1 Proof of Lemmas 1 and 6

I begin by proving lemma 6. Recall definition 25 and inequality (1.9). If u is (i, j, n)-separable

then there cannot exist a violation of (i, j, n)-separability. Applying (i, j, n)-separability, the

first line of inequality(1.9) becomes

ui (. . . , xi−1, a1, xi+1, . . . , xj−1, xj+1, . . .)

+uj (. . . , xi−1, xi+1, . . . , xj−1, a2, xj+1, . . .)

+ui (. . . , xi−1, b1, xi+1 . . . , xj−1, xj+1, . . .)

+uj (. . . , xi−1, xi+1 . . . , xj−1, b2, xj+1, . . .)

while the second line becomes

ui (. . . , xi−1, a1, xi+1, . . . , xj−1, xj+1, . . .)

+uj (. . . , xi−1, xi+1, . . . , xj−1, b2, xj+1, . . .)

+ui (. . . , xi−1, b1, xi+1, . . . , xj−1, xj+1, . . .)

+uj (. . . , xi−1, xi+1, . . . , xj−1, a2, xj+1, . . .)

These two expressions are the same, up to reordering of terms.

Next, consider the converse. Suppose that u does not have a violation of (i, j, n)-
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separability. I claim that u is (i, j, n)-separable. Note that inequality (1.9) becomes an

equality, where for all values (x, a1, a2, b1, b2),

u (. . . , xi−1, a1, xi+1, . . . , xj−1, a2, xj+1, . . .) + u (. . . , xi−1, b1, xi+1 . . . , xj−1, b2, xj+1, . . .)

= u (. . . , xi−1, a1, xi+1, . . . , xj−1, b2, xj+1, . . .) + u (. . . , xi−1, b1, xi+1, . . . , xj−1, a2, xj+1, . . .)

If we set

a1 := xi a2 := xj b1 := 0 b2 := 0

and rearrange terms, then

u(x) = u (. . . , xj−1, 0, xj+1, . . .)+u (. . . , xi−1, 0, xi+1, . . .)−u (. . . , xi−1, 0, xi+1 . . . , xj−1, 0, xj+1, . . .)

This satisfies the definition of (i, j, n)-separability. This completes the proof of lemma 6.

Next, consider lemma 1. I want to show that if u is symmetric, it is additively separable

iff there exists no violation (x, a1, a2, b1, b2) of (i, j, n)-separability where a := a1 = a2 and

b := b1 = b2. One direction is immediate: if u is additively separable then it is (i, j, n)-

separable, and therefore has no violation of (i, j, n)-separability. In the other direction,

non-existence of violations implies

u (. . . , xi−1, a, xi+1, . . . , xj−1, a, xj+1, . . .) + u (. . . , xi−1, b, xi+1 . . . , xj−1, b, xj+1, . . .)

= u (. . . , xi−1, a, xi+1, . . . , xj−1, b, xj+1, . . .) + u (. . . , xi−1, b, xi+1, . . . , xj−1, a, xj+1, . . .)

Note that

u (. . . , xi−1, a, xi+1, . . . , xj−1, b, xj+1, . . .) = u (. . . , xi−1, b, xi+1, . . . , xj−1, a, xj+1, . . .)
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by symmetry. Applying this to the previous equation and rearranging yields

u (. . . , xi−1, a, xi+1, . . . , xj−1, b, xj+1, . . .) =
1

2
· u (. . . , xi−1, a, xi+1 . . . , xj−1, a, xj+1, . . .)

+
1

2
· u (. . . , xi−1, b, xi+1 . . . , xj−1, b, xj+1, . . .)

This implies (i, j, n)-separability. Since u is (i, j, n)-separable for all i, j, n, it is additively

separable. This completes the proof of lemma 1.

A.2 Proof of Lemma 2

In section 1.3.3, I proved Lemma 2 for the maximum and quadratic utility functions. My

goal here is to extend the construction for the quadratic utility function to any symmetric

utility function u where there exist constants a, b ∈ Q and an outcome x ∈ X such that

u(a, a, x3, x4, . . .) + u(b, b, x3, x4, . . .) > u(a, b, x3, x4, . . .) + u(b, a, x3, x4, . . .) (A.1)

Note that a, b, x can be described in O(1) time, since x is N -dimensional where N does not

change with the number of variables n. For convenience, let n ≥ N . This is without loss

since the asymptotic runtime is determined by n→∞.

I prove the result for two separate cases, which are collectively exhaustive.

Case 1. In the first case,

u(a, a, x3, x4, . . .) 6= u(b, b, x3, x4, . . .)
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Without loss of generality, assume

u(a, a, x3, x4, . . .) < u(b, b, x3, x4, . . .) (A.2)

It follows from this and condition (A.1) that

u(a, b, x3, x4, . . .) < u(b, b, x3, x4, . . .) (A.3)

I modify the division of the sample space Ω depicted in figure 1.3.3. For each clause j,

let the first subinterval have length α/m. Let the second and third subintervals have length

(1− α)/(2m).

For each clause j, let xj be a permutation of (a, b, x3, x4, . . .). The values a, b will coincide

with the two dimensions i where variable i is represented in clause j. Formally, if v j1 = v i

or v j1 = ¬v i then xji = a. If v j2 = v i or v j2 = ¬v i then xji = b. Otherwise, the sequence xj

is in the same order as x, i.e. x3 precedes x4, x4 precedes x5, and so forth.

When ω falls into the first subinterval associated with clause j, set

XT
i (ω) =



b v j1 = v i

a v j1 = ¬v i

b v j2 = v i

a v j2 = ¬v i

xji otherwise

XF
i (ω) =



b v j1 = ¬v i

a v j1 = v i

b v j2 = ¬v i

a v j2 = v i

xji otherwise

(A.4)
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When ω falls into the second subinterval associated with clause j, set

XT
i (ω) =



b ¬v j1 = v i

a ¬v j1 = ¬v i

b v j2 = v i

a v j2 = ¬v i

xji otherwise

XF
i (ω) =



b ¬v j1 = ¬v i

a ¬v j1 = v i

b v j2 = ¬v i

a v j2 = v i

xji otherwise

(A.5)

When ω falls into the third subinterval associated with clause j, set

XT
i (ω) =



b v j1 = v i

a v j1 = ¬v i

b ¬v j2 = v i

a ¬v j2 = ¬v i

xji otherwise

XF
i (ω) =



b v j1 = ¬v i

a v j1 = v i

b ¬v j2 = ¬v i

a ¬v j2 = v i

xji otherwise

(A.6)

Now, consider the decisionmaker’s expected utility from lottery X, conditioned on the

interval associated with clause j. That is,

E

[
u (X1, . . . , Xn) | ω ∈

[
j − 1

m
,
j

m

)]
(A.7)

I will use the fact that u is symmetric to reorder X1, . . . , Xn as needed. When the assignment

g(X) makes both variables in clause j true, expected utility (A.7) becomes

A :=
1

3
(αu (b, b, x3, x4, . . .) + (1− α)u (a, b, x3, x4, . . .)) (A.8)
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When the assignment g(X) makes v j1 true but v j2 false, expected utility (A.7) becomes

B :=
1

3

(
αu (b, a, x3, x4, . . .) +

1− α
2
· u (b, b, x3, x4, . . .) +

1− α
2
· u (a, a, x3, x4, . . .)

)
(A.9)

Since u is symmetric, this is also true if g(X) makes v j2 true but v j1 false. Finally, when

g(X) makes neither entry in clause j true, expected utility (A.7) becomes

C :=
1

3
(αu (a, a, x3, x4, . . .) + (1− α)u (a, b, x3, x4, . . .)) (A.10)

When α = 1, A > B. This follows from condition (A.3). When α = 0, B > A. This

follows from condition (A.1). For any α > 0, A > C. This follows from condition (A.2).

The expressions A,B,C are continuous in α. It follows from this and the observations in

the previous paragraph that there exists a value α ∈ (0, 1) such that A = B > C. The value

of α depends on the choice correspondence c via the revealed utility function u, but it does

not depend on n or the boolean formula BF . From here, as in the quadratic utility case of

section 1.3.3, it follows that maximizing expected utility is equivalent to MAX 2-SAT.

Case 2. In the second case,

u(a, a, x3, x4, . . .) = u(b, b, x3, x4, . . .) (A.11)

It follows from this and condition (A.1) that

u(a, b, x3, x4, . . .) < u(b, b, x3, x4, . . .) (A.12)

My previous construction no longer works, since it would imply A = C. However, I can

repair the argument with a similar construction.
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Let each interval in the sample space Ω associated with clause j be divided into four

subintervals, rather than three. The first two subintervals have length α/(2m). The last two

subintervals have length (1 − α)/(2m). When ω falls into the first subinterval associated

with clause j, set

XT
i (ω) =



b v j1 = v i

b v j1 = ¬v i

b v j2 = v i

a v j2 = ¬v i

xji otherwise

XF
i (ω) =



b v j1 = ¬v i

b v j1 = v i

b v j2 = ¬v i

a v j2 = v i

xji otherwise

Intuitively, this mirrors equation (A.4), except that the first assertion vj1 in clause j is

automatically true. When ω falls into the second subinterval associated with clause j, set

XT
i (ω) =



b v j1 = v i

a v j1 = ¬v i

b v j2 = v i

b v j2 = ¬v i

xji otherwise

XF
i (ω) =



b v j1 = ¬v i

a v j1 = v i

b v j2 = ¬v i

b v j2 = v i

xji otherwise

Intuitively, this mirrors equation (A.4), except that the second assertion vj2 in clause j

is automatically true. When ω falls into the third subinterval associated with clause j,

define XT
i (ω), XF

i (ω) according to equation (A.5). When ω falls into the fourth subinterval

associated with clause j, define XT
i (ω), XF

i (ω) according to equation (A.6).

Now, consider the decisionmaker’s expected utility from lottery X, conditioned on the
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interval associated with clause j. When the assignment g(X) makes both variables in clause

j true, expected utility (A.7) becomes

A :=
1

3
(αu (b, b, x3, x4, . . .) + (1− α)u (a, b, x3, x4, . . .)) (A.13)

When the assignment g(X) makes v j1 true but v j2 false, expected utility (A.7) becomes

B : =
1

3

(α
2
· u (b, a, x3, x4, . . .) +

α

2
· u (b, b, x3, x4, . . .)

+
1− α

2
· u (b, b, x3, x4, . . .) +

1− α
2
· u (a, a, x3, x4, . . .)

)

Since u is symmetric, this is also true if g(X) makes v j2 true but v j1 false. Finally, when

g(X) makes neither entry in clause j true, expected utility (A.7) becomes

C :=
1

3
(αu (b, a, x3, x4, . . .) + (1− α)u (a, b, x3, x4, . . .)) (A.14)

When α = 1, A > B. This follows from condition (A.12). When α = 0, B > A. This

follows from condition (A.1). For any α > 0, A > C. This follows from condition (A.12).

The expressions A,B,C are continuous in α. It follows from this and the observations

in the previous paragraph that there exists a value α ∈ (0, 1) such that A = B > C. As in

case 1, this implies that maximizing expected utility is equivalent to MAX 2-SAT.

A.3 Proof of Lemma 3

The argument is similar to the proof of Lemma 2. Let u be any symmetric utility function

where there exist constants a, b ∈ Q and an N -dimensional outcome x ∈ X such that

u(a, a, x3, x4, . . .) + u(b, b, x3, x4, . . .) < u(a, b, x3, x4, . . .) + u(b, a, x3, x4, . . .) (A.15)
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As before, assume without loss that n ≥ N , and consider the following two cases.

Case 1. In the first case,

u(a, a, x3, x4, . . .) 6= u(b, b, x3, x4, . . .)

Without loss of generality, assume

u(a, a, x3, x4, . . .) < u(b, b, x3, x4, . . .) (A.16)

It follows from this and condition (A.15) that

u(a, b, x3, x4, . . .) > u(a, a, x3, x4, . . .) (A.17)

The construction is almost identical to the construction in case 1 of the proof of Lemma

2. The only exception is that, in the definitions of XT
i and XF

i , I replace any value a with b,

and any value b with a. As before, consider the decisionmaker’s expected utility from lottery

X, conditioned on the interval associated with clause j. When the assignment g(X) makes

both variables in clause j true, the conditional expected utility becomes

A :=
1

3
(αu (a, a, x3, x4, . . .) + (1− α)u (b, a, x3, x4, . . .)) (A.18)

When the assignment g(X) makes v j1 true but v j2 false, the conditional expected utility

becomes

B :=
1

3

(
αu (a, b, x3, x4, . . .) +

1− α
2
· u (a, a, x3, x4, . . .) +

1− α
2
· u (b, b, x3, x4, . . .)

)
(A.19)

Since u is symmetric, this is also true if g(X) makes v j2 true but v j1 false. Finally, when
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g(X) makes neither entry in clause j true, the conditional expected utility becomes

C :=
1

3
(αu (b, b, x3, x4, . . .) + (1− α)u (b, a, x3, x4, . . .)) (A.20)

When α = 1, B > A. This follows from condition (A.17). When α = 0, A > B. This

follows from condition (A.15). For any α > 0, C > A. This follows from condition (A.16).

The expressions A,B,C are continuous in α. It follows from this and the observations in

the previous paragraph that there exists a value α ∈ (0, 1) such that A = B < C. For this

value of α, the expected utility conditioned on the interval associated with clause j is equal

to A iff the assignment g(X) makes clause j true. Otherwise, it is equal to C > A.

If the assignment g(X) makes kT clauses true and kF clauses false, then the unconditional

expected utility is AkT + CkF . Since C > A, this is proportional to the number of clauses

j that are false. Maximizing expected utility is equivalent to maximizing the number of

clauses that are false. In turn, this is equivalent to minimizing the number of clauses that

are true. Therefore, if X ∈ c(M) then the assignment g(X) solves MIN 2-SAT.

Case 2. In the second case,

u(a, a, x3, x4, . . .) = u(b, b, x3, x4, . . .) (A.21)

It follows from this and condition (A.15) that

u(a, b, x3, x4, . . .) > u(a, a, x3, x4, . . .) (A.22)

The construction is almost identical to the construction in case 2 of the proof of Lemma 2.

The only exception is that, in the definitions of XT
i and XF

i , I replace any value a with b,

and any value b with a. As before, consider the decisionmaker’s expected utility from lottery



APPENDIX A. OMISSIONS FROM CHAPTER 1 219

X, conditioned on the interval associated with clause j. When the assignment g(X) makes

both variables in clause j true, expected utility (A.7) becomes

A :=
1

3
(αu (a, a, x3, x4, . . .) + (1− α)u (b, a, x3, x4, . . .)) (A.23)

When the assignment g(X) makes v j1 true but v j2 false, the conditional expected utility

becomes

B : =
1

3

(α
2
· u (a, b, x3, x4, . . .) +

α

2
· u (a, a, x3, x4, . . .)

+
1− α

2
· u (b, b, x3, x4, . . .) +

1− α
2
· u (a, a, x3, x4, . . .)

)

Since u is symmetric, this is also true if g(X) makes v j2 true but v j1 false. Finally, when

g(X) makes neither entry in clause j true, the conditional expected utility becomes

C :=
1

3
(αu (a, b, x3, x4, . . .) + (1− α)u (b, a, x3, x4, . . .)) (A.24)

When α = 1, B > A. This follows from condition (A.22). When α = 0, A > B. This

follows from condition (A.15). For any α > 0, C > A. This follows from condition (A.22).

The expressions A,B,C are continuous in α. It follows from this and the observations

in the previous paragraph that there exists a value α ∈ (0, 1) such that A = B < C. As in

case 1, this implies that maximizing expected utility is equivalent to MIN 2-SAT.

A.4 Proof of Lemma 4

Consider the outcome x̄n that maximizes utility u(x) across all n-dimensional outcomes

x. Similarly, consider the outcome xn that minimizes utility u(x) across all n-dimensional

outcomes x.
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Given an outcome x and parameter ε, the Turing machine performs the following com-

putation. Let k = b1/εc. Construct a grid

Y = {ε, 2ε, . . . , (k − 1)ε, kε}

For every y ∈ Y , define a lottery Xy as follows. When ω ≤ y, Xy(ω) = xn. Otherwise,

Xy(ω) = x̄n. Finally, output the largest value y ∈ Y such that

x ∈ c ({x,Xy})

This is well-defined by assumption 2, which ensures that binary menus are represented in the

collectionM. Moreover, this can be done in polynomial time since c is strongly tractable.

A.5 Proof of Lemma 5

Let u be a continuous utility function where dn = Had(Gn(u)). Let M denote an n-

dimensional product menu. Let BF denote a boolean formula with dn variables v 1, . . . , vdn .

Suppose there exists a O(poly(n))-time algorithm that maximizes expected utility in any

menu M . I want to find a O(poly(n))-time algorithm that solves MAX 2-SAT for any

boolean formula .

There are two main steps to this proof. In step 1, I construct an auxilliary formula

BF ′ with n variables v ′1, . . . , v ′n, using polynomial-size advice. This will be an instance of

a weighted MAX 2-SAT problem, where weights are allowed to be negative. A solution to

this auxilliary problem with correspond to a solution to the original problem. In step 2,

I will reduce the weighted MAX 2-SAT problem to expected utility maximization, using

polynomial-size advice. This will be similar to the proof of Lemmas 2 and 3. It follows

that the solving MAX 2-SAT for the original formula is weakly tractable if expected utility
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maximization is weakly tractable.

Step 1. Let G̃n(u) be the largest complete minor of Gn(u). By definition, this has dn

nodes. Let k be an arbitrary node in G̃n(u). By definition of the graph minor, there is a

subset of nodes in Gn(u) whose edges were contracted to form k. Let τ denote the size of

this subset, and let k1, . . . , kτ denote the nodes themselves.

First, I add clauses to the auxilliary formula BF ′ that represent clauses in the original

formula BF . Consider a clause CLj in the original formula BF . Let v i be a variable

represented in CLj, which corresponds to node kj,i in G̃n(u). For each clause j and pair

of variables (say, i and −i), choose nodes hj,i ∈ {kj,i1 , . . . , k
j,i
τ } such that that hj,i and hj,−i

share an edge in the inseparability graph Gn(u). I claim that it is always possible to find

such a pair. Since G̃n(u) is a complete graph, there is an edge between nodes kj,i and kj,−i

in G̃n(u). Since G̃n(u) was produced by edge contractions, that edge (kj,i, kj,−i) can exist

only if they represent nodes that share an edge in Gn(u). This proves the claim.

I have identified the variables v ′hj,i and v ′hj,−i , but not yet added a clause. Recall from

lemma 6 that since hj,i and hj,−i share an edge in the inseparability graph Gn(u), there is a

violation of ((hj,i, hj,−i), n)-separability. That violation consists of an n-dimensional outcome

xj and quadruple aj1, a
j
2, b

j
1, b

j
2 ∈ [0, 1]. Which clauses I add depends on the direction of that

violation. For convenience, for arbitrary a, b ∈ [0, 1], let

ũj(a, b) := u
(
. . . , xj

hj,i−1
, a, xj

hj,i+1
, . . . , xj

hj,−i−1
, b, xj

hj,−i+1
, . . .

)
There are two cases to consider.

1. Suppose that

ũj(aj1, a
j
2) + ũj(bj1, b

j
2) > ũj(aj1, b

j
2) + ũj(bj1, a

j
2)

Add the clause v ′hj,i ∨ v ′hj,−i to the auxilliary formula, with weight 1.
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2. Suppose that

ũj(aj1, a
j
2) + ũj(bj1, b

j
2) < ũj(aj1, b

j
2) + ũj(bj1, a

j
2)

Add three clauses to the auxilliary formula: ¬v ′hj,i ∨ ¬v ′hj,−i , ¬v ′hj,i ∨ v ′hj,−i , and v ′hj,i ∨

¬v ′hj,−i . Each of these clauses has weight −1.

For intuition, compare the three clauses in case 2 to the clause v ′hj,i ∨ v ′hj,−i in case 1. The

case 1 clause is true if and only if exactly two of the three case 2 clauses are satisfied. The

case 1 clause is false if and only if all three of the case 2 clauses are satisfied. Therefore, the

unweighted case 2 clauses are a way to represent the assertion that the case 1 clause is false.

By adding weight −1, this effectively becomes an assertion that the case 1 clause is true.

Next, I add clauses to the auxilliary formula BF ′ that capture the constraint that, for

any node k in G′n(u), we have v ′ki = v ′kj for all i, j ≤ τ . Without loss of generality, suppose

that k1, . . . , kn are ordered in a way where ki has an edge with ki+1 in the inseparability

graph Gn(u). This is always possible since node k was created by contracting a sequence of

edges (ki, ki+1) in Gn(u). Let xki , (aki1 , a
ki
2 , b

ki
1 , b

ki
2 ) be a violation of (ki, ki+1, n)-separability,

and let

ũki(a, b) := u
(
. . . , xkiki−1, a, x

ki
ki+1, . . . , x

ki
ki+1−1, b, x

ki
ki+1+1, . . .

)
Let γ > 0 be a constant that I define later. As before, there are two cases.

1. Suppose that

ũki(aki1 , a
ki
2 ) + ũj(bki1 , b

ki
2 ) > ũj(aki1 , b

ki
2 ) + ũj(bki1 , a

ki
2 )

Add the clauses v ′ki ∨ ¬v
′
kj

and ¬v ′ki ∨ v ′kj to the auxilliary formula BF ′. Each has

weight γ.

Note that an assignment where v ′ki 6= v ′ki+1
will make one of the two clauses false,

whereas an assignment where v ′ki = v ′ki+1
will make both clauses true. All else equal,
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since clauses have positive weight γ > 0, weighted MAX 2-SAT prefers to set v ′ki =

v ′ki+1
.

2. Suppose that

ũki(aki1 , a
ki
2 ) + ũj(bki1 , b

ki
2 ) < ũj(aki1 , b

ki
2 ) + ũj(bki1 , a

ki
2 )

Add the clauses v ′ki ∨ v ′kj and ¬v ′ki ∨ ¬v
′
kj

to the auxilliary formula BF ′. Each has

weight −γ.

Note that an assignment where v ′ki 6= v ′ki+1
will make both of the two clauses true,

whereas an assignment where v ′ki = v ′ki+1
will make only one clause true. All else

equal, since clauses have negative weight −γ, weighted MAX 2-SAT still prefers to set

v ′ki = v ′ki+1
.

Intuitively, if the weight γ is large enough, then weighted MAX 2-SAT will prioritize

v ′ki = v ′ki+1
over satisfying any of the other clauses in BF ′. Since this applies for all i =

1, . . . , τ , this will ensure that v ′ki = v ′kj for all i, j ≤ τ .

I have added all the clauses and only need to specify the weight parameter γ of the

clauses that represent constraints. Let there be m clauses in the original formula BF . Let

γ := m+ 1. Let m1 be the number of clauses j in BF that fall into case 1 above, and let m2

be the number that fall into case 2. Observe that m1 + m2 = m. Let n0 be the number of

nodes in Gn(u) that were deleted to form the minor G̃n(u). Let n1 := n− n0. In that case,

any assignment that satisfies v ′ki = v ′kj for all i, j, k has a weighted value of at least

2(n1 − 1)(m+ 1)− 2m2

even if no other clauses are satisfied. Here, 2(n1− 1) is the number of clauses that represent

constraints, multiplied by their weight m + 1. Among the clauses in BF ′ that represent
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clauses in BF , at least two of the three case 2 clauses are always satisfied; this adds weight

−2m2.

In contrast, any assignment where v ′ki 6= v ′kj for some i, j, k has a weighted value of at

most

2(n1 − 1)(m+ 1)− (m+ 1)− 2m2 +m

Here, either ¬v ′ki ∨ v ′kj or v ′ki ∨ ¬v
′
kj
. The fact that one of these clauses is false implies a

weighted loss of m+ 1. In the ideal case where all case 1 clauses are true and case 2 clauses

are false adds a weight of −2m2 +m. This is not enough to compensate for the violation of

the constraint.

It follows that the constraint v ′ki = v ′kj is satisfied in any assignment that solves weighted

MAX 2-SAT. Given this constraint, any assignment in BF has a corresponding assignment

in BF ′ where setting vk = true is equivalent to setting v ′ki = true for all i = 1, . . . , τ . If

the assignment in BF satisfies some number m0 of clauses, then the assignment in BF ′ as a

weighted value of

2(n1 − 1)(m+ 1)− 2m2 +m0

by construction. Holding the formula BF fixed, this is proportional to m0. That is, the

number of clauses satisfied in BF is proportional to weighted value in BF ′.

It follows that a solution to weighted MAX 2-SAT for the auxiliary formula BF ′ can

be efficiently transformed into a solution to MAX 2-SAT for the original formula BF . Fur-

thermore, the auxilliary formula BF ′ can be constructed in O(poly(n)) time, given advice

that describes the inseparability graph Gn(u), the composition of its largest complete minor

G̃n(u), and all the violations of (i, j, n)-separability.

Step 2. Having described the auxilliary problem, it remains to construct a menu such that

expected utility maximization corresponds to solving weighted MAX 2-SAT. Essentially, I



APPENDIX A. OMISSIONS FROM CHAPTER 1 225

want to recreate the argument that I used in Lemmas 2 and 3.

I begin by splitting the sample space into intervals that represent clauses CL′j in BF ′.

Let m′ be the number of clauses in BF ′. By construction, each clause CL′j has some weight

wj. Let βj ≥ 0 be a constant that will be defined later. Associate each clause CL′j with an

interval of length

lj =
βj|wj|∑m′

l=1 βl|wl|

Split each of these intervals into four subintervals. I will specify their widths later.

As in Lemmas 2 and 3, I define partial menus Mi = {XT
i , X

F
i }. Suppose that ω ∈ Ω

falls into the interval associated with clause j of BF ′. By construction of BF ′, there exists

a violation

ũj(aj1, a
j
2) + ũj(bj1, b

j
2) 6= ũj(aj1, b

j
2) + ũj(bj1, a

j
2)

There are four cases to consider, corresponding to cases in Lemmas 2 and 3.

1. Suppose that

ũj(aj1, a
j
2) + ũj(bj1, b

j
2) > ũj(aj1, b

j
2) + ũj(bj1, a

j
2)

where ũj(aj1, a
j
2) 6= ũj(bj1, b

j
2). Assume without loss of generality that ũj(bj1, b

j
2) >

ũj(aj1, a
j
2).

The construction is analogous to that in case 1 of Lemma 2. When ω falls into the
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first two subintervals associated with clause j, set

XT
i (ω) =



bj1 v j1 = v i

aj1 v j1 = ¬v i

bj2 v j2 = v i

aj2 v j2 = ¬v i

xji otherwise

XF
i (ω) =



bj1 v j1 = ¬v i

aj1 v j1 = v i

bj2 v j2 = ¬v i

aj2 v j2 = v i

xji otherwise

(A.25)

When ω falls into the third subinterval associated with clause j, set

XT
i (ω) =



bj1 ¬v j1 = v i

aj1 ¬v j1 = ¬v i

bj2 v j2 = v i

aj2 v j2 = ¬v i

xji otherwise

XF
i (ω) =



bj1 ¬v j1 = ¬v i

aj1 ¬v j1 = v i

bj2 v j2 = ¬v i

aj2 v j2 = v i

xji otherwise

(A.26)

When ω falls into the fourth subinterval associated with clause j, set

XT
i (ω) =



bj1 v j1 = v i

aj1 v j1 = ¬v i

bj2 ¬v j2 = v i

aj2 ¬v j2 = ¬v i

xji otherwise

XF
i (ω) =



bj1 v j1 = ¬v i

aj1 v j1 = v i

bj2 ¬v j2 = ¬v i

aj2 ¬v j2 = v i

xji otherwise

(A.27)

Next, I specify the lengths of the subintervals. Recall that the length of the interval
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associated with clause j is lj. Let α ∈ [0, lj] be a constant. Let the first two subintervals

each have width α/lj. Let the last two subintervals each have width (1− α)/lj. As in

case 1 of Lemma 2, there exist constants α and A > C so that expected utility from

lottery X ∈M conditional on the interval associated with clause j is some constant A

when the assignment g(X) makes clause j true, and C otherwise. There are at most n2

unique such constants, one for every pair of nodes in Gn(u), and I take this as advice.

Finally, I specify the length of the interval associated with clause j by letting βj =

1/(A − C). This ensures that the probability of this is proportional to |wj|/(A − C).

All else equal, the effect of choosing an assignment X that makes clause j true is to

increase the unconditional expected utility from C|wj|/(A−C) to A|wj|(A−C). The

difference is |wj|. This is precisely the weight that the weighted MAX 2-SAT problem

assigned to clause j.

2. Suppose that

ũj(aj1, a
j
2) + ũj(bj1, b

j
2) > ũj(aj1, b

j
2) + ũj(bj1, a

j
2)

where ũj(aj1, a
j
2) = ũj(bj1, b

j
2).

The construction is analogous to that in case 2 of Lemma 2. When ω falls into the

first subinterval associated with clause j, set

XT
i (ω) =



bj1 v j1 = v i

bj1 v j1 = ¬v i

bj2 v j2 = v i

aj2 v j2 = ¬v i

xji otherwise

XF
i (ω) =



bj1 v j1 = ¬v i

bj1 v j1 = v i

bj2 v j2 = ¬v i

aj2 v j2 = v i

xji otherwise
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When ω falls into the second subinterval associated with clause j, set

XT
i (ω) =



bj1 v j1 = v i

aj1 v j1 = ¬v i

bj2 v j2 = v i

bj2 v j2 = ¬v i

xji otherwise

XF
i (ω) =



bj1 v j1 = ¬v i

aj1 v j1 = v i

bj2 v j2 = ¬v i

bj2 v j2 = v i

xji otherwise

When ω falls into the third or fourth subintervals associated with clause j, define

XT
i (ω) in the same way as in the previous case.

As before, let α ∈ [0, lj] be a constant. Let the first two subintervals each have width

α/lj. Let the last two subintervals each have width (1 − α)/lj. Let α,A,C be the

constants from case 2 of Lemma 2, which I take as advice. Let βj = 1/(A− C).

3. Suppose that

ũj(aj1, a
j
2) + ũj(bj1, b

j
2) < ũj(aj1, b

j
2) + ũj(bj1, a

j
2) (A.28)

where ũj(aj1, a
j
2) 6= ũj(bj1, b

j
2). This case follows from the construction in case 1 of

Lemma 3 in the same way that case 1 follows from the construction in case 1 of

Lemma 2. The only difference is that, since C > A, I define βj = 1/(C − A).

All else equal, the effect of choosing an assignment X that makes clause j false is to

increase the unconditional expected utility from by |wj|. By construction, wj = −|wj|

whenever (A.28) holds. Therefore, the effect of choosing an assignment X that makes

clause j true is to increase the unconditional expected utility from by wj. This is

precisely the weight that the weighted MAX 2-SAT problem assigned to clause j.
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4. Suppose that

ũj(aj1, a
j
2) + ũj(bj1, b

j
2) < ũj(aj1, b

j
2) + ũj(bj1, a

j
2)

where ũj(aj1, a
j
2) = ũj(bj1, b

j
2). This case follows from the construction in case 2 of

Lemma 3 in the same way that case 2 follows from the construction in case 2 of

Lemma 2. The only difference is that, since C > A, I define βj = 1/(C − A).

By construction of the menu M , the expected utility of lottery X is proportional to

the weighted value of the assignment g(X). Therefore, expected utility maximization solves

the weighted MAX 2-SAT problem for the auxilliary formula BF ′. Since the menu M and

the assignment g(X) can be computed in polynomial-time with polynomial-size advice, this

completes step 2. In turn, step 2 completes the proof of Lemma 5.

A.6 Proof of Corollaries 1 and 2

Suppose a weakly tractable choice correspondence maximizes expected utility, where

dn := Had(Gn(u))

Lemma 5 provides a O(nk · poly(n))-time algorithm to solve MAX k-SAT for any boolean

formula with at most dn variables.

Corollary 1 follows almost immediately. Fix an integer n′ such that dn′ = n. Lemma 5

provides a O(poly(n′))-time algorithm to solve MAX 2-SAT for any boolean formula with at

most n variables. I claim that this runtime is also polynomial in n, which proves the corollary.

Since dn = Ω(poly(n)), dn ≥ Cnα for some constants C, α. It follows that n′ ≤ C−1n1/α,

which implies n′ = O(poly(n)). The composition of polynomials is polynomial. This proves

the claim.

Corollary 2 is a bit more involved. Fix an integer n′ such that dn′ = n. Lemma 5 provides
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a O(poly(n′))-time algorithm to solve MAX 2-SAT for any boolean formula with at most

n variables. First, I claim that this runtime is subexponential in n. Since dn = ω(log n),

n′ = o(2n). Therefore, the runtime is o(poly(2n)), or o(2n). This proves the claim.

Second, I show that there exists a subexponential-time algorithm for 3-SAT. Unfortu-

nately, applying the standard reduction from 3-SAT to MAX 2-SAT only yields a o(poly(2n
2
))

algorithm for 3-SAT. For that reason, I take an alternate approach. Let k ≥ 0 be an in-

teger and consider a decision variant of the MAX 2-SAT that asks whether there exists an

assignment that satisfies at least k clauses. I claim there exists an algorithm that solves this

problem with runtime

O
(
2o(k) · poly(n)

)
(A.29)

This can be used to construct an O(2o(n))-time algorithm for 3-SAT (Cai and Juedes 2003,

Corollary 4.2). The algorithm for the decision variant of MAX 2-SAT for has two cases,

which depend on the number m of clauses in the boolean formula.

1. Suppose k ≤ m/2. Then there always exists an assignment that satisfies at least

k clauses (Mahajan and Raman 1999, Proposition 5). The algorithm should always

output “true”. The runtime is O(poly(n)), which is the amount of time it takes to

verify that k ≤ m/2. This is consistent with equation (A.29).

2. Suppose k > m/2. Since there are m clauses and each clause has at most two literals,

there can be at most 2m unique variables represented in the boolean formula. Run the

subexponential-time algorithm for MAX 2-SAT for these 2m variables and evaluate

whether at least k clauses are satisfied. The runtime is

O
(
2o(m)

)
which is consistent with equation (A.29) since k = Ω(m).
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This proves the claim, and the corollary.

A.7 Proof of Lemma 7

Let G := Gn(u) be an undirected graph. I claim that

Had(G) = O(log n) ⇐⇒ cdgn(G) = O(log n)

There are two directions to prove.

1. First, let d = cdgn(G). By definition, there exists a minor G′ where every node in G′

has degree that is equal to or greater than d. Let avg(G) be the average degree across

all nodes in G′. Clearly, avg(G) ≥ d. It follows from Kostochka (1984) that G′ has a

complete minor G′′ containing

Ω
(

avg(G′)/
√

log avg(G′)
)

nodes. Since G′ is a minor of G, G′′ is also a (complete) minor of G. Altogether, this

implies

Had(G) = Ω
(
d/
√

log d
)

In particular, if Had(G) = O(log n) then d = O(log n).

2. Second, let d = Had(G). By definition, there is a complete minor G′ with d nodes.

Since G′ is complete, every node in G′ has degree d. Therefore, cdgn(G) ≥ d. In

particular, if cdgn(G) = O(log n) then d = O(log n).
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A.8 Proof of Lemma 8

Let G be an undirected graph where cdgn(G) = d. Let the directed graph ~G have n nodes.

I construct it as follows.

1. Find a node i in the original graph G that has degree less than or equal to d. This is

always possible since G is a minor of itself, and the contraction degeneracy requires all

minors of G to have a node with degree less than or equal to d. Searching over nodes

i and evaluating their degree takes O(n2) time.

2. If node j shares an edge with node i in the undirected graph G, let ~G have a directed

edge from node i to node j. By definition, this leaves node i with no more than d

outgoing edges. Searching over nodes j takes O(n) time.

3. Delete node i from G. Return to step 1 if G is not empty. This occurs at most O(n)

times.

This algorithm has runtime O(n3).

The only remaining property to verify is that ~G is acyclic. This holds because step 1

visits each node i exactly once, and step 2 only creates an edge from node i to a node j that

has not yet been visited. Any path in ~G must be strictly increasing in the order in which

step 1 visits nodes. This rules out cycles, which must begin and end with the same node.

A.9 Proof of Lemma 9

I begin by identifying a particular node k ∈ F . Construct a minor G′ of the graph G as

follows.

1. Starting with the graph G, find an edge (i, j) where i ∈ F is in the frontier and j /∈ F

is not.
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2. Modify G by contracting the edge (i, j) into a new node i′.

3. Modify the frontier F by removing i and replacing it with i′.

4. Repeat step 1 with the modified graph G and frontier F , until no suitable edges remain.

5. Delete all remaining nodes i /∈ F . None of these nodes are connected with the frontier

F , or there would have been another edge to conrtact in step 4.

Henceforth, let G be the original graph and F the original frontier. For every node i ∈ F

there exists a contracted node i′ in the minor G′. By construction, the minor G′ has an edge

between nodes i′ and nodes j′ iff one of the following is true.

1. G has an edge between nodes i and j.

2. There is a path in G from i to j that does not go through the frontier F .

Let d = cdgn(G). By the definition of contraction degeneracy, there exists a node k′ in the

minor G′ with at most d edges. Let k ∈ F be the node in G that k′ represents.

Suppose the algorithm were to visit node k in step 5. First, consider the indirect influ-

encers i ∈ Ik. By definition of Ik, there exists a path from i to k that does not pass through

F . Next, consider the nodes k′ and i′ in G′, representing nodes k and i ∈ Ik in G. There is

an edge between k′ and i′ in G′ since, as I just showed, there is a path in G from i to j that

does not go through the frontier F . This path will be contracted in the procedure used to

define G′, until only an edge between k′ and i′ remains. However, I defined k′ as a node that

has at most d edges in G′. Since there are at most d nodes i′ in G′ that share an edge with

k′, there can be at most d nodes i ∈ Ik. This completes the proof, since I have identified a

node k in G where |Ik| ≤ d.



APPENDIX A. OMISSIONS FROM CHAPTER 1 234

A.10 Proof of Lemma 10

I only need to verify that the definition of indirect influencers in algorithm 2 is consistent

with the definition in 1. This is because the definition of the successors is left arbitrary in

algorithm 1, and the definition of the predecessors is identical in both algorithms 1 and 2.

Let Ii be the indirect influencers of algorithm 1. Formally, Ii is the subset of unvisited

coordinates j where there is a predecessor k ∈ Pi whose choice X∗k(·) depends on Xj. Let I ′i

be the indirect influencers of algorithm 2. Formally, I ′i consists of the frontier nodes j ∈ F

where where G contains a path between i and j that does not pass through F .

It is sufficient to show that Ii ⊆ I ′i. The fact that I ′i may contain nodes that are not in Ii

is immaterial. Algorithm 2 only uses I ′i as an argument for choices X∗Pi(·) of i’s predecessors.

Any node in I ′i \ Ii is superfluous insofar as it does not actually affect the function X∗Pi(·).

To show that Ii ⊆ I ′i, consider any node j ∈ Ii. By definition, there is a predecessor

k ∈ Pi whose choice X∗k(·) depends on Xj.

First, I claim that j ∈ F . This follows from the fact that the choice X∗k(·) can only

depend on partial lotteries associated with frontier nodes. Recall that step 6 of algorithm

2 calls step 6 of algorithm 1. This ensures, at each iteration, that choice X∗k(·) remains a

function of partial lotteries associated unvisited nodes that are either (i) successors or (ii)

indirect influencers of some visited node. Successors of visited nodes are added to the frontier

F in step 7, and only removed after they are visited. Indirect influencers are in the frontier

by definition, and only removed after they are visited. Therefore, at each iteration, X∗k(·)

remains a function of partial lotteries associated with frontier nodes.

Second, I claim that there exists a path in G between i and j that does not pass through

the frontier F . By definition, k is a visited node where X∗k(·) depends on both Xi and Xj.

Since k is visited, k /∈ F . Therefore, it suffices to show that there are paths in G between i

and k, as well as k and j. The argument is the same in each case.
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I claim there exists a path between i and k that does not pass through F . Obsevre that,

in order for X∗k(·) to depend on Xi, it must have been defined (or redefined) in step 6 of a

previous iteration of algorithm 2. Let h be the node visited during that previous iteration.

There are two cases.

1. If h = k, then X∗k is being defined for the first time. In order for X∗k(·) to depend on

Xi, it must be the case that i ∈ Sk ∪ I ′k. By definition of Sk, if i ∈ Sk then i and j

share an edge in G. This means there is a path in G between i and k that does not

pass through F , vacuously, because it does not have any interior nodes. Alternatively,

suppose i ∈ I ′k. By definition of I ′k, there is a path from i to k that does not pass

through F .

2. Suppose h 6= k. Before X∗k(·) depended on Xi, it depended on Xh. Then Xh was

replaced with X∗h, which depended on Xi. Since the algorithm visits h in an earlier

iteration, it is no longer in the frontier F by the time the algorithm visits i. Therefore,

there is a path from k /∈ F to h /∈ F , and it suffices to find a path from h to i that

does not pass through F .

In the second case, I can repeat this argument with node h taking the role of node k. There

are only n <∞ nodes, so eventually it will be the case that h = k.

This completes the argument. I have shown that j ∈ F and there exists a path in G

between i and j that does not pass through the frontier F . Therefore, j ∈ I ′i. This is what

I sought to show.
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A.11 Proof of Lemma 11

Consider step 5 of algorithm 2. In the iteration where node i is visited, the algorithm defines

X∗i (XSi , XIi) ∈ arg max
Xi∈Mi

E
[
u
(
Xi, XSi , X

∗
Pi

(Xi, XIi) , 0, 0, . . .
)]

To prove this result, it is enough to show that X∗i (·) is consistent with expected utility maxi-

mization in the following sense. If the decisionmaker is constrained to lotteriesX ′ ∈M where

X ′Si = XSi and X ′Ii = XIi , her optimal choice X ′ should satisfy X ′i = X∗i (XSi , XIi). If that

holds, the optimality of algorithm 1 follows from the optimality of dynamic programming.

I begin by establishing a useful property. Suppose that the (undirected) inseparability

graph G := Gn(u) has an edge between nodes i and j. I claim that j ∈ Si ∪ Pi. To prove

this claim, there are three cases to consider.

1. The algorithm has not yet visited node j. Then j ∈ Si is a successor of i, by definition.

2. The algorithm has already visited node j and there is an edge in ~G from j to i. Then

i ∈ Sj is a successor of j, by definition. Since X∗j (·) depends on XSj , it depends on Xi.

Therefore, j ∈ Pi is a predecessor of i.

3. The algorithm has already visited node j and there is an edge in ~G from i to j. This

case is somewhat more involved. First, note that i ≤ j. This follows from the fact that

there is an edge from i to j implies that i precedes j in the topological order of step 2.

Next, consider the iteration of step 5 that visits node j. Step 4 visits i before j, but i

has not been visited yet, so it must be the case that step 5d skipped over i. This only

occurs when there are too many indirect influencers of i, i.e. |Ii| > d.

I claim that i ∈ F . In that case, i ∈ Ij because there is a path in G between i and j

that does not pass through F . This path simply consists of the edge (i, j). Since X∗j (·)
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depends on XIj , it depends on Xi. Therefore, j ∈ Pi is a predecessor of i.

Suppose for contradiction that i /∈ F . Let node k ∈ Ii be an indirect influencer of i.

By definition, there is a path in G from k to i that does not pass through F . This

path can be extended to j by passing through i. Since i /∈ F , the extended path does

not pass through F . Therefore, k ∈ Ij is an indirect influencer of j. This implies

|Ij| ≥ |Ij| > d. That contradicts the fact that node j is being visited, since step 5d

would skip over it.

It follows from these three cases that j ∈ Si ∪ Pi.

By the preceding argument, any node j /∈ Si ∪ Pi must not share an edge with i in

the inseparability graph G. By definition of the inseparability graph, this means that u is

(i, j, n)-separable. Applying the definition of separability for each j /∈ Si∪Pi, I can represent

the utility function as

u(x) = ui (xi, xPi , xSi) + u−i (x−i)

For the purpose of maximizing expected utility, the function u−i is irrelevant. Therefore,

setting Xj = 0 for j /∈ Si ∪ Pi is without loss of optimality.

A.12 Proof of Lemma 12

To establish the runtime, I analyze each step of the algorithm.

1. Step 1 can be done in O(poly(n)) time, by lemma 8.

2. Step 2 can be done in O(n2) time, using standard algorithms for topological sorting.

3. Step 3 can be done in O(1) time.

4. Step 4 can be done in O(n) time.
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5. Step 5 can be done in O(n4) time.

(a) Step 5a can be done in O(n2) time by searching through all edges.

(b) Step 5b can be done in O(n2) time by searching through all edges.

(c) Step 5c can be done in O(n3) time. This involves checking up to n nodes j ∈ F .

For each j, I need to evaluate whether there exists a path in G between i and j.

This can be done in O(n2) time by breadth-first search.

(d) Step 5d can be done in O(n) time by searching through the set Ii of indirect

influencers. This repeats step 5 at most n times before either (i) moving on to

step 6 or (ii) reaching an error. Lemma 9 guarantees that it will not reach an

error.

6. Step 6 has two parts.

(a) First, it runs step 5 of algorithm 1. This step involves an optimization problem.

Since u is efficiently computable and the sample space is split into m intervals,

evaluating expected utility for a given lottery takes O(m · poly(n)) time. For

each XSi∪Ii ∈ MSi∪Ii , I consider up to k alternative partial lotteries Xi ∈ Mi. I

claim that the set MSi∪Ii has up to k2d elements, which implies that step 5 takes

O(k2d+1m · poly(n)) time.

To show that MSi∪Ii has no more than k2d elements, it suffices to show that

|Si∪Ii| ≤ 2d. Step 5d ensures that Ii ≤ d. The successors Si can be split into two

parts. The first part consists of unvisited nodes j where ~G contains an edge from

i to j. There are at most d nodes of this kind, by step 1. The second part of Si

consists of unvisited nodes j where ~G contains an edge from j to i. Let i′ := j and

j′ := i. Restated, node j′ is visited before node i′ and ~G contains an edge from

i′ to j′. In bullet 3 of the proof of lemma 11, I showed that this implies i′ ∈ Ij′ .
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Restated in my original notation, j ∈ Ii. Therefore, these nodes j were already

counted among the d nodes in Ii. To summarize, there are at most 2d nodes in

Si ∪ Ii.

(b) Second, it runs step 6 of algorithm 1. This iterates over O(n) predecessors j ∈

Pi. For each j, it needs to redefine X∗j for up to k2d elements of MSi∪Ii . Each

redefinition can be done in O(kd+1) time by looking up the values of X∗j for

different arguments Xi, XIi . Overall, this takes O(nk3d+1) time.

7. Step 7 can be done in O(n) time. It returns to step 4 at most n times.

8. The output can be described in O(nm) space.

Combining all these steps yields a runtime that satisfies the bound (1.12).

A.13 Proof of Proposition 4

First, I show that when the utility function u is Hadwiger separable, maximizing expected

utility is consistent with relatively narrow dynamic choice bracketing. Lemma 10 implies that

algorithm 2 is a special case of algorithm 1. Lemma 11 implies that algorithm 2 maximizes

expected utility. Let dn = cdgn(Gn(u)). I showed in the proof of Lemma 12 (bullet 6a)

that, for each node i in Gn(u), Si ∪ Ii has no more than 2dn elements. I showed in lemma

7 that dn = O(log n) if u is Hadwiger separable. Therefore, algorithm 2 is dynamic choice

bracketing with bracket size 2dn = O(log n). By definition, this is relatively narrow.

Next, I show that if relatively narrow dynamic choice bracketing is rational, then it

maximizes expected utility with respect to a Hadwiger separable utility function. I assumed

the NU-ETH for this result in order to use Theorem 2. Note that algorithm 1 can be solved

in polynomial time with polynomial-size advice, where the advice includes the order in which

nodes are visited and the set of successors. This follows from an argument similar to Lemma
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12. Therefore, Theorem 2 implies that the revealed utility function u must be Hadwiger

separable. I emphasize that this argument is not circular because the proof of Theorem 2

did not make use of Proposition 4. Finally, note that the NU-ETH is sufficient but may not

be necessary. It may be possible to prove this result directly without invoking Theorem 2.

A.14 Proof of Lemma 14

Let X∗ be the output of the greedy algorithm on product menuM . Consider a decisionmaker

who runs the greedy algorithm for i − 1 iteratons, choosing X∗1 , . . . , X∗i−1, but chooses the

remaining lotteries Xi, . . . , Xn optimally. Formally, define

OPTi := max
X>i∈M>i

E[ū (X∗1 , . . . , X
∗
i , Xi+1, . . . , Xn, 0, 0, . . .)]

Observe that

OPT0 = max
X∈M

E[ū (X1, . . . , Xn, 0, 0, . . .)]

is simply expected utility maximization, whereas

OPTn = E[ū (X∗1 , . . . , X
∗
n, 0, 0, . . .)]

is the expected utility obtained by the greedy algorithm. The goal is to show that

2 ·OPTn ≥ OPT0 (A.30)

Next, consider the added value from choosing X∗i in iteration i of the greedy algorithm.

This corresponds to the expected value of a random variable ∆i : Ω→ R, where

∆i := ū
(
X∗1 , . . . , X

∗
i−1, X

∗
i , 0, 0, . . .

)
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− ū
(
X∗1 , . . . , X

∗
i−1, 0, 0, 0, . . .

)
Since this is the added value of the greedy algorithm in each iteration, we have

OPTn =
n∑
i=1

E[∆i] (A.31)

I claim that the added value E[∆i] exceeds the lost value from a simple deviation from the

optimal solution to OPTi−1, where one chooses X∗i instead of the optimal Xi. Formally,

∆i ≥ ū
(
X∗1 , . . . , X

∗
i−1, Xi, 0, 0, . . .

)
− ū

(
X∗1 , . . . , X

∗
i−1, 0, 0, 0, . . .

)
≥ ū

(
X∗1 , . . . , X

∗
i−1, Xi, Xi+1 . . . , Xn, 0, 0, . . .

)
− ū

(
X∗1 , . . . , X

∗
i−1, 0, Xi+1, . . . , Xn, 0, 0, . . .

)
≥ ū

(
X∗1 , . . . , X

∗
i−1, Xi, Xi+1 . . . , Xn, 0, 0, . . .

)
− ū

(
X∗1 , . . . , X

∗
i−1, X

∗
i , Xi+1, . . . , Xn, 0, 0, . . .

)
(A.32)

This holds for any partial lotteries Xi+1, . . . , Xn. The first inequality follows from construc-

tion of the greedy algorithm. The second inequality follows from the diminishing returns,

where the analog to x′′ in definition 25 is

x′′ =
(
0, . . . , 0, 0, X∗i+1(x), . . . , X∗n(x), 0, 0 . . .

)
The third inequality follows from the fact that ū is non-decreasing, since X∗i ≥ 0.

It follows from inequality (A.32) that

OPTi ≤ E[∆i+1] + E
[
ū
(
X∗1 , . . . , X

∗
i−1, X

∗
i , Xi+1, . . . , Xn, 0, 0, . . .

)]
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when Xi+1, . . . , Xn are defined as the arguments that obtain OPTi. By definition, OPTi+1

is an upper bound for the second term of the right-hand side. Therefore,

OPTi ≤ E[∆i+1] + OPTi+1

Apply this inequality recursively to show that

OPT0 ≤ OPTn +
n∑
i=1

E[∆i]

= 2 ·OPTn

where the second line follows from equation (A.31). This establishes inequality (A.30).

A.15 Randomized Approximation Algorithm

This approximation algorithm follows a heuristic called randomized rounding. It begins by

setting up a mixed integer programming formulation of expected utility maximization for

the maximum utility function u(x) = maxi xi. It solves a linear programming relaxation

in polynomial time. Then, as needed, it randomly rounds the real-valued solution to the

linear programming relaxation to a nearby integer-valued solution to the original mixed

integer programming problem. A similar algorithm has been used to obtain a (1 − 1/e)-

approximation to MAX 2-SAT, and I show that it can obtain the same approximation for

this particular expected utility maximization problem.

I begin by addressing the use of randomization. I have modeled the decisionmaker as a

Turing machine that makes deterministic choices. Alternatively, I could have modeled her

as a probabilistic Turing machine that makes stochastic choices. Of course, stochastic choice

would violate the assumption that the agent always maximizes expected utility for some
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utility function u, except in the trivial case where she randomizes over choices that she is

indifferent to. However, it is natural to ask whether the decisionmaker can efficiently generate

stochastic choices that match a deterministic choice correspondence c with high probability.

This question can be addressed by modeling the decisionmaker as a probabilistic Turing

machine.

I can formulate a probalistic relaxation of tractability as follows. The complexity class

BPP refers to decision problems that can be solved with bounded error in polynomial time.

It consists of problems in which there exists a polynomial-time Turing machine that gives the

correct answer with probability greater than or equal to 2/3. Given a choice correspondence

c, consider a decision problem Dc that asks whether a given lottery X ∈ M is chosen, i.e.

X ∈ c(M). A choice correspondence c is tractable in a probabilistic sense if Dc ∈ BPP.

I claim that my results do not change if I relax tractability in this way, as long as

NP 6⊂ P/poly. Keep in mind that I already assume this to prove 4, and assume a stronger

conjecture to prove Theorem 2. To prove the claim, note that Adleman’s theorem implies

BPP ⊆ P/poly (Adleman 1978, Bennett and Gill 1981). However, I have already argued in

Corollary 1 of Theorem 2 that for utility functions u where

Had(Gn(u)) = Ω(poly(n))

expected utility maximization does not belong to P/poly as long as NP 6⊂ P/poly. There-

fore, it cannot belong to BPP. If I assume the NU-ETH hypothesis, Theorem 2 implies the

somewhat stronger result that expected utility maximization belongs to P/poly as long as u

is Hadwiger separable. Again, this means that it cannot belong to BPP.

Having shown that my results are robust to the use of probabilistic Turing machines, I

can now turn to approximation algorithms that use randomization. First, I want to construct
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a mixed integer programming formulation of

max
X∈M

Eω[max {X1(ω), . . . , Xn(ω)}]

By assumption 1, I can restrict attention to a finite number of representative points ω ∈ Ω

in the sample space. Without loss of generality, assume they occur with equal probability.

The number of these points is polynomial in the description of the product menu M . For

convenience, whenever I refer to ω in this proof, let ω denote a point in this finite set.

Let Xj
i denote the jth element of Mi. Formally, define the mixed integer programming

formulation as

max
∑
ω

uω subject to

di,ω ∈ {0, 1}, ∀i, ω
n∑
i=1

di,ω = 1, ∀ω

pi,j ∈ {0, 1}, ∀i, j
|Mi|∑
j=1

pi,j = 1, ∀i

uω ≤
n∑
i=1

di,ω

|Mi|∑
j=1

pi,j ·Xj
i (ω)

Consider the following linear programming relaxation:

max
∑
ω

uω subject to

di,ω ∈ [0, 1], ∀i, ω
n∑
i=1

di,ω = 1, ∀ω
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pi,j ∈ [0, 1], ∀i, j
|Mi|∑
j=1

pi,j = 1, ∀i

uω ≤
n∑
i=1

di,ω

|Mi|∑
j=1

pi,j ·Xj
i (ω)

This can be solved in polynomial-time because the number of variables and constraints is

polynomial in the description length of the menu M .

Let u∗ω, d∗i,ω, p∗i,j be the solution to the linear programming problem. The randomized

rounding algorithm chooses Xj
i with probability pi,j.

Next, I show that the randomized rounding algorithm obtains a constant approximation

to the mixed integer programming problem. First, observe that

Prp∗
[
max
i
Xi(ω) ≤ t

]
=

n∏
i=1

Prp∗ [Xi(ω) ≤ t]

≤

[
1

n

n∑
i=1

Prp∗ [Xi(ω) ≤ t]

]n

=

[
1− 1

n

n∑
i=1

Prp∗ [Xi(ω) > t]

]n
≤
[
1− 1

n
max
i

Prp∗ [Xi(ω) > t]

]n

where the last inequality follows from the fact that

n∑
i=1

Prp∗ [Xi(ω) > t] ≥ max
i

Prp∗ [Xi(ω) > t]

Next, observe that

Prp∗
[
max
i
Xi(ω) > t

]
≥ 1−

[
1− 1

n
max
i

Prp∗ [Xi(ω) > t]

]n
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≥ 1−
[
1− 1

n

]n
max
i

Prp∗ [Xi(ω) > t]

≥
(

1− 1

e

)
max
i

Prp∗ [Xi(ω) > t]

≥
(

1− 1

e

) n∑
i=1

d∗i,ωPrp∗ [Xi(ω) > t]

Finally, note that

Ep∗

[
max
i
Xi(ω)

]
=

∫ 1

0

Prp∗
[
max
i
Xi(ω) > t

]
dt

This is a well-known property of expectations. By linearity of integration and the inequality

above, we have

∫ 1

0

Prp∗
[
max
i
Xi(ω) > t

]
dt ≥

(
1− 1

e

) n∑
i=1

d∗i,ω

∫ 1

0

Prp∗ [Xi(ω) > t]dt

Ep∗

[
max
i
Xi(ω)

]
≥
(

1− 1

e

) n∑
i=1

d∗i,ωEp∗ [Xi(ω)]

=

(
1− 1

e

) n∑
i=1

d∗i,ω

|Mi|∑
j=1

p∗i,jX
j
i (ω)

≥
(

1− 1

e

)
u∗ω

Finally, sum over the states ω to obtain

Eω,p∗

[
max
i
Xi(ω)

]
≥
(

1− 1

e

)∑
ω

u∗ω

The right-hand side is the optimum of the linear programming relaxation. Since it is a relax-

ation, this implies it is an upper bound for the optimum of the mixed integer programming

problem, which is equal to the maximum expected utility. Therefore, this inequality implies

that randomized rounding gives a (1− 1/e)-approximation.



247

Appendix B

Omissions from Chapter 2

B.1 Special Cases

B.1.1 Bayesian Persuasion

There is an informed sender (i.e. principal) and an uninformed receiver (i.e. agent). The

principal designs the process by which information is revealed to the agent. Let M be a

finite set of messages that he can send. Knowing that the agent will react to an informative

message, the principal attempts to persuade the agent towards actions that he prefers. Let

A be a finite set of actions that the agent can take. The agent chooses a response r :M→A

that maps messages to actions.

A policy is an information structure p : Y → ∆(M). That is, an information structure

pt(yt) describes the probability of a message mt being sent, conditional on the state being yt.

The agent receives the message mt and takes action at = rt(mt). While the agent may not

know the process that generated the state yt, she understands the process pt that generates

the message mt conditional on the state. Armed with this understanding, she can infer

something about the state yt based on the message mt.

All that remains is to specify payoffs. Let u : A×Y → R be the agent’s utility function

from a given action in a given state. Similarly, let v : A× Y → R be the principal’s utility.

In the previous subsection, the utility functions U, V depended on the triple (r, p, y) rather

than the pair (a, y). To reconcile the two models, we let participants evaluate (r, p, y) by
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their expected utility conditional on the state. Formally,

U(r, p, y) =
∑
m∈M

p(m, y) · u(r(m), y) and V (r, p, y) =
∑
m∈M

p(m, y) · v(r(m), y)

When the state is fixed, the residual variation in utility is due to the fact that messages

are drawn randomly from the distribution p(y). These distributions are common knowledge

because the agent observes the principal’s policy p before taking an action. Indeed, the fact

that the principal commits to an information structure is the defining feature of Bayesian

persuasion.

Example 6. [Judge-Prosecutor Game] The state space is Y = {Innocent,Guilty} and the

action space is A = {Convict,Acquit}. The judge has 0-1 utility u and prefers to convict if

the defendant is guilty and acquit if the defendant is innocent. Regardless of the state, the

prosecutor’s utility v is 1 following a conviction and 0 following an acquittal.

This example satisfies regularity (7) with the discrete metric on R, the l1-metric on P ,

and KU
R = KV

R = KU
P = KV

P = 1.

The worst-case policy p∗(π, ε) sends the message “convict” whenever the defendant is

guilty. If the defendant is innocent, it sends the message “convict” with probability

q = max

{
1,min

{
0,
p− ε
1− p

}}

The cost of ε-robustness ∆(π, ε) = O(ε) decreases smoothly with ε. This game satisfies

assumption ?? since q is increasing in p (and hence convex combinations of distributions

p will yield q that is bounded between the ε-robust policies for the extremal distributions,

which are close by assumption).

The worst-case policy p†(π, ε) for an unknown private signal is full transparency. The cost

of informational robustness, i.e. ∇(π, 0), is the difference between the principal’s value under
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the common prior π and his payoff under full transparency. This game satisfies assumption

?? with M1 = 1 and M2 = O(ε). It trivially satisfies assumptions ?? and ?? since p† is

constant.

B.1.2 Contract Design

In classic models of moral hazard, the principal incentivizes an agent to put effort into a task

the principal cares about. The timing of the game is as follows: (1) the principal commits

to a contract, (2) the agent takes a hidden action, (3) nature randomly chooses an outcome,

(4) the agent is paid based on the outcome, (5) the game concludes. For concreteness,

we consider the limited liability model due to Sappington (1983) where both participants

are risk-neutral but the principal is not allowed to charge the agent. This model has been

popularized by recent work in robust contract design (see e.g. Carroll 2015, Dütting et al.

2019).

Formally, let R be a finite set of actions that the agent can take. Let O be a finite set of

outcomes o. The principal observes the outcome but not the action. The state y : R → O

describes how actions map to outcomes. The employer commits to a contract p : O → [0, p̄]

that specifies a non-negative payment for each outcome. The cost function c : R → R

describes how costly it is for the agent to take a particular action. The agent’s utility

function is

U(r, p, y) = p(y(r))− c(r)

The benefit function b : O → R describes how beneficial a given outcome is to the principal.

The principal’s utility function is

V (r, p, y) = b(y(r))− p(y(r))
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Through the contract p, the principal can incentivize the agent to take actions that, depend-

ing on the state, will lead to a more beneficial outcome.

Example 7. The agent is given a task of unknown difficulty. There are two actions A =

{work, shirk}, two outcomesO = {success, failure}, and three states Y = {trivial,moderate, impossible}.

In the trivial state, both actions lead to success. In the impossible state, both actions lead

to failure. In the moderate state, work leads to success and shirk leads to failure.

The principal’s benefits are b(success) = 2 and b(failure) = 0. The agent’s costs are

c(work) = 1 and c(shirk) = 0. In the impossible and trivial states, the optimal contract pays

nothing after both outcpmes and the agent will shirk. In the moderate state, the optimal

contract pays p(success) = 5 to cover the agent’s costs if she works, otherwise p(failure) = 0.

Generally, if the principal pays the agent after success, the agent will have to take into

account the risk that the task turns out to be impossible (where work induces costs without

any payment) or trivial (where work is not required for payment). To incentivize work, the

contract must compensate the agent accordingly.

This example satisfies regularity (7) with U, V normalized, the discrete metric on R, the

sup-norm-metric on P , and KU
R = KV

R = KU
P = KV

P = 1.

The worst-case policy p∗(π, ε) sets p(failure) = 0 and

p(success) =
c(work)− c(shirk) + ε

π(moderate)

so long as p(success) ≤ p̄ and the principal’s π-expected payoff is greater than zero when

the agent works. Otherwise, the worst-case policy sets all transfers to zero. The cost of

ε-robustness ∆(π, ε) = O(ε) decreases smoothly with ε.

This game satisfies assumption ??. To see this, note that as long as working is strictly

more costly than shirking, the optimal policies that induce effort are bounded away from

the optimal policies that do not. Among the policies that do not induce effort, convex



APPENDIX B. OMISSIONS FROM CHAPTER 2 251

combinations of the distribution will not make inducing effort desirable. Among policies that

do induce effort, the fact that the payments following success are decreasing in π(moderate)

means (as in the last section) that convex combinations of distributions lead to optimal

policies that are between the extremal policies.

The worst-case policy p†(π, ε) for an unknown private signal is the same as the optimal

policy under a common prior without a private signal. The cost of informational robustness,

i.e. ∇(π, 0), is the difference between the principal’s value when the agent only works in the

“moderate” state and the principal pays her cost of effort conditional on success (assuming

the principal prefers this to shirking with zero transfers) and his value in the common prior

game without a private signal. This game satisfies assumption ?? with M1 = O(ε) and

M2 = 0.

B.2 Agent’s Learning Problem

Upper bounds on external regret are often viewed as compelling assumptions (e.g. Nekipelov

et al. 2015, Braverman et al. 2018) because there exist relatively simple algorithms that guar-

antee vanishing ER as T →∞. For example, the exponential weights algorithm (a.k.a. hedge

algorithm, exponentiated gradient algorithm) satisfies no-ER. In contrast, our behavioral as-

sumptions – e.g. no-FCIR – may appear daunting, insofar as the agent must solve a learning

problem with a context space that is exponential in the number of alternative mechanisms,

|Σ0|. When both the sequence of states y1:T and the learner L are particularly pathological,

no-FCIR may indeed be too strong an assumption. When the the learner satisfies additional

properties, or sequence of states has some stochastic structure (e.g. is i.i.d. or Markov),

no-FCIR may be more reasonable.

In this section, we make one simple observation. There exists a learner that guarantees

no-FCIR (and hence no-CIR) for the agent under our mechanism from theorem 6, with the
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best rate of convergence we can hope for.

Definition 52 (CFL). Suppose the principal publicizes the forecast πt in every period t.1

The common forecast learner (CFL) sets

rt ∈ arg max
r∈R

Ey∼πt [U(rt, pt, yt)]

Proposition 11 verifies that the CFL satisfies the behavioral assumptions of theorem 6.

Proposition 11. Let σ∗ be the mechanism from theorem 6. Then the CFL satisfies ε-bounded

FCIR (10) in expectation, i.e.

EL,σ∗ [FCIR] ≤ ε = Õ

(
1

T 1/4

√
|Y||F|

)
+O

(√
|Y|δF

)

and ε̃-lower-bounded FER (11), where ε̃ = 0. Moreover, if the agent uses CFL, the principal’s

regret bound in theorem 6 applies regardless of whether alignment (20) holds.

Note that these rates preserve the T 1/4 convergence rate (up to δF error) that is present in

all of our mechanisms and reflects miscalibration of the principal. In that sense, the fact that

the agent is also learning does not deteriorate the principal’s performance at all. Although

this has not been our emphasis so far, it would be interesting to see whether (or identify

conditions under which) other simple learning algorithms satisfy our behavioral assumptions

with decent rates of convergence.

B.3 Calibrated Forecasting

In this appendix, we describe our forecasting algorithm and bound its miscalibration.
1In our view, part of the principal’s objective is to make the agent’s problem as simple as possible. From

a worst-case perspective, there is no benefit to hiding this information. With that said, we see no reason
why this result should not apply under the weaker assumption that the principal’s forecasting algorithm is
public knowledge.
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A linearly homogeneous, differentiable function H is strongly convex with parameter ξ if

H(π) ≥ H(π̃) +∇H(π̃) · (π − π̃) +
ξ

2
‖π − π̃‖2

2

The gradient of H describes a proper scoring rule S(π) = ∇H(π) where H(π) = π · S(π)

(McCarthy 1956). A scoring rule S : ∆(Y) → RY is proper if the report π̃ that maximizes

the π-expected score is the distribution π. Strong convexity of H can be thought of as

sharpening the incentives for truth-telling (Boutilier 2012).

Specifically, consider the quadratic scoring rule (see e.g. Jose et al. 2008)

Sy(π) = 2π(y)−
∑
ỹ∈Y

π(ỹ)2

where H(π) = ‖π‖2
2 is strongly convex with ξ = 2.

Recall that the mechanism σ∗ is supposed to be nonresponsive. As a consequence, we

cannot determine the principal’s beliefs πt in a given period based on his historical payoffs.

To ensure that the beliefs πt are well-calibrated, we consider an auxilliary online learning

problem based on a scoring rule S. In period t, the principal makes a prediction πt with

loss function Syt(πt). Specifically, the predictions come from the discretized set of priors F1,

formed by choosing a representative element π from each set in the partition SF . In terms

of the score, this approximation has limited cost. Let π = [π̂F ]F1
be the belief π ∈ F1 that

is closest to the empirical distribution π̂F . Then

Sy(π̂F )− Sy(π) ≤ Sy(π̂F )− Sy(π̂F − δF)

= 2π̂F (y)−
∑
ỹ∈Y

π̂F (ỹ)2 − 2(π̂F (y)− δF) +
∑
ỹ∈Y

(π̂F (ỹ)− δF)2

= 2δF −
∑
ỹ∈Y

π̂F (ỹ)2 +
∑
ỹ∈Y

(π̂F (ỹ)− δF)2
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≤ 2δF (B.1)

where π̂F − δF is shorthand notation for the vector (π̂F (y)− δF)y∈Y .

In this auxilliary problem, the exponential weights algorithm (see e.g. Cesa-Bianchi and

Lugosi 2006) obtains expected external regret at most

√
2T log |SF |

relative to the best-in-hindsight π∗F ∈ F1. A reduction due to Blum and Mansour (2007)

(theorem 5) translates this into a bound on expected internal regret of

|SF |
√

2T log |SF |

relative to the best-in-hindsight π∗F ∈ F1. Combine this with the maximum approximation

error (B.1) to bound the expected internal regret relative to the best-in-hindsight contextual

belief π ∈ ∆(Y), which must be the empirical distribution π̂F since S is proper. Specifically,

|SF |
√

2T log |SF |+ 2TδF ≥ E

[∑
π∈F1

nF π̂F · (S(π̂F )− S(π))

]
(B.2)

where nF is the number of periods t where [πt]F1
= Ft. This is a statement about the

expected scoring loss, where the expectation reflects randomization in the algorithm. Our

next result, lemma 25, translates this into a statement about the l1 distance between the

principal’s belief π and the empirical distribution π̂F .

Lemma 25. Let S be a proper scoring rule where the optimal expected score H is ξ-strongly

convex. Then √
2|Y|κ
ξ
≥ 1

T

∑
π∈F1

nFd1(π, π̂F )
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where

κ =
1

T

∑
π∈F1

nF π̂F · (S(π̂F )− S(π))

Proof. Consider the principal’s π-expected regret from predicting π̃:

π · (S(π)− S(π̃)) = H(π)− π · ∇H(π̃)

≥ H(π̃)−∇H(π̃) · π̃ +
ξ

2
‖π − π̃‖2

2

=
ξ

2
‖π − π̃‖2

2

≥ ξ

2

(
1√
|Y|
‖π − π̃‖1

)2

=
ξ

2|Y|
‖π − π̃‖2

1

where the second-to-last line follows from ‖ · ‖1 ≤ |Y|1/2‖ · ‖2. It follows that his regret in

the auxilliary problem satisfies

κ ≥ 1

T

∑
π∈F1

nF
ξ

2|Y|
d1 (π, π̂F )2

where, implicitly, F is the forecast context such that π ∈ F . Take the square root of both

sides of this inequality:

√
κ ≥

√
1

T

∑
π∈F1

nF
ξ

2|Y|
d1 (π, π̂F )2

≥ 1√
T
· 1√

T

∑
π∈F1

nF

√
ξ

2|Y|
d1 (π, π̂F )

≥

√
ξ

2|Y|
· 1

T

∑
π∈F1

nFd1 (π, π̂F )

where the first line is the l2 norm of a vector with T entries, the second line is the l1 norm
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of that same vector, and the inequality follows from ‖ · ‖1 ≤ T 1/2‖ · ‖2. Collapse these

inequalities and rearrange terms to obtain the desired result.

If we use the quadratic scoring rule, this lemma implies

E

[
1

T

∑
π∈F1

nFd1(π, π̂F )

]
≤

√
|Y||SF |

√
2 log |SF |

T
+ 2|Y|δF (B.3)

To optimize this bound, up to log factors, set δF =
(

1
T

) 1
2|Y|+2 , assuming |SF | =

((
1
δF

)|Y|)
.

B.4 Generalized Results

Upper bounds on CIR constitute our rationality assumptions for the agent. However, our

results also rely on informational assumptions. Sections 2.4, 2.5, and 2.6 consider environ-

ments that differ primarily by how “informed” the agent appears, relative to the principal.

In all three cases, however, we require the agent to be at least as informed as the principal.

What is the principal’s information? Recall that our mechanisms σ∗ will be forecast mecha-

nisms. A calibrated learning algorithm – which we specify later on – will produce a sequence

of forecasts π1, . . . , πT . It is possible that these forecasts will become correlated with the

state, e.g. if there is a trend in the data. We do not rule this out; however, if our forecasts

inadvertently pick up useful information, this information should be available to the agent

as well (either implicitly or because we publish πt along with pt).

The notion of forecastwise regret (and forecastwise CIR) formalizes what we mean by

the principal’s “information” being available to the agent. The agent’s benchmark includes

the principal’s forecast as additional context. Formally, define the forecast space F = ∆(Y).

Fix a small constant δF > 0 and consider a finite partition SF of F where π, π̃ ∈ F ∈ SF

implies d∞ (π, π̃) ≤ δF . Let F1 ⊆ F contain a single distribution π ∈ F for every F ∈ SF .
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Definition 53. Let the information partition combine the forecast and CIR context, i.e.

I = SF × (SR)Σ

and let the information It ∈ I in period t be the unique set that satisfies

(πt, r
∗
t , (r

p
t )p∈P0) ∈ It

Definition 54 (FCIR). The agent’s forecastwise CIR relative to a modification rule h : I →

R is

FCIR(h) =
1

T

T∑
t=1

(U(h(It), pt, yt)− U(rt, pt, yt))

The FCIR relative to the best-in-hindsight modification rule is FCIR = maxh:I→R FCIR(h).

To state our assumption, we need to define a forecastwise version of ER, just as we defined

a forecastwise version of CIR at the end of section 2.3. Let the forecast context Ft ∈ SF in

period t be the unique set that satisfies πt ∈ Ft.

Definition 55 (FER). The agent’s forecastwise external regret relative to a strategy h :

SF → R is

FER(h) =
1

T

T∑
t=1

(U(h(Ft), pt, yt)− U(rt, pt, yt))

The FER relative to the best-in-hindsight strategy is FER = maxh:F→R FER(h).

Theorem 10. Assume regularity (7) and ε-bounded FCIR (10). There exists a nonresponsive

mechanism σ∗ parameterized by the agent’s learner L and a constant ε̄ > 0 such that

1. The principal’s regret is bounded, i.e.

Eσ∗ [PR] ≤ 1

T

∑
I∈I

nI∆(π̂I , ε̄)
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+
1

ε̄

(
O(ε) + Õ

(
T−1/4

√
|Y||SF ||SR|(|Σ0|+|SP |)/2

)
+O

(
δ

1/2
F

)
+O(δP)

)

Assumption 20 (Alignment). The stage game is (ε,M1,M2)-aligned if, for all signals γ,

(
φp∗(π,ε)(π, ε)− αp∗(π,ε)(π, γ, ε)

)︸ ︷︷ ︸
maximum downside of γ for the principal

≤M1 max
r,rJ∈R

Ey∼π
[
EJ∼γ̃(·,y)[U(rJ , p

∗(π, ε), y)]− U(r, p∗(π, ε), y)
]

︸ ︷︷ ︸
usefulness of γ to the agent

+M2

and, for all policies p ∈ P0,

(
βp(π, γ, ε)− φp∗(π,ε)(π, ε)

)︸ ︷︷ ︸
maximum upside of γ for the principal

≤M1 max
r,rJ∈R

Ey∼π
[
EJ∼γ̃(·,y)[U(rJ , p, y)]− U(r, p, y)

]
︸ ︷︷ ︸

usefulness of γ to the agent

+M2

Theorem 11. Assume regularity (7), ε-bounded FCIR (10), ε̃-lower-bounded FER (11), and

(ε̄,M1,M2)-alignment (20). There exists a nonresponsive mechanism σ∗ parameterized by ε̄

such that

1. The principal’s regret is bounded, i.e.

Eσ∗ [PR] ≤ 1

T

∑
F∈SF

nF∆(π̂F , ε̄) +
1

ε̄

(
O(ε) + Õ

(
T−1/4

√
|Y||SF |

)
+O

(√
δF

)
+O(δP)

)
+O(ε̃) +M1

(
O(ε̃) +O(ε) + Õ

(
T−1/4

√
|Y||SF |

)
+O

(√
δF

)
+O(δP)

)
+O(M2)

Theorem 12. Assume regularity (7) and ε-bounded FCIR (10). There exists a nonresponsive

mechanism σ∗ parameterized by a constant ε̄ > 0 such that
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1. The principal’s regret is bounded, i.e.

Eσ∗ [PR] ≤ 1

T

∑
F∈SF

nF∆(π̂F , ε̄) +
1

ε̄

(
O(ε) + Õ

(
T−1/4

√
|Y||SF |

)
+O

(
δ

1/2
F

)
+O(δP)

)

B.5 Omitted Proofs

B.5.1 Proof of Propositions 5 and 6

Recall that a policy pt in period t can affect the agent’s behavior µτ in period τ > t. This

raises the prospect that a mistake today can cause irreversible damage to the principal’s

average utility. By definition, the principal will regret that mistake. This would make the

principal’s problem infeasible, in that he cannot guarantee low regret for himself.

Generally-speaking, regret bounds can bypass this problem if they restrict how much the

agent’s response rt depends on the policy history p1:t−1. This is reasonable a priori, since the

policy history p1:t−1 appears irrelevant to the agent’s problem. It neither affects nor predicts

the state yt, except through its dependence on y1:t−1. It is not needed as a predictor of the

policy pt because the agent observes pt before choosing a response.2 For these reasons, it

seems that the agent can only make herself worse off by allowing irrelevant variables like

p1:t−1 to affect her response rt. This would be true if our notion of good performance overall

had clear implications for behavior in each period, so that unecessary variation in behavior

implies a departure from optimality. Unfortunately, there are various kinds of behavior that

obtain low ER. The agent can easily switch between these behaviors while still satisfying

no-ER. In the process, she can cause substantial benefit or harm to the principal.

To clarify the problem, we present several examples of learners that we regard as patho-
2For example, if the agent were Bayesian then there would be no dependence on p1:t at all. If the agent

used the exponential weights algorithm then there would only be an indirect dependence, since that algorithm
depends on the agent’s historical payoffs and these, in turn, depend on the policy history.
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logical. These are implicit counterexamples to the proposition that no-ER constraints are

sufficient for no-regret mechanism design.

Our counterexamples are closely related to the pathological phenomenon of “supereffi-

ciency” in statistics. Suppose we are trying to estimate the mean θ of the normal random

variableX ∼ N(θ, 1), given an i.i.d. random sampleX1, . . . , Xn. Our objective is to minimize

the mean square error, but this depends on the parameter θ. A typical solution is the maxi-

mum likelihood estimator (MLE), which in this case outputs the sample mean n−1
∑n

i=1 Xi.

For reasons that are unimportant to our discussion, MLE is considered “efficient”. However,

it is easy to find an estimator that outperforms MLE. For example, a wild-ass guess (WAG)

ignores the data and outputs θ∗. If it happens to be the case that θ = θ∗ then this estimator

is optimal.

In the following example, we construct a learner that alternates between a WAG-like pre-

dictor and a MLE-like predictor depending on a seemingly irrelevant choice by the principal.

Example 8. [Selective Superefficiency] Consider a learner L that is capable – either by

ingenuity or dumb luck – of predicting the state sequence y1:T perfectly. However, the

learner uses this ability only selectively, depending on the state y1 and policy p1 in the first

period. Despite this seemingly irrational behavior, the learner satisfies vanishing external

regret.

Let P ( P be a nonempty subset of policies. Let Y ( Y be a nonempty subset of

states. Let r∗ be the best-in-hindsight response by time T . That is, consider some r∗ ∈ F

that happens to be best-in-hindsight given the realized state sequence y1:T but will not be

best-in-hindsight uniformly over all state sequences. Given y1:T , define the learner L as

follows:

1. If y1 ∈ Y and p1 ∈ P then use response r∗

2. If y1 ∈ Y and p1 /∈ P then use the response that happens to be optimal given yt.
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3. If y1 /∈ Y and p1 ∈ P then use the response that happens to be optimal given yt.

4. If y1 /∈ Y and p1 /∈ P then use response r∗

In cases 1 and 4, the learner follows the best-in-hindsight response and therefore achieves

zero regret. In cases 2 and 3, the learner acts optimally ex post and therefore achieves

non-positive regret.

Nonetheless, no mechanism can guarantee no-regret for the principal. Suppose the mech-

anism chooses p1 ∈ P . If it turns out that y1 ∈ Y then the agent will follow π∗. Otherwise,

the agent will be superefficient. Were the mechanism to deviate to p1 /∈ P , the situation

would be reversed. These constitute permanent changes in the agent’s behavior. Suppose

one type of behavior is “better” for the principal than another. It is always possible in hind-

sight that the mechanism’s first-period policy was the one that led to the “worse” type of

behavior.

Can further assumptions rule out this kind of behavior? Again, consider the analogy

with statistics. The WAG estimator – always predict θ∗ – will perform very poorly in the

counterfactual world where θ∗ 6= θ. Formally, this estimator is not “consistent”. Similarly,

the learner from example 8 does not guarantee vanishing average external regret under

counterfactual state sequences. This reflects a peculiar unresponsiveness to the data.

Unfortunately, imposing consistency or no-regret on all sequences does not rule out these

kinds of pathologies. Consider Hodge’s (superefficient) estimator, which outputs θ∗ unless

there is sufficient evidence that θ 6= θ∗. In that case, it outputs the sample mean. If

“sufficient evidence” is defined carefully, this estimator will outperform MLE when θ = θ∗

and will asympotically match MLE otherwise. We can patch up example 8 in a similar way.

Example 9. [Selective Superefficiency, revised] We want to modify the learner in example

8 to ensure no-regret on all counterfactual state sequences ỹ1:T . This is straightforward. In

period t+ 1, if the history ỹ1:t matches the presumed sequence y1:t exactly, then proceed as
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before. Otherwise, follow any no-ER algorithm. This guarantees vanishing average regret as

long as the regret from the first period t where ỹ1:t 6= y1:t is bounded – which it is, since our

utility functions are bounded.

Therefore, for any sequence y1:t there is a learner that satisfies no-regret on all sequences,

but exhibits the pathological behavior from example 8 on the realized sequence.

Statisticians deal with superefficiency by arguing that it generically fails to occur. That

is, any alternative estimator will weakly underperform MLE on Lebesgue-almost all values θ.

For example, we can view Hodge’s estimator as asymptotically equivalent to MLE whenever

θ 6= θ∗. In our setting, attempting this argument would necessitate a definition of genericity

for sequences of states. While we can provide various definitions, none seem especially

compelling.3

Another natural restriction to impose is that the learner should not outperform the

experts. That is, given the sequence y1:T , we only consider learners whose regret at period

T is non-negative. Clearly, this rules out the learners in examples 8 and 9, which may

obtain negative regret in the sequences where it predicts the state perfectly and acts on that

information. Unfortunately, this does not rule out the broader phenomenon, as the following

example illustrates.

Example 10. [Selective Superinefficiency]

As in example 8, define a learner L that appears capable of predicting the state sequence

y1:T perfectly. This learner will continue to use this ability selectively. Moreover, when

the learner uses this ability, she does not always use it to her advantage. Instead, with

probability 1−q she uses it to her own disadvantage. When q is chosen correctly, the learner

satisfies zero regret for all mechanisms.
3For example, one could assign equal measure to each sequence y1:T in the set YT of all possible sequences.

By this measure, the measure of any constant sequence (y, . . . , y) would converge to zero as T →∞. Yet it
does not seem unreasonable a priori that the world should persist in a fixed state. Alternatively, one could
assign equal measure to all permutations of a given sequence y1:T . This would effectively return us to an
i.i.d. setting.
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Let P ( P be a nonempty subset of policies. Let Y ( Y be a nonempty subset of states.

Let r∗ be the best-in-hindsight response by time T . Let r†t be the response that happens to

be optimal for yt. Let r̃t be the response that minimizes the agent’s utility when the state

is yt. Given y1:T , define the learner L as follows:

1. If y1 ∈ Y and p1 ∈ P then use response r∗

2. If y1 ∈ Y and p1 /∈ P then use r†t with probability q and r̃t with probability 1− q

3. If y1 /∈ Y and p1 ∈ P then use r†t with probability q and r̃t with probability 1− q

4. If y1 /∈ Y and p1 /∈ P then use prior π∗

In cases 1 and 4, the learner follows the best-in-hindsight prior and therefore achieves zero

regret. In cases 2 and 3, as long as r̃t underperforms r∗ in every period t, by continuity there

exists a probability q such that the agent achieves zero regret.

This learner now satisfies both an upper bound and a lower bound on regret. Nonetheless,

our difficulties remain. Just as in example 8, the first-period policy can cause permanent

changes in the agent’s behavior. It is always possible in hindsight that the mechanism’s

first-period policy was the one that led to the “worse” type of behavior.

We can use this example to prove proposition ?? (proposition ?? is a corollary). In the

Bayesian persuasion example, let y2:T be drawn i.i.d. where the defendant is guilty with

probability q = 0.5 − ε for a very small ε > 0. If the principal chooses p1 correctly, he can

persuade the agent to convict with probability near one. Otherwise, the agent convicts with

probability near 0.5.

In the contract theory example, let y2:T be be drawn i.i.d. from some distribution where

the principal would find it optimal to pay the agent in the stage game, but both states occur

with positive probability. If the principal chooses p1 correctly, he can pay the agent her cost

of effort and achieve the first-best outcome (agent works iff working is effective). Otherwise,
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the principal has to compensate the agent for her cost of effort in states where working is

ineffective.

The fundamental problem with the learners in examples 8, 9, 10 is not that they are

well-informed. After all, in some settings we might reasonably expect the agent to be better

informed than the analyst. The problem is that they fail to consistently and fully exploit

the private information that they clearly possess. Bounds on counterfactual internal regret

capture this failure to exploit information and rule out these kinds of pathological behaviors.

Example 11. Returning to example 8, consider two constant mechanisms σp and σp̃ where

p ∈ P and p̃ /∈ P . Regardless of the state sequence y1:T , exactly one of these mechanisms

(say σp) will cause the agent to predict the state perfectly while the other will cause the

agent to follow the best-in-hindsight prior. The agent’s behavior rp following σp will differ

across periods yt, yτ if and only if yt 6= yτ , while the behavior rp̃ following σp̃ remains constant

throughout. The vector (rp, rp̃) will therefore differ across periods yt, yτ if and only if yt 6= yτ .

If we require the agent to have no-contextual regret where the context is (rp, rp̃), it is

equivalent to requiring her to predict the state perfectly even if the principal uses σp̃. This is

essentially the context used to define CIR. The learner guarantees no-CIR under mechanism

σp, because it predicts the state perfectly. However, it does not predict the state perfectly

under mechanism σp̃, so in this case the agent accumulates CIR.

B.5.2 Proof of Lemmas 26 and 27 and Additional Results

The lemmas in this section will be used repeatedly in the proofs of theorems 5, 6, and 7.
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Proof of Lemmas 26 and 27

Lemma 26 states that for any policy p, information structure γ, constants ε, ε̃ > 0, and

distribution π, we have

αp(π, γ, ε+ ε̃) ≥ αp(π, γ, ε)−
ε̃

ε
and βp(π, γ, ε+ ε̃) ≤ βp(π, γ, ε) +

ε̃

ε

Note that lemma 27 is just a special case where the information structure γ is uninformative.

To prove this, define

B(π, γ, ε) =

{
µJ ∈ ∆(R) | ε ≥ max

r̃J∈R
Ey∼π

[
EJ∼γ(·,y)[U(r̃J , p, y)− Er∼µJ [U(r, p, y)]]

]}

and recall that

αp(π, γ, ε) = min
µJ∈B(π,γ,ε)

Ey∼π
[
EJ∼γ(·,y)[Er∼µJ [V (r, p, y)]]

]
Note that αp(π, γ, ε) is decreasing and convex in ε. Convexity follows from the fact that

µJ ∈ B(π, γ, ε) and µ̃J ∈ B(π, γ, ε̃) implies λµJ + (1 − λ)µ̃J ∈ B(π, γ, λε + (1 − λ)ε̃).

Therefore,

αp(π, γ, λε+ (1− λ)ε̃) ≤ λαp(π, γ, ε) + (1− λ)αp(π, γ, ε̃)

Consider any supporting line of αp at ε. It is bounded above by αp, by definition. Therefore,

its slope is at most
αp(π, γ, 0)− αp(π, γ, ε)

ε
≤ 1

ε

since αp is bounded in the unit interval by our regularity assumption. Therefore, the sup-

porting line will underestimate αp(π, γ, ε+ ε̃) by at most ε̃/ε and at least zero. This implies

our bound. The argument for βp is analogous after we observe that it is increasing and
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concave in ε.

Bounds for Misspecified Distributions

The following lemma states that the principal’s worst-case utility αp is not too sensitive to

changes in the distribution, for any fixed policy p.

Lemma 26. For any policy p, information structure γ, constant ε > 0, and distributions

π, π̃, we have

αp(π, γ, ε) ≥ αp(π̃, γ, ε)−
2d1(π, π̃)

ε
− d1(π, π̃)

Proof. Note that B(π, γ, ε) ⊆ B(π̃, γ, ε+ 2d1(π, π̃)) since (1) for any r̃J ,

Ey∼π
[
EJ∼γ(·,y)[U(r̃J , p, y)]

]
≥ Ey∼π̃

[
EJ∼γ(·,y)[U(r̃J , p, y)]

]
− d1(π, π̃)

and (2), for any µJ ,

Ey∼π
[
EJ∼γ(·,y)

[
Er∼µ∗J [U(r, p, y)]

]]
≤ Ey∼π̃

[
EJ∼γ(·,y)

[
Er∼µ∗J [U(r, p, y)]

]]
+ d1(π, π̃)

Therefore,

αp(π, γ, ε) ≥ min
µJ∈B(π̃,γ,ε+2d1(π,π̃))

Ey∼π
[
EJ∼γ(·,y)[Er∼µJ [V (r, p, y)]]

]
≥ min

µJ∈B(π̃,γ,ε+2d1(π,π̃))
Ey∼π̃

[
EJ∼γ(·,y)[Er∼µJ [V (r, p, y)]]

]
− d1(π, π̃)

= αp(π̃, γ, ε+ 2d1(π, π̃))− d1(π, π̃)

≥ αp(π̃, γ, ε)−
2d1(π, π̃)

ε
− d1(π, π̃)

The following lemma states that the ε-robust policy for a distribution π̃ that is near the
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true distribution π will perform almost as well as the ε-robust policy for the true distribution

π.

Lemma 27. For any ε > 0 and distributions π, π̃, we have

αp∗(π̃,ε)(π, ε) ≥ αp∗(π,ε)(π, ε)−
4d1(π, π̃)

ε
− 2d1(π, π̃)

Proof. First, observe that

αp∗(π,ε)(π, ε) ≤ αp∗(π,ε)(π̃, ε) +
2d1(π, π̃)

ε
+ d1(π, π̃)

≤ αp∗(π̃,ε)(π̃, ε) +
2d1(π, π̃)

ε
+ d1(π, π̃)

Next, observe that

αp∗(π̃,ε)(π̃, ε) ≤ αp∗(π̃,ε)(π, ε) +
2d1(π, π̃)

ε
+ d1(π, π̃)

Collapse these inequalities to obtain the desired result.

The following lemma states that the ε-informationally-robust policy for a distribution π̃

that is near the true distribution π will provide a similar guarantee against the worst-case

information structure γ as the ε-informationally-robust policy for the true distribution π.

Lemma 28. For any ε > 0 and distributions π, π̃, we have

inf
γ
αp†(π,ε)(π, γ, ε) ≤ inf

γ
αp†(π̃,ε)(π, γ, ε) +

4d1(π, π̃)

ε
+ 2d1(π, π̃)

Proof. First, observe that

αp†(π,ε)(π, γ, ε) ≤ αp†(π,ε)(π̃, γ, ε) +
2d1(π, π̃)

ε
+ d1(π, π̃)



APPENDIX B. OMISSIONS FROM CHAPTER 2 268

which implies

inf
γ
αp†(π,ε)(π, γ, ε) ≤ inf

γ
αp†(π,ε)(π̃, γ, ε) +

2d1(π, π̃)

ε
+ d1(π, π̃)

≤ inf
γ
αp†(π̃,ε)(π̃, γ, ε) +

2d1(π, π̃)

ε
+ d1(π, π̃)

Next, observe that

αp†(π̃,ε)(π̃, γ, ε) ≤ αp†(π̃,ε)(π, γ, ε) +
2d1(π, π̃)

ε
+ d1(π, π̃)

which implies

inf
γ
αp†(π̃,ε)(π̃, γ, ε) ≤ inf

γ
αp†(π̃,ε)(π, γ, ε) +

2d1(π, π̃)

ε
+ d1(π, π̃)

Collapse these inequalities to obtain the desired result.

B.5.3 Proof of Theorem 10

Assume access to a forecast πt ∈ ∆(Y) for every period t. We will define this later. In period

t, the mechanism computes the policy p∗(πt, ε̄) that maximizes the worst-case payoff in the

ε̄-robust stage game, treating the forecast πt as the common prior. That is,

p∗(πt, ε̄) ∈ arg max
p∈P

αp(πt, ε̄)

The mechanism chooses pt as follows. Let P be the unique policy context that includes the

policy p∗(πt, ε̄) ∈ P . Let pt = pP , where pP ∈ P1 is the representative element of P .
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We will refer to the average regret accumulated in each forecast context F , i.e.

εF = max
r∈R

1

nF

∑
t∈F

(U(r, pF , yt)− U(rt, pF , yt))

where pF = pP for the unique policy context P associated with forecast context F . We will

also refer to the average regret accumulated in each information context I ∈ I, i.e.

εI = max
r∈R

1

nI

∑
t∈I

(U(r, pI , yt)− U(rt, pI , yt))

where pI = pF for the unique forecast context F associated with information I. Note that

εF =
1

nF

∑
I∈IF

nIεI =
1

nF

∑
I∈IF

max
r∈R

1

nI

∑
t∈I

(U(r, pF , yt)− U(rt, pF , yt))

The next two lemmas imply an upper bound on the principal’s regret in terms of the quantity

ι ≥ 1

T

T∑
t=1

d1(πt, π̂I)

that measures the discrepancy between the forecast πt and the empirical distribution π̂I

conditioned on the agent’s information I. Lemma 29 is a lower bound on the principal’s

payoff under σ∗. Lemma 30 is an upper bound on the his payoff under any constant σp ∈ Σ0.

Lemma 29. Suppose the principal runs σ∗. Then

1

T

∑
I∈I

∑
t∈I

V (rt, pt, yt) ≥ max
p∈P

αp(π̂I , ε̄)−
(
ε+ 4ι+KU

RδR + 2KU
P δP

ε̄

)
−
(
2ι+KV

RδR +KV
P δP

)
Proof. Let rI be a representative element in the response context R associated with infor-
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mation I under mechanism σ∗. By regularity,

εI ≥ max
r∈R

1

nI

∑
t∈I

(U(r, pI , yt)− U(rI , pI , yt))−KU
RδR

= max
r∈R

Ey∼π̂I [U(r, pI , y)− U(rI , pI , y)]−KU
RδR

It follows, by regularity and definition of α, that

1

nI

∑
t∈I

V (rt, pI , yt) ≥ Ey∼π̂I [V (rI , pI , y)]−KV
RδR

≥ αpI (π̂I , εI +KU
RδR)−KV

RδR

Summing over information I ∈ I and using lemma 15, we obtain

1

T

∑
I∈I

∑
t∈I

V (rt, pI , yt) ≥
1

T

∑
I∈I

∑
t∈I

αpI (π̂I , εI +KU
RδR)−KV

RδR

≥ 1

T

∑
I∈I

∑
t∈I

αp∗(πt,ε̄)(π̂I , εI +KU
RδR + 2KU

P δP)−KV
RδR −KV

P δP

≥ 1

T

∑
I∈I

∑
t∈I

(
αp∗(πt,ε̄)(π̂I , ε̄)−

εI +KU
RδR + 2KU

P δP
ε̄

)
−KV

RδR −KV
P δP

≥ 1

T

∑
I∈I

∑
t∈I

αp∗(πt,ε̄)(π̂I , ε̄)−
(
ε+KU

RδR + 2KU
P δP

ε̄

)
−KV

RδR −KV
P δP

Focus on the first term, i.e.

1

T

∑
I∈I

∑
t∈I

αp∗(πt,ε̄)(π̂I , ε̄) ≥
1

T

∑
I∈I

∑
t∈I

(
αp∗(π̂I ,ε̄)(π̂I , ε̄)−

4d1(πt, π̂I)

ε̄
− 2d1(πt, π̂I)

)
≥ 1

T

∑
I∈I

nIαp∗(π̂I ,ε̄)(π̂I , ε̄)−
4ι

ε̄
− 2ι

Collapsing these inequalities gives us the desired bound.
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Lemma 30. Suppose the principal runs some constant mechanism σp ∈ Σ0. Then

1

T

T∑
t=1

V (rt, p, yt) ≤
1

T

∑
I∈I

nI max
p̃∈P

βp̃(π̂I , ε̄) +

(
ε+KU

RδR
ε̄

)
+KV

RδR

Proof. Let rI be a representative element in the response context R associated with infor-

mation I under σp. By regularity,

εI ≥ max
r∈R

1

nI

∑
t∈I

(U(r, pI , yt)− U(rI , pI , yt))−KU
RδR

= max
r∈R

Ey∼π̂I [U(r, pI , y)− U(rI , pI , y)]−KU
RδR

It follows, by regularity and definition of β, that

1

nI

∑
t∈I

V (rt, p, yt) ≤ Ey∼π̂I [V (rI , p, y)] +KV
RδR

≤ αp(π̂I , εI +KU
RδR) +KV

RδR

Summing over information I ∈ I and using lemma 15, we obtain

1

T

∑
I∈I

∑
t∈I

V (rt, p, yt) ≤
1

T

∑
I∈I

nIβp(π̂I , εI +KU
RδR) +KV

RδR

≤ 1

T

∑
I∈I

nI

(
βp(π̂I , ε̄) +

εI +KU
RδR

ε̄

)
+KV

RδR

≤ 1

T

∑
I∈I

nIβp(π̂I , ε̄) +

(
ε+KU

RδR
ε̄

)
+KV

RδR

≤ 1

T

∑
I∈I

nI max
p̃∈P

βp̃(π̂I , ε̄) +

(
ε+KU

RδR
ε̄

)
+KV

RδR

This is the desired bound.
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From these two lemmas, it immediately follows that

PR ≤ 1

T

∑
I∈I

nI∆(π̂I , ε̄) + 2

(
ε+ 2ι+KU

RδR +KU
P δP

ε̄

)
+
(
2ι+ 2KV

RδR +KV
P δP

)
Therefore, to bound the principal’s regret, all that remains is to bound ι.

Set C = S
|P0|+|P1|
R where Ct(P1) is the vector describing the agent’s response contexts Rt

under policy history p∗1:t−1 and policy choices pt ∈ P1. Note that this is different from the

behavior context that we used to define the agent’s information, which refers to the response

context Rt under policy history p∗1:t. Because we are currently designing the mechanism, we

cannot refer to p∗t without attempting to solve a fixed point problem that may not have a

solution.

We use the algorithm from appendix ?? to generate πt, with a modification: run it

separately for each context Ct. Adapting equation (B.3), we obtain

Eσ∗

[
1

T

∑
C∈C

∑
F∈F

nF,Cd1(πt, π̂C)

]
≤ 1

T

∑
C∈C

nC

√√√√|Y||F|√2 log |F|
nC

+ 2|Y|δF

≤ 1

T

∑
C∈C

n
3/4
C

√
|Y||F|

√
2 log |F|+

√
2|Y|δF

≤ 1

T

∑
C∈C

(
T

|C|

)3/4√
|Y||F|

√
2 log |F|+

√
2|Y|δF

=

(
|C|
T

)1/4√
|Y||F|

√
2 log |F|+

√
2|Y|δF

where nF,C is the number of periods t where Ct = C and πt ∈ F .

Consider any two periods t, τ where It = Iτ but Ct 6= Cτ . Since It = Iτ and information

includes the forecast as context, we know that πt = πτ . Now, consider

nFt,Ctd1(πt, π̂Ct) + nFτ ,Cτd1(πτ , π̂Cτ )
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= nFt,Ctd1(πt, π̂Ct) + nFt,Cτd1(πt, π̂Cτ )

≥ (nFt,Ct + nFt,Cτ ) d1

(
πt,

1

nFt,Ct + nFt,Cτ
(nFt,Ct π̂Ct + nFt,Cτd1(πt, π̂Cτ ))

)
by subadditivity and homogeneity of norms. By continuing this process of combining con-

texts, we find
1

T

∑
C∈C

∑
F∈F

nF,Cd1(πt, π̂C) ≥ 1

T

∑
I∈I

nId1(πt, π̂I) = ι

Therefore, the earlier miscalibration bound applies to Eσ∗ [ι] as well. Finally, we obtain our

bound on the expected principal’s regret.

Eσ∗ [PR] ≤ 1

T

∑
I∈I

nI∆(π̂I , ε̄)

+ 2

ε+ 2
(
|C|
T

)1/4
√
|Y||F|

√
2 log |F|+ 2

√
2|Y|δF +KU

RδR +KU
P δP

ε̄


+

(
2

(
|C|
T

)1/4√
|Y||F|

√
2 log |F|+ 2

√
2|Y|δF + 2KV

RδR +KV
P δP

)

B.5.4 Proof of Theorem 11

Define

γ̂P (I, y) =
nI π̂I(y)

nF π̂F (y)
· 1(I ∈ IF )

as the empirical information structure conditional on forecast context F . This definition

follows from Bayes’ rule.

Assume access to a forecast πt ∈ ∆(Y) for every period t. We will define this later. In

period t, the mechanism computes the policy p∗(πt, ε̄) that maximizes the worst-case payoff
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in the ε̄-robust stage game, treating the forecast πt as the common prior. That is,

p∗(πt, ε̄) ∈ arg max
p∈P

αp(πt, ε̄)

The mechanism chooses pt as follows. Let P be the unique policy context that includes the

policy p∗(πt, ε̄) ∈ P . Let pt = pP , where pP ∈ P1 is the representative element of P .

The next two lemmas imply an upper bound on the principal’s regret in terms of the

quantity

ι ≥ 1

T

T∑
t=1

d1(πt, π̂F )

that measures the discrepancy between the forecast πt and the empirical distribution π̂F

conditioned on the forecast context F . Lemma 31 is a lower bound on the principal’s payoff

under σ∗. Lemma 32 is an upper bound on the his payoff under any constant σp ∈ Σ0.

Lemma 31. Suppose the principal runs the mechanism σ∗. Then

1

T

T∑
t=1

V (rt, pt, yt) ≥
1

T

∑
F∈F

nF max
p∈P

αp(π̂F , ε̄)−
(
ε+ 6ι+KU

RδR + 2KU
P δP

ε̄

)
−
(
M1(ε+ ε̃+ 2ι+ 2KU

P δP) +M2 + 3ι+KV
RδR +KV

P δP
)

Proof. Let rI be a representative element in the response context R associated with infor-

mation I under mechanism σ∗. By regularity,

εI ≥ max
r∈R

∑
t∈I

(U(r, pI , yt)− U(rI , pI , yt))−KU
RδR

= max
r∈R

Ey∼π̂I [U(r, pI , y)− U(rI , pI , y)]−KU
RδR
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It follows, by regularity and definition of α, that

1

nI

∑
t∈I

V (rt, pI , yt) ≥ Ey∼π̂I [V (rI , pI , y)]−KV
RδR

≥ αpI (π̂I , εI +KU
RδR)−KV

RδR

Summing over information I ∈ IF and using lemma 15, we obtain

1

nF

∑
I∈IF

∑
t∈I

V (rt, pF , yt) ≥
1

nF

∑
I∈IF

∑
t∈I

αpF (π̂I , εI +KU
RδR)−KV

RδR

≥ 1

nF

∑
I∈IF

∑
t∈I

αp∗(πt,ε̄)(π̂I , εI +KU
RδR + 2KU

P δP)

−KV
RδR −KV

P δP

≥ 1

nF

∑
I∈IF

∑
t∈I

(
αp∗(πt,ε̄)(π̂I , ε̄)−

εI +KU
RδR + 2KU

P δP
ε̄

)
−KV

RδR −KV
P δP

=
1

nF

∑
I∈IF

∑
t∈I

αp∗(πt,ε̄)(π̂I , ε̄)−
(
εF +KU

RδR + 2KU
P δP

ε̄

)
−KV

RδR −KV
P δP

So far, we have a lower bound for the principal’s payoff that nearly matches the principal’s

worst-case payoff in the stage game if the agent had information structure γ̂F in each forecast

context. Furthermore, we know that this information structure cannot be particularly useful

to the agent. Define

−ε̃F = max
r∈R

1

nF

∑
I∈IF

∑
t∈I

(U(r, pF , yt)− U(rt, pF , yt))

as the (possibly negative) regret accumulated in forecast context F relative to the best-in-

hindsight response, rather than the best-in-hindsight function from information to responses.
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Let πF be the forecast associated with forecast context F . Note that

εF + ε̃F = min
r̃∈R

1

nF

∑
I∈IF

max
r∈R

∑
t∈I

(U(r, pF , yt)− U(r̃, pF , yt))

≥ min
r̃∈R

1

nF

∑
I∈IF

max
r∈R

∑
t∈I

(U(r, p∗(πF , ε̄), yt)− U(r̃, p∗(πF , ε̄), yt))− 2KU
P δP

= min
r

max
rJ

Ey∼π̂F
[
EJ∼γ̂F (·,y)[U(rJ , p

∗(πF , ε̄), y)− U(r, p∗(πF , ε̄), y)]
]
− 2KU

P δP

≥ min
r

max
rJ

Ey∼πF
[
EJ∼γ̂F (·,y)[U(rJ , p

∗(πF , ε̄), y)− U(r, p∗(πF , ε̄), y)]
]

− 2d1(πF , π̂F )− 2KU
P δP

It follows from assumption 20 that

M1(εF + ε̃F + 2d1(πF , π̂F ) + 2KU
P δP) +M2 ≥ αp∗(πF ,ε̄)(πF , ε̄)− αp∗(πF ,ε̄)(πF , γ̂F , ε̄)

which can be rewritten as

αp∗(πF ,ε̄)(πF , γ̂F , ε̄) ≥ αp∗(πF ,ε̄)(πF , ε̄)−
(
M1(εF + ε̃F + 2d1(πF , π̂F ) + 2KU

P δP) +M2

)
(B.4)

Next, we relate our lower bound on the principal’s payoff to the term αp∗(πF ,ε̄)(πF , γ̂F , ε̄).

Note that

1

nF

∑
I∈IF

nIαp∗(πF ,ε̄)(π̂I , ε̄)

= Ey∼π̂F
[
EJ∼γ̂(·,y)

[
αp∗(πF ,ε̄)(π̂F |J , ε̄)

]]
≥ min

eJ
Ey∼π̂F

[
EJ∼γ̂(·,y)

[
αp∗(πF ,ε̄)(πF |J , eJ)

]]
s.t. ε̄ = Ey∼πF [EJ∼γ̂·,y[eJ ]]

= αp∗(πF ,ε̄)(π̂F , γ̂F , ε̄)

≥ αp∗(πF ,ε̄)(πF , γ̂F , ε̄)−
2d1(πF , π̂F )

ε̄
− d1(πF , π̂F )
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So combining this with inequality (B.4) gives

1

nF

∑
I∈IF

nIαp∗(πF ,ε̄)(π̂I , ε̄)

≥ αp∗(πF ,ε̄)(πF , ε̄)−
(
M1(εF + ε̃F + 2d1(πF , π̂F ) + 2KU

P δP) +M2

)
−
(

2d1(πF , π̂F )

ε̄

)
− d1(πF , π̂F )

≥ αp∗(π̂F ,ε̄)(π̂F , ε̄)−
(
M1(εF + ε̃F + 2d1(πF , π̂F ) + 2KU

P δP) +M2

)
−
(

6d1(πF , π̂F )

ε̄

)
− 3d1(πF , π̂F )

Collapsing these inequalities gives us

1

nF

∑
t∈F

V (rt, pF , yt)

≥ αp∗(π̂F ,ε̄)(π̂F , ε̄)−
(
εF + 6d1(πF , π̂F ) +KU

RδR + 2KU
P δP

ε̄

)
−
(
M1(εF + ε̃F + 2d1(πF , π̂F ) + 2KU

P δP) +M2 + 3d1(πF , π̂F ) +KV
RδR +KV

P δP
)

Summing over forecast contexts F ∈ F gives us the desired result.

Lemma 32. Suppose the principal runs some constant mechanism σp ∈ Σ0. Then

1

T

T∑
t=1

V (rt, p, yt) ≤
1

T

∑
F∈F

nF max
p̃∈P

βp̃(π̂F , ε̄) +

(
ε+KU

RδR
ε̄

)
+
(
M1(ε+ ε̃) +M2 +KV

RδR
)

Proof. Let rI be a representative element in the response context R associated with infor-

mation I under mechanism σp. By regularity,

εI ≥ max
r∈R

∑
t∈I

(U(r, p, yt)− U(rI , p, yt))−KU
RδR

= max
r∈R

Ey∼π̂I [U(r, p, y)− U(rI , p, y)]−KU
RδR
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It follows, by regularity and definition of β, that

1

nI

∑
t∈I

V (rt, p, yt) ≤ Ey∼π̂I [V (rI , p, y)] +KV
RδR

≤ βp(π̂I , εI +KU
RδR) +KV

RδR

Summing over information I ∈ IF and using lemma 15, we obtain

1

nF

∑
I∈IF

∑
t∈I

V (rt, p, yt) ≤
1

nF

∑
I∈IF

nIβp(π̂I , εI +KU
RδR) +KV

RδR

≤ 1

nF

∑
I∈IF

nI

(
βp(π̂I , ε̄) +

εI +KU
RδR

ε̄

)
+KV

RδR

=
1

nF

∑
I∈IF

nIβp(π̂I , ε̄) +

(
εF +KU

RδR
ε̄

)
+KV

RδR

So far, we have an upper bound for the principal’s payoff that nearly matches the principal’s

worst-case payoff in the stage game if the agent had information structure γ̂F in each forecast

context. Furthermore, we know that this information structure cannot be particularly useful

to the agent. Define

−ε̃F = max
r∈R

1

nF

∑
I∈IF

∑
t∈I

(U(r, p, yt)− U(rt, p, yt))

as the (possibly negative) regret accumulated in forecast context F relative to the best-in-

hindsight response, rather than the best-in-hindsight function from information to responses.

Let πF be the forecast associated with forecast context F . Note that

εF + ε̃F = min
r̃∈R

1

nF

∑
I∈IF

max
r∈R

∑
t∈I

(U(r, p, yt)− U(r̃, p, yt))
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It follows from assumption 20 that

M1(εF + ε̃F ) +M2 ≥ βp(π̂F , γ̂F , ε̄)−max
p̃∈P

βp̃(π̂F , ε̄)

which can be rewritten as

βp(π̂F , γ̂F , ε̄) ≤ max
p̃∈P

βp̃ +M1(εF + ε̃F ) +M2

Next, we relate our upper bound on the principal’s payoff to the term βp(π̂F , γ̂F , ε̄). Note

that

1

nF

∑
I∈IF

nIβp(π̂I , ε̄) = Ey∼π̂F
[
EJ∼γ̂(·,y)

[
βp(π̂F |J , ε̄)

]]
≤ max

eJ
Ey∼π̂F

[
EJ∼γ̂(·,y)

[
βp(πF |J , eJ)

]]
s.t. ε̄ = Ey∼πF [EJ∼ ˆ·,y[eJ ]]

= βp(π̂F , γ̂F , ε̄)

Collapsing these inequalities gives us

1

nF

∑
t∈F

V (rt, p, yt) ≤ max
p̃∈P

βp̃(π̂F , ε̄) +

(
εF +KU

RδR
ε̄

)
+
(
M1(εF + ε̃F ) +M2 +KV

RδR
)

Summing over forecast contexts F ∈ F gives us the desired result.

From these two lemmas, it immediately follows that

PR ≤ 1

T

∑
F∈F

nF∆(π̂F , ε̄) +

(
2ε+ 6ι+ 2KU

RδR + 2KU
P δP

ε̄

)
+
(
M1(2ε+ 2ε̃+ 2ι+ 2KU

P δP) + 2M2 + 3ι+ 2KV
RδR +KV

P δP
)

Therefore, to bound the principal’s regret, all that remains is to bound ι. If we use the
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algorithm from appendix ?? to generate πt, this follows directly from equation (B.3), which

states

Eσ∗ [ι] ≤

√
|Y||F|

√
2 log |F|

T
+ 2|Y|δF

Finally, we obtain our bound on the expected principal’s regret.

Eσ∗ [PR] ≤ 1

T

∑
F∈F

nF∆(π̂F , ε̄) +

2ε+ 6

√
|Y||F|

√
2 log |F|

T
+ 2|Y|δF + 2KU

RδR + 2KU
P δP

ε̄


+M1

2ε+ 2ε̃+ 2

√
|Y||F|

√
2 log |F|

T
+ 2|Y|δF + 2KU

P δP


+ 2M2 + 3

√
|Y||F|

√
2 log |F|

T
+ 2|Y|δF + 2KV

RδR +KV
P δP

B.5.5 Proof of Theorem 12

Assume access to a forecast πt for every period t. We will define this later. The mechanism

chooses pt as follows. Let P be the unique policy context that includes the policy p†(πt, ε̄) ∈

P . Let pt = pP , where pP ∈ P1 is the representative element of P .

The next two lemmas imply an upper bound on the principal’s regret in terms of the

quantity

ι ≥ 1

T

T∑
t=1

d1(πt, π̂F )

that measures the discrepancy between the forecast πt and the empirical distribution π̂F

conditioned on the forecast context F . Lemma 33 is a lower bound on the principal’s payoff

under σ∗. Lemma 34 is an upper bound on the his payoff under any constant σp ∈ Σ0.
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Lemma 33. Suppose the principal runs the mechanism σ∗. Then

1

T

T∑
t=1

V (rt, pt, yt) ≥
1

T

∑
F∈F

nF inf
γ

max
p∈P

αp(π̂F , γ, ε̄)−
(
ε+ 4ι+KU

RδR + 2KU
P δP

ε̄

)
−
(
2ι+KV

RδR +KV
P δP

)
Proof. Let rI be a representative element in the response context R associated with infor-

mation I under mechanism σ∗. By regularity,

εI ≥ max
r∈R

∑
t∈I

(U(r, pI , yt)− U(rI , pI , yt))−KU
RδR

= max
r∈R

Ey∼π̂I [U(r, pI , y)− U(rI , pI , y)]−KU
RδR

It follows, by regularity and definition of α, that

1

nI

∑
t∈I

V (rt, pI , yt) ≥ Ey∼π̂I [V (rI , pI , y)]−KV
RδR

≥ αpI (π̂I , εI +KU
RδR)−KV

RδR

Summing over information I ∈ IF , we obtain

1

nF

∑
I∈IF

∑
t∈I

V (rt, pF , yt) ≥
1

nF

∑
I∈IF

∑
t∈I

αpF (π̂I , εI +KU
RδR)−KV

RδR

≥ 1

nF

∑
I∈IF

∑
t∈I

αp†(πt,ε̄)(π̂I , εI +KU
RδR + 2KU

P δP)−KV
RδR −KV

P δP

≥ 1

nF

∑
I∈IF

∑
t∈I

(
αp†(πt,ε̄)(π̂I , ε̄)−

εI +KU
RδR + 2KU

P δP
ε̄

)
−KV

RδR −KV
P δP

=
1

nF

∑
I∈IF

∑
t∈I

αp†(πt,ε̄)(π̂I , ε̄)−
(
εF +KU

RδR + 2KU
P δP

ε̄

)



APPENDIX B. OMISSIONS FROM CHAPTER 2 282

−KV
RδR −KV

P δP

Focus on the first term, i.e.

1

nF

∑
I∈IF

nIαp†(πF ,ε̄)(π̂I , ε̄) = Ey∼π̂F
[
EJ∼γ̂(·,y)

[
αp†(πF ,ε̄)(π̂F |J , ε̄)

]]
≥ min

eJ
Ey∼π̂F

[
EJ∼γ̂(·,y)

[
αp†(πF ,ε̄)(π̂F |J , eJ)

]]
s.t. ε̄ = Ey∼π̂F [EJ∼γ̂·,y[eJ ]]

= αp†(πF ,ε̄)(π̂F , γ̂F , ε̄)

≥ inf
γ
αp†(πF ,ε̄)(π̂F , γ, ε̄)

≥ inf
γ
αp†(π̂F ,ε̄)(π̂F , γ, ε̄)−

4d1(πF , π̂F )

ε̄
− 2d1(πF , π̂F )

Collapsing these inequalities gives us

1

nF

∑
I∈IF

∑
t∈I

V (rt, pF , yt) ≥ inf
γ
αp†(π̂F ,ε̄)(π̂F , γ, ε̄)−

(
εF + 4d1(πF , π̂F ) +KU

RδR + 2KU
P δP

ε̄

)
−
(
2d1(πF , π̂F ) +KV

RδR +KV
P δP

)
Summing over forecast contexts F ∈ F gives us the desired result.

Lemma 34. Suppose the principal runs some constant mechanism σp ∈ Σ0. Then

1

T

T∑
t=1

V (rt, p, yt) ≤
∑
F∈F

nF max
p̃∈P

βp̃(π̂F , γ̂F , ε̄) +

(
ε+KU

RδR
ε̄

)
+KV

RδR

Proof. Let rI be a representative element in the response context R associated with infor-

mation I under mechanism σp. By regularity,

εI ≥ max
r∈R

∑
t∈I

(U(r, p, yt)− U(rI , p, yt))−KU
RδR
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= max
r∈R

Ey∼π̂I [U(r, p, y)− U(rI , p, y)]−KU
RδR

It follows, by regularity and definition of β, that

1

nI

∑
t∈I

V (rt, p, yt) ≤ Ey∼π̂I [V (rI , p, y)] +KV
RδR

≤ βp(π̂I , εI +KU
RδR) +KV

RδR

Summing over information I ∈ IF , we obtain

1

nF

∑
I∈IF

∑
t∈I

V (rt, p, yt) ≤
1

nF

∑
I∈IF

nIβp(π̂I , εI +KU
RδR) +KV

RδR

≤ 1

nF

∑
I∈IF

nI

(
βp(π̂I , ε̄) +

εI +KU
RδR

ε̄

)
+KV

RδR

=
1

nF

∑
I∈IF

nIβp(π̂I , ε̄) +

(
εF +KU

RδR
ε̄

)
+KV

RδR

Focus on the first term, i.e.

1

nF

∑
I∈IF

nIβp(π̂I , ε̄) = Ey∼π̂F
[
EJ∼γ̂(·,y)

[
βp(π̂F |J , ε̄)

]]
≤ max

eJ
Ey∼π̂F

[
EJ∼γ̂(·,y)

[
βp(π̂F |J , eJ)

]]
s.t. ε̄ = Ey∼π̂F [EJ∼γ̂·,y[eJ ]]

= βp(π̂F , γ̂F , ε̄)

≤ max
p̃∈P

βp̃(π̂F , γ̂F , ε̄)

Collapsing these inequalities gives us

1

nF

∑
I∈IF

∑
t∈I

V (rt, p, yt) ≤ max
p̃∈P

βp̃(π̂F , γ̂F , ε̄) +

(
εF +KU

RδR
ε̄

)
+KV

RδR
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Summing over forecast contexts F ∈ F gives us the desired result.

From these two lemmas, it immediately follows that

PR ≤
∑
F∈F

nF∇(π̂F , ε̄) + 2

(
ε+ 2ι+KU

RδR +KU
P δP

ε̄

)
+
(
2ι+ 2KV

RδR +KV
P δP

)
Therefore, to bound the principal’s regret, all that remains is to bound ι. If we use the

algorithm from appendix ?? to generate πt, this follows directly from equation (B.3), which

states

Eσ∗ [ι] ≤

√
|Y||F|

√
2 log |F|

T
+ 2|Y|δF

Finally, we obtain our bound on the expected principal’s regret.

Eσ∗ [PR] ≤ 1

T

∑
F∈F

nF∇(π̂F , ε̄) + 2

ε+ 2

√
|Y||F|

√
2 log |F|

T
+ 2|Y|δF +KU

RδR +KU
P δP

ε̄


+

2

√
|Y||F|

√
2 log |F|

T
+ 2|Y|δF + 2KV

RδR +KV
P δP



B.5.6 Proof of Theorem 5

We adapt the proof of theorem 10 to prove theorem 5. This will require only relatively

minor changes. Let π̂I,F denote the empirical distribution among periods t ∈ I ∩F . Let nI,F

indicate the number of such periods. Let πF denote the (unique) forecast associated with

forecast context F . Previously, we defined

ι ≥ 1

T

T∑
t=1

d1(πt, π̂I)
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Now, we define

ι ≥ 1

T

T∑
t=1

d1(πt, π̂I,F )

Begin at the last line of lemma 29, where it says “focus on the first term”. Rewrite that first

term as
1

T

∑
I∈I

∑
F∈F

∑
t∈I∩F

αp∗(πF ,ε̄)(π̂I , ε̄)

Now we switch π̂I with πI , i.e. the convex combination of forecasts,

πI =
1

nI

∑
F∈F

nI,FπF

By lemma 26, this gives us

1

T

∑
I∈I

∑
F∈F

∑
t∈I∩F

αp∗(πF ,ε̄)(π̂I , ε̄)

≥ 1

T

∑
I∈I

∑
F∈F

∑
t∈I∩F

(
αp∗(πF ,ε̄)(πI , ε̄)−

2d1(πI , π̂I)

ε̄
− d1(πI , π̂I)

)
Note that every forecast πF leads to a policy p∗(πF , ε̄) that is in the policy context P asso-

ciated with information I. By assumption ??,

≥ 1

T

∑
I∈I

∑
F∈F

∑
t∈I∩F

(
αp∗(πI ,ε̄)(πI , ε̄)−

2d1(πI , π̂I)

ε̄
− d1(πI , π̂I)−O(δP)

)

Now we apply lemma 26 again,

≥ 1

T

∑
I∈I

∑
F∈F

∑
t∈I∩F

(
αp∗(πI ,ε̄)(π̂I , ε̄)−

4d1(πI , π̂I)

ε̄
− 2d1(πI , π̂I)−O(δP)

)
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and then lemma 27

≥ 1

T

∑
I∈I

∑
F∈F

∑
t∈I∩F

(
αp∗(π̂I ,ε̄)(π̂I , ε̄)−

8d1(πI , π̂I)

ε̄
− 4d1(πI , π̂I)−O(δP)

)

By the homogeneity and subadditivity of the l1 norm,

d1(πI , π̂I) ≤
1

nI

n∑
i=1

nI,Fd1(πI,F , π̂I,F )

which gives us

≥ 1

T

∑
I∈I

∑
F∈F

∑
t∈I∩F

(
αp∗(π̂I ,ε̄)(π̂I , ε̄)−

8d1(πI,F , π̂I,F )

ε̄
− 4d1(πI,F , π̂I,F )−O(δP)

)

≥ 1

T

∑
I∈I

∑
F∈F

∑
t∈I∩F

(
αp∗(π̂I ,ε̄)(π̂I , ε̄)

)
− 8ι

ε̄
− 4ι−O(δP)

This is essentially where we were by the end of lemma 29, with the addition of an O(δP)

term and slightly different constants.

Lemma 30 requires no change. The discussion following lemma 30 requires very little

change. Find the line that begins with “Consider any two periods”. We rewrite as follows.

Consider any two periods t, τ where It = Iτ and Ft = Fτ but Ct 6= Cτ . Since Ft = Fτ we

know that πt = πτ . Now, consider

nFt,Ctd1(πt, π̂Ct) + nFτ ,Cτd1(πτ , π̂Cτ )

= nFt,Ctd1(πt, π̂Ct) + nFt,Cτd1(πt, π̂Cτ )

≥ (nFt,Ct + nFt,Cτ ) d1

(
πt,

1

nFt,Ct + nFt,Cτ
(nFt,Ct π̂Ct + nFt,Cτd1(πt, π̂Cτ ))

)
by subadditivity and homogeneity of norms. By continuing this process of combining con-
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texts, we find

1

T

∑
C∈C

∑
F∈F

nF,Cd1(πt, π̂C) ≥ 1

T

∑
I∈I

∑
F∈F

nI,Fd1(πt, π̂I,F ) = ι

Therefore, our bound holds except with the addition of an O(δP) term and slightly different

constants.

B.5.7 Proof of Theorem 6

Define

πP =
1

nP

∑
F∈F

nP,FπF

It is straightforward to adapt the proof of theorem 11. Replace all reference to p∗(πF , ε̄)

with p∗(πP , ε̄). This changes U and V (and all derived terms, like α) by at most O(δP), by

assumption ??. Replace all remaining references of forecast contexts F to policy contexts

P . It remains to verify that

ι ≥ 1

T

∑
F∈F

∑
t∈F

d1(πF , π̂F ) ≥ 1

T

∑
P∈P

∑
t∈F

d1(πP , π̂P )

which follows from the homogeneity and subadditivity of the l1 norm, and the fact that

πP , π̂P are convex combinations of πF , π̂F for F ⊆ P .

B.5.8 Proof of Theorem 7

Define

πP =
1

nP

∑
F∈F

nP,FπF

It is straightforward to adapt the proof of theorem 12. Replace all reference to p†(πF , ε̄)

with p†(πP , ε̄). This changes U and V (and all derived terms, like α) by at most O(δP), by
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assumption ??. Replace all remaining references of forecast contexts F to policy contexts

P . It remains to verify that

ι ≥ 1

T

∑
F∈F

∑
t∈F

d1(πF , π̂F ) ≥ 1

T

∑
P∈P

∑
t∈F

d1(πP , π̂P )

which follows from the homogeneity and subadditivity of the l1 norm, and the fact that

πP , π̂P are convex combinations of πF , π̂F for F ⊆ P .
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Appendix C

Omissions from Chapter 3

C.1 Proof of Proposition 8

This proof will be slightly more general than the proposition statement. Let f : Sn → R+

be an arbitrary function with upper bound f̄ . Suppose that there is an upper bound

Eπs [f (S1, . . . , Sn)] ≤ B

The goal is to find a similar upper bound on

Eπs [f (S1, . . . , Sn) | Pn = p]

assuming that Pn is (ε, δ)-private.

First, I use the privacy property to show that bound the expected value of f conditional

on the realized policy Pn and the event E in the definition of sample privacy. I show that

this is not very different from the expected value of f conditioned on just the event E.

Eπs [f (S1, . . . , Sn) | Pn = p, E]

=
∑

(S1,...,Sn)∈E

Prπs [S1, . . . , Sn | Pn = p, E] · f (S1, . . . , Sn)

=
∑

(S1,...,Sn)∈E

Prπs [S1, . . . , Sn | E] · Prπs [Pn = p | S1, . . . , Sn]

Prπs [Pn = p | E]
· f (S1, . . . , Sn)
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≤
∑

(S1,...,Sn)∈E

Prπs [S1, . . . , Sn | E] · eε · Prπs [Pn = p | E]

Prπs [Pn = p | E]
· f (S1, . . . , Sn)

=
∑

(S1,...,Sn)∈E

eε · Prπs [S1, . . . , Sn | E] · f (S1, . . . , Sn)

= eε · Eπs [f (S1, . . . , Sn) | E]

Next, I use the upper bound to show that

B ≥ Eπs [f (S1, . . . , Sn)]

= (1− δ) · Eπs [f (S1, . . . , Sn) | E] + δ · Eπs [f (S1, . . . , Sn) | ¬E]

≥ (1− δ) · Eπs [f (S1, . . . , Sn) | E]

≥ (1− δ) · e−ε · Eπs [f (S1, . . . , Sn) | E,Pn = p]

≥ (1− δ) · e−ε · Eπs [f (S1, . . . , Sn) | E,Pn = p]

+ δ · e−ε · Eπs
[
f (S1, . . . , Sn)− f̄ | ¬E,Pn = p

]
= e−ε

(
Eπs [f (S1, . . . , Sn) | Pn = p]− δ · f̄

)
Finally, I rearrange the lower bound on B to obtain the desired result, i.e.

Eπs [f (S1, . . . , Sn) | Pn = p] ≤ eε ·B + δ · f̄

C.2 Proof of Lemma 17

I want to show that

4RCAn (p, πs) + BFRn ≥
∣∣ (max

r′
Eπ̂s
[
uA (p, r′, s)

]
− Eπ̂s,πr

[
uA (p, r, s)

])
−
(

max
r′

Eπs
[
uA (p, r′, s)

]
− Eπs,πr

[
uA (p, r, s)

]) ∣∣
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for all mixed responses πr and policies p, with probability no less than 1−nP exp(−nα). For

this purpose, it suffices to bound two quantities. First, observe that

Eπs,πr
[
uA (p, r, s)

]
− Eπ̂sn,π

r

[
uA (p, r, s)

]
≤ 2RCAn (p) + 4

√
2 ln(4/κ)

n
(C.1)

with probability 1 − κ. This is the typical way of expressing regret bounds based on the

Rademacher complexity (see e.g. Bartlett and Mendelson 2003). Second, observe that

max
r′

Eπ̂sn

[
uA (p, r′, s)

]
−max

r′
Eπs
[
uA (p, r′, s)

]
≤ 2RCAn (p) + 4

√
2 ln(4/κ)

n
(C.2)

This follows from the fact that

Eπ̂sn

[
uA (p, r∗, s)

]
− Eπs

[
uA (p, r∗, s)

]
≤ 2RCAn (p) + 4

√
2 ln(4/κ)

n

where r∗ ∈ arg maxr Eπ̂sn

[
uA (p, r, s)

]
, and

Eπs
[
uA (p, r∗, s)

]
−max

r′
Eπs
[
uA (p, r′, s)

]
≤ 0

so

Eπ̂sn

[
uA (p, r∗, s)

]
− Eπs

[
uA (p, r∗, s)

]
+ Eπs

[
uA (p, r∗, s)

]
−max

r′
Eπs
[
uA (p, r′, s)

]
≤ 2RCAn (p) + 4

√
2 ln(4/κ)

n

Adding together the last two inequalities gives inequality (C.2). Adding together inequalities

(C.1) and (C.2) gives the desired result. Applying the union bound across all policies p, the

result holds with probability 1 − nPκ. Furthermore, the probability is uniform over all

responses r, and therefore uniform across all mixed responses πr. All that remains is to
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derive the probability κ and buffer BFRn. Set κ = exp(−nα). Note that

4

√
2 ln(4/κ)

n
= 4

√
2 ln(4 exp(−nα))

n

= 4

√
2 ln 4− 2 ln(exp(−nα))

n

≤ 4

√
2 ln 4

n
+ 4

√
−2 ln(exp(−nα))

n

≤ BFRn

C.3 Proof of Lemma 19

Let E ⊆ Sn be the set of all sample realizations S1, . . . , Sn where

ŴCn(p)− E
[
ŴCn(p)

]
≤ t

By lemma 18, Prπs [E] ≥ 1− δ where

δ = exp

(
− 2t2

nc2

)

To establish sample privacy, I need to show that

Prπs
[
P̂n = p | S1, . . . , Sn

]
≤ eε · Prπs

[
P̂n = p, E

]

for any sample realizations (S1, . . . , Sn) ∈ E. Let the sample (S ′1, . . . , S
′
n) ∈ E minimize

Prπs
[
P̂n = p | S ′1, . . . , S ′n

]
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so that it suffices to show

Prπs
[
P̂n = p | S1, . . . , Sn

]
≤ eε · Prπs

[
P̂n = p | S ′1, . . . , S ′n

]
(C.3)

I can characterize the distribution of P̂n using standard results that link Gumbel error terms

with exponential weights.

Prπs
[
P̂n = p | S1, . . . , Sn

]
=

exp
(
nβ · ŴCn(p | S1 . . . , Sn)

)
∑

p′ exp
(
nβ · ŴCn(p′ | S1 . . . , Sn)

)
Using this, I can rewrite equation (C.3) and manipulate it as follows.

Prπs
[
P̂n = p | S1, . . . , Sn

]
Prπs

[
P̂n = p | S ′1, . . . , S ′n

]
=

exp
(
nβ · ŴCn(p | S1 . . . , Sn)

)
exp

(
nβ · ŴCn(p | S ′1 . . . , S ′n)

) · ∑p′ exp
(
nβ · ŴCn(p′ | S ′1 . . . , S ′n)

)
∑

p′ exp
(
nβ · ŴCn(p′ | S1 . . . , Sn)

)
≤ exp

(
tnβ
)
·

∑
p′ exp

(
nβ · ŴCn(p′ | S ′1 . . . , S ′n)

)
∑

p′ exp
(
nβ · ŴCn(p′ | S1 . . . , Sn)

)
≤ exp

(
tnβ
)
· exp

(
tnβ
)
·

∑
p′ exp

(
nβ · ŴCn(p′ | S1 . . . , Sn)

)
∑

p′ exp
(
nβ · ŴCn(p′ | S1 . . . , Sn)

)
≤ exp

(
2tnβ

)
Therefore, P̂n is (ε, δ)-private when ε = 2tnβ.
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C.4 Proof of Lemma 21

Recall the definition of WC(p, b, πs) (3.17). This represents the policymaker’s worst-case

utility when the agent’s regret is bounded by a constant b ≥ 0. Note that

ŴCn(p) = WC(p, b, πs) where b = (4eε + 4) · RCAn (p) + δ + BFRn

Let π̂s be the empirical distribution. Let π̃s be a modified empirical distribution where

Si = s′ instead of Si = s. As I shift from π̂s to π̃s, the agent’s empirical regret changes by

at most 2∆P (p) · n−1. In particular, for any mixed response πr,

max
r′

Eπ̂s
[
uA (p, r′, s)

]
− Eπ̂s,πr

[
uA (p, r, s)

]
≤ b

implies

max
r′

Eπ̃s
[
uA (p, r′, s)

]
− Eπ̃s,πr

[
uA (p, r, s)

]
≤ b+ 2∆P (p) · n−1

Likewise, the policymaker’s empirical utility changes by at most ∆P (p) ·n−1. It follows from

these two observations that

ŴCn(p | π̂s) ≥WC
(
p, b+ 2∆P (p) · n−1, π̃s

)
−∆P (p) · n−1

where the notation ŴCn(p | π̂s) is used to emphasize that ŴCn(p) is being evaluated with

respect to the empirical distribution π̂s. By the robustness lemma (20),

WC
(
p, b+ 2∆P (p) · n−1, π̃s

)
≥WC(p, b, π̃s)−∆A(p)

(
2∆P (p) · n−1

b

)
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By definition, ŴCn(p | π̃s) = WC(p, b, π̃s). It follows that

ŴCn(p | π̃s)− ŴCn(p | π̂s) ≤ ∆A(p)

(
2∆P (p) · n−1

b

)
+ ∆P (p) · n−1

Therefore, ŴCn(p) satisfies the bounded differences property as long as

c ≥ ∆A(p)

(
2∆P (p) · n−1

b

)
+ ∆P (p) · n−1

C.5 Proof of Lemma 22

I begin by making some observations and introducing some notation. Recall the empirical

regret bound in the definition of ŴCn(p) (3.13).

max
r′

Eπ̂s
[
uA (p, r′, s)

]
− Eπ̂s,πr

[
uA (p, r, s)

]
≤ (4eε + 4) · RCAn (p) + δn ·∆A(p) + BFRn (C.4)

By lemma 17, any mixed response that satisfies this bound also satisfies

max
r′

Eπs
[
uA (p, r′, s)

]
− Eπs,πr

[
uA (p, r, s)

]
≤ 4eε · RCAn (p) + δn ·∆A(p)

with probability 1− nP exp(−nα), where the expectations are evaluated with respect to the

true distribution πs. This gives an upper bound for ŴCn(p) with high probability, i.e.

f(p, π̂s) = min
πr

Eπ̂s,πr
[
uP (p, r, s)

]
+ νn(p) (C.5)

s.t. max
r′

Eπs
[
uA (p, r′, s)

]
− Eπs,πr

[
uA (p, r, s)

]
≤ 4eε · RCAn (p) + δn ·∆A(p)

Let π̃r(p, π̂s) be the solution to the minimization problem (C.5). It is important to note that

the set of feasible mixed responses no longer depends on the sample.
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This proof consists of three parts. First, I want to bound the expected gap between

f(P̂n, π̂
s) and ŴCn

(
P̂n

)
. It follows from the preceding discussion that

Eπs

[
f(P̂n, π̂

s)− ŴCn

(
P̂n

)]
≥ −nP exp(−nα) ·max

p
∆P (p)

Next, I want to bound the expected gap between f(p, π̂s) and f(p, πs), i.e.

Eπs

[
max
p

(f(p, π̂s)− f(p, πs))

]
= Eπs

[
max
p

(
Eπ̂s,π̃r(p,π̂s)

[
uP (p, r, s)

]
− Eπs,π̃r(p,πs)

[
uP (p, r, s)

])]
≤ Eπs

[
max
p

(
Eπ̂s,π̃r(p,π̂s)

[
uP (p, r, s)

]
− Eπ̂s,π̃r(p,πs)

[
uP (p, r, s)

])]
+ Eπs

[
max
p

(
Eπ̂s,π̃r(p,πs)

[
uP (p, r, s)

]
− Eπs,π̃r(p,πs)

[
uP (p, r, s)

])]
≤ Eπs

[
max
p

(
Eπ̂s,π̃r(p,πs)

[
uP (p, r, s)

]
− Eπs,π̃r(p,πs)

[
uP (p, r, s)

])]
≤ Eπs

[
max
p,πr

(
Eπ̂s,πr

[
uP (p, r, s)

]
− Eπs,πr

[
uP (p, r, s)

])]
= Eπs

[
max
p,r

(
Eπ̂s
[
uP (p, r, s)

]
− Eπs

[
uP (p, r, s)

])]

At this point, it follows from the standard symmetrization argument that

Eπs

[
max
p

(f(p, π̂s)− f(p, πs))

]
≤ 2RCPn (πs)

Finally, I want to bound the expected gap between WCn(p, ε, δn, π
s) and f(P̂n, π

s). Note

that WCn(p, ε, δn, π
s) = f(p, πs)− νn(p). Furthermore, note that

Eπs

[
f(P̂n, π

s)−WCn

(
P̂n, ε, δn, π

s
)]

= Eπs

[
νn(P̂n)

]
≤ E

[
max
p
νn(p)

]
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≤ E

[∑
p

|νn(p)|

]

= nPE[|νn(p)|]

≤ nP
√

E[|νn(p)|2]

≤ nP
√

E[νn(p)]2 + Var[νn(p)]

≤ nP
√
n−2β + 2n−2β

≤ nP
√

3 · n−β

Combining these three steps gives us the desired result.

Eπs

[
WCn

(
P̂n, ε, δn, π

s
)
− ŴCn

(
P̂n

)]
= Eπs

[
WCn

(
P̂n, ε, δn, π

s
)
− f(P̂n, π

s)
]
− Eπs

[
f(P̂n, π̂

s)− f(P̂n, π
s)
]

+ Eπs

[
f(P̂n, π̂

s)− ŴCn

(
P̂n

)]
≥ −nP

√
3 · n−β − Eπs

[
max
p

(f(p, π̂s)− f(p, πs))

]
− nP exp(−nα) ·max

p
∆P (p)

≥ −nP
√

3 · n−β − 2RCPn (πs)− nP exp(−nα) ·max
p

∆P (p)

C.6 Proof of Proposition 10

This example will exhibit a simple game where

OPn(πs) = CK(πs)− Ω
(
n−γ
)

The agent faces an estimation problem and cares about her accuracy. The policy space is a

singleton; it is irrelevant. The state space S = [0, 1] is the unit interval. The response space

R = [0, 1] is also the unit interval. The agent’s response r ∈ [0, 1] is a prediction, subject to
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square loss, i.e.

uA(p, r, s) = −(r − s)2

The policymaker cares about the agent’s accuracy with respect to a bliss point s0 ∈ [0, 1]

that I will specify later. However, his sensitivity to inaccuracy is different from the agent,

i.e.

uP (p, r, s) = −|r − s0|2γ

I claim that there exists a distribution π̃s where the agent’s regret bound is Ω(n−1). Let

the bliss point s0 := Eπ̃s [s] be the mean of s according to π̃s. Let the distribution πs := π̃s.

Existence follows from two observations. First, the mean square error of the maximum

likelihood estimator is O(n−1). Second, the maximum likelihood estimator is known be

efficient.

To characterize the optimal penalized benchmark, I need to consider responses that satisfy

the agent’s regret bound. One such response is is rn = Eπ̃s [s] + Ω(n−1/2). The policymaker’s

expected utility under rn must be at least as large as the optimal penalized benchmark,

which is the worst case expected utility. That is,

OPn(πs) ≤ −|rn − s0|2γ

= −
∣∣Eπs [s] + Ω(n−1/2)− Eπ̃s [s]

∣∣2γ
= −

(
Ω(n−1/2)

)2γ

= −Ω(n−γ) (C.6)

Next, consider the common knowledge benchmark. The agent will predict the mean, r =

Eπs [s], and the policymaker’s expected utility will be

CK(πs) = |Eπs [s]− s0|2γ = |Eπ̃s [s]− Eπ̃s [s]|2γ = 0 (C.7)
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I can combine equations (C.6) and (C.7) to show

OPn(πs) ≤ CK(πs)− Ω(n−γ)

This completes the first part of the proof.

Next, I need to verify that this game satisfies (in particular) assumption 16. To do this, I

need to introduce the pseudodimension: a method for bounding the Rademacher complexity.

The following definition is specialized to the agent’s Rademacher complexity.

Definition 56. A vector (w1, . . . , wn) ∈ Rn is a witness for a vector (S1, . . . , Sn) if, for any

realizations (σ1, . . . σn) ∈ {−1, 1}n, there exists a response r such that

sign
(
− (r − Si)2 − wi

)
= σi (C.8)

A vector (S1, . . . , Sn) is shattered if it has a witness (w1, . . . , wn). The pseudo-dimension is

the largest integer m such that some vector (S1, . . . , Sm) is shattered.

Claim 18. The pseudo-dimension is at most 2.

Since the pseudo-dimension is bounded, the agent’s Rademacher complexity is Õ(n−1/2).

Proof. For the sake of contradiction, suppose that the vector S1, . . . , Sn is shattered for

n > 2. By condition (C.8), σi = 1 means that Si is within some distance di of r, where di

depends on wi and γ. Define n intervals I1, . . . , In where Ii = [Si − di, Si + di]. Then σi = 1

means r ∈ Ii, and σi = 0 means r /∈ Ii. Let f(r) be the set of intervals Ii such that r ∈ Ii.

Each vector σ corresponds to a unique element in the range of f(r).

I claim that the range of f(r) has at most 2n+ 1 elements. If we list the n left endpoints

and the n right endpoints of intervals, in order, these define a different set of 2n+1 intervals.

Within each interval J , we can move r from the left to the right, without entering or exiting
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any interval Ii. Therefore, f is invariant over each interval J . Since there are at most 2n+ 1

intervals J , the range of f(r) must have at most 2n+ 1 elements.

However, this leads to a contradiction. There are 2n distinct values of the vector σ. But

each vector σ must correspond to a unique element in the range of r, and there are only

2n+ 1 such elements. When n = 3, 2n = 8 but 2n+ 1 = 7. When n > 3, the discrepancy is

even larger. Therefore, the vector S1, . . . , Sn does not have a witness when n > 3. It follows

from the definition that the pseudo-dimension is at most 2.

Next, consider the policymaker’s Rademacher complexity. Note that

max
r

n∑
i=1

σi|r − s0|2γ

has only three possible solutions: r = s0, r = 0, or r = 1. Without loss of generality, I

can restrict the response space to {0, s0, 1}. It follows from Massart’s finite lemma that the

policymaker’s Rademacher complexity is O(n−1/2).

C.7 Proof of Lemma 23

Recall the empirical regret bound in the definition of ŴCn(p) (3.13).

max
r′

Eπ̂s
[
uA (p, r′, s)

]
− Eπ̂s,πr

[
uA (p, r, s)

]
≤ (4eε + 4) · RCAn (p) + δn ·∆A(p) + BFRn (C.9)

I want to argue that every mixed response πr that satisfies this empirical regret bound also

satisfies the regret bound in the definition of WCm(p, 0, 0, πs), i.e.

max
r′

Eπs
[
uA (p, r′, s)

]
− Eπs,πr

[
uA (p, r, s)

]
≤ 4 · RCAm(p, πs) (C.10)
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At least, this should hold with high probability. Let πr be a mixed response satisfying the

empirical regret bound (C.9). By lemma 17, with probability 1− nP exp(−nα), we have

max
r′

Eπs
[
uA (p, r′, s)

]
−Eπs,πr

[
uA (p, r, s)

]
≤ (4eε + 8) ·RCAn (p)+δn ·∆A(p)+2BFRn (C.11)

This puts the agent’s regret in terms of the true distribution. Next, I claim that the right-

hand side of inequality (C.11) is Θ(m−1/2). There are three terms to consider. The first

term is Õ(n−1/2) by assumption 16. The second term is decreasing exponentially in n, since

α < 2β. The third term is Θ(n(α−1)/2), and it is leading since α > 0. Plugging in the value

of m gives us Θ(m−1/2). Finally, note that as long as there is a sufficiently large constant in

front of m, we have

(4eε + 8) · RCAn (p) + δn ·∆A(p) + 2BFRn ≤ 4 · C

2
√

2m

≤ 4 · RCAm(p, πs) (C.12)

where the last line follows from lemma 24. Combining inequalities (C.11) and (C.12) gives

us the desired inequality (C.10), with probability 1− nP exp(−nα).

I have established that the set of mixed responses that ŴCn(p) minimizes over is, with

high probability, a subset of the set of mixed responses that WCm(p, 0, 0, πs) minimizes over.

All that remains is to compare the policymaker’s objective under ŴCn(p) with his objective

under WCm(p, 0, 0, πs). This compares expected utility under the empirical distribution,

plus privacy-preserving noise, to expected utility under the true distribution. But this is

precisely the situation we found ourselves in during the proof of lemma 22. I can apply the

same bounds here to complete the proof.
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C.8 Proof of Lemma 24

Recall the definition of Rademacher complexity:

RCAn (p, πs) =
1

n
Eπs

[
max
r

n∑
i=1

σi · uA (p, r, Si)

]

=
1

n
Eπs

[
Eπs

[
max
r

n∑
i=1

σi · uA (p, r, Si) | S1, . . . , Sn

]]

where the second equality follows from the law of iterated expectations. To bound the

Rademacher complexity, it suffices to bound the interior expectation. Observe that

Eπs

[
max
r

n∑
i=1

σi · uA (p, r, Si) | S1, . . . , Sn

]

= max
r′

Eπs

[
max
r

(
n∑
i=1

σi ·
(
uA (p, r, Si)− uA (p, r′, Si)

))
+

n∑
i=1

σi · uA (p, r′, Si) | S1, . . . , Sn

]

= max
r′

Eπs

[
max
r

(
n∑
i=1

σi ·
(
uA (p, r, Si)− uA (p, r′, Si)

))
| S1, . . . , Sn

]
(C.13)

= max
r′

Eπs

[
max
r

(
n∑
i=1

σi ·
(
uA (p, r, Si)− uA (p, r′, Si)

))+

| S1, . . . , Sn

]
(C.14)

≥ max
r,r′

Eπs

[(
n∑
i=1

σi ·
(
uA (p, r, Si)− uA (p, r′, Si)

))+

| S1, . . . , Sn

]
(C.15)

=
1

2
max
r,r′

Eπs

[∣∣∣∣∣
n∑
i=1

σi ·
(
uA (p, r, Si)− uA (p, r′, Si)

)∣∣∣∣∣ | S1, . . . , Sn

]
(C.16)

≥ 1

2
√

2
max
r,r′

√√√√ n∑
i=1

(uA (p, r, Si)− uA (p, r′, Si))
2 (C.17)

≥ C
√
n

2
√

2
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The first two equalities follow from algebraic manipulations. Line (C.13) follows from the

fact that

Eπs

[
n∑
i=1

σi · uA (p, r′, Si) | S1, . . . , Sn

]
= 0

Line (C.14) follows from the fact that setting r = r′ ensures that the interior sum is zero, so

that the maximum over all r is non-negative. Line (C.15) follows from Jensen’s inequality.

Line (C.16) follows from the fact that the sum inside the expectation is symmetrically dis-

tributed around zero. To see this, let X be a symmetric random variable with mean zero.

Then

E[|X|] = Pr[X = 0] · 0 + Pr[X > 0] · E[X | X ≥ 0] + Pr[X < 0] · E[−X | X < 0]

= Pr[X > 0] · E[X | X > 0] + Pr[X > 0] · E[X | X > 0]

= 2 · Pr[X > 0] · E[X | X > 0]

= 2 · E
[
X+
]

Line (C.17) follows from Khintchine’s inequality, with constants derived by Haagerup (1981).

Finally, the last inequality follows from assumption 17.

C.9 Proof of Claim 9

This is a proof by contradiction. Let w be an effort-inducing contract that pays a positive

wage w(xi) > 0 for some outcome i < m. Consider a modified contract w′ that pays

w′(xi) = 0 and

w′(xm) = w(xm) +
πx1 (xi)

πx1 (xm)
w(xi)
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Under contract w′, the expected wages conditional on effort are

m∑
j=1

πx1 (xj)w
′(xj) = πx1 (xj)w

′(xj) + πxmw
′(xm) +

∑
j 6=i,m

πx1 (xj)w
′(xj)

= πx1 (xm)w(xm) + πx1 (xm)
πx1 (xi)

πx1 (xm)
w(xi) +

∑
j 6=i,m

πx1 (xj)w
′(xj)

=
m∑
j=1

πx1 (xj)w(xj)

That is, expected wages conditional on effort are the same for w and w′. However, expected

wages conditional on effort are smaller for w′ than for w. This follows from assumption 18,

which implies that

πx0 (xm)
πx1 (xi)

πx1 (xm)
≤ πx1 (xi)

This inequality is strict unless πx0 = πx1 , in which case there is no effort-inducing contract

anyways. Therefore, w′ creates slack in the agent’s incentive constraint without affecting the

principal’s utility. This allows the principal to slightly reduce wages, and be better off than

under w.

C.10 Proof of Claim 12

Let w be an optimal contract with a maximum wage of w̄. In the worst case, the agent will

not put in effort if

Eπx
[
w(X1)− w(X0)

]
− c ≤ 4RCAn (w)

Otherwise, the agent will put in effort with probability 1− q where

q =
4RCAn (w)

Eπx [w(X1)− w(X0)]− c
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This only depends on the contract through two quantities: w̄ and Eπx [w(X1)− w(X0)].

Holding those quantities fixed, the agent’s probability of effort is the same.

The rest of the proof essentially follows from arguments in the proof of Claim 9. There,

I turned w into another contract w′ that preserved the expected wages but increased

Eπx
[
w(X1)− w(X0)

]
That was the common knowledge case. Here, because increasing Eπx [w(X1)− w(X0)] in-

creases q, the principal’s payoff under contract w′ is actually better than under w. That

does not adversely affect the argument.

For any given maximum wage w̄, the previous argument shows that w(xm) < w̄ implies

w(xi) = 0 for all outcomes i < m. More generally, as long as `(xj) > 1, this argument can

be used to show that w(xj) < w̄ implies w(xi) = 0 for all outcomes i < j. It follows from

inspection that ceases to be true when `(xj) < 1. In fact, a similar argument shows that

w(xj) = 0 for any outcome xj where `(xj) < 1.

This establishes the fact that w is a threshold function. Next, suppose I want to ensure

that the agent puts in effort with probability q. I need

Eπx
[
w(X1)− w(X0)

]
− c =

4RCAn (w)

q
(C.18)

Suppose w(xj) = w̄ for all i > j and w(xj) = 0 for all j < i. The expression in the statement

of the claim ensures that I increase w(xi) as much as necessary to guarantee equation (C.18).
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C.11 Proof of Claim 16

The buyer’s strategy is the empirical quantile maximizer, i.e.

xn ∈ max
x∈M

UA (q,M, x, π̂s)

I will bound her quantile regret under this strategy. By the Dvoretzky-Kiefer-Wolfowitz

inequality,

Prπv

[
sup
u

∣∣Prπ̂v
[
uA (M,x, v) ≤ u

]
− Prπv

[
uA (M,x, v) ≤ u

]∣∣ ≥ t

]
≤ 2 exp

(
−2nt2

)
By assumption 19, this implies

Prπv

[∣∣UA (q,M, x, πv)− UA (q,M, x, πv)
∣∣ ≥ t

K

]
≤ 2 exp

(
−2nt2

)
By the union bound,

Prπv

[
max
x∈M

∣∣UA (q,M, x, πv)− UA (q,M, x, πv)
∣∣ ≥ t

K

]
≤ 2|M | exp

(
−2nt2

)
Set the right-hand side equal to a constant γ and solve for t. This yields

t =

√√√√ ln
(

2|M |
γ

)
2n

It follows that

Q-Regret(M, q, πv) ≤

√√√√2 ln
(

2|M |
γ

)
K2n

+ v̄m · γ

Setting δ = 1/n to complete the proof.
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