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ABSTRACT

Essays on “Small” Sample Problems in “Large” Datasets

Yong Cai

Many estimation and inference procedures rely on asymptotic approximations for

quantities that are unknown to researchers. While often convenient, such approxima-

tions can be poor in practice, even when the number of observations is ostensibly large.

One response is to eschew asymptotics in favor of finite sample bounds. While remark-

able progress has been made in this regard, bounds are often wide, or involve unknown

parameters that limit their use. This dissertation takes a different approach. Our view is

that the failure of asymptotics can often be attributed to certain pathological features of

the data that reduce effective sample size, so that data sets may be small for the purpose

of asymptotic approximation, even when they are nominally large. Our solution is to

develop alternative asymptotic theories that explicitly incorporate said features, so that

“small” data problems persist in the limiting approximations, which we expect to be more

accurate as a result. We pursue such an approach in three different settings.

Chapter 1 studies the properties of linear regression on centrality measures when net-

work data is sparse – that is, when there are many more agents than links per agent – and
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when they are constructed by proxy. Network data contains little information when they

are sparse, since the adjacency matrices are mostly zeroes. Conventional analyses, based

on taking the number of nodes to infinity, ignore the fact that centrality measures may

have no variation when networks are sparse. Instead, we study the theoretical properties

of OLS under sequences of increasingly sparse networks, making three contributions: (1)

We show that OLS estimators can become inconsistent under sparsity and characterize

the threshold at which this occurs, with and without proxy error. This threshold de-

pends on the centrality measure used. Specifically, regression on eigenvector is less robust

to sparsity than on degree and diffusion. (2) We develop distributional theory for OLS

estimators under proxy error and sparsity, finding that OLS estimators are subject to

asymptotic bias even when they are consistent. Moreover, bias can be large relative to

the variances, so that bias correction is necessary for inference. (3) We propose novel bias

correction and inference methods for OLS with sparse proxy networks. Simulation evi-

dence suggests that our theory and methods perform well, particularly in settings where

the usual OLS estimators and heteroskedasticity-consistent/robust t-tests are deficient.

Finally, we demonstrate the utility of our results in an application inspired by De Weerdt

and Dercon (2006), in which we study the relationship between consumption smoothing

and informal insurance in Nyakatoke, Tanzania.

Chapters 2 and 3 consider the issue of inference with cluster-dependent data. When

researchers are concerned about dependence between observations in their datasets, they

typically group observations into independent clusters in order to facilitate inference using

approximate randomization tests (ART) or tests based on the clustered-covariance esti-

mator (CCE). Because researchers are often willing to make only minimal assumptions
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about the dependence structure within each cluster, cluster-dependent methods typically

have effective sample size equal to the number of clusters, which is low in many empirical

settings, even if the total number of observations is a large. To better understand the

challenges posed by few clusters, Chapters 2 and 3 study issues in inference with cluster-

dependent data in asymptotic frameworks in which the number of clusters are finite in

the limit.

Chapter 2 proposes a test for the level of clustering. CCE and ART require the cluster

structure of the data to be known ex ante. However, researchers often have some choice in

clustering their data. As such, a researcher who has chosen to cluster their data at a finer

or more disaggregated level may be unsure about their decision, especially given knowledge

that observations are independent when clustered at a coarser, or more aggregated level.

Chapter 2 proposes a modified randomization test as a robustness check for the chosen

level of clustering in a linear regression setting. Existing tests require either the number of

coarse clusters or number of fine clusters to be large. Our method is designed for settings

with few coarse and fine clusters. While the method is conservative, it has competitive

power in settings that may be relevant to empirical work.

Chapter 3 (joint with Ivan A. Canay, Deborah Kim and Azeem M. Shaikh) considers

issues in the implementation of approximate randomization tests, an inference method

explicitly designed for settings with few clusters. We show that the ARTs admit an

equivalent implementation based on weighted scores and that the test and confidence

intervals are invariant to whether the test statistic is studentized or not. When the

test involves scalar parameters, we prove that the confidence intervals formed via test

inversion are convex. We also present a novel, exact algorithm for test inversion with
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scalar parameters, which reliably outperforms grid and bisection search. This chapter

is written as a user’s guide: we articulate the main requirements underlying the test,

emphasizing in particular common pitfalls that researchers may encounter and provide

two empirical demonstrations based on Munyo and Rossi (2015) and Meng et al. (2015).

Finally, Chapter 4 (joint with Ahnaf Rafi) considers the issue of experiment design

with the Neyman Allocation, which is used in many papers on experiment design. These

papers typically assume that researchers have access to large pilot studies, which may

not be realistic. To understand the properties of the Neyman Allocation with small

pilots, we study its behavior in a novel asymptotic framework for two-wave experiments

in which the pilot size is assumed to be fixed even as the main wave sample size grows.

Our analysis shows that the Neyman Allocation can lead to estimates of the ATE with

higher asymptotic variance than with (non-adaptive) balanced randomization. That is,

even with a large main-wave experiment, the reduction in asymptotic variance that results

from the Neyman Allocation depends on the size of the pilot study used for its estimation.

We find that the method performs especially poorly compared to balanced randomization

when the outcome variable is relatively homoskedastic with respect to treatment status or

when it exhibits high kurtosis. We also provide a series of empirical examples showing that

these situations arise frequently in practice. Our results therefore suggest that researchers

should not use the Neyman Allocation with small pilots, especially in such instances.
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CHAPTER 1

Linear Regression with Centrality Measures

1.1. Introduction

A large and rapidly growing body of work documents the influence of networks in a

wide range of economic outcomes: peer effects drive academic achievement, production

networks shape shock propagation in the macroeconomy, social networks affect information-

and risk-sharing with important implications for development (see Sacerdote 2011, Car-

valho and Tahbaz-Salehi 2019 and Breza et al. 2019 for recent reviews). Many other

examples abound.

One particular strand of research has explored the relationship between an agent’s

network position and their economic outcomes. For example, Hochberg et al. (2007)

considers the network of venture capital firms and finds that better-networked firms suc-

cessfully exit a greater proportion of their investments. Meanwhile, Cruz et al. (2017)

examines the social networks in the Philippines and shows that more central families are

disproportionately represented in political offices. Similarly, Banerjee et al. (2013) studies

the problem of diffusing microfinance in India and establishes that seeding information to

more central agents led to greater participation in the program.

In these papers, researchers often estimate linear models by ordinary least squares

(OLS), using centrality measures as explanatory variables. Centrality measures are node-

level statistics that capture notions of importance in a network. Since nodes can be
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important for many reasons, a variety of centrality measures exist, each capturing a

particular aspect of network position. For example, the degree centrality of an agent

reflects the number or intensity of their direct links, while eigenvector centrality is designed

so that the influence of agents is proportional to that of their connections. The correlation

between an outcome variable and a particular centrality measure may be revealing about

the types of interactions that drive a given economic phenomenon: an outcome that is well-

predicted solely by degree is likely to be determined in an extremely local manner, whereas

one that is more strongly associated with eigenvector centrality may involve non-linear

interactions between agents that are further apart. As such, when researchers estimate

these correlations and test their statistical significance, they frequently do so with the goal

of drawing conclusions about the economic significance of various centrality measures and

the implied mechanisms for outcome determination. Such an exercise is credible only

if the OLS estimator is close to the estimand, and if the chosen test statistic (typically

the heteroskedasticity-consistent/robust t-statistics) is well described by its asymptotic

distribution (standard normal for t-statistics) in finite sample.

However, network data have two features that may threaten the statistical validity of

OLS. First, networks may be sparse, with many more agents than links per agent. This

could happen because interactions are observed with low frequency, or because the inter-

actions in question are rare. Chandrasekhar (2016) argues that many economic networks

are sparse, providing evidence from commonly used social network data (e.g. AddHealth;

Karnataka Villages (Banerjee et al. 2013); Harvard social network (Leider et al. 2009)).

Sparsity poses a challenge to estimation and inference: if networks are largely empty,

there might not be enough variation in centrality measures to identify the parameters of
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interest. Despite its importance, sparsity has received relatively little attention in the

network econometrics literature.

Second, the observed network may differ from the true network of interest. Centrality

measures are often calculated on data which are obtained by survey or constructed using

some proxy for interaction between agents, though subsequent analysis would frequently

treat the true network as known. Ignoring proxy error may thus lead to estimates that

perform poorly. A growing literature works with proxy networks, though they generally

do not consider sparse settings. This is important since sparsity and proxy error are

mutually reinforcing: sparser networks contain weaker signals, which are in turn more

difficult to pick out from noisy proxies. The upshot is that OLS estimators computed on

sparse, proxy networks may have particularly poor properties. Asymptotic theory that

ignores these features will provide similarly poor approximations to their finite sample

behavior. Consequently, estimation and inference procedures based on these theories may

lead to invalid conclusions about the economic significance of centrality measures.

This chapter studies the statistical properties of OLS on centrality measures in an

asymptotic framework which features both proxy error and sparsity. Our analysis fo-

cuses on degree, diffusion and eigenvector centralities, which are among the most popular

measures. Our contribution is threefold: (1) We characterize the amount of sparsity at

which OLS estimators become inconsistent with and without proxy error, finding that

this threshold varies depending on the centrality measure used. Specifically, regression on

eigenvector centrality is less robust to sparsity than that on degree and diffusion. This

suggests that researchers should be cautious about comparing regressions on different

centrality measures, since they may differ in statistical properties in addition to economic
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significance. (2) We develop distributional theory for OLS estimators under proxy error

and sparsity. We restrict ourselves to sparsity ranges under which OLS is consistent, but

we find that asymptotic bias can be large even in this case. Furthermore, the bias may be

of larger order than variance, in which case bias correction would be necessary for obtain-

ing non-degenerate asymptotic distributions. Additionally, we find that under sparsity,

the estimator converges at a slower rate than is reflected by the usual heteroskedasticity-

consistent(hc)/robust standard errors, requiring a different estimator. (3) In view of the

distributional theory, we propose novel bias-corrected estimators and inference methods

for OLS with sparse, proxy networks. We also clarify the settings under which hc/robust

t-statistics are appropriate for testing.

Our theoretical results are derived in an asymptotic framework where networks are

modeled as realizations of sparse random graphs. As the number of agents, n, tends

to infinity. the expected number of links per agent grows much more slowly than n.

Because our statistical model captures important features of real world data, we expect

our methods to be reliable for estimation and inference with sparse, proxy networks.

We provide simulation evidence supporting this view. The utility of our results is also

evident from an application inspired by De Weerdt and Dercon (2006), where we conduct

a stylized study of consumption smoothing and social insurance in Nyakatoke, Tanzania.

Our choice of asymptotic framework poses technical challenges. First, the eigenvectors

and eigenvalues of sparse random graphs are difficult to characterize. We draw on recent

advances in random matrix theory (Alt et al. 2021a,b; Benaych-Georges et al. 2019, 2020)

to overcome this challenge. Second, spectral norms of random matrices concentrate slowly

in sparse regimes. To obtain our results, we bound the moments of noisy adjacency
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matrices by relating them to counts of particular graphs, in the spirit of Wigner (1957)

(see Chapter 2 of Tao 2012 more generally). Finally, in order for bias correction to improve

mean-squared error, the bias needs to be estimated at a sufficiently fast rate. Because

the variance is of a lower order than the bias, a naive plug-in approach does not work for

estimating higher-order bias terms, although it is sufficient for the first-order term. We

leverage this fact to recursively construct good estimators for higher order terms.

Related Literature

Our work is most closely related to papers that study linear regression with centrality

statistics. To our best knowledge, we are the first to study linear regression with diffu-

sion centrality, though there exists prior work on eigenvector centrality. Le and Li (2020)

studies linear regression on multiple eigenvectors of a network assuming the same type of

proxy error as this chapter. They focus on denser settings than we do and provide infer-

ence method only for the null hypothesis that the slope coefficient is 0. We are concerned

only with eigenvector centrality, which is the leading eigenvector, but our results cover the

sparse case as well as tests of non-zero null hypotheses (more details in Remark 1.6). This

chapter is also related to Cai et al. (2021), which proposes penalized regressions on the

leading left and right singular vectors of a network. They consider networks that are as

sparse as the ones we study, but their networks are observed with an additive, normally

distributed error (more details in Remark 1.7). Auerbach (2022) also considers linear

regressions with network positions as explanatory variables. However, their approach is

nonparametric and results are provided only in the dense case. Outside of the linear re-

gression setting, Cheng et al. (2021) considers inference on deterministic linear functionals
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of eigenvectors. They study symmetric matrices with asymmetric noise, proposing novel

estimators that leverage asymmetry to improve performance when eigengaps are small.

We focus on symmetric matrices with symmetric noise and study the plug-in estimator

in which eigenvector is estimated using the noisy adjacency matrix in place of the true

matrix.

This chapter also relates to a growing body of work that considers proxy error in

centrality statistics. Early work provided simulation evidence that centrality measures

on proxy networks become less accurate as sparsity increases (Costenbader and Valente

(2003); Borgatti et al. (2006)). Segarra and Ribeiro (2015) theoretically studies the sta-

bility of network statistics under perturbations, finding that degree and eigenvector cen-

tralities are stable, while betweenness is not. Avella-Medina et al. (2020) and Dasaratha

(2020) consider settings similar to ours, with additive proxy errors that are “classical"

in that they have mean zero and are independent across edges. These authors provide

concentration results for degree and eigenvector centralities among others, but not for dif-

fusion centrality. Additionally, they accommodate less sparsity than us, in part because

we are not concerned with estimation of centrality measures, only their use in subsequent

regression.

A separate literature has focused on non-classical error in network data. Chan-

drasekhar and Lewis (2016) examines settings in which researchers have access to a panel

of networks, but which are constructed using only a partial sample of nodes or edges.

Thirkettle (2019) studies a similar missing data problem, but in a cross-sectional set-

ting with only one network. The author is concerned with forming bounds on centrality

statistics and does not consider subsequent linear regression. Griffith (2022) considers
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censoring in network data, which arises when agents are only allowed to list a fixed num-

ber of relationships during the sampling process. The above papers study missing data

problems under the assumption that the observed network is without error. We assume

that the entirety of one network is observed but with error. Lewbel et al. (2021) stud-

ies more general forms of proxy error in peer effects regression, finding that 2SLS with

friends-of-friends instruments is valid as long as the proxy error is small. All of the above

papers do not discuss centrality regressions.

This chapter is also connected to the nascent literature on the statistical properties of

sparse networks. A strand of this literature is concerned with network formation models

that can give rise to sparsity in the observed data. Dong et al. (2020) and Motalebi

et al. (2021) consider modifications to the stochastic block model. A more general model

takes the form of inhomogeneous Erdos-Renyi graph, which are generated by a graphon

with a sparsity parameter that tends to zero in the limit (see for instacne Bollobás et al.

2007 and Bickel and Chen 2009). This chapter takes such an approach. Yet another

model for sparse graphs is based on graphex processes, which generalizes graphons by

generating vertices through Poisson point processes (see Borgs et al. 2018, Veitch and

Roy 2019 and references therein). Our choice of inhomogeneous Erdos-Renyi graphs is

motivated by their prevalence in econometrics (Section 3 of De Paula 2017 and Section

6 of Graham 2020a provide many examples), as well as tractability considerations. To

our best knowledge, few papers have tackled the challenges that sparse networks pose for

regression. Two notable exceptions study network formation models, which take the form

of edge-level logistic regressions (Jochmans 2018; Graham 2020b). A separate literature

considers estimation of peer effects regressions involving sparse networks using panel data
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(Manresa 2016; Rose 2016; De Paula et al. 2020). Here, sparsity is an assumption used

to justify regularization methods. We consider a node-level regression in a cross-sectional

setting with one large network.

The rest of this chapter is organized as follows. Section 1.2 describes the set-up.

Section 1.3 presents the theoretical results. Simulation results are contained in Section

1.4. In Section 1.5, we apply our results to the social insurance network in Nyakatoke,

Tanzania. Section 1.6 concludes the chapter with our recommendations for empirical

work. All proofs are contained in Appendix A.4.
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1.2. Set-Up and Notation

In this section, we introduce notation before describing our econometric model and

the asymptotic framework.

We use the following notation. When X is a vector or matrix, Xi and Xij refer

the ith and (i, j)th component of X respectively. Similarly, if Xi or Xij are defined,

we use X to denote the full vector or matrix respectively. X ′ is the transpose of X.

When X is a square matrix, λj(X) denotes the jth eigenvalue of X while vj(X) denotes

the corresponding eigenvector. When f ∈ L2([0, 1]2) is a symmetric real function, λj(f)

denotes the jth eigenvalue of the corresponding Hillbert-Schmidt integral operator, T (g) =∫
f(x, y)g(y)dy, while ϕj is the corresponding eigenfunction. For deterministic, monotone

sequences xn and yn, we write xn ≻ zn if xn/zn → ∞ and xn ≺ zn if xn/zn → 0. xn ≈ zn

indicates that xn/zn → k, where 0 < k < ∞. We write xn ≽ zn to mean ¬(xn ≺ zn) and

similarly for xn ≼ zn. Let ιn be the n × 1 vector of 1’s. For two m × n matrices X and

Z, let X ◦ Z denote their entrywise (Hadamard) product. Finally, [n] denotes the set of

integers from 1 to n.

1.2.1. Econometric Framework

For simplicity, suppose that there are no covariates besides centrality. Consider the re-

gression:

Yi = β(d)C
(d)
i + ε

(d)
i

where i indexes the agents on the network. Yi is the outcome of interest and C
(d)
i is a

network centrality measure of type d. We assume that researchers observe {Yi}ni=1 and
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either an adjacency matrix A, or a proxy for it, denoted Â. A is an n× n matrix whose

(i, j)th, Aij, records the link intensities between agents i and j. Â is some estimate of A.

While we do not observe C
(d)
i , it can be exactly computed using A, or estimated using

Â. The parameter of interest is β(d). After defining the data-generating process for the

true and observed networks, Assumption 1.3 will provide conditions allowing us interpret

β(d) as the slope coefficient in the linear conditional expectation function of Yi on C
(d)
i .

We assume that the data-generating process yields {(εi, Ui)}ni=1 which are independent

and identically distributed. εi is the linear regression residual and Ui is an unobserved

latent type that will be used to construct the network.

In the following, we describe (i) the data-generating process for A and Â via the

Ui’s and (ii) the use of A and Â in computing/estimating centrality statistics for OLS

estimation. Throughout our discussion, we motivate the econometric framework through

the example of consumption smoothing via informal insurance:

Example 1.1. Suppose we are interested in the relationship between informal insur-

ance and consumption smoothing. This is a question that has been studied by De Weerdt

and Dercon (2006); Udry (1994); Kinnan and Townsend (2012) and Bourlès et al. (2021)

among many others. Here, we might posit that agents which are more central in the in-

formal insurance network can better smooth consumption. To test this hypothesis, we are

interested in the regression where Yi is variance in i’s consumption and C
(d)
i is centrality

in the informal insurance network. β(d) is then the reduction in consumption variance

associated with being more central. In the informal insurance network, Aij records the

probability that i lends money to j or vice versa in the event of an adverse income shock.
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However, A is hard to obtain by surveys. Instead, we observe the matrix of actual loans

Â, which is a proxy measure of A.

Data-Generating Process for A and Â. Let A be an n × n symmetric adjacency

matrix. We assume that the relationship between two agents in a network is solely deter-

mined by their unobserved latent types Ui through the graphon f :

Assumption 1.1 (Graphon). Suppose Ui ∼ U [0, 1] and f : [0, 1]2 7→ [0, 1] is such

that: ∫
[0,1]2

f(u, v) du dv > 0.

Let pn ∈ (0, 1] and j > i, define:

Aij = pnf(Ui, Uj) .

We set Aji = Aij for j < i and normalize Aii = 0 for all i ∈ [n].

In this model, any two agents have a relationship that is between 0 and 1. We can

think of this as a measure of intensity, reflecting factors such as duration of friendship,

frequency of interaction, or similarity in personalities. Alternatively, it could be the

probability with which a relationship is observed. pn is a parameter that we will let go

to 0 at various rates. As we will explain in Section 1.2.2, this is a theoretical device that

will help us understand the behavior of OLS estimators when the network is sparse. We

restrict attention to symmetric matrices because eigenvector centrality, one of the most

popular network centrality measures, may not be well-defined when the adjacency matrix

is not symmetric. We also ignore the trivial case when f = 0, in which case the network
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is always empty. Finally, note that defining Ui ∼ U [0, 1] is without loss of generality since

we have placed no functional form restrictions on f .

Example 1.1 (continued). Suppose that Ui ∈ [0, 1] indexes the riskiness of a villager’s

income as a result of the crops they choose to cultivate. Assumption 1.1 posits that the

relationship between two villagers depends only on their respective income risks. For

example, if f(Ui, Uj) = 1− (Ui − Uj)
2, then farmers with similar income risks have higher

link intensities between them. Ui can also incorporate other observed or unobserved farmer

characteristics, such as place of residence, farming skills or gregariousness. Together with

the choice of f , the graphon is a rich model of linking behavior.

When A is observed, we say that there is no proxy error. This setting provides a useful

benchmark. When A is not observed, we assume that we have access to the the proxy

network, Â, generated as follows.

Assumption 1.2 (Proxy Network). The adjacency matrix of the proxy network is

the n× n matrix symmetric Â, where for j > i,

Âij |U
i.i.d.∼ Bernoulli (Aij) .

Set Âji = Âij for j < i. Âii = 0 since Aii = 0. Furthermore, suppose for d ∈ {1, T,∞}

that

Âij ⊥⊥ ε
(d)
i | U .

The form of proxy error we consider randomly rounds Aij into zero or one in proportion

to the intensity of the true relationship. Conditional on U , this is an additive error with
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a mean of 0, and which is independent across agent pairs. Formally, we are assuming

a conditionally independent dyad (CID) model for Â. This model is commonly used in

econometrics (see for instance Section 3 of De Paula 2017 or Section 6 of Graham 2020a)

and is fairly general.

A key motivation for our choice of framework is analytical tractability. Our definitions

imply that conditional on U , Â is a sparse inhomogeneous Erdos-Renyi graph, allowing

us to borrow results from the random graph literature. Nonetheless, the model is a

reasonable description of network data. Proxy errors of this form often arise due to

limitations in data collection or survey methods. Below, we discuss how Example 1.1 fits

our proxy error model. More examples can be found in Appendix A.2, where we also

discuss our econometric framework in the context of the “Weak Ties" theory of social

networks (Granovetter 1973).

Finally, we assume that proxy error is independent of εi conditional on U . Together

with the CID assumption, proxy error on the network is additive white noise, akin to

classical measurement error. It should be distinguished from misclassification error, in

which 1’s in the adjacency matrices may be observed as 0’s and vice versa. In our setting,

the key econometric challenge arises because U is unobserved. This is exacerbated by

the fact that additive, white noise errors in the network translate into non-linear error in

centrality statistics, introducing complications into the analysis.

Example 1.1 (continued). Assumption 1.2 is reasonable in the context of our leading

example. Here, each entry of the unobserved Aij represents the probability of loans. How-

ever, Âij records actual loans, which are realizations of Bernoulli(Aij). The conditional

independence assumption means that conditional on friendship, the decision of i to lend
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to j is independent of the decision of k to lend to i. This might be the case if the loan

amounts are small relative to the income shortfall, so that any agent’s decision to lend to

i does not significantly reduce their need to borrow. Alternatively, such a condition might

be satisfied if borrowing is private, so that friends of i cannot coordinate their lending

decisions.

Centrality Statistics and OLS Estimation. Given our adjacency matrices A and Â,

we now define centrality statistics and the OLS estimators that are based on them.

Centrality measures are agent-level measures of importance in a network. Many cen-

trality measures exist, each capturing a different aspect of network position. However,

they are all functions of A and can be exactly computed when A is observed. We focus

on three popular measures: degree, diffusion and eigenvector centralities. While they are

most intuitive when A is binary, centrality measures should be understood as functions

of general weighted (symmetric) adjacency matrices. Except where noted, our definitions

are standard (see e.g. Jackson 2010; Bloch et al. 2021).

Definition 1.1 (Degree Centrality). Degree centrality computed on the n × n adja-

cency matrix A is the n× 1 vector:

C(1) = Aιn .

Agent i’s degree centrality is simply the sum of row i in A. If A is binary, degree

centrality is the number of agents with whom i has a relationship.
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Definition 1.2 (Diffusion Centrality). For a given δ ∈ [0, 1] and T ∈ N, diffusion

centrality computed on the n× n adjacency matrix A is the n× 1 vector:

C(T ) =

(
T∑
t=1

δtAt

)
ιn .

Proposed by Banerjee et al. (2013), diffusion centrality captures the influence of agent

i in terms of how many agents they can reach over T periods. Consider again the case

of binary A. Then the (i, j)th of At is the number of walks from i to j that are of length

t, which can be thought of as the influence of i on j in period t. Diffusion centrality for

agent i is simply sum of their influence on all other agents in the network over time up to

period T , with a decay of δ per period. Bramoullé and Genicot (2018) provides further

discussion on the theoretical foundations of diffusion centrality. In practice, researchers

often choose δ to be 1/λ1(Â), so that effectively δ → 0 as n → ∞. An extension of our

results to this case is in preparation.

Definition 1.3 (Eigenvector Centrality). For a given an > 0, eigenvector centrality

computed on the n× n adjacency matrix A is the n× 1 vector:

C(∞) = anv1(A) ,

where v1(A) is the eigenvector corresponding to the eigenvalue of A with the largest

absolute value (leading eigenvalue).
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Eigenvector centrality is based on the idea that an individual’s influence is proportional

to the influence of their friends. That is, for some k > 0, we seek the following property:

(1.1) C
(∞)
i = k

∑
j ̸=i

AijC
(∞)
j for all i ∈ [n] .

The eigenvectors of A solve the above equations, with k being the corresponding eigen-

value. By the Perron-Frobenius Theorem, the leading eigenvector is the unique eigenvector

that can be chosen so that every entry is non-negative, motivating its use as a centrality

measure. The leading eigenvector of related matrices also emerge as measures of influence

in popular models of social learning (e.g. DeGroot 1974)

The leading eigenvector is well-defined only if the largest eigenvalue of A has multi-

plicity 1, that is, if λ1(A) ̸= λ2(A). To ensure that this occurs with high probability, we

will make the following assumption when analyzing eigenvector centrality:

Assumption E1. Suppose λ1(f) ̸= λ2(f).

Note also that eigenvectors are defined only up to scale: if C satisfies Equation 1.1, so

will anC for any an ∈ R. Eigenvector centrality is commonly defined to have length 1 (e.g.

Banerjee et al. 2013; Cruz et al. 2017), although researchers sometimes scale eigenvectors

so that its standard deviation is 1 (Chandrasekhar 2016; Banerjee et al. 2019). Of the

two papers that have considered the statistical properties of regression on eigenvector

centrality, Cai et al. (2021) sets the length to
√
n, claiming it to be a normalization.

Le and Li (2020) does not fix the length, though their goal is essentially to recover the

projection C(d)β(d) and not β(d) itself. We depart from the literature by leaving an as

a free parameter. We will analyze the properties of regression on eigenvector centrality
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making explicit their dependence on an. As we explain in Section 1.3.1, the choice of an

is not innocuous and can have implications for estimation and inference.

This paper focuses on the above three centrality measures, which are intimately related

(Bloch et al. 2021). When T = 1, C(1) ∝ C(T ). Furthermore, as shown by Banerjee et al.

(2019), if δ ≥ 1/λ1(A),

lim
T→∞

C(T ) ∝ C(∞) .

We can thus understand the centrality measures as lying on a line, motivating our nota-

tional choice. Notably, we do not discuss betweenness and closeness centralities. These

are path-based measures of centrality,which do not have clearly defined counterparts in

the graphon. We conjecture that their analysis require a different statistical framework

and defer it to future work.

Example 1.1 (continued). In the context of risk sharing and social insurance, we can

interpret

• C
(1)
i as the probability-weighted number of friends who will lend to or borrow

from i.

• C
(T )
i as the probability-weighted number of friends who will lend to or borrow

from i directly or through their friends. T is the maximum length of the borrowing

chain. For example if T is 2, i can borrow from friends of friends but not friends

of friends of friends. δ is the increased difficulty of borrowing from a person that

is one step further, e.g. of borrowing from friends of friends relative to borrowing

from a friend directly.
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• C
(∞)
i as requiring the borrowing ability of i to be proportional to the borrowing

ability of their friends. Implicitly, this means agents can form borrowing chains

that are arbitrarily long.

When A is observed,we have access to the following infeasible estimators.

Definition 1.4 (OLS Estimators without Proxy Error). Suppose A is observed. For

d ∈ {1, T,∞}, define the OLS estimators for β(d) to be

β̃(d) =
Y ′C(d)

(C(d))
′
C(d)

.

When networks are observed with errors, we assume that network centralities are

estimated using Â in place of A:

Definition 1.5 (Centralities with Proxy Error). Suppose Â is observed but not A.

Define:

Ĉ(1) = Âιn ,

Ĉ(T ) =

(
T∑
t=1

δtÂt

)
ιn ,

Ĉ(∞) = anv1(Â) .

The corresponding OLS estimators are thus defined using the noisy centrality mea-

sures.
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Definition 1.6 (OLS Estimators with Proxy Error). Suppose Â is observed but not

A. For d ∈ {1, T,∞}, define the OLS estimators for β(d) to be

β̂(d) =
Y ′Ĉ(d)(

Ĉ(d)
)′
Ĉ(d)

.

Next, define the regression residuals.

Definition 1.7 (Regression Residuals). For d ∈ {1, T,∞}, define:

ε̃
(d)
i := Yi − β̃(d)C

(d)
i ,(1.2)

ε̂
(d)
i := Yi − β̂(d)Ĉ

(d)
i .(1.3)

We conclude this section with an assumption on the moments of εi conditional on Ui:

Assumption 1.3. Suppose for d ∈ {1, T,∞} that:

(a) E
[
ε
(d)
i |Ui

]
= 0

(b) 0 < σ2 ≤ E

[(
ε
(d)
i

)2
|Ui

]
≤ σ̄2 < ∞.

(c) E

[∣∣∣ε(d)i

∣∣∣3 |Ui

]
≤ κ̄3.

In the above, (a) justifies linear regression since it implies that

E
[
ε
(d)
i

∣∣C(d)
i

]
= 0 .

Meanwhile, (b) and (c) control the amount of heterogeneity across different Ui’s. (c)

implies the upper bound in (b). We introduce σ̄2 for notational convenience.
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1.2.2. Sparse Network Asymptotics

To better capture the behavior of estimators when agents in the networks have few rela-

tionships with one another, we study their properties under sparse network asymptotics.

Following Bollobás et al. (2007) and Bickel and Chen (2009), we want to consider settings

in which pn → 0 as n → ∞. pn is not an empirical quantity. It is a theoretical device to

ensure that the sequence of models we consider remains sparse even as n → ∞.

In many settings, a vector or matrix is said to be sparse if many of the entries are 0.

In our setting, we say that A and Â are sparse if their row sums – that is, the actual or

observed degrees of agents respectively – are small. Because the entries of Â are restricted

to be binary, having low degrees is the same as having many entries which are 0. We do

not place such a restriction on the entries of A, so that row sums could be small even

if no entry takes value 0, as long as each non-zero entry is small. Sparsity of A should

therefore be understood as referring to low intensities of relationship between agents, but

which gives rise to observed networks, Â, that are sparse in the conventional sense.

To see how pn → 0 gives rise to sparsity, suppose for example that pn → c > 0. Then

the network is dense and each agent has total relationships that are roughly of order n in

expectation. That is,

E
[
C

(1)
i

]
≈ n,

corresponding to a situation in which each agent is linked to many others. In practice,

however, researchers may face sparse networks, in which each agent has few or weak

relationships. Choosing pn → 0 leads to networks that remain sparse as n increases. For
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example, if we set pn = k/n for some k > 0, then,

E
[
C

(1)
i

]
≈ 1 .

That is, each agent has a bounded number of relationships in expectation. A sequence of

pn that goes to 0 more quickly corresponds to data which is more sparse.

To understand the effect of sparsity on OLS estimation, we study how the statistical

properties of β̃(d) and β̂(d) change as we vary the rate at which pn → 0. Our goal

is to obtain theoretical results that better describe the properties of estimators under

sparsity by explicitly incorporating it into the asymptotic framework. Using pn to model

sparse networks is standard in statistics literature (see e.g. Bickel and Chen 2009; Bickel

et al. 2011, Borgs et al. 2018 Avella-Medina et al. 2020 among many more). Within

econometrics, related approaches have been used to study network formation models

(Jochmans 2018; Graham 2020b).

As a theoretical device, pn bears semblance to drifting alternatives in local power

analysis (also known as Pitman drift; see Rothenberg 1984). Suppose we want to compare

the power of tests for the hypothesis H0 : β = β0 against H1 : β = β1. Asymptotic

analysis with a fixed β1 is not useful since consistent tests have power that converges

to 1 in probability under all alternatives, so that we cannot meaningfully differentiate

between these tests. One interpretation of such a failure is that the asymptotic model

fails to capture reality: in the limit, |β1−β0| is large relative to the sampling noise which

is of order 1/
√
n. In practice, sampling noise can be large relative to the parameter of

interest. Local power analysis employs the alternative hypothesis β1 = β0 + k/
√
n. As

such, |β1 − β0| = |k/
√
n| goes to 0 at the same rate as sampling noise. Intuitively, as the
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sample size gets larger, the testing problem also becomes harder. The upshot is that the

testing problem is non-trivial even in the limit, better modeling the finite sample problem.

A similar approach is taken in the weak instruments literature, which is concerned with

the instrumental variable regressions in which the relevance condition is barely satisfied.

To understand the resulting statistical pathologies, Staiger and Stock (1997) propose to

model the strength of the instrument as decaying to 0 at rate 1/
√
n, so that strength of the

signal in the first stage estimation is on par with sampling uncertainty. This approach has

since led to long and productive lines of inquiry (see Andrews et al. 2019 and references

therein).

Our drifting parameter pn serves a similar purpose: by letting pn → 0, we better

capture the statistical properties of estimators when networks are sparse. While we do

not focus on any reference level of sparsity, comparing across levels of sparsity will prove

instructive.

1.3. Theoretical Results

In this section, we present our theoretical results about the property of OLS estimators

under varying amounts of sparsity. In Section 1.3.1, we characterize the level of sparsity

at which consistency of β̃(d) and β̂(d) fails. The upshot is that proxy error renders OLS

estimators less robust to sparsity. In particular, eigenvector centrality is less robust to

sparsity than degree under proxy error. The regimes for pn cannot be estimated from

data. Instead, we provide a rule-of-thumb for gauging the reliability of OLS estimators.

Section 1.3.2 presents distributional theory for β̃(d) and β̂(d) under regimes of sparsity for
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under which they are consistent. This leads to tools for bias correction and inference with

sparse and noisily measured networks.

1.3.1. Consistency

This section presents the rates on pn at which β̃(d) and β̂(d) are consistent. We also discuss

the role of an in ensuring the consistency of β̃(∞) and β̂(∞). Since rates on pn cannot be

estimated, we present rules-of-thumb for determining the amount of sparsity in practical

applications.

We first consider the case when the true network A, is observed:

Theorem 1.1 (Consistency without Proxy Error). Suppose Assumptions 1.1, 1.2 and

1.3 hold. Then,

(a) For d ∈ {1, T}, β̃(d) p→ β(d) if and only if pn ≻ n− 3
2 .

(b) Suppose Assumption E1 also holds. Then, β̃(∞) p→ β(∞) if and only if an → ∞.

As such, we have consistency of OLS for degree and diffusion centralities provided

that the network is not too sparse. Under extreme sparsity, variation in C
(d)
i becomes

much smaller than variation in εi and it is not possible to learn about β(d). In the case of

eigenvector centrality, consistency requires conditions on the normalization factor an but

not on pn. This is because an directly controls the variance of C(∞), so that it is able to

undo the effect of sparsity in the absence of measurement error.

Our result is similar in spirit to Conley and Taber (2011), which studies the properties

of difference-in-difference (DiD) estimators when there are few treated units. In an as-

ymptotic framework that takes the number of treated units to be fixed, the DiD estimator
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is similarly inconsistent in the limit. More generally, consistency of OLS with i.i.d. data

requires
√
nσX → ∞, where σX is the variance of the regressor. Theorem 1.1 instantiates

this condition for centrality regressions under sparsity.

Interestingly, the choice of an matters even when the network is dense. To see why,

suppose f = pn · 1 so that A = pnιnι
′
n. Then C(∞)(A) = anιn/

√
n. Note that it is

independent of pn. We can then write:

β̃(∞) =

√
n

an
· Y

′ιn
ι′nιn

= β(∞) +
1

an
√
n

n∑
i=1

ε
(d)
i .

Under our assumptions, 1√
n

∑n
i=1 ε

(d)
i

d→ N
(
0,Var

(
ε
(d)
i

))
. Therefore, an → ∞ is neces-

sary for the consistency of β̃(∞).

The above example, together with Theorems 1.2 and 1.6 in the next section, makes

clear that an has important implications for the statistical properties of β̃(∞) and β̂(∞).

We can understand this phenomenon by analogy to OLS with i.i.d. observations, in which

we are able to consistently estimate β but not
√
nβ.

To our knowledge, we are the first to emphasize the importance in choosing an ap-

propriately. Various an’s are used in applied work and in econometric theory. Applied

researchers sometimes set an = 1 (e.g. Cruz et al. 2017; Banerjee et al. 2013). Other

times, they divide v1(Â) by its standard deviation, in order to interpret β(∞) as the effect

of a one standard-deviation increase in v1(A) (e.g. Chandrasekhar et al. 2018; Banerjee

et al. 2019). Corollary 1.5 shows that an ≈
√
n under some conditions on f . Cai et al.

(2021), which studies eigenvector regressions under a different model for proxy error, sets

an to
√
n. In the formulation of Le and Li (2020), an appears only implicitly and they

do not prove consistency of β̂(∞). Instead, they show that ∥β̂(∞)Ĉ(∞)−β(∞)C(∞)∥∞
p→ 0.
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Of papers which study estimation of centrality statistics, Avella-Medina et al. (2020) sets

an =
√
n while Dasaratha (2020) sets an = 1. We remark that changing an amounts to

changing the definition of β̃(∞). The parameter of interest ultimately depends on the re-

searcher. From the perspective of consistency, however, models with an → ∞ are strictly

preferable to those with an ≼ 1. And as we will see in Theorem 1.6, particular choices of

an may be useful for inference.

We next consider the case with proxy error:

Theorem 1.2 (Consistency with Proxy Error). Suppose Assumptions 1.1, 1.2 and

1.3 hold. Then,

(a) For d ∈ {1, T}, β̂(d) p→ β(d) if and only if pn ≻ n−1.

(b) Suppose also that Assumption E1 holds. Then, β̂(∞) p→ β(∞) if an → ∞ and

(1.4) pn ≻ n−1

√
log n

log log n
.

Suppose pn satisfies

(1.5) n−1 (log log n)4 ≺ pn ≺ n−1

√
log n

log log n
.

Then β̂(∞) is inconsistent for β(∞).

Theorem 1.2 gives the rates at which OLS regression on each centrality is consistent

with proxy error. We summarize the rates from Theorems 1.2, together with that from

1.1, in Figure 1.1.

With proxy error, β̂(∞) is consistent under less sparsity than β̂(1) and β̂(T ), even when

we set an → ∞. In other words, β̂(∞) is less robust to sparsity than β̂(1) and β̂(T ). This
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occurs because eigenvalues and eigenvectors are sensitive to noise under sparsity. Our

proof uses the homogeneous Erdos-Renyi graph as a counterexample. Suppose f = 1 so

that A is rank 1 with v1(A) = ι/
√
n. When the lower bound in Equation 1.5 is satisfied, Alt

et al. (2021b) shows that Â has an eigenvalue, call it ν, with a corresponding eigenvector

that is approximately ι/
√
n. If ν is the largest eigenvalue of Â, v1(Â) is close to v1(A).

However, when pn satisfies Equation 1.5 , ν turns out to be much smaller than λ1(Â).

The result is that v1(Â) is almost orthogonal to v1(A). Intuitively, sparsity weakens the

signal in Â, so that its leading eigenvector is pure noise.1 It then becomes impossible to

estimate the leading eigenvector of A for OLS estimation. On the other hand, consistency

of β̂(1) and β̂(T ) only requires the mean of Â to concentrate to that of A, which occurs as

long as pn ≻ n−1.

An important implication of our result is that centrality measures may have differing

predictive value for outcomes in sparse regimes, not only because they differ in economic

significance, but also because they differ in statistical properties. In particular, suppose

diffusion centrality leads to estimates which are significantly different from 0 at some level

α, while eigenvector does not. If the underlying networks are sparse, it would be erroneous

to conclude that diffusion centrality is structurally meaningful while eigenvector is not,

since sparsity might be driving the observed results.

Finally, let us compare the rates in Theorem 1.2 with those in Theorem 1.1. As

Figure 1.1 shows, proxy error renders OLS less robust to sparsity. While β̃(1) and β̃(T )

are consistent as long as pn ≻ n−3/2, β̂(1) and β̂(T ) now require that pn ≻ n−1. Whereas

β̃(∞) did not require any conditions on pn for consistency, β̂(∞) does. Moreover, this

1In fact, v1(Â) exhibits localization. That is, its mass concentrates on the agent who happens to have
the largest realized degree, which is purely a result of chance.
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requirement is more stringent than that on β̂(1) and β̂(T ). OLS on eigenvector centrality

is therefore more sensitive to proxy error than on degree or diffusion.

Remark 1.1. Avella-Medina et al. (2020) and Dasaratha (2020) provide results es-

sentially showing that for d ∈ {1,∞}, ∥Ĉ(d) − C(d)∥ → 0 with probability approaching 1

if pn ≻ logn
n

. Our focus is on the OLS estimators β̃(d) and β̂(d) and we find that thresholds

of consistency that are strictly below logn
n

for all d ∈ {1, T,∞}.

Remark 1.2. Theorem 1.2 does not determine the behavior of β̂(∞) when pn ≺

n−1 (log log n)4. Up to this threshold, we know by Alt et al. (2021b) that OLS is incon-

sistent only because we have descriptions of both eigenvalues and eigenvectors. To our

knowledge, recent developments in random matrix theory do not provide any description

of eigenvectors below this threshold. Hence, it is not clear what type of pathologies arises

below pn ≺ n−1 (log log n)4 and how that might affect the behavior of β̂(∞). Description

of eigenvalues is more complete: below this point, we know that λ1(Â)/λ1(A) → ∞ (see

Alt et al. 2021a; Benaych-Georges et al. 2019; Benaych-Georges et al. 2020). Since the

estimated eigenvalues are noise, we conjecture that the estimated eigenvectors are as well.

If so, we would not expect β̂(∞) to be consistent.

Remark 1.3. To improve the robustness of eigenvector centrality to sparsity, we

can consider regularizing Â. Appendix A.3 considers such an approach and finds that

consistency with regularized eigenvector obtains when pn ≻ n−1.

Rule-of-Thumb for Determining Consistency of β̂(d). Theorem 1.2 provides con-

sistency results for β̂(d) based on the rates at which pn → 0. It is therefore desirable to
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β̃(1), β̃(T )

β̂(1), β̂(T )

n−1

√
log n

log log n
n−3/2 n−1 n−1(log log n)4

β̃(∞)

β̂(∞)

Consistent Inconsistent

0 1

Figure 1.1. Ranges of consistency for each estimator. When the network
is observed with error, regression on eigenvector centrality is less robust to
sparsity than on degree or diffusion. When the network is known, much
more sparsity can be accommodated.

have methods for determining if we are in the regime for which OLS is consistent with

measurement error. However, pn is a theoretical device and the rate at which it is going

to 0 is not a quantity that can be estimated. Instead, we propose a rule-of-thumb for

determining the regime of pn and the consistency of β̂(d).

Definition 1.8 (Connectivity). Let Â be a binary network. Two agents i and j are

connected if Â contains a path from i to j. A collection of agents I is connected if every

pair in I × I is connected. We say that Â is connected if [n] is connected.

Definition 1.9 (Largest Component). For a binary network Â, define

L1 := max
I⊆[n], connected

|I| .
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We say that Â has a giant component if L1 ≈ n.

In words, Â has a giant component if its largest connected component is a non-

vanishing fraction of the total number of nodes.

It is well-known that inhomogeneous random graphs exhibit threshold behavior in

connectivity and in the existence of the largest component at the following rates:

Theorem 1.3. Suppose Assumptions 1.1 and 1.2 hold. Then as n → ∞,

(a) (Theorem 3.1, Bollobás et al. 2007). pn ≈ n−1 if and only if Â has a unique giant

component with probability approaching 1.

(b) (Theorem 1, Devroye and Fraiman 2014). pn ≈ n−1 log n if and only if Â is

connected with probability approaching 1.

In words, if we observe that Â has a giant component, we can expect that pn ≻ n−1.

If we observe that Â is connected, then we can expect that pn ≻ n−1 log n ≻
√

logn
logn logn

.

Together with Theorem 1.2, this motivates the following rule-of-thumb:

Rule of Thumb 1.1.

(a) Treat β̂(1) and β̂(T ) as consistent only if Â has a giant component with L1 > n/2.

(b) Treat β̂(∞) as consistent only if Â is connected.

Note that if Â is connected, it also has a giant component of size n. Our criteria are

therefore nested. The choice of the constant 1/2 in rule (a) ensures uniqueness of the

largest component, but is technically arbitrary. Figure 1.2 provides graphical illustration.



46

Figure 1.2. From left to right, a connected network, a disconnected network
with giant component, and a disconnected network without a giant com-
ponent. Networks are obtained from simulation with f = 1, n = 100 and
pn = 1/

√
n,

√
log n/n and 1/n respectively.

Remark 1.4. Our rule of thumb for the consistency of β̂(∞) essentially requires that

pn ≻ n−1 log n. This is not necessary. Instead, we could, for example, formulate a rule-

of-thumb based on localization of the leading eigenvector. However it is less appealing

to do so since such a criteria is non-nested with our criterion for a giant component, and

additionally introduces a tuning parameter.

1.3.2. Distributional Theory

In this section, we study the asymptotic distributions of β̃(d) and β̂(d) under sparsity and

proxy error. We focus on regimes of pn under which each estimator is consistent and find

that proxy error still leads to asymptotic bias. Specifically,

β̂(d) p→ β(d) but E
[
lim
n→∞

npn

(
β̂(d) − β(d)

)]
=: B(d) ̸= 0 .
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Furthermore, the bias may be of larger order than the standard deviation of β̂(d). In this

case, it would not be possible to obtain a non-degenerate limiting distribution without

bias correction.

As such, we propose bias-correction and corresponding inference methods based on

β̂(1) and β̂(T ). The distribution of β̂(∞) is more tricky to characterize. We will propose a

data-dependent choice of an that leads to convenient properties. Readers who are only

interested in the implementation of inference can refer to the summary in Table 1.1.

1.3.2.1. Centralities without Proxy Error (β̃(1), β̃(T ), β̃(∞)). Our first result states

that heteroskedasticity-consistent (hc) or robust t-statistics yield vaild inference in the

absence of proxy error.

Theorem 1.4. Suppose Assumptions 1.1 and 1.3 hold.

(a) Suppose pn ≻ n−3/2. Then, for d ∈ {1, T},

S̃(d) =
β̃(d) − β(d)√

Ṽ (d)

p→ N(0, 1) .

where Ṽ (d) =

(∑n
i=1

(
C

(d)
i

)2)−2∑n
i=1

(
C

(d)
i

)2 (
ε̃
(d)
i

)2
.

(b) Suppose an → ∞. Then,

S̃
(∞)
0 =

β̃(∞) − β(∞)√
Ṽ (∞)

p→ N(0, 1) .

where Ṽ (∞) =

(∑n
i=1

(
C

(∞)
i

)2)−2∑n
i=1

(
C

(∞)
i

)2 (
ε̃
(∞)
i

)2
.

In the above, ε̃i is as defined in Equation (1.2).
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Our formulation of the t-statistic highlights that inference on β(1) and β(T ) does not

require the sparsity parameter pn to be specified. This is important since pn is in general

not identified (Bickel et al. 2011) and follows from the convenient fact that the t-statistic

is self-normalizing. Intuitively, the sparsity terms in the numerator and the denominator

are of the same order, so that they “cancel out". Hansen and Lee (2019a) makes a similar

observation in the context of cluster-dependent data: although the means of such data

converge at a rate that changes based on the dependence structure within each cluster, this

rate does not need to be known for estimation and inference, due to the aforementioned

self-normalizing property.

We note that Ṽ (1) = Op (n
−3p−2

n ), Ṽ (T ) = Op

(
n−2T−1p−2T

n

)
. These are the rates of

convergence for β̃(1) and β̃(T ) respectively. In the absence of sparsity (i.e. if pn = 1),

the rate of convergence is faster than n−1/2. This is because having a network amounts

to n2 observations. Asymptotically, the regressor C
(d)
i has much more variation than

the regression error εi, leading to the higher rate of convergence. Finally, we note that

Ṽ (∞) = Op(a
−2
n ).

In the presence of proxy error, however, the above result does not obtain. The next

two subsections presents distributional theory for β̂(1) and β̂(T ), and β̂(∞).

1.3.2.2. Degree and Diffusion Centrality under Proxy Error (β̂(1), β̂(T )). For β̂(1)

and β̂(T ), proxy error leads to bias and also slows down the rate of convergence. This is

the content of the following theorem:

Theorem 1.5 (Inference – Degree and Diffusion). Suppose Assumptions 1.1, 1.2 and

1.3 hold and that pn ≻ n−1.
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(a) Suppose β(1) ̸= 0. Then,

Ŝ(1) :=
β̂(1) − β(1)

(
1− B̂(1)

)
β(1)
√
V̂ (1)

d→ N(0, 1) ,

where

V̂ (1) =
1

2

(
n∑

i=1

(
Ĉ

(1)
i

)2)−2∑
j ̸=i

Âij

(
Ĉ

(1)
i + Ĉ

(1)
j

)2
, B̂(1) =

(
n∑

i=1

(
Ĉ

(1)
i

)2)−1

ιnÂιn .

(b) Suppose β(T ) ̸= 0. Then,

Ŝ(T ) =
β̂(T ) − β(T )

(
1− B̂(T )

)
β(T )

√
V̂ (T )

d→ N(0, 1) ,

where

V̂ (T ) =
1

2

(
n∑

i=1

(
Ĉ

(T )
i

)2)−2

· δ4T · ι′n

Â ◦

(
2T∑
t=1

(
Â2T−tιn

)(
ι′nÂ

t−1
))◦2

 ιn ,

B̂(T ) =

(
n∑

i=1

(
Ĉ

(T )
i

)2)−1 2T−1∑
t=1

bT (t, δ) · ιnÂtιn .

Here, ◦ denotes the entrywise product. The formula for bT (t, δ), up to T = 10,

can be found in Appendix A.1.

(c) Suppose for d ∈ {1, T} that β(d) = 0. Then,

Ŝ
(d)
0 :=

β̂(d)√
V̂

(d)
0

d→ N(0, 1) ,

where

V̂
(d)
0 =

(
n∑

i=1

(
Ĉ

(T )
i

)2)−2 n∑
i=1

(
Ĉ

(d)
i

)2 (
ε̂
(d)
i

)2
.
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Here, ε̂(d)i is as defined in Equation (1.3).

Our results are stated in terms of B̂(d) and V̂ (d) – estimators for bias and variance –

though they should be understood as statements about the true bias and variance of the

estimators in combination with statements about estimation feasibility. Note also that

results for β̂(T ) specializes to that for β̂(1) when setting T = δ = 1.

When β(d) = 0 (case (c)), our result asserts that the hc/robust variance estimator is

consistent for the variance of β̂(d). However, that is no longer the case when then β(d) ̸= 0

(cases (a) and (b)). Here, we find that β̂(d) become biased. That is, β̂(d) is not centered

at β(d). The bias of β̂(1) comprises only one term. However, bias for β̂(T ) comprises an

exponentially growing number of terms. This provides another intuitive explanation for

the poor properties of the eigenvector centrality, since as Banerjee et al. (2019) proves,

can be considered the limit of diffusion centrality as T → ∞. Comparing cases (a) and

(b) with (c) also shows that the asymptotic distributions for β̂(d) are discontinuous in β(d)

at 0.

Additionally, we see that the asymptotic variance of β̂(d) differs from that which is

estimated by hc/robust standard error. In fact, V̂ (d)
0 /V̂ (d) p→ 0. Note that the difference

in asymptotic variance is not the result of bias estimation. In particular, replacing B̂(d)

with its limit in probability (appropriately scaled) will not change the asymptotic variance

of Ŝ(d). This stands in contrast to settings such as Regression Discontinuity Design, in

which estimation of the asymptotic bias leads to larger asymptotic variance in the relevant

test statistic (Calonico et al. 2014).

Additionally,
√

V̂ (d)/B̂(d) = Op (pn) so that the bias is of larger order than the vari-

ance. Bias correction is therefore necessary for obtaining a non-degenerate asymptotic
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distribution. To see this, write:

β̂(d) − β(d)

√
vn

=
β̂(d) − β(d) −B(d)/npn√

vn︸ ︷︷ ︸
=:Γ1

+
B(d)/npn√

vn︸ ︷︷ ︸
=:Γ2

.

Suppose we chose vn = Var(β̂(d)). Then Γ1
d→ D, where D is some non-degenerate

distribution. However, Γ2 diverges to +∞ or −∞ depending on the sign of Bd. On the

other hand, suppose we chose vn so that Γ2 is bounded. Then Γ1
d→ 0 since Var(β̂(d))/vn →

0. That is, its limit is degenerate. Bias correction is thus necessary for inference.

In order for bias correction to improve mean-squared error, bias must be estimated at

a sufficiently fast rate. This is not trivial for β̂(T ). Bias of the β̂(T ) comprises terms of the

form ιnA
tιn. However, the naive plug-in estimator ιnÂ

tιn does not converge sufficiently

fast for t ≥ 2, even though it works well for t = 1. Using this latter fact, we recursively

construct good estimators for ιnÂ
tιn when t ≥ 2, which can then be used to construct

B̂(T ). The resulting estimator does not have a closed form expression in terms of T . We

provide explicit formulae for T ≤ 10 in Tables A.1 and A.2.

Hypothesis Testing. Our theory suggests the following test for d ∈ {1, T}.

Definition 1.10. To test the hypothesis H0 : β
(d) = β0 against H1 : β

(d) ̸= β0 at the

significance level of α, define

ϕ(d) =


1

{∣∣∣∣ β̂(d)√
V̂

(d)
0

∣∣∣∣ ≥ Φ−1
(
1− α

2

)}
if β0 = 0 ,

1

{∣∣∣∣ β̂(d)−β0(1−B̂(d))

β0

√
V̂ (d)

∣∣∣∣ ≥ Φ−1
(
1− α

2

)}
otherwise.

(1.6)

where Φ is the CDF of the standard normal distribution.
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One-sided tests can be constructed by modifying the rejection rule in the usual way.

It is immediate that the test is consistent:

Corollary 1.1 (Inference for β(1) and β(T )).

(a) If β(d) = β0, E
[
ϕ(d)
]
→ α.

(b) If β(d) ̸= β0, E
[
ϕ(d)
]
→ 1.

When β(d) ̸= 0, β̂(d) needs to be centered by subtracting β(d)
(
1− B̂(d)

)
instead of β(d).

We will refer to this form of centering as bias correction for β̂(d). As we explained at the

start of Section 1.3, bias correction is necessary for β̂(d) to attain a non-degenerate limiting

distribution when asymptotic bias is of larger order than variance. Indeed, B̂(d)/
√

V̂ (d) =

Op

(
p
−1/2
n

)
. As such, if pn ≺ 1,division by

√
V̂ (d) blows up B̂(d).

In the bias for β̂(T ), terms with larger t’s dominate those with smaller t’s. When pn

is dense enough, terms with small t’s may actually much smaller than
√

V̂ (T ) so that

they can be ignored. With only the stipulation that pn ≻ n−1 however, a non-degenerate

asymptotic distribution can only be achieved when all terms are included.

Confidence Intervals. Because V̂
(d)
0 estimates variance only when β(d) = 0, the usual

confidence intervals based on V̂
(d)
0 need not attain nominal coverage. This failure occurs

for two countervailing reasons. Firstly, the quantity V̂0 is meant to estimate,

Var

(
n∑

i=1

C
(d)
i εi

)
=: V

(d)
0 .

However, V (d)
0 under-estimates variance of β̂(d) when β(d) ̸= 0. That is,

Var

(
β̂(d) − E[β(d)]√

V0

)
→ ∞ .
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On the other hand, the bias in β̂(d) means that

V̂
(d)
0 ≈ V0 + β(d)B̂(d)

n∑
i=1

(
C

(d)
i

)2
.

The second term in the above equation can be large, such that V̂ (d)
0 may exceed V̂ . This

turns out to be the case in our application in Section 1.5.

To obtain confidence intervals for β(d) consider the following:

Definition 1.11. For d ∈ {1, T} and a given α, let

(1.7) C(d)
0 :=

[
β̂(d) − Φ−1

(
1− α

2

)√
V̂

(d)
0 , β̂(d) + Φ−1

(
1− α

2

)√
V̂

(d)
0

]
.

Suppose β̂(d) ≥ 0 and let

(1.8) C(d) :=

[
β̂(d)

1− B̂(d) + Φ−1
(
1− α

2

)√
V̂ (d)

,
β̂(d)

1− B̂(d) − Φ−1
(
1− α

2

)√
V̂ (d)

]
.

Finally, let C(d)
∗ = C(d)

0 ∪ C(d).

Remark 1.5. If β̂(d) < 0, the upper bound in the above definition of C(d) is smaller

than the lower bound. In this case,

C(d) :=

[
β̂(d)

1− B̂(d) − Φ−1
(
1− α

2

)√
V̂ (d)

,
β̂(d)

1− B̂(d) + Φ−1
(
1− α

2

)√
V̂ (d)

]
.

The following is immediate:

Corollary 1.2 (Confidence Interval). P
(
β(d) ∈ C(d)

∗

)
→ 1− α .
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We can obtain one-sided confidence intervals by modifying the bounds as usual. More

generally, as long as C(d) is a 1 − α confidence interval for β(d) ̸= 0 and C(d)
0 is a 1 − α

confidence interval when β(d) = 0, their unions will produce a 1−α confidence interval for

β(d) unconditionally. In particular, it is always valid to set C(d)
0 = {0}. This can be useful

when it is not important to exclude 0 from the confidence interval. For example, suppose

we want one-sided confidence intervals that upper bounds β(d). We can then consider

using

C(d)
0 = {0} and C(d) =

(
−∞ ,

β̂(d)

1− B̂(d) − Φ−1 (1− α)
√

V̂ (d)

]
.

If β̂(d) > 0, C(d)
∗ = C(d). For the reasons discussed above, we can also have

C(d)
∗ ⊊

(
−∞ , β̂ + Φ−1 (1− α)

√
V̂

(d)
0

]
.

As before, such a situation arises in our application (Section 1.5).

Bias Correction. Since the bias of the OLS estimators β̂(1) and β̂(T ) can be estimated,

it is reasonable to consider the following bias-corrected estimators:

Definition 1.12 (Bias-Corrected Estimators). For d ∈ {1, T}, define

β̌(d) =
β̂(d)

1− B̂(d)
.

Bias-corrected estimators have faster rates of convergence:

Corollary 1.3. Suppose pn ≻ n−1. For d ∈ {1, T}, β̌(d) − β(d) = Op

(
n−2p

−3/2
n

)
.

For reference, β̂(d) − β(d) = Op (n
−1p−1

n ).
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1.3.2.3. Eigenvector Centrality under Proxy Error (β̂(∞)). We next consider in-

ference on β̂(∞). Eigenvector centrality can be badly biased under sparsity, which makes

inference challenging. However, strategic choices of an can overcome many of these issues.

We first introduce the following simplifying assumption:

Assumption E2 (Finite Rank). Suppose f has rank R < ∞:

(1.9) f(u, v) =
R∑

r=1

λ̃rϕr(u)ϕr(v) ,

where ∥ϕr∥ = 1 for all r ∈ [R] and if r ̸= s,

∫
[0,1]

ϕr(u)ϕs(u)du = 0 .

Furthermore, suppose that

∆min = min
1≥r≥R−1

∣∣∣λ̃r − λ̃r+1

∣∣∣ > 0 .

In Equation (1.9), we express f in terms of its eigenfunctions {ϕr}Rr=1. Assumption

E2 implies that the true network has low-dimensional structure and is satisfied by many

popular network models, such as the stochastic block model (Holland et al. 1983, also

see Example 1.2 below) and random dot product graphs (Young and Scheinerman 2007).

This assumption is also commonly found in the networks literature (e.g. Levin and Levina

2019; Li et al. 2020), and the matrix completion literature more generally (e.g. Candès

and Tao 2010; Negahban and Wainwright 2012; Chatterjee 2015; Athey et al. 2021).

Importantly, existing papers on inference with eigenvectors (Le and Li 2020; Cai et al.

2021) also make this assumption. Note also that Assumption E2 implies Assumption E1.
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Example 1.2 (Stochastic Block Model). The Stochastic Block Model (SBM) is one

of the earliest statistical models of networks. It assumes that individuals fall into groups

g ∈ {1, ..., B} and that the true network depends only on group membership. For example,

suppose that a classroom has two groups: jocks, nerds. The SBM posits that the strength

of the tie between any jock and any nerd are the same. Analogously for that between any

two jocks or any two nerds, though all three ties can be of different intensity. Suppose

the proportion of each group is πg and that the link probability is pg,g′ = pg,g′ . Then the

graphon is a step-function on [0, 1]2 with B2-steps and rank B. It is visualized in Figure

1.3.

(1, 0)

(0, 0) (0, 1)
π1 π2

(1, 1)

πB

π2

π1

πB

p1,1 p1,2

p1,2 p2,2

pB,Bp1,B

p1,B

p2,B

p2,B

· · ·

· · ·

· · ·

···

···

···

Figure 1.3. The graphon f of a stochastic block model with B blocks. f is
a step-function with B2 steps and is of rank B.

With the low-rank asumption, we can consider the asymptotic distribution of β̂(∞) in

a few cases.

Theorem 1.6 (Inference – Eigenvector). Suppose Assumptions 1.1, 1.2, 1.3 and E2

hold.
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(a) Suppose either:

(i) β(∞) = 0, or,

(ii) pn ≻ n−1 log n and an ≺ (npn)
3/2, or,

(iii) For some η > 0,

(1.10) pn ≻ n−1

(
log n

log log n

) 1
2
+η

.

and an ≺ npn.

Then,

(1.11) Ŝ
(∞)
0 :=

β̂(∞) − β(∞)
(
1− B̂(∞)

)
√

V̂
(∞)
0

d→ N (0, 1) .

where

V̂
(∞)
0 =

(
n∑

i=1

(
Ĉ

(∞)
i

)2)−2 n∑
i=1

(
Ĉ

(∞)
i

)2 (
ε̂
(∞)
i

)2
, B̂(∞) =

(
λ1(Â)

)−1

.

In the above, ε̂(∞)
i is as defined in Equation (1.3).

(b) Suppose pn ≻ 1√
n
, an ≻ n

√
pn and β(∞) ̸= 0. Then,

Ŝ(∞) :=
β̂(∞) − β(∞)

(
1− B̂(∞)

)
√

V̂ (∞)

d→ N(0, 1) ,

where

V̂ (∞) = 2

(
λ1(Â)

n∑
i=1

(
Ĉ

(∞)
i

)2)−2∑
j ̸=i

Âij

((
Ĉ

(∞)
i

)2
+
(
Ĉ

(∞)
j

)2)
.
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Note that the statistics above do not require R or pn to be specified. This is useful

since estimating R may be challenging in addition to pn being unidentified (Bickel et al.

2011).

Our result describes the asymptotic distribution β̂(∞), which depends on β(∞) and an.

Case (a) gives conditions under which inference with hc/robust t-statistic is appropriate.

As with β(1) and β(∞), the usual test works if β(∞) = 0. However, it also works if β(∞) ̸= 0

provided that an is small. On the other hand, if an is large, case (b) suggests that we

get behavior that is more in line with that of β(1) and β(∞) when target parameters are

non-zero. However, to obtain the result in case (b), we require very strong conditions on

pn due to greater difficulty in controlling the behavior of estimated eigenvector, as the

discussion following Theorem 1.5 explains.

When β(∞) ̸= 0, the differences in case (a) and (b) arise because an controls the

relative sizes of network proxy error and regression error. The latter dominates if an

is sufficiently small and has the advantage of being easy to characterize. Hence, in the

absence of compelling reasons for choosing an to be other values, researchers can consider

choosing an for statistical convenience. In particular, if an is chosen so that case (a)

obtains, then usual hc/robust variance estimator based t-statistic and confidence interval

have the expected properties. We propose such an an below. However, we stress that a

smaller an also implies a lower rate of convergence. In effect, we are changing the model

from one with faster but unknown rate of convergence, to one with a rate that is slower

but estimable.
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Finally, our result here suggests the use of the bias-corrected estimator, as with degree

and diffusion centrality:

β̌(∞) =
β̂(∞)

1− B̂(∞)
.

Choice of an. The following data-dependent choice is convenient:

Corollary 1.4. Suppose Assumptions 1.1, 1.2, 1.3 and E2 hold. Suppose also that

an =

√
λ1(Â) is estimated. If pn satisfies Equation (1.10),

β̂(∞) − β(∞)√
V̂ (∞)

d→ N (0, 1) .

Since λ1(Â) ≈ λ̃1npn, the above choice of an satisfies the conditions in case (a)(iii) of

Theorem 1.6, accommodating close to the maximum possible amount of sparsity for β̂(∞).

It also obviates the need for bias correction since the bias is always of lower order than

the variance at this rate. Furthermore, such an an has intuitive appeal since it implies

that

Ĉ(∞)
(
Ĉ(∞)

)′
= λ1(Â)v1(Â)

(
v1(Â)

)′
= argmin

rank(M)=1

∥∥∥M − Â
∥∥∥
2
.

In words, scaling the estimated eigenvectors to
√

λ1(Â) means that the outer product of

Ĉ(∞) is the best rank-1 approximation of Â. In proposing eigenvector centrality, Bonacich

(1972) in fact cites this property as one of the key motivations, arguing that
√

λ1(Â)v1(Â)

can be interpreted as the “social interaction potential" of a given agent.

It is also common for applied researchers to scale eigenvector centrality by its standard

deviation (e.g. Banerjee et al. 2019; Chandrasekhar et al. 2018). This is typically done

so that the regression coefficient can be interpreted as the effect on outcome of a one
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standard-deviation increase in eigenvector centrality. In effect, this procedure sets an ≈
√
n:

Corollary 1.5. Suppose Assumptions 1.1, 1.2, 1.3 and E2 hold. Suppose also that

an =

 1

n

∑
i=1

(
[v1(Â)]i −

1

n

∑
i=1

[v1(Â)]i

)2
−1/2

.

Then

an = (1 + op(1)) ·
√
n√

1− E [ϕ1(U1)]
2
.

As such, Case (a) (ii) of Theorem 1.6 applies when pn ≻ n−2/3.

Note that with this choice of an, our theorem is able to accommodate less sparsity

that if an =

√
λ1(Â).

Remark 1.6. Le and Li (2020) provides methods for testing the hypothesis

∥β(∞)C(∞)∥2 = 0

when pn ≻ n−1/2. They accommodate regressions on multiple eigenvectors, but in a setting

with only one eigenvector, their result asserts that the t-statistic with the homoskedastic

variance estimator can be used to test the hypothesis that β(∞) = 0. Theorem 1.6 does

not cover regression on multiple eigenvectors but it accommodates greater sparsity and

facilitates tests of β(∞) = β0 for β0 ̸= 0.
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Remark 1.7. To compare our results to that of Cai et al. (2021), set an =
√
n. The

condition in Case (a) (ii) of Theorem 1.6 specializes to pn ≻ n−2/3. Cai et al. (2021) can

accommodate pn ≻ n−1 but they assume proxy error that is additive and i.i.d. Gaussian.

With Proxy Error No Error

β(1)/β(T ) β(∞) (Case 1.6(b)) β(∞) (Case 1.6(a)) β(1)/β(T )/β(∞)

H0 : β(d) = 0 t-test t-test
t-test t-test

H0 : β(d) = β0 ̸= 0 Def. 1.10 Def. 1.10

Conf. Intervals Def. 1.11 Def. 1.11 t-stat based t-stat based

Table 1.1. Summary of inference procedures. The hc/robust t-test is ap-
propriate for all β(d), d ∈ {1, T,∞} for the null hypothesis that β(d) = 0. It
is also appropriate for non-zero null hypotheses (1) for all β(d) if there is no
proxy error, or (2) for β(∞) in the presence of proxy error if an satisfies the
conditions in Theorem 1.6 case (a). Whenever the t-test is appropriate, the
t-statistic based confidence intervals are also valid. In all other cases, refer
to Definition 1.10 for testing and Definition 1.11 for confidence intervals.

1.4. Simulations

In this section, we present simulation evidence to support our theory. We will consider

the unobserved adjacency matrix A defined as

Aij =


pn if i ̸= j ,

0 otherwise.

In other words, the graphon is f = 1. The observed adjacency matrix is Â, where for

i > j, Âij = Bernoulli(Aij). Âii = 0, Âji = Âij.
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Our regression model is:

Yi = βC
(d)
i + ε

(d)
i ,

where C
(d)
i are centrality measures calculated on A. In this simulation, we draw Ui

i.i.d.∼

U [0, 1], ε
(d)
i

i.i.d.∼ N(0, 1), where ε
(d)
i ⊥⊥ Ui and ε

(d)
i ⊥⊥ Âjk for all i, j, k ∈ [n]. We will

set β = 1. As before, β̃(d) is used when A is observed, and β̂(d) is used when only Â is

observed.

We revisit our three sets of results in turn: inconsistency under sparsity, bias correction

and normal approximation.

1.4.1. Inconsistency Under Sparsity

The first regime of interest is pn = 1/n. Theorem 1.1 asserts that β̃(1) and β̃(T ) are

consistent. β̃(∞) is consistent provided that an → ∞ for eigenvector centrality.

We start with the last claim, which is supported by Figure 1.4. For n = 100, we see that

the choice of scaling clearly affects how well the estimator is able to concentrate around

β = 1. The plots for larger values of n are qualitatively similar. This also hints at the

trade-off that made in Theorem 1.6: we can choose an =

√
λ1(Â) so that the distribution

of β̂(∞) is easy to characterize, but this will slow down the rate of convergence. Since this

subsection concerns current practice, we will set an =
√
n for its remainder.

We return to the first claim concerning consistency of β̃(d) when pn = 1/n. Figure 1.5

indeed shows the distribution of β̃(d) for each n. The estimators concentrate around β as

n increases, in line with our result. However, Theorem 1.2 asserts that β̂(1), β̂(T ) and β̂(∞)

are all inconsistent when pn = 1/n. Their distributions, presented in Figure 1.6, concords
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Figure 1.4. Distribution of β̃(∞) for n = 100, pn = 1/n under various an.
β = 1 (orange dashed line).

Figure 1.5. Distribution of β̃(d) for pn = 1/n. For β̃(∞), an =
√
n. β = 1

(orange dashed line).

Figure 1.6. Distribution of β̂(d) for pn = 1/n. For β̃(∞), an =
√
n. β = 1

(orange dashed line).
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with our result. Indeed, we see that β̂(1) and β̂(T ) are attenuated by constant amount as

n → ∞, while β̂(∞) converges in probability to 0.

Finally, we consider the case when pn = n−1
√

logn
log logn

. In this regime, β̂(1) and β̂(T ) are

consistent but β̂(∞) is not. We see suggestive evidence of this in Figure 1.7, where β̂(∞)

is drifting further away from β as n increases. The opposite occurs with β̂(1) and β̂(T ).

Though the rate of convergence is slow, it is visible.

1.4.2. Bias Correction

Even in regime dense enough such that β̂(1), β̂(T ) and β̂(∞) are consistent, they can still be

subject to biases that affect their rates of convergence. This motivates the bias-corrected

estimators in Definition 1.12. In this subsection, we study the effects of bias correction in

the regime pn = 1/
√
n.

Figure 1.8 shows the distribution of the estimators when n = 500. Here an =

√
λ̂1(Â).

We see that bias correction is effective in correctly centering β̂(1) and β̂(T ). The same is

true for β̂(∞) though to a smaller extent, in line with claims in Corollary 1.4. Results for

other values of n are qualitatively similar.

1.4.3. Distributional Theory

Finally, we investigate the quality of the normal approximations proposed in Theorems

1.5 and 1.6. As before, we consider the regime pn = 1/
√
n. Figure 1.9 presents the

distribution of test statistics (in purple) which our theorems predict have the standard

normal distribution (in gray). We see that the two distributions are indeed close. It is

also common for applied researcher to compute the usual t-statistic with heteroskedaticity
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Figure 1.7. Distribution of β̂(d) for pn = n−1
√
log n/ log log n. For β̃(∞),

an =
√
n. β = 1 (orange dashed line).

Figure 1.8. Distributions of β̂(d) and their bias corrected versions β̌(d) for
pn = 1/

√
n. β = 1 (orange dashed line).

Figure 1.9. Distribution of the centered and scaled test statistics in The-
orems 1.5 and 1.6. Robust refers to tests based on t-statistic with robust
(heteroskedasticity consistent) standard errors.
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consistent (robust) standard errors and conduct inference under the assumption that it

has a standard normal distribution. For comparison, we include the distribution of the

t-statistic (in lavender). Corollary 1.4 justifies the use of this statistic when an =

√
λ̂1(Â)

but our theory for degree and diffusion centralities is based on a different statistic. Indeed,

we see that the robust t-statistic can be quite far from the standard normal distribution in

both location and dispersion. This suggests that our method would lead to more reliable

tests.

We next examine the size and power of tests based on our distributional theory. We

consider testing the hypothesis H0 : β = β0 against H1 : β ̸= β0 at 5% level of significance.

Table 1.2 presents size of the test when β = 1 is correctly specified. For degree and

diffusion centralities, our theory provides test statistics which differ from the robust t-

statistic. As we see from the table, the tests control size well. Tests for degree and diffusion

centralities that are based on the robust t-statistic has Type I error over 50% across all

sample sizes. For eigenvector centrality, our theory predicts that the robust t-statistic

will perform well Indeed, it has size close to 5%. We also consider testing the hypothesis

β = 0. Power for this test is presented in Table 1.3. For this null hypothesis, our theory

suggests the use of the robust t-statistic. Reassuringly, the tests all have power close to 1.

To understand how power changes as we vary the alternative hypothesis, we hone in on

the case where n = 500 and pn = 1/
√
n. Figure 1.10 presents the rejection probability of

our test under various alternatives. We see that the our tests control size and have good

power. Comparatively, tests based on the robust t-statistic have poor size control when

β ̸= 0. Furthermore, they can have poor power against particular alternatives owing to
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Figure 1.10. Power of the two-sided test of H0 : β = 1 under various alter-
natives. Test at 5% level of significance (orange dashed line).

the bias. We conclude that our tests have desirable properties and are preferred to the

test with robust t-statistic when networks are sparse and observed with noise.

1.5. Empirical Demonstration

In this section, we demonstrate the relevance of our theoretical findings via an applica-

tion inspired by De Weerdt and Dercon (2006).2 In the developing world, social insurance

is an important mechanism for smoothing consumption, because of restricted access to

formal credit markets (Rosenzweig 1988; Udry 1994; Fafchamps and Lund 2003; Kinnan

and Townsend 2012, among many others). De Weerdt and Dercon (2006) examines the

case of Nyakatoke, a village with 120 households in rural Tanzania, and find that social

insurance helps households to smooth consumption following health shocks. The data

they use comprises five rounds of panel data on household consumption, illness among

2The data is obtained from Joachim De Weerdt’s website: https://www.uantwerpen.be/en/staff/
joachim-deweerdt/public-data-sets/nyakatoke-network/.

https://www.uantwerpen.be/en/staff/joachim-deweerdt/public-data-sets/nyakatoke-network/
https://www.uantwerpen.be/en/staff/joachim-deweerdt/public-data-sets/nyakatoke-network/
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pn Statistic
Sample Size

100 200 500 1000 2000

0.1

Degree
Ours 0.055 0.052 0.067 0.062 0.065

Robust 0.656 0.673 0.690 0.668 0.674

Diffusion
Ours 0.049 0.053 0.064 0.059 0.060

Robust 0.889 0.894 0.887 0.871 0.898

Eigenvector 0.045 0.043 0.037 0.056 0.044

n−1/3

Degree
Ours 0.066 0.065 0.067 0.058 0.065

Robust 0.330 0.450 0.573 0.705 0.783

Diffusion
Ours 0.080 0.070 0.074 0.057 0.064

Robust 0.645 0.734 0.813 0.888 0.934

Eigenvector 0.045 0.042 0.051 0.042 0.058

n−1/2

Degree
Ours 0.072 0.049 0.051 0.037 0.062

Robust 0.659 0.801 0.949 0.993 0.999

Diffusion
Ours 0.071 0.045 0.053 0.037 0.059

Robust 0.881 0.948 0.993 1.000 1.000

Eigenvector 0.077 0.045 0.050 0.050 0.047

Table 1.2. Size of 5% level two-sided tests when β = 1 is correctly specified.
Robust refers to tests based on t-statistic with robust (heteroskedasticity
consistent) standard errors.

other covariates, collected from February to December 2000. The authors also had access

to social network data collected during the first round of the survey, in which households

were asked for the identities of those who they depend on or depend on them for help.

The authors then regress a household’s change in consumption following illness on the

mean consumption of their network neighbors, finding evidence of positive co-movements.

Another way to demonstrate the effect of social insurance on consumption smoothing

could be to regress variance in consumption on network centrality measures. Specifically,
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pn Statistic
Sample Size

100 200 500 1000 2000

0.1
Degree - Robust 1.000 1.000 1.000 1.000 1.000

Diffusion - Robust 1.000 1.000 1.000 1.000 1.000
Eigenvector 0.845 0.995 1.000 1.000 1.000

n−1/3

Degree - Robust 1.000 1.000 1.000 1.000 1.000
Diffusion - Robust 1.000 1.000 1.000 1.000 1.000

Eigenvector 0.998 1.000 1.000 1.000 1.000

n−1/2

Degree - Robust 1.000 1.000 1.000 1.000 1.000
Diffusion - Robust 1.000 1.000 1.000 1.000 1.000

Eigenvector 0.832 0.947 0.994 1.000 1.000

Table 1.3. Power of 5% level two-sided tests of H0 : β = 0 when β = 1.
Under this H0, the our test statistics is the usual t-statistic with robust
(heteroskedasticity-consistent) standard errors.

the regression:

Yi = βC
(d)
i + ε

(d)
i

where Yi is variance in food expenditure and C
(d)
i is a centrality measure. The above re-

gression could be preferred to the authors’ specification if we are unsure about the covari-

ates that reflect social assistance. For example, it might be a household’s stock of savings

that co-move with the decision to lend to their friends, rather than their own consump-

tion. We might also be interested in more complex patterns of assistance, which could be

summarized in an appropriate centrality measure, but which might not be tractable with

covariates.

The above regression requires information on network of social insurance, in which

each entry Aij records the probability i lends money to j over the survey period. We can

consider obtaining proxies for this network using one of the following:
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Figure 1.11. Social and Financial networks in Nyakatoke.

Unilateral Social (US). Âij = 1 if either i or j names the other household as

a party that they could depend on or which depends on them for help.

Bilateral Social (BS). Âij = 1 only if both i and j names the other household

as a party that they could depend on or which depends on them for help.

Unilateral Financial (UF). Âij = 1 if either i or j lends money to the other

at least once over the survey period.

The authors study US and BS. We also consider UF since self-reported loan data is avail-

able. The networks are plotted in Figure 1.11 and the degree distributions are described

in Table 1.4. By construction, BS is much sparser than US. Due to the availability of five

panels, UF is denser than the other two. With n = 120 households,
√
n = 11. We might

therefore be concerned that npn ≺
√
n especially for US and BS. Note that US and UF

are connected. BS is disconnected but has a clear giant component. Our rule-of-thumb

suggests that β̂(1) and β̂(T ) should across all three networks. β̂(∞) should perform well on

US and UF, but likely not on BS.
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(n = 119) Mean Median Min Max

Unilateral Social 8.02 7 1 31
Bilateral Social 2.30 2 0 10
Unilateral Financial 16.53 14 3 79

Table 1.4. Degree distributions of various networks in Nyakatoke.

Regression results are presented in Table 1.5. In this exercise, an =

√
λ1(Â), δ =

1/

√
λ1(Â) and T = 2. We first note that estimated attenuation factor is the smallest

(i.e. furthest from 1) in the sparsest network BS. This is in line with our result that bias

is Op(n
−1p−1

n ). Diffusion centrality is generally estimated to be less attenuated, because

δ is small (≈ 0.2). As the last column shows, bias correction can lead to substantially

different estimates. Table 1.5 also presents p-values for tests of the two-sided hypothesis

that β(d) = 0. Centrality statistics on BS appears to be more predictive of the variance in

food consumption than that on US and UF. This highlights that researchers should not

choose their network proxies on the criteria of sparsity alone. In the case of Nyakatoke,

evidence suggests that US reflects “desire to link", rather than actual risk-pooling (Comola

and Fafchamps 2014), such that US is a noisier proxy than BS. By the same account,

the large number of discrepancies between reporting by borrowers and lenders of the

same loan suggests that the loan data is subject to severe mis-reporting (Comola and

Fafchamps 2017), rendering it an equally poor proxy. Among the centrality statistics on

BS, eigenvector has the least predictive power by far, in line with what is suggested by

our rule-of-thumb. We reiterate our warning that eigenvector centrality is less robust to

sparsity than degree and diffusion, such that the p-values might reflect the poor statistical

properties of the measure, rather than its lack of economic significance.
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Estimate p-value Atten. Bias Corr.

Unilateral
Social

Degree -1064 0.67 0.91 -1172
Diffusion -4274 0.77 1.00 -4290

Eigenvector -12353 0.86 0.91 -13548

Bilateral
Social

Degree -11604 0.06 0.74 -15592
Diffusion -23672 0.16 0.95 -24883

Eigenvector -10543 0.93 0.78 -13434

Unilateral
Financial

Degree -412 0.70 0.96 -429
Diffusion -4559 0.74 1.00 -4561

Eigenvector -15040 0.77 0.96 -15699

Table 1.5. Regression results for various networks. Estimate is β̂(d). p-
value is for the two-sided test that H0 : β = 0. Atten. is the estimated
attenuation factor of β̂(d) (i.e. 1 − B̂(d)). Bias Corr. presents the bias
corrected estimates, β̌(d).

Finally, we present one-sided confidence intervals for values of β(d) based on our results.

These are useful for putting bounds on parameter values. In our example, a lower bound

could be intuitively interpreted as the limits to informal risk-sharing, a quantity which

could be useful for policymakers deciding whether or not to provide agricultural insurance.

We focus on BS since it appears to be the only informative network. Results for degree and

diffusion are presented in Table 1.6. Results for eigenvector are omitted since our theory

is based on the usual robust t-statistic. Our confidence intervals leads to tighter lower

bound than the those based on the robust t-statistic. Furthermore, as we increase the

desired coverage, our confidence intervals increase much more slowly than the hc/robust

confidence intervals. This is because the latter is linear in Φ−1(1 − α/2), whereas this

term appears in the denominator of C(d) (as in Definition 1.8).
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90% 95% 99%

Degree Robust (-19500, ∞) (-21700, ∞) (-25900, ∞)
Ours (-18800, ∞) (-20000, ∞) (-22700, ∞)

Diffusion Robust (-45000, ∞) (-51000, ∞) (-62400, ∞)
Ours (-25200, ∞) (-25300, ∞) (-25500, ∞)

Table 1.6. One-sided confidence intervals for degree and diffusion.

1.6. Conclusion

In this chapter, we studied the properties of linear regression on degree, diffusion and

eigenvector centrality when networks are sparse and observed with error. We show that

these issues threaten the consistency of OLS estimators and characterize the amount of

sparsity at which inconsistency occurs. In doing so, we find that eigenvector central-

ity is less robust to sparsity than the others and that the statistical properties of the

corresponding regression is sensitive to the scaling.

Additionally, we show that an asymptotic bias arises whenever the true slope param-

eter is not 0 and that the bias can be of larger order than the variance, so that bias

correction is necessary to obtain a non-degenerate limiting distribution from the OLS

estimator. Finally, we provide estimators for the bias and variance which, together with

our central limit theorem, facilitates inference under sparsity and proxy error. We con-

firm our theoretical results via simulations, which suggest that our approximation result

works better for estimation and inference when networks are sparse, particularly when

compared to the use of robust standard errors and the associated t-statistics. Finally,

we demonstrate the relevance of our theoretical results by studying the social insurance

network in Nyakatoke, Tanzania.
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In sum, our results suggest that applied researchers view their results with caution

when applying OLS to sparse, proxy networks. Specifically, comparing the statistical

significance of eigenvector centrality with degree or diffusion may yield misleading con-

clusions since they differ not only in economic significance but also statistical properties.

Provided that the networks are not too sparse, the usual t-test is valid for null hypothesis

that the slope parameter is 0. However, alternative inference procedures will be necessary

for other null hypotheses. Additionally, there may be scope for improving estimation by

the use of bias-corrected estimators. Estimation and inference under extreme sparsity re-

mains an open question, though as Le et al. (2017) and Graham (2020b) show, parametric

models may point to a way forward.
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CHAPTER 2

A Worst-Case Randomization Test for the Level of Clustering

2.1. Introduction

Consider the following regression:

Yi = X ′
iβ + Ui , E[XiUi] = 0 .

where a researcher wants to perform inference on β. If the researcher is concerned about

correlation between Ui and Ui′ , it is frequently helpful to group observations into indepen-

dent clusters. These independent clusters can then be used to construct cluster-robust

covariance estimators (CCE) as in Liang and Zeger (1986a), or for approximate random-

ization tests as in Canay et al. (2017a) and Cai et al. (2021).

However, these procedures require the assignment of units to clusters be known ex ante.

In practice, researchers often have some freedom in choosing the level at which to cluster

their standard errors. For example, those working with the American Community Survey

(ACS) can cluster their data either at the individual, county or state level. Alternatively,

those working with firm data from COMPUSTAT have the option to cluster at either the

4-digit, 3-digit or 2-digit Standard Industrial Classification (SIC) level, or even the firm

level.

Clustering at the correct level is important for valid inference. A large body of sim-

ulation evidence shows that ignoring cluster dependence – in other words, clustering at
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too fine a level – leads to type I errors that exceed the nominal error by as much as 10

times (Bertrand et al. 2004; Cameron et al. 2008a). On the other hand, clustering at

excessively coarse levels can also lead to problems. For one, coarse clusters tend to be

few in number. It is well-known that confidence intervals based on the cluster-robust

standard errors tend to under-cover when the number of clusters is small (see Angrist and

Pischke 2008 for instance), leading to poor size control. In the absence of under-coverage

issues, unnecessarily coarse levels of clustering can also lead to tests with poor power

since the researcher assumes less information than they actually have. Abadie et al. 2017

demonstrate via simulations, in a many-cluster setting, that CCEs based on coarse clus-

ters can be too large. They also provide theoretical results in this vein, though they do

so in the context of their “design-based" asymptotics that differ from those traditionally

used to analyze clustered standard errors. Nonetheless, the problems with tests based on

excessively coarse-clustering arise even with few clusters – the setting of interest for this

chapter. We present a simple simulation to demonstrate these issues in Appendix B.2.

Given the above considerations, a researcher may choose to cluster at a fine level (e.g.

individual or county) even when a coarse level of clustering (e.g. state), which is known to

be valid, is also available. Nonetheless, they may be unsure if the fine level is appropriate.

That is, whether observations across the fine clusters are approximately independent.

To help researchers assess the validity of their chosen clusters, we propose a modified

randomization test that can be used as a robustness check for a given clustering speci-

fication. Our test requires the number of observations in each (fine) sub-cluster to tend

to infinity, but is justified under asymptotics that take the number of (coarse) clusters

and (fine) sub-clusters as fixed. Inference is difficult in this setting because scores are not
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independent across sub-clusters even asymptotically, as we will explain in Section 2.2.2.

Randomization tests, which typically require some type of asymptotic independence, thus

cannot be directly applied. We get around this problem by searching for worst-case val-

ues of the unobserved parameters to guard against over-rejection. We describe a simple

method to search for this value, so that the computational complexity of the test is of the

same order as the number of sub-clusters. This is reasonable since our test is targeted

towards applications with few sub-clusters. Our test has no power against negative cor-

relation. However, ignoring negative correlation leads to variance estimators that are too

large, and is thus less of an issue if the researcher is concerned about size control when

performing inference on β.

To our knowledge, there are two other tests for the level of clustering. MacKinnon

et al. (2020) proposes a test based on having large number of coarse clusters, relying on the

wild bootstrap to improve finite sample performance. Meanwhile, Ibragimov and Müller

(2016) proposes a test for the case when there are many sub-clusters. Our test, which

takes the number of clusters and sub-clusters to be fixed, handles a more challenging

situation, though this comes at the cost of being conservative, especially in settings with

homogeneous clusters. However, as our simulations in Section 2.3 show, it has competitive

power given heterogeneous clusters – a setting that could be relevant for empirical work.

Indeed, our test detects correlation in the clusters chosen by Gneezy et al. (2019), demon-

strating its potential usefulness in applied work (see Section 2.4). Finally, we note that

the test of Ibragimov and Müller (2016) also has no power against negative correlation,

although that of MacKinnon et al. (2020) does not share this limitation.
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Abadie et al. (2017) takes a different approach to this issue. They argue for a “design-

based" perspective on clustering, requiring researchers to determine ex ante the uncer-

tainty that they face in either sampling or treatment assignment. For example, if the

researcher believes that in their specific context, treatment assignment occurs at the sub-

cluster level, then sub-clusters should be used for computing standard errors, regardless

of whether or not residuals are correlated across the sub-clusters. While insightful, this

approach requires researchers to answer an alternative question on which there is equally

little theoretically guidance. We therefore develop our method under the “model-based"

framework, in which the researcher has in mind some data-generating process that entails

dependent clusters.

The remainder of this chapter is organized as follows. Section 2.2 describes our pro-

posed test. Section 2.3 presents Monte Carlo simulations. Section 2.4 demonstrates an

application to Gneezy et al. (2019). Section 2.5 concludes. Proofs are collected in Ap-

pendix B.1.

2.2. The Proposed Test

2.2.1. Model and Assumptions

In the following, we assume that the researcher has conducted inference on β ∈ R, and

seeks a robustness check for the level of clustering used for said inference. As will become

clear in Section 2.2.3, using a scalar β yields computational advantages, though the test

can be feasibly computed for moderate dimensions of β. For this reason and for ease of

exposition we limit our discussion to the scalar case.
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Consider the linear regression:

(2.1) Yi = Xiβ +W ′
iγ + Ui, E[XiUi] = 0, E[WiUi] = 0 ,

where β ∈ R is the parameter of interest and γ ∈ Rd is a nuisance parameter. Suppose

there are r clusters, indexed by k ∈ K. Within each cluster k, there are qk sub-clusters,

indexed by j ∈ Jk. Within each sub-cluster j, there are nj individuals indexed by i ∈ Ij.

Let J =
⋃

k∈K Jk and I =
⋃

j∈J Ij. Further, let n =
∑

j∈J nj and q =
∑

k∈K qk = |J |.

We also write i ∈ Ik when i ∈ Ij and j ∈ Jk. In the following, we suppress dependence

on j and k whenever this does not cause confusion.

Assumption 2.1. Suppose that for every cluster j, there exists a vector Πj, with a

consistent estimator Π̂j, such that for all i ∈ Ij:

(2.2) Xi = W ′
iΠj + εi, E[Wiεi] = 0 .

Suppose that within a sub-cluster, W has full rank. Then Π̂j can be chosen as the

sub-cluster level OLS estimator of X on W . Otherwise, we can just drop variables until

we obtain a linearly independent subset W̃ . The entries of Π̂j corresponding to the

dropped variables can then be set to 0 while the remaining entries are chosen to be the

corresponding coefficients from the sub-cluster level regression of X on W̃ . Alternatively,

if the researcher is willing to assume that Πj is identical across clusters, Π̂j can also be

obtained from the full sample regression of X on W . Now define

(2.3) Zi = (Xi −WiΠj)Ui and Ẑi = (Xi −WiΠ̂j)Ûi ,
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where Ûi is the full-sample OLS residual using equation (2.1). Suppose we know that

clusters are independent, so that E[ZiZi′ ] = 0 when i ∈ Ik, i
′ ∈ Ik′ and k ̸= k′. That is,

observations in sub-clusters from different clusters are uncorrelated. Under this assump-

tion, we test the null hypothesis that sub-clusters within the same cluster are uncorrelated:

(2.4) H0 : E[ZiZi′ ] = 0 for all i ∈ Ij, i
′ ∈ Ij′ , j ̸= j′

against the alternative hypothesis that there exists sub-clusters within at least one cluster

that exhibit correlation:

HA : E[ZiZi′ ] ̸= 0 for some i ∈ Ij, i
′ ∈ Ij′ such that j, j′ ∈ Jk, j ̸= j′ .

Note that changing the choice of Xi and Wi corresponds to testing different null

hypotheses and could lead to differing outcomes. If a researcher wants to test the level of

clustering used for inference on β, Xi should be projected onto Wi. Similarly, if inference

was conducted on γ, then Wi should take the place of Xi in equation (2.3).

Remark 2.1. A researcher interested in inference on β only has to test the resid-

ualized hypothesis of equation (2.4). This is because to the first order, the asymptotic

distributions of
√
n
(
β̂ − β

)
and √

nj

(
β̂j − β

)
depend only on

1√
n

∑
i∈I

Zi and
1

√
nj

∑
i∈Ij

Zi .
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respectively. If the Zi’s exhibit no correlation across clusters, then conducting inference

using the sub-clusters is appropriate. We flesh out this argument in Appendix B.3.

Remark 2.2. Note that tests for different coefficients require different adjustments

for clustering. This is unsurprising since our null hypothesis concerns dependence between

Zi’s. For intuition, consider a setting with two covariates, X1 and X2, which are mean 0

random variables that are independent of each other and independent of U . Consider the

null hypothesis when X1 is our covariate of interest. Now,

Z1,i = (X1,i −X2,iΠ1,j)Ui = X1,iUi since X1 ⊥⊥ X2 ,

and similarly for X2. Hence,

E [Z1,iZ1,i′ ] = E[X1,iX1,i′ ]E[UiUi′ ] , E [Z2,iZ2,i′ ] = E[X2,iX2,i′ ]E[UiUi′ ] .

If X1,i is independent across sub-clusters, then E [Z1,iZ1,i′ ] = 0. This is true even if

X2,i is dependent within clusters, so that E [Z2,iZ2,i′ ] ̸= 0. A similar phenomenon arises

in methods employing degrees of freedom correction for inference with a small number

of clusters. Here, each slope parameter in a regression may require a test with different

degrees of freedom (see Bell and McCaffrey (2002), Imbens and Kolesár (2016) and Carter

et al. (2017)).

Remark 2.3. As with Ibragimov and Müller (2016) and MacKinnon et al. (2020), we

require the researcher to specify independent clusters which nest the potentially correlated

sub-clusters. For a concrete example, these methods cannot test the the null of communt-

ing zone level clustering against the alternative of state level clustering. However, they
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can be used to test the null of county level clustering against the alternative of state level

clustering. Researchers interested in testing the null of commuting zone level clustering

might instead consider the alternative of clustering at the level of labor market areas.

We further assume the following:

Assumption 2.2. Suppose q and r are fixed, but nj → ∞ for all j ∈ J . Let Zi

be defined as in equation (2.3). Suppose there exists Ω ∈ Rq×q such that the q-vector

Sn
d→ S, where

(2.5) Sn :=


1√
n1

∑
i∈I1 Zi

...

1√
nq

∑
i∈Iq Zi

 and S := N (0,Ω) .

Further, let β̂ and γ̂ be the (joint) respective OLS estimators of β and γ, as defined in

equation (2.1) and Π̂j be the estimator of Πj as defined in equation (2.2). Suppose:

β̂
p→ β, γ̂

p→ γ,
√
nj

(
Π̂j − Πj

)
= Op(1) for all j ∈ J .

In other words, we assume that the errors are weakly correlated within each sub-cluster

j. Imposing weak dependence within a (sub-)cluster is not an uncommon assumption (see

for instance the discussion in Canay et al. (2017a) and Bester et al. (2011)). We note

that under H0, Ω is a diagonal matrix. On the other hand, under the alternative, it has

a block diagonal structure due to correlation between sub-clusters.

Remark 2.4. Our assumption that Sn → S does not implicitly assume that sub-

clusters have similar sizes. Intuitively, this is because our randomization test assigns
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“equal weight" to each sub-cluster: each sub-cluster is normalized by its own nj, and the

sign of each Sn,j contribute equally to the sign mismatch within its parent cluster. As

such, heterogeneous sub-cluster sizes pose no issue for our test. Nonetheless, the quality

of the asymptotic approximation is determined by minj∈[q] nj, so the smallest cluster has

to be large. We expand on this point in Appendix B.4 and explain how the restricted

heterogeneity assumptions that are required for inference with clustered data are not

needed in our case.

Remark 2.5. Without further assumptions on Zi, our test requires large sub-clusters.

This rules out testing the null of no clustering where there is only one observation in each

sub-cluster. However, the test is valid for the null of no clustering if we are willing

to assume that each Zi is symmetrically distributed around 0. This might obtain, for

example, if U is symmetric around 0 conditional on X and W . Such assumptions can be

found in the econometrics literature. For example, Davidson and Flachaire (2008) use it

to justify a wild-bootstrapped based F -test for the linear regression model. Nonetheless,

we consider this assumption to be highly restrictive and hence justify our test via large

sub-cluster asymptotics.

2.2.2. Test Statistic and Critical Value

In this subsection, we define the test statistic and explain the need to search over the

worst case critical value. Before doing so, we first consider the infeasible test in which

the true parameters – β, γ and Π as defined in equations (2.1) and (2.2) – are observed.

Readers who are only interested in the details of implementation can skip to the end of

Section 2.2.3.
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2.2.2.1. Infeasible Test. Suppose we know β, γ and Π. Given Yi and Xi, we can back

out Ui and construct the vector S∗
n, whose jth entry is

(2.6) S∗
n,j =

1
√
nj

∑
i∈Ij

Zi =
1

√
nj

∑
i∈Ij

(Xi −W ′
iΠj)Ui .

Given S∗
n, we can then define the infeasible test statistic:

(2.7) T (S∗
n) =

1

r

∑
k∈K

∣∣∣∣∣∑
j∈Jk

(
1(S∗

n,j ≥ 0)− 1(S∗
n,j < 0)

)∣∣∣∣∣ .

The inner sum is the net number of positive S∗
n,j within each cluster k. Intuitively, if the

observations across sub-clusters are independent, the net number of positive S∗
n,j should

be close to 0. Conversely, if they are positively correlated, this number will be large in

absolute value, since many sub-clusters will have S∗
n,j of the same sign. On the other hand,

if they are negatively correlated, this number will be more concentrated around 0 than

in the independent case. As will become clear below, our test interprets large absolute

values of T (S∗
n) as violation of the null. For this reason, it will not have power against

negative correlation.

Remark 2.6. There are two advantages to having a test statistic that depends only

on the sign of the S∗
n,j’s. Firstly, large and small realizations of S∗

n,j contribute the same

amount to T (S∗
n). As such, the performance of our test is not affected even if sub-clusters

have wildly differing variances, a source of heterogeneity that may be important in applied

work. We demonstrate this robustness property via simulations in Section 2.3.2. Secondly,

the feasible version of this test requires searching over the worst case values of the test
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statistic. As will become clear in Section 2.2.3, this search is simplified by our choice of

test statistic.

Next, denote by G the set of sign changes. G can be identified with the set {−1, 1}q.

That is, we can construct G by enumerating all vectors of length q with either 1 or −1

in each component. Then for each g ∈ G,

gS∗
n =


g1 · S∗

n,1

...

gq · S∗
n,q

 .

Now let p∗(S∗
n) be the proportion of T (gS∗

n) that are no smaller than T (S∗
n):

(2.8) p(S∗
n) =

1

|G|
∑
g∈G

1 {T (gS∗
n) ≥ T (S∗

n)} .

The test rejects the null hypothesis when p(S∗
n) is small – that is, when T (S∗

n) is extreme

relative to T (gS∗
n):

ϕ∗
n =


1 if p(S∗

n) ≤ α

0 otherwise.
(2.9)

The intuition for the randomization test is as follows. Since S∗
n,j involves only units

within the same sub-cluster, under the null hypothesis, S∗
n converges to a mean-zero nor-

mal distribution with independent components. Independence, together with symmetry

of normal random variables about their means, implies that for any g ∈ G, gS∗
n, has the

same distribution as S∗
n. Hence, the randomization distribution {T (gS∗

n)}g∈G is in fact the
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distribution of T (S∗
n) conditional on the values of |S∗

n|, where | · | is applied component-

wise. Rejecting the null hypothesis when we observe values of T (S∗
n) that are extreme

relative to {T (gS∗
n)}g∈G therefore leads to a test with the correct size.

Note that the randomization test defined above is non-randomized. Randomization

tests can also employ a randomized rejection rule for the situation when

1

|G|
∑
g∈G

1 {T (gS∗
n) > T (S∗

n)} < α but
1

|G|
∑
g∈G

1 {T (gS∗
n) ≥ T (gS∗

n)} > α .

Using a randomized rejection rule, the randomization test will have size equal to α exactly

if the necessary symmetry properties hold in finite sample. The test defined in equation

(2.9) is conservative since it never rejects when the above situation occurs. However, we

present the deterministic version since the test that we propose is based on it.

2.2.2.2. Naïve Test. Tests based on S∗
n are infeasible since β, γ and the Πj’s are un-

known. Suppose we simply replaced Zi with Ẑi and performed the randomization test

with the estimated scores. It turns out that this procedure is incorrect. To see this, let

S̃n be S∗
n but with Ẑi replacing Zi. Then we can write each component of S̃n as:

S̃n,j =
1

√
nj

∑
i∈Ij

Ẑi =
1

√
nj

∑
i∈Ij

(
Xi −W ′

i Π̂j

)
Ûi(2.10)

≈ 1
√
nj

∑
i∈Ij

(Xi −W ′
iΠj)Ui︸ ︷︷ ︸

S∗
n,j

−
(
β̂ − β

) 1
√
nj

∑
i∈Ij

(
Xi −W ′

i Π̂j

)2
︸ ︷︷ ︸

=: Aj

.(2.11)

In the above equation, S∗
n,j is the part that is informative about cluster structure. How-

ever, each component now has an additional nuisance term Aj that does not go away

under asymptotics that take the number of sub-clusters to be fixed. Because β̂ − β is
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common across the Aj’s, it induces correlation across S̃n,j even when the S∗
n,j’s are inde-

pendent, leading potentially to over-rejection. Addressing this complication which does

not arise in frameworks taking q → ∞ results in the conservativeness of our test.

2.2.2.3. Feasible Test. If we knew β̂−β, we could back out S∗
n,j for the randomization

test using equation (2.11). Since that is not possible, we propose to search over values of

β̂ − β to ensure that the test controls size when the unobserved term takes on extreme

values.

For a given λ ∈ R, let Ŝn(λ) be q × 1 vector whose jth entry is the following term:

Ŝn,j(λ) :=
1

√
nj

∑
i∈Ij

(
Xi −W ′

i Π̂j

)
Ûi + λ

1
√
nj

∑
i∈Ij

(
Xi −W ′

i Π̂j

)2
.

Note that if we set λ∗ = β̂ − β, then Ŝn,j(λ
∗) = S∗

n,j + op(1). Define:

T (Ŝn(λ)) =
1

r

∑
k∈K

∣∣∣∣∣∑
j∈Jk

(
1(Ŝn,j(λ) ≥ 0)− 1(Ŝn,j(λ) < 0)

)∣∣∣∣∣ .

For a given λ, this is just the test statistic in equation (2.7) but with Ŝn,j(λ) taking the

place of S∗
n,j. As before, we denote by G the set of sign changes and write:

gŜn(λ) =


g1 · Ŝn,1(λ)

...

gq · Ŝn,q(λ)

 .
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Now let p(Ŝn(λ)) be the proportion of T
(
gŜn(λ)

)
that takes on extreme values relative

to T
(
Ŝn(λ)

)
:

(2.12) p(Ŝn(λ)) =
1

|G|
∑
g∈G

1
{
T
(
gŜn(λ)

)
> T

(
Ŝn(λ)

)}
.

We can then define the randomization test as:

ϕn =


1 if supλ∈R p(Ŝn(λ)) ≤ α

0 otherwise.
(2.13)

We can then prove the following result:

Theorem 2.1. Under assumptions 2.1 and 2.2, lim sup
n→∞

E[ϕn] ≤ α.

The test is a two-stage process. In the first stage, it searches for the value of λ that

leads to the largest p-value. In the second stage, the test rejects if this worst-case p-value

is still smaller than the desired level of significance α. Since the worst-case p-value bounds

the true p-value from above, the rejection rule based on the worst-case p-value must be

conservative.

As the Monte Carlo simulations in Section 2.3 shows, the test has size that could

be much smaller than α under the null hypothesis. However, the same simulations also

show that the test has reasonable power under the alternative hypothesis, particularly

in settings where clusters are heterogeneous in their variances. The potential usefulness

of our test is further seen in the empirical application (Section 2.4), where it detects

dependence in the clusters chosen by Gneezy et al. (2019).
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Remark 2.7. The worst-case test has no power if r = 1 since λ = median({S̃n,j})

will set exactly half the signs of Ŝn,j(λ) to be positive and half to be negative, so that the

signs are completely balanced. However, this is no longer true with r > 1 since only a

single value can be chosen to balance signs across multiple clusters. The implementation

procedure provides further intuition for power in this test. See the next subsection.

Remark 2.8. As with standard randomization tests, |G| may sometimes be too large

so that computation of p(Ŝn(λ)) becomes onerous. In these instances, it is possible to

replace p(Ŝn(λ)) with a stochastic approximation. Formally, let Ĝ =
{
g1, ..., gB

}
, where

g1 is the identity transformation and g2, ..., gB are i.i.d. Uniform(G). Using Ĝ instead

of G in equation (2.12) does not affect validity of theorem 2.1. For implementation,

we follow Canay et al. (2017a) in evaluating the p(Ŝn(λ)) completely when q ≤ 10 and

approximating it with B = 1000 when q > 10.

Remark 2.9. We advocate the use of our test as a robustness check, after a researcher

has chosen a level of clustering for inference, in the same spirit that manipulation tests

are routinely used in studies with regression discontinuity designs, or in tests for pre-

trends in studies involving difference-in-differences. In particular, the original inference

results should be presented with results of the current test, regardless of the outcome.

Conceptually, this is different from using the test as a pre-test to select the level of

clustering prior to inference. The distinction is important as pre-testing is known to induce

uniformity issues, where inference in the second stage (on β) suffers from distortion due to

mistakes in the pre-test (that happen with positive probability). These same concerns are

articulated by Ibragimov and Müller (2016), who argue that their test “merely provides
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empirical evidence on the plausibility of one particular clustering assumption”. We take

exactly the same view of our test.

2.2.3. Implementation

In this subsection we describe an efficient way of searching for λ ∈ R. This search is

simplified by the fact that p(Ŝn(λ)) depends only on the sign of Ŝn,j(λ)’s. As such, to

find supλ∈R, we only need to search over sign combinations of Ŝn,j. When β is scalar, the

search can be completed in O(q) time. This is reasonable since the test is designed for

use when q is small.

Suppose for now that
∑

i∈Ij

(
Xi −W ′

i Π̂j

)2
> 0 for all j ∈ J . Define:

Rj =

∑
i∈Ij

(
Xi −W ′

i Π̂j

)
Ûi∑

i∈Ij

(
Xi −W ′

i Π̂j

)2 .

Then, Ŝn,j(λ) ≥ 0 ⇔ Rj +λ ≥ 0 . Sort the values of Rj’s so that R(1) ≥ R(2) ≥ ... ≥ R(q) .

We must have that R(j) + λ ≥ 0 ⇒ R(j′) + λ ≥ 0 for all j′ ≤ j. Let Ŝn,(1)(λ), ..., Ŝn,(q)(λ)

denote the values of Ŝn,j(λ) corresponding to R(1), ..., R(q). Therefore, we only need to

consider sequences of the form

Ŝn,(1) > 0, ..., Ŝn,(j) > 0, Ŝn,(j+1) < 0, ..., Ŝn,(q) < 0 ,

for some cut-off j. Since the p-value, as defined in equation (2.12), depends only on the

sign of Ŝn, we can compute it using Šn in the place of Ŝn,j(λ):

Šn,(1) = ... = Šn,(j) = 1, Šn,(j+1) = ... = Šn,(q) = −1 .
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Here, we see that even when we are searching over the worst case λ, we are only

allowed to choose the cut-off point at which the signs change. We can therefore complete

the search with no more than q randomization tests. Assuming that the time it takes for

each test is O(1), the procedure takes O(q) time. The restriction that Šn,(j) ≥ Šn,(j′) for

all j ≤ j′ also gives the test power. If all combinations of signs for the Sn,j’s were allowed,

the test will always return a p-value of 1 and will have no power.

Finally, suppose there are sub-clusters such that
∑

i∈Ij

(
Xi −W ′

i Π̂j

)2
= 0. We can

repeat the above procedure excluding these sub-clusters. In the final step, we set Šn,j

corresponding to these clusters to 0. Hence,

Remark 2.10. We can further reduce computation time by the following. Let

R+
k = min

j′∈Jk

{Rj′ greater than or equal to > 0.5 of {Rj, j ∈ Jk}}

be the “upward-conservative" median. Also define the “downward-conservative" median:

R−
k = max

j′∈Jk

{Rj′ less than or equal to > 0.5 of {Rj, j ∈ Jk}} .

Now let R+ = maxk∈K R+
k and R− = mink∈K R−

k . We only need to consider cutoffs

below R+. Setting the sign cutoff at the argmax of R+ results in situation in which all

clusters have at least half of their entries being −1. If we now set the extreme Sn,j’s to

−1, this will increase the net number of −1’s in all clusters. Since our test is based on

sign imbalance within clusters, such sequences will lead to a strictly larger test statistic

and smaller p-values than if they were set to 1. For the same reason, we only need to

consider cutoffs above R−.
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We summarise the implementation procedure in Algorithm 1.

Algorithm 1: Worst-Case Randomization Test
1 Perform full sample OLS to obtain residuals Ûi. Compute Π̂j for each j ∈ J .
2 for j ∈ [q] do

3 if
∑

i∈Ij

(
Xi −W ′

i Π̂j

)2
> 0 then compute: Rj =

∑
i∈Ij(Xi−W ′

i Π̂j)Ûi∑
i∈Ij(Xi−W ′

i Π̂j)
2

4 else set Rj = 0.

5 Sort the values of Rj’s such that R(1) ≥ R(2) ≥ ... ≥ R(q) .
6 for j ∈ [q], R(j) ̸= 0, R− ≤ R(j) ≤ R+ do
7 Set Šn,(1) = ... = Šn,(j) = 1, Šn,(j+1) = ... = Šn,(q) = −1.

8 if R(j) = 0 then replace Šn,(j) with 0.
9 Compute p(Šn). This is as defined in equation (2.12), except with Šn in place

of Ŝn,j(λ). Save this value as p̂j.
10 if maxj∈[q],Rj ̸=0 p̂j ≤ α then return 1. Reject the null hypothesis.
11 else return 0. Do not reject the null hypothesis.

2.2.4. Comparison with Existing Tests

To our knowledge, two other tests have been proposed for the level of clustering. They

take either the number of sub-clusters in each cluster to infinity or the number of clusters

to infinity. We assume both to be fixed. For ease of exposition, we restrict our discussion

of these tests to the univariate case.

Ibragimov and Müller (2016) (IM hereafter) adopts an asymptotic framework that

takes qk → ∞ for all k ∈ K. Consider estimating a regression coefficient cluster-by-

cluster. Let β̂k denote coefficients estimated using only cluster k. The IM test is based on

the asymptotic distribution of an estimator for the variance of 1
r

∑r
k=1 β̂k. Let this variance

be denoted by V and let Ω̂CCE
k be the cluster-robust variance estimator for β̂k, where the
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clustering is done at the sub-cluster level using j ∈ Jk. Under the null hypothesis, Ω̂CCE
k

consistently estimates the variance of each β̂k.

Under either the null or the alternative, but maintaining the assumption that coarse

clusters are independent, consider estimating V by:

V̂ =
1

r − 1

r∑
k=1

(β̂k − β̄)2 , β̄ =
1

r

k∑
r=1

β̂r .

IM show that under the null, V̂ d→ V W , where V W = 1
r−1

∑r
k=1(Wk − W̄ )2 and

W ∼ N(0, diag(ΩCCE
1 ,ΩCCE

2 , ...,ΩCCE
r )) .

The IM test constructs a reference distribution V̂ W by drawing W from

N(0, diag(Ω̂CCE
1 , Ω̂CCE

2 , ..., Ω̂CCE
r ))

and seeing if V̂ is larger than the (1− α)th quantile of V̂ W .

There are two limitations to the IM test that our test does not share. Firstly, they

require the regression to be estimated cluster-by-cluster. This would be infeasible in,

for example, differences-in-differences set ups where treatment varies at the cluster level.

Secondly, since their asymptotics take qk → ∞, we expect the test to have poor properties

when qk is small. Instead, our test is expected to have good properties even when qk is

small as long as nj is large. These benefits come at a cost. We expect our test to perform

worse if observations within sub-clusters are highly correlated, whereas the IM test allows

unrestricted covariance within sub-clusters. Our test is also conservative under the null

hypothesis. We note also that neither test has power against negative correlations. This
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is because both tests use test statistics that take on large value relative to their reference

distributions only when there is positive correlation.

MacKinnon et al. (2020) (MNW hereafter) considers an asymptotic framework that

takes r → ∞. In the same spirit as IM, the MNW test is a Hausman-type test based

on the variance of regression coefficients. Consider the full sample regression coefficient

β̂. Under the null hypothesis, the (full-sample) cluster-robust covariance estimator at

the sub-cluster level, denoted, Ω̂CCE
J , is consistent for the asymptotic variance-covariance

matrix.

Under either the null or the alternative, but maintaining the assumption that coarse

clusters are independent, the (full-sample) cluster-robust covariance estimator at the clus-

ter level, denoted, Ω̂CCE
K , is consistent for the asymptotic variance-covariance matrix. Un-

der the null hypothesis, the authors show that their test statistic converges to a standard

normal distribution: Ω̂CCE
K −Ω̂CCE

J

V̂ MNW

d→ N(0, 1) for an appropriately defined V̂ MNW .

It is well known that the cluster-robust covariance estimator can be severely biased

when r is small. In order to deal with such situations, the authors propose to conduct the

test using the wild (sub-)cluster bootstrap. This procedure imposes the cluster structure

specified in the null hypothesis when generating bootstrap samples. Under the null of

no clustering, it reduces to the simple wild bootstrap. They prove the consistency of

this approach in their large-r framework, showing power even against alternatives with

negative correlations.

Compared to the MNW test, our test is theoretically justified when both r and q

are small, provided that nj’s are large. Our test could therefore be preferable in such

applications since it is presently not known if the MNW test remains valid once we take
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r and q to be fixed. However, as with the IM test, the MNW test allows unrestricted

covariance within sub-clusters, whereas our test is expected to have poor performance

if observations within sub-clusters are highly correlated. Our test is also conservative

relative to the MNW test. On the other hand, simulation evidence suggests that it has

comparable performance with the MNW test when clusters have differing variances (see

Section 2.3).

2.3. Monte Carlo Simulations

In this section, we examine the finite sample performance of our worst-case randomiza-

tion test (WCR) together with the IM and bootstrap version of the MNW tests via Monte

Carlo simulations. We also study the the naïve randomization test (NR) as described in

Section 2.2.2.2. Section 2.3.1 considers the effects of varying r, qk and nj. Section 2.3.2

investigates the effects of cluster heterogeneity. Our data generating processes are as

follows:

Model 1: Model 1 is defined by the following:

Yt,j,k = X ′
t,j,kβ + σj,k

(
ρVt,k +

1√
1− ϕ2

Ut,j,k

)
,

Vt,k
iid∼ N(0, 1) , Ut,j,k = ϕUt−1,j,k + εt,j,k, εt,j,k

iid∼ N(0, 1) ,

In particular, we set Xt,j,k = β = 1 and ϕ = 0.25. Errors are correlated within a sub-

cluster, according to an AR(1) process, with autocorrelation coefficient ϕ. ρ captures

the importance of cluster level shock. Since 1√
1−ϕ2

Ut,j,k has unit variance, ρ is exactly

the relative variance of cluster- to sub-cluster-level shocks. σj,k controls the variance of

the unobserved term in each cluster k. Here in Section 2.3.1, we set σj,k = 1 for all
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j ∈ J , k ∈ K. In Section 2.3.2, we explore the consequences of cluster heterogeneity by

varying σj,k.

Model 2: This is the model used in the simulations of MacKinnon et al. (2020), with

the constant omitted. Let mk =
∑

j∈Jk
nj be the total number of observations in cluster

k. Let Uk be the mk × 1 vector of Ut,j,k for all observations in cluster k. Then

Uk = ρWξξk +
√

1− ρ2 ϵk , ϵk ∼ N(0, Imk
) ,

where ξk is a 10× 1 vector distributed as:

ξk,1 ∼ N(0, 1) , ξk,l = ϕξk,l−1 + ek,l , ek,l ∼ N(0, 1− ϕ2) , l ∈ {2, ..., 10}

and Wξ is the mk × 10 loading matrix with the (i, j)th entry 1 {j = ⌊(i− 1)10/mk⌋+ 1}.

Under this model, 1
10

of the observations in each cluster are correlated because they depend

directly on the same ξk,l. In addition, there is correlation between the ξk,l’s since it is

generated according to an AR(1) process. Observations are then ordered so that every

sub-cluster contains the same number of observations that depend on each ξk,l. Finally,

β = (1, 1)′ and the two covariates are independent and generated in the same way as

U . This model features more complex correlations between and within the sub-clusters.

Clusters are independent and identically distributed. As in Section 5.2 of MacKinnon

et al. (2020), we set ϕ = 0.5. ρ here is directly comparable to wξ in their simulations.

For our simulations, we perform the test at the 5% level. 10,000 Monte Carlo simu-

lations were drawn for each combination of the parameters. The non-standard reference

distribution in IM is evaluated using 1,000 Monte Carlo draws. Wild bootstrap in MNW

is evaluated using 399 draws as in their simulations.
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2.3.1. Performance over values of r, qk and nj

To understand the size and power of each of our tests in scenarios with few clusters and

few sub-clusters, we consider equal-sized clusters and sub-clusters, with r ∈ {4, 8, 12},

qk ∈ {4, 8, 12} and nj ∈ {25, 50, 100}. We consider ρ ∈ {0, 0.5}.

Table 2.1 presents results under the null hypothesis (ρ = 0). Across the two models,

we see that regardless of r, the IM test performs poorly when qk is small. With qk = 4,

type I error is between 15% and 20%. By qk = 12, however, the size is between 6-7%.

Comparatively, our test, which is highly conservative, has type I error less than 2% across

all values of qk. The MNW and NR tests perform well across the board. Table 2.2 presents

results under the alternative ρ = 0.5. Relative to the IM and MNW tests, our test has

power that is consistently lower. In particular, our test does poorly when qk is small. This

is the weakness of the worst-case approach.

Figure 2.1 presents power of the tests for r = 8, qk = 12, nj = 100 as we vary ρ from

0 to 2 in model 1 and 0 to 1 in model 2. Across the two models, we see that the IM and

MNW tests have greater power than our test. However, as ρ increases, our test quickly

catches up in power.

2.3.2. Cluster Heterogeneity

As a growing body of papers document, heterogeneity across clusters can pose challenges

for cluster-robust inference (see for instance Carter et al. (2017), Djogbenou et al. (2019)

and Hu and Spamann (2020)). Three sources of heterogeneity are of particular concern: (i)

distribution of errors, (ii) distribution of covariates, and (iii) cluster sizes. In the following,

we investigate in turn how each of these issues affect tests for the level of clustering.
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Size - Homogeneous Clusters

Model 1 Model 2

r qk nj NR WCR IM MNW NR WCR IM MNW

4

4
25 0.019 0.000 0.145 0.053 0.019 0.000 0.161 0.053
50 0.022 0.000 0.155 0.059 0.021 0.000 0.160 0.055
100 0.020 0.000 0.154 0.058 0.019 0.000 0.157 0.055

8
25 0.024 0.000 0.090 0.050 0.025 0.000 0.103 0.055
50 0.022 0.000 0.095 0.054 0.022 0.000 0.098 0.052
100 0.022 0.000 0.094 0.050 0.026 0.000 0.098 0.053

12
25 0.024 0.001 0.075 0.049 0.026 0.001 0.083 0.053
50 0.022 0.000 0.075 0.050 0.026 0.000 0.086 0.057
100 0.025 0.001 0.079 0.052 0.026 0.000 0.081 0.054

8

4
25 0.024 0.000 0.171 0.055 0.027 0.000 0.181 0.053
50 0.024 0.000 0.162 0.051 0.025 0.000 0.170 0.051
100 0.025 0.000 0.165 0.053 0.026 0.000 0.165 0.052

8
25 0.025 0.000 0.095 0.051 0.026 0.000 0.101 0.049
50 0.026 0.001 0.092 0.049 0.025 0.000 0.102 0.051
100 0.027 0.001 0.097 0.052 0.024 0.001 0.092 0.047

12
25 0.028 0.001 0.080 0.051 0.032 0.001 0.081 0.050
50 0.027 0.001 0.075 0.048 0.028 0.001 0.079 0.050
100 0.026 0.001 0.074 0.050 0.027 0.001 0.078 0.050

12

4
25 0.022 0.000 0.177 0.051 0.019 0.000 0.187 0.048
50 0.022 0.000 0.181 0.055 0.020 0.000 0.180 0.050
100 0.022 0.000 0.171 0.050 0.020 0.000 0.177 0.045

8
25 0.034 0.001 0.105 0.054 0.032 0.002 0.105 0.050
50 0.035 0.001 0.101 0.049 0.035 0.001 0.106 0.052
100 0.032 0.001 0.100 0.050 0.030 0.001 0.094 0.044

12
25 0.032 0.002 0.085 0.049 0.029 0.002 0.087 0.050
50 0.030 0.002 0.076 0.047 0.030 0.003 0.086 0.054
100 0.033 0.002 0.084 0.053 0.030 0.002 0.085 0.051

Table 2.1. Monte Carlo rejection rates under the null hypothesis ρ = 0 at
5% level of significance. WCR refers to our worst-case randomization test.
IM is the test from Ibragimov and Müller (2016). MNW is the bootstrap
version of the test in MacKinnon et al. (2020). NR is the naïve randomiztion
test. r is the number of clusters, qk is the number of sub-clusters in each
cluster, and nj is the number of individuals in each sub-cluster.
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Power - Homogeneous Clusters

Model 1 Model 2

r qk nj NR WCR IM MNW NR WCR IM MNW

4

4
25 0.052 0.000 0.315 0.152 0.068 0.000 0.372 0.204
50 0.061 0.000 0.313 0.157 0.130 0.000 0.529 0.336
100 0.053 0.000 0.316 0.156 0.230 0.001 0.687 0.520

8
25 0.122 0.006 0.383 0.291 0.175 0.010 0.458 0.380
50 0.118 0.006 0.379 0.282 0.317 0.044 0.648 0.576
100 0.110 0.005 0.363 0.273 0.508 0.126 0.800 0.754

12
25 0.188 0.028 0.471 0.404 0.269 0.058 0.548 0.509
50 0.187 0.030 0.455 0.392 0.462 0.177 0.735 0.700
100 0.186 0.026 0.467 0.399 0.662 0.357 0.868 0.850

8

4
25 0.081 0.002 0.417 0.194 0.116 0.003 0.525 0.290
50 0.081 0.001 0.430 0.198 0.236 0.013 0.728 0.530
100 0.078 0.001 0.417 0.195 0.425 0.059 0.888 0.775

8
25 0.198 0.032 0.568 0.454 0.288 0.068 0.661 0.597
50 0.194 0.031 0.567 0.447 0.535 0.225 0.869 0.838
100 0.189 0.028 0.551 0.442 0.782 0.494 0.965 0.957

12
25 0.329 0.108 0.691 0.628 0.467 0.202 0.779 0.761
50 0.321 0.106 0.692 0.627 0.731 0.477 0.934 0.925
100 0.326 0.108 0.687 0.620 0.912 0.775 0.988 0.985

12

4
25 0.092 0.003 0.521 0.233 0.131 0.006 0.622 0.374
50 0.092 0.002 0.516 0.235 0.288 0.032 0.839 0.674
100 0.092 0.003 0.525 0.235 0.535 0.142 0.961 0.895

8
25 0.279 0.065 0.701 0.565 0.409 0.140 0.786 0.737
50 0.289 0.066 0.692 0.571 0.706 0.409 0.948 0.932
100 0.273 0.064 0.691 0.555 0.911 0.743 0.994 0.992

12
25 0.455 0.201 0.830 0.767 0.616 0.352 0.897 0.887
50 0.442 0.194 0.825 0.766 0.872 0.702 0.984 0.982
100 0.434 0.191 0.823 0.762 0.976 0.927 0.999 0.999

Table 2.2. Monte Carlo rejection rates under the alternative hypothesis
ρ = 0.5 at 5% level of significance. WCR refers to our worst-case random-
ization test. IM is the test from Ibragimov and Müller (2016). MNW is
the bootstrap version of the test in MacKinnon et al. (2020). NR is the
naïve randomiztion test. r is the number of clusters, qk is the number of
sub-clusters in each cluster, and nj is the number of individuals in each
sub-cluster.
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Figure 2.1. Power of various tests for level of clustering when r = 8, qk = 12,
nj = 100. The black line indicates the nominal size of the tests (5%).

Whereas the previous section suggests that our test has poor performance compared to

other tests, a different picture emerges once we consider heterogeneous clusters.

2.3.2.1. Distribution of Errors. We first consider what happens when clusters differ

in the distribution of regression errors. Specifically, we are interested in the case in

which some clusters have much larger variances in their errors than others. This might

happen if some clusters are exposed to more shocks than the others, or because clusters

systematically differ in certain covariates and errors are heteroskedastic. We return to

model 1 but with σj,1 ∈ {5, 10, 15}. That is, when all sub-clusters in cluster 1 are much

noisier than the rest. Figure 2.2 plots power curves with r = 8, qk = 12, nj = 100 for

σj,1 ∈ {5, 10, 15}. These curves are directly comparable with Figure 2.1. Starting from

the within test comparison, we see that the performance of our test is unaffected by σj,1.

However, power of IM and MNW quickly degrade as σj,1 increases. Turning to the across

test comparison, we see that the tests perform similarly when σj,1 = 5. As σj,1 increases
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to 10, our test starts to have more power than the IM and MNW tests for ρ ≥ 1. The

across test comparison also shows how the NR test fails to control size. In particular,

when σj,1, an NR test with nominal size 5% could wrongly reject over 40% of the time.

We see the same patterns when sub-clusters are heterogeneous. Consider again model

1 but with σ1,k ∈ {5, 10, 15}. That is, when the first sub-cluster in each cluster is much

noisier than the rest. Figure 2.3 presents the results. Again, our test is not affected by

changing σ1,k. The power of the IM test falls by a large extent as σ1,k increases. The

MNW test is also negatively affected by σ1,k, though less so than the IM test.

2.3.2.2. Distribution of Covariates. We next consider the case when clusters differ in

the distribution of covariates. Specifically, we are interested in the effects of having covari-

ates that are perfectly correlated either within sub-clusters or clusters. These situations

arise commonly in empirical work, when treatment assignment occurs at the sub-cluster

or cluster level.

Our simulation is based on model 1 but with the following modification. When treat-

ment is assigned at the individual level,

Xt,j,k :=


1 w.p. 0.5

2 otherwise.

where Xt,j,k is independent across observations. When treatment is assigned at the sub-

cluster level, Xt,j,k = Xj,k has the same distribution as above, but is identical within

sub-clusters and independent across sub-clusters (and clusters). When treatment is as-

signed at the cluster level, Xt,j,k = Xk is identical within clusters and independent across

clusters. The distribution of X was chosen so that β is estimable cluster-by-cluster even
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Figure 2.2. Power of various tests for level of clustering in Model 1 as σj,1

increases. Here, r = 8, qk = 12, nj = 100. The black line indicates the
nominal size of the tests (5%).

when treatment is assigned at the cluster level. This condition is unlikely to be satisfied

in practice when treatment is assigned at the cluster level. However, we impose it for

comparison purposes, since it is necessary for the IM test.

The power curves are shown in Figure 2.4. For WCR, having treatment assignment at

the sub-cluster (“Subclust") and cluster level (“Clust") turns out to slightly improve power

relative to the case with treatment assignment at the individual level (“Indiv"). The size

of the test is not affected. For the IM test, sub-cluster level treatment assignment slightly
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Figure 2.3. Power of various tests for level of clustering in Model 1 as σ1,k

increases. Here, r = 8, qk = 12, nj = 100. The black line indicates the
nominal size of the tests (5%).

worsens size control, while cluster level treatment assignment does not appear to any effect.

For the MNW test, sub-cluster level treatment assignment does not appear to have any

effect, while cluster-level treatment assignment seems to lower power substantially, to the

point that it becomes comparable to that of the WCR.

Summing up, these simulations suggest that size control of the IM test is sensitive

to heterogeneity in covariate distribution at the sub-cluster level. Meanwhile, power of

the MNW test is sensitive to heterogeneity at the cluster level. On the other hand,

performance of the WCR test is relatively stable across these models.

2.3.2.3. Cluster Sizes. Finally, we consider the effects of imbalanced cluster sizes.

Specifically, we are interested in situations where each cluster has a sub-cluster that is

much larger than the others. Our baseline model for this section follows that of Section

2.3.2.2. Inspired by Hu and Spamann (2020)’s study of clustering in the state corporate
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Figure 2.4. Power of various tests for level of clustering in Model 1 with
different levels of treatment assignment. “Indiv", “Subclust" and “Clust"
refers to treatment assignment at the individual, sub-cluster and cluster
level respectively. Here, r = 8, qk = 12, nj = 100. “Indiv, 50%" refers to
treatment assignment at the individual level, but each cluster also contains
a large sub-cluster containing 50% of the observations in the cluster (1100),
with the remaining sub-clusters having nj = 100. The black line indicates
the nominal size of the tests (5%).

law literature, we set each cluster to contain a sub-cluster comprising 50% of all observa-

tions in that cluster. The large sub-cluster therefore contains 1100 observations, while the

remaining 11 sub-clusters continue to have size 100. The case with individual treatment

is presented in Figure 2.4. Comparing the case with equally sized sub-clusters (“Indiv")

and with imbalanced sub-clusters (“Indiv, 50%"), we see that imbalanced cluster sizes has

negligible effects on the WCR and MNW test. It does, however, affect size control of the

IM test, leading to greater over-rejection.

The MNW test becomes more slightly more sensitive to imbalanced sub-clusters once

we allow treatment to be correlated within sub-cluster or clusters. Carter et al. (2017)

notes a similar phenomenon: cluster imbalance and correlated covariates interact to
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Figure 2.5. Power of various tests for level of clustering in Model 1 with
treatment assignment at the cluster level. Here, r = 8, qk = 12.“Clust"
refers to the case where all sub-clusters contain 100 observations. “Clust,
x%" refers to the case where each cluster contains one large sub-cluster
containing x% of the observations in the cluster with the remaining 11 sub-
clusters having nj = 100. The black line indicates the nominal size of the
tests (5%).

worsen size control in cluster-robust inference using the t-test. In our setting, this ef-

fect is most pronounced with cluster-level treatment assignment, presented in Figure 2.5.

Here we see that increasing the size of the outlier sub-cluster from 33% to 67% of all ob-

servations in a cluster reduces power of MNW at larger values of ρ. The performance of
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the WCR test remains unchanged, so that it starts to have higher power than the MNW

test at larger values of ρ. As we saw in Figure 2.4, imbalanced sub-clusters increases the

IM test’s type I error. This continues to be true in Figure 2.5 with cluster level treatment

assignment.

All in all, the simulation evidence suggests that our test manages to maintain type

I error below α when q is small, whereas the IM and NR tests may see size distortion

in such a setting. The cost of size control in a fixed q setting is that the procedure

is very conservative. This conservativeness limits the power of our test. However, the

performance of our test is less sensitive to common sources of heterogeneity within and

across clusters, such that it could become more powerful than the IM and MNW tests

when clusters are heterogeneous. Indeed, as we will see in the next section, our test

detects dependence in the clusters of Gneezy et al. (2019), demonstrating its potential

relevance for empirical work.

2.4. Application: Gneezy et al. (2019)

In recent years, the poor performance of American students in assessment tests such as

the Programme for International Student Assessment (PISA) has raised concerns among

policymakers. Gneezy et al. (2019) argues that the testing gap reflects, among other

things, the low effort that American students put in on tests, especially when compared

to their higher scoring counterparts in other countries.

The authors test their hypothesis by a randomized controlled experiment in which

students were rewarded with cash for correct answers in a 25-question test. Those assigned

to the treatment group were offered roughly $1 USD per correct answer, while the control
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group received no payment. Students were informed right before the test started to prevent

them from changing their effort in test preparation. The experiments were conducted at

4 schools in Shanghai and 2 schools in the US. Due to logistical reasons, the authors

randomized treatment at the class level for some schools and individual level for others.

Various regression analyses were conducted to study the effect of treatment on test-

taking effort and test performance. Panel A in Table 3 examines whether monetary

incentive increased the probability that students attempt a given question – a proxy for

effort. It does so by estimating the following equation:

Yqi = βZi + γ′Wi + Uqi .

Here, the unit of analysis is a question and Yqi is an indicator for whether student i

attempted question q. Zi is the treatment indicator and Wi is a vector of control variables,

which include terms such as gender, ethnicity as well as question number fixed effects. We

focus on Column 1 in Panel A, which looks at US students’ responses to all 25 questions

in the test, and Column 4, which looks at Shanghai students’ responses to the same test.

The authors present their linear regression estimate of β, together with standard errors

clustered at the level of randomization. However, other levels of clustering are plausible:

• G: Group Level, that is, the level of randomization.

• S: School Level.

• SY: Experiments in Shanghai schools were conducted in 2016 and then 2018. We

could plausibly interact school and year of experiment.

• ST: Schools in the US separate students into tracks (Honors, Regular, Others).

We could plausibly interact school and track.
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We will refer to these levels of clustering by their initials hereafter. More information on

the sizes of clusters can be found in appendix B.5.

While the authors chose to cluster their standard errors by G, it seems reasonable to

be concerned about correlation across individuals within the same school or among those

who took the test in the same year. If these clusters were not independent, t-tests using

the presented standard errors could lead to the wrong conclusions.

Column 1 Column 4

β̂ 0.037 -0.030

G ST S G SY S

CCE S.E. 0.017 0.008 0.000 0.008 0.020 0.023
CCE p 0.029 0.000 0.000 0.000 0.131 0.188
Wild Bootstrap p 0.064 0.073 0.262 0.002 0.152 0.126
ART p - 0.063 0.500 - 0.125 0.250
IM2010 p - 0.926 0.974 - 0.748 0.816

Table 2.3. Tests for β = 0 under various levels of clustering. Based on the
regressions in Table 3 Panel A of Gneezy et al. (2019).

Table 2.3 presents the OLS estimates from Gneezy et al. (2019) as well as the p-values

that would be obtained from testing the null hypothesis that β = 0 using several methods.

Specifically, we consider the wild cluster bootstrap (Cameron et al. (2008a)), approximate

randomization tests (Canay et al. (2017a)) and the t-distribution based procedure of

Ibragimov and Müller (2010), denoted IM2010. We perform these tests using the various

plausible levels of clustering. For Column 1, we consider the increasingly coarse levels of

clustering G, ST and S. For the US, there are no schools sampled over multiple years,

so SY is the same as S. For Column 4, we consider the increasingly coarse levels of
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clustering G, SY and S. In Shanghai schools, students are not separated by track, so ST

is the same as S.

Remark 2.11. Gneezy et al. (2019) present clustered standard errors but do not

use them for inference. Instead, they conduct randomization inference by permuting

treatment status as in Young (2019). This procedure tests the null hypothesis that the

distribution of the Yqi’s are the same with and without treatment. This is a stronger null

hypothesis than the null of 0 average treatment effect (β = 0). We believe that the latter

hypothesis is typically the one of interest and test it in our Table 2.3.

Turning to the results, for column 1, we see that CCE SE’s decrease as we move to

increasingly coarse levels of clustering. Correspondingly, p-values from CCE-based t-tests

decrease as we coarsen the clusters. Such a pattern is typically interpreted as arising

from the downward bias of CCEs with few clusters (Angrist and Pischke (2008)), so that

these p-values would be considered unreliable. Faced with downward bias, practitioners

commonly turn to the wild cluster bootstrap. With this method, the p-values increase as

we coarsen the clusters. While clustering at G and ST may lead one to conclude that there

is strong evidence that β ̸= 0, the p-value at S suggests the absence of strong evidence.

The same phenomenon arises with approximate randomization tests: at ST there appears

to be strong evidence that β ̸= 0. At S, this is no longer true. With IM2010, the test does

not reject in either case. We note that ART and IM2010 cannot be applied with G as the

chosen level of clustering, since both methods require β to be estimated cluster-by-cluster.

The results for column 4 are qualitatively similar. At G, CCE-based t-test and the wild
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cluster bootstrap find strong evidence that β ̸= 0. This conclusion is overturned once we

cluster at either SY or S.

Column 1 Column 4

G → ST G → S ST → S G → SY G → S SY → S

WCR 0.891 1.000 1.000 0.062 0.056 1.000
IM 0.817 0.868 0.673 0.000 0.006 0.019
MNW 0.266 0.228 0.145 0.000 0.003 0.624

Table 2.4. Tests of levels of clustering applied to the regression in Table 3
Panel A of Gneezy et al. (2019).

To assess the validity of the above specifications, we apply our WCR test, the IM test

and the MNW tests. Table 2.4 presents the resulting p-values. The notation G → S

means that the null hypothesis involves sub-clusters G and coarse clusters S. For Column

1, clustering at G appears to be appropriate, as all 3 tests fail to reject the null hypotheses

G → ST and G → S. For Column 4, all 3 tests find strong evidence that sub-clusters

G are inappropriate. The WCR test has higher p-values than the IM and MNW tests,

likely due to its lower power. Nonetheless, they are close to 5%. The WCR and MNW

tests do not reject the null hypothesis for SY → S, whereas the IM test does. Given the

that there are at most 2 school×year per school, the IM test is likely to over-reject. As

such, we consider the conclusion of the WCR and MNW test to be more reliable in this

instance. Thus, results based on clustering at SY are plausible.

All in all, we see that settings with varying numbers of clusters and sub-clusters arise

in empirical work. Our test, designed for applications with few clusters and sub-clusters

is relevant and appears to work well in practical settings.
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2.5. Conclusion

We propose to test for the level of clustering in a regression by means of a modified

randomization test. We show that the test controls size even when the number of clusters

and sub-clusters are small, provided that the size of sub-clusters are relatively large. This

is a challenging situation not accommodated by existing tests. To ensure size control, our

procedure may be conservative when clusters are homogeneous. However, in settings with

heterogeneous clusters, it has power that is comparable with other tests. As such, our test

can be useful when the researcher faces an application with few sub-clusters, particularly

when these clusters are likely to be heterogeneous. Finally, we note that the test is easy

to implement and could serve as a helpful robustness check to researchers working with

clustered data. An R package is available from the author’s website.
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CHAPTER 3

On the Implementation of Approximate Randomization Tests

3.1. Introduction

This chapter provides a user’s guide to the general theory of approximate randomiza-

tion tests (ARTs) developed in Canay et al. (2017b) when specialized to linear regressions

with clustered data. Here, clustered data refers to data that may be grouped so that there

may be dependence within each cluster, but distinct clusters are approximately indepen-

dent in a way to be made precise below. Such data is remarkably common, including

not only data that are naturally grouped into clusters, such as villages or repeated ob-

servations over time on individual units, but also data with weak temporal dependence,

in which pseudo-clusters may be formed using blocks of consecutive observations. An

important feature of the methodology is that it applies to commonly encountered settings

in which the number of clusters is small – even as small as five. In this respect, the pro-

posed methodology contrasts sharply and meaningfully with many commonly employed

methods for inference in such settings. We briefly elaborate on this point in our discussion

of related literature below.

A principal goal of this paper is to make the general theory developed in Canay

et al. (2017b) more accessible by providing a step-by-step algorithmic description of how

to implement the test and construct confidence intervals for the quantity of interest in

these types of settings. In order to do so, we develop three novel results concerning the
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methodology in Section 3.3. Our first result shows that what we view as the most natural

implementation of the test, as described in Algorithm 3.1, is numerically equivalent to

an alternative implementation based on weighted scores (see Algorithm 3.3). Our second

result shows that when the parameter of interest is a scalar parameter, studentizing or

not the t-statistic entering the test does not affect the results of the test or the associated

confidence intervals. We therefore focus on the unstudentized statistic in Algorithm 3.1.

Finally, our third result shows that the confidence sets for scalar parameters that are

conceptually described by test inversion are indeed a closed interval of the real line. This

further leads to a simple closed form expression for the lower and upper bound of the

confidence intervals (see Algorithm 3.3). These results are new to this chapter and play

an important role in developing simple algorithms for the implementation of ARTs.

We additionally provide a discussion of the main requirements underlying the test

in Section 3.4. These requirements essentially demand that the quantity of interest is

suitably estimable cluster-by-cluster. As discussed further in Section 3.4, when this is not

satisfied, a researcher need not conclude that it is not possible to exploit the results in

Canay et al. (2017b). Instead, several remedies are possible, including clustering more

coarsely or changing the specification to ensure that this requirement is satisfied. We

provide two applications that further elucidate these points: one to a linear regression

with clustered data based on Meng et al. (2015) and a second to a linear regression with

temporally dependent data based on Munyo and Rossi (2015). The required software to

replicate these empirical exercises and to aid researchers wishing to employ the methods

elsewhere is provided in both R and Stata.1

1The Stata and R packages ARTs can be downloaded from http://sites.northwestern.
edu/iac879/software/.
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The methodology described in this chapter is part of a large and active literature on

inference with clustered data. Following Bertrand et al. (2004), researchers are acutely

aware of the need to adjust inferences appropriately to account for this sort of dependence.

Many of the most commonly employed methods for doing so, however, are inadequate for

the unusually common situation in which the number of clusters is small. Conventional

wisdom suggests that the number of clusters is small when it is less than forty. For ex-

ample, the method described in Liang and Zeger (1986b), which has enjoyed considerable

popularity due to its availability in software packages such as Stata, is widely acknowl-

edged to perform poorly when this rule-of-thumb is not satisfied. Similarly, the cluster

wild bootstrap described in Cameron et al. (2008b) requires either a sufficiently large

number of clusters or, as shown by Canay et al. (2021a), stringent homogeneity across

clusters, to perform reliably. As explained further in Section 3.4, the methods developed

in Canay et al. (2017b) and described in this chapter, require neither a large number of

clusters nor such homogeneity across clusters. We note that the methods by Ibragimov

and Müller (2010, 2016), which are closely related to the ones described here, also do not

require such restrictions, but are generally less powerful and permit testing a less rich

variety of hypotheses. See Canay et al. (2017b) for further discussion of these points as

well as Conley et al. (2018) for an insightful and thorough review of the related literature

more broadly.

The remainder of this chapter is organized as follows. In Section 3.2, we first for-

malize the setting and establish some notation. We then describe the implementation of

approximate randomization tests (ARTs) in an algorithmic fashion, including how to use

these tests to construct confidence intervals for the quantity of interest. In Section 3.3
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we present three results that play an important role in developing these algorithms. In

Section 3.4, we articulate the main requirements underlying the tests and discuss remedies

for cases where these requirements are not satisfied. Our two empirical applications are

contained in Section 3.5. Finally, we provide some concluding remarks in Section 3.6.

3.2. Review of ARTs in regression models

We start by reviewing the inference approach proposed by Canay et al. (2017b) in

the context of a linear regression model with clustered data. In order to do so, we index

clusters by j ∈ J ≡ {1, . . . , q} and units in the jth cluster by i ∈ In,j ≡ {1, . . . , nj}. We

also denote by n =
∑q

j=1 nj the total number of observations. The observed data consists

of an outcome of interest, Yi,j, and a vector of covariates, Zi,j ∈ Rdz , that are related

through the equation

(3.1) Yi,j = Z ′
i,jβ + ϵi,j ,

where β ∈ Rdz are unknown parameters and our requirements on ϵi,j are explained below

in Section 3.4. Our goal is to test

(3.2) H0 : c
′β = λ vs. H1 : c

′β ̸= λ ,

for given values of c ∈ Rdz and λ ∈ R, at level α ∈ (0, 1). An important special case of

this framework is a test of the null hypothesis that a particular component of β equals a

given value, i.e.,

H0 : βℓ = λ vs. H1 : βℓ ̸= λ ,
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for some ℓ ∈ {1, . . . , dz}, by simply setting c to be a standard unit vector with a one

in the ℓth component and zeros otherwise. More generally, the approach we describe

below extends immediately to the case where the hypothesis of interest involves multiple

elements of β, in which case the test becomes

(3.3) H0 : Rβ = Λ vs. H1 : Rβ ̸= Λ ,

for a given p× dz-dimensional matrix R and p-dimensional vector Λ, at level α ∈ (0, 1).

ARTs were developed more generally in Canay et al. (2017b) and admit a variety

of different applications that go beyond the linear model considered here. For example,

the method accommodates non-linear models, non-linear hypotheses, or even applications

that go beyond inference with a small number of clusters (e.g., Canay and Kamat (2018)

develop a variation that applies to inference in the regression discontinuity design). Here,

we abstract away from the generality of the method and focus on the steps needed to use

ARTs to test the null hypothesis in (3.2) in the context of the model in (3.1).

3.2.1. How to implement ARTs

The most straightforward way to test the hypotheses in (3.2) via ARTs is by following

the steps described in Algorithm 3.1 below.

Algorithm 3.1 (ARTs via within-cluster estimates). This implementation of ARTs

involves the following steps:

Step 1: For each cluster j ∈ J , run an ordinary least squares regression of Yi,j on

Zi,j using the nj observations in cluster j. Denote the corresponding estimators
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of β by

{β̂n,j : j ∈ J} .

Step 2: For each j ∈ J , define the random variables

(3.4) Sn,j ≡
√
nj(c

′β̂n,j − λ) ,

and then construct the test statistic

(3.5) Tn =
∣∣∣1
q

q∑
j=1

Sn,j

∣∣∣ .
Step 3: Let G = {1,−1}q, so g = (g1, . . . , gq) ∈ G is simply a q-dimensional vector

with elements gj being either 1 or −1. For any element g ∈ G, define

(3.6) Tn(g) =
∣∣∣1
q

q∑
j=1

gjSn,j

∣∣∣ .
Step 4: Compute the 1− α quantile of {Tn(g) : g ∈ G} as

(3.7) ĉn(1− α) ≡ inf

{
u ∈ R :

1

|G|
∑
g∈G

I{Tn(g) ≤ u} ≥ 1− α

}
.

Step 5: Compute the test as

(3.8) ϕn ≡ I{Tn > ĉn(1− α)} ,

where Tn is as in (3.5) and ĉn(1− α) is as in (3.7). The associated p-value is

(3.9) p̂n ≡ 1

|G|
∑
g∈G

I{Tn(g) ≥ Tn} ,
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where Tn(g) is as in (3.6).

Algorithm 3.1 involves five steps that are easy to implement from a computational

standpoint, but some of the steps deserve some clarification. Step 1 involves q within-

cluster regressions that lead to q estimates of β. This essentially demands that the param-

eter β is identified cluster-by-cluster, and may fail to hold if some of the variables in the

vector Zi,j are constant within cluster. We discuss possible remedies for this problem in

Section 3.4 and illustrate their use in one of the applications in Section 3.5. An important

feature of the method is that from Step 2 onwards, the original data is no longer needed

as all calculations only involve the q estimators of the parameter β obtained in Step 1.

Step 2 defines a type of unstudentized t-statistic that is appropriate for the null hy-

pothesis in (3.2). We discuss the connection to its studentized version in Section 3.3.2

below. If the null hypothesis of interest is the one in (3.3), then a Wald-type test statistic

could be used instead, i.e.,

(3.10) Twald
n ≡ q

(1
q

q∑
j=1

Sn,j

)′
Σ−1

S

(1
q

q∑
j=1

Sn,j

)
,

where

Sn,j ≡
√
n(Rβ̂n,j − Λ) and ΣS ≡ 1

q

q∑
j=1

Sn,jS
′
n,j .

Step 3 does not require one to recompute the estimates of β. It rather uses the q

estimates from Step 1 and applies sign changes to the q-dimensional vector {Sn,j : j ∈ J}.

Since the cardinality of G is |G| = 2q, it exceeds 2000 when q > 10 and in such cases

it may be convenient to use a stochastic approximation. This may be done while still

controlling the rejection probability under the null hypothesis (see Canay et al., 2017b,
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Remark 2.2). Formally, in this case we let

(3.11) Ĝ ≡ {g1, . . . , gB} ,

where g1 = ι ≡ (1, . . . , 1) is the identity vector and gb = (gb1, . . . , g
b
q), for b = 2, . . . , B,

are i.i.d. Rademacher random variables; i.e., each gbj equals ±1 with equal probability. To

retain validity of the test regardless of the value of B, we require that g1 = ι. We note,

however, that the power of the test may still depend on B. For this reason, we implement

Algorithm 3.1 with Ĝ replacing G everywhere and set B = 1000 (or any other reasonably

large number chosen by the analyst).

Step 4 requires computing the 1−α quantile of {Tn(g) : g ∈ G}, which can be typically

obtained by sorting the values of {Tn(g) : g ∈ G} and then taking the ⌈|G|(1 − α)⌉th

highest element in the ordered list. Thus, if we denote the ordered values of {Tn(g) : g ∈

G} by

T (1)
n ≤ T (2)

n ≤ · · · ≤ T (B)
n ,

then we may define ĉn(1 − α) in (3.7) as ĉn(1 − α) = T (⌈|G|(1−α)⌉). This representation

suggests that the test may have trivial power for very low values of q. For example, when

α = 10%, this problem arises if q ≤ 4. For q = 5 the test already has non-trivial power

and is only slightly conservative under the null. Similarly, when α = 5% the test has

non-trivial power for any q ≥ 6.

Step 5 is straightforward and it provides both the test ϕn and the p-value p̂n. Each of

these correspond to the non-randomized version of ARTs as opposed to their randomized

counterparts (see Remark 2.4 in Canay et al., 2017b) since practitioners often prefer tests
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that do not involve exogenous randomness. In any case, the differences between the

randomized and non-randomized versions of the test have been found to be minimal in

simulations (see, e.g., Canay et al., 2017b).

3.2.2. How to compute confidence intervals

We now discuss how to compute confidence intervals for the parameter c′β by developing

a novel algorithm that exploits the properties derived in Section 3.3.3. As before, a par-

ticularly important case is when c selects the ℓth component of β and then the confidence

set is simply a confidence interval for βℓ. Conceptually we can simply form the confidence

set by collecting all values of c′β that cannot be rejected by our test at level α. That is,

for the test ϕn in (3.8) we define

(3.12) Cn = {λ ∈ R : ϕn = 0 when testing H0 : c
′β = λ} .

In an asymptotic framework where n → ∞ while q remains fixed, Canay et al. (2017b)

show that ϕn is asymptotically level α under H0. It follows from that result that, by

construction, Cn covers c′β with probability at least equal to 1 − α asymptotically. In

Section 3.3.3 we show that Cn is indeed a closed interval in R and so it takes the form

(3.13) Cn = [λl, λu] ,

where λl is the smallest value of λ that cannot be rejected by ϕn and λu is the largest

value of λ that cannot be rejected by ϕn. The analysis in Section 3.3.3 also reveals that

λl and λu admit simple closed-form representations that we exploit to develop Algorithm

3.2 below.
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Algorithm 3.2 (ART-based confidence intervals for c′β). For {β̂n,j : j ∈ J} as

defined in Step 1 of Algorithm 3.1, the construction of the confidence interval involves the

following steps:

Step 1: For every g ∈ G, compute the following objects,

(3.14) a(g) ≡ 1

q

q∑
j=1

√
njgj , b(g) ≡ 1

q

q∑
j=1

√
njgjc

′β̂n,j , and λ0 ≡
b(ι)

a(ι)
,

where ι = (1, . . . , 1) ∈ G is the vector with all ones.

Step 2: For every g ∈ G define

(3.15) λl(g) ≡



b(ι)
a(ι)

|a(ι)|
|a(ι)|+|a(g)| +

b(g)
a(g)

|a(g)|
|a(ι)|+|a(g)| if b(g)

a(g)
≤ λ0 and |a(g)| ≠ 0

b(ι)
a(ι)

|a(ι)|
|a(ι)|−|a(g)| −

b(g)
a(g)

|a(g)|
|a(ι)|−|a(g)| if b(g)

a(g)
> λ0 and |a(g)| ≠ 0

b(ι)
a(ι)

− |b(g)|
a(ι)

if |a(g)| = 0

−∞ if g = ±ι

.

and

(3.16) λu(g) ≡



b(ι)
a(ι)

|a(ι)|
|a(ι)|+|a(g)| +

b(g)
a(g)

|a(g)|
|a(ι)|+|a(g)| if b(g)

a(g)
≥ λ0 and |a(g)| ≠ 0

b(ι)
a(ι)

|a(ι)|
|a(ι)|−|a(g)| −

b(g)
a(g)

|a(g)|
|a(ι)|−|a(g)| if b(g)

a(g)
< λ0 and |a(g)| ≠ 0

b(ι)
a(ι)

+ |b(g)|
a(ι)

if |a(g)| = 0

+∞ if g = ±ι

.
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Step 3: Compute the lower bound λl in the confidence interval (3.13) as the α

quantile of {λl(g) : g ∈ G}, i.e.,

(3.17) λl ≡ inf

{
u ∈ R :

1

|G|
∑
g∈G

I{λl(g) ≤ u} ≥ α

}
.

Compute the upper bound λu in the confidence interval (3.13) as the negative of

the α quantile of {−λu(g) : g ∈ G}, i.e.,

(3.18) λu ≡ − inf

{
u ∈ R :

1

|G|
∑
g∈G

I{−λu(g) ≤ u} ≥ α

}
.

Report the confidence interval Cn as in (3.13).

Algorithm 3.2 requires three steps that are straightforward to compute and that exploit

the results in Section 3.3.3. We refer the reader to that section for the details on why λl

and λu admit the expressions in (3.17) and (3.18), respectively.

3.3. Three results on implementation of ARTs

Before we review the main requirement underlying ARTs, we present three properties

related to the implementation of ARTs that we believe practitioners should be aware of

and that are novel to this chapter. The first property establishes a connection between the

implementation of ARTs as described in Algorithm 3.1 and an alternative implementation

based on weighted scores. The second property establishes the numerical equivalence of

ARTs for the null in (3.2) when the test statistics in (3.5) is replaced by its studentized

version. The third and final result shows that ARTs confidence set for c′β is indeed a
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closed interval in R and provides a representation for the upper and lower bounds of the

interval that lead to Algorithm 3.2.

3.3.1. Equivalence with weighted scores

It turns out that ARTs can be implemented by an algorithm that does not involve esti-

mating the parameter β within each cluster. This alternative algorithm involves replacing

Steps 1 and 2 in Algorithm 3.1 by the two alternative steps described in Algorithm 3.3

below, while keeping Steps 3 to 5 unaffected.

Algorithm 3.3 (ARTs via within-cluster weighted scores). This implementation of

ARTs involves the following steps:

Step 1′: Run a full-sample least squares regression of Yi,j on Zi,j subject to the

restriction imposed by the null hypothesis, i.e., c′β = λ. Denote by ϵ̂ri,j the

restricted residuals from this regression and by β̂r
n the restricted LS estimator of

β.

Step 2′: For each cluster j ∈ J , define

(3.19) Sn,j ≡ c′Ω̂−1
n,j

1
√
nj

∑
i∈In,j

Zi,j ϵ̂
r
i,j ,

where

(3.20) Ω̂n,j ≡
1

nj

∑
i∈In,j

Zi,jZ
′
i,j

is a dz × dz matrix that is assumed to be full rank with inverse Ω̂−1
n,j.

Steps 3-5: Same as in Algorithm 3.1.
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Note that Steps 3-5 remain unchanged given the alternative definition of Sn,j in Step

2′. When it comes to Steps 1 and 2, there are two differences worth discussing. The first

difference is that Step 1′ requires a single full-sample restricted least squares estimator

of β as opposed to the q cluster-by-cluster estimators in Step 1 of Algorithm 3.1. The

second difference is that Step 2′ is based on within-cluster weighted scores as opposed to

the centered within-cluster estimates of β in Step 2 of Algorithm 3.1. Interestingly, these

two implementations are numerically equivalent and so implementing ARTs via Algorithm

3.1 or Algorithm 3.3 leads to identical results. To see this formally, it is enough to show

that Sn,j as defined in (3.4) and (3.19) are the same using the following argument. For

each j ∈ J ,

Sn,j ≡ c′Ω̂−1
n,j

1
√
nj

∑
i∈In,j

Zi,j ϵ̂
r
i,j

= c′Ω̂−1
n,j

1
√
nj

∑
i∈In,j

Zi,j(Yi,j − Z ′
i,jβ̂

r
n)

= c′Ω̂−1
n,j

1
√
nj

∑
i∈In,j

Zi,jYi,j − c′Ω̂−1
n,j

1
√
nj

∑
i∈In,j

Zi,jZ
′
i,jβ̂

r
n

=
√
nj(c

′β̂n,j − c′β)−√
nj(c

′β̂r
n − c′β)

=
√
nj(c

′β̂n,j − λ) ,

where the fourth equality follows by adding and subtracting √
njc

′β and the last equality

holds because c′β̂r
n = c′β = λ under the null hypothesis in (3.2). It thus follows that Sn,j

in (3.4) and in (3.19) are identical and so ARTs can be alternatively implemented via

Algorithm 3.1 or 3.3. The following lemma summarizes our discussion above:



125

Lemma 3.1. Let Ω̂n,j in (3.20) be full rank for each j ∈ J . Denote by Cn a confidence

interval for c′β computed using Algorithm 3.1 and by C ′
n a confidence interval for c′β

computed using Algorithm 3.3. Then Cn = C ′
n.

3.3.2. Equivalence with studentized version of the t-statistic

The ART defined in (3.8) of Algorithm 3.1 is based on the unstudentized test statistic

Tn defined in (3.5). It may perhaps appear more desirable to instead consider the stu-

dentized version of this test statistic as studentization commonly improves performance

in a variety of other settings. Here, we prove that this is not the case for ARTs when

the null hypothesis is the one in (3.2) and that both versions of the test statistic lead to

numerically identical results.

To see this, start by defining the studentized version of the test statistic in (3.5) as

T s
n ≡ T s

n(ι), where for each g ∈ G,

(3.21) T s
n(g) ≡

√
q

∣∣∣1q ∑q
j=1 gjSn,j

∣∣∣
σ̂s(g)

and σ̂s(g) ≡

√√√√1

q

q∑
j=1

(
gjSn,j −

1

q

q∑
j=1

gjSn,j

)2
.

Then note that

σ̂2
s (g) =

1

q

q∑
j=1

g2jS
2
n,j −

(
1

q

q∑
j=1

gjSn,j

)2

= Vn − T 2
n(g) ,

where Vn ≡ 1
q

∑q
j=1 g

2
jS

2
n,j does not depend on g as g2j = 1 for all j ∈ J . It follows that

we can write the studentized test statistic as

T s
n(g) =

√
q

Tn(g)√
Vn − T 2

n(g)
.
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Since the function x 7→ x√
1−x2 is strictly increasing for x ∈ [0, 1), it follows that T s

n(g) is a

strictly monotonic transformation of Tn(g) for each g ∈ G. We conclude that I{Tn(g) ≥

Tn(ι)} = I{T s
n(g) ≥ T s

n(ι)} for all g ∈ G and so the ART based on Tn(g) and T s
n(g) are

identical. This discussion is summarized in the following lemma:

Lemma 3.2. Let Ω̂n,j in (3.20) be full rank for each j ∈ J . Denote by Cn a confi-

dence interval for c′β computed using Algorithm 3.1 and by C ′
n a confidence interval for

c′β computed using Algorithm 3.1 with T s
n in place of Tn and T s

n(g) in place of Tn(g).

Here, T s
n(g) is given by (3.21) and T s

n is understood to be T s
n(ι), where ι is the identity

transformation. Then, Cn = C ′
n.

3.3.3. Convexity of the confidence intervals

The ART-based confidence intervals for c′β defined in (3.12) can be computed by test

inversion. From a computational standpoint, however, computing confidence sets by test

inversion may be cumbersome and the resulting set may not even be an interval. That is,

it may not be closed and convex. In this section we prove that this is not a concern for

ART-based confidence intervals for c′β and so such confidence intervals could be easily

computed by a standard bisection algorithm. In fact, our results go even further. We

derive closed form expressions for the lower and upper bounds of the confidence interval

that imply that computing ART-based confidence intervals for c′β is straightforward from

a computational standpoint. In order to derive these results, we slightly change our

notation to make explicit the dependence on λ of each of the elements entering the test
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in (3.8). To this end, let

Tn(g, λ) ≡
∣∣∣1
q

q∑
j=1

gjSn,j(λ)
∣∣∣ where Sn,j(λ) =

√
nj(c

′β̂n,j − λ) ,

and note that Tn = Tn(ι, λ). Using this notation, we can re-write the confidence interval

in (3.12) as

Cn =

{
λ ∈ R :

1

|G|
∑
g∈G

I {Tn(g, λ) ≥ Tn(ι, λ)} ≥ α

}
,

which is simply the values of λ for which the p-value of the test, as defined in (3.9), is not

below α. In order to show that this confidence set is a closed interval, we claim that the

p-value

(3.22) p̂n(λ) =
1

|G|
∑
g∈G

I {Tn(g, λ) ≥ Tn(ι, λ)}

is equal to 1 for λ0 ≡ b(ι)/a(ι), monotonically increasing for any λ < λ0, and monotoni-

cally decreasing for any λ > λ0. The next lemma formalizes this result.

Lemma 3.3. Let Ω̂n,j in (3.20) be full rank for each j ∈ J . Let a(g), b(g), and λ0 be

defined as in (3.14). The p-value in (3.22) equals

(3.23) p̂n(λ) =



1
|G|
∑

g∈G I {λ ≥ λl(g)} for λ < λ0

1 for λ = λ0

1
|G|
∑

g∈G I {λ ≤ λu(g)} for λ > λ0

,

where {λu(g) : g ∈ G} and {λl(g) : g ∈ G} are defined in Algorithm 3.2.
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Proof. It is useful to re-write Tn(g, λ) in terms of a(g) and b(g). To this end, note

that

Tn(g, λ) ≡
∣∣∣1
q

q∑
j=1

gjSn,j(λ)
∣∣∣ = ∣∣∣1

q

q∑
j=1

gj
√
njc

′β̂n,j − λ
1

q

q∑
j=1

gj
√
nj

∣∣∣
= |b(g)− λa(g)| .(3.24)

Given g ∈ G and a(g) ̸= 0, Tn(g, λ) is a “V-shaped” function of λ taking the value 0 at

b(g)
a(g)

and with slope −|a(g)| for all λ < b(g)
a(g)

and slope |a(g)| ≤ a(ι) for all λ > b(g)
a(g)

. Figure

3.1 illustrates this for three values of g.

First, note that I {Tn(g, λ0) ≥ Tn(ι, λ0)} = I{Tn(g, λ0) ≥ 0} = 1 for all g ∈ G and so

it follows immediately that p̂n(λ0) = 1.

Second, restrict attention to the set Λ+ ≡ {λ ∈ R : λ > λ0} where Tn(ι, λ) is

linearly increasing. In order to prove that p̂n(λ) takes the form in (3.23) we prove that

I {Tn(g, λ) ≥ Tn(ι, λ)} = I {λ ≤ λu(g)} for each g ∈ G by dividing the argument into

three cases.

Case 1: Consider g ∈ G such that a(g) ̸= 0 and |a(g)| ̸= a(ι). Since |a(g)| < a(ι), it

follows that Tn(g, λ) and Tn(ι, λ) intersect only once on Λ+ and this holds regardless of

whether b(g)
a(g)

< λ0 or b(g)
a(g)

≥ λ0 (see Figure 3.1 for a graphical illustration of each of these

cases). Denote the intersection point by λu(g) and note that Tn(g, λ) ≥ Tn(ι, λ) for all

λ0 < λ ≤ λu(g) and Tn(g, λ) < Tn(ι, λ) for all λ > λu(g). Conclude that on Λ+,

(3.25) I{Tn(g, λ) ≥ Tn(ι, λ)} = I{λ ≤ λu(g)} .

Simple algebra shows that the intersection point λu(g) takes the form in (3.16).
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λ
λ0

a(ι)

b(g1)
a(g1)

|a(g1)|

b(g2)
a(g2)

−|a(g2)|

λu(g1) λu(g2)

TU
n (g1, λ)

TU
n (g2, λ)

TU
n (ι, λ)

λl(g2)λl(g1)

Figure 3.1. Tn(g, λ) as functions of λ for g ∈ {ι, g1, g2}.

Case 2: Consider g ∈ G such that a(g) = 0. Note that b(ι)− λa(ι) < 0 for λ ∈ Λ+. It

thus follows that for λ ∈ Λ+,

I{Tn(g, λ) ≥ Tn(ι, λ)} = I{|b(g)| ≥ |b(ι)− λa(ι)|} = I

{
λ ≤ b(ι)

a(ι)
+

|b(g)|
a(ι)

}
,

and so (3.25) holds in this case with λu(g) =
b(ι)
a(ι)

+ |b(g)|
a(ι)

, as defined in (3.16).

Case 3: Consider g ∈ G such that |a(g)| = a(ι) and so g = ±ι. If g = ι, I{Tn(g, λ) ≥

Tn(ι, λ)} = 1 for all λ ∈ R. We conclude that (3.25) holds with λu(g) = ∞. If g = −ι,

then we have that a(−ι) = −a(ι) and b(−ι) = −b(ι) so that b(−ι)
a(−ι)

= λ0 and again

I {Tn(−ι, λ) ≥ Tn(ι, λ)} = 1 for all λ ∈ R. We conclude that (3.25) holds with λu(g) = ∞,

as defined in (3.16). This completes the proof of (3.23) for the case λ ∈ Λ+.

Finally, the construction for λ ∈ Λ− ≡ {λ ∈ R : λ < λ0} parallels the one for λ ∈ Λ+

so we omit the arguments here. Putting all the cases together, (3.23) follows and this

completes the proof. □

Figure 3.2 illustrates the p-value in (3.23) as a function of λ for the groups in Figure

3.1. Since p̂n(λ) is right continuous and increasing for λ < λ0, we can define λl as the
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smallest value of λ for which p̂n(λ) ≥ α. Such value exists and is unique. Similar, since

p̂n(λ) is left continuous and decreasing for λ > λ0, we can define λu as the largest value

of λ for which p̂n(λ) ≥ α. Such value exists and is again unique. This argument leads to

the representation of Cn in (3.13), showing that ART-based confidence intervals for c′β

are indeed intervals in R. Furthermore, note that (3.23) implies that the smallest value

of λ for which p̂n(λ) ≥ α can be defined as

inf

{
λ ∈ R :

1

|G|
∑
g∈G

I {λ ≥ λl(g)} ≥ α

}
,

which is just the definition of the α quantile of λl(g), as defined in Algorithm 3.2. A

similar result holds for λu and so Cn can be computed in closed form by Algorithm 3.2.

λ
λ0 λu(g1) λu(g2)λl(g2)λl(g1)

p̂n(λ)

1

Figure 3.2. p̂n(λ) as a function of λ.

3.4. What we need for ARTs to work

The main requirement underlying ARTs is Assumption 3.1 in Canay et al. (2017b).

This assumption guarantees that the test delivers rejection probabilities under the null
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hypothesis that are close to the nominal level α in an asymptotic framework where n → ∞

and q remains fixed. In the context of the linear model in (3.1), this translates into the

following two conditions summarized in Assumption 3.1 below.

Assumption 3.1. Let {β̂n,j : j ∈ J} be the cluster-by-cluster estimators of β defined

in Algorithm 3.1. Assume that:

(a) {β̂n,j : j ∈ J} jointly converge in distribution at some (possibly unknown) rate; i.e.,

(3.26)


an,1(β̂n,1 − β)

...

an,q(β̂n,q − β)

 d→


S1

...

Sq


for a sequences an,j → ∞ and random variables (S1, . . . , Sq)

′.

(b) The limiting random variables (S1, . . . , Sq)
′ are invariant to sign changes, i.e.,

(3.27) (g1S1, . . . , gqSq)
d
= (S1, . . . , Sq) ,

for any g in G, where G is defined in Step 4 of Algorithm 3.1.

Condition (3.26) holds, for example, when Zi,j and ϵi,j are uncorrelated and the analyst

assumes some form of weak dependence within clusters that permits the application of an

appropriate central limit theorem. In such a case, (3.26) typically holds with an,j =
√
nj

and each Sj being a mean-zero normal random variable. In fact, under the commonly

used assumption of independent clusters, it also follows that Sj ⊥⊥ Sj′ for any j ̸= j′. In

this case the normally distributed random variables may not be identically distributed but

are indeed independent. Condition (3.27), in turn, requires each Sj to be symmetrically
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distributed around zero and independent of each other. This is immediately satisfied when

each Sj is a mean-zero normal random variable and clusters are independent. Importantly,

these assumptions allow for the normally distributed random variables to have different

variances across clusters; a type of heterogeneity not allowed by the cluster wild bootstrap

approach popularized by Cameron et al. (2008b) and later studied formally by Canay et al.

(2021a).

Remark 3.1. The asymptotic normality in (3.26) arises frequently in applications,

but is not necessary for the validity of ARTs. All that is required is that the estimators

{an,j(β̂n,j − β) : j ∈ J} have a limiting distribution that is the product of q distributions

that are symmetric about zero. This may even hold in cases where the estimators have

infinite variances or are inconsistent. See Canay et al. (2017b, Remark 4.5) for additional

discussion on this point. □

Remark 3.2. It is worthwhile to contrast the requirements of Assumption 3.1 with

those of “classical” methods, such as those described in Liang and Zeger (1986b). These

latter methods permit arbitrary dependence within each cluster, but require the size of

the clusters to be small and the number of clusters to be large. As described above,

Assumption 3.1(a), on the other hand, permits the number of clusters to be small, but

requires the size of the clusters to be large and weak dependence within each cluster.

We emphasize, however, that these restrictions are commonly employed in establishing

the validity of other methods in settings with a small number of clusters, including, for

example, the t-test approach by Ibragimov and Müller (2010) and the wild bootstrap

Canay et al. (2021a). □
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Remark 3.3. We focus our exposition on the case where Zi,j is exogenous but we

emphasize that the conditions in (3.26) and (3.27) typically hold in instrumental vari-

able (IV) models. Accommodating IV to ARTs then only requires modifying Step 1 in

Algorithm 3.1 so that the least squares regression is replaced with the appropriate IV

regression. Steps 2-6 remain unaffected. □

An implicit requirement behind ARTs that deserves further comments lies in Step 1

of Algorithm 3.1, which requires that the analyst runs cluster-by-cluster regressions. This

step implicitly assumes that the parameter β is identified within each cluster. In practice,

this means that the matrix Ω̂n,j in (3.20) must be invertible for each j ∈ J and hence

the same requirement applies to Algorithm 3.3. This restriction may be substantially

important in some applications and so here we discuss common ways in which the problem

may manifest and two alternative remedies.

One case in which running least squares cluster-by-cluster is not feasible is when the

coefficient of interest is associated with a variable that only varies across clusters. For

example, consider the model in (3.1) and partition Zi,j into a constant term, a scalar

variable that only varies across clusters, Z(1)
j , and another variable that varies across and

within clusters, Z(2)
i,j . That is,

(3.28) Yi,j = β0 + Z
(1)
j β1 + Z

(2)
i,j β2 + ϵi,j ,

where the analysts’ interest lies in the coefficient β1, i.e., c′β = β1. Clearly, the regression

in Step 1 of Algorithm 3.1 would not separately identify β0 and β1 as Z
(1)
j is perfectly

colinear with the constant term. The matrix Ω̂n,j in (3.20) is simply singular. This
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situation arises, for example, in the empirical application considered by Canay et al.

(2017d) where j ∈ J indexes schools and the variable of interest is a treatment indicator

at the school level. A natural remedy in a situation like this is clustering more coarsely

(e.g., by combining clusters) to obtain variation within the re-defined clusters. This is

possible for ARTs since the validity of the method does not rely on having a large number

of clusters and thus it can afford to work with coarser clustering. In fact, in certain

settings combining clusters may be quite natural. For example, Canay et al. (2017d) re-

defined clusters as “pairs” of schools (as opposed to just schools) given that the treatment

assignment mechanism of the experiment was a matched pairs design and so the pairs

used at the randomization stage represented natural groupings. In other settings where it

is less clear how to group clusters, any grouping that satisfies the requisite identification

condition leads to a valid test, but it may be further desirable to combine such tests to

limit concerns about “data snooping” across groupings. To this end, results in DiCiccio

et al. (2020) on combining tests may be relevant.

Remark 3.4. A quick inspection of (3.28) may lead the analyst to believe there is a

workaround that does not involve combining clusters if one instead uses some estimator

of β0 from a full sample regression. For example, the full sample least squares estimator

β̂n,0 from the regression in (3.1). Then, assuming for simplicity that Z(1)
j ̸= 0 for all j ∈ J ,

one may consider modifying Step 1 in Algorithm 3.1 by running a regression of Yi,j on an

intercept and Z
(2)
i,j (not including Z

(1)
j ) and then redefining {β̂n,j : j ∈ J} as the difference

between the within cluster intercept estimates, β̂j,0 and the full sample estimate β̂n,0, i.e.,

β̂n,j = β̂j,0 − β̂n,0. Such strategies unfortunately introduce dependence between the q
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estimators of β (as they all depend on β̂n,0) and thus end up violating one of the two main

conditions needed for ARTs to be asymptotically valid; mainly condition (3.27). □

Another case where the lack of identification within cluster may manifest is when the

variable of interest actually varies within clusters but the model specification involves other

variables that are collinear with some other variable (including the variable of interest

or the constant term) within clusters. For example, consider the model in (3.1) where

instead of individuals indexed by i ∈ In,j, units within cluster are indexed over time t ∈ T .

Partition Zj,t into the variable of interest, Z(1)
j,t , and time fixed effects δt. That is,

(3.29) Yj,t = Z
(1)
j,t β1 +

∑
t̃∈T

I{t̃ = t}δt̃ + ϵj,t .

It then follows that, within each cluster j ∈ J , the time fixed effect δt absorbs all the

variation in Z
(1)
j,t and so β1 is not identified. In cases like this the analyst could again

combine clusters to obtain variation within the re-defined clusters. An alternative remedy

is to change the specification by, for example, replacing the time fixed effect with a cluster-

specific time trend. Such specification is more restrictive than the time fixed effect in the

sense that it imposes a linear trend but, at the same time, is more general as it allows

for heterogeneity across clusters in the linear trend. We illustrate this approach in the

application we consider in Section 3.5.1.

The need to identify β within each cluster is in our view the main limitation of ARTs,

but a limitation that needs to be dealt with in certain settings. One may then wonder why

not simply use some other inference method that is valid when the number of clusters

is small and that does not rely on estimating β cluster-by-cluster. Perhaps the most
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popular approach in that category is the cluster wild bootstrap popularized by Cameron

et al. (2008b) and recently studied formally by Canay et al. (2021a). While not having

to estimate β within each cluster represents an advantage over ARTs, this additional

flexibility comes at a cost in terms of the degree of heterogeneity that the model can

deal with. In particular, the results in Canay et al. (2021a) show that the cluster wild

bootstrap is expected to work well in settings with a small number of clusters as long

as the clusters are “homogeneous,” in a sense made precise in Canay et al. (2021a).

Intuitively, it is required that the variance covariance matrix Ω̂n,j defined in (3.20) is the

same across clusters (up to scalar multiplication). Such stringent homogeneity condition

is not required for ARTs to work well, as the method allows clusters to be arbitrarily

heterogeneous as long as Ω̂n,j is invertible for j ∈ J .

Remark 3.5. For ease of exposition, we have written the requirement in (3.26) in

terms of the differences β̂n,j − β, but it is possible to replace it with the differences

c′β̂n,j − c′β (or Rβ̂n,j −Rβ, depending on the null hypotheses of interest). In most cases,

re-writing the condition in this way is not useful, but it is in cases where c′β is identified

within each cluster while β is not. For example, consider the model in (3.28) when

the coefficient of interest is β2 as opposed to β1, i.e, c′β = β2. In that case the entire

term β0 + Z
(1)
j β1 may be absorbed into a cluster-specific intercept without affecting the

identification and estimation of c′β = β2 within each cluster. □

3.5. Empirical applications

In this section we apply ARTs as described in Algorithm 3.1 and ART-based confidence

intervals as described in Algorithm 3.2 in the context of two distinct empirical applications.
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The R and Stata packages and codes required to replicate the results in this section are

available as part of the online supplemental material.

3.5.1. Meng, Qian and Yared (2015)

Meng et al. (2015, MQY) argue that China’s Great Famine, from 1959 to 1961, was the

result of an inflexible food procurement policy by the central government. To make this

point, they show that food production and mortality become positively correlated during

the time of famine, when this coefficient is otherwise negative or not significantly different

from 0 in normal times.

MQY consider the following regression,

Yj,t+1 = Z
(1)
j,t β1 + Z

(2)
j,t β2 + δt + ϵj,t

where j indexes provinces (ranging from 1 to 19) and t indexes years (ranging from 1953

to 1982). Here,

Yj,t+1 = log(number of deaths in province j during year t+ 1)

Z
(1)
j,t = log(predicted grain production in province j during year t)

× I{t is a famine year}

Z
(2)
j,t = log(predicted grain production in province j during year t)

δt = time fixed effects .
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In this application the level of clustering is a province, and so in order to apply ARTs

as described in Section 3.2.1, one needs to estimate β = (β1, β2)
′ and δt province-by-

province. This illustrates one of the situations where including time fixed effects province-

by-province is infeasible for the implementation of ARTs, given that the only source of

remaining variation within a province is indeed time. The second identification problem

described in Section 3.4 then arises. As we discussed in that section, one way to deal with

this issue consists of replacing the time fixed effects with a cluster-specific time trend, i.e.,

in Step 1 of Algorithm 3.1 estimate

(3.30) Yj,t+1 = Z
(1)
j,t β1 + Z

(2)
j,t β2 + γjt+ ϵj,t .

We will refer to this as Analysis #1. In addition, we also consider the following alternative

specifications studied by MQY:

• Analysis #2: Repeating Analysis #1 using only data between 1953 and 1965.

• Analysis #3: Repeating Analysis #1 using four additional autonomous provinces.

• Analysis #4: Repeating Analysis #2 using four additional autonomous provinces.

• Analysis #5: Repeating Analysis #1 using actual rather than constructed grain

production.

• Analysis #6: Repeating Analysis #2 using actual rather than constructed grain

production.

As with Analysis #1, the above analyses differ from their MQY counterparts only in that

a linear time trend γjt replaces time fixed effects δt. Table 3.1 summarizes the number of

clusters and the number of observations for each of these analyses. We caution, however,

that in this application, in addition to the number of clusters being small, the number of
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observations within each cluster may also be small. See Remark 3.2 for further discussion

in relation to Assumption 3.1(a).

Analysis # of Clusters Min. Size Med. Size Max. Size Mean

#1, #5 19 29 30 30 29.95
#2, #6 19 12 13 13 12.95

#3 23 29 30 30 29.96
#4 23 12 13 13 12.96

Table 3.1. Cluster Information. ‘Min. Size’, ‘Med. Size’, ‘Max. Size’
denote the minimum, the median, and the maximum size of clusters.

Meng et al. (2015) consider the following two null hypotheses of interest,

(3.31) H
(1)
0 : β1 = 0 and H

(2)
0 : β1 + β2 = 0 .

In Table 3.2 we replicate the main table in Meng et al. (2015) using cluster robust standard

errors (CCE) and also include the results associated with ARTs for both H
(1)
0 and H

(2)
0 in

(3.31). For H
(1)
0 we report p-values and 95% confidence intervals, while for H

(2)
0 we just

report p-values following MQY. The authors note in footnote 33 that using the cluster

wild bootstrap led to similar results as those presented in their main table so we do not

include cluster wild bootstrap results here either.

We comment on the following main features of Table 3.2:

(1) For the null hypothesis H(1)
0 associated with the parameter β1, the ART p-values

are of comparable magnitude to traditional CCE p-values. Similarly, ART-based

confidence intervals are of roughly the same length as those obtained based on

CCE although the ART-based confidence intervals do not contain the LS esti-

mates. This is because ART-based confidence intervals are centered around the
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#1 #2 #3 #4 #5 #6

LS Estimate: β1 0.063 0.057 0.071 0.067 0.064 0.058

CCE: Province
se 0.007 0.007 0.007 0.008 0.007 0.007

p-value 0.000 0.000 0.000 0.000 0.000 0.000
95% CI [0.050, 0.077] [0.043, 0.071] [0.057, 0.086] [0.051, 0.083] [0.051, 0.078] [0.044, 0.071]

ART
p-value 0.000 0.002 0.000 0.000 0.000 0.000
95% CI [0.032, 0.055] [0.018, 0.047] [0.038, 0.066] [0.028, 0.067] [0.032, 0.058] [0.029, 0.050]

β1 + β2 = 0
CCE p-value 0.050 0.009 0.059 0.005 0.266 0.363
ART p-value 0.098 0.571 0.096 0.487 0.080 0.001

Observations 569 246 689 298 569 246
Short Sample No Yes No Yes No Yes
Auto. Region No No Yes Yes No No

Pred. Grain Prod. Yes Yes Yes Yes No No

Table 3.2. Results for Analyses #1-6, comparable to those in Table 2 of
Meng, Qian and Yared (2015). ‘LS Estimate’ denotes the full sample OLS
estimate for β1. CCE refers to cluster-robust standard errors. ART p-values
are obtained using Algorithm 3.1. ART-based 95% confidence intervals are
obtained using Algorithm 3.2.

mean of the province-by-province estimates, which may not necessarily be equal

to the full sample LS estimate of β1.

(2) For the null hypothesis H
(2)
0 associated with the parameter β1 + β2, the ART p-

value is sometimes higher and sometimes lower than the CCE p-value depending

on the specification. Given the relatively small number of clusters in this ap-

plication, the ART p-values are likely to be more reliable than those associated

with CCE as CCE is known to perform poorly when the number of clusters is

not sufficiently large.
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3.5.2. Munyo and Rossi (2015)

Munyo and Rossi (2015) study criminal recidivism of former prisoners by looking at the

relationship between the number of inmates released from incarceration on a given day

and the number of offenses committed on the same day. They claim that the liquidity

constraints that inmates face on the day of release increase the likelihood of recidivism

on the same day. Using data of 2631 days between January 1st 2004 and March 15 2011

collected from the criminal incidents reports in Montevideo in Uruguay, they estimate the

following linear model by least squares

Yt = Z ′
tβ + ϵt

where t indexes days and

Yt = the total number of offenses on day t

Zt = the total number of inmates released, temperature, rainfall, hours of sunshine

on day t, a dummy for holidays, a dummy for December 31st and a yearly trend.

We refer to this as Analysis #1. Munyo and Rossi (2015) additionally consider the

following four analyses:

• Analysis #2: Zt includes a daily trend in place of a yearly trend.

• Analysis #3: Zt includes a monthly trend in place of a yearly trend.

• Analysis #4: Zt includes an intra-month daily trend, month- and year- level fixed

effects and their interactions in place of a yearly trend.
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• Analysis #5: Zt includes month- and year- level fixed effects and their interactions

in place of a yearly trend.

Analysis #5 is their preferred specification. Munyo and Rossi (2015) report the results

of these analyses in Table 2 in their paper. They report least squares estimates of β

with Newey-West heteroskedasticity-autocorrelation-consistent (HAC) standard errors. In

addition, they report ART p-values as described in Algorithm 3.1 for the null hypothesis

that H0 : c
′β = 0 as in (3.2), where c selects the coefficient on the total number of inmates

released on day t.

In this application the level of clustering is not naturally determined by the data,

but pseudo-clusters may be formed using blocks of consecutive observations under the

assumption of weak temporal dependence. In order to apply ARTs as described in Algo-

rithm 3.1 we then form q pseudo-clusters by dividing the data into q consecutive blocks

of size bn = ⌊n/q⌋ where n = 2631 is the number of total observations. More concretely,

we define the jth pseudo-cluster as

X
(n)
j = {(Yt, Z

′
t)

′ : t = (j − 1)bn + 1, · · · , jbn} where j = 1, · · · , q − 1 ,

and let the last qth pseudo-cluster contain all the remaining n − bn(q − 1) observations.

Note that in this application the number of pseudo-clusters q is a tuning parameter that

the analyst must specify. Munyo and Rossi (2015) set q = 10. We repeat their analyses

with alternative values of q and investigate how sensitive the results are to this choice.

The relevant cluster information is given in Table 3.3.

Table 3.4 shows LS estimates of β, p-values for the hypothesis in (3.2), and 95%

confidence intervals for each analysis. Following Munyo and Rossi (2015), we report
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# of Clusters (q) Cluster Size
8 328
10 263
16 164

Table 3.3. Pseudo-cluster size for different values of q in Munyo and Rossi
(2015).

Specification #1 #2 #3 #4 #5

LS Estimate 0.225 0.260 0.259 0.225 0.234

HAC
se 0.124 0.123 0.123 0.096 0.096

p-value 0.068 0.034 0.034 0.019 0.015
95% CI [-0.017, 0.468] [0.02, 0.5] [0.019, 0.5] [0.038, 0.413] [0.046, 0.421]

ART: q=8
p-value 0.008 0.023 0.023 0.102 0.102
95% CI [0.124, 0.429] [0.035, 0.391] [0.035, 0.391] [-0.07, 0.397] [-0.067, 0.418]

ART: q=10
p-value 0.002 0.014 0.014 0.063 0.053
95% CI [0.141, 0.603] [0.068, 0.446] [0.068, 0.458] [-0.023, 0.431] [-0.003, 0.452]

ART: q=16
p-value 0.002 0.006 0.006 0.027 0.010
95% CI [0.131, 0.444] [0.097, 0.369] [0.087, 0.371] [0.02, 0.324] [0.056, 0.367]

Observations 2631 2631 2631 2631 2631
Time Trend Year Day Month Intra-month Day None
Time Fixed Effect No No No Yes Yes
Controls No No No No No

Table 3.4. Results for Analyses #1-5, comparable to those in Table 2 of
Munyo and Rossi (2015). ‘LS Estimate’ denotes the full sample LS estimate
of β. HAC refers to the heteroskedasticity and autocorrelation consistent
standard error. ART p-values are obtained using Algorithm 3.1. ART-
based 95% confidence intervals are obtained using Algorithm 3.2.

results based on HAC standard errors. The table also shows ART p-values as described

in Algorithm 3.1 and ART-based 95% confidence intervals as described in Algorithm 3.2

for q = 8, q = 10, and q = 16.

We summarize the main findings of the results in Table 3.4 as follows:
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(1) The choice of q is important for the results of ARTs but currently there is no

theory developed to choose this tuning parameter according to some data de-

pendent criteria. The smaller q is, the more observations are available within

each cluster. Having more observations per cluster is important for one of the

requirements behind ARTs, mainly (3.26). A small value of q, however, tends to

affect the power of ARTs despite not really affecting the control of the rejection

probability under the null hypothesis. This feature can be seen in Table 3.4,

where ARTs p-values are decreasing in q across different specifications. In this

application, where there are still over a hundred observations when q = 16, a

larger value of q like q = 10 or q = 16 may be preferable to smaller values, like

q = 8, based on power considerations. Note, however, that except in Analyses

#4–5, where the choice of q determines whether the null hypothesis is rejected

at a given significance level, the results for Analyses #1–3 are in all agreement

at a 5% level.

(2) Overall, the test results based on standard t-test with HAC standard errors are

consistent to those of ARTs when q = 16. Both methods reject the null hypothesis

H0 : c′β = 0 at a 10% nominal level across different specifications. The results

support the authors’ argument that the release of inmates from incarceration

increase the chance of re-offenses on the day of release.

3.5.3. Computational gains of the new algorithm

Tables 3.5 and 3.6 report four alternative ways to compute ART-based confidence intervals

in the two empirical applications we consider in this chapter; Meng et al. (2015) and
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Munyo and Rossi (2015). The first alternative is to compute the confidence intervals by a

simple grid search algorithm. The second alternative involves a bi-section algorithm. We

implement both of these methods using a studentized and an unstudentized test statistic

to illustrate the result in Section 3.3.2. The last alternative is to simply use Algorithm 3.2,

as reported in Sections 3.5.1 and 3.5.2. In each case, we also report computational times

to illustrate the computational advantages of the algorithm we propose in this chapter.

The R and Stata codes required to replicate the results in this section are available as

part of the online supplemental material.

Starting from Table 3.5, we see that grid search take a significant amount of time to

compute. Our convexity result (Lemma 3.3) facilitates the use of the bisection method,

cutting implementation time by a factor of over 50. Moving from the bisection method to

Algorithm 3.2 further leads to a speed up of at least 2 times. A similar pattern emerges in

Table 3.6. Furthermore, comparing specification with q = 8 that with q = 16, the speed

advantage of our method becomes far starker. For q = 16, grid search takes almost 100

times as long as the bisection method. The bisection method, meanwhile, takes close to

10 times as long as Algorithm 3.2.

3.6. Concluding remarks

The goal of this chapter is to make the general theory developed in Canay et al. (2017b)

more accessible by providing a step-by-step algorithmic description of how to implement

the test and construct confidence intervals in linear regression models with clustered data,

as well as clarifying the main requirements and limitations of the approach. The main two

takeaways are the following. First, ARTs-based confidence intervals for scalar parameters
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Grid Search Bisection
ARTStud. Unstud. Stud. Unstud.

#1
[0.032, 0.055] [0.032, 0.055] [0.032, 0.055] [0.032, 0.055] [0.032, 0.055]

19.65 6.66 0.31 0.11 0.06

#2
[0.018, 0.047] [0.018, 0.047] [0.018, 0.047] [0.018, 0.047] [0.018, 0.047]

46.63 16.43 0.35 0.12 0.02

#3
[0.038, 0.066] [0.038, 0.066] [0.038, 0.066] [0.038, 0.066] [0.038, 0.066]

24.50 8.67 0.30 0.09 0.03

#4
[0.028, 0.067] [0.028, 0.067] [0.028, 0.067] [0.028, 0.067] [0.028, 0.067]

62.52 21.56 0.34 0.11 0.02

#5
[0.032, 0.058] [0.032, 0.058] [0.032, 0.058] [0.032, 0.058] [0.032, 0.058]

19.47 6.76 0.27 0.11 0.01

#6
[0.029, 0.050] [0.029, 0.050] [0.029, 0.050] [0.029, 0.050] [0.029, 0.050]

23.32 8.26 0.30 0.11 0.01

Table 3.5. Computational gains of Algorithm 3.2 relative to grid search and
bisection algorithms in the applications of Section 3.5.1. The top row for
each specification is the confidence interval. The bottom row is time in
seconds. For the bisection search, our tolerance is set to the absolute value
of the LS estimate, divided by 1000. For comparability, we set the step-size
of the grid search to the same value.

in linear regression models can be characterized in closed form and thus are straightforward

to implement in practice. Algorithms 3.1 and 3.2 provide a clear explanation of how to

apply ARTs in linear models, and the companion Stata and R packages available as part

of the supplemental material are intended to facilitate doing so. Second, our discussion

on the main requirements behind ARTs hopefully show that understanding the trade-

offs between ARTs and other popular alternatives for inference with a small number

of clusters, like the cluster wild bootstrap, is fundamental for practitioners to choose a

method that aligns well with the features of their application. In particular, while ARTs

essentially demand that the parameter of interest is suitably estimable cluster-by-cluster

without imposing restrictions on the degree of heterogeneity across clusters, the cluster
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Grid Search Bisection
ARTStud. Unstud. Stud. Unstud.

q = 8

#1
[0.124, 0.429] [0.124, 0.429] [0.124, 0.429] [0.124, 0.429] [0.124, 0.429]

2.62 0.92 0.11 0.02 0.06

#2
[0.035, 0.391] [0.035, 0.391] [0.036, 0.391] [0.036, 0.391] [0.035, 0.391]

3.85 1.40 0.08 0.03 0.00

#3
[0.035, 0.391] [0.035, 0.391] [0.035, 0.390] [0.035, 0.390] [0.035, 0.390]

4.09 1.50 0.08 0.03 0.00

#4
[-0.070, 0.397] [-0.070, 0.397] [-0.070, 0.397] [-0.070, 0.397] [-0.070, 0.397]

9.29 3.37 0.11 0.03 0.00

#5
[-0.067, 0.418] [-0.067, 0.418] [-0.067, 0.418] [-0.067, 0.418] [-0.067, 0.418]

9.20 3.18 0.07 0.04 0.01

q = 10

#1
[0.141, 0.603] [0.141, 0.603] [0.141, 0.603] [0.141, 0.603] [0.141, 0.603]

30.19 10.41 0.33 0.11 0.01

#2
[0.068, 0.446] [0.068, 0.446] [0.068, 0.446] [0.068, 0.446] [0.069, 0.445]

26.61 9.34 0.33 0.13 0.00

#3
[0.067, 0.458] [0.067, 0.458] [0.068, 0.458] [0.068, 0.458] [0.068, 0.458]

28.37 9.78 0.33 0.11 0.02

#4
[-0.024, 0.431] [-0.024, 0.431] [-0.024, 0.430] [-0.024, 0.430] [-0.023, 0.430]

32.75 11.47 0.32 0.11 0.02

#5
[-0.003, 0.452] [-0.003, 0.452] [-0.003, 0.452] [-0.003, 0.452] [-0.003, 0.451]

31.67 11.02 0.34 0.11 0.02

q = 16

#1
[0.124, 0.447] [0.124, 0.447] [0.124, 0.447] [0.124, 0.447] [0.124, 0.447]

373.86 127.07 3.19 1.11 0.13

#2
[0.098, 0.364] [0.098, 0.364] [0.098, 0.364] [0.098, 0.364] [0.097, 0.364]

451.67 153.20 3.16 1.11 0.14

#3
[0.088, 0.368] [0.088, 0.368] [0.088, 0.368] [0.088, 0.368] [0.087, 0.368]

415.67 142.55 3.25 1.10 0.16

#4
[0.014, 0.325] [0.014, 0.325] [0.015, 0.325] [0.015, 0.325] [0.014, 0.325]

703.13 248.68 3.43 1.14 0.11

#5
[0.048, 0.365] [0.048, 0.365] [0.048, 0.365] [0.048, 0.365] [0.047, 0.365]

572.54 193.69 3.09 1.10 0.14

Table 3.6. Computational gains of Algorithm 3.2 relative to grid search and
bisection algorithms in the applications of Section 3.5.2. The top row for
each specification is the confidence interval. The bottom row is time in
seconds. For the bisection search, our tolerance is set to the absolute value
of the LS estimate, divided by 1000. For comparability, we set the step-size
of the grid search to the same value.
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wild bootstrap requires the clusters to be sufficiently homogeneous (see Canay et al.,

2021a) without demanding identification of the parameter of interest cluster-by-cluster.
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CHAPTER 4

On the Performance of the Neyman Allocation with Small Pilots

4.1. Introduction

A growing literature on experiment design provides researchers with tools for reducing

the asymptotic variance of their average treatment effect (ATE) estimates. Many do so in

the context of two-wave experiments, where the researcher has access to a pilot study that

can be used to improve the main study. Pilots are typically assumed to be large, allowing

population parameters to be well-estimated. However, large pilots may not be realistic in

practice. In this chapter, we study the implications of small pilots for experiment design

through the lens of the Neyman Allocation.

The Neyman Allocation (Neyman 1934) is a simple method for minimizing the vari-

ance of the difference-in-means estimator of ATE. In a setting without covariates, suppose

that the standard deviations of the treated and control outcomes are known. The Neyman

Allocation assigns more units to either treatment or control in proportion to the ratio of

their standard deviations. Intuitively, the optimal experiment entails more measurements

of the noisier quantity. Since the variances are not known in practice, the feasible Ney-

man Allocation (FNA) estimates the variances using the pilot study and then plugs the

estimates into the assignment rule.

The FNA is an important part of many experiment design procedures. In the econo-

metrics literature alone there are several notable works. Hahn et al. (2011) propose to
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estimate the variance of outcome and control groups conditional on covariate value, im-

plementing the FNA conditional on covariates. In a similar vein, Tabord-Meehan (2021)

employs tree-based techniques to stratify units based on their covariates. Units are then

assigned to treatment and control based on the FNA conditional on strata. Meanwhile,

Cytrynbaum (2021) proposes local randomization to select representative units for par-

ticipation and treatment in experiments. In what Cytrynbaum (2021) terms the “fully

efficient" case, treatment proportion conditional on the randomization group is chosen

by the FNA. Despite their differences, the above papers study their proposals in asymp-

totic frameworks that take the pilot size to infinity. Their analyses, appropriate for large

pilots, essentially assume that population parameters are arbitrarily well-estimated from

the pilots alone. In practice, pilots are often conducted for logistical reasons and may be

small. In such settings, accurately estimating the relevant variances may be difficult.

To understand the implications of small pilots, we study the properties of the Neyman

Allocation in a novel asymptotic framework for two-wave experiments. Our framework

takes the main wave sample size to infinity while the pilot size remains fixed. We show that

when uncertainty in parameter estimation is non-negligible in the limit, the FNA converges

in distribution to a mixture of normal distributions. Furthermore, we find that the FNA

can do worse than the naive, balanced allocation that assigns half the units to treatment

and half to control. This occurs when outcomes have similar variances across treatment

and control, i.e. when outcomes are relatively homoskedastic with respect to treatment

status. To assess how much homoskedasticity exists in practice, we examine the first 10

completed experiments in the AER RCT Registry. We ask the hypothetical question: if

researchers conducted these studies as a two-wave experiment with a random sample from
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the same population, would they do better with the FNA or with balanced randomization?

We find that the treatment and control groups are often highly homoskedastic across a

range of outcomes and across experiments. This suggests that if faced with a small pilot,

the authors of those studies would likely not have benefited from implementing the FNA.

Finally, we show that as pilot sizes increase, the amount of heteroskedasticity needed for

the FNA to be preferable to the balanced allocation decreases, but at a rate that depends

on the kurtosis of the outcome variables. Hence, even when researchers believe they are

in a setting with high heteroskedasticity, they may want to avoid the FNA if they also

believe that the outcomes are fat-tailed.

Our findings suggest that researchers should be cautious when designing experiments

using the FNA with small pilots. However, even when pilots are large, methods which

condition on many covariates may end up estimating the FNA using a small conditional

sample. Furthermore, if researchers believe that units exhibit cluster-dependence – a

common assumption in empirical work – the number of “effective" observations may be

smaller still, impeding the estimation of the FNA. We note that this chapter specifically

addresses the use of the FNA in reducing the asymptotic variance of the difference-in-

means estimator in two-wave experiments. It does not speak to papers which take the

treatment assignment probability as given, such as Bai (2022).

This chapter is most similar to papers pointing out a similar issue in the design of

sequential experiments. Melfi and Page (1998) argue by simulation that treatment as-

signment rules based on estimated outcomes can do worse than non-adaptive rules due to

estimation noise. Theoretical analysis is provided in Hu and Rosenberger (2003), in an
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asymptotic framework that does not nest ours. This chapter is also related to those study-

ing small sample problems in experiments. de Chaisemartin and Ramirez-Cuellar (2019)

is concerned with the problems small strata pose for inference. Bruhn and McKenzie

(2009) considers the effectiveness of various randomization strategies in achieving balance

when a single-wave experiment is small. Finally, we note that there is a large literature

discussing the large-pilot properties of the Neyman Allocation for alternative criteria such

as power (e.g. Brittain and Schlesselman 1982, Azriel et al. 2012), minimax optimality

(e.g. Bai 2021) or ethical considerations (e.g. Chapter 8 of Hu and Rosenberger 2006).

These criteria fall outside the scope of this present chapter.

The remainder of this chapter is organized as follows. Section 4.2 presents the theo-

retical framework. Section 4.3 contains analytical and simulation results using a stylized

toy example. Our main theoretical results can be found in section 4.4. We assess the

level of homoskedasticity in selected empirical applications in section 4.5. Section 4.6

concludes the chapter. All proofs as well as additional empirical examples are contained

in the online appendix.

4.2. Framework

We use a standard binary treatment potential outcomes framework assuming an infi-

nite superpopulation. The potential outcomes are (Y (0), Y (1)), where Y (0) denotes the

potential outcome under control or status quo and Y (1) denotes the potential outcome

under treatment or the innovation.
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Assumption 4.1. Potential outcomes (Y (0), Y (1)) have finite second moments. The

vector of means is µ and the covariance matrix is Σ where

µ = E


 Y (0)

Y (1)


 =

 µ(0)

µ(1)



Σ = Var


 Y (0)

Y (1)


 =

 σ2(0) ρ · σ(0) · σ(1)

ρ · σ(0) · σ(1) σ2(1)

 .

Additionally, assume potential outcome variances are positive so that σ2(a) > 0 for each

a ∈ {0, 1}.

The estimand of interest is the Average Treatment Effect (ATE), θ = E[Y (1)− Y (0)].

To estimate the ATE, the experimenter conducts a two-wave experiment. The smaller first

wave, also known as the pilot, and used to inform the experimenter about aspects of the

design of the larger main wave (i.e. the second wave). The following assumptions about

the two experimental waves will be maintained throughout the chapter. For notational

clarity, the tilde symbol (e.g. X̃) refers to quantities associated with the pilot.

Assumption 4.2. Potential outcomes in the pilot, denoted
{
Ỹi(0), Ỹi(1)

}m

i=1
, consist

of m i.i.d. draws from the distribution of the random vector (Y (0), Y (1))′. Treatment is

randomly assigned in the pilot so that denoting assignments by
{
Ãi

}m

i=1
,

{
Ỹi(0), Ỹi(1)

}m

i=1
⊥⊥
{
Ãi

}m

i=1
.
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Assumption 4.3. Potential outcomes in the main wave, denoted by {Yi(0), Yi(1)}ni=1,

are n i.i.d. draws from the distribution of the random vector (Y (0), Y (1))′ and are inde-

pendent to potential outcomes and treatment assignments in the pilot. That is,

{Yi(0), Yi(1)}ni=1 ⊥⊥
{
Ỹi(0), Ỹi(1), Ãi

}m

i=1
.

The experimenter has access to an exogenous randomization device for assigning treat-

ments in the main wave. That is, there is an i.i.d. sample of Uniform[0, 1] random

variables, {Ui}ni=1, available to the researcher and satisfying

{Ui}ni=1 ⊥⊥
[
{Yi(0), Yi(1)}ni=1 ,

{
Ỹi(0), Ỹi(1), Ãi

}m

i=1

]
.

We describe a number of allocation schemes that the experimenter could implement

in the main wave using the randomization devices {Ui}ni=1.

• Simple random assignment: For a given p ∈ (0, 1), let

Ap,i = I {Ui ≤ p} .

The associated observed outcomes in this case are denoted Yp,i = Yi(0) (1− Ap,i)+

Yi(1)Ap,i and the estimator for the average treatment effect is the difference-in-

means estimator:

θ̂p =
1
n

∑n
i=1 Yp,iAp,i

1
n

∑n
i=1Ap,i

−
1
n

∑n
i=1 Yp,i (1− Ap,i)

1
n

∑n
i=1 (1− Ap,i)

.

Balanced randomization corresponds to choosing p = 1
2
. We will refer to the

associated treatment assignment rule as the balanced allocation.
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• The Infeasible Neyman Allocation: For any given p ∈ (0, 1), elementary

arguments show that

√
n
(
θ̂p − θ

)
d→ N

(
0,

σ2(1)

p
+

σ2(0)

1− p

)
.

The optimal choice of p to minimize the variance of the limiting distribution is

the Neyman Allocation:

p∗ =
σ(1)

σ(1) + σ(0)
.

The optimal treatment scheme, associated observed outcomes and difference-in-

means estimator are denoted by

Ap∗,i = I {Ui ≤ p∗}

Yp∗,i = Yi(0) (1− Ap∗,i) + Yi(1)Ap∗,i

θ̂p∗ =
1
n

∑n
i=1 Yp∗,iAp∗,i

1
n

∑n
i=1Ap∗,i

−
1
n

∑n
i=1 Yp∗,i (1− Ap∗,i)

1
n

∑n
i=1 (1− Ap∗,i)

.

(4.1)

Implementing the Neyman Allocation requires knowledge of the quantities σ(0), σ(1)

and as such is infeasible.

• The Feasible Neyman Allocation (FNA): One feasible implementation is

to use the pilot data to form a plug-in estimator for p∗. We start by using pilot

data to estimate potential outcome variances:

σ̃2
m(a) =

1

ma − 1

m∑
i=1

(
ỸiI
{
Ãi = a

}
− 1

ma

m∑
i=1

ỸiI
{
Ãi = a

})2

,
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where ma =
∑m

i=1 I
{
Ãi = a

}
. The feasible Neyman Allocation is

(4.2) p̃ =


σ̃m(1)

σ̃m(1)+σ̃m(0)
if σ̃m(1), σ̃m(0) > 0 ,

1
2

otherwise .

The latter case in (4.2) (where at least one σ̃m(a) = 0) avoids division by zero and

additionally avoids the case where the entire main wave sample gets assigned to

a single treatment arm. If the potential outcomes are continuously distributed,

this latter case happens with zero probability. The distribution of p̃ depends on

m, but we omit the sample size subscript for notational convenience. The asso-

ciated treatment allocation scheme, observed outcomes and difference-in-means

estimator are denoted by

Ap̃,i = I {Ui ≤ p̃}

Yp̃,i = Yi(0) (1− Ap̃,i) + Yi(1)Ap̃,i

θ̂p̃ =
1
n

∑n
i=1 Yp̃,iAp̃,i

1
n

∑n
i=1Ap̃,i

−
1
n

∑n
i=1 Yp̃,i (1− Ap̃,i)

1
n

∑n
i=1 (1− Ap̃,i)

.

(4.3)

4.3. Toy Example

In this section, we illustrate the main problems with the FNA in small samples with

a toy model. In the context of this simple example, we ask the question: when does the

FNA do worse than the balanced allocation? It turns out that this happens for a range

of plausible values of population parameters. Section 4.4 describes the extension of our

findings into more general settings.
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We assume in this section that the potential outcomes are bivariate normal:Y (1)

Y (0)

 ∼ N (µ,Σ) .

Suppose we have a pilot of size m where m is even. Suppose treatment is assigned

deterministically as follows:

Ãi =


1 if 1 ≤ i ≤ m

2

0 otherwise.

As such, treatment assignment is strongly balanced in the pilot. Using standard argu-

ments, it follows that the variance estimates are distributed as independent χ2 random

variables:

σ̃2
m(1) ⊥⊥ σ̃2

m(0) ,
(m
2
− 1
)( σ̃2

m(a)

σ2(a)

)
∼ χ2

m
2
−1 .

Conditional on the pilot sample, the feasible Neyman Allocation assigns

p̃ =
σ̃m(1)

σ̃m(0) + σ̃m(1)

proportion of the units in the main to treatment. Suppose for simplicity again that

we assign the first np̃ units to treatment and the remainder to control (rounding np̃ if

necessary). Then,

θ̂p̃ =

(
1

np̃

np̃∑
i=1

Yi(1)

)
−

 1

n− np̃

n∑
i=np̃+1

Yi(0)

 .
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Terms in the above expression have conditional distributions:

[
1√
np̃

np̃∑
i=1

Yi(1)

∣∣∣∣ p̃
]
∼ N

(
0, σ2(1)

)
,

 1√
n− np̃

n∑
i=np̃+1

Yi(0)

∣∣∣∣ p̃
 ∼ N

(
0, σ2(0)

)
.

Furthermore, they are independent. Hence,

[√
n
(
θ̂p̃ − θ

) ∣∣∣∣ p̃] ∼ N
(
0 ,

σ2(1)

p̃
+

σ2(0)

1− p̃

)
.

Taking expectation over p̃, we have that:

(4.4) Var
[√

n
(
θ̂p̃ − θ

)]
= E

[
σ2(1)

p̃
+

σ2(0)

1− p̃

]
.

Letting p̃ be constant at p, we obtain the variance of the difference-in-means estimator

under simple random assignment as a special case:

Var
[√

n
(
θ̂p − θ

)]
=

σ2(1)

p
+

σ2(0)

1− p
.

Our goal is then to compare the two expressions above when we set p = 1
2
. First, note

that we can rewrite (4.4) as

E
[
σ2(1)

p̃
+

σ2(0)

1− p̃

]
= E

[(
1 +

1

Zm

σ(0)

σ(1)

)
σ2(1) +

(
1 + Zm

σ(1)

σ(0)

)
σ2(0)

]
,
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where Zm ∼
√

F
(
m
2
− 1, m

2
− 1
)
. The Neyman Allocation does worse than balanced

randomization whenever the following obtains:

E
[(

1 +
1

Zm

σ(0)

σ(1)

)
σ2(1) +

(
1 + Zm

σ(1)

σ(0)

)
σ2(0)

]
≥ 2σ2(1) + 2σ2(0)

⇐⇒ E
[

1

Zm

+ Zm

]
σ(1)σ(0) ≥ σ2(1) + σ2(0)

⇐⇒ σ2(1)

σ2(0)
− E

[
1

Zm

+ Zm

]
σ(1)

σ(0)
+ 1 ≤ 0

⇐⇒ σ2(1)

σ2(0)
− 2E [Zm]

σ(1)

σ(0)
+ 1 ≤ 0 .

The final implication uses the fact that Zm is reciprocally symmetric under bivariate

normality and balanced randomization. By the quadratic formula, the above inequality

satisfied if and only if

(4.5)
σ(1)

σ(0)
∈ Cm :=

[
E [Zm]−

√
E [Zm]

2 − 1 , E [Zm] +

√
E [Zm]

2 − 1

]
.

Note that reciprocal symmetry together with Jensen’s inequality guarantees that the

discriminant is strictly positive:

E[Zm]
2 = E[Zm]E

[
1

Zm

]
> 1 .

Furthermore, we have that

(
E [Zm] +

√
E [Zm]

2 − 1

)(
E [Zm]−

√
E [Zm]

2 − 1

)
= 1 .
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In other words, the interval has the form

Cm =

[
1

cm
, cm

]
,

where cm > 1 is the upper bound in (4.5). Hence, there is a range of parameter values

under which the FNA does strictly worse than balanced randomization. We first note

that 1 ∈ Cm for all m. This is intuitive since p = 1
2

is the infeasible Neyman Allocation

when σ(1)/σ(0) = 1. Secondly, x ∈ Cm ⇔ 1/x ∈ Cm. That is, the relative performance

of the FNA to the balanced allocation does not change when we relabel treatment and

control.

Simulation Evidence

Given an underlying distribution, it is simple to compute Cm by Monte Carlo integration.

In this subsection, we present the values of Cm for some simple models and argue that

for plausible values of σ(1)/σ(0), the FNA performs worse than the balanced allocation.

Figure 4.1. Cm when Y (1) ∼ N (µ(1), σ2(1)) and Y (0) ∼ N (µ(0), σ2(0)).
Monte Carlo integration using 10,000 draws.
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We start with the toy model, where Y (1) ∼ N (µ(1), σ2(1)) and Y (0) ∼ N (µ(0), σ2(0)).

Results are shown in Figure 4.1. The set of parameter values over which the FNA does

worse is larger when m is smaller. In fact, we show in Section 4.4 that if the data

generating process (DGP) is sub-Gaussian, the length of Cm is O
(
m−1/2

)
. In the toy

model, C20 = [0.70, 1.43], while C50 is [0.81, 1.23]. Suppose instead that Y (1) ∼ µ(1) +

σ(1)χ2
1, Y (0) ∼ µ(0) + σ(0)χ2

1. Figure 4.2 shows that Cm is wider across the range of m.

In particular, C20 = [0.49, 2.22], while C50 = [0.64, 1.61]. While the intervals may appear

rather narrow at first glance, we provide numerous examples in Section 4.5 in which the

amount of heteroskedasticity falls within this range.

Figure 4.2. Cm when Y (1) ∼ µ(1) + σ(1)χ2
1 and Y (0) ∼ µ(0) + σ(0)χ2

1.
Monte Carlo integration using 10,000 draws.

As our toy model shows, it is the estimation of σ̃(1) and σ̃(0) that causes problems

when m is small. It is therefore intuitive that Cm will be wide when the distributions are

fat tailed, that is, when kurtosis is high. As such, we consider the following parametriza-

tion: Y (1) ∼ µ(1) + σ(1) · Pareto(l, s) and Y (0) ∼ µ(0) + σ(0) · Pareto(l, s). Here, l and

s are the location and scale parameters respectively. Figure 4.3 plots Cm for l = 1 and

s ∈ {2, 3, 4}. Indeed, we see that the bands are much wider than in the previous models.
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For s = 2, even when m = 100, Cm = [0.40, 2.51], which, given the examples in Section

4.5 appear to be fairly extreme amounts of heteroskedasticity. Finally, we note that, Cm

decreases in width as we move from s = 2 to s = 4.

Figure 4.3. Cm when Y (1) ∼ µ(1)+σ(1) ·Pareto(1, s), Y (0) ∼ µ(0)+σ(0) ·
Pareto(1, s) and s ∈ {2, 3, 4}. Monte Carlo integration using 10,000 draws.

In sum, we see that the FNA does worse than the balanced allocation when the

treatment and control groups are relatively homoskedastic. Furthermore, Cm can be

quite large when m is small. The small pilot problem is exacerbated when observations

exhibit cluster dependence, so that the “effective observations” are fewer in number. Small

pilot issues can also arise when researchers perform stratified randomization with many

strata, so that each stratum ends up with few observations. In Section 4.5, we argue that

many empirical applications in fact have fairly homoskedastic outcomes. As such, unless

a researcher has reason to believe that their outcomes are highly heteroskedastic, they

should exercise caution in using the FNA with small pilots.
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4.4. Theoretical Results

In this section, we study the theoretical properties of the FNA. We first review the

case where n,m → ∞. Next, we study the FNA in our asymptotic framework where

n → ∞ but m is fixed, highlighting implications of our results for empirical researchers.

Large-m asymptotics. Consider an asymptotic regime where both m,n → ∞, corre-

sponding to situations where both the pilot and the main wave are large. It is straight-

forward to show that p̃
p→ p∗. Furthermore, we have that:

Proposition 4.1. Under Assumptions 4.1, 4.2 and 4.3, as m,n → ∞

√
n
(
θ̂p̃ − θ

)
d→ N (0,Σ∗) ,

where

Σ∗ =
σ2(1)

p∗
+

σ2(0)

1− p∗
= (σ(1) + σ(0))2.

In other words, θ̂p̃ and θ̂p∗ have the same limiting distribution after suitable centering

and scaling. This occurs because in the limit, noise coming from estimating p∗ with p̃

is negligible in comparison to the sampling error of the difference-in-means estimator.

Researchers employing the large m framework essentially assume that p̃ is an arbitrarily

good estimator for p∗ so that its sampling error can be ignored. In practice, error in p̃

can be large, particularly when m is small. Asymptotic approximations that do not take

this into account will likely perform poorly in finite sample.

Fixed-m Asymptotics. To better understand the behavior of the FNA under small

pilots, we study its properties in a novel asymptotic framework that takes m to be fixed,

even as n → ∞.
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A growing literature in econometrics uses fixed-sample asymptotics to study settings

in which the “effective sample size" is small. For example, when data exhibit cluster-

dependence, settings with few clusters pose unique challenges for estimation and inference.

To tailor their analyses to these problems, papers such as Ibragimov and Müller (2010),

Canay et al. (2017c) and Canay et al. (2021b) employ asymptotic frameworks in which

the number of clusters is fixed in the limit. Similarly, to model difference-in-differences

studies involving few treated units, Conley and Taber (2011) keep the number of treated

units fixed even as the number of untreated units tend to infinity. In the same vein,

inference for regression discontinuity designs typically involves few observations around

the discontinuity. To capture this, Canay and Kamat (2017) analyze a permutation test

under an asymptotic regime with a fixed number of observations on either side of the

discontinuity.

Our approach is similar in spirit to these papers. In keeping m fixed, we have that p̃ is a

noisy estimate of p∗ even in the limit. Preserving this important feature of the statistical

problem makes our framework more appropriate for analyzing experiments with small

pilots. In this setting, θ̂p̃ converges in distribution to a mixture of Gaussians instead

of N (0,Σ∗). Furthermore, the form of the limiting mixture distribution depends on the

distribution of p̃. This is the content of the following proposition:

Proposition 4.2. Under Assumptions 4.1, 4.2 and 4.3, if m remains fixed as n → ∞,

√
n
(
θ̂p̃ − θ

)
d→ Lm ,
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where Lm is a random variable whose distribution takes the form

P (Lm ≤ t) =

∫ 1

0

Φ

(
t

s (p)

)
Gm(dp),

Φ is the CDF of N (0, 1), Gm is the distribution of p̃ and s(·) is defined by

s(p) =

√
σ2(1)

p
+

σ2(0)

1− p
.

Remark 4.1. The weak limit Lm in Proposition 4.2 has mean zero. To see this, note

that conditional on a value of the assignment probability p, i.e. conditional on the event

p̃ = p, Lm has a N (0, s(p)) distribution (where s(p) is as defined in Proposition 4.2). The

conclusion then holds by the Law of Iterated Expectations.

To see the intuition for our result, recall that for each p ∈ (0, 1),

√
n
(
θ̂p − θ

)
d→ N

(
0,

σ2(1)

p
+

σ2(0)

1− p

)
= N

(
0, s2(p)

)
.

When m is held fixed, in the limit as n → ∞, p̃ remains a non-degenerate random

variable. In particular, the limiting distribution of p̃ is its finite-sample distribution.

Thus, the distribution of
√
n
(
θ̂p̃ − θ

)
becomes a mixture of the marginal distributions of

the process {√
n
(
θ̂p − θ

)
: p ∈ (0, 1)

}
,

where the mixing distribution is the distribution of p̃, denoted here by Gm.

Implication for Experiments. Our results have implications for the use of the FNA

when pilot sizes are small. In this sub-section we compare the asymptotic variances of θ̂p̃,

θ̂p∗ as well as θ̂p with p = 1
2
. Since these estimators all have limit distributions that have
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mean zero (after centering around θ and scaling by
√
n), comparing asymptotic mean

squared errors is equivalent to comparing the variances of the limit distributions. We first

show that θ̂p̃ has larger asymptotic variance in the fixed-m regime than in the large-m

regime. We next show that under reasonable ranges of parameter values, the asymptotic

variance of θ̂p̃ can exceed that of θ̂p with p = 1
2
.

Remark 4.2. By Proposition 4.2 and Remark 4.1, θ̂p̃ has a limit distribution which

has mean zero. Given that θ̂p∗ and θ̂p also have mean zero normal limit distributions,

comparing asymptotic mean squared errors is equivalent to comparing the variances of

the limit distributions.

We begin with the corollary:

Corollary 4.1. Under Assumptions 4.1, 4.2 and 4.3, suppose m remains fixed as

n → ∞. Lm has variance:

E
[
σ2(1)

p̃
+

σ2(0)

1− p̃

]
> Σ∗ .

In words, the asymptotic variance of θ̂p̃ is larger under the fixed-m regime than under

the large-m regime. When pilots are small, uncertainty in p̃ may be large and could affect

the asymptotic variance of θ̂p̃. In particular, θ̂p̃ will not be able to attain the optimal

asymptotic variance of the infeasible allocation p∗. Conventional large-m asymptotics

may be too optimistic about the effectiveness of the Neyman Allocation with small pilots.

We expect our analysis to better capture the behavior of θ̂p̃ when pilots are small.

In addition to not attaining Σ∗, the θ̂p̃ can do worse than θ̂p for certain values of σ2(1)

and σ2(0), as our next two results asserts. For convenience, define the following:
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Definition 4.1. Let Cm be the set such that for a pilot of size m, θ̂p̃ has higher

asymptotic variance than θ̂p if and only if σ(1)
σ(0)

∈ Cm. Let |Cm| denote the length of Cm.

Definition 4.2. Let

Zm =
σ̃m(1)

σ(1)

/
σ̃m(0)

σ(0)
.

and

Bm =
1

2
E
[

1

Zm

+ Zm

]
.

For our first result, we characterize the region Cm in terms of Bm.

Proposition 4.3. Under Assumptions 4.1, 4.2 and 4.3, suppose m remains fixed as

n → ∞. Then

(4.6) Cm =

[
1

cm
, cm

]
.

Furthermore,

cm = Bm +
√
B2

m − 1 > 1 and |Cm| = 2
√
B2

m − 1 > 0 .

The properties of Cm are intuitive. Firstly, x ∈ Cm implies that 1/x ∈ Cm. That is,

the relative performance of the FNA to the balanced allocation does not change when we

relabel treatment and control. Secondly, 1 ∈ Cm. This is because when σ(1)/σ(0) = 1, the

balanced allocation is optimal. Finally, note that |Cm| depends on the bias of σ̃m(1)/σ̃m(0)

and σ̃m(0)/σ̃m(1). In particular, if both terms are unbiased, Bm = 1 and |Cm| = 0.

However, |Cm| is strictly positive as long as p̃ is not degenerate.
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The exact properties of Cm depends on the underlying distributions of potential out-

comes. To understand its behavior in a more general setting, we study its first-order

approximation. This yields the following:

Proposition 4.4. Under Assumptions 4.1, 4.2 and 4.3, suppose n → ∞. Suppose

additionally that Yi(1) and Yi(0) are sub-Gaussian. Then,

Cm =

[
1−

√
V

m
+ δ−m , 1 +

√
V

m
+ δ+m

]
,

where δ+m, δ
−
m = o

(
1√
m

)
and

V =
1

4

(
E
[
(Y (1)− µ(1))4

]
σ4(1)

+
E
[
(Y (0)− µ(0))4

]
σ4(0)

− 2

)
.

Provided that the potential outcomes are sub-Gaussian, the relative efficiency of θ̂p̃

and θ̂p under p = 1/2 is, to a first order, determined by the kurtosis of Yi(1) and Yi(0).

Intuitively, if the potential outcomes have fatter tails, p̃ will be poorly estimated, leading

to larger variance in θ̂p̃.

Furthermore, |Cm| is shrinking to 0 at the rate 1/
√
m. Letting m → ∞, θ̂p̃ has weakly

lower asymptotic variance across all parameter values. Hence, we recover the classic result

concerning the optimality of the Neyman Allocation. When m is small, however, Cm can

be wide, as Proposition 4.3 suggests. As we will argue in Section 4.5, many empirical

applications have σ(1)/σ(0) close to 1, so that for small m, they fall within the range in

which balanced randomization is preferred.

While the sub-Gaussian assumption limits the applicability of Proposition 4.4, it covers

binary and bounded outcomes, which are relevant in empirical work. Furthermore, we
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consider it to be a negative result: even when potential outcomes are well-behaved, the

FNA is sensitive to the kurtosis of the potential outcomes. It can still perform poorly

relative to the balanced allocation as a result.

Remark 4.3. Using an argument based on Taylor expansions, we can weaken the

sub-Gaussian assumption to finiteness of the first 14th moments. The proof is available

on request.

4.5. Empirical Evidence of Approximate Homoskedasticity

To assess the amount of heteroskedasticity that empirical researchers face, we revisit

the first 10 completed experiments in the AER RCT Registry. In each experiment, we ask

the following question: Suppose the authors had access to a small pilot prior to the main

study, would they have done better using the FNA instead of balanced randomization? In

each experiment presented, we use the full experimental sample to estimate the standard

deviations of each treatment arm and compute the corresponding ratios to see if these

are close to one. In practice, researchers cannot do this given a small pilot since they

do not have access to consistent variance estimators. Our findings suggest that these

authors would likely not have not better with the FNA. We present two examples in

this section: Avvisati et al. (2014) is an experiment in which the outcomes are relatively

homoskedastic. Ashraf et al. (2006) contains outcome variables which are heteroskedastic.

In this example, we also provide estimates of the interval Cm and show that it will be

wide even when m is large. The remaining eight experiments are qualitatively similar to

Avvisati et al. (2014) and can be found in Section C.2 of the online appendix.
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4.5.1. Avvisati et al. (2014)

There is a significant body of research examining the impact of school-level factors such

as class size or teacher quality on educational performance of students. These are typi-

cally seen as the primary instruments for educational policy intervention. A large body

of work also examines the impact of parental inputs on educational outcomes. Avvisati

et al. (2014) study whether or not parental inputs can be effectively manipulated through

simple participation programs at schools. They do so via a large-scale randomized con-

trol trial in middle schools in the Créteil educational district of Paris. The experiment

targeted families of 6th graders and the program consisted of a sequence of three meet-

ings with parents every 2–3 weeks. The sessions focused on how parents can help their

children by participating at school and at home in their education and additionally, in-

cluded advice on how to adapt to results in end-of-term report cards. Participation in

the program was randomized at the class level – half of the classes at a given school were

assigned to the participation program. Classes are groups of 20–30 students. The overall

sample comprised of 183 classes and a total of 4,308 students. The study tracked three

types of outcomes: (1) parental involvement attitudes and behaviour; (2) children’s be-

haviour, namely truancy, disciplinary record and work effort; and (3) children’s academic

results. Since randomization was done at the class-level, we examine heteroskedasticity

with respect to treatment status at both the individual level and at the class level.

Table 4.1 reports student-level standard deviations in treatment and control groups, as

well as their ratios, for the main outcomes of interest. These are the outcomes considered

in Tables 2, 3 and 5 in Avvisati et al. (2014). The ratios are all close to one, so that by

and large the treatment and control groups are relatively homoskedastic at the student
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level. This indicates that if the experimenters were to run a randomized control trial

in the same population with treatment assigned at the individual-level, the FNA would

likely yield no improvement relative to the balanced allocation.

Table 4.2 reports standard deviations and their ratios in class-level means of outcomes.

This corresponds to a scenario in which classes are the units of interest, with class-level

means as the relevant outcomes. We first calculate class-level means and then compute

their standard deviations across classes for the treatment and control groups respectively.

The standard deviation ratios for class-level means are by and large also close to one.

Hence, if the hypothetical experiment was to be conducted at the class-level, the treatment

and control groups would still be relatively homoskedastic. In this case, the FNA would

again not improve upon the balanced allocation.

4.5.2. Ashraf et al. (2006)

A large body of economic models posit that individuals have time inconsistent prefer-

ences, exhibiting more impatience for near-term trade-offs than for future trade-offs. The

implication of these models is that those who engage in commitment devices ex ante may

improve their welfare. To test this hypothesis, Ashraf et al. (2006) conducted an RCT in

the Philippines, in which individuals were offered randomly offered the chance to open a

SEED (Save, Earn, Enjoy Deposits) account. Money deposited into the account cannot

be withdrawn until the owner reached a goal, such as reaching a savings amount or until

a pre-specified month in which they expected large expenditures.

Partnering with a rural bank in Mindanao, they authors surveyed 1,777 of their existing

or former clients, of which 842 were placed into the treatment group, while 469 were



172

Table 4.1. Student-Level Heteroskedasticity in Avvisati et al. (2014).

Outcome Variables Treatment Control Treat./Cont.

Parental
Involvement

Global parenting score 0.34 0.34 1.01
School-based involvement score 0.66 0.63 1.05
Home-based involvement score 0.59 0.57 1.04
Understanding and perceptions score 0.53 0.55 0.97
Parent-school interaction 0.40 0.40 1.01
Parental monitoring of school work 0.43 0.41 1.05

Behavior

Absenteeism 6.29 8.63 0.73
Pedagogical team: Behavioral score 0.73 0.74 0.98
Pedagogical team: Discipl. sanctions 1.20 1.18 1.02
Pedagogical team: Good conduct 0.49 0.47 1.04
Pedagogical team: Honors 0.28 0.32 0.89
Teacher assessment: Behavior in class 0.48 0.49 0.98
Teacher assessment: School work 0.49 0.50 1.00

Test Scores

French (Class grade) 3.73 3.70 1.01
Mathematics (Class grade) 4.26 4.25 1.00
Average across subjects (Class grade) 2.87 2.88 1.00
Progress over the school year 0.49 0.49 0.99
French (Uniform test) 0.99 1.01 0.98
Mathematics (Uniform test) 0.99 1.02 0.98

placed in the control group. As treatment involved receiving a briefing on the importance

of savings, the remaining 466 individuals were placed in the marketing group, receiving

the briefing but not access to SEED. We focus on the Table VI of Ashraf et al. (2006),

containing results on saving behavior. The parameter of interest is the Intent-to-Treat

effect, with approximately 25% of the treated taking up treatment. Here, the authors find

that relative to the control group, the treatment group had a higher change in savings 6

months (6m) and 12 months (12m) after treatment. Comparing treatment to marketing

group led to weaker but still positive results.

We present standard deviations of the outcomes as well as their ratios in Table 4.3.

The outcomes of interest are
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Table 4.2. Class-Level Heteroskedasticity in Avvisati et al. (2014).

Outcome Variables Treatment Control Treat./Cont.

Parental
Involvement

Global parenting score 0.12 0.12 0.97
School-based involvement score 0.24 0.35 0.69
Home-based involvement score 0.20 0.15 1.33
Understanding and perceptions score 0.20 0.22 0.94
Parent-school interaction 0.13 0.12 1.09
Parental monitoring of school work 0.13 0.14 0.96

Behavior

Absenteeism 2.21 3.45 0.64
Pedagogical team: Behavioral score 0.24 0.27 0.88
Pedagogical team: Discipl. sanctions 0.36 0.36 1.01
Pedagogical team: Good conduct 0.22 0.23 0.95
Pedagogical team: Honors 0.10 0.11 0.87
Teacher assessment: Behavior in class 0.16 0.16 1.01
Teacher assessment: School work 0.15 0.14 1.02

Test Scores

French (Class grade) 1.32 1.31 1.01
Mathematics (Class grade) 1.76 1.84 0.96
Average across subjects (Class grade) 0.83 0.93 0.89
Progress over the school year 0.16 0.14 1.11
French (Uniform test) 0.42 0.42 1.01
Mathematics (Uniform test) 0.40 0.43 0.93

(1) Change in Total Balance (6m) (∆ Tot. Bal. (6m)),

(2) Change in Total Balance (12m) (∆ Tot. Bal. (12m)),

(3) Change in Total Balance exceeds 0% (12m) (∆ Tot. Bal. > 0% (12m)),

(4) Change in Total Balance exceeds 20% (12m) (∆ Tot. Bal. > 20% (12m)).

We first note that ∆ Tot. Bal. > 0% (12m) and ∆ Tot. Bal. > 20% (12m) are binary

outcomes which are relatively homoskedastic. ∆ Tot. Bal. (6m) and ∆ Tot. Bal. (12m),

measured in Philippine pesos, exhibit more heteroskedasticity. In particular, comparing

the treatment group to the marketing group at the 12 month period, we observe a standard

deviation ratio of 3.13. At first glance, this suggests that the FNA might outperform

balanced randomization, at least with respect to this specific outcome. This turns out
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to be false once we investigate the heteroskedasticity in ∆ Tot. Bal. (6m) and ∆ Tot.

Bal. (12m). Quantiles of these variables are displayed in Table 4.4. Clearly, they have

extremely fat right tails, which we confirm by computing the kurtosis, contained in Table

4.5. Fat tails worsen the performance of a variety of statistical techniques, including the

FNA, as our analysis in Section 4.4 shows.

Table 4.3. Heteroskedasticity in Ashraf et al. (2006).

Treat. Cont. Market. Treat./Cont. Treat./Market.

∆ Tot. Bal. (6m) 2347.60 2880.70 1335.98 1.76 0.81
∆ Tot. Bal. (12m) 6093.24 1945.00 2690.65 2.26 3.13
∆ Tot. Bal. > 0% (12m) 0.47 0.45 0.42 1.11 1.05
∆ Tot. Bal. > 20% (12m) 0.40 0.35 0.31 1.30 1.16

Table 4.4. Quantiles of Outcome Variables in Ashraf et al. (2006).

Variable Group 1% 5% 10% 50% 90% 95% 99% 99.5% 99.9%

∆
Tot. Bal.

(6m)

Treat. -1100 -500 -300 0 500 1500 7200 13100 28900
Market. -1000 -600 -400 0 100 900 5600 12200 40800
Cont. -1600 -600 -500 0 0 600 2700 6100 18400

∆
Tot. Bal.

(12m)

Treat. -1300 -900 -500 0 500 1600 8500 18100 102300
Market. -1300 -900 -500 -100 300 1600 10500 15700 19900
Cont. -2000 -1200 -800 -100 100 900 6500 8100 34300

Table 4.5. Kurtosis of the Outcome Variables in Ashraf et al. (2006).

Variable Treat. Market. Cont.

∆ Tot. Bal. (6m) 252.78 218.92 156.33
∆ Tot. Bal. (12m) 258.56 66.56 309.89

Researchers cannot estimate Cm if they only have access to a small pilot. However,

using the full experiment data, we are able to estimate Cm for a range of m. Our results are

displayed in Figure 4.4. Given the high kurtosis, there is a relatively large range of ratios
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of standard deviations for which the balanced allocation is preferred to the FNA. We can

further compute the m necessary before the FNA outperforms the balanced allocation.

Our results are collected in Table 4.6. The first two rows, labelled “Exact", refer to

intervals which are computed using the full experiment. Here, we see that the necessary

pilot sizes are between 25–50% of the full experiment. For the comparison of Treatment

and Marketing group at 6 months, the necessary pilot size exceeds 2, 000, falling outside

the set of grid points we explored. To complete the analysis, we use our asymptotic

result to obtain approximations of the necessary m. Comparing the asymptotic intervals

to the exact ones, we see that the former is far too optimistic for the fat-tailed DGP in

Ashraf et al. (2006). This is likely because the sub-Gaussian assumption is inappropriate

for this data. Nonetheless, applying the asymptotic bounds to the case of Treatment vs

Marketing group at 6 months, we find that a pilot size of 7,000 would be necessary for

the FNA to outperform balanced randomization. This is nearly 4 times the size of the

actual experiment.

Table 4.6. Necessary Pilot Sizes.

Treat./Cont. Treat./Market.

Exact 6m 930.70 –
Exact 12m 1014.94 475.29

Asympt. 6m 355.02 6857.59
Asympt. 12m 177.10 35.52

In sum, our analysis suggests that the FNA would have performed poorly in the

context of Ashraf et al. (2006). Even though the outcomes of interest exhibit stronger

heteroskedasticity, the fat tails of the outcome distributions also impedes the estimation
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Figure 4.4. Cm for the outcomes of interest estimated using the full exper-
iment data. Interval computed under the assumption that the pilot assigns
half of the units to treatment and half to control.

of p̃, so that ultimately, very large pilot sizes are needed for the FNA to outperform the

balanced allocation in this example.
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4.6. Conclusion

We study the properties of the Feasible Neyman Allocation (FNA) in a novel asymp-

totic framework for two-wave experiments that takes pilot size to be fixed as the size of the

main wave tends to infinity. In this setting, the estimated allocation has error that is not

negligible even in the limit. Our asymptotic model therefore corresponds more closely to

the finite sample statistical problem when pilots are small and the optimal allocation may

be poorly estimated. We establish the limiting distribution of the difference-in-means es-

timator under the FNA and characterize conditions under which it has larger asymptotic

variance compared to balanced randomization, where half of the main wave is assigned to

treatment and the remainder to control. This happens when the potential outcomes are

relatively homoskedastic with respect to treatment status or exhibit high kurtosis – situ-

ations that may arise frequently in practice. This issue is likely to be exacerbated when

observations exhibit cluster dependence or when researchers perform stratified randomiza-

tion with many strata, so that the “effective observations” used for variance computations

are fewer in number. Our results suggest that researchers should not use the FNA with

small pilots, particularly when they believe any of the above occurs.
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APPENDIX A

Appendix to Chapter 1

A.1. Bias of Diffusion under noise (β̂(T ))

Tables A.1 and A.2 presents bT (t, δ) used for calculating the bias estimator in Case

(b) of Theorem 1.5. In practice, papers rarely compute T > 5. We provide these terms

for T ≤ 10. Functions for computing the bias terms for arbitrary T are available from the

author’s website.

Each row of Tables A.1 and A.2 provide the coefficients for δs in bT (t, δ), for a particular

T and t. To obtain the bias formula for a given T , sum across all t’s for a given T . For

example, when T = 2, the correction term is

(
δ2 − 3δ3 + 3δ4

)
ι′nÂιn +

(
3δ3 − 2δ4

)
ι′nÂ

2ιn +
(
2δ4
)
ι′nÂ

3ιn .
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T t δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10

1 1 1

2
1 1 -3 3
2 3 -2
3 2

3

1 1 -3 7 -4 -8
2 3 -4 10
3 5 -2 -2
4 4 -1
5 2

4

1 1 -3 7 -13 -15 91 -182
2 3 -4 5 24 -94 160
3 5 -7 -1 36 -84
4 8 -6 -2 27
5 7 -5
6 5 -4
7 3

5

1 1 -3 7 -13 -4 161 -500 952 -654
2 3 -4 5 24 -178 450 -740 314
3 5 -7 11 57 -222 456 -362
4 8 -15 6 66 -225 317
5 12 -14 4 59 -148
6 11 -13 6 32
7 9 -12 6
8 7 -8
9 4

Table A.1. Coefficients for the bias of diffusion centrality, bT (t, δ). Blanks
indicate a coefficient of 0.
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T t δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10 δ11 δ12 δ13 δ14 δ15 δ16 δ17 δ18 δ19 δ20

6

1 1 -3 7 -13 -4 184 -819 1869 -1935 -3737 15981
2 3 -4 5 24 -229 770 -1496 954 4740 -14604
3 5 -7 11 52 -346 869 -1053 -1526 7728
4 8 -15 28 81 -406 915 -674 -1883
5 12 -28 22 99 -432 814 -312
6 17 -27 19 94 -359 485
7 16 -26 21 67 -209
8 14 -25 21 35
9 12 -21 15
10 9 -13
11 5

7

1 1 -3 7 -13 -4 184 -1097 3043 -3843 -6915 49578 -115459 80767
2 3 -4 5 24 -229 1088 -2552 2198 9142 -45912 90964 -37634
3 5 -7 11 52 -431 1363 -2000 -2751 23692 -59966 51305
4 8 -15 28 63 -565 1565 -1556 -5348 25674 -39288
5 12 -28 59 102 -692 1717 -1266 -5929 18469
6 17 -47 52 130 -739 1625 -718 -4616
7 23 -46 48 127 -669 1263 -272
8 22 -45 50 100 -516 758
9 20 -44 50 68 -306
10 18 -40 44 33
11 15 -32 29
12 11 -19
13 6

8

1 1 -3 7 -13 -4 184 -1097 4525 -7293 -6944 83485 -256225 310955 520469 -2445004
2 3 -4 5 24 -229 1088 -3969 4898 11110 -79100 207636 -174066 -652454 2204430
3 5 -7 11 52 -431 1963 -3592 -2432 39251 -130367 185191 177779 -1142919
4 8 -15 28 63 -696 2366 -3194 -7525 52268 -127455 81923 320735
5 12 -28 59 58 -912 2822 -3094 -10153 55373 -107794 30033
6 17 -47 110 108 -1096 3070 -2701 -12050 51958 -73965
7 23 -73 102 146 -1166 2990 -1896 -11737 35122
8 30 -72 97 145 -1099 2591 -1255 -7492
9 29 -71 99 118 -943 2064 -940
10 27 -70 99 86 -732 1305
11 25 -66 93 51 -426
12 22 -58 78 18
13 18 -45 49
14 13 -26
15 7

9

1 1 -3 7 -13 -4 184 -1097 4525 -12637 -1360 110968 -420423 695532 681922 -7068240 17664266 -13712687
2 3 -4 5 24 -229 1088 -3969 9368 8424 -109118 350830 -448472 -1023716 6464948 -13721396 6724528
3 5 -7 11 52 -431 1963 -6002 474 51064 -209648 389396 179724 -3281313 9018463 -8293240
4 8 -15 28 63 -696 3367 -5914 -6669 77446 -236871 246153 850584 -4132503 6454139
5 12 -28 59 58 -1079 4123 -6290 -11274 91953 -236476 139244 993350 -2918136
6 17 -47 110 18 -1366 4803 -6352 -15294 101721 -231751 105547 672714
7 23 -73 188 79 -1614 5172 -5880 -18707 102925 -204469 74412
8 30 -107 179 128 -1709 5108 -4789 -19615 88499 -132335
9 38 -106 173 129 -1645 4670 -3937 -15825 53896
10 37 -105 175 102 -1486 4121 -3585 -8366
11 35 -104 175 70 -1274 3362 -2653
12 33 -100 169 35 -968 2058
13 30 -92 154 2 -542
14 26 -79 125 -16
15 21 -60 76
16 15 -34
17 8

10

1 1 -3 7 -13 -4 184 -1097 4525 -12637 10890 125858 -597596 1235468 309432 -11044097 36311072 -45046667 -75501514 347810028
2 3 -4 5 24 -229 1088 -3969 9368 211 -130730 514002 -866532 -979926 10410814 -28739014 23733098 95980642 -310601986
3 5 -7 11 52 -431 1963 -6002 6504 56591 -292720 663931 -81390 -5051600 18395415 -26721605 -26472010 165085728
4 8 -15 28 63 -696 3367 -9914 -1678 97369 -363531 535304 1071910 -8050856 19840070 -13232554 -47818679
5 12 -28 59 58 -1079 5644 -11058 -7738 125398 -398107 394043 1745080 -8688965 16108742 -2368523
6 17 -47 110 18 -1535 6719 -11878 -13503 148861 -422298 318022 1897993 -7599134 9772214
7 23 -73 188 -84 -1901 7684 -12237 -18749 165197 -429048 278089 1667351 -4861956
8 30 -107 301 -11 -2225 8199 -11710 -23857 171609 -407905 236540 1042204
9 38 -150 291 50 -2347 8154 -10298 -26127 159555 -335522 149307
10 47 -149 284 53 -2286 7674 -9217 -22752 124908 -199857
11 46 -148 286 26 -2124 7102 -8832 -15237 70335
12 44 -147 286 -6 -1911 6343 -7913 -6786
13 42 -143 280 -41 -1605 5040 -5264
14 39 -135 265 -74 -1179 2982
15 35 -122 236 -92 -637
16 30 -103 187 -76
17 24 -77 111
18 17 -43
19 9

Table A.2. Coefficients for the bias of diffusion centrality, bT (t, δ) (continued
from Table A.1). Blanks indicate a coefficient of 0.
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A.2. Additional Motivation for Econometric Framework

This section discusses the connection of our econometric framework to the “Weak Ties"

theory of social networks. We also present other examples of network data that fit our

framework.

A.2.1. “Weak Ties" Theory

In the seminal paper titled “The Strength of Weak Ties", Granovetter (1973) argues that

lower intensity links, which constitute most of any given person’s relationships, are the

key drivers of many important social and economic outcomes. For example, in tracing

the network of job referrals, the author finds that 83% of recent job changers in a Boston

suburb found their new jobs through friends whom they saw fewer than twice a week,

and who were only “marginally included in the current network of contacts". The author

further notes: “It is remarkable that people receive crucial information from individuals

whose very existence they have forgotten." A series of empirical work has found evidence in

favor of the weak ties theory across diverse applications such as innovation (e.g. Reagans

and Zuckerman 2001), economic development (e.g. Eagle et al. 2010) and job referrals (e.g.

Rajkumar et al. 2022). This theory lends credence to our econometric model, in which

an unobserved network of weak ties not only drives economic effects but also generates a

sparse observed network.

A.2.2. Additional Examples

Example A.1. Carvalho et al. (2021) studies the propagation of shocks through

production networks during the Great East Japanese Earthquake of 2011. In the ideal
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production network, Aij records the value of i’s sales to j as a proportion of the value

of i’s total sales. In turn, Aij depends on Ui and Uj, which might index the quality

of a firm’s product, with higher quality firms requiring more and higher quality inputs.

However, these variables are not observed. Instead, the authors have access to data from

a credit reporting agency which includes supplier and customer information for firms.

The authors explicitly note two limitations in their data: “First, it only reports a binary

measure of interfirm supplier-customer relations... we do not observe a yen measure

associated with their transactions. Second, the forms used by [the credit agency] limit

the number of suppliers and customers that firms can report to 24 each." Suppose firms

only report suppliers from whom they receive delivery during the month in which the

forms are filed. Then a supplier that sends fewer inputs are more likely to be omitted in

any given month. Abstracting away from concerns about network censoring (see Griffith

2022), the conditional independence assumption would also be satisfied if the delivery

schedules for suppliers are independent.

Example A.2. Xu (2018) studies how patronage affected the promotion and perfor-

mance of bureaucrats in the Colonial Office of the British Empire. In the ideal network

for measuring patronage, Aij records intensity of the friendship between i and j. Here, Ui

might index traits such as gregariousness, polo skills and drinking habits among others.

Bureaucrats having more in common with their patrons may be more likely to be recom-

mended for promotion. However, the link intensity between bureaucrats are not observed.

Instead, the paper proxies for relationships using indicators for shared ancestry, member-

ship of social groups (such as the aristocracy) or attendance of the same elite school or

university. In this context, our data-generating process means that bureaucrats who are
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closer are more likely to satisfy the above criteria for connection. The conditional inde-

pendence assumption would be satisfied if the lack of observation are independent across

agent pairs, e.g. if some university records were randomly lost.
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A.3. Eigenvector Regularization

As our analysis in Section 1.3.1 shows, regression with eigenvector centrality is more

sensitive to sparsity under measurement error than degree or diffusion centralities. In this

section, we propose a regularization method that makes eigenvector centrality competitive

with the alternatives.

Definition A.1 (Regularized Eigenvector Centrality). Suppose pn is known. Let

λi := min

{
2npn

Ĉ
(1)
i

, 1

}
.

Then, define Âλ to be the regularized version of Â, where

(
Âλ

)
ij
=
√

λiλjÂij .

Finally, define regularized eigenvector centrality and the corresponding OLS estimator to

be:

Ĉ
(∞)
λ = anv1

(
Âλ

)
, β̂

(∞)
λ =

Y ′Ĉ
(∞)
λ(

Ĉ
(∞)
λ

)′
Ĉ

(∞)
λ

.

Our proposed measure is the principal eigenvector of Âλ, which is in turn a regularized

version of the observed adjacency matrix Â. The regularization technique, proposed in

Le et al. (2017), re-weights edges so that in Ĉ
(1)
λ,i ≤ 2npn for all i ∈ [n]. It is well-known

that high-degree vertices interfere with concentration of random matrices and that their

removal solves the problem (Feige and Ofek 2005). However, such a drastic procedure is

not ideal: intuition suggests that high degree vertices are important in a network, forming

hubs that connect many individuals. Le et al. (2017) shows that re-weighting the edges
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of high-degree vertices is sufficient to enforce concentration. In turn, we have consistency

of β̂(∞)
λ as our next theorem asserts.

Theorem A.1 (Consistency with Regularized Eigenvector Centrality). Suppose As-

sumptions 1.1 and 1.2 hold. Suppose further that E[εi|Ui] = 0 and E[ε2i ] = σ2 < ∞ and

λ1(f) > λ2(f). Then, an → ∞ and pn ≻ n−1 implies that β̃(∞) p→ β(∞).

Our result shows that β̂(∞)
λ is able to accommodate as much sparsity as β̂(1) and β̂(T ).

As such, when faced with sparse matrices, researchers could benefit from using regularized

eigenvector centrality in their regression instead. One difficulty with using the method is

that pn is not known in practice. It is not possible to estimate pn since the graphon f is

unknown. Under a mild assumption, however, the following is possible:

Corollary A.1 (Estimated pn). Suppose
∫
[0,1]2

f(u, v) dudv ≥ M > 0. Let

ρn = pn

∫
[0,1]2

f(u, v) dudv , ρ̂n =
ι′nAιn

n(n− 1)
.

Next define

λ̂i = min

{
3nρ̂n

M · Ĉ(1)
i

, 1

}
.

Using λ̂ in place of λ in Definition A.1 does not change the conclusions of Theorem A.1.

A.3.1. Proof of Theorem A.1

As in the Proof of Theorem 1.2, write

β̂
(∞)
λ = β(∞) + β(∞)

(
v1(Âλ)

)′ (
v1(A)− v1(Âλ)

)
+

1
√
an

v1(Âλ)
′ε(∞) .
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By Theorem and Remark 2.2 of Le et al. (2017), with probability at least 1− n−r,

∥∥∥A− Â
∥∥∥ ≤ kr3/2

√
npn

where k is a universal constant. Therefore, by the Davis-Kahan inequality (Theorem 4.5.5

in Vershynin 2018),

∥∥∥v1(A)− v1(Â)
∥∥∥ ≤ ∥Â− A∥

npn (λ1 − λ2)
= Op

(
1

√
npn

)
= op(1) .

Again, note that

E

[
v1(Â)

′ε(∞)

∣∣∣∣U] ≤ ∥v1(Â)∥σ̄2 = σ̄2.

Since an → ∞, conclude that 1√
an
v1(Â)

′ε(∞) p→ 0 and that β̂
(∞)
λ

p→ β(∞).

A.3.2. Proof of Corollary A.1

We first note that ρ̂ is a good estimator of ρn:

Theorem A.2 (Theorem 1, Bickel et al. 2011). Under Assumption 1.1 and 1.2,

√
n

(
ρ̂n
ρn

− 1

)
d→ N(0, σ2)

for some σ2 > 0.

Next, noting that M/
∫
f(u, v) ≤ 1

P

(
ρ̂n
M

≥ 2Mpn
3
∫
f(u, v) , dudv

)
→ 1
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Setting

λ̂i = min

{
3nρ̂n

M · C(1)
i

, 1

}
ensures that w.p.a. 1,

max
i∈[n]

C
(1)
λ,i ≤

3nρ̂n
M

≤
2
∫
f(u, v) dudv

M
· npn .

By Remark 2.1 of Le et al. (2017), the oracle procedure re-weights edges adjacent to

fewer than 10/(npn) nodes. Since λ̂i ≥ λi, re-weighting using λ̂ therefore also alters edges

adjacent to fewer than 10/(npn) nodes. As such, by Theorem 2.1 of ∥Âλ̂−A∥ = O(
√
npn)

w.p.a. 1. The proof then proceeds as in that of Theorem A.1.
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A.4. Proofs

Without loss of generality, let f(u, v) = f(v, u) and the f(u, u) = 0. Further define:

W =

∫
[0,1]2

f(u, v) dudv .

We state below a convenient lemma:

Lemma A.1 (Concentration in Spectral Norm). Suppose Assumptions 1.1 and 1.2

hold. Let ν ∈ (0, 1). Then with probability at least 1− exp
(
−n2p2n

√
k logn
log logn

)
∥∥∥A− Â

∥∥∥ ≤ k (npn)
(1+ν)/2

(
log n

log log n

)(1−ν)/4

where k is a universal constant. In other words,

(A.1)
∥∥∥A− Â

∥∥∥ = Op

(
(npn)

(1+ν)/2

(
log n

log log n

)(1−ν)/4
)

.

A.4.1. Proof of Theorem 1.1

In the setting with no measurement error, we write:

β̃(d) =

∑n
i=1 YiC

(d)
i∑n

i=1

(
C

(d)
i

)2 = β +

∑n
i=1C

(d)
i ε

(d)
i∑n

i=1

(
C

(d)
i

)2 .
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We first show that OLS is consistent when the lower bounds in the Theorem obtains.

Start with degree:

n∑
i=1

C
(1)
i ε

(1)
i =

n∑
i=1

n∑
j=1

pnf(Ui, Uj)ε
(1)
i

=
pn
2

(
n

2

)
· 1(

n
2

) n∑
i=1

n∑
j=1

f(Ui, Uj)ε
(1)
i + f(Uj, Ui)ε

(1)
j(A.2)

= Op

(
n3/2pn

)
,

In the last equality, we use our assumption that E
[
ε
(d)
i |Ui

]
= 0 and E

[(
ε
(d)
i

)2
|Ui

]
≤

σ̄2 < ∞, so that

√
n · 1(

n
2

) n∑
i=1

n∑
j=1

f(Ui, Uj)ε
(1)
i + f(Uj, Ui)ε

(1)
j

d→ N(0, γ)

for some γ > 0 by the standard CLT for U-statistics (e.g. Theorem 12.3 in Van der Vaart

2000). Similarly,

n∑
i=1

(
C

(1)
i

)2
=

n∑
i=1

(
n∑

j=1

pnf(Ui, Uj)

)2

= p2n

n∑
i=1

n∑
j=1

n∑
k=1

f(Ui, Uj)f(Ui, Uk)(A.3)

= p2n

(
n

3

)
· 1(

n
3

) n∑
k=1

f(Ui, Uj)f(Ui, Uk) = Op(n
3p2n)

By the LLN for U-statistics,

1(
n
3

) n∑
k=1

f(Ui, Uj)f(Ui, Uk)
p→ γ
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Next, note that γ > 0. Let k and Bk be such that f(u, v) > 1/k for all (u, v) ∈ Bk. Our

assumption W > 0 ensures that there exists k such that Pk :=
∫
[0,1]2

1Bk
dudv > 0. Then,

γ =

∫
[0,1]3

f(u1, u2)f(u1, u3) du1du2du3

≥
∫
π1(Bk)×π2(Bk)×π2(Bk)

k−2 du1du2du3 ≥ P 2
k k

−2 > 0

where πj(Bk) denotes the projection of Bk onto the jth coordinate. Hence, we have

consistency if n3/2pn → ∞. If n3/2pn ≈ 1, the β̃(1)−β(1) converges to a normal distribution.

If n3/2pn ≺ 1, β̃(1) − β(1) diverges. Hence, we have consistency if and only if n3/2pn → ∞

Next, consider diffusion centrality. Note that:

n∑
i=1

C
(T )
i ε

(T )
i =

T∑
t=1

δt · ι′nAtε(T ) ,
n∑

i=1

(
C

(T )
i

)2
=

T∑
t=1

δ2t · ι′nA2tιn .

We will identify the dominant terms in the numerator and denominator respectively in

each regime of pn. For t ≥ 2, write:

[
At
]
ij
= ptn

n∑
k1=1

n∑
k2=1

· · ·
n∑

kt−1=1

f(Ui, Uk1)f(Uk1 , Uk2) · · · f(Ukt−1 , Uj) .

Applying the CLT for U-statistics as before, we have that

ι′nA
tε(T ) = ptn

n∑
i=1

n∑
j=1

n∑
k1=1

n∑
k2=1

· · ·
n∑

kt−1=1

f(Ui, Uk1)f(Uk1 , Uk2) · · · f(Ukt−1 , Uj)ε
(T )
j = Op

(
ptnn

t+1/2
)
.
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Similarly,

ι′nA
2tιn = p2tn

n∑
i=1

n∑
j=1

n∑
k1=1

n∑
k2=1

· · ·
n∑

k2t−1=1

f(Ui, Uk1)f(Uk1 , Uk2) · · · f(Uk2t−1 , Uj) = Op

(
p2tn n

2t+1
)
.

(A.4)

Next, suppose npn ≻ 1. Then the dominant terms in the numerator and denominator are

of order O(pTnn
T+1/2) and O(p2Tn n2T+1) respectively. As such,

β̃(T ) − β(T ) = Op(p
−T
n n−T−1/2) = op(1) .

Suppose instead that npn ≈ 1. Then, all terms in the numerator are of the same order.

The same is true for the denominator. As before, β̃(T ) − β(T ) = Op(n
−1/2) = op(1).

Finally, suppose npn ≺ 1. In this regime, diffusion is equivalent to degree to a first

order. The dominant terms in the numerator and denominator are of order O(pnn
3/2) and

O(p2nn
3) respectively. Then, as before, we obtain consistency if and only if n3/2pn → ∞.

Lastly, consider eigenvector centrality. Given our assumptions, v1(A) is well-defined

with high probability. Next note that by construction,
∑n

i=1

(
C

(∞)
i

)2
= a2n . Furthermore,

by our assumptions,

E

[
n∑

i=1

C
(∞)
i ε

(∞)
i

∣∣U] =
n∑

i=1

C
(∞)
i E

[
ε
(∞)
i

∣∣U] = 0

Var

[
n∑

i=1

C
(∞)
i ε

(∞)
i

∣∣U] =
n∑

i=1

(
C

(d)
i

)2
Var

[
ε
(∞)
i

∣∣U] ≤ a2nσ̄
2 .

As such,

Var
[
β̃(∞) − β(∞)

]
≤ σ̄2

a2n
→ 0 if an → ∞ .
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Thus, an → ∞ implies that β̃(∞) L2→ β(∞).

Necessity follows from the counterexample in our main text, reproduced here for com-

pleteness. Suppose f = pn · 1 so that A = pnιnι
′
n. Then C(∞)(A) = anιn/

√
n. Hence,

β̃(∞) =

√
n

an
· Y

′ιn
ι′nιn

= β(∞) +
1

an
√
n

n∑
i=1

ε
(∞)
i .

Under our assumptions, 1√
n

∑n
i=1 ε

(∞)
i

d→ N(0,Var[ε(∞)
i ]). For β̃(∞) to be consistent for

β(∞), it is therefore necessary for an → ∞.

A.4.2. Proof of Theorem 1.2

We first write:

β̂(d) = β(d) + β(d)

(
Ĉ(d)

)′ (
C(d) − Ĉ(d)

)
(
Ĉ(d)

)′
Ĉ(d)

+

(
Ĉ(d)

)′
ε(d)(

Ĉ(d)
)′
Ĉ(d)

For convenience, denote

Âij = pnf(Ui, Uj) + ξij , E[ξij |Ui, Uj] = 0 .

Also let ξi =
∑n

j=1 ξij =
∑

j ̸=i ξij and ξ = (ξ1, ..., ξn)
′. Finally, let ξ by the n × n matrix

with (i, j)th entry ξij. Note that ξ = ξιn. By Assumption 1.2, ξij ⊥⊥ ε
(d)
k |U for all i, j, k

and d ∈ {1, T,∞}.

A.4.2.1. Degree. We first show that npn ≻ 1 is sufficient for consistency of β̂(1). Using

our new notation, the numerator is:

(
Ĉ(1)

)′
ε(1) = C(1)ε(1) + ξ′ε(1) .
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By conditional independence of ξ and ε(1), E
[
ξ′ε(1)

]
= 0

Var
[
ξ′ε(1) |U

]
= Var

[
2

n∑
i=1

∑
j>i

ξijε
(1)
i

∣∣∣∣U
]
= 4

n∑
i=1

Var

[
ε
(1)
i

∑
j>i

ξij

∣∣∣∣U
]

= 4
n∑

i=1

(
E

[(
ε
(1)
i

)2
|U
]∑

j>i

E
[
ξ2ij |U

])

≤ 2σ̄2

n∑
i=1

∑
j>i

pnf(Ui, Uj) (1− pnf(Ui, Uj))

≤ 2σ̄2

n∑
i=1

∑
j>i

pnf(Ui, Uj)

Taking expectations over U , we have that

Var
[
ξ′ε(1)

]
≤ 2σ̄2n2pn ·W ⇒ ξ′ε(1) = Op(npn

1/2)

Given Equation (A.2), C(1)ε(1) = Op(n
3/2pn) is thus dominant in the numerator if npn ≻ 1.

Next, consider the denominator, which has the form:

(
Ĉ(1)

)′
Ĉ(1) =

(
C(1)

)′
C(1) + 2

(
C(1)

)′
ξ + ξ′ξ .

We bound the last term in L1-norm. Observe that it has conditional expectation:

E [ξ′ξ |U ] = E

 n∑
i=1

(∑
j ̸=i

ξij

)2 ∣∣∣∣U
 =

n∑
i=1

∑
j ̸=i

∑
k ̸=i

E
[
ξijξik

∣∣U]
=

n∑
i=1

∑
j ̸=i

E
[
ξ2ij
∣∣U] ≤ n∑

i=1

∑
j ̸=i

pnf(Ui, Uj) .
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Taking expectations over U ,

E [ξ′ξ] ≤ n2pn ·W ⇒ ξ′ξ = Op(n
2pn) .(A.5)

Next, consider the middle term, which we will bound in L2-norm. Write

E

[((
C(1)

)′
ξ
)2 ∣∣∣∣U] = E

[
n∑

i=1

n∑
j=1

C
(1)
i ξiC

(1)
j ξj

∣∣∣∣U
]

= E

[
n∑

i=1

C
(1)
i ξiC

(1)
i ξi

∣∣∣∣U
]
+ E

[
n∑

i=1

n∑
j ̸=i

C
(1)
i ξiC

(1)
j ξj

∣∣∣∣U
]

.

Note that

E

[
n∑

i=1

n∑
j ̸=i

C
(1)
i ξiC

(1)
j ξj

∣∣∣∣U
]
=

n∑
i=1

n∑
j ̸=i

C
(1)
i C

(1)
j E

[
ξiξj

∣∣U] = n∑
i=1

n∑
j ̸=i

C
(1)
i C

(1)
j E

[
ξ2ij
∣∣U]

≤
n∑

i=1

n∑
j ̸=i

C
(1)
i C

(1)
j pnf(Ui, Uj)

=
n∑

i=1

n∑
k=1

n∑
l=1

n∑
j ̸=i

p3nf(Ui, Uk)f(Ui, Ul)f(Ui, Uj)

The second equality above follows form the fact that when i ̸= j, E[ξikξjl |U ] = 0 unless

k = j and l = i. Furthermore,

E

[
n∑

i=1

C
(1)
i ξiC

(1)
i ξi

∣∣∣∣U
]
≤

n∑
i=1

(
C

(1)
i

)2
E
[
ξ2i
∣∣U] = n∑

i=1

(
C

(1)
i

)2
E

[∑
j ̸=i

ξ2ij

∣∣∣∣U
]

≤
n∑

i=1

(
C

(1)
i

)2∑
j ̸=i

pnf(Ui, Uj)

≤
n∑

i=1

n∑
k=1

n∑
l=1

p2nf(Ui, Uk)f(Ui, Ul)
∑
j ̸=i

pnf(Ui, Uj)
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Taking expectation over two displays above,

E

[((
C(1)

)′
ξ
)2]

= O(n4p3n) ⇒
(
C(1)

)′
ξ = Op(n

2p3/2n ) .(A.6)

By Equation (A.3),
(
C(1)

)′
C(1) = Op(n

3p2n). Putting the rates we derived together, the

denominator is

(
Ĉ(1)

)′
Ĉ(1) = Op(n

3p2n) +Op(n
2p3/2n ) +Op(n

2pn) .(A.7)

Hence, npn ≻ 1 implies that (
Ĉ(1)

)′
ε(1)(

Ĉ(1)
)′
Ĉ(1)

p→ 0 .

It remains to note that

(
Ĉ(1)

)′ (
C(1) − Ĉ(1)

)
=
(
C(1)

)′
ξ + ξ′ξ

so that by the rates in (A.5), (A.6) and (A.7),

β(d)

(
Ĉ(d)

)′ (
C(d) − Ĉ(d)

)
(
Ĉ(d)

)′
Ĉ(d)

= Op(n
−1p−1

n )
p→ 0 .

We can loosely write the above results as

β̂(1) − β(1) ≈ n2p
3/2
n + n2pn

n3p2n + n2p
3/2
n + n2pn

+
n3/2pn + np

1/2
n

n3p2n + n2p
3/2
n + n2pn

As such, β̂(1) is consistent for β(1) if npn ≻ 1.
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Suppose instead that n−2 ≺ pn ≺ n−1. By our rate calculations, we can write

β̂(1) − β(1) = −β(1) · ξ
′ξ + op(n

2pn)

ξ′ξ + op(n2pn)
+ op(1)

In other words, β̂(1) p→ 0. Finally, if pn ≺ n−2, we β̂(1) − β(1),

β̂(1) =
ξ′ε(1)

ξ′ξ
+ op(1) = Op(n

−2p−1
n )

diverges in probability.

A.4.2.2. Diffusion Centrality. Diffusion centrality is comprised of terms of the form:

Ât = (A+ ξ)t =
∑
B∈B̃

B

Here, B̃ = {A, ξ}t. B is a mixed product of A and ξ, and will be the central object of

our analysis. For convenience, define:

Definition A.2 (Mixed Product of Order t). A mixed product of order t is a term of

the form B =
∏t

j=1Bj where Bj ∈ {A, ξ}. Suppose Bj = ξ for τ ≥ 0 number of j’s. We

will also say that the order of ξ in B is τ . Define J =
{
j ∈ [2t+ 1] | bkj ,kj+1

= ξkj ,kj+1

}
.

Then, J indicate the locations of the ξ in the mixed product B. Let p = (p1, ..., pr)
′

record lengths of the contiguous blocks in J . If p1, ..., pr are all even, we say that B is

even.

The dependence of J and p on B is suppressed for convenience.
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Example A.3. In the above notation,

B = A2ξ3Aξ2A ⇒ J = {(3, 4, 5) , (7, 8) , (13, 14, 15) , (17, 18)} , p = (3, 2, 3, 2) .

First note that degree centrality is diffusion centrality with T = 1. Since β̂(1) is

inconsistent for β(1) when npn ≺ 1, consistency of diffusion centrality also requires that

npn ≻ 1. We show that β̂(T ) p→ β(T ) when npn ≻ 1. Write

Ĉ(T ) =

(
T∑
t=1

δtÂt

)
ιn =

(
T∑
t=1

δt (A+ ξ)t
)
ιn

Expanding the products, we can write
(
Ĉ(T )

)′
Ĉ(T ) and

(
Ĉ(T )

)′ (
Ĉ(T ) − C(T )

)
as sums

involving mixed products of A and ξ.

We seek to bound ι′nBιn in L2-norm. First note that if Bj = A for all j ∈ [t], then by

Equation (A.4), B = Op(n
t+1ptn). Suppose that Bj = ξ for at least one j. Then,

Lemma A.2. Suppose B is a order t mixed product of A and ξ. Suppose that the

order of ξ in B is τ ≥ 1. Then, there exists α, β ∈ N, α ≥ β such that

ι′nBιn = Op

(
nt+1−α/2pt−β/2

n

)
≼ Op

(
nt+1−τ/2pt−τ/2

n

)
.

In particular,

ι′nA
tιn = Op

(
n2t+2p2tn

)
≻ n2t+2−αp2t−β

n .

Furthermore, suppose B is not even. Then,

ι′nBιn = Op

(
1√
n

)
·Op

(
nt+1−τ/2pt−τ/2

n

)
.
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If B is even, then

ι′nBιn − E [ι′nBιn |U ] = Op

(
1√
n

)
·Op

(
nt+1−τ/2pt−τ/2

n

)
.

Taking expectations over U , we therefore have that

ι′nA
tιn = Op(n

t+1ptn) ≻ ιnBιn = Op(n
t+1−α/2pt−β/2

n )

under the assumption that npn ≻ 1, as long as B contains at least one ξ. Now, we return

to the nuisance term:

β(T )

(
Ĉ(T )

)′ (
C(T ) − Ĉ(T )

)
(
Ĉ(T )

)′
Ĉ(T )

.

By our analysis, the dominant term in the denominator is ιnA2T ιn = Op(n
2T+2p2Tn ). Every

term in the numerator has strictly smaller order. Hence, we conclude that the nuisance

term is op(1). It remains to show that(
Ĉ(T )

)′
ε(T )(

Ĉ(T )
)′
Ĉ(T )

≈ ιnA
T ε(T )

ιnA2T ιn

p→ 0 .

Note that the numerator is a U-statistic of order T + 1. It also has mean 0 by our condi-

tional mean independence assumption. Hence, by the U-statistic LLN, the numerator is of

order op(nT+1pTn ), which is again strictly smaller than that of the denominator. Conclude

that β̂(T ) p→ β(T ) if npn ≻ 1.

A.4.2.3. Eigenvector Centrality.

Inconsistency. We first provide a counterexample under the assumption that pn satisfies

Equation (1.5). Let f = 1, β = 1 and suppose ε
(∞)
i ⊥⊥ Ui (By Assumption 1.2, ε(∞)

i ⊥⊥ ξjk
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for all i, j, k ∈ [n]). Theorem 1.7, Remark 1.4 and Remark 1.8 in Alt et al. (2021b)

provides the following description of the v1(Â). Let i ∈ [n] be a vertex, Br(i) be the set of

vertices which are in the r-neighbourhood of i. Let Sr(i) = Br(i)\Br−1(i) be the sphere

of radius r around i. Let u = logn
npn log logn

. Then, w.p.a. 1, there exists ṽ such that for any

η > 0,

(A.8) ∥ṽ − v1(Â)∥ ≤ 1

u · npn
+

(npn)
−1/2+3η

√
u

+
1

npn
.

Furthermore, ṽ has the following structure:

ṽ =
R∑

r=0

ursr(i) , sr(i) =
1Sr(i)

∥1Sr(i)∥

where R ≺ npn
log logn

and

u1 =
1

√
npn

u0 , ur ≤
(

2√
u

)r−1

u1

and u0 is defined by the normalization ∥ṽ∥ = 1. The result of Alt et al. (2021b) says that

v1(Â) is well approximated by an eigenvector that is exponentially localized around some

vertex i. This vertex is in fact the one with the highest realized degree. Let us calculate

a lower bound on u0.

1 = ṽ′ṽ =
R∑

r=1

u2
r ≤ u2

0 +
1

npn
u2
0

(
∞∑
r=1

(
4

u

)r−1
)

.
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The above inequality comes from using upper bounds for ur and replacing R with ∞.

Collecting the u0’s, we find that w.p.a. 1,

u2
0 ≥

1

1 + 1
npn

1
1−4/u

.

Since npn, u → ∞ when pn satisfies Equation (1.5), we have that for n large enough,

u0 ≥ 1√
2

w.p.a. 1. Now, write

β̂(∞) =
an

(
v1(Â)

)′
Y

a2n

(
v1(Â)

)′
v1(Â)

=
1

an

(
v1(Â)

)′
Y

=
1

an

(
v1(Â)

)′(
an

ιn√
n
+ ε(∞)

)

=

(
v1(Â)

)′
ιn

√
n

+

(
v1(Â)

)′
ε(∞)

an

By independence of ε(∞) and (ξ, U), we have that Var
[
v1(Â)

′ε(∞)
∣∣U] = ∥v1(Â)∥σ2 = σ2.

Hence, σ2/an is a lower bound for the variance of β̂(∞). Hence, an → ∞ is necessary for

consistency.

Suppose an → ∞. We have consistency if and only if(
v1(Â)

)′
ιn

√
n

p→ 1 ,

in which case

β̂(∞) =

(
v1(Â)

)′
ιn

√
n

+ op(1) =
ṽ′ιn√
n
+ op(1)
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Notice that the optimization problem:

max
v∈Rn

v′ιn such that ∥v∥ = 1

has solution v = ιn/
√
n and optimal value

√
n. We can also consider the constrained

optimization problem:

max
v∈Rn

v′ιn such that ∥v∥ = 1 and v1 ≥
1√
2
.

This problem has solution v1 =
1√
2

and v−1 = ιn−1/
√
2n and optimal value

γ∗ :=
1√
2
+

n− 1√
2n

The constrained maximization problem corresponds to the best case allocation of
(
v1(Â)

)
−i

that makes
(
v1(Â)

)′
ι as close to

√
n as possible, subject to the requirement that

(
v1(Â)

)
i
≥

1/
√
2. As such, w.p.a. 1, we have that

β̂(∞) ≤ γ∗
√
n
=

1√
2n

+
n− 1

n
√
2

→ 1√
2
.

Hence, β̂(∞) is bounded away from β(∞) = 1 in probability. Conclude that the estimator

is inconsistent.

Consistency. We next show that β̂(∞) p→ β(∞) when npn ≻
√

logn
log logn

. Write

β̂(∞) = β(∞) + β(∞)

(
Ĉ(∞)

)′ (
C(∞) − Ĉ(∞)

)
(
Ĉ(∞)

)′
Ĉ(∞)

+

(
Ĉ(∞)

)′
ε(∞)(

Ĉ(∞)
)′
Ĉ(∞)

(A.9)

= β(∞) + β(∞)
(
v1(Â)

)′ (
v1(A)− v1(Â)

)
+

1

an
v1(Â)

′ε(∞)(A.10)
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since
(
Ĉ(∞)

)′
Ĉ(∞) = a2n by construction. Therefore, by Lemma A.1 and the Davis-Kahan

inequality (e.g. Theorem 4.5.5 in Vershynin 2018), for any ν ∈ (0, 1),

∥∥∥v1(A)− v1(Â)
∥∥∥ ≤ ∥Â− A∥

npn (λ1 − λ2)
= Op

(√ log n

log log n

/
npn

)(1−ν)/2
 = op(1)

where first equality follows from Equation (A.1) and the second from our assumption on

npn.

Finally, note that

E
[
v1(Â)

′ε(∞)
∣∣U] ≤ ∥v1(Â)∥σ̄2 = σ̄2.

Since an → ∞, conclude that 1
an
v1(Â)

′ε(∞) p→ 0 and that β̂(∞) p→ β(∞).

A.4.3. Proof of Theorem 1.5

A.4.3.1. Case (a). Although case (b) specializes to (a), we will prove (a) separately

because

(1) The proof for our plug-in estimator for case (a) is also the base case for an

induction argument in the proof of case (b)

(2) Case (c), by Lemma A.3 equivalent to case (a) to a first order.

To prove (a) first recall our analysis in the proof of Theorem 1.2, which yields:

β̂(1) = β(1) + β(1)

(
Ĉ(1)

)′ (
C(1) − Ĉ(1)

)
(
Ĉ(1)

)′
Ĉ(1)

+

(
Ĉ(1)

)′
ε(∞)(

Ĉ(1)
)′
Ĉ(1)

= β(1) + β(1) ι′nAξιn + ι′nξ
2ιn

ιnA2ιn + op (ιnA2ι′n)
+

Op

(
n3/2pn

)
ιnA2ιn + op (ι′nA

2ιn)
.(A.11)
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Recall also that,

E [ι′nξιn |U ] =
n∑

i=1

∑
j ̸=i

E
[
ξ2ij |U

]
=

n∑
i=1

∑
j ̸=i

pnf(Ui, Uj) (1− pnf(Ui, Uj))

so that the unconditional expectation is

E [ι′nξιn] = Ω
(
n2pn

)
.

To obtain our desired result, we will show that ι′nAξιn converges to a normal distribution

asymptotically once suitable scaled, and that it dominates
(
ι′nξ

2ιn − E [ι′nξιn |U ]
)
. We

then show that the population quantities in the CLT can be estimated at a sufficiently

fast rate.

First observe that by Assumption 1.2, E [ι′nAξιn |U ] = 0. Next, define

V (1)
∗ (U) := E

[
(ι′nAξιn)

2 ∣∣U]
=
∑
j<k

pnf(Uj, Uk) (1− pnf(Uj, Uk))

(∑
i ̸=j

pnf(Ui, Uj) +
∑
i ̸=k

pnf(Ui, Uk)

)2

.

Then, by the U-statistics LLN,

1

n4p3n
V (1)
∗ (U)

p→
∫

f(U1, U2)f(U1, U3)f(U1, U4) dU+
1

2

∫
f(U1, U2)f(U2, U3)f(U3, U4) dU > 0 .

Next, define the event Υ(1) :=
{
V (1)(U) > kn4p3n

}
, where k is chosen to be 1/2 the

magnitude of the limit above. We will apply the Berry-Esseen inequality conditional on
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U ∈ Υ(1). Note that by Assumption 1.2, ξij’s continue to be independent after condition-

ing. By Theorem 3.7 in Chen et al. (2011),

sup
z∈R

∣∣∣∣∣∣P
 ι′nAξιn√

V
(1)
∗ (U)

≤ z

∣∣∣∣U
− Φ(z)

∣∣∣∣∣∣ ≤ 10γ .

Next, we evaluate the third moments of the summands:

E

∣∣∣∣∣ξjk∑
i ̸=j

pnf(Ui, Uj)

∣∣∣∣∣
3 ∣∣∣∣U

 =

∣∣∣∣∣∑
i ̸=j

pnf(Ui, Uj)

∣∣∣∣∣
3

E
[
|ξjk|3

∣∣U]
≤ n3p3n · pn

As such, on Υ(1),

γ ≤
∑
j<k

n3p4n

(kn4p3n)
3/2

≈ n5p4n

n6p
9/2
n

=
1

np1/2
→ 0

where the above bound is independent of U . Furthermore, P (Υ(1)) → 1. Conclude that

ι′nAξιn√
V

(1)
∗ (U)

d→ N (0, 1) .

It remains to show that ι′nξ
2ιn − E

[
ι′nξ

2ιn |U
]
= op

(
n2p

3/2
n

)
. Write

Γ(1) :=
∑

i1,...,i6

E
[
(ξi1,i2ξi2,i3 − E [ξi1,i2ξi2,i3 |U ]) (ξi4,i5ξi5,i6 − E [ξi4,i5ξi5,i6 |U ])

∣∣U] .

Note that

E
[
ξi1i2ξi2i3ξi4i5ξi5i6

∣∣U] = 0 ⇒ E
[
(ξi1,i2ξi2,i3 − E [ξi1,i2ξi2,i3 |U ]) (ξi4,i5ξi5,i6 − E [ξi4,i5ξi5,i6 |U ])

∣∣U] = 0 .
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This is because for the former to hold, we must have an edge (ik, ik+1) that is of multiplicity

1, which is sufficient for making the latter conditional expectation 0. Figure A.1 shows

all possible configurations of indices that will lead to E
[
ξi1i2ξi2i3ξi4i5ξi5i6

∣∣U] ̸= 0. Table

A.3 records the frequency of their appearance.

i j k l i j k

G1 G2

i j

G4

i j k

G3

Figure A.1. The possible configurations of indices that will lead to
E
[
ξijξjkξi′j′ξj′k′

∣∣U] being non-zero. These are the only graphs that can
be formed using 2 walks of length 2 and in which each edge has multiplicity
at least 2.

Graph Number of Instances E
[
ξijξjkξi′j′ξj′k′

∣∣U]
G1 n(n− 1)(n− 2)(n− 3) p2nf(Ui, Uj)f(Uk, Ul) +Op(p

3
n)

G2 n(n− 1)(n− 2) p2nf(Ui, Uj)f(Uk, Ul) +Op(p
3
n)

G3 n(n− 1)(n− 2) p2nf(Ui, Uj)f(Uk, Ul) +Op(p
3
n)

G4 n(n− 1) pnf(Ui, Uj) +Op(p
2
n)

Table A.3. The number of instances of each graph, as well as the value of
their conditional expectations, up to the leading term.
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Observe that

E
[
(ξi1,i2ξi2,i3 − E [ξi1,i2ξi2,i3 |U ]) (ξi4,i5ξi5,i6 − E [ξi4,i5ξi5,i6 |U ])

∣∣U]
̸= E

[
ξi1,i2ξi2,i3 − E [ξi1,i2ξi2,i3 |U ]

∣∣U]E [ξi4,i5ξi5,i6 − E [ξi4,i5ξi5,i6 |U ]
∣∣U]

only if there is an edge that is common to both of the above multiplicands. In particular,

G1 and G2 will not contribute to Γ(1). As such, by Table A.3, Γ(1) = Op (n
3p2n). Conclude

that

ι′nξ
2ιn − E

[
ι′nξ

2ιn |U
]
= Op

(
n3/2pn

)
= op

(
n2p3/2n

)
.

Using the above results, we can rewrite Equation (A.11) as

β̂(1) = β(1) + β(1) ι
′
nAξιn − E

[
ι′nξ

2ιn |U
]
+Op

(
n3/2pn

)(
Ĉ(1)

)
Ĉ(1)

.

Consequently,

β̂(1) − β(1)
(
1−B(1)

)
β(1)

√
V (1)

=
ι′nAξιn√

V
(1)
∗

+
Op

(
n3/2pn

)
Ωp

(
n2p

3/2
n

) d→ N(0, 1) .

where

B(1) =
((

Ĉ(1)
)
Ĉ(1)

)−1

E
[
ι′nξ

2ιn |U
]
,

V (1) =
((

Ĉ(1)
)
Ĉ(1)

)−2

V (1)
∗ .
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Plug-in Estimation. Finally, we show that B̂(1) and V̂ (1) estimate B(1) and V (1) at

appropriate rates. Define V̂
(1)
∗ =

((
Ĉ(1)

)
Ĉ(1)

)−2

V̂ (1). We will show that

B̂(1) −B(1)

√
V (1)

p→ 0 ,
V̂ (1)

V (1)
=

V̂
(1)
∗

V
(1)
∗

p→ 1 .

The first statement above is straightforward:

B̂(1) −B(1)

√
V (1)

=
1√
V

(1)
∗

∑
i ̸=j

pnf(Ui, Uj) + ξij − pnf(Ui, Uj) (1− pnf(Ui, Uj))

= Op

(
1

n2p
3/2
n

)
·
( ∑

i ̸=j

ξij︸ ︷︷ ︸
=Op(np

1/2
n )

by ((A.5))

+
∑
i ̸=j

p2nf
2(Ui, Uj)︸ ︷︷ ︸

=Op(n2p2n)

)
= Op

(
1

npn
+ p1/2n

)
= op(1) .
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Next, consider:

2
(
V̂ (1)
∗ − V (1)

∗

)
=
∑
j ̸=k

Âjk

(
Ĉ

(1)
j + Ĉ

(1)
k

)2
− pnf(Uj, Uk) (1− pnf(Uj, Uk))

(∑
i ̸=j

pnf(Ui, Uj) +
∑
i ̸=k

pnf(Ui, Uk)

)2

=
∑
j ̸=k

Âjk

(
Ĉ

(1)
j + Ĉ

(1)
k

)2
− pnf(Uj, Uk)

(∑
i ̸=j

pnf(Ui, Uj) +
∑
i ̸=k

pnf(Ui, Uk)

)2

+Op

(
n4p4n

)
= 2

∑
j ̸=k

Ajk

(
C

(1)
j + C

(1)
k

)
(ξj + ξk)︸ ︷︷ ︸

=:Γ
(1)
1

+
∑
j ̸=k

Ajk (ξj + ξk)
2

︸ ︷︷ ︸
=:Γ

(1)
2

+
∑
j ̸=k

ξjk

(
C

(1)
j + C

(1)
k

)2
︸ ︷︷ ︸

=:Γ
(1)
3

+2
∑
j ̸=k

ξjk

(
C

(1)
j + C

(1)
k

)
(ξj + ξk)︸ ︷︷ ︸

=:Γ
(1)
4

+
∑
j ̸=k

ξjk (ξj + ξk)
2

︸ ︷︷ ︸
=:Γ

(1)
5

Recall that V 1
∗ = Ωp (n

4p3n). We will show that Γ
(1)
a = op (n

4p3n) for a ∈ [5].

Γ
(1)
1 =

∑
j,k

Ajk

(
C

(1)
j + C

(1)
k

)∑
i ̸=j

ξij +
∑
j,k

Ajk

(
C

(1)
j + C

(1)
k

)∑
i ̸=k

ξik

= 2
∑
i,j

ξij
∑
k

Ajk

(
C

(1)
j + C

(1)
k

)
by symmetry
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Taking conditional expectations,

E
[
Γ
(1)
1 |U

]
= E

(4∑
i<j

ξij
∑
k

Ajk

(
C

(1)
j + C

(1)
k

))2 ∣∣∣∣U


= 16
∑
i<j

E[ξ2ij |U ]

(∑
k

Ajk

(
C

(1)
j + C

(1)
k

))2

≤ 16n2pn · (2npn)4 since C
(1)
j ≤ npn for all j ∈ [n]

= Op

(
n6p5n

)
Hence, Γ(1)

1 = Op

(
n3p

5/3
n

)
.

Next,

Γ
(1)
2 = 2

∑
j,k

Ajk

(∑
i ̸=j

ξij

)2

+
∑
j,k

Ajk

(∑
i ̸=j

ξij

)(∑
i ̸=k

ξik

)
.

First note that

∑
j,k

Ajk

(∑
i ̸=j

ξij

)(∑
i ̸=k

ξik

)
= ι′nξAξιn = Op

(
n7/2p5/2n

)
by Lemma A.2.

Secondly, we have that

E

∑
j,k

Ajk

(∑
i ̸=j

ξij

)2
2 ∣∣∣∣U

 = E

(∑
i,j,l

ξijξjl
∑
k

Ajk

)2 ∣∣∣∣U


≤ n2p2nE
[(
ι′nξ

2ιn
)2 ∣∣U] ≤ n2p2n · n4p2n

Noting that the bound above does not depend on U , we have

Γ
(1)
2 = Op

(
n3p2n

)
+Op

(
n7/2p5/2n

)
.
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Now,

E

[(
Γ
(1)
3

)2
|U
]
=
∑
j,k

E
[
ξ2jk |U

] (
C

(1)
j + C

(1)
k

)4
≤ n2pn · (2npn)4

As such, Γ(1)
3 = Op

(
n3p

5/2
n

)
.

By a similar argument to above, we also have that

Γ
(1)
4 = 2

∑
j,k,l

ξjkξjl

(
C

(1)
j + C

(1)
k

)
= Op (npn) ·Op

(
ιnξ

2ιn
)
= Op

(
n3p2n

)
.

Finally,

Γ
(1)
5 = 2

∑
j,k

ξjk

(∑
i ̸=j

ξij

)2

+
∑
j,k

ξjk
∑
i ̸=j

ξij
∑
l ̸=k

ξkl

First observe that

∑
j,k

ξjk
∑
i ̸=j

ξij
∑
l ̸=k

ξkl = ι′nξ
3ιn = Op

(
n2p3/2n

)
by Lemma A.2.

Now,

E

∑
j,k

ξjk

(∑
i ̸=j

ξij

)2
2

|U

 =
∑
i1,...i8

E [ξi1i2ξi1i3ξi1i4 · ξi5i6ξi5i7ξi5i8 |U ]

Relative to Lemma 2, here we are counting the contributions made by two three-pointed

stars. The graphs that contribute the above expectation are displayed in Figure A.2. Their

frequencies and magnitudes are recorded in Table A.4. Summing up the contribution of

each graph, we have that the above display is Op (n
4p2n). Hence, Γ

(1)
5 = Op (n

2pn) +

Op

(
n2p

3/2
n

)
= Op (n

2pn).
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Putting all our results together, we have that

V̂ 1
∗ − V

(1)
∗

V
(1)
∗

= op(1) ,

which together with our central limit therom and result on B̂(1) implies our desired result:

Ŝ(1) :=
β̂(1) − β(1)

(
1− B̂(1)

)
β(1)
√
V̂ (1)

d→ N(0, 1) .

i j k l

G1

G2

G3

i j k l

i j

Figure A.2. The possible configurations of indices that will lead to
E [ξi1i2ξi1i3ξi1i4 · ξi5i6ξi5i7ξi5i8 |U ] being non-zero. These are the only graphs
that can be formed using 2 3-pointed stars and in which each edge has mul-
tiplicity at least 2.

A.4.3.2. Case (b). As with case (a), our strategy is to remove the bias coming from ξ2

and to obtain a central limit theorem on the leading term of the remainder. Write

β̂(T ) = β(T ) + β(T )

(
Ĉ(T )

)′ (
C(T ) − Ĉ(T )

)
(
Ĉ(T )

)′
Ĉ(T )

+

(
Ĉ(T )

)′
ε(T )(

Ĉ(T )
)′
Ĉ(T )

.(A.12)
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Graph Number of Instances E
[
ξijξjkξi′j′ξj′k′

∣∣U]
G1 n(n− 1)(n− 2)(n− 3) p2nf(Ui, Uj)f(Uk, Ul) +Op(p

3
n)

G2 n(n− 1)(n− 2)(n− 3) p3nf(Ui, Uj)f(Uj, Uk)f(Uk, Ul) +Op(p
4
n)

G3 n(n− 1) pnf(Ui, Uj) +Op(p
2
n)

Table A.4. The number of instances of each graph, as well as the value of
their conditional expectations, up to the leading term. Note that we can
consider G1 with j = k, though the contribution of this term is strictly
smaller than the contribution of G1.

As before,
(
Ĉ(T )

)′ (
C(T ) − Ĉ(T )

)
comprises mixed products of A and ξ, whose order

with respect to ξ is at least 1. Let B be such a term. By Lemma A.2, if B is even,

ι′nBιn − E [ι′nBιn |U ] = Op

(
nt+1ptn√
n
(√

npn
)τ
)

.

Otherwise,

ι′nBιn = Op

(
nt+1ptn√
n
(√

npn
)τ
)

.

In other words, once the even terms are centered, the dominant terms in
(
Ĉ(T )

)′ (
C(T ) − Ĉ(T )

)
are of order 2T overall, and have order 1 with respect to ξ. Such terms are dominant

provided that they attain the stated upper bounds. There are T of these, taking the form
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below:

ι′n

T∑
t=1

AT+t−1ξAT−tιn

=
∑
j,k

ξjk

T∑
t=1

∑
i

Ai1,i2Ai2,i3 · · ·AiT+t−1,j · Ak,iT+t+2
· · ·Ai2T .i2T+1

=
∑
j<k

ξjk

T∑
t=1

(∑
i

Ai1,i2Ai2,i3 · · ·AiT+t−1,j · Ak,iT+t+2
· · ·Ai2T .i2T+1

+
∑
i

Ai1,i2Ai2,i3 · · ·AiT+t−1,k · Aj,iT−t+2
· · ·Ai2T .i2T+1

)

=
∑
j<k

ξjk

T∑
t=1

(∑
i

Ai1,i2Ai2,i3 · · ·AiT+t−1,j · Ak,iT+t+2
· · ·Ai2T .i2T+1

+
∑
i

Ai2T+1,i2TAi2T ,i2T−1
· · ·AiT+t+2,k · Aj,iT+t−1

· · ·Ai2.i1

)
by symmetry

=
∑
j<k

ξjk

2T∑
t=1

(∑
i

Ai1,i2Ai2,i3 · · ·Ait−1,j · Ak,it+2 · · ·Ai2T .i2T+1

)
by change of index.

In the above display, summation over i is understood to exclude iT+t and iT+t+1, which

have been replaced by j and k. Now define

V (T )
∗ (U) := δ4TE

(ι′n T∑
t=1

AT+t−1ξAT−tιn

)2 ∣∣∣∣U


=
1

2
δ4T
∑
j,k

Ajk(1− Ajk)

(
2T∑
t=1

∑
i

Ai1,i2Ai2,i3 · · ·Ait−1,j · Ak,it+2 · · ·Ai2T .i2T+1

)2

.

We can get an intuition for the above term by considering binary A, in which case the

variance counts the number of ways two paths of length 2T+1 have at least one overlapping

edge. The archetypal motif is displayed in Figure A.3.
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i j

Figure A.3. When A is binary, V (T )
∗ (U) counts motifs like the one displayed.

Here, the red path and the blue path have the same length of 2T + 1 and
overlap on the edge (i, j).

By the U -statistic LLN,

1

n4Tp4T−1
n

V (T )
∗

p→ δ4T
2T∑
t=1

2T∑
s=1

1

2

∫
f(U1, U2) · [f(U3, U4) · · · f(Ut+1, U1)] · [f(U2, Ut+2) · · · f(U2T , U2T+1)]

· [f(U2T+3, U2T+4) · · · f(U2T+1+s, U1)]

(A.13)

· [f(U2, U2T+2+s) · · · f(U4T−s−1, U4T−s)] dU .

Notice that √
n4Tp4T−1

n =
n2T+1p2Tn√
n
√
npn

,

so that our conjectured leading term in fact strictly dominates all the other terms. Now,

let B be the set of even mixed products in
(
Ĉ(T )

)′ (
C(T ) − Ĉ(T )

)
. Furthermore, define

B(T ) =

((
Ĉ(T )

)′
Ĉ(T )

)−1 ∑
B∈B

E [ι′nBιn |U ]

V (T ) =

((
Ĉ(T )

)′
Ĉ(T )

)−2

V (T )
∗ .
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Then, (
β̂(T ) − β(T ) −B(T )

)
β(T )

√
V (T )

=

(
Ĉ(T )

)′ (
C(T ) − Ĉ(T )

)
−
∑

B∈B E [ι′nBιn |U ]√
V

(T )
∗

=
ι′n
∑T

t=1A
T+t−1ξAT−tιn√
V

(T )
∗

+ op(1) .

The proof then proceeds similarly to Case (a). Define the event Υ(T ) :=
{
V

(T )
∗ > kn4Tp4T−1

n

}
,

where k is chosen to be 1/2 the magnitude of the limit in Equation (A.13). Applying the

Berry-Eseen inequality of Chen et al. (2011) conditioning on U ∈ Υ(T ) and noting that

P
(
Υ(T )

)
→ 1, we obtain:

ι′n
∑T

t=1 A
T+t−1ξAT−tιn√
V

(T )
∗

d→ N(0, 1)

which yields the desired result.

Plug-in Estimation. We need to estimate the bias for B ∈ B, as well as V
(T )
∗ . We

estimate V
(T )
∗ , as in case (a), we replace Ajk with Âjk, and (1 − Ajk) with 1. The proof

is largely similar to that in Case (a). It is tedious but straightforward since there are no

rate requirements on the estimation of V (T )
∗ . We discuss them in turn.

The main challenge in inference for β(T ) arises because the standard deviation of β̂(d)

is larger than it’s bias. In order for the resulting de-biased inference method to improve

mean square error, bias estimation must occur at a sufficiently fast rate.

Our strategy is as follows. Let B ∈ B be order t and have order τ with respect to

ξ. It’s block structure is described by p = (p1, ..., pr), where each component is even. We
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first claim is that there exists a function γ̃(t, A) taking the form:

γ̃(t, A) = γ̃1(t) · A+ γ̃2(t) · A2 + · · ·+ γ̃t−1(t) · At−1

such that

E [ι′nBιn |U ]− ι′n

(
At−τ

r∏
j=1

γ̃(pj, A)

)
ιn = Op

(
nt+1−τ/2pt−τ/2

n

)
.

In words, the bias of B is “close to" γ̃, a polynomial of the unobserved adjacency matrix

A. Then provided that we have good estimators of ιnAtιn, we will be able to estimate

E [ι′nBιn |U ] by substituting them into γ̃.

To obtain the γ̃(t, A), write:

E [ι′nBιn |U ] =
∑

i1,...it+1

E
[
Bi1i2 · · ·Bitit+1 |U

]
.(A.14)

We are interested in graphs induced by relationships on the nodes [n] that will lead to

non-zero contributions to the above sum. Only nodes corresponding to ξ matters, i.e. ij

s.t j ∈ J ∪ (J + 1). Hence, we are interested in graphs formed by overlaying r walks,

each of length p1, ..., pr. For a given graph G, write its order as

∑
i∈rG

E
[
Bi1i2 · · ·Bitit+1 |U

]
= Op(n

α+1pβn).

where α, β ∈ N and α ≥ β. By Lemma 2, we know that

ι′nBιn = Op

(
nt+1−α/2pt−β/2

n

)
≼ Op

(
nt+1−τ/2pt−τ/2

n

)
.
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Since τ ≥ 2, any graph for which α > β satisfies our criteria without bias correction. To

achieve the 1√
n

term in (A.4.3.2), we only need to deal with graphs for which α = β. We

called these the best case graphs in proof of 1.2, and they have the same characteristics

as before. Namely, every edge must have multiplicity 2 greater than 2, and each edge

must involve only one walk, since requiring an edge to be traversed by more than one

walk increases α but not β. Thus, it is sufficient to consider the walks separately.

For a given pj, we need to characterize walks for which α = β. When α = β, the

order on pn (i.e. the number of unique edges) is exactly 1 less than the order of n (i.e.

the number of nodes). That is, the only graphs that matter are paths.

Let G be a walk with length pj. Suppose that after removing duplicate edges, G is a

path of length s. Then for deterministic vectors x and y,

∑
i∈rG

xi1E
[
ξi1i2 · · · ξitit+1 |U

]
yis+1 = (1 + op (1)) ·

∑
i

xi1Ai1i2 · · ·Aisis+1yis+1 .

The indices on the right hand side are unrestricted. The above assertion arises by the

following injective mapping from rG → [n]s. By definition, G is a walk of length pj which

traverses s + 1 unique nodes. Let j1, ..., js, js+1 be the steps at which G reaches a new

unique node. Then our injective map is i 7→ (ij1 , ..., ijs+1).

Example A.4. Consider the walk i1 → i2 → i1 → i3, where all the nodes are distinct.

Then j = (1, 2, 4). Suppose i = (5, 10, 5, 4). Then i 7→ (5, 10, 4).

There is a small error term arising from two sources. Firstly, we are only capturing

the first order term of the E
[
ξi1i2 · · · ξitit+1 |U

]
. There are higher order terms whose

magnitude are at most of pn times this term that we omit. Second, there are paths on
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the right hand side which is not in the range of our injective map. These are in turn i’s

on which a given node appears more than once. There cannot be more than ns−1 such

paths. Hence, these paths are at most Op

(
1
n

)
of the right hand side term.

Noting that G is finite, the previous display allows to write

E
[
ιnξ

tιn |U
]
=
∑
G∈G

∑
i∈rG

xi1E
[
ξi1i2 · · · ξitit+1 |U

]
yis+1(A.15)

=

(
1 +Op

(
pn

1

n

))
·
∑
G∈G

x′As(G)y(A.16)

=

(
1 +Op

(
pn +

1

n

))
·
t−1∑
s=1

γ̃s(t) · x′As(G)y(A.17)

In the second equation, s(G) is the number of unique edges in G. Note that s(G) ≤ t/2

since every edge must have multiplicity at least 2. In the last equation, we collected the

powers of A and defined γ̃s(t) to be the number of walks of length t with s unique nodes.

Let us now return to the arbitrary block B. As discussed previously, it is sufficient

to consider graphs in which each walk forms a component that is disconnected from all

others. On those graphs, each path is independent from the others. Equation (A.15)

therefore allows us to write

E [ι′nBιn |U ]− ι′n

(
At−τ

r∏
j=1

γ̃(pj, A)

)
ιn = Op

(
pn +

1

n

)
E [ι′nBιn |U ]

= Op

(
pn +

1

n

)
Op

(
nt+1−τ/2pt−τ/2

n

)
= Op

(
√
pn +

1√
n

)
Op

(
1√
n

)
Op

(
nt+1−τ/2pt−τ/2

n

)
.
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The last equality above uses the fact that npn → ∞, yielding the desired bound. It is

difficult to provide closed-form expression for γ̃s(t) since they are highly combinatorial.

However, walks of length t are easy to enumerate on the computer for moderate t. Before

proceeding, let us rewrite the γ̃ function in a more convenient form. Define γ(B,A) such

that

(A.18)

(
At−τ

r∏
j=1

γ̃(pj, A)

)
= γ1(B)A+ ...+ γt−1(B)At−1

Here, γt(B) = 0 because τ ≥ 2, and for each block of ξ in B, we have that every constituent

s(G) satisfies s(G) ≤ t/2.

At this point, we have found a good estimator for E [ι′nBιn |U ] in terms of the un-

observed matrix A. In order to estimate E [ι′nBιn |U ] at a good rate, we need good

estimators for ιnA
tιn. Let g̃(t) be our estimator for ιnA

tιn. Then we seek:

(A.19) ι′nA
tιn − ι′ng̃(t)ιn = op

(
1√
n

)
Op

(
nt+1ptn

)
.

Suppose we estimate ιnA
tιn with the naive estimator: ιnÂ

tιn. Our proofs, in particular

Lemma A.2, yields that the estimator is consistent at the following rate

ιnA
tιn

ιnÂtιn
= 1 +Op

(
1

npn

)
,

so that the error term is too large relative to the variance.

Next write

ι′nÂ
tιn = ι′nA

tιn +
∑
B∈B

ι′nBιn .
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Suppose for now that we have access to g̃(1), ..., g̃(t− 1) satisfying Equation (A.19). We

can then consider defining

g̃(t) := ι′nÂ
tιn −

∑
B∈B

γ(B, g)

where with some abuse of notation, we define

γ(B, g) := γ1(B)g̃(1) + ...+ γt−1(B)g̃(t− 1) .

Since g̃(1), ..., g̃(t− 1) satisfy Equation (A.19), and noting that B is finite,

ι′nÂ
tιn −

∑
B∈B

γ(B, g) = ι′nA
tιn +Op

(
1√
n

)
Op

(
nt+1/2pt−1/2

n

)
.

which satisfies Equation (A.19) since 1√
npn

→ 0. As such, we can recursively construct

g̃(t) from g̃(1), ..., g̃(t − 1). However, as our proofs in Case (a) shows, g̃(1) = Â is valid.

Rewrite g̃ such that g̃ = g and

g(t) = g1(t)Â+ · · ·+ gt(t)Â
t .

The coefficients of g(t) are presented in Table A.5.

With γ(·, g) in hand, we are able to estimate E [ιnBιn |U ] for arbitrary B. Recall that

the bias of β̂(T ) is

B(T )
∗ =

∑
B∈B

δt(B)ι′nBιn .

As before, B is the set of even Bs that are generated. Note that this set is “asymmetric"

in that At appears as a product from the left but not the right. t(B) is the function giving
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the order of B. Debiasing by our estimators, we obtain that

∑
B∈B

δt(B)ι′n (B − γ(B, g)) ιn = Op

(
1√
n

)
Op

(
n2Tp2T−1

n

)
.

This is because B is even and of order at most 2T . As such, since τ ≥ 2,

ι′nB − γ(B, g)ιn = Op

(
1√
n

)
Op

(
n2T+1−τ/2p2T−τ/2

n

)
= Op

(
1√
n

)
Op

(
n2Tp2T−1

n

)
Now, since

√
V

(T )
∗ = Ωp

(
n2Tp

2T−1/2
n

)
, we conclude that

B̂
(T )
∗ −B

(T )
∗√

V
(T )
∗

= op(1) .

Substituting our computed values of γ̃s(t) and g(t) yields the formula given in Appendix

A.1.

A.4.3.3. Case (c). Suppose β(d) = 0 for d ∈ {1, T}. We can write

β̂(T ) =

(
Ĉ(T )

)′
ε(T )(

Ĉ(T )
)′
Ĉ(T )

=
ιn

(∑T
t=1 δ

tÂt
)
ε(T )

ιn

(∑T
t=1 δ

tÂt
)2

ιn

Let B be a mixed product of order t, and let it have order τ ≥ 0 with respect to ξ. Then,

E

[((
ε(T )
)′
Bιn

)2
|U, ξ

]
=

n∑
i1=1

n∑
i2=1

· · ·
n∑

i2t+2=1

E
[
ε
(T )
i1

ε
(T )
it+2

|U, ξ
]
Bi1,i2Bi2,i3 · · ·Bit,it+1 ·Bit+2,it+3Bit+3,it+4 · · ·Bi2t+1,k2t+2
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r
t 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 -1 2 -5 12 -20 -12 295 -1584 5623 -12530 -1806 186702
2 1 -2 4 -8 8 42 -340 1510 -4712 8408 13088 -194318
3 1 -3 7 -14 10 96 -655 2552 -6190 1068 83832
4 1 -4 11 -24 22 142 -1043 4078 -9444 -2150
5 1 -5 16 -39 48 176 -1558 6542 -16554
6 1 -6 22 -60 94 178 -2170 10028
7 1 -7 29 -88 167 122 -2836
8 1 -8 37 -124 275 -26
9 1 -9 46 -169 427
10 1 -10 56 -224
11 1 -11 67
12 1 -12
13 1

r
t 14 15 16 17 18 19 20

1 -1101323 3938488 -7533897 -13585642 198008994 -999517964 3021609795
2 981200 -3101066 4292162 20354680 -188470026 832916330 -2145039932
3 -530446 2005368 -4310942 -4074647 91205574 -496007668 1614224856
4 151068 -879116 3034670 -4907736 -17574745 186419358 -871382472
5 4548 213314 -1337608 4785512 -8228118 -25081260 283591630
6 -28178 22194 281946 -2019280 7855844 -16309132 -23702626
7 14700 -46038 58866 333648 -2899960 12404253 -30152117
8 -3480 20662 -72062 124800 337020 -3955392 18806973
9 -309 -3984 27916 -108304 232853 246742 -5122509
10 633 -780 -4178 36312 -156828 398862 -1830
11 -290 904 -1503 -3829 45486 -219512 641615
12 79 -368 1252 -2554 -2629 54786 -297780
13 -13 92 -459 1690 -4022 -182 63185
14 1 -14 106 -564 2232 -6010 4010
15 1 -15 121 -684 2893 -8636
16 1 -16 137 -820 3689
17 1 -17 154 -973
18 1 -18 172
19 1 -19
20 1

Table A.5. The coefficients gr(t) for t ≤ 20.
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Now, E
[
ε
(T )
i1

ε
(T )
it+2

|U, ξ
]
= 0 unless i1 = it+2. Hence, we only need to consider sequences

i where i1 = it+2. Under this restriction,

E

[((
ε(T )
)′
Bιn

)2
|U, ξ

]
≤ σ̄2ι′nB̃ιn .

where B̃ is of order 2t + 1 unconditionally, and of order 2τ with respect to ξ. Conclude

by Lemma A.2 that

(A.20)
(
ε(T )
)′
Bιn = Op

(√
n2t+3/2−τp2t+1−τ

n

)
= Op

(
nt+3/4−τ/2pt+1/2−τ/2

n

)
.

Next, write

1

pTn
ι′nA

T ε(T ) =
∑

i1,...,iT+1

f(Ui1 , Ui2) · · · f(UiT , UiT+1
)ε

(T )
iT+1

=
∑

i∈IT+1

∑
π∈ΠT+1

f(Uiπ(1)
, Uiπ(2)

) · · · f(Uiπ(T )
, Uiπ(T+1)

)ε
(T )
(iπ(T+1))

.

where IT+1 comprises all unordered subsets of T +1 integers chosen from [n] and ΠT+1 is

the set of permutations on [T+1]. We can hence define the following symmetric U -statistic

kernel of order T + 1:

h
((

Ui1 , ε
(T )
i1

)
, · · · ,

(
UiT+1

, ε
(T )
iT+1

))
=

∑
π∈ΠT+1

f(Uiπ(1)
, Uiπ(2)

) · · · f(Uiπ(T )
, Uiπ(T+1)

)ε
(T )
iπ(T+1)

.
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Since f is bounded and ε
(T )
i has uniformly bounded conditional expectations, E[h2] < ∞.

By the U -statistic CLT (Theorem 12.3 in Van der Vaart 2000),

(A.21)
√
n

1(
n

T+1

) ∑
i∈IT+1

∑
π∈ΠT+1

f(Uiπ(1)
, Uiπ(2)

) · · · f(Uiπ(T )
, Uiπ(T+1)

)ε
(T )
iπ(T+1)

d→ N
(
0 , (T + 1)2ζ1

)
,

where

ζ1 = E
[
h
((

U1, ε
(T )
1

)
,
(
U2, ε

(T )
2

)
, · · · ,

(
UT+1, ε

(T )
T+1

))
h
((

U1, ε
(T )
1

)
,
(
UT+2, ε

(T )
T+2

)
, · · · ,

(
U2T+1, ε

(T )
2T+1

))]
= E

 ∑
π∈ΠT

∑
π′∈Π′

T

f(Uπ(1), Uπ(2)) · · · f(Uπ(T ), UT+1) · f(Uπ′(T+1), Uπ′(T+2)) · · · f(Uπ′(2T ), UT+1)
(
ε
(T )
T+1

)2
= (T !)2E

[
f(U1, U2) · · · f(UT , UT+1) · f(U1, UT+2) · · · f(U2T , U2T+1)

(
ε
(T )
1

)2]
̸= 0 by assumption.

Here, Π′
T is the set of permutations on {T + 1, ..., 2T}. As such,

ι′nA
T ε(T ) = Op

(
1√
n
nT+1pTn

)
.

Together with the bound in Equation (A.20), this implies that ι′nA
T ε(T ) is the dominant

term in the
(
Ĉ(T )

)′
ε(T ) Next, note that by the U -statistic LLN,

1

n2T+1

n∑
j=1

(
ιn
(
AT
)
·,j

)2 (
ε
(T )
j

)2
=

1

n2T+1

∑
i1,...,i2T+1

f(Ui1 , Ui2) · · · f(UiT , UiT+1
) · f(Ui1 , UiT+2

) · · · f(Ui2T , Ui2T+1
)
(
ε
(T )
i2T+1

)2
p→ 1

(T !)2
ζ1 .
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By the usual plug-in arguments, we have that

1

n2T+1

((
Ĉ(T )

)′
Ĉ(T )

)2

V̂
(T )
0 =

1

n2T+1

n∑
j=1

(
Ĉ

(T )
j

)2 (
ε̂
(T )
j

)2
=

1

n2T+1

n∑
j=1

(
C

(T )
j

)2 (
ε
(T )
j

)
2 + op(1) by the consistency of β̂(T )

=
1

n2T+1

n∑
j=1

δ2T
(
ιn
(
AT
)
·,j

)2 (
ε
(T )
j

)2
+ op(1) by the dominance of AT

As such, the robust/heteroskedasticity consistent t-statistic

β̂(T )√
V̂

(T )
0

=

(
Ĉ(T )

)′
ε(T )√((

Ĉ(T )
)′
Ĉ(T )

)2

V̂
(T )
0

=
n−(T+1/2)δT ι′nA

T ε(T )√
1

n2T+1

∑n
j=1 δ

2T
(
ιn (AT )·,j

)2 (
ε
(T )
j

)2 + op(1)

=

√
n

( n
T+1)

∑
i∈IT+1

∑
π∈ΠT+1

f(Uiπ(1)
, Uiπ(2)

) · · · f(Uiπ(T )
, Uiπ(T+1)

)ε
(T )
iπ(T+1)

(T + 1)!
√

1
(T !)2

ζ1
+ op(1)

d→ N(0, 1) by Equation (A.21)

As such, the robust/heteroskedasticity consistent t-statistic is appropriate for inference

under the null hypothesis that β(T ) = 0.
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A.4.4. Proof of Theorem 1.6

We start by writing

β̂(∞) =
Y ′
(
anv1(Â)

)
(
anv1(Â)

)′ (
anv1(Â)

) = β(∞) (v1(A))
′ v1(Â) +

1

an

(
ε(∞)

)′
v1(Â) .

The main tool we use to study the above term is the following:

Lemma A.3. Suppose Assumption E2 holds and that pn satisfies Equation (1.10).

Then,

(v1(A))
′ v1(Â) = (v1(A))

′ v1(A) +
(v1(A))

′ ξv1(A)

λ1(A)
+

(v1(A))
′ ξ2v1(A)

(λ1(A))
2 + op

(
1

(npn)
3

)

+
R∑

r=2

λr(A)

λ1(A)

vr(A)
′v1(Â)

vr(A)′vr(Â)
·Op

(
1

npn

)

and (
ε(∞)

an

)′

v1(Â) =

(
ε(∞)

an

)′

v1(A) + op

(
1

an

)
.

Now, by the analogous arguments as in Lemma A.2 and proof of Lemma A.3,

(v1(A))
′ ξv1(A)

λ1(A)
= Op

(
1√

n
√
npn

)
,

(v1(A))
′ ξ2v1(A)

(λ1(A))
2 = Op

(
1

npn

)
,(A.22)

(v1(A))
′ ξ2v1(A)

(λ1(A))
2 −

E
[
(v1(A))

′ ξ2v1(A) |U
]

(λ1(A))
2 = Op

(
1√

n (npn)

)
(A.23)

Furthermore, by the Davis-Kahan Inequality,

∣∣∣∣ 1

λs(A)
vr(A)

′vs(Â)

∣∣∣∣ ≤ ∣∣∣∣ 1

λs(A)
vr(A)

′vs(A)

∣∣∣∣+ ∥vr(A)∥ ·

∥∥∥∥∥vs(Â)− θvs(A)

λs(A)

∥∥∥∥∥ .(A.24)
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A.4.4.1. Case (a). Let us now consider individual cases in (a). starting with (iii).

Suppose we require only that pn ≻ n−1
(

logn
log logn

)1/2+η

. Then by Lemma A.1, we can claim

that ∥∥∥∥∥vs(Â)− θvs(A)

λs(A)

∥∥∥∥∥ = op(1)

but cannot control the rate of convergence. Nonetheless, if an ≻ npn, Equations (A.22)

and (A.24), together with Lemma A.3 implies that

(A.25) β̂(∞) = β(∞) +

(
ε(∞)

an

)′

v1(A) + op

(
1

an

)
.

Note that bias correction is irrelevant in this regime since bias is of smaller order than an.

Suppose instead, as in Case (a) (ii) that pn ≻ n−1 log n. Then, by Theorem 1.1 in the

Supplementary Appendix to Lei and Rinaldo (2015), we can claim that∥∥∥∥∥vs(Â)− θvs(A)

λs(A)

∥∥∥∥∥ = Op

(
1

√
npn

)

Then, provided that an ≺ (npn)
3/2,

β̂(∞) − β(∞) − β(∞)E
[
(v1(A))

′ ξ2v1(A) |U
]

(λ1(A))
2 =

(
ε(∞)

an

)′

v1(A) + op

(
1

an

)
.

This time the bias correction is required.

Finally, consider Case (a) (i), when β(∞) = 0. Then it is immediate that Equation

(A.25) obtains. In all three cases, the asymptotic distribution of the estimator depends

on
(
ε(∞)

)′
v1(A)/an. Next, notice that

Var
((

ε(∞)
)′
v1(A) |U

)
= E

[((
ε(∞)

)′
v1(A)

)2
|U
]
=

n∑
i=1

[v1(A)]
2
i E

[(
ε
(∞)
i

)2
|U
]

.
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As such, by Assumption 1.3,

σ2 ≤ Var
((

ε(∞)
)′
v1(A) |U

)
≤ σ̄2 .

Now, as in the proof of Lemma A.3, let Υ be the event that | 1√
n

∑r
i=1 ϕr(Ui)ϕs(Ui) < 1/R2.

This happens with probability approaching 1 since R is finite. On this event, ∥v∥ = 1

implies that |vr| < 2 for all r. Furthermore, observe that since ∥f∥∞ ≤ 1, ∥ϕr∥∞ ≤ 1. As

such, on Υ, |vr(A)∥∞ ≤ 2R/
√
n. As such,

n∑
i=1

[v1(A)]
3
i E

[∣∣∣ε(∞)
i

∣∣∣3 |U
]

Var
(
(ε(∞))

′
v1(A) |U

) ≤ κ̄3

σ2

8R3

√
n

→ 0 .

Note that the bound on the right-hand side does not depend on U . Putting the above

ingredients together, we have that on Υ, the Berry-Esseen Inequality of Chen et al. (2011)

yields

sup
z∈R

∣∣∣∣∣∣P
 (

ε(∞)
)′
v1(A)√

Var
(
(ε(∞))

′
v1(A) |U

) ≤ z

− Φ(z)

∣∣∣∣∣∣ ≤ 10 · κ̄3

σ2

8R3

√
n

.

Then since P (Υ) → 1, we have that

(
ε(∞)

)′
v1(A)√

Var
(
(ε(∞))

′
v1(A) |U

) d→ N(0, 1) .

Define

B(∞) =
E
[
(v1(A))

′ ξ2v1(A) |U
]

(λ1(A))
2 ,

V
(∞)
0 = Var

((
ε(∞)

)′
v1(A) |U

)
,
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Then we have that

β̂(∞) − β(∞)
(
1−B(∞)

)√
V

(∞)
0

=
ε′v1(A)√

Var
(
(ε(∞))

′
v1(A) |U

) + op (1)
d→ N(0, 1) .

The validity of plug-in estimation follows from arguments that are essentially identical

to Section A.4.3.3.

A.4.4.2. Case (b). Suppose an ≻ n
√
pn. By Lemma A.3, we have that

β̂(∞) = β(∞) + β(∞)

[
(v1(A))

′ v1(A) +
(v1(A))

′ ξv1(A)

λ1(A)
+

(v1(A))
′ ξ2v1(A)

(λ1(A))
2 + op

(
1

(npn)
3

)

+
R∑

r=2

λr(A)

λ1(A)

vr(A)
′v1(Â)

vr(A)′vr(Â)
·Op

(
1

npn

)
+ op

(
1

an

)]
.

Furthermore, since pn ≻ n−1 log n, the Davis-Kahan Inequality (Theorem 4.5.5 in Ver-

shynin 2018), together with Theorem 1.1 in the Supplymentary Material to Lei and Ri-

naldo (2015) gives us that

R∑
r=2

λr(A)

λ1(A)

vr(A)
′v1(Â)

vr(A)′vr(Â)
= Op

(
1

√
npn

)
.

As such,

β̂(∞) − β(∞)
(
1−B(∞)

)
= β(∞) (v1(A))

′ ξv1(A)

λ1(A)
+Op

(
1

(npn)
3/2

)

= β(∞) (v1(A))
′ ξv1(A)

λ1(A)
+Op

(
1

n
√
pn

)
,(A.26)
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since pn ≻ 1/
√
n. Now note that

Var (v1(A)′ξv1(A) |U)

= E [(v1(A)
′ξv1(A))]

= E

(2∑
i<j

[v1(A)]i [v1(A)]j ξij

)2 ∣∣∣∣U


=
∑
i<j

[v1(A)]
2
i [v1(A)]

2
j pnf(Ui, Uj) (1− pnf(Ui, Uj))

= 4 (1 +Op(pn)) ·
∑
i<j

[v1(A)]
2
i [v1(A)]

2
j pnf(Ui, Uj)

Recall that from the proof of Lemma A.3 that

A =
R∑

r=1

λ̃n

(
ϕr(U)√

n

)
ϕr(U)√

n
⇒ v1(A) =

R∑
r=1

αr
ϕr(U)√

n
.

so that |αr| ≤ 2R for all r ∈ [R] w.p.a. 1. We now argue that α1
p→ 1 and αr → 0 for

r ≥ 2. Note that we can write

Av1(A) =

(
R∑

r=1

λ̃rn

(
ϕr(U)√

n

)
ϕr(U)√

n

)(
R∑

r=1

αr
ϕr(U)√

n

)

=
R∑

r=1

λ̃rn · αrϕr ·
(
ϕr(U)√

n

)′
ϕr(U)√

n
+
∑
r ̸=s

λ̃rαs

(
ϕr(U)√

n

)
ϕs(U)√

n
.
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Consequently,

(v1(A))
′Av1(A) =

R∑
r=1

λ̃rnα
2
r

((
ϕr(U)√

n

)′
ϕr(U)√

n

)2

+
R∑

r=1

R∑
s=1

λ̃rnαrαr

(
ϕr(U)√

n

)
ϕs(U)√

n

(
ϕr(U)√

n

)′(
ϕr(U)√

n

)

+
R∑

r=1

∑
s ̸=t

λ̃snαtαr

(
ϕr(U)√

n

)
ϕs(U)√

n

(
ϕr(U)√

n

)
ϕt(U)√

n

Now,

(
ϕr(U)√

n

)′
ϕr(U)√

n
=

1

n

n∑
i=1

ϕr(Ui)ϕs(Ui) =


1 +Op

(
1√
n

)
if r = s

Op

(
1√
n

)
if r ̸= s

Since |αr| ≤ 2R w.p.a 1,

(v1(A))
′ Av1(A) =

R∑
r=1

λ̃rnα
2
r + op(1)

Since |λ̃1| > |λ̃r| for r ≥ 2,

(v1(A))
′Av1(A)

λ̃1n

p→ 1 ⇒ α1
p→ 1 .

Doing a similar expansion for ∥v∥2, we arrive at

1 = ∥v1(A)∥2 =
R∑

r=1

α2
r +Op

(
1√
n

)
.
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Since α1
p→ 1,

(A.27) αr
p→ 0 for all r ≥ 2 .

Since |ϕr(Ui)| ≤ 1, the above analysis also implies that

|[V1(A)]i| =

∣∣∣∣∣
R∑

r=1

(αr + op(1))
ϕr(Ui)√

n

∣∣∣∣∣ ≤ 1√
ns

R∑
r=1

|αr|+ op(1)

where the bound on the right hand side depends on the convergence of αr and does not

vary across i. This yields ∥v1(A)∥∞ ≤ 2/
√
n w.p.a. 1.

As such,

Var (n · v1(A)′ξv1(A) |U) = 4 (1 + op(1))
∑
i<j

ϕ1(Ui)
2ϕ1(Uj)

2pnf(Ui, Uj) .

Conclude by the U -statistics LLN that

1

n2pn
Var (n · v1(A)′ξv1(A) |U)

p→ 2E
[
ϕ1(U1)

2ϕ1(U2)
2f(U1, U2)

]
> 0 .

As such, if we define Υ(∞) to be the event on which

Var (n · v1(A)′ξv1(A) |U) > n2pn · E
[
ϕ1(U1)

2ϕ1(U2)
2f(U1, U2)

]
and ∥v1(A)∥∞ ≤ 2/

√
n. By the Berry-Esseen Inequality,

sup
x∈R

∣∣∣∣∣P
(

(n · v1(A)) ξv1(A)√
Var (n · v1(A)′ξv1(A) |U)

≤ x

∣∣∣∣U,Υ(∞)

)
− Φ(x)

∣∣∣∣∣ ≤ 10γ
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where

γ =
∑
i<j

[√
n · v1(A)

]3
i

[√
nv1(A)

]3
j

E
[
ξ3ij |U

]
(Var (n · v1(A)′ξv1(A) |U))3/2

≤ 64R4 n2pn

(n2pnE [ϕ1(U1)2ϕ1(U2)2f(U1, U2)])
3/2

→ 0

where the last bound follows because we are on the event Υ and does not depend on U

otherwise. Substituting this into Equation (A.26), we have that

λ1(A)
(
β̂(∞) − β(∞)

(
1−B(∞)

))
β(∞)

√
V (∞)

=
(n · v1(A)) ξv1(A)√

Var (n · v1(A)′ξv1(A) |U)
+ op(1)

d→ N(0, 1) ,

where the estimate on the error follows because λ1(A)/
√
V (∞) = Op

(
n−1p

−1/2
n

)
.

The validity of plug-in estimation follows from arguments that are essentially identical

to Section A.4.3.1.

A.4.4.3. Proof of Corollary 1.5. By our analysis of v1(Â) above, we have that

n · a−2
n = n

 1

n

n∑
i=1

[v1(Â)]
2
i −

(
1

n

n∑
i=1

[v1(Â)]i

)2


= 1−

(
1√
n

n∑
i=1

[v1(Â)]i

)2

since ∥v1(Â)∥ = 1

= 1−

(
1√
n

n∑
i=1

ϕ1(Ui)√
n

+ op(1)

)2

by Equation (A.27)

p→ 1− E [ϕ1(U1)]
2 .
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A.4.5. Proofs of Auxillary Lemmas

A.4.5.1. Proof of Lemma A.1. Suppose npn ≽ log2 n. By Theorem 1.1 in the Supple-

mentary Material to Lei and Rinaldo (2015), noting that the constants in their bounds

are uniform in Pij we have that with probability at least 1− n−r, where r can be chosen

independently of ∥∥∥A− Â
∥∥∥ ≤ k(r)

√
npn

where k(r) is a constant that depends only on r.

Suppose instead that
√

logn
log logn

≺ npn ≺ log2 n. Our set up satisfies the requirements

for Corollary 3.3 in Benaych-Georges et al. (2020). Setting their ε2 =
(√

logn
log logn

/(npn)
)1−ν

and noting that their d is our npn, we have that with probability at least 1−exp

(
− (npn)

2+ν
(

logn
log logn

)(1−ν)/2

k

)
∥∥∥A− Â

∥∥∥ ≤ k (npn)
(1+ν)/2

(
log n

log log n

)(1−ν)/4

where k is a universal constant.

Combining these two inequalities yields the desired results.

A.4.5.2. Proof of Lemma A.2. Let B be a mixed product as in Definition A.2. Sup-

pose Bj = ξ for at least one j ∈ [t] and write:

(ι′nBιn)
2
=

 n∑
i=1

n∑
k1=1

· · ·
n∑

kt−1=1

n∑
j=1

bi,k1bk1,k2 · · · bkt−1,j

 ·

 n∑
i′=1

n∑
k′1=1

· · ·
n∑

k′t−1=1

n∑
j′=1

bi′,k′1bk′1,k′2 · · · bk′t−1,j
′


=

n∑
k1=1

n∑
k2=1

· · ·
n∑

k2t+2=1

bk1,k2bk2,k3 · · · bkt,kt+1 · bkt+2,kt+3bkt+3,kt+4 · · · bk2t+1,k2t+2

In the second line we relabel the indices of summation. Each term in the above sum is a

product of 2t terms. Note that the term bkt+1,kt+2 does not exist. Next, we take conditional
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expectations:

E
[
(ι′nBιn)

2 |U
]
=

n∑
k1=1

n∑
k2=1

· · ·
n∑

k2t+2=1

E
[
bk1,k2bk2,k3 · · · bkt,kt+1 · bkt+2,kt+3bkt+3,kt+4 · · · bk2t+1,k2t+2 |U

]
.

Notice that each summand is non-zero if an only if for each bkj ,kj+1
= ξkj ,kj+1

, there is

some j′ such that

bkj′ ,kj′+1
= ξkj′ ,kj′+1

=


ξkj ,kj+1

or,

ξkj+1,kj

In other words, each ξij that appears in the summand appears at least twice, either as ξij

or ξji. This property depends on the positions of the A’s to the extent that they break

up ξ: neighbouring ξij and ξjk share an index so that setting i = k is sufficient for the

conditional expectation of their product to be non-zero. If ξij and ξkl are separated by at

least one Apq, we need to set k = i and l = j. The number of restrictions on the indices

that are needed for the terms to be non-zero therefore depend on J and p. In turn, these

restrictions determine the order of magnitude of the conditional expectation.

We are interested in relations on k1, ..., k2t+2 which will make

E
[
bk1,k2 · · · bkt,kt+1 · bkt+2,kt+3 · · · bk2t+1,k2t+2 |U

]
̸= 0 .

We represent this relation with the multi-graph G on nodes [n] with each ξij in the

summand corresponding to an edge from i to j. If G is the multi-graph induced by a

given relationship, we write that k1, ..., k2t+2 ∈ rG. Let the contribution of rG to the our
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overall sum be:

∑
(k1,...,k2t+2)∈rG

E
[
bk1,k2 · · · bkt,kt+1 · bkt+2,kt+3 · · · bk2t+1,k2t+2 |U

]
=: SG

For SG to be non-zero, every edge in G must have multiplicity at least 2. Furthermore,

each G is constructed by performing a walk of length p1, followed by p2, and so on, until

pr.

The walks relate G to SG in the following way. Initially, we are given a budget of

n2t+2p2tn . The budget on n is the number of times the graph G occurs, corresponding to

“degree of freedom". The budget on pn is the number of unique ξij in the term. Given

any initial vertex, start the first walk of length p1. Add one to the multiplicity of each

edge taken. In the jth step, incrementing multiplicity from 0 to 1 is free: this corresponds

to not restricting kj and kj+1. Incrementing multiplicity from a to a + 1 for a ≥ 1 costs

npn. This is because such a step corresponds to the restriction kj = kj′ where kj′ denotes

the other end point of the edge whose multiplicity is being incremented. Furthermore, we

“lose" pn when we restrict ξkj ,kj+1
to be equal to an existing edge since there are now fewer

unique ξij’s. Having completed the first walk, start the second walk. If the first edge of

the second walk increments the multiplicity of an edge from 0 to 1, it is free. However,

incrementing multiplicity from a to a + 1 for a ≥ 1 costs n2pn. This is because placing

the first edge of a new walk corresponds the two restrictions: kj = kj′ , kj+1 = kj′+1.

However, the moments decrease only by pn since we only lose one unique edge. Continue

in the following way until all walks are completed. At the end of the walks, suppose cost

is nαpβn. If every edge in G has multiplicity at least 2, SG = n2t+2−αp2t−β
n by construction.

Otherwise, SG = 0.
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i j k l i j k

Best Case Worst Case

Figure A.4. Potential G for p = (2, 2). Red indicates the first walk. Blue
indicates the second walk. In the best case (highest order), SG = n4p2n. In
the worst case (lowest order), SG = n3p2n.

Suppose |J | = 2τ for some t ≥ 1. Then at least a edges have multiplicity 2. The

minimum cost of such a graph is nτpτn, so that β ≥ τ . Note also that each edge costs

weakly more n than pn. As such, α ≥ β so that 2t + 2 − α − (2t− β) ≤ 2. Taking

expectations over U , which preserves the order of the terms and then taking square root

gives us the order of ι′nBιn.

Tightened Bounds. Finally, we discuss when the bounds can be tightened by 1√
n
.

Note that given our discussion on costs, we know that the ideal least costly graph

have edges of multiplicity exactly 2. Furthermore, all multiplicities of a given edge must

belong to the same walk. In particular, the best case is attained only if p1, ..., pr are all

even. On the other hand, the worst case cost is n2apan, which is attained if the second

edge are all the initial edges of a new path. For an example, see Figure A.4.

Violation of the above “optimality" conditions will result in α ≥ β+1. This is sufficient

to yielding the 1/
√
n improvement. As such, if at least one of p1, ..., pr is odd,

ι′nBιn = Op

(
1√
n

)
·Op

(
nt+1−τ/2pt−τ/2

n

)
.
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Next, suppose that p1, ...pr are all even. Write

(ι′nBιn − E [ι′nBιn |U ])
2

=
n∑

k1=1

n∑
k2=1

· · ·
n∑

k2t+2=1

(bk1,k2bk2,k3 · · · bkt,kt+1 − E [bk1,k2bk2,k3 · · · bkt,kt+1 |U ])

·
(
bkt+2,kt+3bkt+3,kt+4 · · · bk2t+1,k2t+2 − E

[
bkt+2,kt+3bkt+3,kt+4 |U

])
=
∑
G

∑
k∈rG

(bk1,k2bk2,k3 · · · bkt,kt+1 − E [bk1,k2bk2,k3 · · · bkt,kt+1 |U ])

·
(
bkt+2,kt+3bkt+3,kt+4 · · · bk2t+1,k2t+2 − E

[
bkt+2,kt+3bkt+3,kt+4 |U

])
In the above display, we are summing over all G. However, as before, the set of relevant

G can be substantially restricted. Define

S ′
G := E

[∑
k∈rG

(bk1,k2bk2,k3 · · · bkt,kt+1 − E [bk1,k2bk2,k3 · · · bkt,kt+1 |U ])

·
(
bkt+2,kt+3bkt+3,kt+4 · · · bk2t+1,k2t+2 − E

[
bkt+2,kt+3bkt+3,kt+4 |U

])
|U
]

Note that SG = 0 ⇒ S ′
G = 0. This is because SG = 0 only if there G has at least one

edge with multiplicity exactly 1, which will also set S ′
G = 0.

We now show that if G is optimal, then S ′
G = 0. Suppose G attains the optimal rate.

Then every edge has multiplicity exactly 2 formed from the same walk. For such a G,

bki,ki+1
for (i, i+1) in the first walk is independent from bki′ ,ki′+1

where (i′, i′ +1) is in the
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second walk. As such,

S ′
G :=

∑
k∈rG

E [(bk1,k2bk2,k3 · · · bkt,kt+1 − E [bk1,k2bk2,k3 · · · bkt,kt+1 |U ])]

· E
[(
bkt+2,kt+3bkt+3,kt+4 · · · bk2t+1,k2t+2 − E

[
bkt+2,kt+3bkt+3,kt+4 |U

])
|U
]
= 0.

Next, note that by the Cauchy-Schwarz inequality, that for any G′, S ′
G′ ≺ SG′ . Let

G′ be a suboptimal graph. By our study on costs of walks, SG′ ≺ 1√
n
SG. Now let

G = {G |SG ̸= 0}. Conclude that

E
[
(ι′nBιn − E [ι′nBιn |U ])

2 ∣∣U] = ∑
G∈G

S ′
G = Op

(
1√
n

)
Op (SG) = Op

(
1√
n

)
·Op

(
nt+1−τ/2pt−τ/2

n

)
.

A.4.5.3. Proof of Lemma A.3. The proof of this lemma is based on the “Neumann

trick" (see for instance, Eldridge et al. 2018, or Theorem 2 of Chen et al. 2021). We use

the formulation by Cheng et al. (2021). By their Lemma 1, we have that

λ1(Â)

λ1(A)
(
v1(A)′v1(Â)

)w′v1(Â) = w′v1(A) +
w′ξv1(A)

λ1(Â)︸ ︷︷ ︸
=:Λ1

+
w′ξ2v1(A)(
λ1(Â)

)2

+
∞∑
t=3

w′ξtv1(A)(
λ1(Â)

)t
︸ ︷︷ ︸

=:Λ1

+
R∑

r=2

λr(A)

λ1(A)

vr(A)
′v1(Â)

vr(A)′vr(Â)


∞∑
t=0

w′ξtvr(A)(
λr(Â)

)t
︸ ︷︷ ︸

=:Λ3

.

(A.28)

where we used the fact that f is rank R. In the remainder of the proof, we bound Λ1,Λ2

and Λ3 for w ∈ {v1(A), ε(∞)/an}.
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Bounds for v1(A). Suppose w = v1(A). We start by bounding Λ1. For a given ν ∈ (0, 1),

choose T such that T (1− ν) > 4 + 2/η. Then,

(A.29) (npn)
−(T (1−ν)−4)

(
log n

log log n

)T (1−ν)/2

→ 0 .

This is because the above condition is equivalent to

pn ≻ n−1

(
log n

log log n

) 1
2
+ 2

T (1−ν)−4

,

which follows by our choice of T since pn satisfies Equation (1.10). Observe that by Weyl’s

Inequality (e.g. Theorem 4.5.3 in Vershynin 2018),

(A.30)
∥∥∥λr(Â)− λr(A)

∥∥∥ ≤ ∥ξ∥ = op (npn) ,

the rate estimate follows from Lemma A.1. Next, note that 1
pn
A is a weighted graph

obtained by sampling U on the dense graphon f . As such, by Lemma 10.16 of Lovász

(2012), λr(A)
npn

= λr

(
1
pn
A
)
/n

p→ λ̃. In other words, w.p.a. 1, we have that λr(Â) ≥

λ̃npn/2 > 0.

Next write∣∣∣∣∣∣∣
∞∑

t=T+1

w′ξtvr(A)(
λr(Â)

)t
∣∣∣∣∣∣∣ ≤

∞∑
t=T+1

∥w∥ ·
(

∥ξ∥
λ̃rnpn/2

)t

· ∥vr(A)∥ w.p.a. 1

= Op

∥w∥

(√
log n

log log n

/
(npn)

)T (1−ν)/2
 by Lemma A.1

= Op

(
∥w∥
(npn)

2

)
by Equation (A.29).(A.31)
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Meanwhile,

(A.32) E


∣∣∣∣∣∣∣

T∑
t=2

w′ξtvr(A)(
λr(Â)

)t
∣∣∣∣∣∣∣
 ≤ E


∣∣∣∣∣∣∣

T∑
t=2

w′ξtvr(A)(
λ̃rnpn/2

)t
∣∣∣∣∣∣∣
 ≤

T∑
t=2

E

(w′ξtvr(A)
)2(

λ̃rnpn/2
)2t


1/2

where the last inequality above follows by an application of the triangle and Cauchy-

Schwarz inequalities. Since T is finite, it suffices to bound each term individually. The

next part is similar to the arguments in the proof Lemma A.2.

Next note that if v is an eigenvector of A with eigenvalue λ, it must satisfy:

λv = Mv =
R∑

r=1

λ̃r
ϕr(U)√

n

ϕr(U)√
n

′

v

=
R∑

r=1

λ̃rvr
ϕr(U)√

n
.

Hence, v is a linear combination of ϕr(U)/
√
n’s. By convergence of the spectrum, we

know that lim supλ ≤ λ̃1. Now, let Υ be the event that | 1√
n

∑r
i=1 ϕr(Ui)ϕs(Ui) < 1/R2.

This happens with probability approaching 1 since R is finite. On this event, ∥v∥ = 1

implies that |vr| < 2 for all r. Furthermore, observe that since ∥f∥∞ ≤ 1, ∥ϕr∥∞ ≤ 1. As

such, on Υ, |vr(A)∥∞ ≤ 2R/
√
n.



254

Now, for a U ∈ Υ,

E
[
(v1(A)

′ξvr(A))
2 ∣∣U]

=
1

n2

n∑
k1=1

n∑
k2=1

· · ·
n∑

k2t+2=1

{
[v1(A)]k1 [v1(A)]kt+1

[vr(A)]kt+1
[vr(A)]k2t+2

·

E
[
ξk1,k2ξk2,k3 · · · ξkt,kt+1 · ξkt+2,kt+3ξkt+3,kt+4 · · · ξk2t+1,k2t+2 |U

]}
≤ 16R4

n2

n∑
k1=1

n∑
k2=1

· · ·
n∑

k2t+2=1

E
[
ξk1,k2ξk2,k3 · · · ξkt,kt+1 · ξkt+2,kt+3ξkt+3,kt+4 · · · ξk2t+1,k2t+2 |U

]
where the final inequality follows from our bound on ∥vr(A)∥∞ and the fact that for all

t ≤ T ,

E
[
ξtij |U

]
= pnf(Ui, Uj) (1− pnf(Ui, Uj)) · · · (1− t · pnf(Ui, Uj)) ≥ 0 if pn ≤ 1/T .

By Lemma A.2,

1

n2

n∑
k1=1

n∑
k2=1

· · ·
n∑

k2t+2=1

E
[
ξk1,k2ξk2,k3 · · · ξkt,kt+1 · ξkt+2,kt+3ξkt+3,kt+4 · · · ξk2t+1,k2t+2

]
=

1

n2
O
(
nt+2ptn

)
.

As such, for t ≥ 2,

E

(v1(A)′ξtvr(A))2(
λ̃rnpn/2

)2t


1/2

= O

(
1(√
npn
)t
)

.(A.33)

Next, suppose t = 0. Then v1(A)
′vr(A) = 0 since r ̸= 1. Suppose t = 1.

v1(A)
′ξvr(A) =

1

n

n∑
i=1

n∑
j=1

[v1(A)]i ξij [v1(A)]j
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As such,

E
[
(v1(A)

′ξvr(A))
2 ∣∣U] ≤ 16R4

n2

n∑
i=1

n∑
j=1

pnf(Ui, Uj) (1− pnf(Ui, Uj))

= Op (pn) .

Together with the fact that P (Υ) → 1, this yields

(A.34)
v1(A)

′ξvr(A)

λ̃rnpn/2
= Op

(
1

n
√
pn

)
.

Noting that (v1(A))
′ vr(A) = 0, Equations (A.31), (A.33) and (A.34) yield

(A.35)
∞∑
t=0

w′ξtvr(A)(
λr(Â)

)t = Op

(
1

npn

)
,

∞∑
t=3

w′ξtvr(A)(
λr(Â)

)t = op

(
1

npn

)

Substituting Equations and (A.35) into (A.28) yields the desired bound for v1(A).

Bounds for ε(∞)/an. Next, suppose w = ε(∞)/an. The proof follows that for v1(A) up

to Equation (A.32). To proceed, recall that conditional on U , ξ ⊥⊥ ε(∞). Conditioning

again on the event Υ,

E

((ε(∞)

an

)′

ξtvr(A)

)2 ∣∣U, ξ


=
1

n · a2n

n∑
k1=1

n∑
k2=1

· · ·
n∑

k2t+2=1

{
E
[
ε
(∞)
k1

ε
(∞)
kt+2

|U, ξ
]
[vr(A)]kt+1

[vr(A)]k2t+2
·

ξk1,k2ξk2,k3 · · · ξkt,kt+1 · ξkt+2,kt+3ξkt+3,kt+4 · · · ξk2t+1,k2t+2

}
≤ 4R2

n · a2n

n∑
k1=1

n∑
k2=1

· · ·
n∑

k2t+2=1

E
[
ε
(∞)
k1

ε
(∞)
kt+2

|U, ξ
]
ξk1,k2ξk2,k3 · · · ξkt,kt+1 · ξkt+2,kt+3ξkt+3,kt+4 · · · ξk2t+1,k2t+2
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Recall that conditional on U , ξ ⊥⊥ ε(∞). If k1 ̸= kt+2, we can write:

E
[
ε
(∞)
k1

ε
(∞)
kt+2

|U, ξ
]
= E

[
E
[
ε
(∞)
k1

| ε(∞)
k2

, U, ξ
]
ε
(∞)
kt+2

|U, ξ
]

= E
[
E
[
ε
(∞)
k1

|Uk1

]
ε
(∞)
kt+2

|U, ξ
]

= E
[
ε
(∞)
k1

|Uk1

]
E
[
ε
(∞)
kt+2

|Ukt+2

]
= 0 .

Hence, we only need to consider sequences where kt+2 = k1, so that

E

((ε(∞)

an

)′

ξtvr(A)

)2 ∣∣U, ξ


≤ σ̄2

n · an

n∑
k1=1

· · ·
n∑

kt+1=1

n∑
kt+3=1

· · ·
n∑

k2t+2=1

ξk1,k2ξk2,k3 · · · ξkt,kt+1 · ξk1,kt+3ξkt+3,kt+4 · · · ξk2t+1,k2t+2

=
σ̄2

n · an
ιξ2t+1ι

Taking expectations over U and ξ, we have that

E

((ε(∞)

an

)′

ξtvr(A)

)2
 =

σ̄2

n · a2n
O
(
nt+1pt+1/2

n

)
where the rate estimates again follow from Lemma A.2. The order on n is smaller than

the “best case" by n1/2 due to the fact that 2t + 1 is odd, so that at least one edge will

not be optimally paired. As such, for t ≥ 1,

E

((ε(∞)/an)
′ξtvr(A)

)2(
λ̃rnpn/2

)2t


1/2

= O

(
p
1/4
n

an
(√

npn
)t
)

= o

(
1

an

)
.(A.36)
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Note that when t = 1, the above bound implies that Λ1 = op
(
(an)

−1) for w = ε(∞)/an. If

t = 0,

(
ε(∞)

an

)′

vr(A) =
1

an
√
n

n∑
i=1

ϕr(Ui)ε
(∞)
i = Op

(
1

an

)
(A.37)

Combining our last two estimates, we have that

(A.38)
T∑
t=0

(
ε(∞)/an

)′
ξtvr(A)(

λ̃rnpn/2
)t = Op

(
1

an

)

Let Υ̌ be the event that λr(Â) ≥ λ̃rnpn/2 and

∥ξ∥ ≤ √
npn

(
k log n

log log n

)1/4

,

where k is the constant in Lemma A.1. Then P (Υ̌) → 1 by Lemma A.1 and Equation

(A.30). Furthermore,

P


∣∣∣∣∣∣∣

∞∑
t=T+1

(
ε(∞)

)′
ξtvr(A)(

λr(Â)
)t

∣∣∣∣∣∣∣ ≤ x

∣∣∣∣∣U, ξ, Υ̌
 ≤ 1

x2
E


 ∞∑

t=T+1

(
ε(∞)

)′
ξtvr(A)(

λr(Â)
)t


2 ∣∣∣∣∣U, ξ, Υ̌



≤ 1

x2
σ̄2

∥∥∥∥∥∥∥
∞∑

t=T+1

ξtvr(A)(
λr(Â)

)t
∥∥∥∥∥∥∥
2

≤
∞∑

t=T+1

∥ξ∥2t

≤ k̃

npn
by Equation (A.29), on the event Υ̌.
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The bound on the right hand side does not depend on U and ξ once we condition on Υ̌.

Hence,

P


∣∣∣∣∣∣∣

∞∑
t=T+1

(
ε(∞)

)′
ξtvr(A)(

λr(Â)
)t

∣∣∣∣∣∣∣ ≤ x

 ≤ P
(
Υ̌
)
P


∣∣∣∣∣∣∣

∞∑
t=T+1

(
ε(∞)

)
ξtvr(A)(

λr(Â)
)t

∣∣∣∣∣∣∣ ≤ x

∣∣∣∣∣ Υ̌
+ 1− P

(
Υ̌
)

≤ k̃

npn
+ 1− P

(
Υ̌
)
→ 0 .

Hence, we conclude that

(A.39)
∞∑

t=T+1

(
ε(∞)/an

)′
ξtvr(A)(

λr(Â)
)t =

1

an
op(1) = op

(
1

an

)
.

Next, note that

∣∣∣∣ 1

λs(A)
vr(A)

′vs(Â)

∣∣∣∣ ≤ ∣∣∣∣ 1

λs(A)
vr(A)

′vs(A)

∣∣∣∣+ ∥vr(A)∥ ·

∥∥∥∥∥vs(Â)− θvs(A)

2λ̃snpn

∥∥∥∥∥+ op(1)

=

∣∣∣∣ 1

λs(A)
vr(A)

′vs(A)

∣∣∣∣+ op(1) ,

(A.40)

where the last equation follows because by the Davis-Kahan Inequality (Theorem 4.5.5 in

Vershynin (2018)),

∥vs(Â)− θvs(A)∥ ≤

∥∥∥Â− A
∥∥∥

∆min · npn
= op(1) by Lemma A.1.
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As before, since vr(A)
′v1(A) = 0 for all r ≥ 2, we can write Λ3

(A.41)
R∑

r=2

λr(A)

λ1(A)

vr(A)
′v1(Â)

vr(A)′vr(Â)︸ ︷︷ ︸
= op(1) by Eq. (A.40)

{
T∑
t=0

(
ε(∞)/an

)′
ξtvr(A)(

λr(Â)
)t

︸ ︷︷ ︸
= Op

(
a−1
n

)
by Eq. (A.38)

+
∞∑

t=T+1

(
ε(∞)/an

)′
ξtvr(A)(

λr(Â)
)t

︸ ︷︷ ︸
= op

(
a−1
n

)
by Eq. (A.39)

}
= op

(
1

an

)
.

Finally, we note that by arguments identical to the above,

(A.42)
∞∑
t=1

(ε/an)
′ ξtv1(A)(

λ1(Â)
)t =

T∑
t=1

(ε/an)
′ ξtv1(A)(

λ1(Â)
)t

︸ ︷︷ ︸
=op(a−1

n ) by Eq. (A.36)

+
∞∑

t=T+1

w′ξtv1(A)(
λ1(Â)

)t
︸ ︷︷ ︸

= op
(
a−1
n

)
by Eq. (A.39)

= op

(
1

an

)
.

We conclude by remarking that from Equation (A.40),

λ1(Â)

λ1(A)
(
v1(A)′v1(Â)

) =
λ1(A)

λ1(A) (v1(A)′v1(A))
+ op(1) ,

so that the LHS of Equation (A.28) also converges in probability to w′v1(Â).
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APPENDIX B

Appendix to Chapter 2

B.1. Proof for Theorem 2.1

We first write:

1
√
nj

∑
i∈Ij

(
Xi −WiΠ̂j

)
Ûi

=
1

√
nj

∑
i∈Ij

(
Xi −WiΠ̂j

)
Ui(B.1)

− 1
√
nj

∑
i∈Ij

(
Xi −WiΠ̂j

)2 (
β̂ − β

)
(B.2)

− 1
√
nj

∑
i∈Ij

(
Xi −W ′

i Π̂j

)(
W ′

i Π̂j(β̂ − β) +W ′
i (γ̂ − γ)

)
.(B.3)

We analyse parts (B.1) and (B.3) in turn. Part (B.2) is handled using our worst case

bound. Starting with (B.1):

1
√
nj

∑
i∈Ij

(
Xi −WiΠ̂j

)
Ui

=
1

√
nj

∑
i∈Ij

(Xi −WiΠj)Ui −
(
Π̂j − Πj

) 1
√
nj

∑
i∈Ij

WiUi

= N
(
0, σ2

j

)
+ op(1)Op(1) ,
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where the last equation follows from assumption 2.2. Next for term (B.3), note that:

1
√
nj

∑
i∈Ij

Wi

(
Xi −W ′

i Π̂j

)
=

1
√
nj

∑
i∈Ij

Wi (Xi −WiΠj)−
√
nj

(
Π̂j − Πj

) 1

nj

∑
i∈Ij

WiW
′
i = Op(1) .

As such, by assumption (2.2),

(
Π̂′

j(β̂ − β) + (γ̂ − γ)
)′ 1

√
nj

∑
i∈Ij

Wi

(
Xi −W ′

i Π̂j

)
= op(1) .(B.4)

Our analysis of terms (B.1) and (B.3) show that setting λ = β̂ − β, we have that

Ŝn(β̂ − β)
d→ N(0,Σ) .

Furthermore, under the null hypothesis, Σ is diagonal since

1
√
nj

∑
i∈Ij

(Xi −WiΠj)Ui

is independent across sub-clusters.

Maintaining the assumption that β̂ − β is known, we show that the requirements for

Theorem 3.1 in Canay et al. (2017a) are met.

i. Ŝn(β̂ − β)
d→ S by the analysis above.

ii. By symmetry of S about 0 and the fact that Σ is diagonal, it is immediate that

gS has the same distribution as S under the null hypothesis.
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iii. For all g ̸= g′, P (T (gS) ̸= T (g′S)) = 1. This is because for a given component j

on which gj ̸= g′j, Sj = −Sj if and only if Sj = 0, which occurs with probability

0.

Hence, we have that:

E
[
1
{
p(Ŝn(β̂ − β)) ≤ α

}]
→ α .

This test is conservative since we break ties in favour of not rejecting the null-hypothesis.

It is then immediate that:

lim sup
n→∞

E

[
1

{
sup
λ∈R

p(Ŝn(λ)) ≤ α

}]
≤ lim sup

n→∞
E
[
1
{
p(Ŝn(β̂ − β)) ≤ α

}]
= α . □

B.2. Inference with Unnecessarily Coarse Clusters

In this section, we demonstrate by simulation the problems with using unnecessarily

coarse clusters for inference. Consider the model:

Yt,j,k = β +
1√

1− ϕ2
Ut,j,k ,

Ut,j,k = ϕUt−1,j,k + εt,j,k, εt,j,k
iid∼ N(0, 1), U1,j,k

iid∼ N(0, 1)

where t is an observation from fine cluster j in coarse cluster k. Here, individuals in the

same fine cluster j are dependent due to Ut,j,k, but individuals in different fine clusters

are independent. Clustering at both the fine and coarse levels are therefore valid, though

as we show, unncessarily coarse clustering will lead to issues. Suppose there are 4 coarse

clusters, 12 fine clusters in each coarse clusters, and 100 observations per fine cluster.

Further set ϕ = 0.25 and β = 1. Suppose want to test the hypothesis β = β0 at 5% level
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of significance. The most popular options are CCE-based tests, ARTs, or wild bootstrap

based tests, all of which can be implemented with clustering at either the k level, or at

the j level.

Figure B.1 presents the rejection rates from each of these tests as we vary β0 from 1

to 0 (equivalently, as 1 − β0 varies from 0 to 1). The left panel pertains to CCE-based

tests. Under the null hypothesis, when β0 = 1 (i.e when 1−β0 = 0), the test using coarse

clustering rejects over 12% of the time, more than twice the nominal size. However,

same test controls size well with fine clustering. The middle panel presents results from

conservative ARTs that do not perform random tie-breaking. The test controls size and

has good power with fine clustering. With coarse clustering, however, the test never

rejects. This is because conservative ARTs can reject only when the size is smaller than

2q−1, where q is the number of clusters. This is an extreme example of how using coarse

clusters could dramatically reduce power. The right panel presents results from wild

bootstrap-based tests (Cameron et al. 2008a) commonly used when the number of clusters

is small. Our setting satisfies the requirements of Canay et al. (2019), so that we expect

tests based on either level of clustering to control size, as they indeed do. However, the

test with coarse clustering has much lower power than with fine clustering. All in all,

our simulation shows that inference using unnecessarily coarse levels of clustering leads

to problems.

B.3. Residualized Null Hypothesis

In this section, we explain why a researcher conducting inference on β only has to

test the residualized hypothesis in equation (2.4). As in standard notation, let W be
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Figure B.1. Rejection rates from implementing CCE-based tests, ARTs or
wild bootstrap-based tests in a simple model (see text). We assume 4 coarse
clusters, 12 fine clusters per coarse clusters and 100 observations per fine
cluster. Simulation are repeated 1000 times. The black line indicates the
nominal size of the test (5%).

the matrix with W ′
i in its ith row. In the following we assume that W has full rank for

convenience.1 Write:

PWY = W (W ′W )−1W ′Y

= W (W ′W )−1W ′
(
Xβ̂ +W ′γ̂ + Û

)
= Wγ̂ +W Π̂β̂ ,

where β̂ and γ̂ are full sample OLS estimates from equation (2.1) and Û are the residuals

from the same regression. Π̂ = (W ′W )−1W ′X is one of the possible consistent estimators

1The case where W is rank deficient is similar except Π̂ might not have an explicit formula. However,
this does not change the properties of the projection residuals.
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for Π when W has full rank. By the Frisch-Waugh-Lovell theorem, we can then write:

β̂ =
(
(X − PWX)′ (X − PWX)

)−1
(X − PWX)′ (Y − PWY )

=

∑n
i=1

(
Xi −WiΠ̂

)(
Yi −Wiγ̂ −WiΠ̂β̂

)
∑n

i=1

(
Xi −WiΠ̂

)2
=

∑n
i=1

(
Xi −WiΠ̂

)(
(Xi −WiΠ̂)β +WiΠ̂β +Wiγ + Ui −Wiγ̂ −WiΠ̂β̂

)
∑n

i=1

(
Xi −WiΠ̂

)2
= β +

∑n
i=1

(
Xi −WiΠ̂

)(
Ui −WiΠ̂(β̂ − β)−Wi(γ̂ − γ)

)
∑n

i=1

(
Xi −WiΠ̂

)2 .

Then, by the same argument that leads to equation (B.4), we have that under consistency

of γ̂, β̂ and
√
n-consistency of Π̂:

√
n
(
β̂ − β

)
=

1√
n

∑n
i=1 (Xi −WiΠ)Ui

1
n

∑n
i=1 (Xi −WiΠ)

2 + op(1) .

Or, if we are estimating β̂ cluster-by-cluster,

√
nj

(
β̂j − β

)
=

1√
nj

∑nj

i=1 (Xi −WiΠj)Ui

1
nj

∑n
i=1 (Xi −WiΠj)

2 + op(1) .

As such, the asymptotic distribution of the β̂/β̂j’s depend only on Zi = (Xi −WiΠ)Ui.

If there is no dependence in Zi across the sub-clusters, approximate randomization test

at the sub-cluster level yields valid inference.

Our asymptotic framework takes the number of sub-clusters as fixed. However, if there

is no dependence across sub-clusters in the Zi’s, then provided that the usual regularity



266

conditions hold (e.g. in Hansen and Lee (2019b)), we have that as the number of sub-

cluster grows to infinity, inference with CCE clustered at the sub-cluster level also leads

to correct inference.

B.4. Restricted Heterogeneity implied by Assumption 2

In this section we explain how the assumption that Sn → N(0,Σ) requires that

minj nj → ∞, but does not place any restrictions on the relative rates at which each

nj → ∞. We do this by way of an example. Assume that each Sn,j have 2 + δ moments

for δ > 0 and is weakly dependent in the sense of Doukhan and Louhichi (1999). This is a

general form of dependence which includes strongly mixing sequences and Bernoulli shifts

as special cases. Nze and Doukhan (2004) argues for usefulness in econometrics. We show

that under our assumption, Sn → N(0,Σ) as long as minj nj → ∞, even if nj′

minj nj
→ ∞

for some j′ ∈ [q].

Consider the Cramer-Wold theorem, which gives us that Sn
d→ N(0,Σ) under the null

hypothesis if and only if for all λ ∈ Rq we have

E [exp (itλ′Sn)] =

q∏
j=1

E [exp (itλjSn,j)] →
q∏

j=1

E

[
exp

(
−it

λ2
jσ

2
j t

2

2

)]
.

Since characteristic functions are bounded by 1,∣∣∣∣∣
q∏

j=1

E [exp (itλjSn,j)]−
q∏

j=1

E

[
exp

(
−it

λ2
jσ

2
j t

2

2

)]∣∣∣∣∣ ≤
q∑

j=1

∣∣∣∣E [exp (itλjSn,j)]− E

[
exp

(
−it

λ2
jσ

2
j t

2

2

)]∣∣∣∣ .

Proposition 7.1 in Dedecker et al. (2007) yields:

∣∣∣∣E [exp (itλjSn,j)]− E

[
exp

(
−it

λ2
jσ

2
j t

2

2

)]∣∣∣∣ ≤ Cn−c∗j
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where c∗j > 0 depends on the amount of dependence within sub-cluster j. Define c =

minj cj. Then we can write∣∣∣∣∣
q∏

j=1

E [exp (itλjSn,j)]−
q∏

j=1

E

[
exp

(
−it

λ2
jσ

2
j t

2

2

)]∣∣∣∣∣ = O

((
min
j∈[q]

nj

)−c
)

Hence, we have weak convergence of Sn to S as long as the slowest term converges. The

relative rates at which the nj’s grow to infinity are not restricted.

For comparison, in OLS on units with cluster dependence, observations are not stan-

dardized within each cluster. As a result, the contribution of each cluster to “numerator"

in the β̂−β is X ′
jUj rather than X′

jUj
√
nj

, where Xj is the stacked covariates for units in clus-

ter j and Uj are their stacked linear regression errors. Hence, large clusters have outsize

influence in estimation and inference. Restricting the influence of each cluster motivates

the restricted heterogeneity assumptions in Hansen and Lee (2019b) for example.
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B.5. Cluster Statistics for Gneezy et al. (2019)

School Track Group Size

US 1

Honors

1 325
7 350
11 625
27 725

Regular

2 300
3 325
4 400
6 250
9 225
10 300
12 250
13 350
14 375
15 500
17 375
22 275
24 300
26 325
28 275

Others

5 225
8 250
18 400
19 150
23 450
25 150
29 25
30 25

US 2
Honors - 46 groups of 25

Regular - 60 groups of 25

School Year Group Size

Shanghai 1 2016
9992 750
9993 750

Shanghai 2
2016

9994 1000
9995 1000

2018 - 128 groups of 25

Shanghai 3
2016

9996 975
9997 975
9998 800
9999 750

2018 - 122 groups of 25

Shanghai 4 2018 - 126 groups of 25

Table B.1. Cluster Structure for US and Shanghai Schools.
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APPENDIX C

Appendix to Chapter 4

C.1. Proofs

C.1.1. Proofs of Propositions 4.1 and 4.2

C.1.1.1. Some preliminaries and common machinery for the proofs. Our proofs

in this section require some common machinery. Let {(Y ∗
i (0), Y

∗
i (1))}

∞
i=1 be i.i.d. random

vectors with distribution equal to that of (Y (0)− µ(0), Y (1)− µ(1)) that satisfy

{(Y ∗
i (0), Y

∗
i (1))}

∞
i=1 ⊥⊥

{{
Ỹi(0), Ỹi(1), Ãi

}∞

i=1
, {Yi(0), Yi(1), Ui}∞i=1

}
.

þC.3 provides detailed arguments showing that

(C.1)
√
n
(
θ̂p̃ − θ

)
d
=

1√
n

∑nAp̃

i=1 Y ∗
i (1)

Ap̃

−
1√
n

∑n
i=nAp̃+1 Y

∗
i (0)

1− Ap̃

.

Consider the partial-sums process

(C.2) Tn(u) =

 Tn(0, u)

Tn(1, u)

 =
1√
n

⌊u·n⌋∑
i=1

 Y ∗
i (0)

Y ∗
i (1)

 ∀u ∈ [0, 1].

By hypothesis, {(Y ∗
i (0), Y

∗
i (1))}

∞
i=1 are mean zero, have finite variance and are i.i.d. across

i ∈ N. Denote the space of all essentially bounded functions on [0, 1] endowed with

the essential supremum norm by ℓ∞([0, 1]). By a two-dimensional variant of Donsker’s
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Functional Central Limit Theorem (see for instance Whitt (2002, Theorem 4.3.5)), T∗
n(·)

converges weakly in ℓ∞([0, 1])2 to a two-dimensional scaled Brownian motion T∞(·)

(C.3) T∞(u) =

 T∞(u, 0)

T∞(u, 1)

 = Σ
1
2B(u) ∀u ∈ [0, 1]

where B(·) is a two-dimensional standard Brownian motion and Σ
1
2 is the unique symmet-

ric matrix satisfying Σ =
(
Σ

1
2

)′
Σ

1
2 . We can write the vector comprised of the numerators

in (C.1) as

(C.4) Un =

 1√
n

∑nAp̃

i=1 Y ∗
i (1)

1√
n

∑n
i=nAp̃+1 Y

∗
i (0)

 =

 Tn

(
1, Ap̃

)
Tn(0, 1)− Tn

(
0, Ap̃

)


so that by (C.1),

(C.5)
√
n
(
θ̂p̃ − θ

)
d
=

[
1
Ap̃
, − 1

1−Ap̃

]
· Un .

C.1.1.2. Proof of Proposition 4.1.

Proof of Proposition 4.1. By Lemma C.2, Ap̃
a.s.→ p∗ as m,n → ∞. Furthermore,

van der Vaart (2000) Theorems 18.10 (v) and 18.11 imply that Un in (C.4) satisfies

Un
d→ U :=

 T∞ (1, p∗)

T∞ (0, 1)− T∞ (0, p∗)

 ∼ N


 0

0

 ,

 p∗ · σ2(1) 0

0 (1− p∗) · σ2(0)


 .

(C.6)
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where the covariance matrix is derived using the fact that a standard Brownian motion

has independent increments. By (C.6), Ap̃
a.s.→ p∗ and Slutsky’s Theorem, as m,n → ∞,

√
n
(
θ̂p̃ − θ

)
d
=

1√
n

∑nAp̃

i=1 Y ∗
i (1)

Ap̃

−
1√
n

∑n
i=nAp̃+1 Y

∗
i (0)

1− Ap̃

=

[
1
Ap̃

− 1
1−Ap̃

]
· Un

d→
[

1
p∗

− 1
1−p∗

]
· U

∼ N
(
0,

σ2(1)

p∗
+

σ2(0)

1− p∗

)
.

□

C.1.1.3. Proof of Proposition 4.2.

Proof of Proposition 4.2. Note that the process Tn in (C.2) is independent to

Ap̃ for every n ∈ N. Additionally, Ap̃
p→ p̃ (by Lemma C.2) and Tn

d→ T∞ as n → ∞,

where d→ denotes weak convergence in ℓ∞([0, 1])2. This implies that (see for instance van

der vaart and Wellner (1996, Example 1.4.6))

(C.7)

 Ap̃

Tn(·)

 d→

 p̃

T∞(·)

 as n → ∞

where p̃ and T∞ are independent and d→ is in the sense of weak convergence in [0, 1] ×

ℓ∞([0, 1])2. Equation (C.7) alongside Lemma C.5 and van der Vaart (2000) Theorem 18.11
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imply that in this case, as n → ∞, Un in equation (C.4)

(C.8) Un
d→ Ũ :=

 T∞ (1, p̃)

T∞(0, 1)− T∞ (0, p̃) .


We should note that measurability of Ũ is derived in Lemma C.6. Using (C.5) in combi-

nation with (C.8), we get

√
n
(
θ̂p̃ − θ

)
d
=

[
1
Ap̃

− 1
1−Ap̃

]
· Un

d→
[

1
p̃

− 1
1−p̃

]
· Ũ

=
1

p̃
T∞ (1, p̃)− 1

1− p̃
[T∞(0, 1)− T∞ (0, p̃)]

=: Lm.

The distribution of Lm can be derived as a corollary of Lemma C.6, but we include the

direct derivation here for completeness. To derive the distribution of Lm in closed form,

notice that Lm|p̃ ∼ N
(
0, σ

2(1)
p̃

+ σ2(0)
1−p̃

)
so that

P (Lm ≤ t|p̃) = Φ

(
t

s (p̃)

)
where s2 (p̃) =

σ2(1)

p̃
+

σ2(0)

1− p̃
.

By the Law of Total Probability, it follows that

P (Lm ≤ t) =

∫ 1

0

Φ

(
t

s (p)

)
Gm(dp),

where Gm(·) is the distribution of p̃. □

C.1.1.4. Auxiliary lemmas.
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Lemma C.1. þ Suppose Assumption 4.2 holds and additionally that, there is some

p1 ∈ (0, 1) such that 1
m

∑m
i=1 Ãi

p→ P
(
Ã1 = 1

)
= p1 as m → ∞. Then p̃

p→ p∗ as m → ∞.

Proof. Let a ∈ {0, 1} be given. Note that for any Borel function h : R → R with

E[|h(Y (a))|] < ∞, as m → ∞,

1

m

m∑
i=1

h
(
Ỹi

)
I
{
Ãi = a

}
=

1

m

m∑
i=1

h
(
Ỹi(a)

)
I
{
Ãi = a

}
a.s.→ E

[
h
(
Ỹ1(a)

)
I
{
Ã1 = a

}]

Under Assumption 4.2, Ỹ1(a) ⊥⊥ Ã1 and Ỹ1(a) ∼ Y (a) so that,

1

m

m∑
i=1

h
(
Ỹi

)
I
{
Ãi = a

}
a.s.→ E [h(Y (a))] · pa1 · (1− p1)

1−a as m → ∞

The hypothesis of the question gives us that 1
m

∑m
i=1 I

{
Ãi = a

}
p→ pa1 ·(1− p1)

1−a ∈ (0, 1).

Thus, by the Continuous Mapping Theorem, as m → ∞

1
m

∑m
i=1 h

(
Ỹi

)
I
{
Ãi = a

}
1
m

∑m
i=1 I

{
Ãi = a

} a.s.→ E [h(Y (a))]

Setting h equal to the maps y 7→ y and y 7→ y2, we get respectively that

1
m

∑m
i=1 ỸiI

{
Ãi = a

}
1
m

∑m
i=1 I

{
Ãi = a

} p→ E[Y (a)]

1
m

∑m
i=1 Ỹ

2
i I
{
Ãi = a

}
1
m

∑m
i=1 I

{
Ãi = a

} p→ E
[
Y (a)2

]
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Combining these with the Continuous Mapping Theorem again, it follows that as m → ∞

σ̃2
m(a) =

1∑m
i=1 I

{
Ãi = a

}
− 1

m∑
i=1

ỸiI
{
Ãi = a

}
− 1∑m

i=1 I
{
Ãi = a

} m∑
i=1

ỸiI
{
Ãi = a

}2

p→ σ2(a)

By another application of the Continuous Mapping Theorem,

p̃ =
σ̃m(1)

σ̃m(1) + σ̃m(0)

p→ σ(1)

σ(1) + σ(0)
= p∗.

□

Lemma C.2. Let Ap̃ =
1
n

∑n
i=1Ap̃,i. Under Assumptions 4.2, 4.3, equation (4.3) and

fixed m ∈ N, Ap̃
p→ p̃ as n → ∞. Additionally, Ap̃

p→ p∗ as m,n → ∞.

Proof. Note that given any fixed m ∈ N, Ap̃,i|p̃ ∼ Bernoulli (p̃) independently across

i ∈ N. By De Finetti’s Theorem, {Ap̃,i}∞i=1 forms an exchangeable sequence of random

variables. By the Strong Law of Large Numbers for exchangeable sequences (see for

instance Schervish (1995, Theorem 1.62) or Kingman (1978)), it follows that Ap̃
a.s.→ p̃ as

n → ∞. Next, we consider the case with both m,n → ∞. Using the triangle inequality,

∣∣Ap̃ − p∗
∣∣ ≤ ∣∣Ap̃ − p̃

∣∣+ |p̃− p∗| ≤ sup
p∈[0,1]

∣∣∣∣∣ 1n
n∑

i=1

I {Ui ≤ p} − p

∣∣∣∣∣+ |p̃− p∗| .

By Lemma C.1, |p̃− p∗|
p→ 0 as m → ∞. An immediate consequence of the Glivenko-

Cantelli Theorem is that supp∈[0,1]
∣∣ 1
n

∑n
i=1 I {Ui ≤ p} − p

∣∣ a.s.→ 0 as n → ∞. □
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Lemma C.3. Under Assumptions 4.2, 4.3 and equation (4.3), we can write

√
n
(
θ̂p̃ − θ

)
d
=

1√
n

∑nAp̃

i=1 Y ∗
i (1)

Ap̃

−
1√
n

∑n
i=nAp̃+1 Y

∗
i (0)

1− Ap̃

where {(Y ∗
i (0), Y

∗
i (1))}

∞
i=1 are i.i.d. random vectors with distribution equal to that of

(Y (0)− µ(0), Y (1)− µ(1)) and

(C.9) {(Y ∗
i (0), Y

∗
i (1))}

∞
i=1 ⊥⊥

{{
Ỹi(0), Ỹi(1), Ãi

}∞

i=1
, {Yi(0), Yi(1), Ui}∞i=1

}
.

Proof. We can rewrite θ̂p̃ using the potential outcomes as is standard:

θ̂p̃ =
1
n

∑n
i=1 Yi(1)Ap̃,i

Ap̃

−
1
n

∑n
i=1 Yi(0) (1− Ap̃,i)

1− Ap̃

.

where Ap̃ =
1
n

∑n
i=1Ap̃,i. Furthermore, since θ = µ(1)− µ(0),

θ̂p̃ − θ =

( 1
n

∑n
i=1 Yi(1)Ap̃,i

Ap̃

− µ(1)

)
−
( 1

n

∑n
i=1 Yi(0) (1− Ap̃,i)

1− Ap̃

− µ(0)

)
=

1
n

∑n
i=1 [Yi(1)− µ(1)]Ap̃,i

Ap̃

−
1
n

∑n
i=1 [Yi(0)− µ(0)] (1− Ap̃,i)

1− Ap̃

.

Thus,

√
n
(
θ̂p̃ − θ

)
=

1√
n

∑n
i=1 [Yi(1)− µ(1)]Ap̃,i

Ap̃

−
1√
n

∑n
i=1 [Yi(0)− µ(0)] (1− Ap̃,i)

1− Ap̃

.

Note that the distribution
√
n
(
θ̂p̃ − θ

)
is invariant to permutation of the sample indices.

Hence the distribution of
√
n
(
θ̂p̃ − θ

)
does not change if we reorder the sample indices

to have i = 1, . . . , nAp̃ correspond to the observations in the treatment group and i =

nAp̃+1, . . . , n correspond to the observations in the control group. Notice also, that under
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Assumptions 4.2, 4.3, and (C.9), the resulting permuted sum has the same distribution

as
1√
n

∑nAp̃

i=1 Y ∗
i (1)

Ap̃

−
1√
n

∑n
i=nAp̃+1 Y

∗
i (0)

1− Ap̃

.

□

Lemma C.4. Under Assumptions 4.1, 4.2 and 4.3, if m stays fixed as n → ∞,

σ̂2
p̃(a)

p→ σ2(a).

Proof. Recall that we define

σ̂2
p̃(a) =

1

np̃,a − 1

n∑
i=1

(
Yp̃,iI {Ap̃,i = a} − 1

np̃,a

n∑
i=1

Yp̃,iI {Ap̃,i = a}

)2

np̃,a =
n∑

i=1

I {Ap̃,i = a}

By Lemma C.2, it follows that

(C.10)
np̃,a

n

p→ p̃a (1− p̃)1−a .

By (4.3), we have that for each i ∈ N,

Yp̃,iI {Ap̃,i = a} = Yi(a)I {Ap̃,i = a} Y 2
p̃,iI {Ap̃,i = a} = Y 2

i (a)I {Ap̃,i = a}

By the Continuous mapping theorem, the proof is completed if we show both

1

n

n∑
i=1

Yi(a)I {Ap̃,i = a} p→ µ(a) · p̃a (1− p̃)1−a

1

n

n∑
i=1

Yi(a)
2I {Ap̃,i = a} p→

(
σ2(a) + µ(a)2

)
· p̃a (1− p̃)1−a

(C.11)
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Similarly to the arguments in the proof of Lemma C.2, conditional on p̃,

{Yi(a)I {Ap̃,i = a}}∞i=1 and
{
Yi(a)

2I {Ap̃,i = a}
}∞
i=1

are i.i.d. sequences. Hence both are also exchangeable sequences (see Schervish (1995,

Problem 4, page 73)). Thus, (C.11) follows from þ4.1 and the Strong Law of Large

Numbers for exchangeable sequences (see for instance Schervish (1995, Theorem 1.62) or

Kingman (1978)). Additionally, convergence almost surely implies convergence in prob-

ability. The conclusion of the lemma then follows by (C.10), (C.11) and the Continuous

Mapping Theorem. □

For the next lemma, for k ∈ N and let C([0, 1]) denote the space of all continuous real-

valued functions on [0, 1] endowed with the supremum norm. We endow the Cartesian

product [0, 1]× C([0, 1])k with the metric ρ defined by

(C.12) ρ((x, f), (y, h)) = |x− y|+ sup
z∈[0,1]

√√√√ k∑
j=1

(fj(z)− hj(z))
2

Lemma C.5. Define the evaluation functional, g : [0, 1]×C([0, 1])k → Rk by g(x, f) =

f(x). Then, in the metric space
(
[0, 1]× C([0, 1])k, ρ

)
with ρ as defined in (C.12), g

is continuous at every pair (x, f) such that f is a continuous function mapping [0, 1]

into Rk. It follows from this that g is a measurable function against the Borel sets of(
[0, 1]× C([0, 1])k, ρ

)
.
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Proof. We prove this for k = 1, since the extension to k ∈ N follows in similar

fashion with more complicated notation. Let ε > 0 be given. Note that

|g(y, h)− g(x, f)| = |h(y)− f(x)| = |h(y)− f(y) + f(y)− f(x)|

≤ |h(y)− f(y)|+ |f(y)− f(x)|

≤

{
sup
z∈[0,1]

|h(z)− f(z)|

}
+ |f(y)− f(x)|.

Since f is continuous, and [0, 1] is a compact set, f is uniformly continuous. Hence, there

is δf,ε > 0 such that if |x− y| < δf,ε, then |f(y)− f(x)| < ε. Let δε = max {δf,ε, ε}. Then

if ρ((y, h), (x, f)) < δε, it follows that supz∈[0,1] |h(z)− f(z)| < ε and |x− y| < δf,ε so that

|g(y, h)− g(x, f)| < 2ε. □

Lemma C.6. þ Let (Ω,F ,P) be a probability space. Let U : Ω → R be a random

variable supported in [0, 1]. Furthermore, let B : [0, 1]×Ω → Rk be a Rk-valued stochastic

process such that ω 7→ B(·, ω) is measurable against the Borel σ-algebra over C([0, 1])k.

Then H : Ω → R defined by H(ω) = B(U(ω), ω) is a random variable (it is (F ,B(R))-

measurable). Additionally, if U and B are independent, then the distribution of H is a

mixture defined by

P(H ≤ t) =

∫ 1

0

P (B(u) ≤ t)PU(du) ∀t ∈ R

where PU is the pushforward measure of U against P.

Proof. Notice that H is defined by the evaluation functional g as defined in Lemma

C.5, since H(ω) = B(U(ω), ω) = g(U(ω), B(·, ω)). Since g is a measurable function
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against the product Borel σ-algebra over [0, 1] × C([0, 1])k (Lemma C.5), it follows that

H is also measurable since the composition of measurable functions is itself measurable.

Now, if U and B are independent, notice that

P(H ≤ t|U = u) = P(B(U) ≤ t|U = u) = P(B(u) ≤ t).

The final claim then follows from the Law of Total Probability. □

C.1.2. Proof of Corollary 4.1

Let Lm denote a random variable whose distribution is given by

P (Lm ≤ t) =

∫ 1

0

Φ

(
t

s (p)

)
Gm(dp)

Using the Law of Iterated Expectations, it can be shown that Lm has mean zero and

variance given by

E
[
L2

m

]
= E

[
s2 (p̃)

]
= E

[
σ2(1)

p̃
+

σ2(0)

1− p̃

]
Next, note that for all p̃ ∈ [0, 1], p̃ ̸= p∗,

σ2(1)

p̃
+

σ2(0)

1− p̃
>

σ2(1)

p∗
+

σ2(0)

1− p∗
= Σ∗ .

Since σ2(0) > 0 and σ2(1) > 0, P (p̃ ̸= p∗) > 0. That is,

P
(
σ2(1)

p̃
+

σ2(0)

1− p̃
> Σ∗

)
> 0 .

By the strict monotonicity of expectation, we are done. □
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C.1.3. Proof of Theorem 4.3

By our earlier derivation, θ̂p has lower asymptotic variance than θ̂p̃ if and only if

E
[
σ2(1)

p̃
+

σ2(0)

1− p̃

]
≥ E

[
σ2(1)

1/2
+

σ2(0)

1− 1/2

]

Define the variable Zm:

Zm =
σ̂(1)

σ(1)

/
σ̂(0)

σ(0)
.

We can then rewrite the above condition as

E
[(

1 +
1

Zm

σ(0)

σ(1)

)
σ2(1) +

(
1 + Zm

σ(1)

σ(0)

)
σ2(0)

]
≥ 2σ2(1) + 2σ2(0)

⇔E
[

1

Zm

+ Zm

]
σ(1)σ(0) ≥ σ2(1) + σ2(0)

⇔σ2(1)

σ2(0)
− E

[
1

Zm

+ Zm

]
σ(1)

σ(0)
+ 1 ≤ 0

By the quadratic formula, the above inequality is satisfied whenever

σ(1)

σ(0)
∈
[
Bm −

√
B2

m − 1, Bm +
√

B2
m − 1

]
= Cm ,

where Bm := 1
2
E
[

1
Zm

+ Zm

]
. Note that

B2
m − (B2

m − 1) = 1 ⇒
(
Bm −

√
B2

m − 1
)(

Bm +
√

B2
m − 1

)
= 1 ,

so that

Bm −
√
B2

m − 1 =
1

Bm +
√

B2
m − 1

=
1

x
.
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Next note that on R+, f(x) = 1
x
+ x is strictly convex and attains its strict minimum at

x = 1. Since Zm is non-degenerate, Jensen’s inequality yields

2Bm >
1

E [Zm]
+ E [Zm] ≥ 2

Hence, |Cm| > 0. We can then write:

|Cm| = 2
√
B2

m − 1 = 2
√

(Bm − 1)2 + 2(Bm − 1)

where

Bm − 1 =
1

2

[
σ(1)

σ(0)
Bias (p̃) +

σ(0)

σ(1)
Bias

(
1

p̃

)]
= Wm . □

C.1.4. Proof of Theorem 4.4

We start by evaluating the asymptotic distributions of Zm. First,

√
m
(
σ̂2(1)− σ2(1)

)
=

1√
m

m∑
i=1

(
(Yi(1)− µ(1))2 − σ2(1)

)
−
√
n
(
Ȳ (1)− µ(1)

)2
+ op(1)

d→ N
(
0 ,E

[
(Yi(1)− µ(1))4

]
− σ4(1)

)
.

By the Delta Method,

√
m

(
σ̂2(1)

σ2(1)
− 1

)
d→ N

(
0,

E
[
(Yi(1)− µ(1))4

]
− σ4(1)

4σ4(1)

)
.

Similarly,
√
m

(
σ̂2(0)

σ2(0)
− 1

)
d→ N

(
0,

E
[
(Yi(0)− µ(0))4

]
− σ4(0)

4σ4(0)

)
.
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Since the above two displays contain independent random variables, another application

of the Delta Method yields that

√
m (Zm − 1)

d→ N (0, V ) .

Next, let f(x) = x+ 1/x. Note that

f ′(x) = 1− 1

x2
, f ′(1) = 0

f ′′(x) =
2

x3
, f ′′(1) = 2

By the second order Delta Method,

m

(
1

2

(
1

Zm

+ Zm

)
− 1

)
d→ 1

2
V · χ2

1

Since the left hand side is an analytic function of sub-Gaussian random variables, all

moments can be bounded uniformly in m. Conclude that:

m (Bm − 1) → V

2

Hence,

√
m
((

Bm +
√

B2
m − 1

)
− 1
)
=

m(Bm − 1)√
m

+

√
m(Bm − 1)

(
m(Bm − 1)

m
+ 2

)
→

√
V .

□
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C.2. Additional Empirical Examples

We revisit the first 10 completed RCTs in the AER RCT Registry. This section

contains the empirical examples omitted from the main text. They are:

• Section C.2.1: Dillon et al. (2017)

• Section C.2.2: Finkelstein et al. (2012)

• Section C.2.3: McKenzie (2017)

• Section C.2.4: Chong et al. (2015)

• Section C.2.5: Bloom et al. (2014)

• Section C.2.6: Deming et al. (2016)

• Section C.2.7: Bryan et al. (2015)

• Section C.2.8: Galiani and McEwan (2013)

C.2.1. Dillon et al. (2017)

Dillon et al. (2017) conduct an RCT to test the hypothesis that math game play in pre-

school prepares poor children for formal math in primary school. Their study, conducted in

Delhi, India, with the organization Pratham, involved 214 pre-schools with 1540 children,

with treatment assigned at the school level. In the Math treatment arm, children were led

by facilitators to play math games over the course of four months, while the control group

received lessons according to Pratham’s usual curriculum. To distinguish the effect of the

math games from the effect of engagement with adults, the experiment further involved

a Social treatment arm, where social games were played. The outcomes of interest are

Math Skills – subdivided into Symbolic Math Skills and Non-Symbolic Math Skills – as

well as Social Skills, as measured by Pratham’s standardized tests. Since the authors
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are interested in persistence of treatment effects, they measure these outcomes at the

following times after intervention: 0-3 months (Endline 1), 6-9 months (Endline 2) and

12-15 months (Endline 3). They find that the Math intervention has positive effects on

Non-Symbolic Mathematical skills across all three Endlines, while Symbolic Mathematical

skills only improves in Endline 1.

Table C.1 displays the standard deviation of each outcome variable by treatment arm,

computed at the individual level. In the absence of correlation among students in the

same pre-school, and assuming that treatment is assigned at the individual level, the

numbers shown are the relevant empirical counterparts to σ(1) and σ(0). We see that the

outcomes are relatively homoskedastic across the outcome variables and across time. The

ratio σ(1)σ(0) falls between 0.94 and 1.31, suggesting that naive experiment will do well

when pilots are small.

Table C.1. Individual Level Heteroskedasticity in Dillon et al. (2017).

Endline Outcome Math Social Control Math/Control Social/Control

1

Math 0.73 0.68 0.69 1.06 0.99
Symbolic Math 0.74 0.78 0.77 0.96 1.01
Non-Symbolic Math 0.94 0.81 0.77 1.21 1.04
Social 1.18 1.41 1.07 1.10 1.31

2

Math 0.71 0.73 0.69 1.04 1.06
Symbolic Math 0.72 0.74 0.71 1.02 1.05
Non-Symbolic Math 0.98 0.99 0.92 1.06 1.07
Social 0.92 0.96 0.99 0.94 0.97

3

Math 0.78 0.70 0.75 1.04 0.93
Symbolic Math 0.72 0.68 0.74 0.98 0.92
Non-Symbolic Math 1.17 1.09 1.06 1.11 1.03
Social 1.01 1.05 1.07 0.94 0.98
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Suppose we are concerned about correlation across students in the same pre-school.

We can redefine our unit of observation to be the school by taking averages across students

in the same school. The Neyman Allocation then tells us how many schools to allocate to

treatment. In this case, the standard deviation in the mean across schools is the relevant

counterpart to σ(1) and σ(0). They are presented in Table C.2. As before, we see that

outcomes are relatively homoskedastic across schools, though less so than in the individual

level case. Nonetheless, the ratio falls between 0.84 and 1.55. Once we consider schools

to be the unit of treatment, however, the effective pilot size also shrinks, such that the

drawbacks of the estimated Neyman Allocation may be even more pronounced. All in

all, the Dillon et al. (2017) example supports our case of relative homoskedasticity in

empirical applications.

Table C.2. School Level Heteroskedasticity in Dillon et al. (2017).

Endline Outcome Math Social Control Math/Control Social/Control

1

Math 0.41 0.38 0.30 1.34 1.24
Symbolic Math 0.39 0.42 0.34 1.14 1.22
Non-Symbolic Math 0.51 0.40 0.33 1.55 1.22
All Social 0.51 0.71 0.46 1.10 1.55

2

All Math 0.39 0.35 0.36 1.10 0.97
Symbolic Math 0.40 0.35 0.36 1.11 0.96
Non-Symbolic Math 0.46 0.42 0.43 1.06 0.98
Social 0.41 0.48 0.49 0.84 0.97

3

All Math 0.44 0.40 0.39 1.15 1.04
Symbolic Math 0.40 0.35 0.37 1.06 0.94
Non-Symbolic Math 0.65 0.63 0.53 1.23 1.20
Social 0.55 0.59 0.50 1.10 1.20
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C.2.2. Finkelstein et al. (2012)

Finkelstein et al. (2012) study the Oregon Health Insurance Experiment, in which unin-

sured, low-income adults were randomly given the opportunity to apply for Medicaid.

Over the course of a month in February 2008, Oregon conducted extensive public aware-

ness campaign to encourage participation in the lottery. From a total of 89,824 sign-ups,

35,169 individuals (from 29,664 households) were selected. They, and any members of

their households were then given the opportunity to apply for Medicaid. Hence, treat-

ment occurred at the household level.

The authors used the data to study a variety of outcomes. In this section, we focus on

their first set of results, which concern healthcare utilization. In particular, we revisit the

outcome variables used in Tables V and VI of Finkelstein et al. (2012), which are obtained

from survey data (as opposed to administrative data), and are hence publicly available.

Inline with the authors’ results on the Intent-to-Treat effect, we define the treated group

as those selected by the lottery. We note that the authors apply sampling weights to

correct for differential response rates to the survey. We follow their weighting scheme in

computing our results.

The standard deviation of individual-level outcome are presented in Table C.3. Results

taking household to be the unit of observation are presented in Table C.4. Across both

tables, we see that that the standard deviations in outcomes are remarkably similar across

treatment and control groups. They are also very similar across individual and household

level groups, since households with more than one person represented less than 5% of the

survey sample.
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Table C.3. Individual Level Heteroskedasticity in Finkelstein et al. (2012).

Outcome Treatment Control Treat./Cont.

Extensive
Margin

Prescription drugs currently 0.48 0.48 0.99
Outpatient visits last six months 0.48 0.49 0.98
ER visits last six months 0.44 0.44 1.00
Inpatient hospital admissions last six months 0.26 0.26 1.00

Total
Utilization

Prescription drugs currently 2.90 2.88 1.01
Outpatient visits last six months 3.29 3.09 1.07
ER visits last six months 1.01 1.04 0.97
Inpatient hospital admissions last six months 0.42 0.40 1.04

Preventative
Care

Blood cholesterol checked (ever) 0.48 0.48 0.98
Blood tested for high blood sugar (ever) 0.48 0.49 0.99
Mammogram within last 12 months (women ≥ 40) 0.48 0.46 1.04
Pap test within last 12 months (women) 0.50 0.49 1.01

Table C.4. Household Level Heteroskedasticity in Finkelstein et al. (2012).

Outcome Treatment Control Treat./Cont.

Extensive
Margin

Prescription drugs currently 0.46 0.47 0.99
Outpatient visits last six months 0.47 0.48 0.97
ER visits last six months 0.43 0.44 0.99
Inpatient hospital admissions last six months 0.26 0.26 0.99

Total
Utilization

Prescription drugs currently 2.88 2.86 1.01
Outpatient visits last six months 3.30 3.09 1.07
ER visits last six months 1.01 1.04 0.98
Inpatient hospital admissions last six months 0.41 0.40 1.02

Preventative
Care

Blood cholesterol checked (ever) 0.46 0.48 0.97
Blood tested for high blood sugar (ever) 0.47 0.48 0.98
Mammogram within last 12 months (women ≥ 40) 0.48 0.46 1.04
Pap test within last 12 months (women) 0.50 0.49 1.01

C.2.3. McKenzie (2017)

Business plan competitions are growing in popularity as a way of fostering high growth

entrepreneurship in developing countries. McKenzie (2017) studies the Youth Enterprise

With Innovation in Nigeria (YouWiN!) program, which distributed up to US$64,000 to

winners. A portion of the awards were reserved for business plans that were clearly
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superior to the rest. 1,841 entrepreneurs, determined to be of medium quality, were

entered into a lottery, from which 729 were selected for the award. Three rounds of

surveys were then conducted at 1,2 and 3 years after the application respectively.

We focus on the first set of results in McKenzie (2017) – presented in Table 2 –

concerning the effect of the award on start-up and survival. Here, they find that the grant

persistently increased the probability that the entrepreneur was operating a firm, as well as

the number of hours they spent in self-employment. We present the standard deviations

of these outcome variables in Table C.5. Here we see that hours in self employment

is roughly homoskedastic across all three periods. However, the outcome on whether

the entrepreneur is operating a firm is arguably highly heteroskedastic, with standard

deviations that is as small as 0.44 that of the control group. As in our earlier example,

we find high kurtosis in these outcome variables, displayed in Table C.6.

We do not estimate Cm in this example because almost all entrepreneurs in the treated

group operate their own firms in the sample. As such, a small random sub-sample (e.g.

of size below 200) from this group has variance 0 with high probability, impeding the

estimation of Cm. These pathological cases are revealing. In a pilot, if the treated

group has variance 0 in the outcome, the estimated Neyman Allocation assigns 0 units

to treatment in the full experiment. The high probability of such an “extreme" outcome

with small pilots is precisely the danger which we are warning against. We conclude that

the estimated Neyman from a small pilot will likely lead to adverse results given the DGP

in McKenzie (2017).
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Table C.5. Heteroskedasticity in McKenzie (2017).

Outcome
New Firms Existing Firms

Treat. Cont. Ratio Treat. Cont. Ratio

Operates a Firm at Round 1 0.43 0.50 0.86 0.21 0.34 0.63
Operates a Firm at Round 2 0.27 0.50 0.55 0.16 0.36 0.44
Operates a Firm at Round 3 0.28 0.50 0.56 0.20 0.43 0.48
Weekly Hours of Self Emp. at Round 1 29.40 29.75 0.99 25.74 27.81 0.93
Weekly Hours of Self Emp. at Round 2 24.98 28.62 0.87 24.51 29.71 0.82
Weekly Hours of Self Emp. at Round 3 24.77 25.85 0.96 25.09 26.10 0.96

Table C.6. Kurtosis in McKenzie (2017).

Outcome
New Firms Existing Firms

Treat. Cont. Treat. Cont.

Operates a Firm at Round 1 2.52 1.04 19.68 5.91
Operates a Firm at Round 2 10.69 1.08 35.46 4.58
Operates a Firm at Round 3 9.62 1.03 21.05 2.47
Weekly Hours of Self Emp. at Round 1 1.99 3.08 3.93 3.08
Weekly Hours of Self Emp. at Round 2 2.77 2.92 3.03 2.42
Weekly Hours of Self Emp. at Round 3 2.09 3.28 3.47 2.15

C.2.4. Chong et al. (2015)

Partnering with the Peruvian nongovernmental organization PRISMA, Chong et al. (2015)

conducted two RCTs to investigate the efficacy of various interventions in encouraging

recycling. First, the Participation Study considers the following 9 different messaging

strategies and their relative success in enrolling members into recycling programs:

(1) Norms: Rich and Poor. Norm messaging focus on communicating high recycling

rate of either a rich or poor reference neighborhoods, encouraging conformity.

(2) Signal: Rich, Poor and Local. Signal messaging informs the targets that their

recycling behavior will be known to either a nearby neighborhood (Local), a distal

neighborhood of varying wealth (Rich or Poor), affecting the targets reputation.
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(3) Authority: Religious or Municipal. Authority messaging communicates that a

higher authority, either religious or local governmental, advocates recycling.

(4) Information: Environmental or Social. Informational messaging communicated

the benefits of recycling, either to the environment or to the local society (e.g.

by creating jobs).

Out of a total of 6,718 households, approximately 600 were assigned to each treatment

arm, with the exception of Signal: Local, which were assigned 932 participants. 1,157

households were assigned to the control group. Three measures of participation were

considered:

(1) “Participates any time" is an indicator that takes the value 1 if a household turned

in residuals over the course of the study.

(2) “Participation Ratio" is the number of times a household turns in residual over

the total number of opportunities they had to turn in residuals.

(3) “Participates during either of last two visits" is an indicator that takes value 1 if

the household turned in residual during one of the last two canvassing weeks.

The results in Table 3 of Chong et al. (2015) shows that messaging had no effect in

increasing participation in the program. Table C.7 displays the standard deviation of

the various outcomes by treatment type. Table C.8, shows the ratio of the standard

deviation in the outcome variable of each treatment group, with respect to that of the

control group. Here, we see that the outcomes are highly homoskedastic, suggesting little

scope for improvement over the naive experiment.

The second experiment is the Participation Intensity Study. The outcomes of interest

are the following measures recycling intensity:
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Table C.7. S.D. of outcome by treatment type in the Participation Study.
See text for definitions of outcome and treatment.

Outcome Control
Norms Signal Authority Info.

Rich Poor Rich Poor Local Reli. Muni. Env. Social

1 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
2 0.389 0.389 0.392 0.403 0.385 0.393 0.397 0.388 0.396 0.392
3 0.490 0.486 0.494 0.493 0.486 0.489 0.491 0.491 0.494 0.493

Table C.8. Ratio of the S.D w.r.t. the control group in the Participation
Study.

Outcome
Norms Signal Authority Info.
Rich Poor Rich Poor Local Reli. Muni. Env. Social

1 1.000 0.999 1.000 1.000 1.000 1.000 0.999 1.000 1.000
2 1.000 1.008 1.036 0.989 1.012 1.022 0.998 1.018 1.008
3 0.992 1.007 1.005 0.990 0.997 1.000 1.001 1.007 1.005

(1) Percentage of visits in which household turned in residuals

(2) Average number of bins turned in per week

(3) Average weight (in kg) of recyclables turned in per week

(4) Average market value of recyclables given per week

(5) Average percentage of contamination (non-recyclables mixed into recycling) per

week.

The treatments of interest are (1) providing recycling bins to households and (2) sending

SMS reminders for recycling.1 Of the 1,781 households in this study, 182 were received

Bin and SMS. 417 received the Bin only treatment. 369 received the SMS only treatment,

leaving 817 in the control group. The authors find, in Table 4A that bin provision was

highly effective in increasing recycling, though SMS reminders had no effect. We compute

1The authors also consider providing bins with and without instructions as well as generic vs personalized
SMSes. However, these finer definitions leads to treatment arms with fewer 50 households. Hence we
focus on the coarser definition of the treatments, as employed in panel 4A.
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the standard deviation in each of their outcome variables by treatment type in Table C.9.

Also displayed is the ratio of these standard deviation with respect to the control group.

Again, we see strong evidence of homoskedasticity, suggesting that the naive experiment

will perform well in this scenario.

Table C.9. S.D. of outcome by treatment type in the Participation Intensity
Study. See text for definitions of outcome and treatment.

Outcome
Standard Deviation Ratio of S.D. w.r.t. Control

Control SMS only Bin only SMS & Bin SMS only Bin only SMS & Bin

1 0.262 0.286 0.233 0.227 1.092 0.891 0.867
2 0.404 0.371 0.441 0.375 0.919 1.092 0.927
3 0.744 0.646 0.756 0.727 0.869 1.017 0.978
4 0.418 0.371 0.416 0.399 0.889 0.996 0.955
5 0.156 0.145 0.136 0.128 0.928 0.870 0.822

C.2.5. Bloom et al. (2014)

Bloom et al. (2014) study the effect of working from home on employees’ productivity

via a randomized experiment at Ctrip, a NASDAQ-listed Chinese travel agency with

16000 employees. The main concern is whether or not working from leads to shirking.

Ctrip decided to run a nine-month experiment on working from home. They asked the

996 employees in the airfare and hotel departments of the Shanghai call center if they

were interested in working from home four days a week and one day in the office. 503

of these employees were interested and of these, 249 were qualified to take part on the

basis of tenure, broadband access and access to private work space at home. Qualified

employees were assigned to working from home if they had even-numbered birthdays so

that those with odd-numbered birthdays formed the control group. The treatment and

control groups were comprised of 131 and 118 employees respectively. The only difference
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between the two groups was location of work – both groups used the same equipment,

faced the same workload and were compensated under the same pay system. The authors

find a 13% increase in productivity of which the main source of improvement was a 9%

increase in the number of minutes worked during a shift. The remaining 4% came from

an increase in the number of calls per minute worked.

Table C.10 reports standard deviations for treatment and control groups in the ex-

periment as well as the standard deviation ratios for the main outcomes of interest in

Bloom et al. (2014). Strong evidence of relative homoskedasticity with respect to treat-

ment status presents in this study as well – suggesting that the balanced allocation would

outperform the FNA.

Table C.10. Performance impact outcomes: standard deviations.

Outcome Variables Control S.D. Treated S.D. Ratio
Overall Performance 1.0049 1.0035 0.9986
Phone calls 0.9775 0.7502 0.7675
Log phone calls 0.2476 0.1764 0.7123
Log call per sec 0.0217 0.0299 1.3786
Log call length 0.2701 0.2729 1.0105

C.2.6. Deming et al. (2016)

Deming et al. (2016) study employers’ perceptions of the value of post-secondary degrees

using a field experiment. The experimental units are fictitious resumes to be used in

applications to vacancies posted on a large online job board. Their focus is on degrees

and certificates awarded in the two largest occupational categories in the United States:

business and health. Resumes are randomly assigned sector and selectivity of (degree-

awarding) institutions. Fictitious resumes are created using a vast online database of
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actual resumes of job seekers, with applicant characteristics varying randomly (i.e. char-

acteristics are randomly assigned). Outcomes are callback rates. There are three main

comparisons in the paper:

• for-profit vs. public institutions,

• for-profits that are online vs. brick-and-mortar (with a local presence),

• more selective vs. less selective public institutions.

Deming et al. (2016) find that BA degrees in business from large online for-profit institu-

tions are more 22% less likely to receive a callback than applicants with similar degrees

from non-selective public schools when the job vacancy requires a BA. When a business

job opening does not list a BA requirement, they find no significant overall advantage to

having a post-secondary degree. For health jobs, resumes with certificates from for-profit

institutions are 57% less likely to receive a callback than those with similar certificates

from public institutions when the job listing does not require a post-secondary certificate.

No significant difference in callback rates are found when the health job listing requires a

certificate.

Table C.11 reports standard deviations across treatment arms across the various sub-

populations of interest in Deming et al. (2016). Since in most sub-populations, there

are more than two treatment arms, we do not report ratios. However, pairwise compar-

isons between treatment arms within any chosen subpopulation shows strong evidence of

relative homoskedasticity across the board.
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Table C.11. Performance impact outcomes: standard deviations.

Experimental Population Treatment Arm S.D.
Business jobs without BA requirements No degree 0.3054

AA (for profit) 0.3026
AA (public) 0.3053
BA (for profit) 0.3071

Business jobs with BA requirements BA (for profit, online) 0.2522
BA (for profit, not online) 0.2209
BA (public, selective) 0.2879
BA (public, not selective) 0.2595

Health job without cert. requirement No certificate 0.2900
Certificate (for profit) 0.2922
Certificate (public) 0.3014

Health job with cert. requirement Certificate (for profit) 0.2400
Certificate (public) 0.2681

C.2.7. Bryan et al. (2015)

Bryan et al. (2015) conduct a field experiment to study efficacy of peer intermediation in

mitigating adverse selection and moral hazard in credit markets. To identify the effects of

peer screening and enforcement, they use a two-stage referral incentive field experiment.

The experiment was conducted through Opportunity Finance South Africa (Opportunity),

a for-profit lender in the consumer micro-loan market. Over the period of February 2008

through July 2009, Opportunity offered individuals approved for a loan the option to

participate in its “Refer-A-Friend” program. Referred individuals earned R40 if they

brought in a referral card and were approved for a loan. The referrer could earn R100 for

referring someone who was subsequently approved for and/or repaid the loan, depending

on the referrer’s incentive contract. Referrers were randomly assigned to one of two ex-

ante incentive contracts:
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• Approval incentives: the referrer would be paid only if the referred was approved

for a loan.

• Repayment incentive: the referrer would be paid only if the referred successfully

repaid the loan.

Among referrers whose referred friends were approved for a loan, Opportunity randomly

selected half to be surprised with an ex-post incentive change:

• Half among the ex-ante approval group were phoned and told that in addition to

the R100 approval bonus, they would receive an additional R100 if the loan was

successfully repaid by the referrer.

• Half among the ex-ante repayment group were phoned and told that they would

receive the R100 now, and that receipt of the bonus would no longer be condi-

tional on repayment of the loan by the referrer.

The overall incentive structure is as follows

• Ex-ante and ex-post approval (EA = A): no enforcement or screening incentive.

• Ex-ante repayment and ex-post approval (EA = R): screening incentive.

• Ex-ante approval and ex-post repayment (EA = A, EP = R): Enforcement in-

centive.

• Ex-ante repayment and ex-post repayment (EA = R, EP = R): Enforcement and

screening incentive.

The authors find no evidence of screening but do find large enforcement effects.

Table C.12 reports standard deviations in the main outcomes of interest in Bryan et al.

(2015) across the four treatment arms. For a given outcome, pairwise comparisons across
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arms yields evidence of relative homoskedasticity with respect to treatment status. We

conclude that in this case, the balanced allocation would outperform the FNA.

Table C.12. S.D. across treatment groups G1, G2, G3 and G4.

Outcome EA = A
EA = A,
EP = R EA = R

EA = R,
EP = R

Penalty interest 0.4919 0.4407 0.4488 0.5043
Positive balance owing at maturity 0.4086 0.2959 0.3613 0.4225
Proportion of value owing at maturity 0.4088 0.3106 0.3153 0.5526
Loan charged off 0.3652 0.2147 0.2917 0.3950

C.2.8. Galiani and McEwan (2013)

Galiani and McEwan (2013) use the Honduran PRAF experiment to study the impact

of conditional cash transfers (CCT) on the likelihood of children to work versus enrolling

in school. The PRAF experiment randomly allocated CCT’s among 70 municipalities.

These 70 were chosen out of a total of 298 on the basis of mean heights-for-age z-scores of

first graders. The 70 municipalities were further assigned to four treatment arms termed

G1, G2, G3, G4. G1 received CCT’s in education and health. G2 received CCT’s in

addition to direct investment in education and health centers. G3 received only direct

investments and finally, G4 served as the control group and received no interventions. The

70 municipalities were further divided into 5 strata each consisting of 14 municipalities on

the basis of quintiles of mean height-for-age. Random assignment was performed within

these strata (stratified randomization). The final sample consisted of 20 municipalities

in G1, 20 in G2, 10 in G3, and 20 in G4. The authors match the experimental data

with census data and use the latter to construct the outcomes of interest which are three

dummy variables. The first is an indicator for whether a child is enrolled in and attending
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school during the time of the census. The second indicates whether the child worked

during the week prior to the census or conditional on a negative response to the former,

whether they reported non-wage employment in a family farm or business. The third

indicates whether the child worked exclusively on household chores. The authors find

that overall, children eligible for CCTs were 8% more likely to enroll in school and 3%

less likely to work.

Table C.13 reports standard deviations for the outcomes of interest across treatment

arms. Again, for a given outcome, pairwise comparisons across arms yields evidence of

relative homoskedasticity with respect to treatment status. We conclude that in this case,

the balanced allocation would outperform the FNA.

Table C.13. S.D. across treatment groups G1, G2, G3 and G4.

Outcome G1 G2 G3 G4
Enrolled in school 0.4393 0.4474 0.4812 0.4769
Works outside home 0.2637 0.2267 0.2893 0.2986
Works only in home 0.3015 0.2841 0.3478 0.3409
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