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ABSTRACT

Approximate Optimality of Simple Mechanisms

Yingkai Li

We consider general utility models and information structures of the agents and il-

lustrate when economic conclusions for designing simple mechanisms in classical settings

extends for general environments. We show that whether economic conclusions can be

generalized depends on the details of the generalizations. For example, in single-item

auction, competition and non-anonymity are not crucial factors for revenue maximization

when agents have linear utilities [Yan, 2011, Alaei et al., 2018], and these conclusions ex-

tend for broad classes of non-linear utilities. In comparison, the economic conclusions we

derived for exogenous information settings often fail when the information is endogenous.

For example, in multi-dimensional information acquisition problems, scoring the agent

separately is without loss when the signals are exogenous, but suffers a great loss when

the signals are endogenous. In selling information problems, price discrimination and com-

mitment to revealing partial information are crucial for revenue maximization if the agent

has an exogenous signal about the unknown state [Bergemann et al., 2021]. However,

pricing for full information is approximately optimal when the signal is endogenous.
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CHAPTER 1

Introduction

The method of approximation quantifies the extent to which a theory can be gener-

alized from ideal models and enables the separation of details from salient features of

the model. Given an (possibly complicated, detail-dependent) optimal mechanism for an

objective like revenue, there may exist other (simple, detail-free) mechanisms that approx-

imate (i.e., attain a “large” fraction of) the optimal revenues. In this case we may say that

the theory behind the simple mechanisms generalizes from the ideal model. Otherwise, it

does not.1

There are extensive studies of simple mechanisms with approximation guarantees for

the classical mechanism design problems with specific assumptions on the agents’ utility

models. For example, Yan [2011] shows that when agents have linear utilities, sequential

posted pricings, which arrange the agents in an order and offer while-supplies-last posted

prices, guarantee an e/(e − 1)-approximation, i.e., the best order and prices achieves at

least 63.2% of the optimal auction revenue. This implies that simultaneity and competi-

tion are not necessary drivers for revenue maximization for linear utility agents. Another

example is information acquisition, in order to elicit high-dimensional information, it is

often without loss to elicit marginal information on each dimensional separately [Lambert,

2011]. In the model of selling information, Bergemann et al. [2021] show that when the

information of the agents is exogenous, pricing for full information cannot guarantee any

1See the survey of Hartline [2012] for detailed discussion of the method of approximation in economics.
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non-trivial fraction of the optimal revenue. This implies that price discrimination is a

crucial factor for revenue maximization given exogenous information.

We study the problem that to what extend the economic conclusions from the clas-

sical mechanism design literature generalize for agents with general utility models and

general information structures. In particular, in this thesis, we focus on two specific gen-

eralizations: from linear utilities to non-linear utilities, and from exogenous information

to endogenous information. We show that many economic lessons we obtained for linear

utilities generalize for broad class of non-linear utilities, while the economic lessons we

obtained for exogenous information fail for endogenous information. Therefore, there is

no unified solutions for generalizing the economic conclusions to complex models, and

more investigation is required for understanding the performance of simple mechanisms

in various general environments. In the next section, we will summarize the main results

in this thesis.

1.1. Main Contributions

1.1.1. Non-linear Utilities

For classical auction design for agents with linear utilities, Bulow and Roberts [1989]

show that the marginal revenue maximization mechanism is revenue optimal, drawing

a close connection between the classical microeconomics and the auction theory. Yan

[2011] shows that sequential posted pricings guarantee an e/(e−1)-approximation, which

suggests the relative irrelevance of simultaneity and competition for revenue maximization.

Jin et al. [2019] further show that when the agents’ (non-identical) value distributions

satisfy a concavity property, a.k.a., “regular distributions”, posting an anonymous price
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guarantees a 2.62-approximation, which implies that discrimination across different agents

is not essential either.

We generalize these approximation results from linear agents to non-linear agents.2

From this generalization, not only do we observe that the main drivers of good mech-

anisms are similar for non-linear agents, but also that non-linearity itself is not a main

concern that necessitates specialized mechanism designs (beyond the approach of our

generalization).

Bulow and Roberts [1989], as later interpreted by Alaei et al. [2013], show that to

design optimal mechanisms for linear agents, it is without loss to restrict attention to

pricing-based mechanisms, i.e., mechanisms where the menu offered to each agent is equiv-

alent to a distribution over posted prices. The multi-agent mechanism design problem

can be decomposed as single-agent mechanism design problems through the reduced-form

approach of Border [1991]. From Bulow and Roberts [1989], the solution to these single-

agent problems for linear agents are (possibly randomized) price postings and the optimal

mechanism can be interpreted as marginal revenue maximization. Thus, every mechanism

for linear agents is equivalent to a pricing-based mechanism.

Pricing-based mechanisms can be generalized to non-linear agents by considering per-

unit prices, i.e., given per-unit price p, an agent can purchase any lottery with winning

probability q ∈ [0, 1] and pay price p · q in expectation. For non-linear agents (e.g., agents

with budget constraints), not all mechanisms can be interpreted as pricing-based mecha-

nisms and, in fact, pricing-based mechanisms are not generally optimal. Nonetheless, we

show that these mechanisms are approximately optimal for large families of non-linear

2In this thesis, we write “agents with linear utilities” as “linear agents” for short, and “agents with
non-linear utilities” as “non-linear agents”.
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agents. For these families we say that the non-linear agents resemble linear agents. We

introduce a reduction framework. Given a pricing-based mechanism that guarantees a

β-approximation (i.e., achieves at least 1/β fraction of the optimal objective) for lin-

ear agents and given non-linear agents that are ζ-resemblant3 of linear agents and sat-

isfy the von Neumann-Morgenstern expected utility representation [Morgenstern and von

Neumann, 1953], the reduction framework transforms the aforementioned pricing-based

mechanism for linear agents into an analogous pricing-based mechanism for the non-linear

agents. The non-linear agent mechanism guarantees a βζ-approximation bound.

The reduction framework can be combined with approximation results for linear agents

to show that simple mechanisms such as marginal revenue maximization, sequential posted

pricing, and anonymous pricing are approximately optimal for non-linear agents that re-

semble linear agents, and the economic lessons (e.g., non-cruciality of simultaneity, com-

petition, discrimination) derived from those mechanisms for linear agents can be lifted to

non-linear agents. As an example, agents with independent private budget and regular

valuation distribution are 3-resemblant of linear agents, which implies that the approxi-

mation of sequential posted pricing for such non-linear agents is 3e/(e− 1).

This thesis characterizes broad families of non-linear agents that are ζ-resemblant

for small constant factors ζ (e.g., agents with independent private budget and regular

valuation distribution) and families that are not (e.g., agents whose budget and value

are correlated). For non-linear agents that are ζ-resemblant, pricing-based mechanisms

are approximately optimal wherever they are approximately optimal for linear agents;

thus, non-linearity of utility can be viewed as a detail that can be omitted from the

3We measure the resemblance of agents in terms of the (topological) closeness of their revenue curves, as
defined in Bulow and Roberts [1989]. We provide the details in Chapter 2.
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model without significantly altering the main take-aways. On the other hand, with utility

models that are not ζ-resemblant for modest ζ, non-linearity is a crucial feature that

needs specific study for identifying forms of mechanisms lead to good economic outcomes.

Our reduction framework can be applied more broadly for non-linear agents beyond the

expected utility theory with the restriction to posted pricing mechanisms4 (e.g., sequential

posted pricing, anonymous pricing). For instance, when agents have stochastic outside

options – which can be viewed as a special form of non-linear utility that does not satisfy

expected utility theory – are 2-resemblant under a concavity assumption. Thus, for such

agents, sequential posted pricing is approximately optimal and the economic lessons from

previous discussions generalize.

1.1.2. Information Acquisition

We consider the problem of an uniformed principal acquiring information from a strategic

agent. In particular, we formalize the problem as optimizing scoring rules for reporting the

expectation of a incentivizing the agent to exert effort on acquiring additional information.

Proper scoring rules incentivize a forecaster to reveal her true belief about an unknown

and probabilistic state. The principal publishes a scoring rule that maps the reported

belief and the realized state to a reward for the forecaster. The forecaster reports her

belief about the state. The state is realized and the principal rewards the forecaster

according to the scoring rule. A scoring rule is proper if the forecaster’s optimal strategy,

under any belief she may possess, is to report that belief. Proper scoring rules are also

designed for directly eliciting a statistic of the distribution such as its expectation.

4Posted pricing mechanisms are pricing-based mechanisms where prices posted to each agent do not
depend on actions of other agents.
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Not all proper scoring rules work well in any a given scenario. This thesis considers a

mathematical program for optimization of scoring rules where (a) the objective captures

the incentive for the forecaster to exert effort and (b) the boundedness constraints prevent

the principal from scaling the scores arbitrarily. For (a), we focus on a simple binary

model of effort where the forecaster does or does not exert effort and with this effort

the forecaster obtains a refined posterior distribution from the prior distribution on the

unknown state (e.g., by obtaining a signal that is correlated with the state). We adopt

the objective that takes the perspective of the forecaster at the point of the decision with

knowledge of both the prior and the distributions of posteriors that is obtained by exerting

effort. We want a scoring rule that maximizes the difference in expected scores for the

posterior distribution and prior distribution. For (b), we impose the ex post constraint

that the score is in a bounded range, i.e., without loss, between zero and one. Notice

that this program would be meaningless without a constraint on the scores - otherwise

the score could be scaled arbitrarily - and it would be meaningless without considering

the difference in scores between posterior and prior - otherwise any bounded scoring rule

scaled towards zero plus a constant close to the upper bound would be near optimal.

We solve for the optimal scoring rule for reporting the expectation in single-dimensional

space. As we expect for single-dimensional mechanism design problems for an agent with

linear utility [Myerson, 1981b], the optimal scoring rule is a step function (which induces

a V-shaped scoring rule with its lower tip at the expectation of the prior belief). To im-

plement this V-shaped scoring rule, it is sufficient for the designer to know the prior mean

instead of the details on the distribution over posteriors. We also demonstrate a first
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result for prior-independent analysis of scoring rules. Among scoring rules for reporting

the expectation, the quadratic scoring rule is within a constant factor of optimal.

For multi-dimensional forecasting, without concern of acquiring additional informa-

tion, a simple choice of the principal is to elicit information separately across different

dimensions, and the aggregated information would still be accurate.

When the agent can acquire a costly signal, we show that the gap between acquiring

information separately and optimally can be linear in the size of the dimensions. For sym-

metric distributions, we give an analytical characterization of the optimal scoring rule as

inducing a V-shaped utility function. For multi-dimensional forecasting without a symme-

try assumption, we identify a V-shaped scoring rule that gives an 8-approximation. This

scoring rule can be interpreted as scoring the dimension for which the agent’s posterior

in the optimal single-dimensional scoring rule gives the highest utility. Equivalently, it

can be implemented by letting the agent select which dimension to score and only scoring

that dimension (after exerting effort to learn the posterior mean of all dimensions). More-

over, while optimal mechanisms generally depend on the distribution over posteriors, our

approximation bounds are proved for simple mechanisms (V-shaped scoring rules) that

depend only on the prior mean, and do not require detailed knowledge of the distribution

over posteriors.

1.1.3. Selling Information

We consider the problem of maximizing the revenue of the data broker, where the agent

can endogenously acquire additional information. Specifically, there is an unknown state

and both the data broker and the agent have a common prior over the set of possible states.
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The data broker can offer a menu of information structures for revealing the states with

associated prices to the agent. Then the agent picks the expected utility maximization

entry from the menu, and pays the corresponding price to the data broker. The agent

has a private valuation for information and can acquire additional costly information

upon receiving the signal from the data broker. The literature has acknowledged the

possibility for the agents to conduct their own experiments to be privately informed of

the states [e.g., Bergemann, Bonatti, and Smolin, 2018]. The distinct feature in our model

is that the decision for acquiring additional information is endogenous. Specifically, after

receiving the signal from the data broker, the agent can subsequently acquire additional

information with costs. For example, the agent is a decision maker who chooses an

action to maximize her expected utility based on her posterior belief over the states. The

agent will first acquire information from the data broker, and based on her posterior, she

can potentially conduct more experiments to refine her belief before taking the action.

Another example captured in our model is where the agent is a firm that sells products

to consumers, and the information the data broker provides is a market segmentation of

the consumers. The firm has a private and convex cost for producing different level of

qualities for the product, and the firm can conduct his own experiments (e.g., sending

surveys to potential consumers) with additional costs to further segment the market after

receiving the information from the data broker.5 In addition, in our model, we allow the

firm to repeat the market research until it is not beneficial to do so, i.e., when the cost

of information exceeds the marginal benefits of information. This captures the situation

5Yang [2020] studies a similar model, where the firm cannot conduct his own market research to refine his
knowledge. Moreover, the cost function of the firm is linear in Yang [2020], which leads to a qualitatively
different result compared to our model. See Section 4.3 for a detailed discussion.
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that the firm can decide the date for announcing the product to the market, and before

the announcement, the firm sends out surveys to potential consumers each day to learn

the segmentation of the markets. At the end of each day, the firm receives an informative

signal through the survey, and decides whether to continue the survey in next day, or stop

the survey and announce the product with corresponding market prices to the public.

When the private information of the agent is exogenous, [e.g., Bergemann, Bonatti,

and Smolin, 2018] show that in the revenue optimal mechanism, the menu complexity

can be linear in the number of action choices of the agent in the worst case, and posting

a deterministic price for revealing full information cannot guarantee a constant approxi-

mation to the optimal. This suggests that third degree price discrimination is crucial for

revenue maximization in exogenous information setting.

In this model of allowing the agent to acquire information endogenously, we impose a

linearity assumption on the agent’s private preference over different experiments, i.e., the

value of the agent for any posterior distribution is simply the product of her private type

and the value of the posterior distribution. In the examples we provided in previous para-

graphs, both the decision maker who chooses an optimal action to maximize her payoff

based on the posterior belief and the firm that sells products to consumers to maximize the

revenue satisfy the linear valuation assumption. Essentially, this condition assumes that

the private type of the agent represents her value for additional information, and there

is a linear structure on the preference. It excludes the situation where the private type

of the agent represents an exogenous private signal correlated with the states. We show

that with linear valuations, when the agent can acquire additional costly information,

there exists a threshold type θ∗ such that (1) for any type θ ≥ θ∗, the optimal mechanism
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reveals full information to the agent; and (2) for any type θ < θ∗, the optimal mechanism

may reveal partial information and the individual rational constraint always binds. The

first statement is the standard no distortion at the top observation in the optimal mech-

anisms. The second statement suggests that the optimal mechanism may discriminate

lower types of the agent by offering the options of revealing partial information to the

agent with lower prices. Moreover, the allocations and the prices for those lower types

are set such that the agent is exactly indifferent between participation and choosing the

outside option (by conducting her own experiments with additional costs). Our charac-

terizations suggest that the optimal mechanisms for selling information may be complex

and contain a continuum of menu entries when the information is endogenous. However,

posted pricing for revealing full information achieves at least half of the optimal revenue

in the worst case. This suggests that price discrimination is not crucial for approximating

the optimal revenue in endogenous information setting, which leads to a sharp contrast

to the exogenous information setting.

1.2. Related Work

Non-linear Utilities. Frameworks for reducing approximation for non-linear agents to

approximation for linear agents has also been studied in Alaei et al. [2013]. This reduction

framework converts the marginal revenue mechanism for linear agents to a mechanisms for

non-linear agents and general objectives. Their reduction framework is also applicable to

other DSIC, IIR, deterministic mechanisms for linear agents. Unlike our framework which

uses single-agent price-posting mechanisms (induced from price-posting payoff curves) as

a building-block, Alaei et al. [2013] convert mechanisms for linear agents into mechanisms
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for non-linear agents with single-agent ex ante optimal mechanisms (induced from optimal

payoff curves) as components. From the mechanism designer’s perspective, identifying

ex ante optimal mechanisms for a single non-linear agents can be much harder than

identifying ex ante optimal price-posting mechanisms (e.g., private budget utility, risk

averse utility). Furthermore, due to this difference, the implementation of the reduction

framework together with its outcome mechanisms in Alaei et al. [2013] is more complex

than ours. In general, the framework in Alaei et al. [2013] converts DSIC mechanisms for

linear agents into Bayesian incentive compatible mechanisms for non-linear agents.

Mechanism design for non-linear agents is well studied in the literature. In this work, as

applications of our general framework, we focus on three specific non-linear models, agents

with budget constraints, agents with risk averse attitudes, and agents with endogenous

valuation.

Laffont and Robert [1996] and Maskin [2000] study the revenue-maximization and

welfare-maximization problems for symmetric agents with public budgets in single-item

environments. Boulatov and Severinov [2018] generalize their results to agents with i.i.d.

values but asymmetric public budgets. Che and Gale [2000] consider the single agent

problem with private budget and valuation distribution that satisfies declining marginal

revenues, and characterize the optimal mechanism by a differential equation. Devanur

and Weinberg [2017a] consider the single agent problem with private budget and an arbi-

trary valuation distribution, characterize the optimal mechanism by a linear program, and

use an algorithmic approach to construct the solution. Pai and Vohra [2014] generalize

the characterization of the optimal mechanism to symmetric agents with uniformly dis-

tributed private budgets. Richter [2019] shows that a price-posting mechanism is optimal
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for selling a divisible good to a continuum of agents with private budgets if their valuations

are regular with decreasing density. For more general settings, no closed-form characteri-

zations are known. However, the optimal mechanism can be solved by a polynomial-time

solvable linear program over interim allocation rules [cf. Alaei et al., 2012, Che et al.,

2013].

Most results for agents with risk-averse utilities consider the comparative performance

of the first- and second-price auctions, cf., Holt Jr [1980], Che and Gale [2006]. Matthews

[1983] and Maskin and Riley [1984], however, characterize the optimal mechanisms for

symmetric agents for constant absolute risk aversion and more general risk-averse models.

Baisa [2017] shows that the optimal mechanism for risk averse agents departs from the

linear agents, since the optimal mechanism does not allocate to the highest bidder, and

can better screen the agents through allocating the item to a group of agents with lotteries.

Gershkov et al. [2021b] show that if the seller can make positive transfer to the agents,

the optimal mechanism features the property that under equilibrium, all agents face no

uncertainty in the realized utility.

The model for agents with endogenous valuation has been studied extensively in Tan

[1992], King et al. [1992], Gershkov et al. [2021a], Akbarpour et al. [2021] where agents

can make costly investment before the auction. This is a generalization of the model for

agents with entry costs [Celik and Yilankaya, 2009]. This main focus of the literature is to

characterize the optimal mechanisms in restricted settings. For example, Gershkov et al.

[2021a] characterize the revenue optimal symmetric mechanism for symmetric buyers.6

The reduction framework in this thesis implies that sequentially offering a price to each

6Gershkov et al. [2021a] also showed that even for symmetric buyers, symmetric mechanism may not be
revenue optimal among all possible mechanisms.
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agent is a constant approximation for both welfare and revenue maximization when there

are multiple asymmetric buyers. Akbarpour et al. [2021] consider approximating the

optimal welfare when it is computationally intractable to find the optimal allocation. They

show that any algorithm that excludes bossy negative externalities can be converted to a

mechanism that guarantees the same approximation ratio to the optimal welfare. They

restrict attention to full information equilibrium, while our analysis applies to settings

with private valuations.

It is well known that simple mechanisms generate robust performance guarantees for

both welfare maximization [Roughgarden et al., 2017] and revenue maximization [Carroll,

2017, Bei et al., 2019]. Moreover, simple mechanisms are approximately optimal under

natural assumptions of type distributions. For single item auction and linear agents,

Jin et al. [2019] show that the tight ratio between anonymous pricing and the optimal

mechanism is 2.62 under regularity assumption, and Yan [2011] shows that the tight ap-

proximation ratio is e/(e− 1) for sequential posted pricing. The approximate optimality

of sequential posted pricing can be generalized to multi-item settings when agents have

unit-demand valuations [Chawla et al., 2010, Cai et al., 2016]. For non-linear agents,

given matroid environments, Chawla et al. [2011] show that a simple lottery mechanism

is a constant approximation to the optimal pointwise individually rational mechanism for

agents with monotone-hazard-rate valuations and private budgets. In contrast, our ap-

proximation results are with respect to the optimal mechanism under interim individually

rationality which can be arbitrarily larger than the benchmark from Chawla et al. [2011].

For multiple items, Cheng et al. [2018] shows that selling items separately or as a bundle
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is approximately optimal for a single agent with additive valuation. Our analyses uses

one of their lemmas.

Scoring Rules. Characterizations of scoring rules for eliciting the mean and for eliciting

a finite-state distribution play a prominent role in our analysis. Previous works show, in

various contexts, that scoring rules are proper if and only if their induced utility func-

tions are convex. McCarthy [1956] characterized proper scoring rules for eliciting the

full distribution on a finite set of states. Osband and Reichelstein [1985] characterized

continuously differentiable scoring rules that elicit multiple statistics of a probability dis-

tribution. Lambert [2011] characterized the statistics that admit proper scoring rules and

characterized the uniformly-Lipschitz-continuous scoring rules for the mean of a single-

dimensional state. Abernethy and Frongillo [2012] characterized the proper scoring rules

for the marginal means of multi-dimensional random states in the interior of the report

space. We augment this characterization by showing that the induced utility function

converges to a limit on the boundary of the report space. This augmentation enables us

to write the mathematical program that optimizes over the whole report space.

Most of the prior work looking at incentives of eliciting information considers a funda-

mentally different model from ours. This prior work typically focuses on the incentives of

the forecaster to exert effort to obtain a signal (a.k.a., a data point), but then assumes that

this data point is reported directly (and cannot itself be misreported). In this space, Cai,

Daskalakis, and Papadimitriou [2015] considers the learning problem where the principal

aims to acquire data to train a classifier to minimize squared error less the cost of eliciting

the data points from individual agents. The mechanism for soliciting the data from the

agents trades off cost (in incentivizing effort) for accuracy of each individual point. Chen,
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Immorlica, Lucier, Syrgkanis, and Ziani [2018] and Chen and Zheng [2019] consider the

estimation of the mean of a population data. Their objective is to minimize the variance

of the resulting estimator subject to a budget constraint on the cost of procuring the data

(from incentivizing effort).

A few papers have considered incentivizing effort under a proper scoring rule for a

single-dimensional state. Osband [1989] considers incentivizing the forecaster to reduce

variance under constraints that result in the optimal scoring rule being quadratic. Zer-

meno [2011] considers a slightly different model and derives that the optimal scoring rule

has V-shaped utility; our work begins with such a result for our model. Neyman, Noarov,

and Weinberg [2021] consider a forecaster with access to costly samples of a Bernoulli

distribution and characterizes optimal scoring rules in the limit as the sample cost ap-

proaches zero. Our main contrasting result is the approximate optimality of the V-shaped

scoring rule for binary effort and forecasts over multi-dimensional state spaces.

There are several papers on optimizing scoring rules following the model proposed in

this thesis. Hartline et al. [2021a] extend the framework to the setting where the agent’s

effort is multi-dimensional (e.g., corresponding to independent tasks) and the agent can

independently exert effort in each dimension. The main result of this extension is that

the intuition that linking incentives across different dimensions is beneficial generalizes.

The authors propose a generalization of the V-shaped scoring rule that is approximately

optimal, which requires the agent to predict k states correctly instead of one (where k is

a constant depending on the primitives). Hartline et al. [2021b] extend the framework to

the setting where the agent’s effort is continuous (but single-dimensional) and the cost of

the agent’s effort is private to the agent. In this case the principal benefits from offering



26

several scoring rules (and agents with different costs choose different ones), each offered

scoring rule is V-shaped. The model also allows for the principal to have negative utility

for payments to the agent. Chen and Yu [2021] consider our objective of maximizing

the incentives of binary effort in a max-min design framework. For example, they show

that the quadratic scoring rule is max-min optimal over a large family of distributional

settings. Kong [2021] generalizes the framework from single-agent scoring rules to multi-

agent peer prediction, i.e., without ground truth. In peer prediction, the designer needs to

cross reference the reports of different agents to verify the informativeness of the report.

Scoring rules are also widely studied in the literature on peer prediction where ground

truth is unknown and agent reports must be compared to each other. Frongillo and

Witkowski [2017] considers the optimization goal of incentive for effort in single-task peer

prediction. The differences in this model result in incomparable results.

Selling Information. There is a large literature on selling information to agents with

uncertainty over the states. Those papers can be classified into two categories according to

the agents’ private types. The first category is when the agents’ private types represent

their willingness to pay for different signal structures [e.g., Yang, 2020, Smolin, 2020,

Liu, Shen, and Xu, 2021]. In this case, the private types of the agents are assumed to be

independent from the realization of the state, and hence the private types do not affect the

belief updating process for receiving the signals. The second category is when the agents’

private types represent their private signals that are informative about the states [e.g.,

Admati and Pfleiderer, 1986, 1990, Bergemann, Bonatti, and Smolin, 2018, Bergemann,

Cai, Velegkas, and Zhao, 2021]. In this case, agents have heterogeneous prior beliefs for

the states, and they will update their posteriors accordingly upon receiving the signals
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from the seller. Note that in both lines of work, the private types of the agents are given

exogenously, and hence it is a pure adverse selection model. Our model assumes that

the private types of the agents represents their preferences for different signal structures,

which are assumed to be independent from the realization of the states. The distinct

feature is that we allow agents to endogenously acquire costly signals that are informative

about the unknown states. Thus the main focus of this thesis is the interaction between

adverse selection and moral hazard, and we will provide characterizations of the optimal

mechanisms in this setting.

Our problem is also relevant to the literature of mechanism design with endogenous

information. Crémer and Khalil [1992] considers the model of endogenous information in

a contract design model. The main distinction from their model and ours is the timeline

of the agent. In their paper, the agent gather information before signing the contract,

while in our model, the agent can observe additional information after the interaction

with the data broker. This difference in timeline also distinguishes our model from the

literature on auction with endogenous entry [Menezes and Monteiro, 2000] and auction

with buyer optimal learning [Shi, 2012, Mensch, 2021], where those papers assume that

the agents make the information acquisition decision before interacting with the seller,

and the mechanism offered by the seller distorts the agents’ incentives to learn their

valuation.
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CHAPTER 2

Auctions for Agents with Non-linear Utilities

2.1. Preliminaries

In this chapter, we consider general payoff maximization in single-item auction for

non-linear agents. For example, welfare maximization, revenue maximization and their

convex combinations are special cases of payoff maximization.

Agent Models. There is a set of agents N where |N | = n. An agent’s utility model

is defined as (Θ,Φ, u) where Θ,Φ, and u are the type space, distribution and utility

function. The outcome for an agent is the distribution over the pair (x, p), where allocation

x ∈ {0, 1} and payment p ∈ R+. The utility function of each player u is a mapping from

her private type and the outcome to her utility for the outcome. There are several specific

utility models we are interested in this thesis.

• Linear utility: For each agent i ∈ N , her private type is her value vi of the

good. Given allocation x and payment p, her utility is vi · x− p. In the following

sections, we will drop the subscripts when we discuss the single agent problems.

• Private-budget utility: Each agent i ∈ N has a private value vi and private

budget constraint wi. We refer to the pair (vi, wi) as the private type of the agent.

The valuation vi for each agent i is sampled from the valuation distribution Fi

and her budget wi is sampled from the budget distribution Gi. We assume that

Fi and Gi are independent distributions. We also use Fi and Gi to denote the



30

cumulative probability function for the valuation and budget of agent i. Given

allocation x and payment p, her utility is vix− p if the payment does not exceed

her budget, i.e., p ≤ wi. Otherwise, her utility is −∞.

Note that when the support of budget distribution G is a singleton {w}, it is

equivalent to assume that the agent has a (deterministic) public budget w. We

name the utility model of such agents as public-budget utility.

• Risk-averse utility: For each agent i ∈ N , her private type is her value vi ∈

[0, v̄i] of the good. Given allocation x and payment p, the utility function u

is a concave function mapping from the wealth vi · x − p of the agent to her

utility. In the later discussion on revenue maximization, we restrict attention to

a very specific form of risk aversion studied in Fu et al. [2013], which is both

computationally and analytically tractable: utility functions that are linear up

to a given capacity C and then flat. Given allocation x and payment p, an agent

has utility min{vi · x − p, C}. We refer to this utility function as capacitated

utility. The capacity C is encoded in the utility function and is not necessarily

identical across agents.

• Endogenous valuation: Each agent i ∈ N can make costly investments before

the auction by taking action ai ∈ R. For agent i with private type θi, the cost

for action ai is Ci(ai) and the value for the item is vi(ai, θi) = ai + θi. Given

allocation x and payment p, agent i taking action ai has utility x · vi(ai, θi)− p−

Ci(ai). This is the model presented in Gershkov et al. [2021a].1 Note that in this

1Gershkov et al. [2021a] characterized the single-agent revenue optimal mechanism for slightly more
general classes of valuation functions. To simplify the presentation, in this thesis, we only illustrate the
proof for this special form of valuation function, and the same technique can be easily extended to broader
settings.
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endogenous utility model, the agent can be equivalently modeled as one with

convex preference over allocations, which does not satisfy the expected utility

characterization.

Mechanisms. In this thesis, we consider the sealed-bid mechanisms: in a mechanism

{(xi, pi)}i∈N , agents simultaneously submit sealed bids {bi}i∈N from their type spaces to

the mechanism, and each agent i gets allocation xi({bi}i∈N) with payment pi({bi}i∈N).

The outcome of mechanisms is a distribution of the allocation payment pair (xi, pi) for

each agent i where the allocation is a probability xi ∈ [0, 1] and the price is pi ∈ R+. An

allocation is feasible if
∑

i xi ≤ 1.2

We consider mechanisms that satisfy Bayesian incentive compatible (BIC), i.e., no

agent can gain strictly higher expected utility than reporting her private type truthfully if

all other agents are reporting their private types truthfully, and interim individual rational

(IIR), i.e., the expected utility is non-negative for all agents and all private types if all

agents are reporting their private types truthfully mechanisms. For later discussion, we

also define dominant strategy incentive compatible (DSIC) for a mechanism if no agent can

gain strictly higher expected utility than reporting her private type truthfully, regardless

of other agents’ report.

Payoff Curves. The payoff function of the seller is a mapping from the lotteries of

each agent, to a real value. We assume that the payoff function satisfies expected utility

theory,3 i.e., the payoff for a distribution over lotteries is the corresponding expected

2Our results can be extended to more general feasibility constraints. We will not provide full details of
this extension in this thesis. See Feng et al. [2020] for more discussions.
3In contrast, we do not restrict the agents to satisfy the expected utility theory.
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payoff.4 Moreover, the payoff function is additive separable across different agents. In

this paragraph, we define the payoff curves, and introduce the revenue curves and welfare

curves as special cases of the payoff curves. Specifically, the revenue contribution from

agent i is her expected payment pi, and the welfare contribution from from agent i is her

expected value for realized allocation xi.
5 In addition, we define the optimal payoff curves

and price-posting payoff curves as follows.

Definition 2.1.1. Given ex ante constraint q, the optimal payoff curve R(q) is a

mapping from quantile q to the optimal ex ante payoff for the single agent problem, i.e.,

the optimal payoff of the mechanism which in expectation sells the item with probability q.

Fact 2.1.1. The optimal payoff curve is concave.

Fact 2.1.1 holds because the space of mechanisms is closed under convex combination.

We also study mechanisms based on simple per-unit posted posting.

Definition 2.1.2. Posting per-unit price p is offering a menu {(x, x · p) : x ∈ [0, 1]}

to the agent. A budgeted agent with value v and budget w given per-unit price p will

purchase the lottery x = min{1, w/p} if v ≥ p, and purchase the lottery x = 0 otherwise.

Definition 2.1.3. The market clearing price pq for the ex ante constraint q is the

per-unit price such that the item is sold with probability q.

4For example, the seller may care about the ex ante welfare of the agents, i.e., the sum of the ex ante
utility of the agents when each agent is assigned with a lottery.
5Note that there are alternative definitions for welfare of non-linear agents. For example, when agents are
risk averse, an alternative definition for welfare contribution from agent i is the sum of her payment pi
and her utility ui(xi, pi). Whether non-linear agents resemble linear agents under this alternative welfare
definition is left as an open question.
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Definition 2.1.4. Given ex ante constraint q, the price-posting payoff curve P (q) is

a mapping from quantile q to the optimal price-posting payoff for the single agent problem,

i.e., the optimal payoff of the price posting mechanism which sells the item with probability

q in expectation over the type distribution and the probabilities of the selected lottery.

Price-posting payoff curves are not generally concave, we can iron it to get the concave

hull of the price-posting payoff curves.

Definition 2.1.5. The ironed price-posting payoff curve P̄ is the concave hull of the

price-posting payoff curve P .

Next we review the relation between the optimal revenue curves and the concave hull

of the price-posting revenue curves for linear agents.

Lemma 2.1.2 (Bulow and Roberts, 1989). The optimal revenue curve R of a linear agent

is equal to her ironed price-posting revenue curve P̄ .

A similar result holds for the welfare curve. Note that the price-posting welfare curve

is always concave for linear agents.

Lemma 2.1.3. The optimal welfare curve R of a linear agent is equal to her price-posting

welfare curve P , both are concave and R = P = P̄ .

In general, for agents with budgets, the optimal payoff (e.g., revenue or welfare) curves

and the concave hull of the price-posting payoff curves are not equivalent, and the ex

ante optimal mechanism is more complicated and extracts strictly higher payoff than the

optimal price posting mechanism and randomizations over price posting mechanisms.
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Ex Ante Relaxation. Next we provide the benchmark, the ex ante relaxation. For

auctions with downward-closed feasibility constraints, any sequence of ex ante quantiles

{qi}i∈N is ex ante feasible if there exists a randomized, ex post feasible allocation such

that the probability agent i receives an item, i.e., marginal allocation probability for

agent i, equals qi. We denote the set of ex ante feasible quantiles by EAF. Note that

{qi}i∈N ∈ EAF if and only if
∑

i qi ≤ 1. The optimal ex ante payoff given a specific

collection of payoff curves {Ri}i∈N is

EAR({Ri}i∈N) = max
{qi}i∈N∈EAF

∑
i∈N

Ri(qi).

Pricing-based Mechanisms and Posted Pricing Mechanisms. In Bayesian mech-

anism design, the taxation principle suggests that it is without loss to focus on menu

mechanisms: Fixing any agent, the mechanism offers a menu of outcomes (i.e., her alloca-

tion and payment) to the agent, where the menu depends on other agents’ bids. Among

all such menu mechanisms, there are two subclasses of mechanisms closely related to price

posting which allow simple implementations – pricing-based mechanisms and posted pric-

ing mechanisms. The subclass of pricing-based mechanisms consider mechanisms where

the menu (offered by the mechanism) is equivalent to posting a per-unit price. Further-

more, a pricing-based mechanism is called a posted pricing mechanism if the menu (a.k.a.,

per-unit price) offered to each agent is invariant of other agents’ bids.
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2.2. Reduction Framework

2.2.1. Reduction Framework for Sequential Posted Pricing

In this section, we introduce the definition of ζ-resemblance to quantify the single-agent

approximation by price-posting in non-linear utility models. As a warm up, we introduce

a reduction framework which extends approximation results of posted pricing mechanisms

for linear agents to non-linear agents that satisfy the definition. In next section, we discuss

a more general reduction framework for pricing-based mechanisms.

As we discussed in Section 2.1, the taxation principle suggests that it is without loss

t focus on menu mechanisms in Bayesian mechanism design. For non-linear agents, the

menu offered in the Bayesian optimal mechanism are complicated even in single-agent

environments. For example, to maximize the revenue from a single agent with private

budget, the menu size of the optimal mechanism is exponential to the size of the support

of the budget distribution [Devanur and Weinberg, 2017a]. In contrast, for linear agents,

there exist posted pricing mechanisms that is optimal (resp. approximately optimal) in

the single-agent (resp. multi-agent) environments [Myerson, 1981a, Riley and Zeckhauser,

1983, Yan, 2011, Alaei et al., 2018]. Here we introduce a reduction framework that extends

the approximation bounds of posted pricing mechanisms for linear agents to non-linear

agents.

To simplify the presentation, we focus on the reduction framework on a canonical

class of posted pricing mechanisms – sequential posted pricing mechanisms (see Defini-

tion 2.2.1 for a formal definition). A generalization of the framework to other posted

pricing mechanisms is straightforward and we include more discussions in Appendix A.1.
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Note that given the ex ante probability q, the payoff of posting the market clearing

price is uniquely determined by the price-posting payoff curve and quantile q. Thus, for

simplicity, we define the sequential posted pricing in quantile space.6

Definition 2.2.1. A sequential posted pricing mechanism is parameterized by

({oi}i∈N , {qi}i∈N) where {oi}i∈N denotes an order of the agents and {qi}i∈N denotes the

quantile corresponding to the per-unit prices to be offered to agents if the item is not sold

to previous agents.7

According to the definition, the payoff of the sequential posted pricing mechanism with

parameters ({oi}i∈N , {qi}i∈N) is uniquely determined by the price-posting payoff curves

{Pi}i∈N of the agents. Specifically,

SPP({Pi}i∈N , {oi}i∈N , {qi}i∈N) =
∑
i∈N

 ∏
j:o(j)<o(i)

(1− qj)

Pi(qi) .

and the optimal payoff among the class of sequential posted pricing mechanisms is

SPP({Pi}i∈N) = max
{oi}i∈N ,{qi}i∈N

SPP({Pi}i∈N , {oi}i∈N , {qi}i∈N).

As we mentioned above, Yan [2011] shows the following approximation guarantee for

sequential posted pricing.

6The reason for defining posted pricings in quantile space is that the mapping from quantiles to prices
is not generally pinned down by the payoff curve (specifically, for the welfare objective) for non-linear
agents. As the actual prices to be posted are not important in our reduction framework, it is convenient
to remain in quantile space. Any sequential posted pricing mechanism defined in quantile space can be
converted to a sequential posted pricing mechanism in price space [e.g., Chawla et al., 2010]. Thus, in this
thesis, without loss of generality, we will focus on the sequential posted pricing mechanisms in quantile
space.
7In the sequential posted pricing mechanism, each agent may only get a lottery for winning the item. We
assume that the lottery is realized immediately after each agent’s purchase decision. The per-unit prices
are offered to each agent if and only if the item is not sold to previous agents given the realization.



37

Theorem 2.2.1 (Yan, 2011). For linear agents with the price-posting payoff curves

{Pi}i∈N , there exists a sequential posted pricing mechanism ({oi}i∈N , {qi}i∈N) that is an

e/(e− 1)-approximation to the ex ante relaxation, i.e., SPP({Pi}i∈N , {oi}i∈N , {qi}i∈N) ≥

(1− 1/e) · EAR({P̄i}i∈N).

To quantify the extent to which a non-linear agent resemble a linear agent, we start

with the following observation. For a linear agent, the ironed price-posting payoff curve

equals the optimal payoff curve. However, for a non-linear agent, the Bayesian optimal

mechanisms are not posted pricing mechanisms in general. In other words, for a non-linear

agent, the ironed price-posting payoff curve is not generally equivalent to the optimal

payoff curve. Hence, we introduce ζ-resemblance of an agent to measure her ironed price-

posting payoff curve resemble her optimal payoff curve.

Definition 2.2.2 (ζ-resemblance). An agent’s ironed price-posting payoff curve P̄ is

ζ-resemblant to her optimal payoff curve R, if for all q ∈ [0, 1], there exists q ≤ q† such

that P̄ (q) ≥ 1/ζ ·R(q†). Such an agent is ζ-resemblant.

Smaller ζ-resemblance guarantee implies that such non-linear agents resemble linear

agents better, since the approximation guarantee for sequential posted pricing mecha-

nisms for linear agents can be lifted to those non-linear agents with an additional factor ζ

(Theorem 2.2.2). Note that the ζ-resemblant property is equivalent to show the approx-

imation of posted pricing mechanisms for a continuum of i.i.d. (non-linear) agents with

unit-demand and limit supply. In Sections 2.3 to 2.5, we give small constant bound on

this resemblant property under several canonical non-linear utility models for both welfare

maximization and revenue maximization.



38

To extend the approximation of sequential posted pricing mechanisms for linear agents

to non-linear agents, we need to reduce a non-linear agent to her linear agent analog as

follows.

Definition 2.2.3. Fix any set of (non-linear) agents with price-posting payoff curves

{Pi}i∈N . The linear agents analog is a set of linear agents whose price-posting payoff

curves are {Pi}i∈N and the optimal payoff curves are {P̄i}i∈N .

Note that the linear agent analog is well-defined for both welfare maximization and rev-

enue maximization.8 Based on the definition of ζ-resemblance and the linear agent analog,

we present a reduction framework that converts sequential posted pricing mechanisms for

linear agents to non-linear agents, and approximately preserves its payoff approximation

guarantee.

Theorem 2.2.2. Fix any set of (non-linear) agents with price-posting payoff curves

{Pi}i∈N that are ζ-resemblant to their optimal payoff curves {Ri}i∈N . If there ex-

ists a sequential posted pricing mechanism ({oi}i∈N , {qi}i∈N) that is a γ-approximation

to the ex ante relaxation for linear agents analog with price-posting payoff curves

{Pi}i∈N , i.e., SPP({Pi}i∈N , {oi}i∈N , {qi}i∈N) ≥ 1/γ · EAR({P̄i}i∈N), then this mecha-

nism is also a γζ-approximation to the ex ante relaxation for non-linear agents, i.e.,

SPP({Pi}i∈N , {oi}i∈N , {qi}i∈N) ≥ 1/γ ζ · EAR({Ri}i∈N).
8The price-posting revenue (resp. welfare) curve P (q) of a linear agent uniquely pins down her valuation

distribution as v(q) = P (q)
q (resp. v(q) = P ′(q)). For general payoff function, given the price-posting

payoff curves {Pi}i∈N of the non-linear agents, there may not exist distributions for linear agents such
that their price-posting payoff curves coincide with {Pi}i∈N . However, both the payoffs for sequential
posted pricing mechanisms and the ex ante relaxation are well defined given the payoff curves, and
Theorem 2.2.1 holds for payoff curves that does not correspond to any distributions of the agents. Hence,
we can refer to the linear agents analog even without the existence of the underlying distributions.
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Proof. Let {q†i }i∈N be the profile of optimal ex ante quantiles for optimal payoff

curves {Ri}i∈N . Since the ironed price-posting payoff curves {P̄i}i∈N are ζ-resemblant to

the optimal payoff curves {Ri}i∈N , there exists a sequence of quantiles {q‡i }i∈N such that

for any agent i, q‡i ≤ q†i and P̄ (q‡i ) ≥ 1/ζ · R(q†i ). Note that since
∑

i q
‡
i ≤

∑
i q

†
i ≤ 1,

{q‡i }i∈N is also feasible for ex ante relaxation. Therefore,

EAR({Ri}i∈N) =
∑
i∈N

Ri(q
†
i ) ≤ ζ ·

∑
i∈N

P̄i(q
‡
i ) ≤ ζ · EAR({P̄i}i∈N).

Since the expected payoff of the sequential posted pricing mechanism ({oi}i∈N , {qi}i∈N)

only depends on the price posting payoff curves, not on the agents’ utility models, we

have

SPP({Pi}i∈N , {oi}i∈N , {qi}i∈N) ≥ 1/γ · EAR({P̄i}i∈N) ≥ 1/γ ζ · EAR({Ri}i∈N),

and Theorem 2.2.2 holds. □

The reduction framework (Theorem 2.2.2) seems to be an immediate consequence

from the definition of sequential posted pricing and definition of ζ-resemblance. In the

later sections, We will discuss its extensions to other (probably more general) classes of

mechanisms by adopting the same method. Specifically, in Appendix A.1, we show that

how a similar reduction framework hold for other formats of posted pricing mechanisms

– oblivious posted pricing where mechanisms cannot control the order of agents, and

anonymous pricing where mechanisms need to post an identical price to all agents. In

Section 2.2.2, we show that when the agents satisfy the expected utility representation,
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any deterministic, dominant strategy incentive compatible mechanism can be converted

to approximately preserve the approximation ratio for non-linear agents.

As an application of the reduction framework in Theorem 2.2.2, consider (non-linear)

agents with private budget utility. Optimal mechanism for agents with private budget

utility have been studied in the literature (e.g. Che and Gale, 2000, Devanur andWeinberg,

2017a for single-agent, Pai and Vohra, 2014 for i.i.d. agents and Alaei et al., 2012 for

non-i.i.d. agents). The characterization of these optimal mechanisms are complicated

even for simple distributions (e.g., value and budget drawn i.i.d. from [0, 1] uniformly).

However, with the reduction framework (Theorem 2.2.2 for posted pricing mechanism

and Theorem 2.2.3 for pricing-based mechanism), due to the resemblance between price-

posting payoff curve and optimal payoff curve, we can extend the simple mechanism

(i.e., sequential/oblivious posted pricing mechanism and marginal payoff mechanism) from

linear agents to private-budgeted agents with better approximation guarantees.

2.2.2. Reduction Framework for Pricing-based Mechanisms

Following the discussion in Section 2.2.1, in this section we introduce the reduction frame-

work for pricing-based mechanisms. For this reduction framework, we focus on agents

satisfying the von Neumann-Morgenstern expected utility representation.

Recall that by taxation principle, it is without loss to consider menu mechanisms. The

class of pricing-based mechanisms is ones whose menu offered to each agent is posting a

per-unit price. For linear agents, every mechanism (e.g., the Bayesian optimal mecha-

nism) can be implemented as a pricing-based mechanism. Here, our reduction framework
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extends the approximation bounds of deterministic, dominant strategy incentive compat-

ible (DSIC), interim individual rational (IIR), pricing-based mechanisms for linear agents

to non-linear agents whose utility models satisfy the expected utility representation.

Due to the technical reason, we make the following assumption on agents’ utility

models. Note that this assumption is satisfied for most common utility models, e.g.,

linear utility, budget utility, risk averse utility.

Assumption 1. The item is the ordinary good, i.e., when offered a per-unit price

for the item to the agent, her demand is weakly decreasing in price.

Based on the definition of ζ-resemblance and linear agent analog, we present the meta-

theorem (Theorem 2.2.3): a reduction framework that converts every deterministic, DSIC,

IIR, pricing-based mechanism for linear agents to a DSIC, IIR, pricing-based mechanism

for non-linear agents, and approximately preserves its payoff approximation guarantee.

Theorem 2.2.3 (Reduction Framework). Fix any set A of (non-linear) agents with

price-posting payoff curves {Pi}i∈N and optimal payoff curves {Ri}i∈N . For any determin-

istic, DSIC, IIR, pricing-based mechanism ML for linear agents, there is a pricing-based

mechanism M for non-linear agents A that is DSIC, IIR, and satisfies

i. Identical payoff: mechanism M for non-linear agents A has the same payoff as

mechanism ML for the linear agents analog AL. Denote the payoff of mechanism

M as M({Pi}i∈N).

ii. Identical feasibility: mechanism M for non-linear agents A has the same distri-

bution over outcomes as mechanism ML for the linear agents analog AL.
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Denote by γ the approximation of mechanism ML for the linear agents analog AL to the ex

ante relaxation of AL, i.e., ML({Pi}i∈N) ≥ 1/γ · EAR({P̄i}i∈N). If each non-linear agent

in A is ζ-resemblant, then mechanism M for non-linear agents A is γ ζ-approximation

to the ex ante relaxation of A, i.e., M({Pi}i∈N) ≥ 1/γ ζ · EAR({Ri}i∈N).

In Section 2.2.2.1, we present the implementation of the reduction framework. In

Section 2.2.2.2, we show how it achieves the claimed properties in Theorem 2.2.3. Finally,

in Section 2.2.2.3, we discuss the consequence of the reduction framework for the marginal

payoff mechanism (i.e., the Bayesian optimal mechanism) for linear agents.

2.2.2.1. Implementation in Theorem 2.2.3. Algorithm 1 describes the implementa-

tion of Theorem 2.2.3.9 This implementation includes two notations q̂ML
i

(
{qj}j∈N\{i}

)
and xq̂(θ) which we define below.

For any deterministic DSIC, IIR mechanismML for linear agents, it can be represented

by a mapping from the quantiles of other agents to a threshold quantile for each agent.

The agent wins when her quantile is below the threshold and loses when her quantile is

above the threshold. We denote the function that maps the profile of other agent quantiles

{qj}j∈N\{i} to a quantile threshold for agent i as q̂ML
i

(
{qj}j∈N\{i}

)
.

For any non-linear agent model (Θ,F, u), the single-agent pricing problem identifies the

per-unit (market clearing) price pq̂ to offer the agent for any ex ante allocation constraint

q̂. Denote the allocation probability selected by an agent with type θ when offered per-

unit price pq̂ as x̂q̂(θ). For every type θ, define function Hθ(q) = x̂q(θ). Note that under

the ordinary good assumption (Assumption 1) Hθ(q) is weakly increasing in q for all type

9The construction is a simplification of a construction in Alaei et al. [2013].
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θ under (Assumption 1), and thus can be viewed as the cumulative density function of a

distribution. See Lemma 2.2.4.

Algorithm 1: Reduction Framework for Pricing-based Mechanism

Input: Non-linear agents {(Θi, Fi, ui)}i∈N ; and deterministic, DSIC, IIR
mechanism ML for linear agents

1 For each agent i with private type θi, map the type to a random quantile qi
according to the distribution Hi,θi with cdf Hi,θi(q) = x̂i

q(ti).
/* Hi(q) is well-defined. See Lemma 2.2.4 */

2 For each agent i, calculate quantile threshold as q̂i = q̂ML
i

(
{qj}j∈N\{i}

)
.

/* q̂ML
i (·) is well-defined since ML is deterministic and DSIC. */

3 For each agent i, set payment pi = pq̂i xq̂i
i (θi), and allocation xi = 1 if qi < q̂i and

xi = 0 otherwise.

Lemma 2.2.4. For an ordinary good (Assumption 1), the allocation probability xq(θ) is

weakly increasing in q for all type θ.

Proof. For an ordinary good by definition, the agent’s expected allocation probability

is weakly decreasing in the price. Thus, the per-unit price in each q ex ante mechanism

(with respect to the price-posting payoff curve P ) is weakly decreasing in q. Now consider

the q ex ante mechanism with respect to the ironed price-posting payoff curve P̄ for all

quantile q. The per-unit price is monotone (by the previous argument) on quantiles that

are not in ironed intervals. Within an ironed interval, the mechanism is a mix over two

end-points of non-ironed intervals which linearly interpolates between the end-points and

is thus monotone. □

2.2.2.2. Proof of Theorem 2.2.3. We first show the implementation (Algorithm 1) is

DSIC, IIR and satisfies both identical payoff and identical feasibility properties.
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Lemma 2.2.5. Given a deterministic, DSIC, IIR mechanism ML for linear agents, the

mechanism M from the implementation (Algorithm 1) is DSIC, IIR, and satisfies identical

payoff and identical feasibility properties in Theorem 2.2.3.

Proof. Since mechanism ML is deterministic and DSIC, Algorithm 1 is well-defined.

Since for each agent i, her type θi is drawn from Fi and qi is drawn from Hi condition

on θi, the (unconditional) distribution of qi is uniform on [0, 1]. Thus, from each agent

i’s perspective, the other agents’ quantiles are distributed independently and uniformly

on [0, 1]. This agent faces a distribution over ex ante posted pricing that is identical

to the distribution of quantile thresholds in the mechanism ML. Thus, DSIC and the

identical payoff property is satisfied. Since ML is IIR, M is also IIR. Finally, note

that the distribution of qi is uniform on [0, 1], identical feasibility property is satisfied by

construction. □

We now show that the implementation extends the approximation guarantee of mech-

anism ML for linear agents. Note that this is immediately implied by the identical payoff

property and the following lemma.

Lemma 2.2.6. For agents with ironed price-posting payoff curves {P̄i}i∈N and the optimal

payoff curves {Ri}i∈N , if each agent is ζ-resemblant, the ex ante relaxation on the ironed

price-posting payoff curve is a ζ-approximation to the ex ante relaxation on the optimal

payoff curves, i.e., EAR({P̄i}i∈N ,X ) ≥ 1/ζ · EAR({Ri}i∈N).

Proof. Let {q†i }i∈N ∈ EAF(X ) be the profile of optimal ex ante quantiles for op-

timal payoff curves {Ri}i∈N . Since the ironed price-posting payoff curves {P̄i}i∈N are

ζ-resemblant to the optimal payoff curves {Ri}i∈N , there exists a sequence of quantiles
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{qi}i∈N such that for any agent i, qi ≤ q†i and P̄ (qi) ≥ 1/ζ · R(q†i ). Note that {qi}i∈N is

also feasible. Therefore,

EAR({Ri}i∈N) =
∑
i∈N

Ri(q
†
i ) ≤ ζ ·

∑
i∈N

P̄i(qi) ≤ ζ · EAR({P̄i}i∈N). □

2.2.2.3. Application on Marginal Payoff Mechanism. In Bulow and Roberts [1989],

authors introduce the marginal revenue mechanism and show its revenue-optimality for

linear agents. The marginal revenue mechanism can be easily extended to other payoff

objectives and we denote its extensions as the marginal payoff mechanisms. The ex

ante relaxation gives an upper bound on the Bayesian optimal mechanism. For linear

agents, the gap between the ex ante relaxation and the Bayesian optimal mechanisms

(i.e., marginal payoff mechanisms) is precisely determined by the optimal payoff curves.

Definition 2.2.4. The ex ante gap for the optimal payoff curves {Ri}i∈N is the ratio

between the ex ante relaxation EAR({Ri}i∈N) and the payoff of the Bayesian optimal

mechanism for linear agents OPT({Ri}i∈N).

In single-item environments, the ex ante gap γ is at most 1/(1− 1/
√
2π) [Yan, 2011]. By

our framework Theorem 2.2.3 on the marginal payoff mechanisms, we obtain the marginal

payoff mechanism for non-linear agents, and its approximation guarantee.

Definition 2.2.5. The marginal payoff mechanism, denoted by MPM (defined in Al-

gorithm 1) corresponds to the linear agent marginal revenue mechanism. Denote the payoff

of MPM for agents with price-posting payoff curves {Pi}i∈N as MPM({Pi}i∈N).

Proposition 2.2.7. Given agents with the ironed price-posting payoff curves {P̄i}i∈N

and the optimal payoff curves {Ri}i∈N , if each agent is ζ-resemblant, the worst case ratio



46

between the the marginal payoff mechanism with respect to price-posting payoff curves

and the ex ante relaxation on the optimal payoff curves is ζγ, i.e., MPM({Pi}i∈N) ≥

1/ζγ · EAR({Ri}i∈N), where γ is the ex ante gap with curves {P̄i}i∈N .

2.3. Budgeted Agent

2.3.1. Welfare Maximization

For agents with budget constraints, the ex ante optimal mechanism might be complicated

and hard to characterize. However, as we show below, without any assumption on the

valuation distribution or the budget distribution except the independence, posting the

market clearing price guarantees a 2-approximation in welfare.

Theorem 2.3.1. An agent with private budget has the price-posting welfare curve P

that is 2-resemblant to her optimal welfare curve R if the budget is drawn independently

from the valuation.

The proof of Theorem 2.3.1 generalizes the price decomposition technique from Abrams

[2006] and extends it for welfare analysis.

Fix an arbitrary ex ante constraint q, denote EX as the q ex ante welfare-optimal

mechanism, and Payoff[EX] as its welfare. We want to decompose EX into two mech-

anisms EX† and EX‡ according to the market clearing price pq and bound the welfare

from those two mechanisms separately. The decomposed mechanism may violate the in-

centive constraint for budgets, and we refer to this setting as the random-public-budget

utility model. Note that the market clearing price is the same in both the private budget

model and the random-public-budget utility model. Intuitively, mechanism EX† contains
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per-unit prices at most the market clearing price, while mechanism EX‡ contains per-

unit prices at least the market clearing price. Both mechanisms EX† and EX‡ satisfy

the ex ante constraint q, and the sum of their welfare upper bounds the original ex ante

mechanism EX, i.e., Payoff[EX] ≤ Payoff
[
EX†]+Payoff

[
EX‡].

To construct EX† and EX‡ that satisfy the properties above, we first introduce a

characterization of all incentive compatible mechanisms for a single agent with private-

budget utility, and her behavior in the mechanisms.

Definition 2.3.1. An allocation-payment function τ : [0, 1] → R+ is a mapping from

the allocation x to the payment p.

Lemma 2.3.2. For a single agent with private-budget utility, in any incentive compatible

mechanism, for all types with any fixed budget, the mechanism provides a convex and non-

decreasing allocation-payment function, and subject to this allocation-payment function,

each type will purchase as much as she wants until the budget constraint binds, or the

unit-demand constraint binds, or the value binds (i.e., her marginal utility becomes zero).

Proof. Myerson [1981a] show that any mechanisms (x, p) for a single linear agent

is incentive compatible (the agent does not prefer to misreport her value) if and only if

a) x(v) is non-decreasing; b) p(v) = vx(v) −
∫ v

0
x(t)dt. Thus, given any non-decreasing

allocation x, the payment p is uniquely pined down by the incentive constraints.

Comparing with the linear utility, the incentive compatibility in the private-budget

utility guarantees that the agent does not prefer to misreport either her value or budget.

If we relax the incentive constraints such that she is only allowed to misreport her value,

Myerson result already shows that for any fixed budget level w, the allocation x(v, w) is
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non-decreasing in v and the payment p(v, w) = vx(v, w)−
∫ v

0
x(t, w)dt is uniquely pined

down. We define the allocation-payment function τw(x̂) = max{p(v, w)+v ·(x̂−x(v, w)) :

x(v, w) ≤ x̂} if x̂ ≤ x(v̄, w); and ∞ otherwise. Given the characterization of allocation

and payment above, this allocation-payment function is well-defined, non-decreasing and

convex. □

Remark 2.3.2. Unlike Myerson’s result which give a sufficient and necessary condition

for incentive compatible mechanisms for linear agents, Lemma 2.3.2 only characterizes a

necessary condition for private-budget utility.10 This condition is already enough for our

arguments in Section 2.3.1.

Now we give the construction of EX† and EX‡ by constructing their allocation-payment

functions. The decomposition is illustrated in Figure 2.1. For agent with budget w, let τw

be the allocation-payment function in mechanism EX, and x∗
w be the utility maximization

allocation for a linear agent with value equal to the market clearing price pq, i.e., x∗
w =

argmax{x : τ ′w(x) ≤ pq}. For agents with budget w, we define the allocation-payment

functions τ †w and τ ‡w for EX† and EX‡ respectively below,

τ †w(x) =

 τw(x) if x ≤ x∗
w,

∞ otherwise;
τ ‡w(x) =

 τw(x
∗
w + x)− τw(x

∗
w) if x ≤ 1− x∗

w,

∞ otherwise.

By construction, for each type of the agent, the allocation from EX is upper bounded by

the sum of the allocation from EX† and EX‡, which implies that the welfare from EX is

10This characterization is only necessary because it relaxes the incentive constraints for misreporting the
private budget.
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0 x∗
w 1

∞

τw

τ †w

0 x∗
w 1

∞

1

τ ‡w

τw

Figure 2.1. Depicted are allocation-payment function decomposition. The
black lines in both figures are the allocation-payment function τw in ex ante
optimal mechanism EX; the gray dashed lines are the allocation-payment
function τ †w and τ ‡w in EX† and EX‡, respectively.

upper bounded by the sum of the welfare from EX† and EX‡, and the requirements for

the decomposition are satisfied.

As sketched above, we separately bound the welfare in EX† and EX‡ by the welfare

from posting the market clearing price.

Lemma 2.3.3. For a single agent with random-public-budget utility, independently dis-

tributed value and budget, and any ex ante constraint q, the welfare from posting the

market clearing price pq is at least the welfare from EX†, i.e., P (q) ≥ Payoff
[
EX†].

Proof. Consider agent with type (v, w) and agent with type (v′, w), where both value

v and v′ are higher than the market clearing price pq. Notice that the allocations for these

two types are the same in EX† and in market clearing, since the per-unit price in both

mechanisms is at most pq which makes the mechanisms unable to distinguish these two

types.
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Let x† be the allocation rule in EX† and let xq be the allocation rule in posting the

market clearing price pq. For any value v ≥ pq, the expected allocation for types with

value v is lower in EX† than in market clearing, i.e., Ew

[
x†(v, w)

]
≤ Ew[x

q(v, w)]. Oth-

erwise suppose the types with value v∗ has strictly higher allocation in EX† for some

value v∗ ≥ pq, i.e, Ew

[
x†(v∗, w)

]
> Ew[x

q(v∗, w)]. By the fact stated in previous para-

graph, we have that for any budget w and any value v, v∗ ≥ pq, xq(v, w) = xq(v∗, w),

x†(v, w) = x†(v∗, w), and the expected allocation in EX† is

Ev,w

[
x†(v, w)

]
≥ Pr[v ≥ pq] · Ev,w

[
x†(v, w)|v ≥ pq

]
= Pr[v ≥ pq] · Ew

[
x†(v∗, w)

]
> Pr[v ≥ pq] · Ew[x

q(v∗, w)] = Pr[v ≥ pq] · Ev,w[x
q(v, w)|v ≥ pq] = q,

where the qualities hold due to the independence between the value and the budget. Note

that this implies that EX† violates the ex ante constraint q, a contradiction. Further,

for any type with value v ≥ pq, Ew

[
x†(v, w)

]
≤ Ew[x

q(v, w)] implies that the allocation

in market clearing “first order stochastic dominantes” the allocation in EX†, i.e., for any

threshold v†, the expected allocation from all types with value v ≥ v† in market clearing

is at least the expected allocation from those types in EX†. Taking expectation over the

valuation and the budget, the expected welfare from market clearing is at least the welfare

from EX†, i.e., P (q) ≥ Payoff
[
EX†]. □

Lemma 2.3.4. For a single agent with random-public-budget utility, independently dis-

tributed value and budget, and any ex ante constraint q; the welfare from market clearing

is at least the welfare from EX‡, i.e., P (q) ≥ Payoff
[
EX‡].
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Proof. In both EX‡ and market clearing, types with value lower than pq will purchase

nothing, so we only consider the types with value at least pq in this proof. Consider any

type (v, w) where v ≥ pq, its allocation in market clearing is at least its allocation in EX‡,

because the per-unit price in EX‡ is higher. Thus, the welfare from market clearing is at

least the welfare from EX‡, i.e., P (q) ≥ Payoff
[
EX‡]. □

Proof of Theorem 2.3.1. Combining Lemma 2.3.3 and 2.3.4, for any quantile q,

we have

R(q) = Payoff[EX] ≤ Payoff
[
EX†]+Payoff

[
EX‡] ≤ 2P (q) ≤ max

q′≤q
2P̄ (q′). □

2.3.2. Revenue Maximization

In this section we analyze the resemblance of revenue curves for an agent with budget.

We show that approximate resemblance is satisfied under weaker assumptions on the

valuation distribution or the budget distribution. For simplicity, in this section, we use

the notation Payoffw[·] to denote the revenue given any mechanism if the budget of the

agent is w, and Payoff[·] to denote the revenue by taking expectation over the budget w.

2.3.2.1. Public Budget. In this section, we consider the simpler setting where agents

have public budgets, i.e., the budget distribution is a point mass. For an agent with a

public budget, we show that the ironed price-posting revenue curve is 1-resemblant to

her optimal revenue curve if her valuation distribution is regular (Theorem 2.3.5) and for

an agent with general valuation distribution, the ironed price-posting revenue curve is

2-resemblant to her optimal revenue curve (Theorem 2.3.7).
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Theorem 2.3.5. An agent with public budget and regular valuation distribution has

the ironed price-posting revenue curve P̄ that equals (i.e. 1-resemblant) her optimal rev-

enue curve R.

To prove Theorem 2.3.5, it is sufficient to show for any quantile q̂ ∈ [0, 1], the q̂ ex ante

optimal mechanism is a price-posting mechanism, i.e., R(q̂) = P (q̂). To show this, we

write the ex ante optimal mechanism as an optimization program, and apply Lagrangian

relaxation on the budget constraint. This leads to a new optimization program similar

to an agent with linear utility but with a Lagrangian objective function. Following the

technique that price-posting revenue curve indicates the ex ante optimal mechanism for

a linear agent, we consider the Lagrangian price-posting revenue curve which character-

izes the ex ante optimal mechanism for the Lagrangian objective function. See further

discussion about this technique in Alaei et al. [2013] and Feng and Hartline [2018]. The

detailed proof of Theorem 2.3.5 is deferred to Appendix A.2.

For an agent with a general valuation distribution, resemblance follows from a char-

acterization of the ex ante optimal mechanism from Alaei et al. [2013].

Lemma 2.3.6 (Alaei et al., 2013). For a single agent with public budget, the q ∈ [0, 1] ex

ante optimal mechanism has a menu with size at most two.

Theorem 2.3.7. An agent with public budget has the ironed price-posting revenue

curve P̄ that is 2-resemblant to her optimal revenue curve R.

Proof. By Lemma 2.3.6, the allocation rule xq of the ex ante revenue maximization

mechanism for the single agent with public budget has a menu of size at most two.

We decompose its allocation into xL and xH as illustrated in Figure 2.2. Note that
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Figure 2.2. The thin solid line is the allocation rule for the optimal ex ante
mechanism. The thick dashed line on the left side is the allocation of the
decomposed mechanism with lower price, while the thick dashed line on the
right side is the allocation of the decomposed mechanism with higher price.

both allocation xL and xH are (randomized) price-posting allocation rules, and neither

allocation violates the allocation constraint q. Thus,

R(q) = Payoff[xq] = Payoff[xL] +Payoff[xH ] ≤ 2 max
q†≤q

P̄ (q†). □

2.3.2.2. Private Budget. In this section, we study the resemblance of the ironed price-

posting revenue curve and the optimal revenue curve for agents with private budget. For

linear agents, those two curves are equivalent for any valuation distribution. However,

for an agent with private budget, the gap between them can be unbounded. Specifically,

when the budget distribution is correlated with the valuation distribution, posting prices

is not a constant approximation to the optimal revenue for a single agent even with strong

regularity assumption on the marginal valuation distribution and budget distribution.

Example 2.3.3 (necessity of the independence between the value and budget distribu-

tions). Fix a large constant h. Consider a single agent with value v drawn from [1, h]

with density function h
h−1

1
v2
, and budget w = 2h − v, i.e., her value and budget are fully

correlated. A mechanism which charges the agent v − 2ϵ with probability 1 − ϵ
h
, or w
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with probability ϵ
h
for sufficient small positive ϵ is incentive compatible and has revenue

O(lnh). However, the revenue of the anonymous pricing is O(1).

Therefore, in this section, we focus on the case when the budget distribution is indepen-

dent with the valuation distribution for each agent. Note that even with the independence

assumption, without any further assumption on the valuation or the budget distribution,

posting prices is not approximately optimal even for a single agent, see the following ex-

ample as an illustration. Therefore, we consider mild assumption on either the valuation

distribution or the budget distribution and show the corresponding resemblant property.

Example 2.3.4. Consider the budget distribution is the discrete equal revenue distribu-

tion, i.e., g(i) = 1/ϖ · i2, where ϖ = π2/6. Let the quantile function of the valuation dis-

tribution be q(i) = 1/ln i. The optimal price posting revenue is a constant. Next consider

the pricing function τ(x) = 1
1−x

. From this pricing function, the value vi corresponding

to payment i is vi = i2. Note that the revenue from this payment function is infinity, i.e.,

Payoff[τ ] ≥ lim
m→∞

m∑
i=1

(i · q(vi) · g(i))

=
1

2ϖ
lim

m→∞

m∑
i=1

1

i · ln i

=
1

2ϖ
lim

m→∞
ln lnm → ∞.

Therefore, the gap between price posting and the optimal mechanism is infinite.

First we show that regularity on the valuation distribution is sufficient to guarantee

the resemblance between the ironed price-posting revenue curves and the optimal revenue

curve, without further assumption on the budget distribution.



55

Theorem 2.3.8. A single agent with private-budget utility and regular valuation dis-

tribution has an ironed price-posting revenue curve P̄ that is 3-resemblant to her optimal

revenue curve R, if her value and budget are independently distributed.

Fix an arbitrary ex ante constraint q, denote EX as the q ex ante revenue-optimal

mechanism, and Payoff[EX] as its revenue. We decompose EX into two mechanisms EX†

and EX‡ according to the market clearing price pq. Intuitively, the per-unit prices in

EX† for all types are at most the market clearing price and the per-unit prices in EX‡

for all types are larger than the market clearing price. The details of the decomposition

is specified in Section 2.3.1, and we will bound the revenue from those two mechanisms

separately.

Lemma 2.3.9. For a single agent with random-public-budget utility, independently dis-

tributed value and budget, and any ex ante constraint q; the revenue of EX† is at most the

revenue from posting the market clearing price, i.e., P (q) ≥ Payoff
[
EX†].

Proof. The ex ante allocation of EX† is at most the ex ante allocation of EX, i.e., q.

Combining with the fact that the per-unit prices in EX† for all types are weakly lower

than the market clearing price, its revenue is at most the revenue of posting the market

clearing price. □

For the revenue bound of EX‡, we consider two different cases: (1) the market clearing

price is larger than the monopoly reserve; and (2) the market clearing price is smaller than

the monopoly reserve.

Lemma 2.3.10. For a single private-budget agent with independently distributed value

and budget and regular value distribution, if the market clearing price pq = P (q)/q is larger
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than the monopoly reserve, i.e., pq = P (q)/q ≥ m∗, the revenue of posting the market

clearing price is at least the revenue of EX‡, i.e., P (q) ≥ Payoff
[
EX‡].

Proof. In both EX‡ and the mechanism that posts the market clearing price, the

types with value lower than the market clearing price pq will purchase nothing, so we only

consider the types with value at least pq in this proof. Each budget level is considered

separately.

For types with budget w ≤ pq, by posting the market clearing price pq, those types

always pay their budgets w, which is at least the revenue from those types in EX‡.

For types with budget w > pq, by posting the market clearing price pq, those types

always pay pq. Since the budget constraints do not bind for these types, it is helpful to

consider the price-posting revenue curve without budget, which we denote by PL. The

regularity of the valuation distribution guarantees that PL is concave. The concavity of

PL implies that higher prices above m∗ extracts lower revenue than pq. Since the per-unit

prices in EX‡ for all types are at least pq, the concavity of PL guarantees that the expected

revenue of posting pq for types with budget larger than p is at least the expected revenue

for those types in EX‡. Combining these bounds above, we have P (q) ≥ Payoff
[
EX‡]. □

Lemma 2.3.11. For a single private-budget agent with independently distributed value

and budget and regular value distribution, if the market clearing price pq = P (q)/q is smaller

than the monopoly reserve, there exists q† ≤ q such that the market clearing revenue from

q† is a 2-approximation to the revenue from EX‡, i.e., 2P (q†) ≥ Payoff
[
EX‡].

Proof. Note that any price that is at least pq is feasible for the ex ante constraint

q. We consider posting a random price p = max{pq,p0} with p0 drawn identically to
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pq

w

Payoffw[p]

0 1

pqw
Payoffw[OPTw]

Figure 2.3. In the geometric proof of Lemma 2.3.11, the upper bound on
the expected revenue of EX‡ (Payoffw[p] and Payoffw[OPTw] on the left
and right, respectively) is the area of the light gray striped rectangle and
the revenue from posting random price p is the area of the dark gray region.
By geometry, the latter is at least half of the former. The black curve is
the price-posting revenue curve with no budget constraint PL. The figure
on the left depicts the small-budget case (i.e., w < pq), and the figure on
the right depicts the large-budget case (i.e., w ≥ pq).

the agents value distribution. Fixing the budget of the agent w, consider the following

geometric argument [cf. Dhangwatnotai et al., 2015]. For both sides of Figure 2.3, the

area of the light gray stripped rectangle upper bounds the revenue of EX‡ and the area of

the dark gray region is the expected revenue from posting random price p. Consequently,

concavity of the price-posting revenue curve with no budget constraint PL (by regularity

of the value distribution) implies that a triangle with half the area of the light gray

rectangle is contained within the dark gray region and, thus, the random price is a 2-

approximation. As the random price does not depend on the budget w, the same bound

holds when w is random. Of course, the optimal deterministic price that is at least pq is

only better than the random price and the lemma is shown. The remainder of this proof

verifies that the geometry of the regions described above is correct.

The left side of Figure 2.3 depicts the fixed budgets w that are at most pq. The

area of the light gray striped rectangle upper bounds the revenue of EX‡ as follows. Let

Payoffw[p] be the expected revenue from posting price p to types with budget w. Under
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both EX‡ and the market clearing price pq, types with value below the market clearing

price pay zero. For the remaining types, in EX‡ they pay at most their budget and in

market clearing they pay exactly their budget. Thus, Payoffw

[
EX‡] ≤ Payoffw[p

q] =

w (1 − F (pq)) where, recall, 1 − F (pq) is the probability the agent’s value is at least the

market clearing price pq. Of course, w (1− F (pq)) is the height and area (its width is 1)

of the light gray striped region on the left side of Figure 2.3.

The right side of Figure 2.3 depicts the fixed budgets w that are at least pq. The

area of the light gray striped rectangle upper bounds the revenue of EX‡ as follows. Let

OPTw be the optimal mechanism to types with budget w without ex ante constraint

and Payoffw[OPTw] be its expected revenue from these types. Clearly, Payoffw

[
EX‡] ≤

Payoffw[OPTw] as the latter optimizes with relaxed constraints of the former. Laffont and

Robert [1996] show that OPTw posts the minimum between budget w and the monopoly

reserve m∗ when the agent has public budget and regular valuation. As the budget

does not bind for this price, its revenue is given by the price-posting revenue curve with

no budget constraint, i.e., Payoffw[OPTw] = PL(1 − F (min{w,m∗})). Of course, this

revenue is the height and area (its width is 1) of the light gray striped region on the right

side of Figure 2.3.

Next, we will show that the revenue of posting the random price p is the grey shaded

areas illustrated in Figure 2.3 (in both cases). A random price from the value distribution,

i.e., p0, corresponds to a uniform random quantile constraint, i.e., drawing uniformly from

the horizontal axis. Since we truncate the lower end of the price distribution at the market

clearing price pq, the revenue from quantiles greater than q equals the revenue from the

market clearing price. For any fixed w, when p ∈ [pq, w], the budget does not bind and the
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revenue of posting price p is PL(q) where PL is the price-posting revenue curve without

budget; and when p > w, the revenue of posting price p is wq. Thus, the revenue from

a random price is given by the integral of the area under the curve defined by qw when

p ≥ w, by PL(q) when p ∈ [w, pq] and this interval exists, and by min(w, pq) when p = pq,

i.e., when p0 ≤ pq. This area is the dark gray region. □

Proof of Theorem 2.3.8. Fix any ex ante constraint q. If the market clearing

price pq = P (q)/q is at least the monopoly reserve, Lemma 2.3.9 and Lemma 2.3.10 imply

that Payoff
[
EX†] ≤ P (q), and Payoff

[
EX‡] ≤ P (q), thus, P (q) is a 2-approximation

to Payoff
[
EX†] + Payoff

[
EX†] = Payoff[EX], i.e., R(q). If the market clearing price

pq is smaller than the monopoly reserve, let q† = argmaxq′≤q P (q′), Lemma 2.3.9 and

Lemma 2.3.11 imply that Payoff
[
EX†] ≤ P (q) ≤ P (q†), and Payoff

[
EX‡] ≤ 2P (q†),

thus, P (q†) is a 3-approximation to R(q). Thus, the agent is 3-resemblant for ex ante

optimization. □

We also consider the assumption that the budget exceeds its expectation with constant

probability at least 1/κ. This assumption on budget distribution is also studied in Cheng

et al. [2018]. Notice that a common distribution assumption, monotone hazard rate, is a

special case of it with κ = e [cf. Barlow and Marshall, 1965].

Theorem 2.3.12. A single agent with private-budget utility has an ironed price-

posting revenue curve P̄ that is (1 + 3κ− 1/κ)-resemblant to her optimal revenue curve

R, if her value and budget are independently distributed, and the probability the budget

exceeds its expectation is 1/κ.
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The proof of Theorem 2.3.12 also uses the similar decomposition technique as in The-

orem 2.3.1 and 2.3.8.

Let w∗ denote the expected budget of the agent. For any ex ante constraint q, denote

EX as the q ex ante revenue optimal mechanism.

Our analysis here is similar to the analysis for welfare, i.e., the price decomposi-

tion technique. Consider the decomposition of EX into three mechanisms EX†, EX§

and EX‡ such that mechanism EX† contains per-unit prices at most the market clear-

ing price, mechanism EX‡ contains per-unit prices at least the expected budget, while

mechanism EX§ contains per-unit prices between the market clearing price and the ex-

pected budget. All mechanisms satisfy the ex ante constraint q, and the sum of their

welfare is upper bounded by the welfare of the original ex ante mechanism EX, i.e.,

Payoff[EX] ≤ Payoff
[
EX†]+Payoff

[
EX§]+Payoff

[
EX‡]. Note that in the special case

where the market clearing price is larger than the expected budget, i.e., pq > w∗, EX§

does not exist and mechanism EX is decomposed into EX† and EX‡.

We construct the allocation-payment functions τ †w, τ
‡
w and τ §w for EX†, EX‡, and EX§

respectively. For each budget w, let τw be the allocation-payment function for types

with budget w in mechanism EX, and x∗
w be the utility maximization allocation for the

agent with value and budget equal to the market clearing price pq, i.e., x∗
w = argmax{x :

τ ′w(x) ≤ pq}. Let x♯
w be the utility maximization allocation for the agent with value and

budget equal to the expected budget w∗, i.e., x♯
w = argmax{x : τ ′w(x) ≤ w∗}. Then the
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allocation-payment functions τ †w, τ
‡
w and τ §w are defined respectively as follows,

τ †w(x) =

 τw(x) if x ≤ x∗
w,

∞ otherwise;
τ §w(x) =

 τw(x
∗
w + x)− τw(x

∗
w) if x ≤ x♯

w − x∗
w,

∞ otherwise;

τ ‡w(x) =

 τw(x
♯
w + x)− τw(x

♯
w) if x ≤ 1− x♯

w,

∞ otherwise.

The revenue contribution from EX† is bounded in Lemma 2.3.9. Next we illustrate

how to bound the revenue from EX‡ and EX§ respectively using the revenue from price-

posting.

Lemma 2.3.13. For a single agent with private-budget utility, independently distributed

value and budget, for any quantile q, there exists q† ∈ [0, q] such that (1+κ− 1/κ) ·P (q†) ≥

Payoff
[
EX‡].

Proof. Let w∗ be the expected budget and let p̄ = max{w∗, pq}. Let q̄ be the quantile

corresponding to value p̄ and let q† = argmaxq′≤q P (q′). Thus P (q̄) ≤ P (q†). Moreover, by

the construction of the decomposition, the per-unit price in EX‡ is larger than p̄. Similar

to the proof of Lemma 2.3.10, we only consider the types with value at least p̄.

Let Payoffw

[
τ ‡w
]
be the expected revenue of providing the allocation-payment function

τ ‡w in EX‡ to the types with budget w; and let Payoffw[p] be the expected revenue of

posting price p to the types with budget w. The following three facts allow comparison

of Payoff
[
EX‡] to P (q†):
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(a) Posting the price p̄ makes the budget constraints bind for the types with budget

at most w∗, so Payoffw

[
τ ‡w
]
≤ Payoffw[p̄] for all w ≤ w∗.

(b) Payoffw

[
τ ‡w
]
≤ w

w∗Payoffw∗

[
τ ‡w
]
for all w ≥ w∗. This is because if the type

(v, w∗) pays her budget w∗ (i.e., the budget constraint binds), her payment is a

(w/w∗)-approximation to the payment from the type (v, w), since the type (v, w)

pays at most w. Moreover, if the type (v, w∗) pays less than her budget w∗ (i.e.,

the unit-demand constraint binds, or the value binds), her allocation is equal to

the allocation from the type (v, w) for w ≥ w∗. Hence, their payments are the

same.

(c) Since the revenue of posting price p̄ to an agent with budget w∗ is at most the

revenue to an agent with budget w > w∗; with the assumption that budgets

exceed the expectation w∗ with probability at least 1/κ, it implies that

Payoffw∗ [p̄] ·
1

κ
≤ E

[
Payoffw[p̄]

∣∣∣ w ≥ w∗
]
·Pr[w ≥ w∗] ≤ P (q̄).

We upper bound the revenue of EX‡ as follows,

Payoff
[
EX‡] = ∫ w∗

¯
w

Payoffw

[
τ ‡w
]
dG(w) +

∫ w̄

w∗
Payoffw

[
τ ‡w
]
dG(w)

≤
∫ w∗

¯
w

Payoffw[p̄] dG(w) +

∫ w̄

w∗

w

w∗Payoffw∗

[
τ ‡w
]
dG(w)

≤ (1− 1

κ
)P (q̄) +

∫ w̄

w∗ wdG(w)

w∗ Payoffw∗ [p̄]

≤ (1− 1

κ
)P (q̄) +Payoffw∗ [p̄] ≤ (1 + κ− 1

κ
)P (q†)
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where the first inequality is due to facts (a) and (b); in the second inequality, the first

term is due to Pr[w ≤ w∗] ≤ 1− 1/κ, the revenue Payoffw[p̄] is monotone increasing in w,

and by definition
∫ w̄

¯
w
Payoffw[p̄] dG(w) = P (q̄), and the second term is due to fact (a);

and the last inequality is due to P (q̄) ≤ P (q†) and fact (c). □

Lemma 2.3.14. For a single agent with private-budget utility, independently distributed

value and budget, when pq ≤ w∗, there exists q† ≤ q such that the price-posting revenue

from q† is a (2κ − 1)-approximation to the revenue from EX§, i.e., (2κ − 1)P (q†) ≥

Payoff
[
EX§].

Proof. Let q† = argmaxq′≤q P (q′). Suppose the support of the budget distribution is

from [
¯
w, w̄]. Let p̃ be the price larger than the market clearing price pq and smaller than

the expected budget w∗ that maximizes revenue without the budget constraint. Consider

the following calculation with justification below.

Payoff
[
EX§] = ∫ w∗

¯
w

Payoffw

[
τ §w
]
dG(w) +

∫ w̄

w∗
Payoffw

[
τ §w
]
dG(w)

(a)

≤
∫ w∗

¯
w

Payoffw∗

[
τ §w
]
dG(w) +

∫ w̄

w∗

w

w∗Payoffw∗

[
τ §w
]
dG(w)

(b)

≤
∫ w∗

¯
w

Payoffw∗ [p̃] dG(w) +

∫ w̄

w∗

w

w∗Payoffw∗ [p̃] dG(w)

(c)

≤ (2− 1

κ
)Payoffw∗ [p̃]

(d)

≤ (2κ− 1)Payoff[p̃]
(e)

≤ (2κ− 1)P (q†).

Inequality (a) holds because given the allocation payment function τ §w, the revenue only

increases if we increase the budget to w∗, i.e., Payoffw

[
τ §w
]
≤ Payoffw∗

[
τ §w
]
for any
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w ≤ w∗. Moreover, for any w > w∗, given the allocation payment function τ §w, the

revenue is either the same for budget w and w∗, or the budget binds for agent with

expected budget w∗. Since the revenue from agent with budget w is at most w, we know

that Payoffw

[
τ §w
]
≤ w/w∗ · Payoffw∗

[
τ §w
]
. Note that for allocation payment rule τ §w, per-

unit prices are larger than the market clearing price pq and smaller than the expected

budget w∗, and budget does not bind for agents with budget w∗. Therefore, by definition,

the optimal per-unit price in this range is p̃, Payoffw∗

[
τ §w
]
≤ Payoffw∗ [p̃] and inequality

(b) holds. Inequality (c) holds because
∫ w∗

¯
w

dG(w) ≤ 1 − 1/κ by the assumption that

the probability the budget exceeds its expectation is at least κ, and
∫ w̄

w∗
w
w∗dG(w) ≤ 1.

Inequality (d) holds because Payoffw∗ [p̃] ≤ κ · Payoff[p̃] for any randomized prices p̃

according to Cheng et al. [2018]. Inequality (e) holds by the definition of the price-

posting revenue curve P and quantile q†, the fact that price p̃ is larger than the market

clearing price pq. □

Proof of Theorem 2.3.12. Let q† = argmaxq′≤q P (q′). Combining Lemma 2.3.9,

2.3.13 and 2.3.14, we have

Payoff[EX] ≤ Payoff
[
EX†]+Payoff

[
EX‡]+Payoff

[
EX§] ≤ (1 + 3κ− 1/κ)P (q†). □

2.4. Risk Averse Agent

Note that the preference of a risk averse agent coincide with a linear agent when

the allocation is deterministic, and the welfare optimal mechanism for the single-agent

problem with linear utility is deterministic. Thus it is easy to verify that posting price

is optimal for welfare maximization under any ex ante constraint and the price-posting
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welfare curve is 1-resemblant to the optimal welfare curve. Formally, we have the following

theorem, with proof omitted.

Theorem 2.4.1. An agent with risk-averse utility has the price-posting welfare curve P

that equals (i.e. 1-resemblant) her optimal welfare curve R.

Next we consider the revenue maximization problem when agents are risk averse.

Specifically, we consider the risk aversion model in Fu et al. [2013], where each agent’s

utility function has a capacity constraint. Moreover, following Fu et al. [2013], in this

section, we consider the mechanisms that are pointwise individual rational, i.e., losers

have no payment, and winners pay at most their reported values. Formally, x = 0 implies

p = 0. In Example 2.4.3 at the end of this section, we show that price-posting mechanism

is not a constant approximation to the optimal mechanism when we allow the winners

to be charged more than their reported values, even when the capacity is as large as the

support of the value.

We introduce a definition and two lemmas, which are adapted from Fu et al. [2013].

Let (·)+ ≜ max{·, 0}.

Definition 2.4.1 (Fu et al., 2013). A mechanism is a two priced mechanism if, when

it serves an agent with quantile q and capacity C, the payment is either V (q) or V (q)−C.

The probability that agent is charged with payment V (q) is denoted by xv(q), and the

probability that agent is charged with payment V (q)− C is denoted by xC(q).

Lemma 2.4.2 (Fu et al., 2013). The ex ante optimal mechanism for agents with capaci-

tated utility is two priced.
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Lemma 2.4.3 (Fu et al., 2013). For any agent with capacity C and price-posting revenue

curve P , for two priced mechanism with allocation rule x(q) = xv(q)+ xC(q), the revenue

from that agent is upper bounded as

Payoff[x] ≤ E
[
(P ′(q))+ · x(q)

]
+ E

[
(P ′(q))+ · xC(q)

]
+ E

[
(V (q)− C)+ · xC(q)

]
.

Theorem 2.4.4. A single agent with capacitated risk averse utility, maximum value

v̄, and capacity C ≤ v̄, has a price-posting revenue curve P that is (2+ ln v̄/C)-resemblant

to her optimal revenue curve R.

Proof. For any quantile q̂, let x be the optimal allocation that satisfies ex ante allo-

cation constraint q̂. By Lemma 2.4.3,

R(q̂) = Payoff[x] ≤ E
[
(P ′(q))+ · x(q)

]
+ E

[
(P ′(q))+ · xC(q)

]
+ E

[
(V (q)− C)+ · xC(q)

]
.

Let m∗ be the monopoly reserve, and let q† = min{Q(m∗, P ), q̂}. By definition, q† ≤ q̂.

Since the price-posting revenue curve is concave, posting price V (q†) maximizes expected

marginal revenue under ex ante constraint q̂. Therefore,

E
[
(P ′(q))+ · x(q)

]
≤ P (q†) and E

[
(P ′(q))+ · xC(q)

]
≤ P (q†).

When q† = Q(m∗, P ), for any quantile q, P (q) ≤ P (q†). When q† = q̂ < Q(m∗, P ),

the allocation xC(q) with ex ante constraint q̂ that maximizes E
[
(V (q)− C)+ · xC(q)

]
satisfies that xC(q) = 1 for q ≤ q†, and xC(q) = 0 for q > q†. Since the price-posting
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revenue curve is concave, in this case, P (q) ≤ P (q†) when q ≤ q†. Therefore,

E
[
(V (q)− C)+ · xC(q)

]
= E

[(
P (q)

q
− C

)+

· xC(q)

]
≤ E

[(
min

{
v̄,

P (q†)

q

}
− C

)+
]

=

∫ min{1,P (q†)
C

}

P (q†)
v̄

(
P (q†)

q
− C

)
dq +

∫ 1

P (q†)
v̄

(v̄ − C) dq ≤ P (q†) ln
v̄

C
.

Combining the above inequalities, we have R(q) ≤ P (q†)(2 + ln v̄
C
). □

In Theorem 2.4.4, the dependence on ln v̄/
¯
C is necessary even when there is a single

agent.

Example 2.4.2 (necessity of the dependence on v̄/
¯
C). Fix a constant v̄. Consider a

single agent with equal revenue distribution. That is, her value v is drawn from [1, v̄]

with a density function 1/v2 for v ∈ [1, v̄), and a mass point of probability 1/̄v on value v̄.

The revenue for posting any price is 1. Suppose the agent has capacity constraint C ≥ 1,

Consider the mechanism that always allocates the item to the agent, and charges her 0 if

her value v is less than C, and charges her v − C if her value is at least C. The revenue

for this mechanism is ln v̄/C.

Example 2.4.3 (necessity of the restriction to pointwise individually rational mecha-

nisms). Fix a constant v̄. Consider a single agent with equal revenue distribution as in

Example 2.4.2. The revenue for posting any price is 1. Suppose the agent has capacity

constraint C = v̄ and consider the mechanism that always allocates the item to the agent,

and charges her v − v̄ with probability 1
2
, v̄ with probability 1

2
. This mechanism is in-

centive compatible and individually rational. The revenue for this mechanism is half of
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the welfare, which cannot be approximated within a constant fraction by any price-posting

mechanism.

2.5. Endogenous Valuation

When agents can make investment decisions before the auction, we assume that the

investment costs are subtracted from the social welfare, i.e., the welfare contribution from

agent i when she chooses investment decision ai and receives allocation xi is vi(ai, ti) ·

xi − Ci(ai). Note that for agents with endogenous valuation, to apply Theorem 2.2.2

it is also important to specify the timeline for agents to exert costly efforts as it affects

the equilibrium payoff of any given mechanism. In this thesis, we assume that the agent

can delay the investment decision until she sends a message to the seller. In the case of

sequential posted pricing mechanisms, for each agent i, the agent makes the investment

decisions after she sees the realized price offered by the seller. Note that the price is infinite

if the item is sold to previous agents and agent i will not make any investment given

this price. Under this timeline of the model, we can show that agents with endogenous

valuation are 1-resemblant for welfare maximization.

Lemma 2.5.1 (Fan and Lorentz, 1954, Gershkov et al., 2021a). For any function L :

R2 → R such that L(x, q) is supermodular in (x, q) and convex in x, for any pair of

allocations x ≺ x̂,11 we have

∫ 1

0

L(x(q), q) dq ≤
∫ 1

0

L(x̂(q), q) dq.

11x ≺ x̂ means that for any q̂ ∈ [0, 1],
∫ q̂

0
x(q) dq ≤

∫ q̂

0
x̂(q) dq and

∫ 1

0
x(q) dq =

∫ 1

0
x̂(q) dq.
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Theorem 2.5.2. An agent with endogenous valuation has the price-posting welfare

curve P that equals (i.e. 1-resemblant) her optimal welfare curve R.

Proof. Let L(x, q) be the welfare of the agent with type corresponding to quantile q

when she makes optimal investment decision given allocation x. By Gershkov et al.

[2021a], the function L(x, q) is supermodular in (x, q) and convex in x. For any quantile

constraint q̂, let x̂ be the allocation such that x̂(q) = 1 for any q ≤ q̂ and x̂(q) = 0

otherwise. Any mechanism with allocation x that sells the item with probability q̂ satisfies

x ≺ x̂. By Lemma 2.5.1, the optimal mechanism that is q̂ feasible has allocation rule x̂,

which is posting a deterministic price to the agent. Thus this agent has price-posting

welfare curve P that equals (i.e. 1-resemblant) her optimal welfare curve R. □

For revenue maximization, we show that posted pricing is optimal for the single agent

problem given any ex ante constraint if the type distribution satisfies the regularity con-

dition.

Theorem 2.5.3. An agent with endogenous valuation and regular type distribution

has the ironed price-posting revenue curve P̄ that equals (i.e. 1-resemblant) her optimal

revenue curve R.

Proof. Let L(x, q) be the virtual value of the agent given allocation x and type with

quantile q. By Gershkov et al. [2021a], the function L(x, q) is supermodular in (x, q)

and convex in x if the type distribution is regular. Similar to Theorem 2.5.2, for any

quantile q̂, the optimal mechanism for maximizing the expected virtual value that sells

the item with probability at most q̂ is posted pricing. Since the expected revenue equals
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the expected virtual value, this agent has price-posting revenue curve P̄ that equals (i.e.

1-resemblant) her optimal revenue curve R. □
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CHAPTER 3

Optimization of Scoring Rules for Incentivizing Effort

3.1. Preliminaries

In this section, we present a formal program for the optimization of proper scoring

rules for multi-dimensional random states. Section 3.1.1 describes the basic setting for

scoring rules and provides an informal description of the optimization problem for scoring

rules that elicit the marginal means of the distribution. In Section 3.2.1, we discuss

the characterization of proper scoring rules for eliciting the mean with a weak regularity

condition. Section 3.2 gives the formal program for optimizing scoring rules for the mean.

A reason for our focus on scoring rules for eliciting the mean is that, even for continuous

state spaces, the communication requirements of eliciting the mean are reasonable. The

discussion on eliciting full distribution can be found in Hartline et al. [2020, 2021a].

3.1.1. The Scoring Rule Optimization Problem

This section considers the problem of optimizing scoring rules. A scoring rule maps an

agent’s reported belief about a random state and the realized state to a payoff for the

agent. Our model allows the agent to refine her prior belief by exerting a binary effort.

Our objective is to maximize the agent’s perceived benefit from exerting effort, i.e., the

expected difference in score from reporting the prior and posterior distributions.
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There is a prior distribution D ∈ ∆(Ω) over the true state ω ∈ Ω where Ω ⊆ Rn is any

n dimensional space. The distribution D is public information for both the agent and the

principal, and in addition, the agent may privately observe a signal about the true state,

which induces a posterior G. We denote the probability the agent will obtain the posterior

G by f(G). We focus on scoring rules that elicit the mean of the posterior, i.e., the scoring

rule asks the agent to report the marginal means of her posterior, and scores the agent

based on her report and the realized state. Let µG be the mean of posterior G and µD

be the mean of the prior distribution D. Let R ⊆ Rn be the report space including all

possible posterior means µG and let r ∈ R be the report of the agent. A simple property

of means, the report space is the convex hull of the state space. Two constraints on the

scoring rules are the boundedness constraint and the proper constraint1.

Definition 3.1.1. A scoring rule S(r, θ) is proper2 for eliciting mean if for any dis-

tribution G and report r ∈ R, we have

Eω∼G[S(µG, θ)] ≥ Eω∼G[S(r, θ)] .

Definition 3.1.2. A scoring rule S(r, θ) is bounded by B in space R×Ω if S(r, θ) ∈

[0, B] for any report r ∈ R and state ω ∈ Ω.

1These two constraints are natural and standard in the scoring rule literature. For eliciting the mean,
the restriction on proper scoring rules is not without loss in the optimization program (3.1).
2Our notion of proper scoring rule is weakly proper rather than strictly proper. Most of the literature
on scoring rules does not have an objective and to obtain non-trivial results requires scoring rules to be
strictly proper. When optimizing scoring rules there is no meaningful difference between strictly proper
and proper as the strictness can be arbitrarily small and therefore provide insignificant additional benefit.
Note that any weakly proper scoring rule can also be made strictly proper by taking an arbitrarily small
convex combination with a strictly proper scoring rule.
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The goal for the principal is to design a bounded proper scoring rule that maximizes

the difference in expected score between agents who exert effort and those who do not.

Next, we will informally define the optimization program.

Informal program. The problem of maximizing the difference in expected score given

the maximum score of B, the state space Ω, the report space which is the convex hull of

the state space, i.e., R = conv(Ω), and the distribution over posteriors f can be written

as the following optimization program:

max
S

EG∼f,ω∼G[S(µG, ω)− S(µD, ω)](3.1)

s.t. S is a proper scoring rule for eliciting the mean,

S is bounded by B in space R×Ω.

The above program aims to optimize the incentive for the agent to exert effort. Con-

sider the situation where the agent has a private stochastic cost for obtaining a signal of

the true state. If the agent chooses to pay the cost, she sees the realized signal, forms a

posterior about the true state, and optimizes according to the posterior. The agent will

only choose to pay the cost if her expected gain from obtaining the signal, i.e., the ob-

jective value in Program (3.1), is higher than her cost. By designing the optimal scoring

rule for Program (3.1), we also maximize the probability that the agent chooses to pay

the cost. We will not formally model such costs in this thesis.

3.2. Canonical Scoring Rules

There is a canonical approach for constructing proper scoring rules. In this section we

specify Program (3.1) to canonical proper scoring rules. In the next section we show that
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this specification is without loss for the program. The following definition and proposition

are straightforward from first-order conditions and can be found, e.g., in Abernethy and

Frongillo [2012].

Definition 3.2.1. A canonical scoring rule for the mean S is defined by convex utility

function u : R → R on report space R, subgradient ξ : R → Rn of u, and function

κ : Ω → R on state space Ω as

S(r, ω) = u(r) + ξ(r) · (ω − r) + κ(ω).(3.2)

Proposition 3.2.1. Canonical scoring rules are proper.

Proof. Canonical scoring rules have the following simple interpretation. By making

a report r, the agent selects the supporting hyperplane of u at r on which to evaluate

the state. This supporting hyperplane has gradient ξ(r) and contains point (r, u(r)). The

agent’s utility is equal to the value of the realized state ω on this hyperplane (plus constant

κ(ω) which is independent of the agent’s report). With utility given by a random point

on a hyperplane, the expected utility is equal to its mean on the hyperplane. When the

agent’s true posterior belief is that the state has mean r, the agent’s expected utility is

u(r) (plus a constant equal to the expected value of κ(·) under the agent’s posterior belief;

summarized below as Lemma 3.2.2). Misreporting r′ with belief r gives a utility equal to

the value of r on the supporting hyperplane with gradient ξ(r′) at r′. By convexity of u,

a report of r gives the higher utility of u(r). □
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The following two lemmas allow the objective and the boundedness constraint of

Program (3.1) to be simplified. The first lemma justifies referring to u as the agent’s

utility function and its proof was observed in the proof of Proposition 3.2.1.

Lemma 3.2.2. For any canonical scoring rule for the mean S (defined by u, ξ, and κ),

the expected utility from belief G and truthfully report of µG is

Eω∼G[S(µG, ω)] = u(µG) + Eω∼G[κ(ω)] .(3.3)

Lemma 3.2.3. Fixing utility function u and subgradients ξ and setting the state-function

κ to minimize the score bound B, the canonical scoring rule S (defined by u, ξ and κ)

satisfies

u(ω)− u(r)− ξ(r) · (ω − r) ≤ B(3.4)

for any report r ∈ R and state ω ∈ Ω.

Proof. Similar to the proof of Proposition 3.2.1, canonical scoring rules (Defini-

tion 3.2.1) can be interpreted via supporting hyperplanes of the utility function. The

first term on the left-hand side of (3.4) upper bounds the utility that an agent can obtain

at state ω, specifically, it is the utility from reporting state ω. The remainder of the

left-hand side subtracts the utility that the agent obtains from report r in state ω, i.e., it

evaluates, at state ω, the supporting hyperplane of u at report r. Thus, the boundedness

constraint requires the difference between the utility function and the value of any sup-

porting hyperplane of the utility function to be bounded at all states ω ∈ Ω. Figure 3.1(a)

illustrates this bound.
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The subgradient in {ξ(r) : r ∈ R} that maximizes the right-hand side of the inequality

identifies the range of ex post score of the agent for this scoring rule. To enforce that the

score is within [0, B], we select κ(ω) equal to the negative of the lower endpoint of this

range so that the score is 0 for the report with the worst score at state ω.

Of course, since the score bound is B, this inequality is tight for some r ∈ R and

ω ∈ Ω. □

We now derive the simplified program for canonical scoring rules. The following no-

tation is sufficient to describe this simplified program and is adopted throughout this

chapter. For proper scoring rules for eliciting the mean, the posterior mean and report

are denoted by r in report space R. The distribution over posterior beliefs induces a

distribution over posterior means, slightly abusing notation, we denote both distribu-

tions by f . Specifically, f(r) =
∫
G:µG=r

f(G) dG, i.e., the density at posterior mean r

is equal to the cumulative density of posteriors G with mean µG = r. The prior mean

of the distribution µD is equal to the mean of the posterior means, denoted µf , i.e.,

µD = Eω∼D[ω] = Er∼f [r] = µf .

By Lemma 3.2.2, the objective function in Program (3.1) for canonical scoring rules

can be simplified as

EG∼f,ω∼G[S(µG, ω)− S(µD, ω)]

=

∫
∆(Ω)

[u(µG)− u(µD)] f(G) dG =

∫
R

[u(r)− u(µf )] f(r) dr.

Note that the simplified objective function does not depend on subgradient ξ or state

function κ, the latter of which is cancelled in the score difference. Thus, the value of
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the objective function is uniquely determined by the utility function u and the distribu-

tion over posterior means f . We denote the performance of utility function u given the

distribution over posteriors f by

Obj(u, f) =

∫
R

u(r) f(r) dr − u(µf ).(3.5)

Combining Lemma 3.2.3 with the simplified objective function (3.5), and shifting the

utility function by a constant such that u(µf ) = 0, we get the following optimization

program for optimizing over canonical scoring rules. In the next section we show that the

restriction to canonical scoring rules is without loss.

OPT(f,B,Ω) = max
u

∫
R

u(r)f(r) dr(3.6)

s.t. u is a continuous and convex function, and u(µf ) = 0,

ξ(r) ∈ ∇u(r), ∀r ∈ R,

u(ω)− u(r)− ξ(r) · (ω − r) ≤ B, ∀r ∈ R,ω ∈ Ω,

R = conv(Ω).

Note that for any distribution f and state spaceΩ, the optimal objective OPT(f,B,Ω)

is a linear function of the maximum score B. In most of the chapter, we normalize

B = 1 and mainly consider the state space Ω = [0, 1]n. To simplify the notation, we let

OPT(f) = OPT(f, 1, [0, 1]n). We will write OPT(f,B,Ω) explicitly in Section 3.4 when

we discuss general state spaces with bound B ̸= 1.
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3.2.1. Sufficiency of Canonical Scoring Rules

This section provides a partial converse to Proposition 3.2.1 and shows that the restriction

to canonical scoring rules is without loss, i.e., Program (3.1) and Program (3.6) are

equivalent. The converse will require a weak technical restriction on the set of scoring

rules considered.3 With this restriction, Abernethy and Frongillo [2012] provide a converse

to Proposition 3.2.1 for reports in the relative interior of the report space. We generalize

their observation to the boundary of the report space when the scoring rule is bounded.

The detailed discussion is deferred in Appendix B.1. Formally, we have the following

result establishing that Program (3.1) and Program (3.6) are equivalent.

Definition 3.2.2 (Abernethy and Frongillo, 2012). A scoring rule S is µ-differentiable

if all directional derivatives of Eω∼G[S(µG, ω)] exists for all posteriors G with mean µG

in the relative interior of R.

Theorem 3.2.4. For optimization of the incentive for exerting a binary effort via

a bounded and µ-differentiable scoring rule for the mean, it is without loss to consider

canonical scoring rules, i.e., Program (3.1) and Program (3.6) are equivalent.

3.3. Single-dimensional Scoring Rules

In this section, we focus on the special case of single-dimensional state spaces. We

characterize the optimal single dimensional scoring rules for eliciting the mean and show

that the optimal scoring rules are simple and only depend on the prior mean of the

distribution. We compare the quadratic scoring rule to the optimal scoring rule and show

3The literature on scoring rules for eliciting the mean, to the best of our knowledge, obtains converses
to Proposition 3.2.1 only with restrictions. For example, Lambert [2011] assumes the scoring rules are
continuously differentiable in the agent’s report. The restriction we employ is weaker than differentiability.
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0 1µD

u(0)
u(1)

u(0) + u′(0)

r ωu(r) + u′(r)(ω − r)

u(θ)

(a)

0
1µD

u(0)
u(1)

(b)

Figure 3.1. The figure on the left hand side illustrates the bounded con-
straint for proper scoring rule for single dimensional states. The figure on
the right hand side characterizes the optimal scoring rule (solid line) for
single dimensional states. In this figure, for any convex function u (dotted
line) that induces a bounded scoring rule, there exists another convex func-
tion ũ (solid line) which also induces a bounded scoring rule and weakly
improves the objective.

that the quadratic scoring rule, though it can be far from optimal for specific distributions

over posteriors, it is approximately optimal in the prior-independent setting.

In this section we normalize the state space Ω so that its convex hull, i.e., the report

space R, is [0, 1] and the boundedness constraint is given by B = 1.

3.3.1. Characterization of Optimal Scoring Rules

In this part, we characterize the optimal proper scoring rules for a single dimensional

state. First note that for single dimensional scoring rules, the boundedness constraint of

Program (3.6) can be further simplified.

Lemma 3.3.1. For state space Ω with convex hull [0, 1] and any utility function u, there

exists a µ-differentiable proper scoring rule induced by function u which is bounded by

B = 1 if and only if there exists a set of subgradients ξ(r) ∈ ∇u(r) such that

u(1)− u(0)− ξ(0) ≤ 1 and u(0)− u(1) + ξ(1) ≤ 1.
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Proof. By Lemma B.1.3, it is sufficient to consider only convex function u such that

there exists a set of subgradients ξ(r) satisfying constraints that for any r, ω ∈ [0, 1]

u(ω)− u(r)− ξ(r) · (ω − r) ≤ 1.

By convexity of utility u and the monotonicity of subgradients ξ on report space R = [0, 1],

it is straightforward to observe that the left-hand side of the boundedness constraint is

maximized at ω ∈ {0, 1} with r = 1− ω (see Figure 3.1a). □

With Lemma 3.3.1, Program (3.6) can be written as

max
u

∫ 1

0

u(r)f(r) dr(3.7)

s.t. u(r) is convex and u(µD) = 0,

ξ(r) ∈ ∇u(r), ∀r ∈ [0, 1],

u(1)− u(0)− ξ(0) ≤ 1,

u(0)− u(1) + ξ(1) ≤ 1.

The main result of this section is the following characterization of the optimal solutions

to Program (3.7).

Definition 3.3.1. A function u is V-shaped at µ if there exists parameters a and b

such that u(r) = a (r − µ) for r ≤ µ and u(r) = b (r − µ) for r ≥ µ.

Utility functions that are V-shaped at prior mean µD are induced by scoring rules

with the following simple form. If the agent reports the prior mean her score is zero. For

reports above the prior mean, the score is equal to b (ω − µD); and for reports below the
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prior mean, the score is equal to a (ω − µD). I.e., as discussed in Section 3.2, the agent’s

report picks out the supporting hyperplane of the utility function on which to evaluate

the state. Note that the implementation of the V-shaped scoring rule only needs the

knowledge of the prior mean µD, and does not need the distribution over posteriors. We

show the following theorem on the optimal solutions of Program (3.7).

Theorem 3.3.2. For any distribution f over the posterior means with expectation

µD and state space Ω with convex hull [0, 1], the optimal solutions of Program (3.7) are

V-shaped at µD with parameters b = a + 1/max{µD, 1− µD} and objective value OPT(f) =

Er∼f [max(r − µD, 0)]/max(µD, 1− µD).
4

Proof. Consider any feasible solution u(r) of Program (3.7). We construct a V-shaped

utility function ũ(r) as

ũ(r) =


−u(0)

µD
(r − µD) for r ≤ µD,

u(1)
1−µD

(r − µD) for r ≥ µD.

The construction of ũ is illustrated in Figure 3.1b. It is easy to see that ũ is convex,

ũ(µD) = 0 and ũ(r) ≥ u(r) for any r ∈ [0, 1]. Therefore, the objective value for function ũ

is higher than objective value for function u. Moreover, we have ũ(0) = u(0), ũ(1) = u(1),

ũ′(0) ≥ ξ(0) and ũ′(1) ≤ ξ(1), which implies ũ is also a feasible solution to Program (3.7).

Thus, an optimal solution is V-shaped.

Next we focus on finding the optimal V-shaped function ũ for Program (3.7). Let

a = −u(0)/µD = ũ′(0) and b = u(1)/(1− µD) = ũ′(1). Since function ũ satisfies the constraints

4By slightly perturbing the utility function u, the V-shaped scoring rule can be transformed into a strictly
proper scoring rule with an arbitrarily close objective value.
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in Program (3.7), we get

b(1− µD) = ũ(1) ≤ 1 + ũ(0) + ũ′(0) = 1− a · µD + a,

b(1− µD) = ũ(1) ≥ ũ′(1) + ũ(0)− 1 = b− a · µD − 1,

which implies b ≤ a + 1/(1− µD) and b ≤ a + 1/µD. If b < a + 1/max{µD, 1− µD}, then we can

either increase b or decrease a to get a better feasible V-shaped utility function. Suppose

we fix parameter a, the objective value is pointwise maximized for any report r when

b = a+ 1/max{µD, 1− µD}.

Next we fix the optimal choice for parameter b. Note that the objective value given

any parameter a is

∫ 1

0

u(r)f(r) dr =

∫ µD

0

a(r − µD)f(r) dr +

∫ 1

µD

(
a+

1

max(µD, 1− µD)

)
(r − µD)f(r) dr

=
1

max(µD, 1− µD)

∫ 1

µD

(r − µD)f(r) dr,(3.8)

which invariant of parameter a. Therefore, any V-shaped utility function with param-

eters satisfying b = a + 1/max{µD, 1− µD} is optimal and obtains objective value given by

equation (3.8). □

As mentioned above, we see from Theorem 3.3.2 that the set of utility functions that

optimizes Program (3.7) only depends on the prior mean µD and not the general shape

of the distribution over posterior means f .

An important special case for our subsequent analyses is when the mean of the pos-

teriors is in the center of the report space, i.e., µD = 1/2 for report space [0, 1]. In this

case, an optimal utility function u is V-shaped at 1/2 with u(0) = u(1) = 1/2. In fact,
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the symmetric case where f is the uniform distribution on the extremal poster means

{0, 1} obtains the highest objective value for Program (3.7) with OPT(f) = 1/2. These

two observations are fomalized in the following two corollaries.

Corollary 3.3.3. For any distribution f over the posterior means with expectation µD =

1/2, one of the optimal solution of Program (3.7) is symmetric and V-shaped at 1/2 with

u(0) = u(1) = 1/2.

Corollary 3.3.4. The objective value of any utility function u that is feasible for Pro-

gram (3.7) on distribution f of posterior means is at most 1/2, i.e., Obj(u, f) ≤ 1/2.

Proof. In the characterization of the optimal performance of Theorem 3.3.2, i.e.,

OPT(f) = Er∼f [max(r − µD, 0)]/max(µD, 1− µD),

it is easy to see that the numerator is maximized and the denominator is minimized in

when the distribution of posterior means f is uniform on the extreme points {0, 1}. For

this distribution, the numerator is 1/4 and the denominator is 1/2. Thus, OPT(f) = 1/2. □

3.4. Multi-dimensional Scoring Rules

In this section, we focus on the case when the state space is multi-dimensional. We

characterize the optimal scoring rule for symmetric distributions over posterior means, and

propose a simple scoring rule that is approximately optimal for asymmetric distributions.

Then we show that the standard approach in both theory and practice of scoring the

agents separately in each dimension is not a good approximation to the optimal multi-

dimensional scoring rule.



84

3.4.1. Optimal Scoring Rules for Symmetric Distributions

This section characterizes the optimal multi-dimensional scoring rule when the distri-

bution over posteriors is symmetric about its center. Program (3.6) is optimized by a

symmetric V-shaped utility function. This characterization affords a simple interpreta-

tion for rectangular report and state spaces, specifically, the optimal scoring rule can be

calculated by taking the maximum score over optimal single-dimensional scoring rules for

each dimension, i.e., it is a max-over-separate scoring rule. As these single-dimensional

scoring rules depend only on the prior mean, so does the optimal multi-dimensional scoring

rule. We first give the characterization and then give the interpretation.

Definition 3.4.1. A n-dimensional distribution f is center symmetric if there exists

a center in the report space, i.e., C ∈ R such that for any r ∈ R, f(r) = f(2C − r).

Note that for any center symmetric distribution f over posterior means, the mean of

the prior coincides with the center of the space, i.e., µD = C. The following definition

generalizes symmetric V-shaped functions to multi-dimensional state and report spaces.

Definition 3.4.2. A function u is symmetric V-shaped in report and state space

R = Ω with non-empty interior and center C if utility is zero at the center, i.e., u(C) = 0,

utility is 1/2 on the boundary, i.e., u(r) = 1/2 for r ∈ ∂R, and all other points linearly

interpolate between the center and the boundary, i.e., u(α · r + (1 − α) · C) = α
2
for any

α ∈ [0, 1] and r ∈ ∂R.

V-shaped utility functions on convex and center symmetric spaces are bounded and

convex, i.e., they are feasible solutions to Program (3.6).
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Lemma 3.4.1. For any convex and center symmetric report and state space R = Ω

with non-empty interior, the center symmetric utility function is convex and bounded for

B = 1.

Proof. The following geometry of the utility function is easy verify. First, convexity

of report space R implies convexity of u. Second, consider the n + 1 dimensional space

R × [−1/2, 1/2], where the n+ 1st dimension represents the utility u. The utility function

defines a truncated convex cone with vertex equal to (µD, 0) and base at height 1/2 with

cross section R. Consider the point reflection, henceforth, the reflected cone, of this convex

cone around its vertex (µD, 0). By basic properties of cones and their point reflections,

this reflected cone has the same supporting hyperplanes as the original cone. By the

symmetry assumption of R around µD, the reflected cone is equal to the mirror reflection

of the original cone with respect to the u = 0 plane. Consequently, the base of the

reflected cone at u = −1/2 has cross section equal to R.

We now argue that the utility function satisfies the boundeness constraint, restated

for convenience (with report r ∈ R and state ω ∈ Ω):

u(ω)− u(r)−∇u(r) · (ω − r) ≤ 1.

By definition of the V-shaped utility, we know that the first term is at most 1/2. The

second and third terms, together, can be viewed as subtracting the evaluation, at state

ω, of the supporting hyperplane of u at r. The highest point in the reflected cone for any

ω ∈ R is −u(ω) and this point lower bounds the value of ω in any of the reflected cones

supporting hyperplanes (which are the same as the original cones supporting hyperplanes).
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By definition, the reflected cone satisfies−u(ω) ≥ −1/2 for ω ∈ R. We conclude, as desired,

that the difference between the first term and the second and third terms is at most 1. □

The following theorem is proved by following a standard approach in multi-dimensional

mechanism design, e.g., Armstrong [1996] and Haghpanah and Hartline [2015]. The prob-

lem is relaxed onto single-dimensional paths, solved optimally on paths, and it is proven

that the solution on paths combine to be a feasible solution on the whole space. Note

that in relaxing the problem onto paths, constraints on pairs of reports that are not on

the same path are ignored. Similar to the single dimensional V-shaped scoring rule, the

implementation of multi-dimensional V-shaped scoring rule only requires the knowledge

of the prior mean µD.

Theorem 3.4.2. For any center symmetric distribution f over posterior means in

convex report and state space R = Ω, the optimal solution for Program (3.6) is symmetric

V-shaped.

Proof. Consider relaxing the optimization problem on the general space solve it in-

dependently on lines through the center. Specifically, consider the conditional distribu-

tion of f on the line segment through the center µD and the boundary points r and

2µD − r on ∂R. Center symmetry implys symmetry on this line segment. By Corol-

lary 3.3.3, the solution to this single-dimensional problem is symmetric V-shaped, i.e.,

with u(r) = u(2µD − r) = 1/2 and u(µD) = 1/2.

The solutions on all lines through the center µD coincide at µD with u(µD) = 0. They

can be combined, and the resulting utility function u is a symmetric V-shaped function

(Definition 3.4.2). Lemma 3.4.1 implies that u is convex and bounded and, thus feasible
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for the original program. Since it optimizes a relaxation of the original program, it is also

optimal for the original program. □

In the remainder of this section we give an interpretation of scoring rules that cor-

respond to V-shaped utility functions on rectangular report and state spaces. On such

spaces, these optimal scoring rules can be implemented as the maximum over separate

scoring rules (for each dimension). Intuitively, the max-over-separate scoring rule rewards

the agent only on the dimension the the agent will receive highest expected payment ac-

cording to his posterior belief.

The definition of max-over-separate scoring rule is formally introduced in Defini-

tion 3.4.3, and it is easy to verify that a max-over-separate scoring rule is proper and

bounded if is based on single dimensional scoring rules that are proper and bounded.

Definition 3.4.3. A scoring rule S is max-over-separate if there exists single dimen-

sional scoring rules (Ŝ1, . . . , Ŝn) such that

(1) For any dimension i, Ŝi(ri, ωi) = ûi(ri) + ξ̂i(ri) · (ωi − ri) + κ̂i(ωi) where ξ̂i(ri) is

a subgradient of convex function ûi(ri) and κ̂i(ωi) = βi is a constant.

(2) the score is S(r, ω) = Ŝi(ri, ωi) where i = argmaxj Ŝj(rj, rj).

The incentives of max-over-separate is ensured by the equality of Ŝj(rj, rj) (from con-

dition 2) and Eωj∼Gj
[Sj(rj, ωj)] for any marginal posterior distribution Gj on dimension

j with mean rj. Specifically, since the function κ̂j is a constant function of the state, all

posteriors Gj with the same mean induce the same expected score.
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We conclude the section by showing that, for rectangular report and state spaces,

symmetric V-shaped utility functions, which are shown to be optimal by Theorem 3.4.2,

can be implemented by max-over-separate scoring rules.

Lemma 3.4.3. Symmetric V-shaped function u in n-dimensional rectangle report and

state space R = Ω =×n

i=1
[ai, bi] with function κ(ω) = 1/2 can be implemented as max-

over-separate scoring rule with single dimensional bounded proper scoring rules {Ŝi}ni=1

where

Ŝi(ri, ωi) =


− 1

bi−ai
(ωi − µDi

) + 1
2

for ri ≤ µDi
,

1
bi−ai

(ωi − µDi
) + 1

2
for ri ≥ µDi

,

where µDi
= (ai + bi)/2 is the ith coordinate of the prior mean µD.

Proof. First, it is easy to verify that the single dimensional scoring rules Ŝi are proper

and bounded in [0, 1]. For each dimension i, the utility function for each single dimensional

scoring rule Ŝi is V-shaped with

ûi(ri) =


− 1

bi−ai
(ri − µDi

) ri ≤ µDi

1
bi−ai

(ri − µDi
) ri ≥ µDi

, and κ̂i(ωi) = 1/2.

By Definition 3.4.3, the max-over-separate scoring rule S is S(r, ω) = Ŝi(ri, ωi) where

i ∈ argmaxj ûj(rj), and hence the utility function for max-over-separate scoring rule S

can be computed as u(r) = maxi∈[n] ûi(ri), which coincides with the symmetric V-shaped

function u. □
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Corollary 3.4.4. For any center symmetric distribution f over posterior means in rect-

angular report and state space R = Ω, a max-over-separate scoring rule is optimal.

Finally, these max-over-separate scoring rules have an indirect choose-and-report im-

plementation where the agent reports the dimension to be scored on and the mean for that

dimension. This indirect implementation has a practical advantage that when the com-

munication between the principal and the agent is costly since in n-dimensional spaces,

it requires only reporting two rather than n numbers. Note that choose-and-report and

max-over-separate are essentially the same scoring rule, with different implementations.

Definition 3.4.4. A scoring rule S is choose-and-report if there exists single dimen-

sional scoring rules (Ŝ1, . . . , Ŝn) such that the agent reports dimension i and mean value

ri, and receives score S((i, ri), ω) = Ŝi(ri, ωi).

An agent’s optimal strategy in the choose-and-report scoring rule for proper single-

dimensional scoring rules (Ŝ1, . . . , Ŝn) is to choose the dimension i with the highest ex-

pected score according to the posterior distribution, i.e., i = argmaxj Eωj∼Gj

[
Ŝj(µGj

, ωj)
]
,

and to report the mean of the posterior for that dimension, i.e., µGi
. As described above,

the advantage of such an indirect scoring rule is that it only requires the agent to report

two values to the principal. Lemma 3.4.5 illustrate a nice properties of choose-and-report

scoring rules.

Lemma 3.4.5. The choose-and-report scoring rule S defined by proper and bounded

single-dimensional scoring rules (Ŝ1, . . . , Ŝn) is itself proper and bounded.
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Proof. Given posterior distribution G, let i be the dimension that maximizes the

agent’s expected utility under separate scoring rules Ŝ1, . . . , Ŝn, i.e.,

i = argmaxj Eωj∼Gj

[
Ŝj(µGj

, ωj)
]
,

and let ri = µGi
be the mean of the posterior on dimension i. For report r = (i, ri) and

any other report r′ = (i′, r′i), we have

Eω∼G[S(r, ω)] = Eωi∼Gi

[
Ŝi(ri, ωi)

]
≥ Eωi′∼Gi′

[
Ŝi′(µGi′

, ωi′)
]

≥Eωi′∼Gi′

[
Ŝi′(r

′
i′ , ωi′)

]
= Eω∼G[S(r

′, ω)] .

The first and last equality hold by the definition of choose-and-report proper scoring rules,

and the first inequality holds by the definition of dimension i. The second inequality holds

since each single dimensional scoring rule is proper. Thus the choose-and-report scoring

rule S is proper. Moreover, if each single dimensional proper scoring rule Ŝi is bounded,

it is easy to verify that the choose-and-report scoring rule S is also bounded. □

3.4.2. Approximately Optimal Scoring Rules for General Distributions

When the distribution is not symmetric, max-over-separate scoring rules may not be

optimal for Program (3.6). However, we show that the optimal max-over-separate scoring

rule is approximately optimal for any asymmetric and possibly correlated distribution

over a high dimensional rectangular space.

To show this, we symmetrize the distribution over posteriors, and construct a V-

shaped scoring rule on the symmetrized distribution. This V-shaped scoring rule can
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µD

1

1

0

Figure 3.2. This figure depicts a two-dimensional state space. The state
space Ω = [0, 1]2 and its point reflection around the prior mean µD are
shaded in gray. The extended report and state space are depicted by the
region within the thick black rectangle.

be implemented as a max-over-separate scoring rule on the original problem, which only

requires the knowledge of prior mean.

Theorem 3.4.6. For any distribution f over posterior means in n-dimensional rect-

angular report and state space R = Ω =×n

i=1
[ai, bi], the utility function u of optimal

max-over-separate scoring rule for Program (3.6) achieves at least 1/8 of the optimal ob-

jective value, i.e. Obj(u, f) ≥ 1/8 ·OPT(f,B,Ω).

In the following discussion, we assume without loss of generality that µDi
≥ (ai + bi)/2

for every dimension i. The proof of this theorem introduces the following constructs:

• The extended report and state space are R̃ = Ω̃ =×n

i=1
[ai, 2µDi

− ai]. These

are rectangular and contain the original report and state spaces R = Ω. See

Figure 3.2.

• The symmetric extended distribution of f on the extended report space is f̃(r) =

1
2
(f(r) + f(2µD − r)). Note in this definition that the original distribution f

satisfies f(r) = 0 for any r ∈ R̃ \R.
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Theorem 3.4.6 now follows by combining the following five lemmas, with proofs provided

in Appendix B.2.

Lemma 3.4.7. Evaluated on any distribution over posterior means f , the optimal max-

over-separate scoring rule for the distribution f and the state space Ω is at least as good

as the optimal scoring rule for the extended distribution f̃ and the extended state space Ω̃.

Lemma 3.4.8. The symmetric optimizer ũ for the symmetric extended distribution f̃ and

extended state space Ω̃ attains the same objective value on the original distribution f , i.e.,

Obj(ũ, f) = OPT(f̃, B, Ω̃).

Lemma 3.4.9. On extended state space Ω̃, the optimal value of Program (3.6) for the

symmetric extended distribution f̃ is at least half that for the original distribution f , i.e.,

OPT(f̃, B, Ω̃) ≥ 1
2
OPT(f,B, Ω̃).

Lemma 3.4.10. For any distribution over posterior means f , the optimal value of Pro-

gram (3.6) on the extended state space Ω̃ is at least a quarter of that of the original

state space Ω, i.e., OPT(f,B, Ω̃) ≥ 1
4
OPT(f,B,Ω) or equivalently OPT(f, 4B, Ω̃) ≥

OPT(f,B,Ω).

3.4.3. Inapproximation by Separate Scoring Rules

One way to design the scoring rule for an n-dimensional space is to average independent

scoring rules for the marginal distributions of each dimension. In this section we show

that the worst-case multiplicative approximation of scoring each dimension separately and

scoring optimally is Θ(n). Moreover, the upperbound O(n) holds for general correlated

report distributions, while the lowerbound Ω(n) holds for independent distributions.
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Definition 3.4.5. A scoring rule S is a separate scoring rule if there exists single

dimensional scoring rules (S1, . . . , Sn) such that S(r, ω) =
∑

i Si(ri, ωi).

Theorem 3.4.11. In n-dimensional rectangular report and state spaces, the worst-

case approximation factor of scoring each dimension separately is Θ(n).

Proof. We first argue the upper bound that scoring separately in rectangular report

and state spaces guarantees an O(n) approximation. By Theorem 3.4.6, there exists

proper and bounded single-dimensional proper scoring rules (S1, . . . , Sn) such that the in-

duced max-over-separate S is an 8-approximation to the optimal scoring rule. Let Ŝ be the

separate scoring rule induced by single-dimensional proper scoring rules ( 1
n
S1, . . . ,

1
n
Sn).

It is easy to verify that scoring rule Ŝ is bounded, with objective value at least 1
n
fraction

of that for scoring rule S. Thus, separate scoring rule Ŝ is an O(n) approximation to the

optimal scoring rule.

We now give an example of a symmetric distribution over posteriors over the space

R = Ω = [0, 1]n such that the approximation is Ω(n). Consider the i.i.d. distribution over

posterior means f with marginal distribution fi dimension i defined by

ri =



1 w.p. 1/2n,

1/2 w.p. 1− 1/n,

0 w.p. 1/2n.

The prior mean for each dimension is 1/2 and by Corollary 3.3.3, the optimal scoring

rule for each dimension i has V-shaped utility function ûi with ûi(0) = ûi(1) = 1/2 and

ûi(1/2) = 0. Thus, the expected objective value for the optimal scoring rule of dimension i
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is 1/2Prri∼fi [ri ∈ {0, 1}] = 1/2n. Any average of optimal separate scoring rules, thus, has

objective value 1/2n.

Now consider the max-over-separate scoring rule which has a (multi-dimensional) sym-

metric V-shaped utility function u and is optimal (see Definition 3.4.2 and Theorem 3.4.2).

The objective value is Er∼f [u(r)]. Importantly u(r) = 0 if r = (1/2, . . . , 1/2) and, otherwise,

u(r) = 1/2. Thus,

OPT(f) = 1/2Prr∼f [r ̸= (1/2, . . . , 1/2)]

= 1/2 (1− (1− 1/n)n) ≥ 1/2 (1− 1/e).

Thus, the approximation ratio of optimal separate scoring to optimal scoring is at least

e n/e− 1 (and this bound is tight in the limit of n). □
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CHAPTER 4

Selling Data to an Agent with Endogenous Information

4.1. Preliminaries

There is a single agent making decisions facing uncertainly over the state space Ω. Let

D be the prior distribution over the states. The agent has a private type θ ∈ Θ, and type

θ is drawn from a commonly known distribution F with density f . The expected utility of

the agent given posterior belief G ∈ ∆(Ω) is V (G, θ) when her type is θ. We assume that

V is convex in G for any type θ.1 There is a data broker who tries to sell information to

the agent to maximize his profit by committing to an information structure that signals

the state. Note that an information structure (we will also call this as an experiment) is

a mapping σ : Ω → ∆(S), where S is the signal space.2 Let Σ be the set of all possible

experiments.

Upon receiving a signal s ∈ S, the agent can conduct her own experiment to further

refine her posterior belief on the state with additional costs. Let Σ̂ ⊆ Σ be the set of

possible experiments that can be conducted by the agent. The cost of experiment σ given

posterior belief G of the agent is denoted by CA(σ,G) ≥ 0. Let σF be the experiment that

reveals full information, i.e., σF (ω) = ω for any ω ∈ Ω, and let σN be the null experiment

1The convexity ensures that for any type θ, the agent has higher value for Blackwell more informative
experiments.
2According to Kamenica and Gentzkow [2011], it is without loss of generality to assume that S is the
space of all posterior beliefs, i.e., S = ∆(Ω).
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that reveals no information with zero cost. In this chapter, we assume that σN ∈ Σ̂,3 and

CA(σ,G) > 0 for any σ ̸= σN .

A mechanism of the data broker is a menu of experiments and associated prices

{(xi, pi)}, where xi is a distribution over experiments. The timeline of the model is

illustrated as follows.

(1) The data broker commits to a mechanism M = {(xi, pi)}.

(2) The agent chooses entry (x, p) ∈ M, and pays price p to the data broker. The

experiment σ is realized according to distribution x and then announced publicly

to the agent.

(3) State ω ∈ Ω is realized according to prior D and the data broker sends signal

s ∼ σ(ω) to the agent.

(4) Upon receiving the signal s, the agent forms posterior belief G, chooses an ex-

periment σ̂ ∈ Σ̂, and pays cost CA(σ̂, G).

(5) The agent receives a signal s ∼ σ̂(ω), forms refined posterior belief Ĝ, and receives

expected reward V (Ĝ, θ).

By the revelation principle, it is without loss to consider the revelation mechanism,

that is, the data broker commits to a mapping from types to a distribution over informa-

tion structures x : Θ → ∆(Σ) and the expected payment rule p : Θ → R.4 By slightly

overloading the notation, denote

V (G, Σ̂, θ) ≜ max
σ̂∈Σ̂

EĜ∼σ̂|G

[
V (Ĝ, θ)

]
− CA(σ̂, G)

3Intuitively, this assumes that the agent can always choose not to make any additional experiment and
pays no extra cost.
4The agent observes the realized information structure σ ∼ x(θ).
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as the maximum utility of the agent given posterior belief G, the set of possible exper-

iments Σ̂, and private type θ. Here the notation σ̂|G represents the distribution over

posteriors induced by experiment σ̂ given the prior belief G. To simplify the notation, we

will use EG∼x(θ)|D[·] to represent Eσ∼x(θ)

[
EG∼σ|D[·]

]
.

Definition 4.1.1. The mechanism M = (x, p) is incentive compatible if for any type

θ, θ′ ∈ Θ, we have

EG∼x(θ)|D

[
V (G, Σ̂, θ)

]
− p(θ) ≥ EG∼x(θ′)|D

[
V (G, Σ̂, θ)

]
− p(θ′),

and the mechanism (x, p) is individual rational if for any type θ ∈ Θ, we have

EG∼x(θ)|D

[
V (G, Σ̂, θ)

]
− p(θ) ≥ V (D, Σ̂, θ).

In this chapter, without loss of generality, we focus on mechanisms (x, p) that are

incentive compatible and individual rational. The goal of the data broker is to maximize

the expected revenue Rev(M) ≜ Eθ∼F [p(θ)].

For any experiment σ̂ ∈ Σ̂ and any mapping κ : S → Σ̂, let κ ◦ σ̂ represent the

experiment such that the agent first conducts experiment σ̂, and conditional on receiving

the signal s ∈ S, the agent continues with experiment κ(s) to further refine the posterior

belief. For any belief G, let Ĝσ̂,s,G be the posterior belief of the agent when she conducts

experiment σ̂ and receives the signal s. Throughout this chapter, we make the following

assumption on the set of possible experiments and the cost function.
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Assumption 2. For any experiment σ̂ ∈ Σ̂ and for any mapping κ : S → Σ̂, we have

κ ◦ σ̂ ∈ Σ̂. Moreover, for any belief G, we have

CA(κ ◦ σ̂, G) ≤ CA(σ̂, G) +

∫
Ω

∫
S

CA(κ(s), Ĝσ̂,s,G) dσ̂(s|ω) dG(ω).

Intuitively, Assumption 2 assumes that the set of possible experiments is closed under

sequential learning, and the cost function exhibits preference for one-shot learning.5 This

captures the scenario where the agent can repeatedly conduct feasible experiments based

on her current posterior belief. Next we illustrate several examples that satisfies the above

assumptions.

• Σ̂ is a singleton. In this case, the unique experiment σN ∈ Σ̂ is null experiment

with zero cost.

• Σ̂ is the set of all possible experiments, i.e., Σ̂ = Σ. The cost function CA is

the reduction in information cost, i.e., CA(σ̂, G) = H(G)−EĜ∼σ̂|G

[
H(Ĝ)

]
where

H is any concave function. Possible choices of the information cost function H

includes the entropy function [e.g., Sims, 2003] or more generally the uniformly

posterior separable cost functions [e.g., Bloedel and Zhong, 2020]. It is easy to

verify that uniformly posterior separable cost functions satisfy Assumption 2.

• Σ̂ is the set of experiments generated by σN and σ̂′ through sequential learning,

where σN is the one that reveals no additional information with zero cost, and

σ̂′ is an informative experiment that signals the state with fixed cost, i.e., there

5Bloedel and Zhong [2020] provide a characterization for the cost function to be indifference for one-shot
learning with additional regularity assumptions. In this thesis, we only need to assume weak preference
for one-shot learning, and the additional regularity assumptions in Bloedel and Zhong [2020] are not
essential.
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exists constant c > 0 such that CA(σ̂′, G) = c for all posterior G. In this case,

the agent can choose experiment σ̂′ as long as it is beneficial for her given her

current belief G, and in total the agent pays the cost c multiplies the number of

times the experiment σ̂′ is conducted.6

Note that although the general results in this chapter do not require any additional

assumption on the valuation function, we will consider the following class of valuation

functions in Section 4.2.1 to obtain more structure results on the optimal mechanism.

Essentially, we will focus on the setting that the private type of the agent represents her

value for acquiring additional information. In particular, the valuation function of the

agent is linear.

Definition 4.1.2. The valuation V (G, θ) is linear if there exists a function v(G) such

that V (G, θ) = v(G) · θ for any posterior G and any type θ.

Next we introduce two canonical settings that satisfy the linear valuation assumption.

Example 4.1.3. Consider the model of a decision maker trying to make a prediction

over the states Ω. In this chapter, the agent is the decision maker who chooses an action

from the action space A to maximize her payoff. There are several payoff functions of the

decision maker that are commonly considered in the literature.

• matching utilities: in this case, the states space and the action space are finite,

and Ω = A = {1, . . . , n}. the agent gains positive utility if the chosen action

matches the state, i.e., the utility of the agent is u(a, ω; θ) = θ · 1 [a = ω], where

6In this case, the agent solves an optimal stopping problem for acquiring additional information. We
can also have a continuous time version for acquiring information when the agent has access to signals
following a Brownian motion [Georgiadis and Szentes, 2020] or a Poisson process [Zhong, 2017].
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1 [·] is the indicator function and θ is the private type of the agent.7 Given belief

G, when the agent chooses the action optimally, the expected utility of the agent is

V (G, θ) = θ ·maxω∈Ω G(ω). Thus, by letting v(G) = maxω∈Ω G(ω), the valuation

of the agent is linear and V (G, θ) = v(G) · θ for any posterior G and type θ.

• error minimization: in the case, Ω = A ⊆ R, and the agent minimizes the square

error between the chosen action and the true state, i.e., the utility of the agent is

u(a, ω; θ) = −θ · (a−ω)2. Given belief G, the optimal choice of the agent is E[ω],

and the expected utility of the agent is V (G, θ) = −θ · Var(G), where Var(G) is

the variance of distribution G. Thus, by letting v(G) = −Var(G), the valuation

of the agent is linear and V (G, θ) = v(G) · θ for any posterior G and type θ.

Example 4.1.4. Consider the model of monopoly auction in Mussa and Rosen [1978].

In this example, the agent is a firm selling a product to a consumer with private value

for different quality levels of the product. The state space Ω = R+ represents the space

of valuations of the consumers. The firm has private cost parameter c, and the cost for

producing the product with quality q is c · q2.8 Let FG and fG be the cumulative function

and density function given posterior belief G. Assuming that the distribution G is regular,

i.e., the virtual value function ϕG(z) = z − 1−FG(z)
fG(z)

is non-decreasing in z,9 the optimal

mechanism of the firm with cost c is to provide the product with quality q(z) = max{0,ϕG(z)}
2c

7In the special case that θ = 1 with probability 1, this utility function is the matching utility considered
in Bergemann, Bonatti, and Smolin [2018]. Note that in Bergemann, Bonatti, and Smolin [2018], the
agent has an exogenous private signal that is informative about the state, while in our model that private
signal is assumed to be endogenous.
8Yang [2020] considers a similar setting with linear cost function c · q.
9Note that the assumption on regularity is not essential for this example. For any distribution G that
is not regular, we can apply the ironing technique in Myerson [1981b] to show that the valuation of the
agent, i.e., the profit of the firm, is still a linear function by substituting the virtual value with ironed
virtual value.
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to the agent with value z, and the expected profit of the firm is

∫
R+

max{0, ϕG(z)}2

4c
dG(z).

Let θ = 1
c
be the private type of the firm, and let v(G) = 1

4

∫
R+

max{0, ϕG(z)}2 dG(z). The

valuation function is V (G, θ) = v(G) · θ given any type θ and any belief G, which satisfies

the linearity condition.

4.2. Menu Complexity of the Optimal Mechanisms

In this section, we will provide characterizations for the revenue optimal mechanism

without any assumption on the valuation function.

Theorem 4.2.1. In the revenue optimal mechanism, the following two properties hold.

(1) The agent does not acquire costly information under equilibrium. That is,

Eθ∼F

[
EG∼x(θ)|D

[
CA(σ̂∗

G,θ, G)
]]

= 0

where σ̂∗
G,θ ∈ argmaxσ̂∈Σ̂ EĜ∼σ̂|G

[
V (Ĝ, θ)

]
− CA(σ̂, G).10

(2) Revealing full information is in the menu of the optimal mechanism, i.e., there

exists a type θ ∈ Θ such that x(θ) = σF .

Before the formal proof, we first illustrate its implications and interpretations. By

taxation principal, any mechanism can be represented as offering a menu of experiment-

payment pairs to the agent, and the agent chooses the utility maximization one. The

menu complexity of the mechanism is defined as the minimum number of menu entries

10Since CA(σ̂, G) ≥ 0 for any σ̂ and G, the agent only acquires costly information for a set with measure
zero.
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required to represent the mechanism. By Theorem 4.2.1, it is easy to see the the menu

complexity of the optimal mechanism can be unbounded.

Corollary 4.2.2. Over the worst case of the cost functions and type distributions, the

menu complexity of the optimal mechanism is unbounded.

Next we interpret the results. The second statement of Theorem 4.2.1 is the standard

no distortion at the top result. As we made no assumption on the type space here, we

cannot pin down the type that receives full information. In Section 4.2.1, we will provide

more structural properties when there is a natural order on the type space, and in that

case the highest type will receive full information. What is more interesting is the first

statement, where the theorem states that under equilibrium, the agent never (except

for a set with measure zero) has incentive to acquire additional costly information after

receiving the signal from the data broker. This holds because if the agent with type θ

acquires additional information by conducting experiment σ̂θ with positive cost, the data

broker can directly supply this experiment to the agent in the information structure, and

increases the payment of type θ by the cost of the experiment σ̂θ. The new mechanism

increases the expected revenue of the data broker, and eliminates the incentives for the

agent with type θ to further acquire any additional information. In the following proof,

we will formally show that this new mechanism is also incentive compatible and individual

rational.11

11Note that this result relies crucially on Assumption 2. If Assumption 2 is violated, it is possible that
the agent has strict incentive to acquire additional costly information under equilibrium.
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Proof of Statement 1 of Theorem 4.2.1. LetM = (x, p) be the optimal mech-

anism. Let κθ,σ be the optimal choice of experiments for agent with type θ when she re-

ceives the realized experiment σ from mechanism M. By contradiction, let Θ̂ be the set of

types with positive measure such that for any θ̂ ∈ Θ̂, the cost for additional experiments

given optimal best response strategy κθ̂,σ for agent with type θ̂ is positive, i.e.,

∫
Σ

∫
Ω

∫
S

CA(κθ̂,σ(s), Ĝσ,s,D) dσ(s|ω) dD(ω) dx(σ|θ̂) > 0,

where Ĝσ,s,D is the posterior given experiment σ and signal s, assuming the prior is D.

Let x̂ and p̂ be the allocation and payment rule such that

• for any θ ̸∈ Θ̂, x̂(θ) = x(θ) and p̂(θ) = p(θ);

• for any θ̂ ∈ Θ̂, for any σ ∈ Σ, x̂(σ|θ̂) = x(κθ̂,σ ◦ σ|θ̂),12 and

p̂(θ̂) = p(θ̂) +

∫
Σ

∫
Ω

∫
S

CA(κθ̂,σ(s), Ĝσ,s,D) dσ(s|ω) dD(ω) dx(σ|θ̂).

Let M̂ = (x̂, p̂). It is easy to verify that

Rev(M̂) =

∫
Θ

p̂(θ) dF (θ) =

∫
Θ\Θ̂

p̂(θ) dF (θ) +

∫
Θ̂

p̂(θ) dF (θ)

=

∫
Θ\Θ̂

p(θ) dF (θ)

+

∫
Θ̂

(
p(θ) +

∫
Σ

∫
Ω

∫
S

CA(κθ̂,σ(s), Ĝσ,s,D) dσ(s|ω) dD(ω) dx(σ|θ̂)
)

dF (θ)

<

∫
Θ\Θ̂

p(θ) dF (θ) +

∫
Θ̂

p(θ) dF (θ) = Rev(M).

12Note that under this new sequential experiment x̂(θ̂), the signals generated by experiments in all stages
will be revealed to the agent.
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The inequality holds because the types in set Θ̂ occur with positive measure. Thus the

revenue of mechanism M̂ is strictly higher. Moreover, in mechanism M̂, the utility

of the agent has at least the same expected utility compared to mechanism M by not

acquiring any additional information upon receiving the signal. Therefore, mechanism

M̂ is individual rational. Next it is sufficient to show that mechanism M̂ is incentive

compatible. It is easy to verify that the agent with any type θ has no incentive to deviate

to type θ̂ ̸∈ Θ̂ since her utility for reporting truthfully weakly increases, while her utility

for misreporting θ̂ remains the same. Finally, for any type θ, under mechanism M̂, the

utility for deviating the report from type θ to type θ̂ ∈ Θ̂ is

U(θ; θ̂,M̂) = EG∼x̂(θ̂)|D

[
V (G, Σ̂, θ)

]
− p̂(θ̂)

= EG∼x̂(θ̂)|D

[
V (G, Σ̂, θ)

]
− p(θ̂)−

∫
Σ

∫
Ω

∫
S

CA(κθ̂,σ(s), Ĝσ,s,D) dσ(s|ω) dD(ω) dx(σ|θ̂)

=

∫
Σ

∫
Ω

∫
S

(
EĜ∼κθ̂,σ(s)|Ĝσ,s,D

[
V (Ĝ, Σ̂, θ)

]
− CA(κθ̂,σ(s), Ĝσ,s,D)

)
dσ(s|ω) dD(ω) dx(σ|θ̂)

− p(θ̂)

≤
∫
Σ

∫
Ω

∫
S

V (Ĝσ,s,D, Σ̂, θ) dσ(s|ω) dD(ω) dx(σ|θ̂)− p̂(θ̂)

= U(θ; θ̂,M).

The inequality holds because by Assumption 2, given any posterior Ĝσ,s,D, a feasible

choice for the agent is to choose κθ̂,σ(s) ∈ Σ̂, pay cost CA(κθ̂,σ(s), Ĝσ,s,D), and then choose

additional experiments optimally given the realized signal. The utility of this choice is

upper bounded by directly choosing the optimal experiment from Σ̂, which induces value
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V (Ĝσ,s,D, Σ̂, θ) for the agent. Thus, we have

U(θ;M̂)− U(θ; θ̂,M̂) ≥ U(θ;M)− U(θ; θ̂,M) ≥ 0,

and mechanism M̂ is incentive compatible. □

Proof of Statement 2 of Theorem 4.2.1. For any mechanism M = (x, p), let

p̄ = supθ p(θ). By adding the choice (σF , p̄) into the menu of mechanism M, the revenue

of the data broker only increases. □

Note that although under equilibrium, the agent has no incentive to acquire additional

information. The optimal revenue is not equal to the case when the agent cannot acquire

additional information. In fact, the ability to potentially acquire additional information

distorts the incentives of the agent, and decreases the revenue the seller can extract from

the agent. Letting OPT
(
F, Σ̂

)
be the optimal revenue when the type distribution is F

and the set of possible experiments for the agent is Σ̂, we have the following characteri-

zation for the optimal revenue of the data broker.

Proposition 4.2.3. For any set of experiments Σ̂ ⊆ Σ̂ ′ ⊆ Σ, any type distribution F ,

we have

OPT
(
F, Σ̂ ′

)
≤ OPT

(
F, Σ̂

)
.

Proof. For any set of experiments Σ̂ ⊆ Σ̂ ′ ⊆ Σ, for any type distribution F , let M

be the optimal mechanism when the type distribution is F , and the agent can conduct

additional experiments in Σ̂ ′. Next we show that mechanism M is incentive compatible

and individual rational when the set of additional experiments for the agent is Σ̂. By
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Theorem 4.2.1, for any type θ, when the set of experiments is Σ̂ ′, the agent has no incentive

to acquire additional information on equilibrium path. Thus when the set of additional

experiments is Σ̂, by reporting the type truthfully, the utility of the agent remains the

same. Therefore, mechanism M is individual rational. In addition, since Σ̂ ⊆ Σ̂ ′, in

mechanism M, the utility of deviating to any other type is weakly smaller when the set

of additional experiments is Σ̂. Thus mechanism M is incentive compatible as well given

the set Σ̂. Therefore, we have

OPT
(
F, Σ̂ ′

)
= Rev(M, Σ̂ ′) = Rev(M, Σ̂) ≤ OPT

(
F, Σ̂

)
. □

An immediate implication of Proposition 4.2.3 is that the revenue of the data broker

is maximized when Σ̂ = {σN} i.e., the agent cannot acquire additional information.

4.2.1. Linear Valuation

In this section, we will obtain more structure results on the optimal mechanism by re-

stricting the type space and the family of valuation functions. We assume that the type

space is single dimensional, i.e., Θ = [θ, θ] ⊆ R, and the valuation function of the agent is

linear. The valuation functions illustrated in Example 4.1.3 and 4.1.4 satisfy the required

assumptions.

Let ϕ(θ) = θ− 1−F (θ)
f(θ)

be the virtual value function of the agent. Let θ∗ = infθ{ϕ(θ) ≥

0} be the lowest type with virtual value 0. We introduce the following regularity assump-

tion on the type distribution to simplify the exposition in the chapter. This assumption

is widely adopted in the auction design literature since Myerson [1981b].
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Assumption 3. The distribution F is regular, i.e., the corresponding virtual value

function ϕ(θ) is monotone non-decreasing in θ.

In this section, we characterize the optimal revenue of the data broker using the

Envelope Theorem [Milgrom and Segal, 2002]. For agent with private type θ, the interim

utility given revelation mechanism M = (x, p) is

U(θ) = EG∼x(θ)|D

[
V (G, Σ̂, θ)

]
− p(θ).

The derivative of the utility is

U ′(θ) = EG∼x(θ)|D

[
V3(G, Σ̂, θ)

]
= EG∼x(θ)|D

[
EĜ∼σ̂θ,G|G

[
v(Ĝ)

]]
where σ̂θ,G ∈ Σ̂ is the optimal experiment for the agent given private type θ and belief

G, and V3(G, Σ̂, θ) is the partial derivative on the third coordinate. Thus, we have

U(θ) =

∫ θ

θ

EG∼x(z)|D

[
EĜ∼σ̂z,G|G

[
v(Ĝ)

]]
dz + U(θ).

Then the revenue of the data broker is

Rev(M) = Eθ∼F

[
EG∼x(θ)|D

[
V (G, Σ̂, θ)

]
−
∫ θ

θ

EG∼x(z)|D

[
EĜ∼σ̂z,G|G

[
v(Ĝ)

]]
dz − U(θ)

]
= Eθ∼F

[
EG∼x(θ)|D

[
V (G, Σ̂, θ)− 1− F (θ)

f(θ)
· EĜ∼σ̂θ,G|G

[
v(Ĝ)

]]]
− U(θ)

= Eθ∼F

[
EG∼x(θ)|D

[
ϕ(θ) · EĜ∼σ̂θ,G|G

[
v(Ĝ)

]
− CA(σ̂θ,G, G)

]]
− U(θ),(4.1)
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where the second equality holds by integration by parts. The next lemma provides suf-

ficient and necessary conditions on the allocations such that the resulting mechanism is

incentive compatible and individual rational.

Lemma 4.2.4. An allocation rule x can be implemented by an incentive compatible and

individual rational mechanism if and only if for any θ, θ′ ∈ Θ,13

∫ θ

θ′
EG∼x(z)|D

[
EĜ∼σ̂z,G|G

[
v(Ĝ)

]]
− EG∼x(θ′)|D

[
EĜ∼σ̂z,G|G

[
v(Ĝ)

]]
dz ≥ 0,(IC) ∫ θ

θ

EG∼x(z)|D

[
EĜ∼σ̂z,G|G

[
v(Ĝ)

]]
dz + U(θ) ≥ V (D, Σ̂, θ).(IR)

The proof of Lemma 4.2.4 is deferred in Appendix C.1. The incentive constraint on

allocation is similar to the integral monotonicity provided in Yang [2020], where the author

considers selling data to an agent without any ability to further acquire information. Note

that it is not sufficiently to consider experiments that are Blackwell monotone for designing

incentive compatible and individual rational mechanisms.14 This illustrates a distinction

between our model and the classical single-item auction where in the latter case the

monotonicity of the interim allocation is sufficient to ensure the incentive compatibility

of the mechanisms.

When agents can acquire endogenous information, the incentive constraints cannot

be simplified to the monotonicity constraint, and the individual rational constraint may

bind for types higher than the lowest type θ. Thus the point-wise optimization method

13If θ < θ′, we use
∫ θ

θ′ to represent −
∫ θ′

θ
.

14Sinander [2019] shows that under some regularity conditions, experiments that are monotone in Black-
well order can be implemented by incentive compatible mechanism. However, those conditions are violated
in our model and Blackwell monotone experiments may not be implementable. This issue of implemen-
tation with Blackwell monotone experiments for selling information has also been observed in the model
of Yang [2020].
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for classical auction design cannot be applied when there is endogenous information.

In the following theorem, we provide a full characterization of the optimal mechanism

under Assumption 2 and 3 by directly tackling the constraints on the integration of

allocations. Note that the regularity assumption (Assumption 3) is only made to simplify

the exposition. The same characterization holds for irregular distributions by adopting

the ironing techniques in Toikka [2011]. The detailed proof of Theorem 4.2.5 is provided

in Appendix C.1.

Theorem 4.2.5. For linear valuations, under Assumption 2 and 3, there exists an

optimal mechanism M̂ with allocation rule x̂ such that,15

• for any type θ ≥ θ∗, the data broker reveals full information, i.e., x̂(θ) = σF ;

• for any type θ < θ∗, the data broker commits to information structure

x̂(θ) = argmax
σ̂∈Σ̂

EG∼σ̂|D[V (G, θ)]− CA(σ̂, D)

where ties are broken by maximizing the cost CA(σ̂, D);

• U(θ) = V (D, Σ̂, θ).

Theorem 4.2.5 implies that there is no distortion at the top in the optimal mech-

anism. Intuitively, when the agent has sufficiently high type, i.e., ϕ(θ) > 0, by fully

revealing the information to the agent, the expected virtual value is maximized since

EG∼σ|D

[
EĜ∼σ̂θ,G|G

[
v(Ĝ)

]]
is maximized when the signal σ fully reveals the state. More-

over, with fully revealed state, the posterior belief of the agent is a singleton, and hence

the cost of the endogenous information is zero since there is no additional information

15The characterization on allocation actually holds in any optimal mechanism except for a set of types
with measure zero.
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available. By Equation (4.1), this allocation maximizes the virtual surplus, and hence the

expected revenue of the data broker.

According to the characterization in Theorem 4.2.5, for any type θ < θ∗, the utility of

the agent in the optimal mechanism M̂ is

U(θ) =

∫ θ

θ

EG∼x̂(z)|D

[
EĜ∼σ̂z,G|G

[
v(Ĝ)

]]
dz + U(θ)

=

∫ θ

θ

EG∼σ̂θ,D|D[v(G)] dz + V (D, Σ̂, θ) = V (D, Σ̂, θ).

Thus the individual rational constraint does not only bind for the lowest type, but also

for all types below the monopoly type θ∗. Note that this is different from the Myerson’s

auction design problem or selling information when the agent cannot acquire additional

information. In those cases, the utility of the low type agents coincide with the outside

option because the seller chooses not to sell to these agents. Here the data broker provide

valuable information with positive payment to the agent such that the low type agents

are exactly indifferent between participation and choosing the outside option.

4.3. Pricing for Full Information

Note that although the optimal mechanism may require a complex price discrimination

scheme against different types when the agent can acquire additional costly information,

in the remaining part of this section, we will provide sufficient conditions on the prior

distribution, the cost function or the type distribution such that pricing for revealing full

information is optimal or approximately optimal.
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Proposition 4.3.1. For any cost function CA and any prior D, if σN ∈

argmaxσ̂∈Σ̂ EĜ∼σ̂|D

[
V (Ĝ, θ∗)

]
− CA(σ̂, D), the optimal mechanism is to post a price for

revealing full information.

In Appendix C.1, we will show that when the monopoly type θ∗ find it optimal to

not acquire costly information, all types below θ∗ will have strictly incentives to not ac-

quire costly information. Combining this observation with the characterization in Theo-

rem 4.2.5, we directly obtain the result that the optimal mechanism is pricing for revealing

full information.

Note that the condition in Proposition 4.3.1 is also necessary for pricing for revealing

full information to be revenue optimal when θ∗ > θ and the type distribution is continuous

with positive density everywhere. This is because if the monopoly type θ∗ has strict

incentive to acquire costly information given the prior, there exists a positive measure

of types below θ∗ that also have strict incentive to acquire costly information given the

prior. Hence the data broker can have strictly revenue increase by price discriminating

those low types.

There are two interpretations for Proposition 4.3.1. Fixing the cost function CA,

we say the prior D is sufficiently informative if σN ∈ argmaxσ̂∈Σ̂ EĜ∼σ̂|D

[
V (Ĝ, θ∗)

]
−

CA(σ̂, D). This is intuitive since when the prior is sufficiently close to the degenerate

pointmass distribution, the marginal cost for additional information is sufficiently high

while the marginal benefit of additional information is bounded. Thus it is not beneficial

for the agent to not acquiring any additional information. We formalize the intuition in

Appendix C.1.
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An alternative interpretation for Proposition 4.3.1 is that by holding the prior D as

fixed, when the cost CA of acquiring additional information is sufficiently high, for agent

with type θ∗, she has no incentive to acquire additional information given the prior. Note

that this can be achieved by scaling any cost function up by a sufficiently large constant.

Thus posting a deterministic price for revealing full information is also optimal when the

information acquisition is sufficiently costly. This is a generalization for the case where

cost of information is infinite for any experiment except σN .

So far we have shown the optimality of revealing full information with conditions on

the prior or the cost of acquiring additional information. Without any such assump-

tions, the optimal mechanism may contain a continuum of menus, which discriminate

different types of the agent by offering experiments with increasing level of informative-

ness. However, we show that the additional benefit of price discrimination is limited, as

posting a deterministic price for revealing full information is approximately optimal for

revenue maximization given the same set of assumptions as in Theorem 4.2.5. The proof

of Theorem 4.3.2 is provided in Appendix C.1.

Theorem 4.3.2. For linear valuations, under Assumption 2 and 3, for any prior

D and any cost function CA, posting a deterministic price for revealing full information

achieves at least half of the optimal revenue.

Theorem 4.3.2 is shown by identifying the worst case type distribution and cost func-

tion that maximize the multiplicative gap between the optimal revenue and the revenue

from posted pricing, and then directly proving that the gap in the worst case is 2. In

comparison, Bergemann et al. [2021] showed that even when the valuation distribution is a
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singleton, if the informative signal the agent receives is exogenous instead of endogenous,

for any constant c > 1 and m > 1, there exists a valuation function of the agent and a

signal structure such that any mechanism that is a c-approximation ratio to the optimal

revenue has menu complexity at least m. This distinction shows that to approximate

the optimal revenue, complex mechanisms are necessary for the exogenous information

setting, while simple mechanisms are sufficient for the endogenous information setting.

In Proposition 4.2.3 we have shown that the ability of acquiring additional information

distorts the incentives of the agent, and reduces the optimal revenue of the data broker.

In the following proposition, we discuss the implication of endogenous information acqui-

sition on the social welfare and the expected utility of the agent. Recall that |Σ̂| = 1 is

equivalent to the setting where the agent cannot acquire additional information.

Proposition 4.3.3. For any valuation function V , any prior D, and any type distribution

F , in the revenue optimal mechanism,

• the social welfare is minimized when |Σ̂| = 1;16

• the utility of the agent is minimized when |Σ̂| = 1.

The proof of statement 1 in Proposition 4.3.3 is provided in Appendix C.1, and the second

statement is implied by the first statement and Proposition 4.2.3. Intuitively, when the

agent cannot acquire additional information, in the optimal mechanism, the data broker

will not provide information to lower types to reduce the information rent from higher

types, which minimizes the social welfare.

16Our result actually implies that the expected value for each type of the agent is minimized when |Σ̂| = 1.
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4.4. Applications

In this section, we apply the characterizations of the optimal mechanisms to several

leading examples of selling information.

Error Minimization. Here we consider the model where the agent is a decision maker

trying to minimize the square error of the chosen action. That is, let the state space and

action space be Ω = A ⊆ R, and the agent minimizes the square error between the chosen

action and the true state, i.e., the utility of the agent is u(a, ω; θ) = −θ · (a − ω)2. This

is one of the models illustrated in Example 4.1.3.

Recall that in Example 4.1.3, we show that the valuation function of the agent is linear

with the form V (G, θ) = θ ·v(G), where v(G) = −Var(G) is the variance of distribution G.

Let F be the distribution over the types and let θ∗ be the monopoly type in distribution

F . We assume that the prior distributionD over states is a Gaussian distributionN (0, η2)

with variance η2. The agent can repeatedly pay a unit cost c to observe a Gaussian signal

s = ω + ϵ where ϵ ∼ N (0, 1).

Next we illustrate the optimal mechanism in this setting by applying Theorem 4.2.5.

• For any θ ≥ θ∗, the data broker reveals the states to the firm with price p =

θ∗ · Var(D).

• For any θ < θ∗, the optimal allocation solves the following Bayesian persuasion

problem

x̂(θ) = argmax
σ̂∈Σ̂

EG∼σ̂|D[V (G, θ)]− CA(σ̂, D).
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Note that in this example, the agent can only decide the number of Gaussian

signals to observe, and with k signals, the cost is k, and the variance of the

posterior is η2

1+kη2
regardless of the realized sequence of the observed signals.

Thus, letting

kθ = argmaxk −θ · η2

1 + kη2
− kc,

in the optimal mechanism, the data broker commits to a signal structure that

is Blackwell equivalent to revealing kθ Gaussian signals with unit variance, and

charges the agent with price kθ · c.

Note that for any θ < θ∗, the optimal number of signals revealed to the agent kθ is

weakly increasing in θ and η, and is weakly decreasing in c. Moreover, fixing distribution

F and correspondingly the monopoly type θ∗, when η is sufficiently small or when c is

sufficiently large, kθ = 0 for any θ < θ∗, and the optimal mechanism reduces to posted

pricing mechanism.

Monopoly auction. Here we consider the monopoly auction model introduced in Mussa

and Rosen [1978]. This is introduced in Example 4.1.4. We consider a simple case that

the state space Ω = {ω1, ω2} is binary, where ωi ∈ R represents the value of the consumer

and 0 < ω1 < ω2. In this case, given posterior belief G of the firm, the virtual value of

the consumer simplifies to

ϕG(ω1) = ω1 −
G(ω2)(ω2 − ω1)

G(ω1)
;

ϕG(ω2) = ω2.
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According to Mussa and Rosen [1978], the optimal mechanism of the firm with cost c is

to provide the product with quality q(ωi) =
max{0,ϕG(ωi)}

2c
to the agent with value ωi, and

the expected profit of the firm is 1
c
· v(G) where

v(G) ≜ G(ω1) ·
max{0, ϕG(ω1)}2

4
+G(ω2) ·

ω2
2

4
.

Suppose the cost c is the private information of the firm, and let θ = 1/c. Recall that F

is the distribution over the types and D is the prior over states. Let θ∗ be the monopoly

type in distribution F . We assume that the firm can flexibly design any experiment,

i.e., Σ̂ contains all possible experiments. In addition, for any σ̂ ∈ Σ̂, the cost is the

reduction in entropy, i.e., CA(σ̂, G) = H(G)− EĜ∼σ̂|G

[
H(Ĝ)

]
for any posterior G where

H(G) = −
∑

i G(ωi) logG(ωi) is the entropy function.

Since the valuation function of the firm is linear, next we illustrate the optimal mech-

anism in this setting by applying Theorem 4.2.5.

• For any θ ≥ θ∗, or equivalently for any c ≤ 1/θ∗, the data broker reveals full

information to the firm with price

p = θ∗ · (Eω∼D[v(Gω)]− v(D)),

where Gω is the pointmass distribution on state ω.
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Ĝ(ω1)

v(Ĝ) · θ +H(Ĝ)

Gθ(ω1) G′
θ(ω1)

Figure 4.1. The figure is the value of v(Ĝ)·θ+H(Ĝ) as a function of Ĝ(ω1).

• For any θ < θ∗, or equivalently for any c > 1/θ∗, the optimal allocation solves

the following Bayesian persuasion problem

x̂(θ) = argmax
σ̂∈Σ̂

EG∼σ̂|D[V (G, θ)]− CA(σ̂, D)

= argmax
σ̂∈Σ̂

EG∼σ̂|D[θ · v(G) +H(G)]−H(D).

By the concavification approach in Kamenica and Gentzkow [2011], the optimal

signal structure has signal space of size 2. As illustrated in Fig. 4.1, if the prior

satisfies Gθ(ω1) < D(ω1) < G′
θ(ω1), the data broker induces posterior either Gθ

or G′
θ for type θ. Otherwise, the data broker reveals no information to the firm.
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APPENDIX A

Appendix to Chapter 2

A.1. Other Posted Pricing Mechanisms

A.1.1. Oblivious Posted Pricing

For oblivious posted pricing mechanisms [e.g. Chawla et al., 2010], we show how to apply

resemblant property between the ironed price-posting payoff curve and optimal payoff

curve to obtain approximation results for agents with general utility. Similar to sequential

posted pricing, we will define the oblivious posted price in quantile space.

Definition A.1.1. An oblivious posted pricing mechanism is ({qi}i∈N) where the

adversary chooses an ordering {oi}i∈N of the agents, and {qi}i∈N denotes the quantile

corresponding to the per-unit prices to be offered to agents at the time they are considered

according to the order {oi}i∈N if the item is not sold to previous agents. Note that quantiles

{qi}i∈N can be dynamic and depends on both the order and realization of the past agents.

Given the definition of the oblivious quantile pricing mechanism, we denote the payoff

of the oblivious quantile pricing mechanism ({qi}i∈N) for agents with a collection of price-

posting payoff curves {Pi}i∈N by OPP({Pi}i∈N , {qi}i∈N), and the optimal payoff for the

oblivious quantile pricing mechanism is

OPP({Pi}i∈N) = max
{qi}i∈N

OPP({Pi}i∈N , {qi}i∈N).
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Similar to Theorem 2.2.2, we have the following reduction framework for oblivious

posted pricing for non-linear agents. The proof is identical to Theorem 2.2.2, hence

omitted here.

Theorem A.1.1. Fix any set of (non-linear) agents with price-posting payoff curves

{Pi}i∈N that are ζ-resemblant to their optimal payoff curves {Ri}i∈N . If there exists

an oblivious posted pricing mechanism ({qi}i∈N) that is a γ-approximation to the ex

ante relaxation for linear agents analog with price-posting payoff curves {Pi}i∈N , i.e.,

OPP({Pi}i∈N , {qi}i∈N) ≥ 1/γ·EAR({P̄i}i∈N), then this mechanism is also a γζ-approximation

to the ex ante relaxation for non-linear agents, i.e., OPP({Pi}i∈N , {qi}i∈N) ≥ 1/γ ζ ·

EAR({Ri}i∈N).

For the single item setting, there exists an oblivious posted pricing mechanism that

is a 2-approximation to the ex ante relaxation for linear agents [Feldman et al., 2016]. In

addition, if the price-posting payoff curves are the same for all gents, the approximation

ratio is improved to 1/(1− 1/
√

2π) [Yan, 2011].

A.1.2. Anonymous Pricing

A desirable property for the multi-agent setting is anonymity. This requires that the

price posted to all agents are the same. Note that for welfare maximization, although

anonymous pricing guarantees 2-approximation for linear agents [Lucier, 2017], it may lead

to huge welfare loss for non-linear agents. This is illustrated in the following example.

Example A.1.2. Consider the single-item setting with two budget agents. Let v be a

sufficiently large number. Agent 1 has value v and no budget constraint while agent 2 has
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value v2 and budget 1. The welfare optimal mechanism allocates the item to agent 2, with

welfare v2. However, if the anonymous price is at most v, then agent 1 will buy the whole

item and if the anonymous price is larger than v, the item is sold with probability at most

1
v
. Thus anonymous pricing can guarantee welfare at most v, with approximation factor

at least v, which is unbounded.

Thus we will focus on revenue maximization for anonymous pricing. Alaei et al.

[2018] showed that for linear agents, the central assumption for constant approximation

of anonymous pricing is concavity of the price posting revenue curves. Next we provide

a general reduction framework for anonymous pricing for non-linear agents. Note that

AP({Pi}i∈N) is the optimal revenue from anonymous pricing when the price-posting payoff

curves are {Pi}i∈N .

Theorem A.1.2. Fix any set of (non-linear) agents with price-posting payoff curves

{Pi}i∈N that are ζ-resemblant to their optimal payoff curves {Ri}i∈N . If the price-posting

payoff curves are concave, then anonymous pricing is a ζe-approximation to the ex ante

relaxation on the optimal payoff curves, i.e., AP({Pi}i∈N) ≥ 1/ζe · EAR({Ri}i∈N).

Proof. Let {qi}i∈N be the optimal ex ante relaxation for ex ante revenue curves

{Ri}i∈N , and let q†i be the quantile assumed to exist by ζ-resemblance such that q†i ≤ qi

and P̄i(q
†
i ) ≥ 1

ζ
Ri(qi) for each i. Since the price-posting payoff curves are concave, we

have {Pi}i∈N = {P̄i}i∈N , and

EAR({Pi}i∈N) = EAR({P̄i}i∈N) ≥
∑

i
P̄i(q

†
i ) ≥

1

ζ

∑
i
R(qi) =

1

ζ
EAR({Ri}i∈N).
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By Alaei et al. [2018], e ·AP({Pi}i∈N) ≥ EAR({Pi}i∈N) if the price-posting payoff curves

{Pi}i∈N are concave. Combining the inequalities, we have

ζe · AP({Pi}i∈N) ≥ EAR({Ri}i∈N). □

As instantiation of the reduction framework in Theorem A.1.2, we can show that

agents are 1-resemblant and have concave price posting revenue curve when they have

public budget and regular valuation distributions, and they are (2 + ln v̄/C)-resemblant

and have concave price posting revenue curve when they have capacitated risk averse

utility with maximum value v̄, capacity C ≤ v̄, and regular valuation distributions.

A.2. Public Budget Agent

Theorem 2.3.5. An agent with public budget and regular valuation distribution has

the ironed price-posting revenue curve P̄ that equals to (i.e. 1-resemblant) her optimal

revenue curve R.

Proof. For an agent with public budget w, the q̂ ex ante optimal mechanism is the

solution of the following program,

max
(x,p)

Ev[p(v)]

s.t. (x, p) are IC, IR,

Ev[x(v)] = q̂,

p(v̄) ≤ w.

(A.1)



129

where v̄ is the highest possible value of the agent. Consider the Lagrangian relaxation of

the budget constraint in (A.1),

min
λ≥0

max
(x,p)

Ev[p(v)] + λw − λp(v̄)

s.t. (x, p) are IC, IR,

Ev[x(v)] = q̂.

(A.2)

Let λ∗ be the optimal solution in program (A.2). If we fix λ = λ∗ in program (A.2), its

inner maximization program can be thought as a q̂ ex ante optimal mechanism design for

a linear agent with Lagrangian objective function Ev[p(v)]− λ∗p(v̄). Thus, we define the

Lagrangian price-posting revenue curve Pλ∗(·) where Pλ∗(q) is the maximum value of the

Lagrangian objective Ev[p(v)] − λ∗p(v̄) in price-posting mechanism with per-unit price

V (q). For any q ∈ (0, 1], by the definition, Pλ∗(q) = qV (q) − λ∗V (q). For q = 0, notice

that the agent with v̄ is indifferent between purchasing or not purchasing. Thus, by the

definition, Pλ∗(q) = 0 if q = 0.

Now, we consider the concave hull of the Lagrangian price-posting revenue curve Pλ∗(·)

which we denote as P̂λ∗(·). Let q† be the smallest solution of equation Pλ∗(q) = qP ′
λ∗(q).

Since Pλ∗(0) ≤ 0, Pλ∗(1) = 0 and Pλ∗(·) is continuous, q† always exists. Then, for

any q ≤ q†, P̂λ∗(q) = q P ′
λ∗(q†). For any q ≥ q†, we show P̂λ∗(q) = Pλ∗(q) by the

following arguments. First notice that Pλ∗(q†) ≥ 0, and hence q† ≥ λ∗. Consider P ′′
λ∗(q) =

V ′′(q)(q − λ∗) + 2V ′(q). Clearly, V ′(q) ≤ 0. If V ′′(q) ≤ 0, then P ′′
λ∗(q) ≤ 0. If V ′′(q) > 0,

then P ′′
λ∗(q) = V ′′(q)(q − λ∗) + 2V ′(q) ≤ qV ′′(q) + 2V ′(q) ≤ 0, where qV ′′(q) + 2V ′(q) is

non-positive due to the regularity of the valuation distribution.



130

To summarize, P̂λ∗(·), the concave hull of the Lagrangian price-posting revenue curve

satisfies

P̂λ∗(q) =

 q P ′
λ∗(q†) if q ∈ [0, q†]

Pλ∗(q) if q ∈ [q†, 1]

Therefore, use the similar ironing technique based on the revenue curves for linear agents

with irregular valuation distribution [e.g. Myerson, 1981a, Bulow and Roberts, 1989, Alaei

et al., 2013], Lemma A.2.1 (stated below) suggests that the q̂ ex ante optimal mechanism

irons quantiles between [0, q†] under q̂ ex ante constraint, which is still a posted-pricing

mechanism. □

Lemma A.2.1 (Alaei et al., 2013). For incentive compatible and individual rational mech-

anism (x(·), p(·)) and an agent with any Lagrangian price-posting revenue curve Pλ∗(q),

the expected Lagrangian objective of the agent is upper-bounded by her expected marginal

Lagrangian objective of the same allocation rule, i.e.,

Ev[p(v)] + λ∗p(v̄) ≤ Eq

[
P̂ ′
λ∗(q) · x(V (q))

]
.

Furthermore, this inequality holds with equality if the allocation rule x(·) is constant all

intervals of values V (q) where P̂λ∗(q) > Pλ∗(q).
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APPENDIX B

Appendix to Chapter 3

B.1. Canonical Scoring Rules

In this section, we will formally prove Theorem 3.2.4. In the subsequent discussion,

the boundary of the report space is denoted by ∂R and the interior of the report space

by relint(R) = R \ ∂R.

Lemma B.1.1 (Abernethy and Frongillo, 2012). Any proper and µ-differentiable scoring

rule for eliciting the mean S coincides with a canonical scoring rule (defined by u, ξ, and

κ) at reports in the relative interior of the report space, i.e., it satisfies equation (3.2) for

all r ∈ relint(R).

The main new results need to show that canonical scoring rules are without loss for

Program (3.1) are extensions of Lemma B.1.1 to the boundary of the report space ∂R.

The form of scoring rules considered enters the program in two places: the objective and

the boundedness constraint. The two lemmas below show that canonical scoring rules are

without loss in these two places in the program.

Lemma B.1.2. Any µ-differentiable, bounded, and proper scoring rule S for eliciting the

mean is equal in expectation of truthful reports to a canonical scoring rule (defined by u,

ξ, and κ), i.e., it satisfies equation (3.3).
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Lemma B.1.3. For any µ-differentiable and proper scoring rule S for eliciting the mean

that induces utility function u (via Lemma B.1.2) and satisfies score bounded in [0, B],

there is a canonical scoring rule defined by u (and some ξ and κ) that satisfies the same

score bound, i.e., it satisfies equation (3.4).

Note that Lemma B.1.2 implies that the utility function u corresponding to any µ-

differentiable scoring rule S can be identified (via the equivalent cannonical scoring rule);

thus, the assumption of Lemma B.1.3 is well defined. Lemma B.1.2 and Lemma B.1.3

combine to imply that Program (3.1) and Program (3.6) are equivalent.

Next, we will formally prove Lemma B.1.2 and B.1.3. First we show that when the

scoring rule is bounded, the corresponding functions u(r), ξ(r), κ(ω) in the characteriza-

tion of Lemma B.1.1 are bounded in the interior as well.

Lemma B.1.4. For any bounded scoring rule S, there exist convex function u : R → R

and function κ : Ω → R such that for any report r ∈ relint(R) and any state ω ∈ Ω,

S(r, ω) = u(r) + ξ(r) · (ω − r) + κ(ω)

where ξ(r) ∈ ∂u(r) is a subgradient of u, and functions u(r), ξ(r), κ(ω) are bounded for

any report r ∈ relint(R) and any state ω ∈ Ω.

Proof. Since scoring rule S is bounded, let B̄ω = supr∈relint(R) S(r, ω) and Bω =

infr∈relint(R) S(r, ω). Let r̂ ∈ relint(R) be a report in the interior such that both u(r̂) and

ξ(r̂) are finite. Note that for any state ω ∈ Ω, state ω locate on the boundary of the

report space, i.e., ω ∈ ∂R, and the report space is a linear combination of the state space.
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For any report r ∈ relint(R), by the convexity of function u, we have

u(r) ≥ u(r̂)− ξ(r̂) · (r − r̂)

and hence u(r) is bounded below.

Next we show that u(r) is bounded above for any report r ∈ relint(R). We first show

that fixing any state ω, any report r which is a linear combination of ω and r̂ has bounded

utility u(r). If u(r) ≤ u(r̂), then naturally u(r) is bounded above. Otherwise, note that

B̄ω −Bω ≥ S(r, ω)− S(r̂, ω) = u(r) + ξ(r) · (ω − r)− u(r̂)− ξ(r̂) · (ω − r̂)

≥ (u(r)− u(r̂)) · ∥ω − r̂∥
∥r̂ − r∥

+ u(r̂)− u(r̂)− ξ(r̂) · (ω − r̂) ≥ u(r)− u(r̂)− ξ(r̂) · (ω − r̂),

where the first inequality holds because the scoring rule is bounded. The second inequality

holds because the convex function u projected on line (ω, r̂) is still a convex function. The

last inequality holds because report r lies in between ω and r̂. Therefore, we have that

u(r) is bounded above for report r lies in between ω and r̂. For any state ω ∈ Ω, let

û(ω) = limk→∞ u(rk) where {rk}∞k=1 is a sequence of report on line (ω, r̂) that converges

to ω. Since u(rk) are bounded for any rk, we have that û(ω) is bounded as well. Since

the report space is a subset of the convex hull of the state space, we have that for any

report r ∈ relint(R), u(r) is upper bounded by the convex combination of û(ω), which is

also bounded by above.

For any state ω ∈ Ω, we have

S(r̂, ω) = u(r̂) + ξ(r̂) · (ω − r̂) + κ(ω),
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which implies κ(ω) is bounded since all other terms are bounded.

Finally, for any report r ∈ relint(R) and any state ω ∈ Ω,

S(r, ω) = u(r) + ξ(r) · (ω − r) + κ(ω),

which implies ξ(r) · (ω − r) is bounded. Since the boundedness holds for all directions,

the subgradient ξ(r) must also be bounded. □

Lemma B.1.5. Given any state space Ω and report space R with non-empty interior,

for any distribution G ∈ ∆(Ω) with mean µG, there exists a sequence of posteriors {Gk}

such that for any bounded function ϕ(ω) in space Ω, we have {Eω∼Gk [ϕ(ω)]} converges to

Eω∼G[ϕ(ω)].

Proof. Since space R has a non-empty interior, let G̃ be a distribution with mean µG̃

in the interior of R. Let the sequence of posteriors Gk = (1 − 1/k) · G + 1/k · G̃. For any

bounded function ϕ(ω) in space Ω, we have

lim
k→∞

Eω∼Gk [ϕ(ω)]

= lim
k→∞

[(1− 1/k) · Eω∼G[ϕ(ω)] + 1/k · Eω∼G̃[ϕ(ω)]] → Eω∼G[ϕ(ω)] . □

Proof of Lemma B.1.2. By Lemma B.1.1, for µ-differentiable proper scoring rule

S, there exists convex function u : R → R and function κ : Ω → R such that for any

report r ∈ relint(R) and any state ω ∈ Ω, we have

S(r, ω) = u(r) + ξ(r) · (ω − r) + κ(ω)
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where ξ(r) ∈ ∇u(r) is a subgradient of u. By Lemma B.1.4, since the scoring rule is

bounded, function u is convex and bounded and hence continuous in the interior. Thus,

we can well define the value of u on the boundary as its limit from the interior, i.e., set

u(r) = limk→∞ u(rk) for any r on the boundary of the report space R and {rk}∞k=1 as a

sequence of interior reports converging to r. Thus we can replace the convex function u

with continuous and convex function u for bounded scoring rules and the characterization

still holds in the interior.

For any bounded proper scoring rule, we have that u(r) is bounded for any report

r ∈ relint(R) and κ(ω) is bounded for any state ω ∈ Ω. Given any posterior G such that

µG ∈ ∂R, let {Gk} be the sequence of posteriors constructed in Lemma B.1.5.

(1) The identity function ϕ(ω) = ω is bounded. Therefore, the mean of the posteriors

converges, i.e., limk→∞ µGk = µG. And all means {µGk} are in the interior of R.

(2) Function κ(ω) is bounded. Therefore, the expected value for function κ converges.

That is, limk→∞Eω∼Gk [κ(ω)] = Eω∼G[κ(ω)].

(3) The ex post score S(r, ω) is bounded. Therefore, the expected score for reporting

µG converges, i.e., limk→∞Eω∼Gk [S(µG, ω)] = Eω∼G[S(µG, ω)].

Moreover, considering the sequence of expected score for reporting µGk with distribu-

tion G, we have

lim
k→∞

Eω∼G[S(µGk , ω)] = lim
k→∞

[u(µGk) + Eω∼G[ξ(µGk) · (ω − µGk)] + Eω∼G[κ(ω)]]

= lim
k→∞

[u(µGk) + Eω∼Gk [κ(ω)]] = lim
k→∞

[Eω∼Gk [S(µGk , ω)]
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where the second equality holds because limk→∞Eω∼Gk [κ(ω)] = Eω∼G[κ(ω)] and limk→∞ µGk =

µG. Combining the equalities, we have

Eω∼G[S(µG, ω)] = lim
k→∞

Eω∼Gk [S(µG, ω)] ≤ lim
k→∞

Eω∼Gk [S(µGk , ω)]

= lim
k→∞

Eω∼Gk [S(µGk , ω)] = lim
k→∞

Eω∼G[S(µGk , ω)] ≤ Eω∼G[S(µG, ω)]

where the inequalities holds by the properness of the scoring rule. Therefore, all inequal-

ities must be equalities, and hence

Eω∼G[S(µG, ω)] = lim
k→∞

Eω∼Gk [S(µGk , ω)]

= lim
k→∞

Eω∼Gk [u(µGk) + κ(ω)] = u(µG) + Eω∼G[κ(ω)] .

where the last equality hold since function u is continuous.

Finally, given any bounded, continuous and convex function u with bounded subgra-

dients and any bounded function κ, the corresponding canonical scoring rule is proper,

bounded, and the expected score coincides. □

Proof of Lemma B.1.3. If a proper scoring rule S is induced by function u and

bounded by B in space Ω, by Lemma B.1.1, there exists function κ : Ω → R such that

for any report r ∈ relint(R) and any state ω ∈ Ω,

S(r, ω) = u(r) + ξ(r) · (ω − r) + κ(ω)

where ξ(r) ∈ ∇u(r) is a subgradient of u. Moreover, the score S(r, ω) ∈ [0, B] for

any report and state r ∈ R,ω ∈ Ω. Thus, it holds that for any report and state r ∈
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relint(R), ω ∈ Ω

S(ω, ω)− S(r, ω) = u(ω)− u(r)− ξ(r)(ω − r) ≤ B.

For any report R ∈ ∂R, there exists a sequence of reports ri such that {rk} converges to

r and ξ(r) = limk→∞ ξ(rk) is a subgradient at report r. Thus, it holds that for any report

r ∈ ∂R and state ω ∈ Ω,

S(ω, ω)− S(r, ω) = u(ω)− u(r)− lim
k→∞

ξ(rk)(ω − r) ≤ B.

Therefore, the canonical scoring rule defined by u with the same function κ is proper and

bounded in [0, B]. □

B.2. Proofs of Lemma 3.4.7-Lemma 3.4.10

Proof of Lemma 3.4.7. This result follows because the extended distribution is

symmetric on the extended state space, thus, its optimal scoring rule is max-over-separate

(Corollary 3.4.4). This scoring rule can be applied to the original space where it is still

max-over-separate. The optimal max-over-separate scoring rule for the original space is

no worse. □

Proof of Lemma 3.4.8. Let ũ be the optimal utility function corresponding to

OPT(f̃, B, Ω̃). Since the distribution f̃ is center symmetric, by Theorem 3.4.2, the utility
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function ũ is symmetric V-shaped. Thus, we have

OPT(f̃, B, Ω̃) =

∫
R̃

ũ(r) f̃(r) dr

=
1

2

∫
R

ũ(r) f(r) dr +
1

2

∫
R

ũ(2µD − r) f(r) dr

=

∫
R

ũ(r) f(r) dr = Obj(ũ, f). □

Proof of Lemma 3.4.9. Let û be the optimal solution of Program (3.6) with dis-

tribution f and state space Ω̃, i.e., Obj(û, f) = OPT(f,B, Ω̃). On the other hand, utility

function û may not be optimal for distribution f̃ , thus, OPT(f̃, B, Ω̃) ≥ Obj(û, f̃). We

have,

OPT(f̃, B, Ω̃) ≥ Obj(û, f̃) =

∫
R̃

û(r) f̃(r) dr =
1

2

∫
R

ũ(r) f(r) dr +
1

2

∫
R

ũ(2µD − r) f(r) dr

≥ 1

2

∫
R

ũ(r) f(r) dr =
1

2
OPT(f,B, Ω̃)

where the final inequality follows from convexity of û,
∫
R
(2µD − r) f(r) dr = µD, Jensen’s

Inequality, and û(µD) = 0. □

The approach to proving Lemma 3.4.10, i.e., OPT(f,B, Ω̃) ≥ 1
4
OPT(f,B,Ω), is as

follows. Let u be the optimal utility corresponding to OPT(f,B,Ω). We construct ũ that

(a) exceeds u at all point r ∈ R and (b) is feasible for OPT(f, 4B, Ω̃). The utility function

ũ/4, thus, has objective value at least 1
4
OPT(f,B,Ω) and is feasible for OPT(f,B, Ω̃).

The optimal utility is only better.

The proof of the lemma introduces the following constructs.
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0
µD r′

Pξ(r′)

P̃ξ(r′)

(a)

u(0)

u(0)−B

u

û

0
µD

(b)

Figure B.1. The figure on the left hand side illustrates a hyperplane for
report r′ on the boundary of the report space, which is shifted from a
tangent plane of u at the boundary r′. The figure on the right hand side
illustrates the extended utility function ũ that takes the supremum over all
hyperplanes shifted from the feasible tangent planes to intersect with the
(µD, 0) point.

• The extended utility function ũ for program OPT(f, 4B, Ω̃) given utility function

u for the program OPT(f,B,Ω) is defined as follows.

Feasibility of u for Program (3.6) defines subgradients {ξ(r) : r ∈ R} that

satisfy the boundedness condition. Let Gu be the set of all subgradients of u that

satisfy the boundedness constraint. Clearly the latter set contains the former

set. Define the extended utility function ũ as the convex function defined by the

supremum of the supporting hyperplanes given by the subgradients Gu shifted to

intersect with the (µD, 0) point. See Figure B.1.

Convexity of u implies that its supporting hyperplane at r with subgradient

ξ(r) is below u(µD) = 0 at µD. Thus, relative to the supporting hyperplanes of

u these supporting hyperplanes of ũ are shifted upwards.
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The extended utility function ũ is convex-conical as it is defined by supporting

hyperplanes that all contain point (µD, 0).

• The extended state spaces are Ω ⊂ Ω̃′ ⊂ Ω̃′′ ⊂ Ω̃. State space Ω̃′ is the union of

the original state space and its point reflection about µD as Ω̃′ = Ω ∪{2µD −ω :

ω ∈ Ω}, state space Ω̃′′ is the convex hull of Ω̃′, and state space Ω̃ (as previously

defined) is the extended rectangular state space containing Ω̃′′.

Lemma 3.4.10, i.e., OPT(f, 4B, Ω̃) ≥ OPT(f,B,Ω), follows by combining the following

lemmas.

Lemma B.2.1. For any feasible solution u for Program (3.6), the extended utility function

ũ is at least u, i.e., ũ(r) ≥ u(r) for any report r ∈ R.

Lemma B.2.2. For any feasible solution u for Program (3.6) with score bound B and

state space Ω, the extended utility function ũ is a feasible solution of Program (3.6) with

score bound 2B and state space Ω.

Lemma B.2.3. Any convex-conical utility function ũ that is a feasible solution of Pro-

gram (3.6) with score bound 2B and state space Ω is a feasible solution to Program (3.6)

with bound 2B and state space Ω̃′.

Lemma B.2.4. Any convex-conical utility function ũ that is a feasible solution of Pro-

gram (3.6) with score bound 2B and state space Ω̃′ is a feasible solution to Program (3.6)

with bound 2B and state space Ω̃′′ = conv(Ω̃′).
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Lemma B.2.5. Any convex-conical utility function ũ that is a feasible solution of Pro-

gram (3.6) with score bound 2B and state space Ω̃′′ is a feasible solution to Program (3.6)

with bound 4B and state space Ω̃.

Proof of Lemma B.2.1. Since the supporting hyperplanes of ũ are shifted upwards

relative to u, we have ũ(r) ≥ u(r) at all r ∈ R. Thus, ũ obtains at least the objective

value of u, i.e., Obj(f, ũ) ≥ Obj(f, ũ). □

Proof of Lemma B.2.2. First, the subgradients of ũ are a subset of the subgradi-

ents of u that satisfy the boundedness constraint. Lemma B.2.6 (stated and proved at

the end of this subsection) shows that the set of subgradients Gu of u that satisfy the

boundedness constraint is closed. As ũ is defined the supremum over these hyperplanes,

closure of the set implies that the supremum at any report r ∈ R is attained on one of

these hyperplanes.

Now observe that in the construction of ũ, the supporting hyperplanes of u are shifted

up by at most B. The boundedness constraint corresponding to state µD and the report r

with subgradient ξ(r) ∈ ∇u(r) implies that the supporting hyperplane corresponding to

ξ(r) at r has value at least −B at µD. Thus, in the construction of the extended utility

function ũ, the hyperplane corresponding to ξ(r) is shifted up by at most B and, at any

state ω ∈ Ω, ũ(ω) ≤ u(ω) +B.

Finlly, the boundedness constraint is the difference between the utility at a given state

and the value of any supporting hyperplane of the utility evaluated at that state. From u

to ũ the former has increased by at most B and the latter is no smaller; thus, ũ satisfies

the boundedness constraint on state space Ω with bound 2B. □
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Proof of Lemma B.2.3. The lemma follows by the geometries of the boundedness

constraint and convex cones. The boundedness constraint requires a bounded difference

between the utility at any state (in the state space) and the value at that state on

any supporting hyperplane of the utility function (corresponding to any report in the

report space). For convex-conical utility functions, the supporting hyperplanes are also

supporting hyperplanes of the cone defined by the point reflection of the utility function

around its vertex (µD, 0), henceforth, the reflected cone. Thus, the boundedness constraint

for convex-conical utility function requires that the difference between the original cone

and the reflected cone be bounded at all states in the state space.

The original space Ω and the reflected state space {2µD − ω : ω ∈ Ω} are symmetric

with respect to the original cone and the reflected cone. Thus, if states in the original state

space are bounded, by comparing a state on the cone to the same state on the reflected

cone; then states in the reflected state space are bounded by comparing its reflected state

(in the original state space) on the reflected cone to its reflected state on the original cone.

Thus, if a boundedness constraint holds on Ω it also holds on the reflected state space

{2µD − ω : ω ∈ Ω} and their union. □

Proof of Lemma B.2.4. Consider the cone and reflected cone defined in the proof

of Lemma B.2.3 and the geometry of the boundedness constraint. Notice that, by con-

vexity of the cone defining the utility function ũ and concavity of the reflected cone, the

convex combination of the bounds, i.e., the difference of values of states on these two

cones, of any set of states is at least the bound of the convex combination of the states.

Hence, if the boundedness constraint holds on state space Ω̃′, then it holds on its convex

hull Ω̃′′ = conv(Ω̃′). □
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Proof of Lemma B.2.5. Consider any ray from µD. Since the utility ũ is a convex

cone, the utility on this ray is a linear function of the distance from µD. The same holds

for this ray evaluated on the point reflection of the utility at µD. The difference between

these utilities is also linear. Thus, by the geometry of the boundedness constraint for

convex-conical utility functions, on any ray from µD, the bound is linear. Considering

the state space Ω̃′′ and Ω̃, if the former is scaled by a factor of two around µD, then

it contains the latter (by simple geometry, see Figure 3.2). Thus, if the convex-conical

utility function ũ satisfies bound 2B on state space Ω̃′′ it satisfies bound 4B on state

space Ω̃. □

Lemma B.2.6. For any feasible solution u for Program (3.6), the set Gu of all subgradi-

ents of u satisfying the bounded constraints is a closed set.

Proof. By Lemma B.1.2, any feasible solution u for Program (3.6) is convex, bounded

and continuous with bounded subgradients. For any convex, bounded and continuous

function u, let {ξk(rk)}∞k=1 ⊆ Gu be a convergent sequence of subgradients in set Gu,

where rk is the report corresponds to the kth subgradient. Let ξ∗ = limk→∞ ξk(rk) be the

limit of the subgradients. Since the report space is a closed and bounded space, there

exists a subsequence of reports {rkj}∞j=1 ⊆ {rk}∞k=1 such that {rkj}∞j=1 converges. Letting

report r = limj→∞ rkj , we have report r is in the report space, i.e., r ∈ R. Moreover,

we have limj→∞ ξkj(rkj) = limk→∞ ξk(rk) = ξ∗. Next we show that ξ∗ is a subgradient

for some report r ∈ R such that the bounded constraints of the induced scoring rule are

satisfied for any state ω ∈ Ω, i.e., ξ∗ ∈ Gu,r.
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First for any state ω, we have

u(r) + ξ∗ · (ω − r) = lim
j→∞

[u(rkj) + ξ∗ · (ω − rkj)]

= lim
j→∞

[u(rkj) + ξkj(rkj) · (ω − rkj)] ≤ u(ω),

where the first equality holds because function u and function ξ∗ · r are continuous and

bounded in reports. The inequality holds because ξkj(rkj) is a subgradient for report

rkj . Thus ξ∗ is subgradient for report r. Next we show that the scoring rule induced by

subgradient ξ∗ is bounded for report r. For any state ω, we have

u(ω)− u(r)− ξ∗ · (ω − r) = u(ω)− lim
j→∞

[u(rkj) + ξkj(rkj) · (ω − rkj)]

≤ u(ω)− (u(ω)−B) = B,

where the inequality holds because the subgradient ξkj(rkj) satisfies the bounded con-

straint for report rkj at state ω, i.e., ξkj(rkj) ∈ Gu,rkj and u(rkj) + ξkj(rkj) · (ω − rkj) ≥

u(ω)−B. Therefore, ξ∗ ∈ Gu,r ⊂ Gu, which implies the set Gu is a closed set. □
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APPENDIX C

Appendix to Chapter 4

C.1. Linear Valuation

Before the proof of the theorems in Section 4.2.1, we first present the following lemma

showing that experiment σF that reveals full information is the most valuable for the

agent. Recall that σ̂θ,G ∈ Σ̂ is the optimal experiment the agent chooses when her type

is θ and her posterior belief after receiving the signal from the data broker is G.

Lemma C.1.1. Let σF be the experiment that reveals full information. For any experi-

ment σ ∈ Σ, any prior D, and any type θ, we have

EG∼σF |D

[
EĜ∼σ̂θ,G|G

[
v(Ĝ)

]]
≥ EG∼σ|D

[
EĜ∼σ̂θ,G|G

[
v(Ĝ)

]]
.

Proof. For the fully informative experiment σF , for any experiment σ, any prior D,

and any type θ, we have

EG∼σF |D

[
EĜ∼σ̂θ,G|G

[
v(Ĝ)

]]
= Eω∼D[v(ω)] ≥ EG∼σ|D

[
EĜ∼σ̂θ,G|G

[
v(Ĝ)

]]
.

The inequality holds since v is convex in G and σF fully reveals the states. □
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Lemma C.1.2. An allocation rule x can be implemented by an incentive compatible and

individual rational mechanism if and only if for any θ, θ′ ∈ Θ,1

∫ θ

θ′
EG∼x(z)|D

[
EĜ∼σ̂z,G|G

[
v(Ĝ)

]]
− EG∼x(θ′)|D

[
EĜ∼σ̂z,G|G

[
v(Ĝ)

]]
dz ≥ 0,(IC) ∫ θ

θ

EG∼x(z)|D

[
EĜ∼σ̂z,G|G

[
v(Ĝ)

]]
dz + U(θ) ≥ V (D, Σ̂, θ).(IR)

Proof of Lemma 4.2.4. Given allocation rule x, by the envelope theorem, for any

incentive compatible mechanism M, the interim utility U(θ) is convex in θ and

U(θ) =

∫ θ

θ

EG∼x(z)|D

[
EĜ∼σ̂z,G|G

[
v(Ĝ)

]]
dz + U(θ).

Note that the mechanism M = (x, p) is individual rational if and only if U(θ) ≥

V (D, Σ̂, θ) for any type θ, i.e.,

∫ θ

θ

EG∼x(z)|D

[
EĜ∼σ̂z,G|G

[
v(Ĝ)

]]
dz + U(θ) ≥ V (D, Σ̂, θ).

Moreover, the corresponding payment rule for mechanism M is

p(θ) = EG∼x(θ)|D

[
V (G, Σ̂, θ)−

∫ θ

θ

EG∼x(z)|D

[
EĜ∼σ̂z,G|G

[
v(Ĝ)

]]
dz

]
− U(θ).

Next we verify the incentive constraints of the given mechanism. Note that for any

θ, θ′ ∈ Θ, letting U(θ; θ′) be the utility of the agent with type θ when she reports θ′ in

1If θ < θ′, we use
∫ θ

θ′ to represent −
∫ θ′

θ
.
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mechanism M, we have

U(θ)− U(θ; θ′)

= U(θ)− U(θ′)− EG∼x(θ′)|D

[
V (G, Σ̂, θ)

]
+ EG∼x(θ′)|D

[
V (G, Σ̂, θ′)

]
=

∫ θ

θ′
EG∼x(z)|D

[
EĜ∼σ̂z,G|G

[
v(Ĝ)

]]
dz − EG∼x(θ′)|D

[∫ θ

θ′
V3(G, Σ̂, z) dz

]
=

∫ θ

θ′

(
EG∼x(z)|D

[
EĜ∼σ̂z,G|G

[
v(Ĝ)

]]
− EG∼x(θ′)|D

[
EĜ∼σ̂z,G|G

[
v(Ĝ)

]])
dz.

Thus U(θ) − U(θ; θ′) ≥ 0 if and only if the integral constraint in the statement of

Lemma 4.2.4 is satisfied. □

Theorem 4.2.5. For linear valuations, under Assumption 2 and 3, there exists an

optimal mechanism M̂ with allocation rule x̂ such that,2

• for any type θ ≥ θ∗, the data broker reveals full information, i.e., x̂(θ) = σF ;

• for any type θ < θ∗, the data broker commits to information structure

x̂(θ) = argmax
σ̂∈Σ̂

EG∼σ̂|D[V (G, θ)]− CA(σ̂, D)

where ties are broken by maximizing the cost CA(σ̂, D);

• U(θ) = V (D, Σ̂, θ).

Proof of Theorem 4.2.5. We first show that allocation rule x̂ combined with

U(θ) = V (D, Σ̂, θ) can be implemented as an incentive compatible and individual rational

mechanism. One way to prove this is to verify the constraints specified in Lemma 4.2.4.

2The characterization on allocation actually holds in any optimal mechanism except for a set of types
with measure zero.
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However, directly verifying the incentive constraints in Lemma 4.2.4 for allocation x̂ might

be challenging as we impose little structure on the information costs.3 Thus we adopt

an alternative approach by explicitly constructing an incentive compatible and individual

rational mechanism M̂. Then we show that the constructed mechanism has allocation x̂

and utility for the lowest type U(θ) = V (D, Σ̂, θ).

First consider a mechanism M′ that post a deterministic price p for revealing full

information. The price p is chosen such that the agent purchases information from the

seller if and only if θ ≥ θ∗. Note that given mechanism M′, for agent with type θ < θ∗,

she will choose not to participate the auction, and then subsequently conduct experiment

σ̂θ = argmax
σ̂∈Σ̂

EG∼σ̂|D[V (G, θ)]− CA(σ̂, D).

We assume that the agent breaks tie by maximizing the cost CA(σ̂, D). Now let M̂ be

the mechanism that reveals full information for types θ ≥ θ∗ with price p, and commits to

information structure σ̂θ for types θ < θ∗ with price CA(σ̂θ, D). It is easy to verify that M̂

has allocation rule x̂ and the utility of the lowest type θ in M̂ is V (D, Σ̂, θ). Moreover, by

the proof of Theorem 4.2.1, mechanism M̂ is incentive compatible and individual rational.

Note that when the posterior G is in the support of σF |D, the agent will not acquire

additional costly information since σF fully reveals the state. Moreover, when the posterior

G is in the support of σ̂θ|D, by Assumption 2, the agent will not acquire additional costly

information because otherwise σ̂θ is not the utility maximization information structure

given prior D. Combining the observations, we have that CA(σ̂θ,G, G) = 0 for G in the

3Without additional structures on the costs, it is hard to characterize the optimal strategy σ̂θ,G given
any type θ and posterior G.
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support of x̂(θ)|D, and hence by Equation (4.1), the revenue of mechanism M̂ is

Rev(M̂) = Eθ∼F

[
EG∼x̂(θ)|D

[
ϕ(θ) · EĜ∼σ̂θ,G|G

[
v(Ĝ)

]
− CA(σ̂θ,G, G)

]]
− U(θ)

= Eθ∼F

[
ϕ(θ) · EG∼x̂(θ)|D

[
EĜ∼σ̂θ,G|G

[
v(Ĝ)

]]]
− V (D, Σ̂, θ)

=

∫ θ̄

θ∗
ϕ(θ) · EG∼σF |D[v(G)] dθ +

∫ θ∗

θ

ϕ(θ) · EG∼σ̂θ,D|D[v(G)] dθ − V (D, Σ̂, θ).(C.1)

Now consider any incentive compatible and individual rational mechanism M with allo-

cation x, again by Equation (4.1), the revenue of mechanism M is

Rev(M) = Eθ∼F

[
EG∼x(θ)|D

[
ϕ(θ) · EĜ∼σ̂θ,G|G

[
v(Ĝ)

]
− CA(σ̂θ,G, G)

]]
− U(θ)

≤ Eθ∼F

[
ϕ(θ) · EG∼x(θ)|D

[
EĜ∼σ̂θ,G|G

[
v(Ĝ)

]]]
− U(θ),

where the inequality holds since CA(σ̂θ,G, G) ≥ 0 for any posterior G. For any type θ ≥ θ∗,

i.e., ϕ(θ) ≥ 0, by applying Lemma C.1.1, the contribution of revenue from type θ is

Rev(M; θ) ≜ ϕ(θ) · EG∼x(θ)|D

[
EĜ∼σ̂θ,G|G

[
v(Ĝ)

]]
≤ ϕ(θ) · EG∼σF |D

[
EĜ∼σ̂θ,G|G

[
v(Ĝ)

]]
= ϕ(θ) · EG∼σF |D[v(G)] .(C.2)
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Next we bound the revenue contribution from types θ < θ∗, i.e., ϕ(θ) < 0.

Eθ∼F [Rev(M; θ) · 1 [θ < θ∗]]− U(θ)

=

∫ θ∗

θ

f(θ) · ϕ(θ) · EG∼x(θ)|D

[
EĜ∼σ̂θ,G|G

[
v(Ĝ)

]]
dθ − U(θ)

= −
∫ θ∗

θ

(f(θ) · ϕ(θ))′
∫ θ

θ

EG∼x(z)|D

[
EĜ∼σ̂z,G|G

[
v(Ĝ)

]]
dz dθ − U(θ)

≤ −
∫ θ∗

θ

(f(θ) · ϕ(θ))′ · (V (D, Σ̂, θ)− U(θ)) dθ − U(θ)

= −
∫ θ∗

θ

(f(θ) · ϕ(θ))′ · V (D, Σ̂, θ) dθ − U(θ)(f(θ) · ϕ(θ) + 1)

≤ −
∫ θ∗

θ

(f(θ) · ϕ(θ))′ · V (D, Σ̂, θ) dθ − V (D, Σ̂, θ)(f(θ) · ϕ(θ) + 1)

=

∫ θ∗

θ

ϕ(θ) · EG∼σ̂θ,D|D[v(G)] dθ − V (D, Σ̂, θ).(C.3)

The second equality holds by integration by parts. The first inequality holds by (1)

(f(θ) · ϕ(θ))′ is non-negative for θ ≤ θ∗ under Assumption 3 [c.f., Devanur and Weinberg,

2017b]; and (2)
∫ θ

θ
EG∼x(z)|D

[
EĜ∼σ̂z,G|G

[
v(Ĝ)

]]
dz ≥ V (D, Σ̂, θ)− U(θ) according to the

individual rational constraints in Lemma 4.2.4. The last inequality holds since U(θ) ≥

V (D, Σ̂, θ) and f(θ) · ϕ(θ) + 1 = f(θ) · θ + F (θ) ≥ 0. Finally, the last equality holds by

integration by parts and the facts that ϕ(θ∗) = 0 and

V (D, Σ̂, θ) = V (D, Σ̂, θ) +

∫ θ

θ

EG∼σ̂z,D|D[v(G)] dz.
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Combining Equations (C.1) to (C.3), we have

Rev(M) ≤ Eθ∼F [Rev(M; θ) · 1 [θ ≥ θ∗]] + Eθ∼F [Rev(M; θ) · 1 [θ < θ∗]]− U(θ)

≤
∫ θ̄

θ∗
ϕ(θ) · EG∼σF |D[v(G)] dθ +

∫ θ∗

θ

ϕ(θ) · EG∼σ̂θ,D|D[v(G)] dθ − V (D, Σ̂, θ) = Rev(M̂).

Thus mechanism M̂ is revenue optimal. □

Proposition C.1.3. For any cost function CA and any prior D, if σN ∈

argmaxσ̂∈Σ̂ EĜ∼σ̂|D

[
V (Ĝ, θ∗)

]
− CA(σ̂, D), the optimal mechanism is to post a price for

revealing full information.

Proof. By Theorem 4.2.5, it is sufficient to show that if

σN ∈ argmax
σ̂∈Σ̂

EĜ∼σ̂|D

[
V (Ĝ, θ∗)

]
− CA(σ̂, D),

then σ̂θ,D = σN for any θ < θ∗. Suppose by contradiction that there exists θ < θ∗ such

that CA(σ̂θ,D, D) > 0, i.e.,

EG∼σ̂θ,D|D[v(G)] · θ − CA(σ̂θ,D, D) ≥ EG∼σN |D[v(G)] · θ.

Since θ∗ > θ, we have that

EG∼σ̂θ,D|D[v(G)] · θ∗ − CA(σ̂θ,D, D)− EG∼σN |D[v(G)] · θ∗

>
(
EG∼σ̂θ,D|D[v(G)]− EG∼σN |D[v(G)]

)
· θ − CA(σ̂θ,D, D) ≥ 0,

contradicting to the assumption that σN is one of the optimal choices for type θ∗ given

the prior D. □



152

In the following lemma, in the case that the state space Ω is finite, we formalize the

intuition that when the prior is sufficiently close to the degenerate pointmass distribution,

the marginal cost for additional information exceeds the marginal benefit of additional

information.

Definition C.1.1. The set of possible experiments Σ̂ is finitely generated if it is

generated by σN and a finite set Σ̂ ′ through sequential learning, where σN is the one that

always reveals no additional information with zero cost, and any σ̂ ∈ |Σ̂ ′| is an experiment

that provides an informative signal about the state with fixed cost cσ̂ > 0.

Lemma C.1.4. Suppose Ω is finite and Σ̂ is finitely generated. Suppose that there exists

v̄ < ∞ such that maxω∈Ω v(ω) ≤ v̄ and v(G) ≥ minω∈Ω G(ω) ·v(ω) for any G. Then there

exists ϵ > 0 such that any prior D satisfying D(ω) > 1− ϵ for some ω ∈ Ω is sufficiently

informative.4

Proof. Let cm = minσ̂∈Σ̂′ > 0. By construction, for any experiment σ̂ ∈ Σ̂, we have

CA(σ̂, G) ≥ cm for any G. Let ω∗ be the state such that D(ω∗) > 1 − ϵ. Given prior D,

the utility increase of type θ∗ for additional information is at most

θ∗ ·

(∑
ω∈Ω

D(ω)v(ω)− v(D)

)
≤ θ∗ ·

(∑
ω ̸=ω∗

D(ω)v(ω)

)
< θ∗ · ϵ · v̄.

The first inequality holds since v(D) ≥ D(ω∗)v(ω∗), and the second inequality holds since

v(ω) ≤ v̄ and
∑

ω ̸=ω∗ D(ω) < ϵ. Thus, when ϵ = cm
θ∗·v̄ , the cost of information is always

4We can have similar results when Σ̂ is not finitely generated. For example, when the cost function is the
reduction in entropy, by applying the techniques in Caplin, Dean, and Leahy [2019], for any valuation
function v, there exists ϵ > 0 such that any prior D satisfying D(ω) > 1− ϵ for some ω ∈ Ω is sufficiently
informative.
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higher than the benefit of information, and the agent with type θ∗ will never acquire any

additional information given prior D. □

Before the proof of Theorem 4.3.2, we first introduce the definition of quantiles and

revenue curves, which are helpful for bounding the approximation ratio. For any distri-

bution F , let qF (θ) ≜ Prz∼F [z ≥ θ] be the quantile corresponding to type θ. Accordingly,

we can define θ(q) as the type corresponds to quantile q. The revenue curve as a func-

tion of the quantile is defined as RF (q) ≜ q · θ(q). Note that the regularity condition in

Assumption 3 is equivalent to the concavity assumption for the revenue curve.

Lemma C.1.5 (Myerson, 1981b). A distribution F is regular if and only if RF (q) is

concave in q.

Theorem 4.3.2. For linear valuations, under Assumption 2 and 3, for any prior

D and any cost function CA, posting a deterministic price for revealing full information

achieves at least half of the optimal revenue.

Proof of Theorem 4.3.2. We first normalize the primitives such that θ∗·q(θ∗) = 1.

For any type θ, let c(θ) ≜ V (D, Σ̂, θ) be the value of the agent for not participating the

auction. It is easy to verify that c(θ) is convex in θ. Let x̄ ≜ Eω∼D[v(ω)] be the maximum

possible allocation. According to Theorem 4.2.5, if the distribution F is regular, in the

revenue optimal mechanism, the expected utility of the agent is c(θ) for any θ < θ∗ and

is (θ − θ∗) · x̄+ c(θ∗) for any θ ≥ θ∗.

Suppose θ̂ is the cutoff type that participates the auction in the optimal price posting

mechanism for distribution F . It is easy to verify that θ̂ ≤ θ∗ since revealing full informa-

tion to any type above the monopoly type only increases the expected revenue. Moreover,
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1

r

0 1
q

q(θ∗) q(θ̂)q̄

R(q)

Figure C.1. The figure illustrates the reduction on the type distribution
that maximizes the approximation ratio between the optimal revenue and
the price posting revenue. The black solid curve is the revenue curve for
distribution F and the red dashed curve is the revenue curve for distribution
F̂ . The black dashed curve is the revenue curve F̄ such that the seller is
indifferent at deterministically selling at any prices with negative virtual
value.

for any type θ < θ∗, since the payment that inducing θ̂ to be the cutoff type is θ̂ · x̄− c(θ̂),

we have that

(θ̂ · x̄− c(θ̂)) · qF (θ̂) ≥ (θ · x̄− c(θ)) · qF (θ).

That is, any type θ < θ∗,

qF (θ) ≤
(θ̂ · x̄− c(θ̂)) · qF (θ̂)

θ · x̄− c(θ)
.

Let F̄ be the distribution such that

qF̄ (θ) =
(θ̂ · x̄− c(θ̂)) · qF (θ̂)

θ · x̄− c(θ)
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for any type θ. Thus the virtual value function ϕ̄(θ) for distribution F̄ is

ϕ̄(θ) = θ − θ · x̄− c(θ)

x̄− c′(θ)
≤ 0.

Moreover,

ϕ̄′(θ) =
c′′(θ) · (c(θ)− θ · x̄)

(x̄− c′(θ))2
≤ 0.

Thus the revenue curve such that the seller is indifferent at selling at any price is convex.

Let F̂ be the distribution with piecewise linear revenue curve illustrated in Figure C.1.

Thus we have that

qF̂ (θ) =


1
θ

θ ≥ 1
q̄
,

1−rq̄
θ(1−q̄)+1−r

θ < 1
q̄
.

Let p(θ) ≜ θ · x̄ − c(θ) ≥ 0. First note that distribution F̂ is first order stochastically

dominated by F̄ , the optimal revenue from posted pricing is weakly smaller for distribu-

tion F̂ . Moreover, both distributions achieve the same price posting revenue by choosing

the price p(θ̂) such that the cutoff type is θ̂. Thus the optimal price posting revenue for

distribution F̂ is attained by choosing price p(θ̂). This further indicates that optimal price

posting revenue is the same for distribution F and F̂ , i.e., PP(F, c) = PP(F̂, c). Secondly,

since distribution F is first order stochastically dominated by F̂ , it is easy to verify that

OPT (F, c) ≤ PP(F̂, c). Therefore, the ratio between the price posting revenue and the

optimal revenue is minimized when the type distribution is F̂ .
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For distribution F̂ , since the optimal price is p(θ̂), we have

(θ̂ · x̄− c(θ̂)) · qF̂ (θ̂) ≥ (θ · x̄− c(θ)) · qF̂ (θ).

Let ζ = (θ̂ · x̄− c(θ̂)) · qF̂ (θ̂) and let

ĉ(θ) = θ · x̄− ζ

qF̂ (θ)
.

It is easy to verify that PP(F̂, c) = PP(F̂, ĉ) = ζ. Moreover, ĉ(θ) is convex and c(θ) ≥ ĉ(θ)

for any θ, which implies that any feasible mechanism for c is also feasible for ĉ, and

hence OPT
(
F̂, c
)
≤ OPT

(
F̂, ĉ
)
. Thus to prove Theorem 4.3.2, it is sufficient to bound

PP(F̂,ĉ)

OPT(F̂,ĉ)
. Note that by construction, the monopoly type for distribution F̂ is 1

q̄
. Hence

the optimal revenue is

OPT
(
F̂, ĉ
)
=

∫ 1
q̄

r

f̂(θ)(θ · ĉ′(θ)− ĉ(θ)) dθ +

(
1

q̄
· x̄− ĉ(

1

q̄
)

)
· q̄

=

∫ 1
q̄

r

f̂(θ) · ζ · 1− r

1− rq̄
dθ + ζ

= ζ ·
(
(1− q̄)(1− r)

1− rq̄
+ 1

)
≤ 2ζ,

where the inequality is tight if q̄ = r = 0. Combining the observations, for any distribution

F and any function c induced by the set of experiments Σ̂, we have

PP(F, c)

OPT (F, c)
≥ PP(F̂, ĉ)

OPT
(
F̂, ĉ
) ≥ 1

2
.

□
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Proposition C.1.6. For any valuation function V , any prior D, and any type distribution

F , in the revenue optimal mechanism,

• the social welfare is minimized when |Σ̂| = 1;5

• the utility of the agent is minimized when |Σ̂| = 1.

Proof for Statement 1 of Proposition 4.3.3. Recall that θ∗ = infθ{ϕ(θ) ≥

0}. Note that for any type θ ≥ θ∗, the agent receives full information regardless of the set

of possible experiments Σ̂ for the agent. For any type θ < θ∗, it is easy to verify that the

agent receives no information when |Σ̂ ′| = 1. Since no information is the least preferred

allocation for the agent, the social welfare is minimized when |Σ̂ ′| = 1. □

5Our result actually implies that the expected value for each type of the agent is minimized when |Σ̂| = 1.
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