
NORTHWESTERN UNIVERSITY

Topics in Machine Learning Optimization

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Engineering Science and Applied Mathematics

By

Biyi Fang

EVANSTON, ILLINOIS

December 2021

2

© Copyright by Biyi Fang 2021

All Rights Reserved

3

Abstract

Topics in Machine Learning Optimization

Biyi Fang

Recently, machine learning and deep learning, which have made many theoretical and em-

pirical breakthroughs and is widely applied in various fields, attract a great number of re-

searchers and practitioners. They have become one of the most popular research directions

and plays a significant role in many fields, such as machine translation, speech recognition,

image recognition, recommendation system, etc. Optimization, as one of the core components,

attracts much attention of researchers. The essence of most machine learning and deep learning

algorithms is to build an optimization model and learn the parameters in the objective function

from the given data. With the exponential growth of data amount and the increase of model

complexity, optimization methods in machine learning face more and more challenges. In the

era of immense data, the effectiveness and efficiency of the numerical optimization algorithms

dramatically influence the popularization and application of the machine learning and deep

learning models. In this study, we propose a few effective optimization algorithms for differ-

ent optimization problems, which have improved the performance and efficiency of machine

learning and deep learning methods. This dissertation consists of four chapters, 1) Stochastic

4

Large-scale Machine Learning Algorithms with Distributed Features and Observations, 2) Con-

vergence Analyses of Online ADAM, 3) Topic Analysis for Text with Side Data and 4) Tricks

and Plugins to GBM on Images and Sequences.

In the first chapter, We propose a general stochastic offline algorithm where observations,

features, and gradient components can be sampled in a double distributed setting, i.e., with both

features and observations distributed. Moreover, very technical analyses establish convergence

properties of the algorithm under different conditions on the learning rate (diminishing to zero

or constant). Furthermore, computational experiments in Spark demonstrate a superior perfor-

mance of our algorithm versus a benchmark in early iterations of the algorithm, which is due to

the stochastic components of the algorithm.

In the second chapter, we explore how to apply optimization algorithms with fixed learning

rate in online learning. Online learning is an appealing learning paradigm, which is of great

interest in practice due to the recent emergence of large scale applications. Standard online

learning assumes a finite number of samples while in practice data is streamed infinitely. In such

a setting gradient descent with a diminishing learning rate does not work. In this chapter, we first

introduce regret with rolling window, a performance metric, which measures the performance

of an algorithm on every fixed number of contiguous samples. Meanwhile, we propose a family

of algorithms with a constant or adaptive learning rate and provide very technical analyses

establishing regret bound properties. We cover the convex setting showing the regret of the

order of the square root of the size of the window in the constant and dynamic learning rate

scenarios. Our proof is applicable also to the standard online setting where we provide analyses

of the same regret order (the previous proofs have flaws). We also study a two layer neural

network setting with reLU activation. In this case we establish that if initial weights are close to

5

a stationary point, the same regret bound is attainable. We conduct computational experiments

demonstrating a superior performance of the proposed algorithms.

In the third paper, we employ text with side data to tackle the limitations like cold-start

and non-transparency in latent factor models (e.g., matrix factorization). We introduce a hybrid

generative probabilistic model that combines a neural network with a latent topic model, which

is a four-level hierarchical Bayesian model. In the model, each document is modeled as a finite

mixture over an underlying set of topics and each topic is modeled as an infinite mixture over

an underlying set of topic probabilities. Furthermore, each topic probability is modeled as a

finite mixture over side data. In the context of text, the neural network provides an overview

distribution about side data for the corresponding text, which is the prior distribution in LDA

to help perform topic grouping. The approach is evaluated on several different datasets, where

the model is shown to outperform standard LDA and Dirichlet-multinomial regression (DMR)

in terms of topic grouping, model perplexity, classification and comment generation.

In the forth paper, we propose a new algorithm for boosting Deep Convolutional Neural

Networks (BoostCNN) to combine the merits of dynamic feature selection and BoostCNN, and

another new family of algorithms combining boosting and transformers. To learn these new

models, we introduce subgrid selection and importance sampling strategies and propose a set

of algorithms to incorporate boosting weights into a deep learning architecture based on a least

squares objective function. These algorithms not only reduce the required manual effort for

finding an appropriate network architecture but also result in superior performance and lower

running time. Experiments show that the proposed methods outperform benchmarks on several

fine-grained classification tasks.

6

The systematic retrospect and summary of the optimization methods from the perspective

of machine learning are of great significance, which can offer guidance for both developments

of optimization and machine learning research.

7

Acknowledgements

I would like to express my greatest gratitude to my advisor Professor Diego Klabjan for his

guidance and mentorship over the past four years. Professor Klabjan has been tremendously

supportive and patient. He has provided me with insightful scientific advice and useful sugges-

tions for career development. He also has a great sense of humor; his jokes always add vibrant

color to my busy research life. I am extremely grateful to have such a great professor.

I would like to thank my thesis committee members Professor David Chopp and Professor

Alvin Bayliss, for their insightful suggestions and encouragement. I enjoyed Professor Chopp’s

and Professor Bayliss’s lectures a lot, particularly their algorithm classes, which inspired me to

develop my research interest in optimization algorithms.

My gratitude also goes to the students, faculty, and staff at the Northwestern Engineering

Science and Applied Mathematics Department for their kind support. I would also like to thank

Dr. Jean Utke from AllState company and Kripa Rajshekhar from Metonymize company for

insightful discussions and feedback about my research projects.

Finally, I would like to thank my parents, my fiancée, and my fiancée’s family for their

unconditional love, sacrifice, and support. I am forever in their debt.

8

Table of Contents

Abstract 3

Acknowledgements 7

Table of Contents 8

List of Tables 11

List of Figures 13

Chapter 1. Stochastic Large-scale Machine Learning Algorithms with Distributed

Features and Observations 16

1.1. Introduction 16

1.2. Related Work 19

1.3. Algorithm 22

1.4. Analysis 27

1.5. Numerical Study 35

Chapter 2. Convergence Analyses of Online ADAM 43

2.1. Introduction 43

2.2. Related Work 47

2.3. Regret with Rolling Window 51

2.4. Convex Setting 52

9

2.5. Two-Layer ReLU Neural Network 57

2.6. Numerical Study 66

Chapter 3. Topic Analysis for Text with Side Data 74

3.1. Introduction 74

3.2. Related Work 76

3.3. Model and Algorithm 79

3.4. Experimental Study 87

Chapter 4. Tricks and Plugins to GBM on Images and Sequences 101

4.1. Introduction 101

4.2. Related Work 105

4.3. Algorithms for CNN as Weak Learner 108

4.4. Algorithms for Transformer as Weak Learner 114

4.5. Experimental Study 122

Bibliography 137

Appendix A. Additional Experimental Details for 152

A.1. Problem Set-up 152

A.2. Notation 152

A.3. Diminishing L.R. Convergence without Feature and Sample Sampling 154

A.4. Counter Example without Assumptions 3 and 4 163

A.5. Diminishing L.R. Convergence with Feature Sampling 167

A.6. Constant Learning Rate with Feature Sampling 183

A.7. Convergence of Constant L.R. with Feature Sampling 195

10

Appendix B. Appendix 204

B.1. Extensions 204

B.2. Regret with Rolling Window Analysis of OGD 206

B.3. Regret with Rolling Window Analyses of CONVGADAM 208

B.4. Regret with Rolling Window Analysis of dnnOGD for Two-Layer ReLU Neural

Network 215

B.5. Proof of Theorem 9 218

B.6. Regret with Rolling Window Analyses of dnnAdam for Two-Layer NN 222

B.7. Proof of Theorem 10 226

Appendix C. Appendix 238

C.1. Probability Distribution of LDA 238

C.2. Proof of Theorem 11 239

C.3. Proof of Theorem 12 240

Appendix D. Appendix 242

D.1. Proof of Theorem 13 242

11

List of Tables

1.1 Synthetic datasets for numerical experiments 36

1.2 Variation of SODDA and RADiSA-avg by using different seeds 40

1.3 Datasets extracted from SemMed database 41

3.1 Synthetic Dataset 88

3.2 Tasks of Interest 91

3.3 Top words of groups generated by LDA, DMR and nnLDA 93

3.4 Precision, recall and relative improvement of the synthetic dataset generated

by LDA, DMR and nnLDA 93

3.5 Running time of different models on different datasets 97

3.6 Comparison of the generated comments on different datasets 99

4.1 Image Datasets 123

4.2 Standard deviation times 103 of the accuracy results by different seeds 125

4.3 Running time for different algorithms 135

A.1 Counter Examples 166

12

B.1 Summary of known regret bounds for online learning and streaming in

convex setting 206

13

List of Figures

1.1 Q = 3, P = 4 23

1.2 Comparison of SODDA and RADiSA-avg on small-size dataset 38

1.3 Comparison of SODDA and RADiSA-avg for three different seeds on the

mid- and large-size datasets 39

1.4 Comparison of SODDA and RADiSA-avg on SemMed database 42

2.1 Comparison of OGD for different orders, learning rates and T 68

2.2 Comparison of CONVGADAM for different orders, stepsizes and T 69

2.3 Performance of CONVGADAM and OGD on the remaining labels 70

2.4 Performance of CONVGADAM on Learn to Rank Challenge dataset 71

2.5 Performance of CONVGADAM on MINST8M dataset 73

3.1 PTS dataset 96

3.2 WIP dataset 96

3.3 DCL dataset 96

3.4 RR dataset 96

3.5 PTS 97

3.6 WIP 97

14

3.7 DCL 97

4.1 ResNet-18 on CIFAR-10 126

4.2 Different Seeds 126

4.3 ResNet-18 on SVHN 126

4.4 Different Seeds 126

4.5 ResNet-18 on ImageNetSub 126

4.6 Different Seeds 126

4.7 ResNet-50 on CIRFAR-10 128

4.8 Different Seeds 128

4.9 ResNet-50 on ImageNetSub 128

4.10 Different Seeds 128

4.11 ResNet-50 on ImageNetSub compared to ResNet-101 128

4.12 ResNet-101 on ImageNetSub 128

4.13 Relative Accuracy on IMDB 131

4.14 Improvement on IMDB 131

4.15 Relative Accuracy on Yelp 131

4.16 Improvement on Yelp 131

4.17 Relative Accuracy on Amazon 131

4.18 Improvement on Amazon 131

4.19 IMDB 134

15

4.20 Yelp 134

4.21 Amazon 135

16

CHAPTER 1

Stochastic Large-scale Machine Learning Algorithms with Distributed

Features and Observations

1.1. Introduction

As technology advances, collecting and analyzing large-scale and real time data has

become widely used in a variety of fields. Large-scale machine learning can not only present

a useful summary of a dataset but it can also make predictions. In the era of big data, large

scale datasets have become more accessible. “Large” usually refers to both the number of ob-

servations and high feature dimension. For example, an English Wikipedia dataset can have

11 million documents (observations) and over several hundred of thousands unique word types

(features). This demands a sophisticated large-scale machine learning system able to take ad-

vantages of all available information from such datasets and not only random samples. On the

other hand, as large scale data is becoming more accessible, storing the whole dataset on a sin-

gle server is often impossible due to the inadequate disk and memory capacities. Consequently,

it is considerable to store and analyze them distributively. Often the data collection process by

design distributes observations and features. There is a large amount of literature dealing with

optimization problems subject to a dataset with either distributed observations or distributed

features. Nevertheless, very limited contribution has been made to the case where both the

observations and features are in a distributed environment.

17

In this paper, we propose an algorithm, namely SODDA (StOchastic Doubly Distributed

Algorithm), designed for a doubly distributed dataset and inspired by the work (Harikandeh

et al., 2015) and (Nathan and Klabjan, 2017). The algorithm is aimed to solve a series of op-

timization problems which can be formulated as the minimization of a finite sum of convex

functions plus a convex regularization term if necessary. SODDA is a primal method building

on the previous RAndom Distributed Stochastic Algorithm (RADiSA) (Nathan and Klabjan,

2017). SODDA first further splits the partitions (a partition is a set of features and observations

stored locally) with respect to features into sub-partitions with no overlap; then in each iteration,

randomly chooses sub-partitions associated with different blocks of features; lastly, similar to

stochastic gradient descent (SGD), updates in parallel each sub-block of the current local so-

lution by using observations from the randomly selected sub-partition of local observations

and the local sub-block of features, coupled with the Stochastic Variance-Reduced Gradient

(SVRG). One generalization of SVRG utilized in SODDA is that SODDA does not require a

full solution update; instead, it allows each sub-block of the current local solution to be up-

dated individually and assembled at the end of each iteration. Although, we might amplify the

error by approximately computing the gradient, SODDA reduces the communication cost sig-

nificantly. Another technique aiming to cut down the communication cost is estimating the full

gradient needed as part of the SVRG component, which is a big distinction between SODDA

and RADiSA. RADiSA requires the full gradient in each outer iteration, which is computa-

tionally demanding, especially when the solution is far from an optimal solution. SODDA has

three stochastic components: the first two are that it randomly selects blocks of local features

and subsets of local observations to execute the estimated gradient, and the third component

that randomly chooses further sub-blocks of local features to record the approximated gradient,

18

which contributes to a reduction of the number of gradient coordinate computations required in

early iterations. In other words, only random coordinates of the gradient are computed.

In this paper, we not only propose a more computationally efficient method, SODDA, when

compared to RADiSA (Nathan and Klabjan, 2017), but also present a complete technical proof

of convergence. For a smooth and strongly convex function, we prove that SODDA enjoys

at least a sublinear convergence rate and a linear convergence rate for a diminishing learning

rate and a constant learning rate, respectively. Furthermore, we prove that SODDA iterates

converge to an optimal solution when using a constant learning rate selected from a certain

interval. Moreover, the convergence property of RADiSA, which is not provided in (Nathan

and Klabjan, 2017), is implied directly from SODDA. In summary, we make the following five

contributions.

• We provide a better scalable stochastic doubly distributed method, i.e. SODDA, for

doubly distributed datasets. This algorithm does not require the calculation of a full

gradient, thus it is a less computationally intensive methodology for doubly distributed

setting problems. We provide a proof of a geometric (without feature and sample sam-

pling) and sublinear (with feature and sample sampling) convergence result for smooth

and strongly-convex loss functions when using a sequence of decreasing learning rates.

• We show that SODDA iterates converge with linear rate to a neighborhood of an opti-

mal solution when using an arbitrary constant learning rate.

• We further argue that SODDA iterates converge to an optimal solution in the strongly-

convex case when using any constant learning rate in a specified interval.

• We present numerical results showing that SODDA outperforms RADiSA-avg, which

is the best doubly distributed optimization algorithm in (Nathan and Klabjan, 2017),

19

on all instances considered in early iterations. More precisely, SODDA finds good

quality solutions faster than RADiSA-avg.

The paper is organized as follow. In the next section, we review several related works in

distributed optimization. In Section 3, we state the formal optimization problem and standard

assumptions underlying our analyses, followed by the exposition of the SODDA algorithm.

In Section 4, we show the convergence analyses of SODDA with respect to both a decreas-

ing learning rate and a constant learning rate. In Section 5, we present experimental results

comparing SODDA with RADiSA-avg.

1.2. Related Work

There are a large number of extensions of the plain stochastic gradient descent algorithm

related to distributed datasets, however, a full retrospection of this immense literature exceeds

the scope of this work. In this section, we state several approaches which are most related to

our new method and interpret the relationships among them.

In plain SGD, the gradient of the aggregate function is approximated by one randomly

picked function (Robbins and Monro, 1951). It saves a heavy load of computation when com-

pared with gradient descent, whereas more often than not, the convergence happens to be slow.

Recently, a large variety of approaches have been proposed targeted on accelerating the conver-

gence rate and dealing with observations in the distributed setting.

SGD for distributed observations: One attempt that works for datasets with distributed obser-

vations is parallelizing it by means of mini-batch SGD. Both the synchronous version (Chen

et al., 2016) and the asynchronous version (Tsitsiklis et al., 1986) basically work in the follow-

ing way: the parameter server performs parameter updates after all worker nodes send their own

20

gradients based on local information in parallel, and then broadcasts the updated parameters to

all worker nodes afterwards. In the synchronous approach, the master node needs to wait until

all gradients are collected but in the asynchronous approach, the master node performs updates

whenever it is needed. An alternative method which introduces the concept of variance reduced

is CentralVR (De and Goldstein, 2016), where the master node not only needs to spread param-

eters but also the full gradient after every certain number of iterations, and each worker node

would involve the full gradient as a corrector when computing their own gradients. As a conse-

quence, the variance in the estimation of the stochastic gradient could be reduced and a larger

learning rate is allowed to accomplish faster convergence and higher accuracy.

SGD for distributed features: Another attempt for distributed features is parallelization via

features. Block successive upper bound minimization (BSUM) (Hong et al., 2015) is one of

the methods working for datasets with distributed features, where the master node spreads all

parameters and each worker node conducts parameter updates on a randomly chosen and non-

overlapping subset of the feature vector. Distributed Block Coordinate Descent (Mareček et al.,

2015) is another approach designed for datasets with distributed features. The parameters as-

sociated with these feature blocks are partitioned accordingly. In the algorithm, each processor

randomly chooses a certain number of blocks out of those stored locally, performs the corre-

sponding parameter updates in parallel, and then transmits to other processors. However, it is

impossible to avoid communication when computing the gradient of all parameters unless there

are extra assumptions on the objective loss function, which does not usually hold. An alterna-

tive approach is Communication-Efficient Distributed Dual Coordinate Ascent (CoCoA) (Jaggi

et al., 2014), which is a primal-dual method also working for data with distributed features.

21

By exploiting the fact that the associated blocks of dual variables work in different processors

without overlap, the algorithm aggregates the parallel updates efficiently from the different pro-

cessors without much conflict and reduces the necessary communication dramatically. A faster

converging method extended from the aforementioned approach is CoCoA+ (Ma et al., 2015),

which allows a larger learning rate for parameter updates by introducing a more generalized

local CoCoA subproblem at each processor.

SGD for distributed observations and features: Given datasets with distributed observations

and features, all the methods mentioned so far are not applicable. One of the algorithms fitting

the bill is a block distributed ADMM (Parikh and Boyd, 2014), which is the block splitting

variant of ADMM. Nonetheless, the convergence rate of ADMM-based methods is slow. Ran-

dom parallel stochastic algorithm (RAPSA)(Mokhtari et al., 2016) is another algorithm which

utilizes multiple parallel units to operate on a randomly chosen subset of blocks of the feature

vector. It needs to access the whole feature vector to perform a parameter update while SODDA

only needs a subset of the feature. Decentralized double stochastic averaging gradient algorithm

(DSA) (Mokhtari and Ribeiro, 2016) is an alternative method designed for doubly distributed

datasets, whereas the global cost function that DSA optimizes is a linear combination of the

local objective functions which only contain local parameters, compared to the loss function of

SODDA which contains global parameters. A faster converging and more pertinent algorithm

is RADiSA (Nathan and Klabjan, 2017), which is also focusing on settings where both the ob-

servations and features of the problem at hand are stored in a distributed fashion. RADiSA

conducts parameter updates based on stochastic partial gradients, which are calculated from

randomly selected local observations and a randomly assigned sub-block of local features in

22

parallel. RADiSA is a special case of SODDA, since the full gradient required by it is replaced

by an approximated gradient which only uses partial observations and features. Consequently,

SODDA provides a faster convergence than RADiSA without sacrificing too much accuracy.

Meanwhile, we present technical convergence analyses for SODDA under different types of

learning rates which imply the convergence of RADiSA.

1.3. Algorithm

We consider the problem of optimizing a finite but large sum of smooth functions, i.e., given

a training set {(xi, yi)}Ni=1, where each xTi ∈ Rd is associated with a corresponding label yi,

min
ω∈Rd

F (ω) :=
1

N

N∑
i=1

f̄(xiω, yi) =
1

N

N∑
i=1

fi(xiω).(1.1)

Several machine learning loss functions fit this model, e.g. least square, logistic regression, and

hinge loss.

In SODDA, we assume that the training set {(xi, yi)}Ni=1 is distributed across both obser-

vations and features. More specifically, the features and observations are split into Q and P

partitions, respectively. We denote the matrix corresponding to the p’th observation partition

and its q’th feature partition as xp,q ∈ R
N
P
× d
Q . Note that the partitions consisting of same

features share the common block of parameters ω[q]. In Figure 1, there are 12 partitions. Pa-

rameters ω[1] correspond to all parameters under q = 1. In order to efficiently parallelize the

computation, optimization of each partition can be done concurrently by considering only local

observations and features. This strategy poses a big challenge in how to combine the param-

eters. For example, ω[1] are modified by all processors working on x1,1, x2,1, x3,1, x4,1. It is

unclear how to combine them (averaging them is a possible strategy however this would not

23

ω11 ω12 ω13 ω14 ω21 ω22 ω23 ω24 ω31 ω32 ω33 ω34︸ ︷︷ ︸
ω[1]

︸ ︷︷ ︸
ω2

︸ ︷︷ ︸
ω3

p = 1 { x
1,1,π1(1)=1
j11

p = 2 { x
2,1,π1(2)=4
j14

x
2,3,π3(2)=4
j34

p = 3 { x
3,1,π1(3)=2
j12

p = 4 { x
4,1,π1(4)=3
j13

x
4,2,π2(4)=3
j23︸ ︷︷ ︸

q=1
︸ ︷︷ ︸

q=2
︸ ︷︷ ︸

q=3

Figure 1.1. Q = 3, P = 4

yield convergence, see e.g. (Weimer et al., 2010), (Zinkevich et al., 2010)). To circumvent this,

we further artificially subdivide the features.

To this end, we define a function πq(p) : {1, 2, · · · , P} → {1, 2, · · · , P} in the correspond-

ing q’th feature partition, where P is the number of partitions for observations. A sub-matrix of

the training set from the partition xp,q corresponding to block ωq,πq(p) is denoted by xp,q,πq(p), see

Figure 1. Each processor operates on random observations from partition xp,q and all feature in

xp,q,πq(p). Note that ω[q] =
(
ωq,πq(p)

)P
p=1

. Let us define n = N/P , m = d/Q, m̃ = d/QP , and

jq,πq(p) be randomly chosen from {1, 2, · · · , n} associated with sub-block xp,q,πq(p). In Figure 1,

where P = 3 and Q = 4, x3,1,π1(3)=2
j12

∈ Rm̃ represents a random observation j12 with a sub-

set of features selected from the 2nd sub-block of the block corresponding to the observation

partition 3 and feature partition 1 given π1(3) = 2. Similarly, x4,2,π2(4)=3
j23

symbolizes a random

observation j23 with a subset of features selected from the 3rd sub-block of the block x4,2.

Next, we introduce notation for the partial gradient. For any C ⊆ {1, · · · , d} and any j, let

us denote ŌwC
fj(·) ∈ Rd as the vector defined by

(ŌωC
fj (·))k =

 0, k /∈ C

(Ofj (·))k , k ∈ C.

24

We need this notation since we sample gradient components. The loss function using this

notation becomes

F (ω) =
1

N

P∑
k=1

n∑
j=1

fkj

(
Q∑
q=1

P∑
p=1

x
k,q,πq(p)
j ωq,πq(p)

)
,

where fkj is f̄ associated with observation j in observation partition k.

Given the fact that the data is doubly distributed, SODDA further divides the features x·,q

into P subsets along all observations, i.e. x·,q = [x·,q,1, · · · , x·,q,P]. In each iteration, SODDA

first computes an approximation of the full gradient at the current parameter vector. Then,

after randomly choosing a sub-matrix from each matrix xq,p as long as there is no overlap with

respect to ω, each processor is assigned a sub-matrix of the local dataset and updates its local

parameter by employing generalized SVRG. In the end of each iteration, SODDA concatenates

all partial parameters which becomes the incumbent parameter vector for the next iteration.

The entire algorithm is exhibited in Algorithm 1. Steps 1- 3 initiate all the parameters.

Steps 5-7 give the subsets of features and observations used to compute the partial gradient of

the current iterate ω̃ in step 8. Since the dataset is doubly distributed, the algorithm computes an

estimate of the exact full gradient so as to reduce the communication cost in step 8. Additionally,

we use the term no feature sampling to address the case when bt = d; in other words, the whole

feature vector is employed to compute the gradient µt. To this end, we have three random

components. The first one is the common one to sample observations. The second one is

to compute only a random subset of subgradient coordinates, and the third one is to evaluate

these components not at the exact xω but only on the subset of the underlying inner product

summation terms. Step 10 determines how sub-blocks are selected in each block of the dataset

25

associated with ω[q], for each q. The definition of (πq)
Q
q=1 guarantees that one, and only one sub-

block is selected with respect to ωq,πq(p), i.e. xp,q,πq(p). Then, for each sub-block xp,q,πq(p), after

randomly picking an observation xp,q,πq(p)jq,πq(p)
in the selected sub-block in step 15, each block of

parameter updates is given in step 16. Instead of using the full vector, we estimate the stochastic

gradient by using local features and narrow down the variance by involving the approximated

full gradient. Finally, at the end of each iteration, after each processor finishes its own task,

step 19 aggregates all the updated partial solutions, i.e. ω =
[
ω[1], ω[2], · · · , ω[Q]

]
, where partial

parameters ω[q] represent the concatenation of the local parameters ωq,πq(p), for p = 1, 2, · · · , P .

26

Algorithm 1 SODDA
1: Inputs:

batch size B, learning rate γt, sequence
{
bt, ct, dt

}∞
t=0

where ct ≤ bt ≤ d, dt ≤ N for every t

2: Data:

xp,q,k ∈ Rn×m̃ for p, k = 1, · · · , P and q = 1, · · · , Q, ωq,πq(p) ∈ Rm̃

3: Initialize:

w0 ← 0

4: for t = 0, 1, 2, · · · do

5: Bt=bt elements uniformly at random sampled without replacement from all features

6: Ct=ct elements uniformly at random sampled without replacement from Bt

7: Dt=dt elements uniformly at random sampled without replacement from all observations

8: µt = 1
dt

∑
j∈Dt ŌωCt

fj(x
Bt

j ω
t
Bt)

9: for q = 1, 2, · · · , Q, do

10: select function (πq)
Q
q=1

11: end for

12: for p = 1, 2, · · · , P and q = 1, 2, · · · , Q, do in parallel

13: ω̄
(0)

q,πq(p)
= ωtq,πq(p)

14: for i = 0, · · · , B − 1 do

15: randomly pick jq,πq(p) ∈ {1, · · · , n}

16: ω̄
(i+1)

q,πq(p)
= ω̄

(i)

q,πq(p)
− γt+1

[
Oωq,πq(p)f

πq(p)
jq,πq(p)

(x
p,q,πq(p)
jq,πq(p)

ω̄
(i)

q,πq(p)
)

−Oωq,πq(p)f
πq(p)
jq,πq(p)

(x
p,q,πq(p)
jq,πq(p)

wtq,πq(p)) + µtq,πq(p)

]
17: end for

18: end for

19: ωt+1 =
[
ω[1], ω[2], · · · , ω[Q]

]
, where ω[q] =

[
ω̄

(B)
q1 , ω̄

(B)
q2 , · · · , ω̄(B)

qP

]
20: end for

27

1.4. Analysis

In this section, we prove that the sequence of the loss function values F (ωt) generated by

SODDA approaches the optimal loss function value F (ω∗). We assume the existence and the

uniqueness of the minimizer ω∗ that achieves the optimal loss function value. Meanwhile, we

require the following standard assumptions.

Assumption 1:

• The expectation function F (ω) is strongly convex with parameter ξ > 0.

Assumption 2:

• The loss gradients Ofi(xiω) are Lipschitz continuous with respect to the Euclidian

norm with parameter L ≥ 1, i.e., for all ω, ω̂ ∈ Rd and any i, it holds

‖Ofi(xiω)− Ofi(xiω̂)‖ ≤ L ‖ω − ω̂‖ .

In Assumption 1, only the expected loss function F (ω) is enforced to be strongly convex,

whereas the individual loss functions fi could even be non-convex. Notice that in Assump-

tion 2, since each individual function Ofi is imposed to be Lipschitz-continuous with constant

L with respect to ω, both the gradient of the expected loss function OF (ω) and the individual

functionOfi are L-Lipschitz continuous with respect to ω and ωq,πq(p) for any q ∈ {1, 2, · · · , Q}

and any p ∈ {1, 2, · · · , P}. Note that if fi’s are ε-Lipschitz continuous for some 0 < ε ≤ 1, we

can take L = 1. Moreover, these assumptions hold for several widely used machine learning

loss functions, i.e. hinge, square, logistic loss.

Under these standard assumptions, by finding a relationship for the sequence of the loss

function errors F (ωt) − F (ω∗) and employing the supermartingale convergence argument,

28

which is a standard technique for analyzing stochastic optimization problems (see e.g. text-

books (Benveniste et al., 2012), (Bertsekas and Tsitsiklis, 1989), (Borkar, 2008)), we prove that

the sequence of the loss function values F (ωt) converges to the optimal function value F (ω∗)

when using the standard diminishing learning rate, i.e. non-summable and squared summable.

Theorem 1. If there is neither feature sampling in step 5 nor sample sampling in step 7

and Assumptions 1-2 hold, and the number of iteration for the inner loop B is B ≥ C1d where

C1 is a positive constant, and the sequence of learning rates satisfies γt ≤ 1 for all t, and are

non-summable
∑∞

t=1 γt =∞ and square summable
∑∞

t=1 γ
2
t <∞, and the sequence (ct)∞t=0 is

selected so that ct ≤ d, then we have geometric convergence in expectation for SODDA

E[F (ωt+1)] ≤ F (ω∗) + (
t∏

j=1

Aj)
[
F (ω0)− F (ω∗)

]
,(1.2)

where

lim
t→∞

t∏
j=1

Aj = 0.

PROOF. See Appendix A.3. �

Based on the fact that the exact form for the update step in expectation is not available

in SODDA, i.e., we do not explicitly know ωt+1 − ωt any technique that relies on such an

explicit formula is inappropriate. This expectation is given by steps 9-18 in the algorithm. The

main challenges are coming from evaluating individual function gradient Of(xqpωq,πq(p)) and

grouping different sub-blocks all together. The way we deal with it, which is borrowed from

(Bertsekas and Tsitsiklis, 2000), is grouping the first two partial gradients together and treating

the last partial gradient µtq,πq(p) as a corrector.

29

The very technical proof follows the following steps. In steps 14-17, SODDA utilizes lo-

cal features from a random observation to update the corresponding subset of parameters, and

involves the information from the estimated full gradient to reduce unreasonable fluctuation.

Therefore, in association with the conditional Jensen’s inequality and properties of Lipschitz

continuity, the norm of the difference and the square norm of the difference of the first two

terms in the bracket of the updating procedure in step 16 are able to be bounded by a function

involving γt. Thus, representing ωt+1 as a function of ωt and applying strong convexity of F ,

coupled with all the bounds derived before, yield a relationship for the sequence of loss func-

tion errors F (ωt) − F (ω∗). Combined with the property that γt is non-summable but square

summable, (1.2) is achieved by applying Taylor expansion of logarithm.

Theorem 1 asserts the convergence of the expectation of the objective loss generated by

SODDA with non-summable and squared summable learning rate.

In order to allow feature sampling we have to control the growth of ωt.

1.4.1. Analyses with Feature Sampling

To this end, we require the following assumptions together with Assumptions 1 and 2. In this

subsection, we also do not require bt = d, i.e., step 5 in Algorithm 1 now requires sampling.

Assumption 3:

• There exists a constant M2, such that

∥∥ωt∥∥ ≤ M2

2
,

for any t.

Assumption 4:

30

• The sample variance of the norms of the gradients is bounded by G2 for all ωt, i.e.

1

N − 1

N∑
j=1

(∥∥Ofj(xjωt)∥∥2 − ∥∥OF (ωt)
∥∥2) ≤ G2.

The restriction in Assumption 3 is reasonable and also has been used in work (Harikandeh

et al., 2015). Assumption 4 is also standard, see e.g. (Harikandeh et al., 2015). Moreover, these

assumptions hold for several widely used machine learning loss functions, i.e. hinge, square,

logistic loss. Notice that without Assumption 3, we can not further assume the boundness of the

sample variance of the norms of the gradients in Assumption 4. Next, we present an example

showing that SODDA does not converge under Assumptions 1 and 2.

Theorem 2. There is a convex loss function and P where SODDA does not converge when

only given Assumptions 1 and 2, and any γt ≤ K for every t and constant K depending on

input data.

PROOF. See Appendix A.4. �

The main role of Assumption 3 is to maintain a reasonable error generated by the stochastic

partial gradients in steps 16. Then, under these standard assumptions and applying the similar

trick as in the proof of Theorem 1, we argue that the sequence of ωt enjoys the almost sure

convergence to ω∗.

Theorem 3. If Assumptions 1-4 hold, and the sequence of learning rates are non-summable∑∞
t=1 γt = ∞ and square summable

∑∞
t=1 γ

2
t < ∞, and the sequences (bt, ct, dt)∞t=0 are se-

lected so that bt ∈

max

ct, d

1+
4dηγ2t+1

ctM2
2L

2

 , d

 for some constant η ≥ 0, ct ≤ d and dt ≤ N ,

then the sequence of parameters ωt generated by SODDA converges almost surely to the optimal

31

solution ω∗, that is

lim
t→∞

∥∥ωt − ω∗∥∥ = 0 a.s.(1.3)

PROOF. See Appendix A.5. �

The proof of Theorem 3 is very similar to the proof of Theorem 1. The only difference

is caused by feature sampling. The main challenges are how to pick a suitable bt and how to

narrow down the error generated by bt. Then, given an appropriate bt, the norm of the estimator

of the full gradient µt and its square are bounded by a function containing the full gradient at ωt

and the learning rate γt. Meanwhile, η is a positive constant which controls the divergence of

the approximate full gradient from the exact full gradient in step 8, i.e. when η is 0, the whole

feature vector is used as bt = d. The rest of the proof is identical to the proof of Theorem 1.

Theorem 3 asserts the almost sure convergence of the iterates generated by SODDA with

non-summable and squared summable learning rate. Furthermore, given γt = 1
t

and B big

enough, the following theorem states that the loss function F (ωt) converges to the optimal

value F (ω∗) with probability 1 and the rate of convergence in expectation is at least in the order

of O(1
t
).

Theorem 4. Under Assumptions 1-4, if the learning rate is defined as γt := 1
t

for t =

1, 2, · · ·, and the batch size is chosen such that B ≥ d
2ξ

, and the sequence (bt, ct, dt)∞t=0 sat-

isfies the same conditions as in Theorem 3, then there exists a positive constant C3 such that

the expected loss function errors E[F (ωt) − F (ω∗)] of SODDA converges to 0 at least with a

32

sublinear convergence rate of order O(1/t), i.e.

E[F (ωt)− F (ω∗)] ≤ Q

1 + t
,(1.4)

where constant Q is defined as

Q = max

{
F (ω0)− F (ω∗), · · · , ([λ] + 2)E[F (ω[λ]+1)− F (ω∗)],

C3

λ− 1

}
,(1.5)

with λ = 2ξB
d

.

PROOF. See Appendix A.5. �

Given the specific relationship between the learning rate γt and the iterator t, i.e. γt =

1/t, applying the supermartingale convergence theorem and performing induction on an upper

bound of E [F (ωt)− F (ω∗)] allow us to establish at least sublinear convergence of SODDA.

A diminishing learning rate is beneficial if the exact convergence is required. If we are only

interested in a specific accuracy, it is more efficient to choose a constant learning rate. In the

following theorem, we employ a similar argument used in proving Theorem 3 and Theorem

4 except that B and γ are linked by a condition. Again by providing a supermartingale rela-

tionship for the sequence of the loss function errors F (ωt) − F (ω∗), we are able to study the

convergence properties generated by SODDA for a constant learning rate γ.

Theorem 5. If Assumptions 1-4 hold, and the learning rate is constant γt = γ such that

BLγQP ≤ 1, which also implies that γ ≤ 1, and the sequence (bt, ct, dt)∞t=0 satisfies the same

conditions as in Theorem 3, then there exists a positive constant C4 such that the sequence of

parameters ωt generated by SODDA converges almost surely to a neighborhood of the optimal

33

solution ω∗, that is

lim inf
t→∞

F (ωt)− F (ω∗) ≤ C4dB
3γ

2ξ
a.s.(1.6)

Moreover, if the constant learning rate γ is chosen such that γ < min
{

d
2ξB

, 1
BLQP

, 1
}

, then the

expected loss function errors E [F (ωt)− F (ω∗)] converges linearly to an error bound as

E
[
F (ωt)− F (ω∗)

]
≤
(

1− 2ξB

d
γ

)t (
F (ω0)− F (ω∗)

)
+
C4dB

3γ

2ξ
.(1.7)

PROOF. See Appendix A.6. �

Note that BLγQP ≤ 1 trades off γ and B, i.e. the larger B is, the smaller γ must be.

The major difficulties are similar but not identical to those of Theorem 3. We apply a similar

idea but treating both B and γt = γ as variables to obtain an upper bound in closed form for the

difference of the first two partial gradients in step 16. Then Lipschitz continuity of OF (ω) leads

to a supermartingale relationship for the sequence of the loss function errors F (ωt)−F (ω∗). As

a consequence, claims in (1.6) and (1.7) follow according to the supermartingale convergence

theorem. The only distinction between Theorem 3 and Theorem 5 is caused by the property of

the learning rate. The error exists in each iteration, which is a function of the learning rate γt,

however, in Theorem 3, the error function goes to 0 as the number of iterations increases, which

is not the case when the learning rate is a constant. Therefore, we can only ensure a relatively

high-quality solution.

Theorem 5 guarantees that SODDA finds good quality solutions when using an appropriate

learning rate γ and batch size B. Notice that although methods of type SVRG achieve linear

convergence to the exact solution in expectation under a constant step size, SVRG performs

34

the exact full gradient after every certain number of iterations which would trigger emergence

of communication under the doubly distributed setting and is unnecessary especially in early

iterations. In addition, based on (1.7), there is a trade-off between the accuracy and the conver-

gence rate. Although reducing the learning rate γ or batch sizeB narrows down the error bound

C4dB3γ
2ξ

and contributes significantly to a more accurate convergence, the constant convergence

rate 1 − 2ξB
d
γ suffers greatly since it increases and gets closer to 1, which leads to a slower

convergence rate.

To address this problem, in the following theorem, by considering not only the loss function

errors F (ωt) − F (ω∗) but also the errors ‖ωt − ω∗‖2, we prove that the sequence of the loss

function values F (ωt) generated by SODDA converges to the optimal value F (ω∗) for any

constant learning rate selected from a certain region. In addition, we are able to further assert

that the sequence of ωt converges to ω∗ when taking Assumption 1 into account. Furthermore,

since we employ an approximation of the exact full gradient for the sake of the efficiency of the

algorithm in Theorem 5, the algorithm converges only to a neighborhood of an optimal solution

under a constant learning rate. In the following theorem, if we are allowed to employ the exact

full gradient in expectation, then the algorithm in Theorem 6 converges to the exact solution in

expectation under a constant step size.

Theorem 6. If Assumptions 1-4 hold, and the learning rate γt = γ is a constant such

that γ ∈ (0,min
{

1, 1
BLQP

, γ1, γ2

}
), where both γ1 and γ2 are positive constants specified in

Appendix H, and the sequence (bt, ct, dt)∞t=0 = (d, ct, N)∞t=0 for arbitrary positive ct ≤ d, then

the sequence of parameters ωt generated by SODDA converges to ω∗, that is

lim
t→∞

∥∥ωt − ω∗∥∥ = 0.(1.8)

35

PROOF. See Appendix A.7. �

The Lyapunov analysis, which is a common strategy to deal with a constant learning rate

(see e.g. (Schmidt et al., 2017)), fails for our algorithm due to the analogous reasons as those

for Theorem 3. The success of the Lyapunov analysis heavily relies on the number of negative

terms available when computing the loss function errors F (ωt)−F (ω∗) and the errors ωt−ω∗.

Unfortunately, the doubly distributed data setting results in lack of information in each iteration

in step 16, which leads to a scarcity of negative terms to ensure the decrease of the loss function

value.

Our steps to study the convergence analysis are as follows. We first establish either exact

forms or upper bounds for all terms involving gradients. Then, from the update rule, we find a

criteria for the constant learning rate γ so as to make the errors ωt − ω∗ at least not increase as

the number of iterations increases. In addition, given Lipschitz continuity of OF (ω), we find

a recursive formula regarding the loss function error, which provides another constraint for γ

such that the loss function error vanishes as t increases. Finally, the convergence of SODDA

and the existence of γ are guaranteed by two cubic inequality constraints aforementioned.

1.5. Numerical Study

In this section, we compare the SODDA method with RADiSA-avg (Nathan and Klabjan,

2017), which is the best known optimization algorithm for solving problem (1) with doubly

distributed data. All the algorithms are implemented in Scala with Spark 2.0. The experiments

are conducted in a Hadoop cluster with 4 nodes, each containing 8 Intel Xeon 2.2GHz cores. We

conduct experiments on three different-size synthetic datasets that are larger than the datasets

in (Nathan and Klabjan, 2017) and two datasets used in (Wongchaisuwat and Klabjan, 2018)

36

extracted from SemMed Database. For all of these datasets, we train one of the most popular

classification models: binary classification hinge loss support vector machines (SVM), and

set the learning rate γt = 1
(1+
√
t−1) , which is also employed in (Nathan and Klabjan, 2017).

Furthermore, we set the feature partition number Q = 3 and observation partition number

P = 5, which is also one of the cases studied in (Nathan and Klabjan, 2017). We do not

compare different learning rates and Q,P since these have been extensively studied in (Nathan

and Klabjan, 2017).

1.5.1. SVM with Synthetic data

We first compare SODDA with RADiSA-avg (Nathan and Klabjan, 2017) using synthetic data.

The datasets for these experiments are generated based on a standard procedure introduced in

(Zhang et al., 2012), which is also used in (Nathan and Klabjan, 2017): the xi’s and z are

sampled from the uniform distribution in [−1, 1], and yi := sgn(xiz) with probability 0.01 of

flipping the sign. In addition, all the data is in the dense format and the features are standardized

to have unit variance. The size of each partition from the small-size dataset is 50, 000× 6, 000,

the one from the mid-size data is 60, 000×7, 000 and the one from the large-size data is 60, 000×

9, 000. The information about these three datasets is listed in Table 1.1.

data size small medium large

P ×Q 5× 3 5× 3 5× 3

size of each partition 50, 000× 6, 000 60, 000× 7, 000 60, 000× 9, 000

Number of Spark executors used 18 25 25

Table 1.1. Synthetic datasets for numerical experiments

37

First, we conduct bt, ct, dt subsequence related experiments. We justify the value of (bt, ct, dt)

from the small-size dataset, since the other two datasets would take more computational time.

We study the impact of (bt, ct, dt) to the performance of SODDA by varying one of the three

parameters (bt, ct, dt) while keeping the other two parameters fixed.

The most important results are presented in Figure 1.2. In Figure 1.2(a), we study the cases

where the number of total observations used to estimate the full gradient in step 8 varies from

60% to 90% with bt = ct = 100%. In Figure 1.2(b), we consider the cases when ct varies from

40% to 80% given that every feature is involved to compute the approximated full gradient, i.e.

bt = 100%. Figure 1.2(c) represents the cases where only partial features are used in step 8 but

everything available is fully used, i.e. bt = ct. In Figures 1.2(d)-(f), we study three different bt

choices and for each one we vary ct. Figure 1.2(g) is an extension of Figure 1.2(d) showing the

long-time performance under the corresponding set of parameters.

In these plots, we observe that every set of parameters (bt, ct, dt) with the small-size dataset

outperforms RADiSA-avg in early iterations, however, the benefits peak at certain points. More

precisely, from Figure 1.2(a), we discover that the marginal benefit grows up dramatically when

dt increases from 60% to 80% and slows down from 80% to 90%, thus, dt = 85% seems to be

most beneficial. When it comes to ct, we observe that although the value of ct does not influence

the accuracy of the solution, a higher value of ct leads to a faster convergence speed to a good

quality solution in Figure 1.2(b). Thus, we set ct = 80% as a good value. From Figures 1.2(c)-

(g), we observe that the value of bt affects the accuracy of the solution significantly, therefore,

we set bt = 85% after taking both the accuracy of the solution and the computational time into

consideration.

38

In these figures, we observe that SODDA always outperforms RADiSA-avg in early itera-

tions on the small-size dataset, and there is a trade-off between the accuracy of the loss function

value and the sampling sizes used in the algorithm. More precisely, using less data leads to a

faster convergence speed but a less accurate solution, while using more data contributes to a

more accurate solution but requires more time.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 1.2. Comparison of SODDA and RADiSA-avg on small-size dataset

39

After specifying the values of bt, ct and dt to be (85%, 80%, 85%), we test both SODDA

and RADiSA-avg on the mid- and large-size datasets with three different seeds. The results

are presented in Figure 1.3. As we can observe, SODDA always exhibits a stronger and faster

convergence than RADiSA-avg. It is interesting that as the size of the dataset increases, the

intersection time of SODDA and RADiSA-avg comes later, which gives SODDA more advan-

tages over RADiSA-avg when dealing with large datasets.

(a) (b)

Figure 1.3. Comparison of SODDA and RADiSA-avg for three different seeds on
the mid- and large-size datasets

In the SODDA algorithm, we randomly choose a subset of observations and a block of fea-

tures to estimate the full gradient in step 8. Moreover, both SODDA and RADiSA-avg utilize

an observation randomly selected from a randomly chosen sub-matrix in the update step, where

SODDA employs a sub-block of the approximated full gradient as a corrector but RADiSA-avg

employs the exact full gradient. In order to eliminate the uncertainty about the choice of seeds,

we conduct experiments on the large-size dataset under the same set of parameter (bt, ct, dt)

40

with different seeds. Table 1.2 summarizes the influence of the change of the seed on the large-

size dataset. For 10 different seeds, we run 40 iterations for each. The first two columns present

the average of the difference of the maximum objective value and the average function value

across the 10 seeds, and the average of the difference of the average function value and the

minimum objective value across the 10 seeds, respectively. Similarly, the remaining terms are

defined as the maximum of the difference of the maximum objective value and the average

function value, and the maximum of the difference of the average function value and the mini-

mum objective value. As we can see in Table 1.2, the perturbation caused by the change of the

seed is negligible especially when compared to the objective function value, which is a positive

characteristic. Thus, in the remaining experiments, we no longer need to consider the impact of

the randomness caused by either SODDA or RADiSA-avg.

avg(max-avg) avg(avg-min) max(max-avg) max(avg-min)

SODDA 0.4600× 10−4 0.0251× 10−4 0.2500× 10−3 3.0000× 10−3

RADiSA-avg 1.6373× 10−4 1.2606× 10−4 1.8000× 10−3 2.3500× 10−3

Table 1.2. Variation of SODDA and RADiSA-avg by using different seeds

1.5.2. SVM with SemMed Database

In the last set of experiments, we study the performances of SODDA with the (bt, ct, dt) selected

in the previous section and RADiSA-avg on the Semantic MEDLINE Database (Kilicoglu et al.,

2012) with SemRep, a semantic interpreter of biomedical text (Rindflesch and Fiszman, 2003)

as an extraction tool to construct the knowledge graph (KG). Like the preprocessing done in

(Wongchaisuwat and Klabjan, 2018), we apply the inference method, which is called the Path

41

Ranking Algorithm (PRA) (Lao and Cohen, 2010), to KG constructed from SemRep. The

model under consideration is still linear SVM, and all the datasets considered are in the sparse

format. The first dataset DIAG-neg10 is based on relationship “DIAGNOSES,” while LOC-

neg5 is created in a similar manner based on “LOCATION OF.” The data is summarized in

Table 1.3.

Figure 1.4 illustrates the convergence paths of the objective loss function F (ω) generated

by SODDA and RADiSA-avg versus time. We observe that using SODDA is much better

than RADiSA with respect to not only the running time but also the loss reduction in early

iterations. Comparing Figure 1.4(a) with Figure 1.4(b), we discover that the superior behavior

of RADiSA over RADiSA-avg is more apparent and robust when applied to larger datasets,

which is expected since it is more beneficial for datasets with larger size to perform partial

computation instead of full computation of gradients in step 8.

Dataset Observations (N) Features (d) Size of each partition (n×m)

DIAG-neg10 425,185 26,946 85, 037× 8, 982

LOC-neg5 5,638,696 26,966 1, 127, 740× 8, 989

Table 1.3. Datasets extracted from SemMed database

42

(a) DIAG-neg10 (b) LOC-neg5

Figure 1.4. Comparison of SODDA and RADiSA-avg on SemMed database

1.5.3. Key Findings

From the first set of experiments conducted on different synthetic datasets in the dense format,

we justify a good set of parameters (bt, ct, dt) = (85%, 80%, 85%) and eliminate the potential

impact of the randomness involved in SODDA and RADiSA to the performance of the conver-

gence. Furthermore, we discover that SODDA always exhibits a stronger and faster convergence

than RADiSA-avg for every dataset considered and parameter values chosen. In the second set

of experiments, we observe the same dominance of SODDA when compared to RADiSA-avg

on sparse datasets.

In conclusion, SODDA provides a faster, stronger and more robust convergence than RADiSA-

avg for both dense and sparse datasets.

43

CHAPTER 2

Convergence Analyses of Online ADAM

2.1. Introduction

Online learning is the process of dynamically incorporating knowledge of the geometry of

the data observed in earlier iterations to perform more informative learning in later iterations,

as opposed to standard machine learning techniques which provide an optimal predictor after

training over the entire dataset. Online learning is a preferred paradigm in situations where the

algorithm has to dynamically adapt to new patterns in the dataset, or when the dataset itself is

generated as a function of time, i.e. stock price prediction. Online learning is also used when

the dataset itself is computationally infeasible to be trained over the entire dataset.

In standard online learning it is assumed that a finite number of samples is encountered

however in real world streaming setting an infinite number of samples is observed (e.g., Twitter

is streaming since inception and will continue to do so for foreseeable future). The performance

of an online learning algorithm on early examples is negligible when measuring the performance

or making predictions and decisions on the later portion of a dataset (the performance of an

algorithm on tweets from ten years ago has very little bearing on its performance on recent

tweets). The problem can be tackled by restarting, however, it is challenging to determine when

to restart. For this reason we propose a metric which forgets about samples encountered a long

time ago. Consequently, we introduce a performance metric, regret with rolling window, which

measures the performance of an online learning algorithm over a possible infinite size dataset.

44

This metric also requires an adaptation of prior algorithms, because, for example, a diminishing

learning rate has poor performance on an infinite data stream.

Stochastic gradient descent (SGD) (Zinkevich, 2003) is a widely used approach in areas of

online machine learning, where the weights are updated each time a new sample is received.

Furthermore, it requires a diminishing learning rate in order to achieve a high-quality perfor-

mance. It has been empirically observed that, in order to reduce the impact of the choice of the

learning rate and conduct stochastic optimization more efficiently, the adaptive moment estima-

tion algorithm (ADAM) (Kingma and Ba, 2015) and its extensions ((Luo et al., 2019),(Reddi

et al., 2018)) are another type of popular methods, which store an exponentially decaying av-

erage of past gradients and squared gradients and applies adaptive learning rate. (In standard

gradient descent algorithms we use the term learning rate, while in adaptive learning rate algo-

rithms we call stepsize the hyperparameter that governs the scale between the weights and the

adjusted gradient.) In spite of this, no contribution has been made to the case where the regret

is computed in a rolling window. Moreover, applying a diminishing learning rate or stepsize

to regret with rolling window is not a good strategy, otherwise, the performance is heavily de-

pendent on the learning rate or stepsize and the rank of a sample. Namely, regret with rolling

window requires a constant learning rate or stepsize.

Standard online setting has been studied in the convex setting. With improvements in com-

putational power resulting from GPUs, deep neural networks have been very popular in a variety

of AI problems recently. A core application of online learning is online web search and recom-

mender systems (Zoghi et al., 2017) where deep learning solutions have recently emerged. At

the same time, online learning based on deep neural networks has become an integral role in

many stages in finance, from portfolio management, algorithmic trading, to fraud detection, to

45

loan and insurance underwriting. To this end we focus not only on convex loss functions, but

also on deep neural networks.

In this work, we propose a new family of efficient online subgradient methods for both

general convex functions and a two-layer ReLU neural network based on regret with rolling

window metric. More precisely, we first present an algorithm, namely convergent Adam (CON-

VGADAM), designed for general strictly convex functions based on gradient descent using adap-

tive learning rate and inspired by the work of (Reddi et al., 2018). CONVGADAM is a more gen-

eral algorithm that can dynamically adapt to an arbitrary sequence of strictly convex functions.

In the meanwhile, we experimentally show that CONVGADAM outperforms state-of-the-art, yet

non-adaptive, online gradient descent (OGD) (Zinkevich, 2003). Then, we propose an algo-

rithm, called deep neural network gradient descent (DNNGD), for a two-layer ReLU neural

network. DNNGD takes standard gradient first, then it rescales the weights upon receiving each

new sample. Lastly, we introduce a new algorithm, deep neural network Adam (DNNADAM),

which uses an adaptive learning rate for the two-layer ReLU neural network. DNNADAM is first

endowed with long-term memory by using gradient updates scaled by square roots of exponen-

tial decaying moving averages of squared past gradients and then it rescales weights with every

new sample.

In this paper, we not only propose a new family of gradient-based online learning algo-

rithms for both convex and non-convex loss functions, but also present a complete technical

proof of regret with rolling window for each of them. For strongly convex functions, given a

constant learning rate, we show that CONVGADAM attains regret with rolling window which is

proportional to the square root of the size of the rolling window, compared to the true regret

O(log(T)
√
T) of AMSGRAD (Reddi et al., 2018). Besides, we not only point out but also fix

46

the problem in the proof of regret for AMSGRAD later in this paper. Table B.1 in Appendix

B.1.2 summarizes all regret bounds in various settings, including the previous flawed analyses.

Furthermore, we prove that both DNNGD and DNNADAM attain the same regret with rolling

window under reasonable assumptions for the two-layer ReLU neural network. The strongest

assumption requires that the angle between the current sample and weight error is bounded

away from π/2. Although DNNGD and DNNADAM require some assumptions, these two algo-

rithms have a higher probability to converge than other flavors of ADAM due to the convergence

analyses provided in Section 5. In summary, we make the following five contributions.

• We introduce regret with rolling window that is applicable in data streaming, i.e., infi-

nite stream of data.

• We provide a proof of regret with rolling window which is proportional to the square

root of the size of the rolling window when applying OGD to an arbitrary sequence of

convex loss functions.

• We provide a convergent first-order gradient-based algorithm, i.e. CONVGADAM, em-

ploying adaptive learning rate to dynamically adapt to the new patterns in the dataset.

Furthermore, given strictly convex functions and a constant stepsize, we provide a

complete technical proof of regret with rolling window. Besides, we point out a prob-

lem with the proof of convergence of AMSGRAD (Reddi et al., 2018), which even-

tually leads to O(log(T)
√
T) regret in the standard online setting, and we provide

a different analysis for AMSGRAD which obtains O(
√
T) regret in standard online

setting by using our proof technique.

47

• We propose a first-order gradient-based algorithm, called DNNGD, for the two-layer

ReLU neural network. Moreover, we show that DNNGD shares the same regret with

rolling window with OGD when employing a constant learning rate.

• We further develop an algorithm, i.e. DNNADAM, based on adaptive estimation of

lower-order moments for the two-layer ReLU neural network. At the same time, we

argue that DNNADAM shares the same regret with rolling window with CONVGADAM

when employing a constant stepsize.

• We present numerical results showing that CONVGADAM outperforms state-of-art, yet

not adaptive, OGD.

The paper is organized as follow. In the next section, we review several works related to

ADAM, analyses of two-layer neural networks and regret in online convex learning. In Section

3, we state the formal optimization problem in streaming, i.e., we introduce regret with rolling

window. In the subsequent section we propose the two algorithms in presence of convex loss

functions and we provide the underlying regret analyses. In Section 5 we study the case of deep

neural networks as the loss function. In Section 6 we present experimental results comparing

CONVGADAM with OGD.

2.2. Related Work

ADAM and its variants: ADAM (Kingma and Ba, 2015) is one of the most popular sto-

chastic optimization methods that has been applied to convex loss functions and deep networks

which is based on using gradient updates scaled by square roots of exponential moving averages

of squared past gradients. In many applications, e.g. learning with large output spaces, it has

been empirically observed that it fails to converge to an optimal solution or a critical point in

48

nonconvex settings. A cause for such failures is the exponential moving average, which leads

ADAM to forget about the influence of large and informative gradients quickly (Chen et al.,

2019). To tackle this issue, AMSGRAD (Reddi et al., 2018) is introduced which has long-

term memory of past gradients. ADABOUND (Luo et al., 2019) is another extension of ADAM,

which employs dynamic bounds on learning rates to achieve a gradual and smooth transition

from adaptive methods to stochastic gradient. Though both AMSGRAD (Reddi et al., 2018)

and ADABOUND (Luo et al., 2019) provide theoretical proofs of convergence in a convex case,

very limited further research related to ADAM has be done in a non-convex case while ADAM in

particular has become the default algorithm leveraged across many deep learning frameworks

due to its rapid training loss progress. Unfortunately, there are flaws in the proof of AMSGRAD,

which is explained in a later section and articulated in Appendix A.

Two-layer neural network: Deep learning achieves state-of-art performance on a wide variety

of problems in machine learning and AI. Despite its empirical success, there is little theoretical

evidence to support it. Inspired by the idea that gradient descent converges to minimizers and

avoids any poor local minima or saddle points ((Lee et al., 2016), (Lee et al., 2017), (Baldi and

Hornik, 1989), (Goodfellow et al., 2016), (Kawaguchi, 2016)), Luo & Wu (Wu et al., 2018)

prove that there is no spurious local minima in a two-hidden-unit ReLU network. However,

Luo & Wu make an assumption that the 2nd layer is fixed, which does not hold in applications.

Li & Yuan (Li and Yuan, 2017) also make progress on understanding algorithms by providing

a convergence analysis for SGD on special two-layer feedforward networks with ReLU activa-

tions, yet, they specify the 1st layer as begin offset by “identity mapping” (mimicking residual

connections) and the 2nd layer as the `1-norm function. Additionally, based on their work (Du

et al., 2018b), Du et al (Du et al., 2018a) give the 2nd layer more freedom in the problem of

49

learning a two-layer neural network with a non-overlapping convolutional layer and ReLU ac-

tivation. They prove that although there is a spurious local minimizer, gradient descent with

weight normalization can still recover the true parameters with constant probability when given

Gaussian inputs. Nevertheless, the convergence is guaranteed when the 1st layer is a convolu-

tional layer.

Online convex learning: Many successful algorithms and associated proofs have been studied

and provided over the past few years to minimize regret in online learning setting. Zinkevich

(Zinkevich, 2003) shows that the online gradient descent algorithm achieves regret O(
√
T), for

an arbitrary sequence of T convex loss functions (of bounded gradients) and given a diminish-

ing learning rate. Then, Hazan et al (Hazan et al., 2007) improve regret to O(log(T)) when

given strictly convex functions and a diminishing learning rate. The idea of adapting first order

optimization methods is by no means new and is also popular in online convex learning. Duchi,

Hazan & Singer (Duchi et al., 2011) present ADAGRAD, which employs very low learning rates

for frequently occurring features and high learning rates for infrequent features, and obtain a

comparable bound by assuming 1-strongly convex proximal functions. In a similar framework,

Zhu & Xu (Zhu and Xu, 2015) extend the celebrated online gradient descent algorithm to Hilbert

spaces (function spaces) and analyzed the convergence guarantee of the algorithm. The online

functional gradient algorithm they propose also achieves regret O(
√
T) when given convex loss

functions. In all these algorithms, the loss function is required to be convex or strongly convex

and the learning rate or step size must diminish. However, no work about regret analyses of

online learning applied on deep neural networks (non-convex loss functions) has been done.

Adaptive regret: Recently, adaptive regret has been studied in the setting of prediction with

expert advice (PEA) in online learning. Adaptive regret measures the maximum difference of

50

the performances of an online algorithm and the offline optimum for any consecutive τ samples

in total T rounds, while our regret measures the maximum difference of the performances in

the whole history. Existing online algorithms are closely related in the sense that adaptive al-

gorithms designed are usually built upon the PEA algorithms. The concept of adaptive regret is

formally introduced by Hazan and Seshadhri (Hazan and Seshadhri, 2007). They also propose

a new algorithm named follow the leading history (FLH), which contains an expert-algorithm,

a set of intervals and a meta-algorithm. Then Daniely in (Daniely et al., 2015) extends this idea

by introducing strongly adaptive algorithms, which provide a regret bound O(log(s + 1)
√
|I|

where s is the end point of the rolling window and |I| is the size of the window. Later on,

Zhang in (Zhang et al., 2019) applies the concept of the adaptive learning rate to adaptive regret

and proposes adaptive algorithms for convex and smooth functions, and finally obtains a regret

bound O(
√

(
∑s

t=r ft(ω)) log(s) log(s− r)), where ft(ω) is the loss function for the t’th sam-

ple given any ω in the corresponding domain, and r and s are the starting and ending data points

of the interested sequence. Notice that in conjunction with infinite streaming, s blows up and

eventually dominates the regret bound. Although the concept of the adaptive regret is similar to

our regret with rolling window, adaptive regret relies on other existing online algorithms which

not only use diminishing learning rate but also bring extra error. In regret with rolling window,

we consider these two aspects together (infinite time stream and the issue of learning rates)

and propose a new family of online algorithms which use a constant learning rate and achieve

a more robust regret. Specifically, our regret bound is O(
√
T), which does not depend of the

position of the window.

51

2.3. Regret with Rolling Window

We consider the problem of optimizing regret with rolling window, inspired by the standard

regret ((Zinkevich, 2003), (Abernethy et al., 2012), (Rakhlin and Tewari, 2009)). The problem

with the traditional regret is that it captures the performance of an algorithm only over a fixed

number of samples or loss functions. In most applications data is continuously streamed with an

infinite number of future loss functions. The performance over any finite number of consecutive

loss functions T is of interest. The concept of regret is to compare the optimal offline algorithm

with access to T contiguous loss functions with the performance of the underlying online algo-

rithm. Regret with rolling window is to find the maximum of all differences between the online

loss and the loss of the offline algorithm for any T contiguous samples. More precisely, for an

infinite sequence {zt, yt}∞t=1, where each feature vector zt ∈ Rd is associated with the corre-

sponding label yt, given fixed T and any p, we first define ω∗p ∈ argminω
∑p+T

t=p ft(ω), which

corresponds to the optimal solution of the offline algorithm. In general, ft(ω) = loss(xt, yt;ω),

e.g. ft(ω) =
∥∥ωTxt − yt∥∥2 if the linear regression model is applied and the mean square error

is used. Then, we consider

max
p∈N

Rp(T) :=

T+p∑
t=p

lt(ωt)(2.1)

with lt(ωt) = ft(ωt) − ft(ω
∗
p), where ft is a function of sample zt. The regret with rolling

window metric captures regret over every T consecutive loss functions and it is aiming to assess

the worst possible regret over every such sequence. Note that if we have only T loss functions

corresponding only to p = 1, then this is the standard regret definition in online learning. The

goal is to develop algorithms with low regret with rolling window. We prove that regret with

52

rolling window can be bounded by O(
√
T). In other words, the average regret with rolling

window approaches zero.

2.4. Convex Setting

In the convex setting, we propose two algorithms with a different learning rate or stepsize

strategy and analyze them with respect to (2.1) in the streaming setting.

2.4.1. Algorithms

Algorithms in standard online setting are almost all based on gradient descent where the param-

eters are updated after each new loss function is received based on the gradient of the current

loss function. A challenge is the strategy to select an appropriate learning rate. In order to

guarantee good regret the learning rate is usually decaying. In the streaming setting, we point

out that a decaying learning rate is improper since far away samples (very large p) would get a

very small learning rate implying low consideration to such samples. In conclusion, the learn-

ing rate has to be a constant or it should follow a dynamically adaptive learning algorithm,

i.e. ADAM. The algorithms we provide for solving (2.1) in the streaming setting are based on

gradient descent and one of the just mentioned learning rate strategies.

In order to present our algorithms, we first need to specify notation and parameters. In each

algorithm, we denote by η and gt the learning rate or stepsize and a subgradient of loss function

ft associated with sample (zt, yt), respectively. Additionally, we employ � to represent the

element-wise multiplication between two vectors or matrices (Hadamard product). However,

for other operations we do not introduce new notation, e.g., for element-wise division (/) and

53

square root (√), since these two operations are written differently when representing standard

matrix or vector operations.

We start with OGD which mimics gradient descent in online setting and achieves O(
√
T)

regret with rolling window when given constant learning rate. Algorithm 2 is a twist on Zinke-

vich’s ONLINE GRADIENT DESCENT (Zinkevich, 2003). OGD updates its weight when a new

sample is received in step 4. In addition, OGD uses constant learning rate in the streaming

setting so as to efficiently and dynamically learn the geometry of the dataset. Otherwise, if a

diminishing learning rate is applied, OGD misses informative samples which arrive late due to

the extremely small learning rate and leads to O(T) regret with rolling window (this is trivial

to observe if the loss functions are bounded). Regret of O(
√
T) is achieved in the streaming

setting if learning rate η = 1/
√
T .

Constant learning rates have a drawback by treating all features equally. Consequently, we

adapt ADAM to online setting and further extend it to streaming. Algorithm 3, inspired by

ADAM (Kingma and Ba, 2015) and AMSGRAD (Reddi et al., 2018), has regret with rolling

window also of the order O(
√
T) given constant stepsize η as shown in the next section. The

key difference of CONVGADAM with AMSGRAD is that it maintains the same ratio of the past

gradients and the current gradient instead of putting more and more weight on the current gra-

dient and losing the memory of the past gradients fast. In Algorithm 3, CONVGADAM records

exponential moving average of gradients and moments in step 5 and 6. Step 7 guarantees that

v̂t is the maximum of all vt until the present time step. Then, step 8 gives the adaptive update

rule by using the maximum value of vt to normalize the running average of the gradient at time

t. Besides, constant stepsize η is crucial to make CONVGADAM well-performed due to the

aforementioned reason with a potential decaying learning rate or stepsize.

54

In step 8, we observe that v̂ti = 0 for a feature i implies mti = 0, therefore, we retain the

foregoing weight ωti as the succeeding weight ωt+1,i. In other words, in this case we define

η√
v̂ti
·mti = η√

0
· 0 = 0.

Algorithm 2 ONLINE GRADIENT DE-
SCENT

1: Positive parameter η

2: for t = 0, 1, 2, · · · do

3: gt = 5ft(wt)

4: wt+1 = wt − ηgt

5: end for

Algorithm 3 CONVERGENT ADAM

1: Positive parameters η, β1 < 1, β2 < 1

2: Set m0 = 0, v0 = 0, and v̂0 = 0

3: for t = 0, 1, 2, · · · , do

4: gt = 5ft(wt)

5: mt = β1mt−1 + (1− β1)gt

6: vt = β2vt−1 + (1− β2)gt � gt

7: v̂t = max(v̂t−1, vt)

8: wt+1 = wt − η√
v̂t
�mt

9: end for

2.4.2. Analyses

In this section, we provide regret analyses of OGD and CONVGADAM showing that both of

them attain regret with rolling window which is proportional to the square root of the size of

the rolling window given a constant learning rate or stepsize in the streaming setting. For inner

(scalar) products, given the fact that 〈a, b〉 = aT b = bTa for two vectors a and b, in the rest of

the paper, for short expressions we use aT b, but for longer we use 〈a, b〉.

We require the following standard assumptions.

Assumption 1:

(1) There exists a constant D∞, such that ‖ωt‖∞ ≤
D∞
2

, for any t ∈ N.

55

(2) The loss gradients Oft(ωt) are bounded, i.e., for all ωt such that ‖ωt‖∞ ≤
D∞
2

, we

have ‖Oft(ωt)‖∞ ≤ G∞.

(3) Functions ft(ω) are convex and differentiable with respect to ω for every t ∈ N.

(4) Functions ft(ω) are strongly convex with parameter H , i.e., for all ω̄ and ω̃, and for

t ∈ N, it holds ft(ω̄) +5ft(ω̄)(ω̃ − ω̄) + H
2
‖ω̃ − ω̄‖2 ≤ ft(ω̃).

The first condition in Assumption 1 assumes that ωt are bounded. This assumption can

be removed by further complicating certain aspects of the upcoming proofs. This extension is

discussed in Appendix B.1.1 for the sake of clarity of the algorithm. In 2 from Assumption 1,

the gradient of the loss function is requested to be upper bounded. Notice that each loss function

ft is enforced to be differentiable and convex in 3, whereas ft is required to be strictly convex

with parameter H in 4. All these are standard assumptions.

We first provide the regret analysis of OGD.

Theorem 7. If 1-3 in Assumption 1 hold, and η = η1√
T

for any positive constant η1, the

sequence ωt generated by OGD achieves maxp∈NRp(T) ≤ O(
√
T).

The proof is provided in Appendix B.2. Under the assumptions in Assumption 1, by finding

a relationship for the sequence of the weight error ωt − ω∗p and employing the property of

convexity from condition 3 from Assumption 1, we prove that OGD obtains the regret with

rolling window which is proportional to the square root of the size of the rolling window when

given the constant learning rate. This is consistent with the regret of OGD in the standard online

setting.

The analysis of OGD is not totally new but still has some important differences. Also, when

using a diminishing learning rate, given strongly convex ft, it has been proven in (Hazan et al.,

56

2007) by Hazan that OGD obtains logarithmic regret. However, this is not possible even given

strongly convex ft when using a constant learning rate, which should be clear after reading our

regret analysis of OGD and comparing it with the regret analysis in (Hazan et al., 2007).

If OGD is an analogue to the Gradient Descent optimization method for the online setting,

then CONVGADAM is an online analogue of ADAM, which dynamically incorporates knowl-

edge of the characteristics of the dataset received in earlier iterations to perform more informa-

tive gradient-based learning. Next, we show that CONVGADAM achieves the same regret with

rolling window given a constant stepsize.

Theorem 8. If Assumption 1 holds, and β1 and β2 are two constants between 0 and 1 such

that λ := β1√
β2
< 1 and β1 ≤ Hη

1+Hη
, then for η = η1√

T
for any positive constant η1, the sequence

ωt generated by CONVGADAM achieves maxp∈NRp(T) ≤ O(
√
T).

The proof is provided in Appendix B.3. The very technical proof follows the following

steps. Based on the updating procedure in steps 4-8, we establish a relationship for the sequence

of the weight error ωt − ω∗p . Meanwhile, considering condition 4 in Assumption 1, we obtain

another relationship between the loss function error ft(ωt) − ft(ω
∗
p) and 〈ωt − ω∗,5ft(ωt)〉.

Assembling these two relationships provide a relationship between the weight error ωt − ω∗

and the loss function error ft(ωt) − ft(ω∗). By deriving upper bounds for all of the remaining

terms based on conditions from Assumption 1, we are able to argue the same regret with rolling

window of O(
√
T).

In the regret analysis of AMSGRAD (Reddi et al., 2018), the authors forget that the stepsize

is 1√
t

and take the hyperparameter η to be exponentially decaying for granted without assump-

tions which eventually leads to O(T
√
T) regret in standard online setting. Our analysis is

57

flexible enough to extend to AMSGRAD and a slight change to our proof yields the O(
√
T)

regret for AMSGRAD. The changes in our proof to accommodate standard online setting and

AMSGRAD are stated in Appendix B.1.2. Moreover, the proof of convergence of AMSGRAD

in (Reddi et al., 2018) uses a diminishing stepsize while our proof is valid for both constant

and diminishing stepsizes. Likewise, for ADABOUND (Luo et al., 2019), the right scale of the

stepsize is also missed and the regret should be O(T), which is discussed in more detail in

Appendix B.1.2. In this section we also discuss how to amend our proof to provide the O(
√
T)

regret bound in standard online setting for ADABOUND.

Theorem 8 guarantees that CONVGADAM achieves the same regret with rolling window as

OGD for convex loss functions. On the other hand, very limited work has been done about

regret for nonconvex loss functions, e.g. the loss function of a two-layer ReLU neural network.

In the following section, we argue that both DNNGD and DNNADAM attain the same regret with

rolling window if the initial starting point is close to an optimal offline solution and by using a

constant learning rate or stepsize. In addition to a favorable starting point, further assumptions

are needed.

2.5. Two-Layer ReLU Neural Network

In this section we consider a two layer neural network with the first hidden layer having an

arbitrary number of neurons and the second hidden layer has a single neuron. The underlying

activation function is a probabilistic version of ReLU and minimum square error is considered

as the loss function. First of all, the optimization problem of such a two-layer ReLU neural

network is neither convex nor convex (and clearly non linear), therefore, it is very hard to find

58

a global minimizer. Instead, we show that our algorithms achieve O(
√
T) regret with rolling

window when the initial point is close enough to an optimal solution.

Neural networks as classifiers have a lot of success in practice, whereas a formal theoreti-

cal understanding of the mechanism of why they work is largely missing. Studying a general

neural network is challenging, therefore, we focus on the proposed two-layer ReLU neural net-

work. For a dataset {zt, yt}∞t=1, the standard loss function of the two-layer neural network is

ft (ω1,t, ω2,t) =
‖ωT1,tσ(ω2,tzt)−yt‖2

2
, where σ represents the ReLU activation function applied

element-wise, ω1,t is the parameter vector, and ω2,t is the parameter matrix. It turns out that

ReLU is challenging to analyze since nesting them yields many combinations of the various

values being below zeros. One way to get around this is to consider a probabilistic version of

ReLU and capturing expected loss, Luo & Wu (Wu et al., 2018).

To this end we treat ReLU as a random Bernoulli variable in the sense that Pr(σ(x) = x) =

ρ, Pr(σ(x) = 0) = 1 − ρ. Luo & Wu (Wu et al., 2018) in the standard offline setting analyze

ft (ω1,t, ω2,t) for the probabilistic version of ReLU. For our online analyses we need to slightly

alter the setting by introducing two independent identically distributed random variables σ1 and

σ2 and the loss function as follows

ft(ω1,t, ω2,t) =

(
ωT1,tσ1 (ω2,tz

t)− yt
) (
ωT1,tσ2 (ω2,tz

t)− yt
)

2
.(2.2)

There is a crucial property of ft which is positive-homogeneity. That is, for any c > 0,

ft(cω1,
ω2

c
) = ft(ω1, ω2). This property allows the network to be rescaled without changing

the function computed by the network.

59

For two-layer ReLU neural network, given (ωp1,∗, ω
p
2,∗) ∈ argminω

∑p+T
t=p Eσ1,σ2 ft(ω1,t, ω2,t),

we consider regret with rolling window as

max
p∈N

min
(ω1,t)t∈N,(ω2,t)t∈N

‖ω1,t‖=1

Rp(T) :=

T+p∑
t=p

Eσ1,σ2 [lt (ω1,t, ω2,t)] .(2.3)

Next, we propose two algorithms with different learning rates or stepsizes for the two-layer

neural network and analyze them with respect to (2.3).

2.5.1. Algorithms

In order to present the algorithms, let us first introduce notation and parameters. For any matrix

A and vector x, let [A]ij and [x]i denote the element in the ith row and jth column of matrix A

and ith coordinate of vector x, respectively. Similarly, we use [A]·j ([A]i·) to represent the jth

column (ith row) of matrix A. Next, in order to be consistent, we also denote η and g1,t, g2,t as

the learning rate or stepsize and a subgradient of loss function ft associated with sample (zt, yt),

respectively. Let ξ1 and ξ2 be constants. Lastly, in order to be consistent with the notation in the

convex setting, we employ � to represent the element-wise multiplication between vectors or

matrices while using standard division and square root notation for the corresponding operations

element-wise in vectors and matrices.

We start with DNNGD which is the algorithm with a fixed learning rate, Algorithm 4. We

show later that its regret with rolling window is O(
√
T). DNNGD is an analogue of the gradient

descent optimization method for the online setting with the two-layer ReLU neural network, and

at the same time it is an extension of OGD. Different from OGD, DNNGD not only modifies

weights at a given iteration by following the gradient direction, but it also rescales weights

60

based on the domain constraint in step 6, i.e. ω1,t has a fixed norm. Then, ω2,t is rescaled at the

same time to impose positive-homogeneity in step 7.

Algorithm 4 DEEP NN GRADIENT DESCENT

1: Positive parameter η > 0

2: for t = 0, 1, 2, · · · do

3: Sample σ1, σ2

4: g1,t = 1
2

(
ωT1,tσ1 (ω2,tz

t)− yt
)
σ2 (ω2,tz

t) + 1
2

(
ωT1,tσ2 (ω2,tz

t)− yt
)
σ1 (ω2,tz

t)

5: g2,t = 1
2

(
ωT1,tσ1 (ω2,tz

t)− yt
)
ω1,t (σ2 (zt))

T
+ 1

2

(
ωT1,tσ2 (ω2,tz

t)− yt
)
ω1,t (σ1 (zt))

T

6: ω1,t+1 = ω1,t−ηg1,t
‖ω1,t−ηg1,t‖/

√
1
2
+ξ1

7: ω2,t+1 = (ω2,t − ηg2,t) ·
[
‖ω1,t − ηg1,t‖ /

√
1
2

+ ξ1

]
8: end for

Taking the drawbacks of a constant learning rate into consideration, we propose Algorithm

5, which is an extension of CONVGADAM for the two-layer ReLU neural network and likewise

attains O(
√
T) regret with rolling window. In DNNADAM, the stochastic gradients computed

in steps 4 and 5 are different than those in DNNGD. This is due to challenges in establishing

the regret bound. Nevertheless, the stochastic gradients are unbiased estimators of gradients

of the loss function. An alternative is to have four samples, two per gradient group. This

would also enable the regret analysis, however we only employ two of them so as to reduce

the variance of the algorithm. DNNADAM records exponential moving average of gradients

and moments in steps 6 - 9. Step 10 modifies v2,t to be a matrix with same value in the same

column. This is a divergence from standard ADAM which does not have this requirement. The

modification is required for the regret analysis. Then, steps 11 and 12 guarantee that {v̂1,t} and

{v̂2,t} are nondecreasing sequences element-wise. Lastly, we update weights and also perform

61

the rescaling modification to DNNADAM in steps 13 and 14. Additionally, we apply the same

strategy as we mention in CONVGADAM when [v̂1,t]i = 0 or [v̂2,t]i,j = 0. More precisely,

if [v̂1,t]i = 0 ([v̂2,t]ij = 0), it implies [g1,k]i = 0 ([g2,k]ij = 0) for all k, which in turn yields

[m1,t]i = 0 ([m2,t]ij = 0). Thus, we define
[
m1,t/

√
v̂1,t
]
i

= 0
0

= 0 and
[
m2,t/

√
v̂2,t
]
ij

= 0
0

= 0.

Therefore, we maintain the weights from the last iteration.

Algorithm 5 DEEP NN ADAM
1: Positive parameters η, ε1, ε2, β11t ≤ 1, β12t ≤ 1, β21 ≤ 1, β22 ≤ 1

2: for t = 0, 1, 2, · · · do

3: Sample σ1, σ2

4: g1,t =
(
ωT1,tσ1 (ω2,tz

t)− yt
)
σ2 (ω2,tz

t)

5: g2,t =
(
ωT1,tσ1 (ω2,tz

t)− yt
)
ω1,t (σ2 (zt))

T

6: m1,t = β11tm1,t−1 + (1− β11t) g1,t

7: m2,t = β12tm2,t−1 + (1− β12t) g2,t

8: v1,t = β21v1,t−1 + (1− β21) g1,t � g1,t

9: v̇2,t = β22v̇2,t−1 + (1− β22) g2,t � g2,t

10: [v2,t]ij = maxk

∣∣∣[v̇2,t]kj∣∣∣
11: v̂1t = max (v1t, v̂1,t−1)

12: v̂2t = max (v2t, v̂2,t−1)

13: ω1,t+1 =
ω1t− η√

v̂1t
�m1t∥∥∥∥ω1t− η√

v̂1t
�m1t

∥∥∥∥ ·
√

[12+ξ2]
(1−β121)

14: ω2,t+1 =

(
ω2,t − η√

v̂2,t
�m2t

)
·
∥∥∥ω1t − η√

v̂1t
�m1t

∥∥∥ /√ [12+ξ2]
(1−β121)

15: end for

62

2.5.2. Analyses

In this section, we discuss regret with rolling window bounds of DNNGD and DNNADAM show-

ing that both of them attain regret with rolling window proportional to the square root of the

size of the rolling window. Before establishing the regret bounds, we first require the following

assumptions.

Assumption 2:

(1) Activations σ1, σ2 are independent Bernoulli random variables with the same probabil-

ity ρ of success, i.e. Pr(σ(x) = x) = ρ, Pr(σ(x) = 0) = 1− ρ.

(2) There exists ω1,∗ and ω2,∗ such that E
[
ωT1,∗σ1 (ω2,∗z

t)
]

= ρωT1,∗ω2,∗z
t = yt for all t.

(3) Quantities ω1,t, ω2,t, zt and yt are all bounded for any t. In particular, let ‖ω2,t‖F ≤ α

and
∣∣∣[g2,t]ij∣∣∣ ≤ G2,∞ for any t, i, j.

(4) There exists 0 < ε < π/2 such that
|〈ωT1,tω2,t−ωT1,∗ω2,∗,zt〉|
‖ωT1,tω2,t−ωT1,∗ω2,∗‖‖zt‖ ≥ cos(ε) for all t when(

ωT1,tω2,t − ωT1,∗ω2,∗
)T
zt 6= 0.

(5) There exits a positive constant µ such that µ ≤ mini,t,[v̂1,t]i 6=0 |[v̂1,t]i|.

As Kawaguchi assumed in (Kawaguchi, 2016) and other works ((Dauphin et al., 2014),

(Choromanska et al., 2015a), (Choromanska et al., 2015b)), we also assume that σ’s are Bernoulli

random variables with the same probability of success and are independent from input zt’s and

63

weights ω’s in 1 from Assumption 2. 1 Condition in 2 from Assumption 2 states that the opti-

mal expected loss is zero. This is also assumed in other prior work in offline, e.g. (Wu et al.,

2018), (Du et al., 2018a). The 3rd condition in Assumption 2 is an extension of 1 in Assumption

1. Likewise, the constraints on ω1,t and ω2,t can be removed by further introducing technique

discussed in Appendix B.1.1, and consequently, g1,t and g2,t are bounded due to steps 4 and 5.

The next to the last condition in Assumption 2 requires that a new coming sample has to be

beneficial to improve current weights. More precisely, we interpret the difference between the

current weights and optimal weights as an error that needs to be corrected. Then, a new sample

which is not relevant to the error vector is not allowed. In other words, we assume that the al-

gorithm does not receive any uninformative samples. Condition 5 from Assumption 2 assumes

that any nonzero |[v̂1,t]i| is lower bounded by a constant µ for all t and i. It is a weak constraint

since [v̂1,t]i ≥ [v̂1,t−1]i for any t and i. In practice, we can modify it by only memorizing the

first nonzero value in each coordinate and finding the smallest among these values. Otherwise,

if all of [v̂1,t]i = 0, then we can set µ = 1 by default.

The regret statement for DNNGD is as follows.

Theorem 9. If 1-4 in Assumption 2 hold, ξ1 = α
cos(ε)

, and η = η1√
T

for any positive constant

η1, the sequence ω1,t and ω2,t generated by DNNGD for a 2-layer ReLU neural network achieves

maxp∈N E [Rp(T)] ≤ O(
√
T).

1In general, the distribution of the Bernoulli random variable representing the ReLU activation function is not
required to be stationary for all t. Since all loss functions are considered separately, we only need to assume that
for every zt, there is a corresponding ρt such that E

[
ωT1,∗ω2,∗z

t
]
= ρtωT1,∗ω2,∗z

t = yt, then, later in the proof,
those ρt’s are absorbed into E [lt(ω1,t, ω2,t|Ft]. Therefore, the algorithms can dynamically adapt to the new pat-
terns in the dataset. In the proof, we simplify this process by using a constant ρ. Then, given σ, σ1, σ2 are i.i.d,
Eσ

[∥∥ωT1,tσ (ω2,tz
t)− yt

∥∥2 /2] = Eσ

[∥∥ωT1,tσ (ω2,tz
t)− ωT1,∗σ (ω2,∗z

t)
∥∥2 /2] = ρ

2

(
ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t
)2

.

At the same time, the new loss function is Eσ1,σ2

[(
ωT1,tσ1 (ω2,tz

t)− yt
) (
ωT1,tσ2 (ω2,tz

t)− yt
)
/2
]

=

Eσ1

[
ωT1,tσ1 (ω2,tz

t)− yt
]
Eσ2

[
ωT1,tσ2 (ω2,tz

t)− yt
]
/2 = ρ2

2

(
ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t
)2

. Therefore, minimiz-
ing our new loss function is the same as minimizing the original loss given that ρ is a positive constant.

64

The proof is in Appendix B.5. Based on the fact that the loss function is nonconvex, i.e., we

no longer have a direct relationship between the loss function error ft(ω1,t, ω2,t)− ft(ω1,∗, ω2,∗)

and
〈
ωT1,tω2,t − ωT1,∗ω2,∗, ω

T
1,t5ω2 ft(ω1,t, ω2,t) + (5ω1ft(ω1,t, ω2,t))

T ω2,t

〉
, any technique that

relies on the property of convexity is inappropriate. The main challenges are coming from

building a bridge between the loss function error ft(ωT1,tω2,t)−ft(ω1,∗ω2,∗) and the weight error

ωT1,tω2,t − ωT1,∗ω2,∗. To address this problem, we explore the difference between ωT1,t+1ω2,t+1 −

ωT1,∗ω2,∗ and ωT1,tω2,t − ωT1,∗ω2,∗ in detail.

The steps to study the regret with rolling window are as follows. Based on steps 4 - 7,

we expand ωT1,t+1ω2,t+1 − ωT1,∗ω2,∗ to establish a relationship for the sequence of the weight

error ωT1,tω2,t − ωT1,∗ω2,∗. In association with explicit formulas of gradients and condition 4 in

Assumption 2, we obtain the loss function error ft(ω1,t, ω2,t) − ft(ω1,∗, ω2,∗). Meanwhile, all

of the remaining terms are bounded due to condition 3 from Assumption 2. Combined with the

fact that ω1,t has a constant norm, the regret with rolling window bound of DNNGD is achieved

by applying the law of iterated expectation.

At the same time, our proof is flexible enough to extend to standard online setting. For a

constant learning rate, Appendix B.5 provides the necessary details for the standard case. In

summary, regret of O(
√
T) is achieved. We note that such a result has only been known for

the diminishing learning rate and thus we extend the prior knowledge by covering the constant

learning rate case.

The adaptive learning setting algorithm DNNADAM has the same regret bound as stated in

the following theorem.

Theorem 10. If Assumption 2 holds, η = η1√
T

for any positive constant η1, β111, β121, β21, β22

are constants between 0 and 1 such that λ1 := β111
β21
≤ 1 and λ2 := β121

β22
≤ 1, β11t = β111γ

t
1 and

65

β12t = β121γ
t
2 with 0 < γ1, γ2 < 1, and ξ2 = αG2,∞

µ cos (ε)
, then, the sequence ω1,t and ω2,t generated

by DNNADAM for the 2-layer ReLU neural network achieves maxp∈N E [Rp(T)] ≤ O(
√
T).

The proof is in Appendix B.7. Similar to the difficulty faced in the proof of Theorem 9, we

do not possess a relationship between the loss function error ft(ω1,t, ω2,t) − ft(ω1,∗, ω2,∗) and〈
ωT1,tω2,t − ωT1,∗ω2,∗, ω

T
1,t5ω2 ft(ω1,t, ω2,t) + (5ω1ft(ω1,t, ω2,t))

T ω2,t

〉
. Even worse, the vari-

ance of the algorithm caused by merging all previous information and normalizing the stepsize

makes the relationship between the loss function error ft(ω1,t, ω2,t) − ft(ω1,∗, ω2,∗) and the

weight error ωT1,tω2,t − ωT1,∗ω2,∗ more ambiguous. The way we deal with this is by treating mt√
vt

together as the gradient first and then extracting the effective gradient out from it and bounding

the remaining terms.

The structure of the technical proof is similar to that of Theorem 9. We first establish

a relationship for the sequence of the weight error ωT1,tω2,t − ωT1,∗ω2,∗ by multiplying 4
√
v̂2,t.

Then, using the definitions of β’s, λ’s and γ’s, we bound all the terms without the stepsize by

constants except those which potentially can contribute to the loss function. To this end, we

obtain a relationship between the weight error ωT1,tω2,t − ωT1,∗ω2,∗ and the loss function. Finally,

combined with step12 and the law of iterated expectation, we are able to argue O(
√
T) regret

with rolling window for DNNADAM.

Likewise, we are able to extend the proof of Theorem 10 to the standard online setting for

DNNADAM. We do not need to make any change to establish O(
√
T). For diminishing stepsize

µ, a slight change to the proof is indeed. Details are provided in Appendix B.1.1.

66

2.6. Numerical Study

In this section, we compare the CONVGADAM method with OGD (Zinkevich, 2003) for

solving problem (2.1) with a long sequence of data points (mimicking streaming). We conduct

experiments on the MNIST8M dataset and two other different-size real datasets from the Yahoo!

Research Alliance Webscope program. For all of these datasets, we train multi-class hinge loss

support vector machines (SVM) (Shalev-Shwartz and Ben-David, 2014) and we assume that the

samples are streamed one by one based on a certain random order. For all the figures provided

in this section, the horizontal axis is in 105 scale. Moreover, we set β1 = 0.8 and β2 = 0.81

in CONVGADAM. We mostly capture the log of the loss function value which is defined as

maxp∈N min(ωt)t∈N

∑T+p
t=p ft(ωt).

2.6.1. Multiclass SVM with Yahoo! Targeting User Modeling Dataset

We first compare CONVGADAM with OGD using the Yahoo! user targeting and interest predic-

tion dataset consisting of Yahoo user profiles2. It contains 1,589,113 samples (i.e., user profiles),

represented by a total of 13,346 features and 380 different classification problems (called labels

in the supporting documentation) each one with 3 classes.

First, we pick the first label out and conduct a sequence of experiments with respect to this

label. The most important results are presented in Figure 2.2.1 for OGD and Figure 2.2.2 for

CONVGADAM. In Figures 2.2.1(a) and 2.2.2(a), we consider the cases when the learning rate

or step size varies from 0.1 to 5 · 10−6 while keeping the order and T fixed at 1,000. Figures

2.2.1(b) and 2.2.2(b) provide the influence of the order of the sequence. Figures 2.2.1(c) and

2.2.2(c) represent the case where T varies from 10 to 105 with a fixed learning rate or step

2https://webscope.sandbox.yahoo.com/catalog.php?datatype=a

67

size. Lastly, in Figure 2.2.2(d), we compare the performance of CONVGADAM and OGD with

certain learning rates and step sizes.

In these plots, we observe that CONVGADAM outperforms OGD for most of the learning

rates and step sizes, and definitely for promissing choices. More precisely, in Figure 2.2.1(a)

and 2.2.2(a), we discover that 0.1/1000 and 3/
√

1000 are two high-quality learning rate and

stepsize values which have relatively low error and are learning for OGD and CONVGADAM,

respectively. Therefore, we apply those two learning rates for the remaining experiments on

this dataset. In Figures 2.2.1(b) and 2.2.2(b), we observe that the perturbation caused by the

change of the order is negligible especially when compared to the loss value, which is a positive

characteristic. Thus, in the remaining experiments, we no longer need to consider the impact of

the order of the sequence. From Figure 2.2.1(c) and Figure 2.2.1(d), we discover that the loss

and T have a significantly positive correlation as we expect. Notice that changing T but fixing

the learning rate or stepsize essentially means containing more samples in the regret, in other

words, the regret for T = 100 is roughly 10 times the regret for T = 10. Since the pattern in

the figures is preserved for the different T values for OGD and CONVGADAM, in the remaining

experiments we fix T . In Figure 2.2.2(c), we discover that too big T or too small T causes poor

performance and therefore, for the remaining experiments, we set T = 1, 000 whenever T is

fixed. From Figure 2.2.2(d), we observe that CONVGADAM outperforms OGD.

68

(a) (b) (c)

Figure 2.1. Comparison of OGD for different orders, learning rates and T

69

(a) (b)

(c) (d)

Figure 2.2. Comparison of CONVGADAM for different orders, stepsizes and T

After studying the algorithms on the first label, we test them on the next four labels. In

Figure 2.2.3, we compare the performance of CONVGADAM for different T and the difference

with OGD on the four labels. In these plots, we observe that T = 1000 provides a more stable

and better performance than the other two values. Moreover, CONVGADAM outperforms OGD

for all considered learning rates and step sizes.

70

(a) Comparison of CONVGADAM
for different T

(b) Comparison of OGD and CON-
VGADAM

Figure 2.3. Performance of CONVGADAM and OGD on the remaining labels

2.6.2. Multiclass SVM with Yahoo! Learn to Rank Challenge Dataset

In this set of experiments, we study the performances of CONVGADAM and OGD on Yahoo!

Learn to Rank Challenge Dataset3. The dataset contains 473,134 samples, represented by a total

of 700 features and 5 classes.

Figures 2.2.4(a) and 2.2.4(b) show the performances of OGD and CONVGADAM for differ-

ent learning rates and stepsizes. Figure 2.2.4(c) provides the performance of CONVGADAM for

different T . Lastly, Figure 2.2.4(d) compares the performance of CONVGADAM and OGD for

a set of good learning rates but same T .

From Figures 2.2.4(a) and 2.2.4(b), we select the learning rate and stepsize 3/
√

1000 and

2/
√

1000 for CONVGADAM and OGD, respectively. From Figure 4(d), we discover the superior

behavior of CONVGADAM over OGD as we expect.

3https://webscope.sandbox.yahoo.com/catalog.php?datatype=c

71

(a) Comparison of OGD for differ-
ent learning rates

(b) Comparison of CONVGADAM
for different stepsizes

(c) Comparison of CONVGADAM
for different T

(d) Comparison of CONVGADAM
and OGD

Figure 2.4. Performance of CONVGADAM on Learn to Rank Challenge dataset

2.6.3. Multiclass SVM with MNIST8M Dataset

In this set of experiments, we study the performances of CONVGADAM and OGD on MNIST8M

Dataset4. The dataset is generated on the fly by performing careful elastic deformation of the

4https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

72

original MNIST training set. The dataset contains 8,100,000 samples, represented by a total of

784 features and 10 classes.

In Figures 2.2.5(a) and 2.2.5(b), we compare the performances of OGD and CONVGADAM

for different learning rates and stepsizes. Figure 2.2.5(c) shows that performance of CON-

VGADAM for different T . Lastly, Figure 2.2.5(d) depicts the comparison of CONVGADAM and

OGD. From Figures 2.2.5(a) and 2.2.5(b), we select the stepsize 2/
√

1000 and the learning rate

of 1/1000. As we observe, CONVGADAM always exhibits a better performance than OGD.

73

(a) Comparison of OGD for differ-
ent learning rates

(b) Comparison of CONVGADAM
for different stepsizes

(c) Comparison of CONVGADAM
for different T

(d) Comparison of CONVGADAM
and OGD

Figure 2.5. Performance of CONVGADAM on MINST8M dataset

74

CHAPTER 3

Topic Analysis for Text with Side Data

3.1. Introduction

As the conjoint and massive knowledge in the forms of news, blogs, web pages, etc.,

continues to be digitized and stored, discovery becomes more and more challenging and to-

gether with it the main underlying topics. A Bayesian multinomial mixture model, latent Dirich-

let allocation (LDA) (Blei et al., 2003), has recently gained much popularity due to its simplicity,

and usefulness in stratifying a large collection of documents by projecting every document to

a low dimensional space which is spanned by a set of bases capturing the semantic aspects of

the collection. However, as the acquisition of information becomes more convenient, text data

can be accompanied by extra side data. For example, when customers post their comments for

products or restaurants, they usually associate a comment with a rating score or a thumb-up or

thumb-down opinion, and retailers usually provide categorical labels for the products in ques-

tion. In addition, customer loyalty data can be pulled in. Taking such side data into account

improves the ability of LDA to discover patterns and topics among the documents. Currently,

there are two types of existing models that combine side data: (1) downstream topic models

and (2) upstream topic models. The downstream models assume that the text content and side

data are generated simultaneously given latent topics, while upstream models assume that the

text content is generated conditioned on the side data as well. Our model belongs to the family

of upstream topic models where we accommodate much more complex interactions between

75

side data and text by means of deep neural networks, when compared to other upstream topic

models, i.e. DMR (Mimno and McCallum, 2008).

In this paper, we propose a new LDA-style topic model, namely hybrid neural network LDA

(nnLDA), based on LDA and a neural network. Our model captures not only text content of the

dataset, but also useful high-level content and secondary, non-dominant, and more salient sta-

tistical patterns from side data. Formally, the model represents the document-topic distribution

as mixtures of feature-specific distributions. The prior distribution over topics is the output of

a neural network whose input is side data, therefore, it is specific to each distinct combination

of side data. Moreover, the neural network is optimized together with the rest of the model in a

stochastic EM sampling scheme to better interpret the collection of the documents. The expec-

tation step corresponds to finding the optimal word group and topic group while the maximiza-

tion step aims to find the optimal neural network parameters and the topic-word distribution. In

standard LDA, the prior is fixed while in nnLDA, it depends on a sample.

In this paper, we not only propose a more general model, nnLDA, but also present a com-

plete technical proof confirming that nnLDA performs at least as well as plain LDA in terms

of log likelihood. Furthermore, we provide an efficient variational EM algorithm for nnLDA.

Lastly, we demonstrate our approach on a few real-world datasets. In summary, we make the

following contributions.

• We provide a new topic model for text datasets with side data.

• We prove that the lower bound of log likelihood of nnLDA is greater than or equal to

the lower bound of log likelihood of LDA for any dataset.

• We provide an efficient variational EM algorithm for nnLDA.

76

• We present numerical results showing that nnLDA outperforms LDA and DMR in

terms of topic grouping, model perplexity, classification and text generation.

The paper is organized as follow. In the next section, we review several related works about

incorporating side data in generative topic models. In Section 3, we present the hybrid neural

network model, followed by our analyses of log likelihood of nnLDA and an efficient variational

EM algorithm. In Section 4, we present experimental results comparing nnLDA with plain LDA

and DMR.

3.2. Related Work

There are a large amount of extensions of the plain LDA model, however, a full retrospection

of this immense literature exceeds the scope of this work. In this section, we state several kinds

of variations of LDA which are most related to our new model and interpret the relationships

among them.

LDA: Plain LDA, a probabilistic latent aspect model, has been widely applied on text doc-

uments (Blei et al., 2003) and (Wang et al., 2020), images (Li and Perona, 2005), and network

entities (Airoldi et al., 2008) on account of its convenience and functionality in reducing the

dimensionality of the data and generating interpretable and semantically coherent topics. It is

an unsupervised model which is typically constructed on a distinct bag of words from input

contents. Nevertheless, in many practical applications, besides the document contents, useful

side information can be easily obtained. Furthermore, such side information often provides

useful high-level or direct summarization of the content, while it is not directly involved in the

plain LDA model to affect topic inference. In contrast, nnLDA incorporates such information

77

into latent aspect modeling by applying a neural network to discover secondary, non-dominant

and more salient statistical patterns that may be more interesting and related to the user’s goal.

Downstream Topic Models: One approach of incorporating side data in generative topic

models is to generate both the text content and side data simultaneously given latent topics.

More precisely, for this type of models, each hidden topic not only has a distribution over words

but also has another distribution over side data. As a consequence, in training, the loss function

in optimization-based learning is the joint likelihood of the content and side data. Examples

of such “downstream” models are correspondence LDA (Corr-LDA) (Blei and Jordan, 2003),

mixed-membership model for authorship (Erosheva et al., 2004), Group-Topic model (Wang

et al., 2005), Topics over Time model (TOT) (Wang and McCallum, 2006), and maximum

entropy discrimination LDA (MedLDA) (Zhu et al., 2012).

One of the most flexible downstream models is the supervised LDA (sLDA) model (Blei

and McAuliffe, 2007), which has variants including multi-class sLDA (Wang et al., 2009) and

TOT (Wang and McCallum, 2006). sLDA generates side data such as customers’ ratings by

maximizing the joint likelihood of the content data and the responses, where the likelihood-

based objective is a generalized linear model (GLM) incorporating a proper link function with

an exponential family dispersion function specified by the modeler for different types of side

data. Compared to our model, in order to explicitly estimate probability distributions over all

different side data, sLDA has to fully specify the link function and dispersion functions for

the GLM, which increases the modeling complexity significantly. In essence, only a relatively

small number of distinct side data vectors are allowed. Our model has no such restriction by

applying a completely different approach.

78

Upstream Topic Model: In a “downstream” model, the side data is predicted based on the

latent topics of the dataset, whereas in an “upstream” topic model, the side data is being condi-

tioned on to generate the latent topics of the dataset. Another distinct difference from “down-

stream” topic models is the choice of the likelihood-based loss in optimization-based learning.

More precisely, instead of maximizing the joint likelihood of the content and side data, an

“upstream” topic model maximizes the conditional likelihood. Examples of such “upstream”

topic models are Discriminative LDA (DiscLDA) (Lacoste-Julien et al., 2008), the scene un-

derstanding models (Sudderth et al., 2005) and the author-topic model (Rosen-Zvi et al., 2004).

In the author-topic model, words are generated by first selecting one author uniformly from an

observed author list and then selecting a topic from the topic distribution with respect to that

specific author. Then, given a topic, words are selected from the topic-word distribution of that

topic. This model assumes that each word is generated only by one author. There are a few ex-

tensions of the author-topic model which allow a mixture of latent topics for one document and

one author, i.e. (Rosen-Zvi et al., 2004), (McCallum et al., 2007), (Dietz et al., 2007). However,

these aforementioned models cannot accommodate combinations of modalities of side data, for

example, the aforementioned models cannot handle categorical data and continuous data at the

same time. In addition, the side data used in these models are either ratings or labels which

essentially is the final intention of learning. Different from the previous models, DMR can han-

dle combinations of modalities of side data, which uses the dot product to project the impact of

side data onto the prior. An advanced version introduced in (Benton et al., 2016) is collective

supervision of topic models, where aggregate-level labels are provided for groups of documents

instead of individual documents, followed by a deterministic relationship between the labels

and the priors. Similar to DMR, although the advanced version in (Benton et al., 2016) uses

79

group-level labels and can handle missing side data, it also employs dot product to directly

project the impact of the side data onto the prior. Compared to DMR and collective supervision

of topic models, nnLDA provides a more comprehensive and flexible learning of side data by

applying a neural network when compared to the dot product employed in DMR and the normal

distribution assumption in collective supervision of topic models.

3.3. Model and Algorithm

We first present notation and the setting. We use the language of text collections throughout

the paper, referring to terminologies such as “words,” “documents” and “corpus” since it makes

the concepts more intuitive to understand. In general, similar to plain LDA, nnLDA is not

restricted to text datasets, and can also be applied on other kinds of datasets, i.e. image datasets.

• A word, defined as an item from a vocabulary indexed by {1, · · · , V }, is applied one-

hot encoding. More precisely, using superscripts to denote components, the v’th word

in the vocabulary is represented by a V -vector w such that wv = 1 and wu = 0 for all

u 6= v.

• A document is a set of N words denoted by d = w = {w1, w2, · · · , wN} if it only

contains textual data. Similarly, if a document contains q different kinds of side

data together with the aforementioned textual data, we denote it by d = (w, s) =

({w1, w2, · · · , wN} , {s1, s2, · · · , sq}) where s ∈ Rq.

• A corpus is a collection of M documents denoted by D = {w1,w2, · · · ,wM} for tex-

tual only documents and (D,S) = {(w1, s1), (w2, s2), · · · , (wM , sM)} for documents

containing both side and textual data.

80

The main goal of nnLDA is to find a probabilistic model of a corpus that, by involving

high-level summarization from side data, not only assigns high probability to documents in this

corpus but also assigns high probability to other similar documents based on side data.

3.3.1. Generative Model

We propose the nnLDA model to explain the generative process of a document d with tex-

tual data w (containing N words) and side data (structural data) s, the steps of which can be

summarized as follows.

(1) Choose N ∼ Poisson(ξ).

(2) Choose s ∼ N (µ, σ2I).

(3) Choose αd = g(γ; s)

(4) Choose θ ∼ Dir(αd).

(5) For each of the N words wn:

(a) Choose a topic zn ∼ Multinomial(θ).

(b) Choose a word wn from p(wn | zn, β), a multinomial probability conditioned on

the topic zn.

Notation “Poisson,” “Dir” represents the Poisson and Dirichlet distribution, respectively. In

step 3, g refers to a parametric model to generate α. In summary, the model has two trainable

parameters: γ, the parameters of g for side info s; β, the topic-word distribution. In the mean-

while, there are three hyper parameters: µ and σ2, the mean and the variance of the probability

distribution for side data s; and K, which does not explicitly appear in the generative process,

the number of topics.

81

Step 1 is independent of the remaining steps, which determines the number of words in the

document. Then, for each document, step 2 provides a representation of side data s by using

a normal distribution with mean µ and variance σ2. Then, applying a model with input s in

step 3 provides the prior αd for the Dirichlet distribution. Next, the random parameter of a

multinomial distribution over topics, θ, is generated by the Dirichlet distribution. Finally, for

the n’th word in the document, step 5(a) first selects a topic zn among the K different topics by

the multinomial distribution with parameter θ, and then step 5(b) generates a word wn based on

the topic-word distribution β specific to topic zn. Step 5 follows standard LDA.

3.3.2. Analysis

Note that a Dirichlet random vector θ = (θ1, θ2, · · · , θK) has the following probability density:

p(θ | α) =
Γ
(∑K

i=1 αi

)
∏K

i=1 Γ(αi)
θα1−1
1 · · · θαK−1K ,

82

where K is the number of topic groups, α is the prior of the Dirichlet distribution and θ takes

values in the (K − 1)-simplex. Then, the generative process implies that the conditional distri-

bution of the nnLDA model of a document d = (w, s) is

P1(w | µ, σ, γ, β) = ˜̃P1(w | s, γ, β)

=

∫
˜̃p(θ | s, γ)

(
N∏
n=1

∑
zk

p̃(zk | θ)p̃(wn | zk, β)

)
dθ

=

∫
p̃(θ | µ, σ, γ)

(
N∏
n=1

∑
zk

p̃(zk | θ)p̃(wn | zk, β)

)
dθ

=

∫
p̃(θ | µ, σ, γ)

(
N∏
n=1

K∑
i=1

V∏
j=1

(θiβij)
wjn

)
dθ,

which in turn yields

P1(D | µ, σ, γ, β) = E

∫ p̃(θd | µ, σ, γ)

 N∏
n=1

∑
zdk

p̃(zdk | θd)p̃(wdn | zdk , β)

 dθd


= E

[∫
p̃(θd | µ, σ, γ)

(
N∏
n=1

K∑
i=1

V∏
j=1

(θiβij)
wjn

)
dθd

]
,

where p̃(θd | µ, σ, γ) = ˜̃p(θd | s, γ) = p(θd | g(γ; s)) = p(θd | αd) for a corpus D.

The nnLDA model represented above is a probabilistic graphical model with three levels.

Parameters µ, σ, γ and β are corpus-level parameters, which are assumed to be sampled once

in the generative process of a corpus. Variables αd and θd are document-level variables, which

are sampled once per document. Finally, wdn and zdk are word-level variables, sampled once

for each word in each document.

In the rest of this section, we provide an analytical comparison of standard LDA and nnLDA.

83

Compared to standard LDA, nnLDA employs an extra neural network g to generate document-

level variable αd. Since nnLDA is “richer” than LDA, we expect that it should produce a higher

likelihood. Without assumptions on g(γ; ·) this does not hold since, for example, g(γ; ·) can

map everything to a constant vector different from the prior used by LDA. As a result, in order

for the statement to hold the network must be expressive. The question to consider is whether a

neural network is capable of memorizing arbitrary side data of a given size. We tackle this ques-

tion by introducing the concept of finite sample expressivity which is an extension of a similar

definition in (Yun et al., 2019). Given the definition, if g(γ; ·) has finite sample expressivity,

nnLDA at least can find the optimal α∗ used in standard LDA.

Definition 1. Function g(γ; ·) has finite sample expressivity if for all inputs xi ∈ Rdx , 1 ≤

i ≤ N and for all yi ∈ [−M,+M]dy , 1 ≤ i ≤ N for some constant M > 0, there exists a

parameter γ such that g(γ;xi) = yi for every 1 ≤ i ≤ N .

Based on Definition 1, Theorem 3.1 shown in (Yun et al., 2019) provides a specific set of

constraints, i.e. any 3-layer (i.e., 2-hidden-layer) ReLU FCNN with hidden layer widths d1

and d2 can fit any arbitrary dataset if d1d2 ≥ 4Ndy, where dy and N are the dimension of

the label and the number of samples, respectively. By extending the aforementioned theorem,

Proposition 3.4 and Theorem 4.1 in (Yun et al., 2019) argue that any FCNN given constraints

on the number of neurons in each layer is able to have finite sample expressivity.

In the following, we assume that g(γ; ·) has finite sample expressivity. Therefore, given

K and any α∗ representing the number of topic groups and optimal parameters in LDA, since

α∗ ∈ [−M,+M]K for some constant M , there exists a γ1 such that, for all inputs si and α∗,

g(γ1; si) = α∗ for all 1 ≤ i ≤ N .

84

We next prove that the optimized probability of nnLDA is at least as good as that of plain

LDA. Let α∗ and β∗ be optimal solutions to P2 = maxα,β P (D|α, β) of LDA, meanwhile, let

µ∗, σ∗ and γ∗ be optimal solutions to P1 = maxµ,σ,γ P1(D|µ, σ, γ, β∗) of nnLDA (see Appendix

C.1 for formal definitions).

Theorem 11. If α∗, β∗ are optimal solutions to LDA, then there exists optimal solutions

µ∗, σ∗ and γ∗ to nnLDA such that

P1(D | µ∗, σ∗, γ∗, β∗) ≥ P2(D | α∗, β∗).

PROOF. See Appendix D.1. �

While Theorem 13 asserts that when it comes to model fit nnLDA fits the data better than

LDA, it does not provide a gap statement. If the side data provides positive influence during the

learning process by a constantC, then, due to the independence of words, topics and documents,

we are able to argue that the optimized probability is at least improved by C − 1.

Theorem 12. For any document (w, s) ∈ (D,S), if p̂(wi | α∗, β∗) 6= 0 for all i, and there

exists a positive constant C > 1 such that
∏N

i=1 p̃(wi | γ∗, β∗, µ∗, σ∗) ≥ C
∏N

i=1 p̂(wi | α∗, β∗)

for every wi ∈ w, and if D in P1 and D in P2 follow the same distribution, then

P1(D | µ∗, σ∗, γ∗, β∗)− P2(D | α∗, β∗)
P2(D | α∗, β∗)

≥ C − 1.

PROOF. See Appendix C.3 for a formal proof. �

The assumption on p̂(wi | α∗, β∗) in Theorem 12 is reasonable since it indicates that all

documents are not randomly generated. The positive constant C in the assumption captures

85

the improvement given by the side data. In other words, as long as the side data has positive

impact on the text data, this assumption holds. Next, we link the existence of C to lift from data

mining. Let us define lift as

l(d) =
P (w)P (s)
P (w, s)

with d = (w, s). Lift measures the dependency level of words w and side data s. If l(d) < 1 for

d with N words and P (s) > 0, we have

P (s)
N∏
n=1

P (wn) = P (w)P (s) < P (w, s) = P (s)
N∏
n=1

P (wn|s),

and in turn

N∏
n=1

P (wn) <
N∏
n=1

P (wn|s),

and

N∏
n=1

p̂(wn | α∗, β∗) <
N∏
n=1

p̃(wn | γ∗, β∗, µ∗, σ∗).

This implies that there exists C > 1. In summary, when l(d) < 1 and P (s) > 0 for each d in

the corpus, Theorem 12 holds. Lift essentially measures the dependency of w and s, which is

widely used in data mining. The condition indicates that the side data helps to link the words to

the documents they are more likely to be in.

Informally, in the proof, due to the independence assumption of words, topics and docu-

ments in nnLDA, the generative probability of nnLDA for a corpus can be reformulated as a

product of p̃(θd | µ∗, σ∗, γ∗) and conditional probability of words p̃(wn | θd, β∗). Likewise,

86

the same property holds for plain LDA. Lastly, given a relationship between documents d = w

and d = (w, s) as an expression of the conditional probability of words, we are able to build a

connection of the optimized probabilities between nnLDA and LDA.

3.3.3. Variational Inference with EM Algorithm

We train the nnLDA model using a stochastic EM sampling scheme, in which we alternate

between sampling topic assignments from the current prior distribution conditioned on the ob-

served words and side data, and optimizing the parameters given the topic assignments.

Details are similar to those in (Blei et al., 2003). In this section, instead of showing all

the details, we only point out the differences from the derivation of plain LDA. By applying

the Jensen’s inequality and KL divergence between the variational posterior probability and the

true posterior probability, which is a formally stated technique in (Blei et al., 2003), a lower

bound of log likelihood reads

L(ξ, φ; γ, β) = Eq [log p(θ | g(γ; s))] + Eq [log p(z | θ)] + Eq [log p(w | z, β)]

− Eq [log q(θ)]− Eq [log q(z)] ,(3.1)

where ξ, φ are variational parameters of θ and z, respectively, and q(·) represents the variational

distribution. Then, the iterative algorithm is

(1) (E-step) For each document, find the optimizing values of the variational parameters ξ

and φ of z and θ, respectively.

(2) (M-step) Maximize the resulting lower bound of log likelihood with respect to the

model parameters γ and β.

87

The E-step is similar to the E-step in (Blei et al., 2003) except replacing prior α by g(γ; s).

We run the E-step until it converges for each document. The M-step is finding a maximum

likelihood estimation with expected sufficient statistics for each document under the approxi-

mate posterior parameters ξ and φ, which are computed in the E-step. Likewise, since the log

likelihood objective related to β does not involve g(γ; s), we are allowed to directly borrow the

update rule of β from (Blei et al., 2003), which is

βij ∝
M∑
d=1

N∑
n=1

φ∗dniw
j
dn.

In contrast, for the neural network parameter γ, we resort to log likelihood objective related to

γ as follows,

L[γ] =
M∑
d=1

(
log Γ(

K∑
j=1

[g(γ; sd)]j)−
K∑
i=1

log Γ([g(γ; sd)]i)

+
K∑
i=1

(
([g(γ; sd)]i − 1)

(
Ψ(ξdi)−Ψ(

K∑
j=1

ξdj)

)))
,

where M is the number of documents in the corpus, and Ψ is the digamma function, the first

derivative of the log Gamma function. Then, applying the backpropagation approach provides

the derivative and the update rule for parameter γ.

3.4. Experimental Study

In this section, we compare the nnLDA model with standard LDA and the DMR model

introduced in (Blei et al., 2003) and (Mimno and McCallum, 2008), respectively. We conduct

experiments on five different-size datasets among which one is a synthetic dataset and the re-

maining four are real-world datasets. For these datasets, we study the performance of topic

88

grouping, perplexity, classification and comment generation for nnLDA, plain LDA and DMR

models. For each of the tasks, some datasets are not eligible to be examined due to lack of infor-

mation. The synthetic dataset is publically available at https://github.com/biyifang/

nnLDA/blob/main/syn_file.csv while the real-world datasets are proprietary.

3.4.1. Datasets and Training Details

The first dataset we use is a synthetic dataset of 2,000 samples. Each sample contains a cus-

tomer’s feedback with respect to his or her purchase along with the characteristics of the prod-

uct. More precisely, there are two different categories, which are product and description. In

the product category, it can either be TV or burger; similarly, in the description category, the

word can either be price or quality. In order to generate comments, we assign a bag of words to

each combination of product and description as shown in Table 3.1.

Category combination Bag of words

(burger, price)
value, pricey, ouch, steep, cheap, value, reason, accept,

unreason, unacceptable

(burger, quality)
nasty, fantastic, delicious, tasty, juicy, unreason, unacceptable,

reason, accept, fresh

(TV, price)
promotion, affordable, value, increase, expensive, tasty,

economical, fancy, okay

(TV, quality)
fabulous, fantastic, promising, sharp, large, clear, eco friendly,

fresh, pixilated

Table 3.1. Synthetic Dataset

https://github.com/biyifang/nnLDA/blob/main/syn_file.csv
https://github.com/biyifang/nnLDA/blob/main/syn_file.csv

89

After randomly selecting one category combination from the four combinations, a comment

is generated containing at least one word and at most five words with an average 2.97 words, by

selecting a certain number of words at random from the corresponding bag.

The second dataset is a real-world dataset, PTS for short, which has 795 samples. Each

sample contains a customer’s short feedback and rating with respect to his or her purchase

along with the characteristics of the product. Additionally, the category (side data) selected for

nnLDA corresponds to sectors, which are generalizations of products. In this dataset, there is

only only 1 word in the shortest comment, while the longest comment in the dataset contains

49 words. Overall, the average length of the comments is 10.6 words. For example, a customer,

who bought a product belonging to sector Baby, leaves a comment “Cheap& Soft” with a rating

of 3.

The third dataset WIP is a medium-size dataset with 3,451 samples. Each sample contains

a customer’s short feedback and rating with respect to his or her purchase along with the char-

acteristics of the product. The sector attribution is again side data when training models with

one feature. The other attribution counted for models with two features is channel. The most

concrete comment in the dataset has 138 words, while the briefest comment has only 1 word.

In the meanwhile, the average length of the comments in the dataset is 8.9 words.

DCL is another medium-size dataset of 5,427 samples. Different from the PTS and WIP

datasets, each sample in DCL contains a customer’s long feedback and rating with respect to his

or her purchase along with the characteristics of the product. Additionally, the side data selected

for nnLDA corresponds to groups of products. The smallest number of words for a comment in

this dataset is 1, while the largest is 988. Overall, the average length of the comments is 61.7

90

words. A short sample comment is “quick points that will be all that matters to a buyer wanting

accurate metrics to buy by tinny sound but plenty of audio hookups.”

The last dataset is RR, which has 100,000 samples, from which we randomly select 10,000

samples. Each sample contains a customer’s feedback with respect to his or her purchase along

with the characteristics of the product. Additionally, the side data for nnLDA corresponds to the

category, which can be grocery, health and personal care, furniture, kitchen, etc. The longest

comment has 418 words while the shortest comment has only 1 word as the previous datasets,

and the average length of the comments is 69.5 words. A short sample comment reads “great

tasting oil and made the most excellent gluten free chocolate cake.”

Due to the lack of some information from the certain datasets, we are unable to study all

tasks of interest for all of these datasets. For the topic grouping task, we examine the ability of

nnLDA, plain LDA and DMR to assign the comments from the same topic group into the same

correct topic group. For this task, we only conduct experiments on the synthetic dataset since

only the topic groups of the synthetic dataset are clear. For the perplexity task, we compute

the logarithm of the perplexity of all the words in the corresponding dataset. We do not study

the performance of perplexity for the synthetic dataset since we know the true number of topic

groups. For the classification task, we use the probability vector generated by the topic models

to predict the rating for that comment. Since the RR dataset does not have ratings, we are

unable to examine the classification ability of the topic models on the RR dataset. The last task

tests the performance of the topic models on generating new comments. For this task, we only

conduct experiments on the two smallest real world datasets since it is of interest how topic

models perform given a small number of samples. Table 3.2 presents the tasks of interest for

each dataset.

91

Dataset Topic grouping Perplexity Classification
Comment

generation

Synthetic dataset Yes No No No

PTS No Yes Yes Yes

WIP No Yes Yes Yes

DCL No Yes Yes No

RR No Yes No No

Table 3.2. Tasks of Interest

For all of these datasets, we employ a two-layer fully connected neural network as g(γ; ·)

in nnLDA. Furthermore, we set the number of neurons to be 20 in the first layer, the number

of neurons of the second layer to be the number of topic groups assigned in the beginning and

the batch size to be 64. All features of the side data are categorical and are one-hot encoded.

Additionally, all weights in g(γ; ·) are initialized by Kaiming Initialization (He et al., 2015).

We apply the ADAM algorithm with the learning rate of 0.001 and weight decay being 0.1.

Meanwhile, we train all the models using EM with exactly the same stopping criteria of stopping

E-step and M-step when the average change over the whole training dataset in the expected log

likelihood becomes less than 0.01%. We vary the number of topic groups from 4 to 30. For

DMR, we use the same values for the parameters as those in (Mimno and McCallum, 2008).

All the algorithms are implemented in Python with Pytorch and trained on a single GPU card.

3.4.2. Experimental Results

In this section, we present all the results based on the tasks of interest.

92

Overall, nnLDA outperforms plain LDA and DMR in all datasets in terms of topic group-

ing, classification, perplexity and comment generation. Meanwhile, based on the fact that the

last two datasets have many more words and more intrinsic concepts in their comments when

compared to the first three datasets, nnLDA exceeds the performance of plain LDA and DMR

dramatically when a document contains several topics or it is more comprehensive.

3.4.2.1. Topic Grouping. Table 3.3 shows the most frequent 5 words in each topic group gen-

erated by plain LDA, DMR and nnLDA when setting the number of topic groups to be 4 in the

synthetic dataset. The topic groups generated by plain LDA and DMR are very vague and it

is very hard to distinguish which topic group is describing what combination of product and

description, while the topic groups given by nnLDA are very distinguishable, i.e. topic group 1

is about (burger, quality), topic group 2 is about (TV, price), topic group 3 is about (TV, quality)

and topic group 4 is about (burger, price). It identifies correctly the seed topics. Therefore,

nnLDA outperforms plain LDA in grouping.

93

plain LDA DMR nnLDA

Topic group 1
promising, rebate, sharp,

increase, outstanding

pricey, unacceptable,

juicy, pixilated

unreason, unacceptable,

juicy delicious, nasty

Topic group 2
unreason, value, okay,

steep, ecofriendly

ouch, steep, tasty,

unreason, promotion

promotion, increase, tasty,

economical, okay

Topic group 3
reason, accept, promotion,

large, unacceptable

accept, fantastic, value

reason, affordable

fresh, promising, fantastic,

large, eco friendly

Topic group 4
fresh, reason, outstanding,

ecofriendly, fantastic

sharp, delicious,

accept, fresh, clear

reason, accept, value,

steep, cheap

Table 3.3. Top words of groups generated by LDA, DMR and nnLDA

macro-precision macro-recall macro-F1 micro-F1

LDA 0.7238 0.7272 0.7211 0.7240

DMR 0.7238 0.7460 0.7313 0.7392

nnLDA 0.7401 0.7919 0.7536 0.7905

relative improvement from LDA 2.25% 8.90% 4.51% 9.19%

relative improvement from DMR 2.25% 6.15% 3.05% 6.94%

Table 3.4. Precision, recall and relative improvement of the synthetic dataset gen-
erated by LDA, DMR and nnLDA

Additionally, based on the top words of topics generated by LDA, DMR and nnLDA, we

are able to assign the most related category combination to a comment with respect to a model.

Since we have the category combination of each comment, Table 3.4 shows the macro-recall,

94

macro-precision and macro-F1 scores and micro-F1 of LDA, DMR and nnLDA, respectively,

when training on the synthetic dataset, and the overall relative improvement of nnLDA. As

the table shows, nnLDA outperforms plain LDA and DMR, which implies that nnLDA assigns

more samples correctly to the right topic group. Therefore, in general, nnLDA improves the

recall, precision and F1 scores.

In conclusion, nnLDA outperforms standard LDA and DMR in terms of the ability of topic

grouping.

3.4.2.2. Perplexity. Figures 3.1 and 3.2 represent the log(perplexity) of plain LDA, DMR and

nnLDA on the PTS and WIP datasets, respectively. Additionally, in Figure 3.2, for DMR and

nnLDA, we not only conduct experiments on the dataset with the single feature (sector) as the

side data, denoted as “DMR with single feature” and “nnLDA with single feature,” but also

on the dataset with two features (sector and channel) as side data, denoted as “DMR with two

features” and “nnLDA with two features,” respectively. The smallest log(perplexity) values

generated by plain LDA and DMR are competitive to those of nnLDA for these two datasets. In

Figure 3.1, the log(perplexity) value generated by plain LDA increases as the number of topic

groups grows, while the log(perplexity) values generated by DMR and nnLDA decrease first

and then increase as the number of topic groups increases on the PTS dataset. As it is shown in

Figure 3.2, the log(perplexity) values generated by plain LDA and DMR increase as the number

of topic groups grows on the WIP dataset. However, the log(perplexity) values generated by

nnLDA decrease first and then increase as the number of topic groups increases on both of the

aforementioned datasets. Moreover, we examine DMR and nnLDA models with two features

on the WIP dataset, which take both sector and channel attributions as side data into account,

in Figure 3.2. As we can observe, the minimum log(perplexity) generated by nnLDA with two

95

features (sector and channel attributions) is better than that of nnLDA with the single feature

(sector attribution), although the optimal number of topic groups occurs at a different point

since more side data is provided. Consequently, plain LDA does not learn the datasets, and

DMR is able to learn the small datasets. In contrast, nnLDA starts learning the datasets as the

log(perplexity) value decreases in the beginning and finds an optimal number of topic groups,

then it gets confused since the number of topic groups are more than needed. Furthermore,

nnLDA with two features provides better log(perplexity) than nnLDA with the single feature.

Therefore, nnLDA is more capable of understanding the datasets; both small and medium-size

datasets with short comments.

When learning more complex datasets, the advantage of the nnLDA model becomes more

pronounced. Figure 3.3 represents the log(perplexity) of plain LDA, DMR and nnLDA on

the DCL dataset, while Figure 3.4 shows the same on the RR dataset. In these figures we

observe that the log(perplexity) generated by plain LDA and DMR blows up as the number

of topic groups increases, while the log(perplexity) generated by nnLDA decreases first and

then increases as the number of topic groups grows. Furthermore, the log(perplexity) values of

nnLDA are much smaller than those of plain LDA and DMR. Consequently, nnLDA performs

as well as plain LDA and DMR in small and medium-size datasets with short comments, and

at the same time, nnLDA explains the datasets better than plain LDA and DMR in medium and

large size datasets with long comments. There is also a trade-off between the accuracy and

running time as shown in Table 3.5. In the table, we compare the running time of plain LDA,

DMR with one feature and nnLDA with one feature on three different datasets. We observe that

nnLDA spends more time than both DMR and plain LDA on training. In conclusion, nnLDA

96

performs better on learning while it requires a slightly longer training time. It is less than 10%

slower than DMR.

Figure 3.1. PTS dataset Figure 3.2. WIP dataset

Figure 3.3. DCL dataset Figure 3.4. RR dataset

97

running time(s) plain LDA DMR nnLDA

PTS 3 4 4

WIF 19 24 26

DCL 138 179 191

Table 3.5. Running time of different models on different datasets

In the following section, we study the classification problem of predicting the rating of each

sample. In all the cases, we use 10-fold cross validation, which holds out 10% of the data for

test purposes and trains the models on the remaining 90%. We apply nnLDA, plain LDA and

DMR to find the probability of each sample to be assigned to each topic group and treat it as

the feature matrix. Lastly, we train a classification model (xgboost (Chen and Guestrin, 2016))

on the feature matrix with the rating labels as the ground truth.

Figure 3.5. PTS Figure 3.6. WIP Figure 3.7. DCL

3.4.2.3. Classification. Figures 3.5, 3.6 and 3.7 depict the relative F1 scores of DMR and

nnLDA with respect to plain LDA on the PTS, WIP, and DCL datasets, respectively. In Figure

3.5, the most distinguishable difference of F1 scores occurs when the number of topic groups

is 15, where nnLDA has a gap of 0.032. In the meanwhile, DMR achieves its best performance

at the same point with a gap of 0.030. Moreover, this chart shows that nnLDA outperforms

98

plain LDA and DMR no matter what the number of topic groups is. In Figure 3.6, when using

the single feature (sector attribution), the biggest gaps of F1 scores happen when the number

of topic groups is 15 for DMR and 25 for nnLDA. The biggest gap between nnLDA and plain

LDA is 0.016, while the largest gap between DMR and plain LDA is 0.003. Considering models

using two features (sector and channel attributions) as the side data, the highest relative F1 score

given by nnLDA with two features is 0.022 with 15 topic groups, compared with 0.004 produced

by DMR with 10 topic groups. Although plain LDA provides a slightly higher F1 score than

nnLDA when applying 5 topic groups, nnLDA outperforms plain LDA and DMR significantly

given any other number of topic groups. In Figure 3.7, the highest relative F1 score given by

nnLDA is 0.022 with 25 topic groups, compared with 0.003 given by DMR for 6 topic groups.

Moreover, this figure shows that nnLDA outperforms plain LDA dramatically whatever the

number of topic groups is.

Therefore, nnLDA performs better than plain LDA and DMR when predicting the rating

given customer’s comments and product information in all datasets.

3.4.2.4. Comment Generation. In this section, we compare the comments generated by nnLDA

with plain LDA and DMR. We set the number of topic groups to be 5 since all of plain LDA,

DMR and nnLDA have relatively low perplexity scores based on Figures 3.1 and 3.2, and com-

parable F1 scores based on Figures 3.5 and 3.6 on the PTS and WIP datasets. A comment is

generated based on the topic-document probability of the sample and the topic-word distribu-

tion. More precisely, for DMR and LDA, the prior α is generated based on the side data (sector)

first while α is fixed in plain LDA. Next, a comment is created by selecting the top words which

have the highest score computed by adding the products of the topic-document probability and

topic-word for each word. Then, we randomly pick 50 comments that contain a certain level of

99

information, for example, we rule out comments like “N/A.” Meanwhile, in order to evaluate

the quality of comment generation, we employed 50 PhD students. Each one of them assessed

a pair of comments (one based on plain LDA or DMR, and the other one based on nnLDA) for

the same side data and they provided an assessment as to which one is better.

Number of generated comments

PTS WIP

plain LDA ¡ nnLDA 15 22

plain LDA ¿ nnLDA 11 9

plain LDA ∼ nnLDA 24 19

DMR ¡ nnLDA 16 20

DMR ¿ nnLDA 11 10

DMR ∼ nnLDA 23 20

Table 3.6. Comparison of the generated comments on different datasets

The upper left three values in Table 3.6 show the comparison of the generated comments

given by plain LDA and nnLDA on the PTS dataset. Based on the table, among all these 50

samples, nnLDA generates more accurate comments in 15 samples, while plain LDA does better

in 11 samples, and the two are tied for the remaining 24 samples. The lower left three values in

Table 3.6 show the comparison of the generated comments given by DMR and nnLDA on the

PTS dataset. Based on the table, among all these 50 samples, nnLDA generates more accurate

comments in 16 samples, while DMR does better in 11 samples, and the two are tied for the

remaining 23 samples. On the PTS dataset, nnLDA generates in 15−11
50

= 8% more reasonable

comments compared to plain LDA, and in 16−11
50

= 10% more comparing to DMR.

100

The right column in Tables 3.6 shows the comparison of the generated comments given by

plain LDA and nnLDA, and DMR and nnLDA on the WIP dataset, respectively. The observa-

tions and conclusions are similar. Furthermore, the advantage in number is more obvious on the

WIP dataset, i.e. the improvement of nnLDA compared to plain LDA is as large as 22−9
50

= 26%

and the improvement from DMR to nnLDA is 20−10
50

= 20%. Therefore, taking generated com-

ments into consideration, nnLDA generates more reasonable comments than plain LDA and

DMR for both small and medium-sized datasets.

101

CHAPTER 4

Tricks and Plugins to GBM on Images and Sequences

4.1. Introduction

Deep convolutional neural networks (CNNs) and transformers such as BERT have had

great recent success in learning image representations for vision tasks and NLP, respectively.

Given the outstanding results produced by these networks, they have been widely applied in

image classification ((He et al., 2016), (rizhevsky et al., 2017), (Lin et al., 2015)), object de-

tection ((Girshick et al., 2014), (Iandola et al., 2014), (Ren et al., 2015)), speech recognition,

((Nakatani, 2019), (Yeh et al., 2019), (Dong et al., 2018)), and language translation ((Li et al.,

2019), (Di Gangi et al., 2019), (Zhou et al., 2018)). However, an optimal image or text rep-

resentation for each task is unique and finding an optimal deep neural network structure is a

challenging problem. There are some approaches (neural architecture search) for designing

these deep networks such as AutoML for Model Compression (AMC) in (He et al., 2018) and

LEAF in (Liang et al., 2019), however, these methods require weeks of training on thousands

of GPUs. In the meanwhile, ensemble methods for classification and regression have gained a

lot of attention in recent years, which perform, both theoretically and empirically, substantially

better than single models in a wide range of tasks, i.e. boosting decision trees (Quinlan, 2004).

In order to tackle the design challenge specifically for CNNs, an idea of combining boosting

and shallow CNNs is proposed in (Brahimi et al., 2016). The idea is to simplify the complicated

design process of deep neural networks by employing the boosting strategy which combines the

102

strengths of multiple CNNs. However, the memory requirement and running time become chal-

lenging when the weak learner is not extremely simple. Moreover, very limited contribution has

been made to the case when the weak learner is a transformer. Furthermore, no work has been

conducted around the idea of only using partial data with weak learners.

In this paper, we propose a family of boosting algorithms for images, namely subgrid Boost-

CNN, and another family of boosting algorithms for sequences, namely BoostTransformer,

which are both based on boosting, deep CNNs and transformers. We select a subset of features

for each weak learner, where the concepts are borrowed from random forests. This strategy

requires new ideas in order to accommodate unstructured data. Moreover, we apply the con-

cept of importance sampling to the combination of boosting and a transformer, which assigns a

probability to each sample.

Subgrid BoostCNN is aimed to solve the same problem as deep CNNs but it provides higher

accuracy with lower running time and memory requirements. Subgrid BoostCNN builds on the

previous boosting Deep Convolutional Neural Networks (BoostCNN) (Brahimi et al., 2016).

One important new aspect in subgrid BoostCNN is that it does not require a full image for train-

ing a weak learner; instead, it only selects important pixels based on the gradient from each

image together with the corresponding residual to train the current weak learner. Although,

this might amplify the error by breaking the original relationship between a pixel and its neigh-

borhood, subgrid BoostCNN focuses on important pixels. Another technique aiming to reduce

the running time is omitting the optimization process for the original full CNN, which is em-

ployed to find the important pixels for the weak learner; instead, we borrow the CNN portion

from the last weak learner concatenated with the fully connected layer used in the 1st iterate

103

to compute the importance value of each pixel, and train the CNN concatenated with an appro-

priate fully connected layer. Consequently, subgrid BoostCNN does the optimization process

once in each iteration, which is the same as BoostCNN, while subgrid BoostCNN has fewer

parameters when compared with BoostCNN. This subgrid trick is essential especially when the

training process for the weak learner is computationally demanding. Furthermore, we demon-

strate subgrid BoostCNN on three different image datasets and argue that subgrid BoostCNN

outperforms both BoostCNN and deep CNNs. More precisely, subgrid BoostCNN improves

the accuracies by 1.16%, 0.82%, 12.10% on CIFAR-10, SVHN and ImageNet datasets, respec-

tively, when compared to standard CNN models. In addition, subgrid BoostCNN obtains accu-

racies 0.34%, 0.50%, 4.19% higher than those generated by BoostCNN on the aforementioned

datasets, respectively.

BoostTransformer is an algorithm which combines the merits of boosting and transform-

ers. BoostTransformer incorporates boosting weights with transformers based on least squares

objective functions. Motivated by the successful combination of BoostCNN and the subgrid

trick, we propose subsequence BoostTransformer, which does not require the full data for train-

ing weak learners. In subsequence BoostTransformer, important tokens, which are from the

input, are selected for each weak learner based on the attention distribution (Vaswani et al.,

2017). Similarly, we might loss the connections between consecutive words, while informative

words are emphasized during learning. Consequently, subsequence BoostTransformer takes

less time to achieve a better accuracy when compared to vanilla BoostTransformer. More-

over, motivated by the phenomenon that overfitting in BoostTransformer appears early, we pro-

pose a new algorithm, namely importance-sampling-based BoostTransformer, which combines

104

the merits of BoostTransformer and importance sampling. Importance-sampling-based Boost-

Transformer first computes a probability distribution for all the samples in the dataset; then in

each iteration, it randomly chooses a subset of samples based on the pre-computed probabil-

ity distribution; lastly, similar to BoostTransformer, it trains the weak learner on the selected

samples. This algorithm not only delays overfitting, but also improves the accuracy and signif-

icantly reduces the running time. In the meanwhile, we present a complete technical proof for

importance-sampling-based BoostTransformer showing that the optimal probability distribu-

tion is proportional to the norm of the residuals. Lastly, we conduct computational experiments

demonstrating a superior performance of the proposed algorithms. More precisely, BoostTrans-

former provides higher accuracy and more stable solutions when compared to transformers.

Moreover, subsequence BoostTransformer and importance-sampling-based BoostTransformer

not only provide better and more robust solutions but also dramatically reduce the running time

when compared to transformers. Compared to standard transformers, BoostTransformer, subse-

quence BoostTransformer and importance-sampling-based BoostTransformer provide an aver-

age of 0.87%, 0.55%, 0.79% accuracy improvements, respectively, on IMDB, Yelp and Amazon

datasets. Furthermore, subsequence BoostTransformer and importance-sampling-based Boost-

Transformer take only two thirds and one half of time transformers need to learn the datasets,

respectively.

In summary, we make the following contributions.

• We provide a better boosting method for deep CNNs, i.e. subgrid BoostCNN, which

only requires important pixels from the image dataset where such pixels are selected

dynamically for each weak learner.

105

• We provide a boosting method for sequences, i.e. BoostTransformer, which combines

the merits of boosting and transformers.

• We provide a better boosting method for transformers, i.e. subsequence BoostTrans-

former, which does not require the full sequences but only important tokens.

• We provide another enhancement for BoostTransformer, i.e. importance-sampling-

based BoostTransformer, which combines importance sampling and BoostTranformer.

Moreover, we provide a proof showing that the optimal probability distribution for the

samples is proportional to the norm of the residuals.

• We present numerical results showing that subsequence BoostTransformer and importance-

sampling-based BoostTransformer outperform vanilla transformers on select tasks and

datasets.

The rest of the paper is organized as follows. In the next section, we review several related works

in gradient boosting machine, CNN and transformers. In Section 3, we state the formal opti-

mization problem and provide the exposition of the subgrid BoostCNN. In the subsequent sec-

tion, we propose BoostTransformer, subsequence BoostTransformer and importance-sampling-

based BoostTransformer, followed by the analysis of the optimal probability distribution for

importance-sampling-based BoostTransformer. In Section 5, we present experimental results

comparing the different algorithms.

4.2. Related Work

There are many extensions of Gradient Boosting Machine (GBM) (Natekin and Knoll,

2013), however, a full retrospection of this immense literature exceeds the scope of this work.

In this section, we mainly state several kinds of variations of GBM which are most related to

106

our new algorithms, together with the two add-ons to our optimization algorithms, i.e. subgrid

and importance sampling.

Boosting for CNNs: Deep CNNs, which have recently produced outstanding performance

in learning image representations, are capable of learning complex features that are highly

invariant and discriminant (Gu et al., 2018). The success of deep CNNs in recognizing ob-

jects has encouraged recent works to combine boosting together with deep CNNs. Brahimi

& Aoun (Brahimi et al., 2019) propose a new Boosted Convolutional Neural Network archi-

tecture, which uses a very deep convolutional neural network reinforced by adding Boosted

Blocks. The Boosted Blocks employed consist of a succession of convolutional layers boosted

by using a Multi-Bias Nonlinear Activation function. Nevertheless, the architecture of the pro-

posed Boosted convolutional neural network is fixed; it can not dynamically change the number

of Boosted Blocks based on a given dataset. Another attempt at combining deep CNNs and

boosting is boosted sampling (Berger et al., 2018), which uses posterior error maps, generated

throughout training, to focus sampling on different regions, resulting in a more informative

loss. However, boosted sampling applies boosting on selecting samples and treats deep CNN

as a black box to make a prediction. To enrich the usage of the information generated by deep

CNNs, Lee & Chen (Lee et al., 2018) propose a new BoostCNN structure which employs a

trained deep convolutional neural network model to extract the features of the images, and then,

use the AdaBoost algorithm to assemble the Softmax classifiers. However, how to combine

different sets of the features extracted is unclear and the computational cost is expensive when

training several deep CNNs at the same time. To tackle this problem, Han & Meng (Han et al.,

2016) propose Incremental Boosting CNN (IB-CNN) to integrate boosting into the CNN via

107

an incremental boosting layer that selects discriminative neurons from a lower layer and is in-

crementally updated on successive mini-batches. Different from IB-CNN which only involves

one deep CNN, BoostCNN (Brahimi et al., 2016) incorporates boosting weights into the neural

network architecture based on least squares objective functions, which leads to the aggregation

of several CNNs. However, the computational and memory demand of BoostCNN is high when

the weak learner is not simple. All these works assume all features for training weak learners,

which is a big difference with our work.

Boosting for Recurrent Neural Network (RNN) and Transformer: RNN, long short-term

memory (LSTM) and transformers have been firmly established as state of the art approaches in

sequence modeling and transduction problems such as language modeling and machine transla-

tion ((Bahdanau et al., 2015), (Cho et al., 2014), (Sutskever et al., 2014), (Vaswani et al., 2017)).

Some efforts have been made in combining boosting with RNN or LSTM. Chen & Lundberg

(Chen et al., 2018) present feature learning via LSTM networks and prediction via gradient

boosting trees (XGB). More precisely, they generate features by performing supervised repre-

sentation learning with an LSTM network, then augment the original XGB model with these

new generated features. However, the selection of the features from LSTM is not determined

by XGB, which leads to a disconnect between LSTM and XGB. Another attempt at combining

boosting and RNN is the boosting algorithm for regression with RNNs (Assaad et al., 2008).

This algorithm adapts an ensemble method to the problem of predicting future values of time

series using RNNs as base learners, and it is based on the boosting algorithm where different

points of the time series are emphasized during the learning process by training different base

learners on different subsets of time points. However, no work has been done about combing

boosting and transformers. Although, analyses of attention in Transformer have been explored

108

(Clark et al., 2019), very limited work is launched about the usage of the attention distribution

in token selection.

Given the fact that importance sampling improves the performance by prioritizing training

samples, importance sampling has been well studied, both theoretically and empirically, in

standard stochastic gradient descent settings (Needell et al., 2014) (Zhao and Zhang, 2015),

in deep learning settings (Katharopoulos and Fleuret, 2018), and in minibatches (Csiba and

Richtárik, 2018). As stated in these papers, importance sampling theoretically improves the

convergence rate and is experimentally effective in reducing the training time and training loss.

However, no generalization work has been done in a boosting setting.

4.3. Algorithms for CNN as Weak Learner

In this section, we provide a summary of BoostCNN and propose a new algorithm, subgrid

CNN, which combines BoostCNN and the subgrid trick.

4.3.1. Background: Standard BoostCNN

We start with a brief overview of multiclass boosting. Given a sample xi ∈X and its class label

zi ∈ {1, 2, · · · ,M}, multiclass boosting is a method that combines several multiclass predictors

gt : X → Rd to form a strong committee f(x) of classifiers, i.e. f(x) =
∑N

t=1 αtgt(x) where gt

and αt are the weak learner and coefficient selected at the tth boosting iteration. There are vari-

ous approaches for multiclass boosting such as (Hastie et al., 2009), (Mukherjee and Schapire,

2013), (Saberian and Vasconcelos, 2011); we use the GD-MCBoost method of (Saberian and

Vasconcelos, 2011), (Brahimi et al., 2016) herein. For simplicity, in the rest of the paper, we

assume that d = M .

109

Standard BoostCNN (Brahimi et al., 2016) trains a boosted predictor f(x) by minimizing

the risk of classification

R[f] = EX,Z [L(z, f(x))] ≈ 1

|D|
∑

(xi,zi)∈D

L(zi, f(xi)),(4.1)

where D is the set of training samples and

L(z, f(x)) =
M∑

j=1,j 6=z

e
1
2
[〈yz ,f(x)〉−〈yj ,f(x)〉],

given yk = 1k ∈ RM , i.e. the kth unit vector. The minimization is via gradient descent in a

functional space. Standard BoostCNN starts with f(x) = 0 ∈ Rd for every x and iteratively

computes the directional derivative of risk (4.1), for updating f(x) along the direction of g(x)

δR[f ; g] =
∂R[f + εg]

∂ε

∣∣∣∣
ε=0

= − 1

2 |D|
∑

(xi,zi)∈D

M∑
j=1

gj(xi)wj(xi, zi)

= − 1

2 |D|
∑

(xi,zi)∈D

g(xi)
Tw(xi, zi),(4.2)

where

wk(x, z) =

 −e− 1
2
[fz(x)−fk(x)], k 6= z∑M

j=1,j 6=k e
− 1

2
[fz(x)−fj(x)], k = z.

(4.3)

Then, standard BoostCNN selects a weak learner g∗ that minimizes (4.2), which essentially

measures the similarity between the boosting weights w(xi, zi) and the function values g(xi).

Therefore, the optimal network output g∗(xi) has to be proportional to the boosting weights, i.e.

g∗(xi) = βw(xi, zi),(4.4)

110

for some constant β > 0. Note that the exact value of β is irrelevant since g∗(xi) is scaled

when computing α∗. Consequently, without loss of generality, we assume β = 1 and convert

the problem to finding a network g(x) ∈ RM that minimizes the square error loss

L(w, g) =
∑

(xi,zi)∈D

‖g(xi)− w(xi, zi)‖2 .(4.5)

After the weak learner is trained, BoostCNN applies a line search to compute the optimal step

size along g∗,

α∗ = argmin
α∈R

R[f + αg∗].(4.6)

Finally, the boosted predictor f(x) is updated as f = f + α∗g∗.

4.3.2. Subgrid BoostCNN

When considering full-size images, BoostCNN using complex CNNs as weak learners is time-

consuming and memory hungry. Consequently, we would like to reduce the size of the images to

lower the running time and the memory requirement. A straightforward idea would be downsiz-

ing the images directly. A problem of this approach is that the noise would possibly spread out

to later learners since a strong signal could be weakened during the downsize process. Another

candidate for solving the aforementioned problem is randomly selecting pixels from the origi-

nal images, however, the fluctuation of the performance of the algorithm would be significant

especially when the images are sharp or have a lot of noise. In this paper, we apply the subgrid

trick to each weak learner in BoostCNN. The remaining question is how to select a subgrid for

each weak learner. Formally, a subgrid is defined by deleting a subset of rows and columns.

111

Moreover, the processed images may not have the same size between iterations, which in turn

requires that the new BoostCNN should allow each weak learner to have a different architecture.

Furthermore, how to pass the weak learner model parameters from the previous weak learner to

the current weak learner is unclear if they have different architectures.

In order to address these issues, we first separate a standard deep CNN into two parts.

We name all the stacks of layers such as convolutional layers and pooling layers, except the

last fully-connected (FC) layers, as the feature extractor. In the meanwhile, we name the last

FC layers as the classifier. Furthermore, we refer to g0 as the basic weak learner and all the

succeeding gt’s as the additive weak learners. Subgrid BoostCNN defines an importance index

for each pixel (j, k) in the image as

Ij,k =
1

|D|
∑

(xi,zi)∈D

∑
c∈C

∣∣∣∣∣∂L(w, g)

∂xj,k,ci

∣∣∣∣∣ ,(4.7)

where xj,k,ci denotes the pixel (j, k) in channel c from the sample xi and C represents the set

of all channels, i.e., for general image datasets, C = {1, 2, 3}. The importance index of a row,

column is a summation of the importance indexes in the row, column divided by the number of

columns, rows, respectively. This importance index is computed based on the residual of the

current predictor. Therefore, a larger importance value means a larger adjustment is needed for

this pixel at the current iterate. The algorithm uses the importance index generated based on the

feature extractor of the incumbent weak learner and the classifier from g0 to conduct subgrid

selection. The selection strategy we apply in the algorithm is deleting less important columns

and rows, which eventually provides the important subgrid. After the subgrid is selected, sub-

grid BoostCNN creates a new tensor xti at iterate t, and then feeds it into an appropriate feature

112

extractor followed by a proper classifier. The modified minimization problem becomes

L(w, g) =
∑

(xi,zi)∈D

∥∥g(xti)− w(xi, zi)
∥∥2 ,(4.8)

where the modified boosting classifier is

f(x) =
N∑
t=1

αtgt(x
t).(4.9)

In this way, subgrid BoostCNN dynamically selects important subgrids based on the updated

residuals. Moreover, subgrid BoostCNN is able to deal with inputs of different sizes by applying

different classifiers. Furthermore, we are allowed to pass the feature extractor’s parameters

from the previous weak learner since the feature extractor is not restricted to the input size. The

proposed algorithm (subgrid BoostCNN) is summarized in Algorithm 6.

113

Algorithm 6 subgrid BoostCNN
1: Inputs:

number of classes M , number of boosting iterations Nb, shrinkage

parameter ν, dataset D = {(x1, z1), · · · , (xn, zn)} where

zi ∈ {1, · · · ,M} is the label of sample xi, and 0 < σ < 1
2: Initialize:

set f(x) = 0 ∈ RM , P0 = {(j, k)|(j, k) is a pixel inxi}

3: compute w(xi, zi) for all (xi, zi), using (4.3)

4: train a deep CNN g∗0 to optimize (4.5)

5: f(x) = g∗0

6: for t = 1, 2, · · ·, Nb do

7: update importance index Ij,k for (j, k) ∈ Pt−1, using (4.7)

8: select the subgrid based on σ fraction of rows and columns with highest importance

index and let Pt be the set of selected pixels; form a new tensor xti for each sample i

9: construct a new proper weak learner architecture

10: compute w(xi, zi) for all i, using (4.3) and (4.9)

11: train a deep CNN g∗t to optimize (4.8)

12: find the optimal coefficient αt, using (4.6) and (4.9)

13: f(x) = f(x) + ναtg
∗
t

14: end for

Subgrid BoostCNN starts by initializing f(x) = 0 ∈ RM . The algorithm first generates

a full-size deep CNN as the basic weak learner, which uses the full image in steps 3-4. Af-

ter the basic weak learner g∗0 is generated, in each iteration, subgrid BoostCNN first updates

114

the importance index Ij,k for each pixel (j, k), which has been used in the preceding iterate at

step 7. In order to mimic the loss of the full-size image, although we only update the importance

indexes for the pixels which have been used in the last iterate, we feed the full-size tensor to

the deep CNN g to compute the importance index. The deep CNN g used in (4.7) to compute

the importance value is constructed by copying the feature extractor from the preceding weak

learner followed by the classifier in the basic weak learner g∗0 . Next, by deleting less important

rows and columns based on Ij,k, which contain 1 − σ fraction of pixels, it finds the most im-

portant subgrid having σ fraction of pixels at position Pt based on the importance index Ij,k,

and forms a new tensor xti in step 8. Note that Pt is not necessary to be a subset of Pt−1 and

actually is rarely to be a subset of Pt−1. This only happens when the highest importance index

at iterate t is also the highest score at iterate t − 1. Next, a new additive weak learner is ini-

tialized by borrowing the feature extractor from the preceding weak learner g∗t−1 followed by a

randomly initialized FC layer with the proper size in step 9. Once the additive weak learner is

initialized, subgrid BoostCNN computes the boosting weights, w(x) ∈ RM according to (4.3)

and (4.9), trains a network g∗t to minimize the squared error between the network output and

boosting weights using (4.8), and finds the boosting coefficient αt by minimizing the boosting

loss (4.6) in steps 10-12. Lastly, the algorithm adds the network to the ensemble according to

f(x) = f(x) + ναtg
∗
t for ν ∈ [0, 1] in step 13.

4.4. Algorithms for Transformer as Weak Learner

In this section, we propose three algorithms combining boosting and transformers from

different perspectives. We assume BERT like bidirectional transformer classifier (Devlin et al.,

2019) (Liu et al., 2019). The first token of each sequence is a special classification token, and

115

the corresponding final hidden state output of this token is used as the aggregated representation

for the classification.

4.4.1. Standard BoostTransformer

Inspired by BoostCNN, we propose BoostTransformer which combines boosting and transform-

ers (encoder) together. For a sequence classification problem, we are given a sample xi ∈ X,

which contains a sequence of tokens, and its class label zi ∈ {1, 2, · · · ,M}. The risk function,

the functional gradient and the optimal boosting coefficient αt are exactly the same as those in

(4.1), (4.2), and (4.6), respectively. The algorithm follows standard gradient boosting machine.

4.4.2. Subsequence BoostTransformer

Combining the subgrid trick and BoostTransformer means applying the subgrid trick to each

weak learner in BoostTransformer. Different from deep CNNs, transformers are able to deal

with sequences of any length, thus, there is no issue when transferring information from the

current weak learner to the succeeding weak learner. Similar to subgrid BoostCNN, we denote

g0 as the basic weak learner, which deals with the whole dataset, and all the succeeding gt’s

as the additive weak learners. Moreover, subsequence BoostTransformer defines an importance

index for each token w in the vocabulary based on the attention distribution. More precisely, the

importance value of token w is computed by adding two parts; the first part is the importance

of the token w itself, and the second part is the importance of token w to the remaining tokens

in the same sample. In an L-layer transformer for a sequence x of length s (following (Devlin

et al., 2019) we assume that the first token in x is a bogus token, which indicates that the

corresponding token in the final layer is used as the embedding for classification), and positions

116

1 ≤ i, j ≤ s, and layer k for 1 ≤ k ≤ L, let the attention from position i to position j between

layer k − 1 and k be donated by a(i, j; k;x). We have
∑s

j=1 a(j, i; k;x) = 1 for every i, k, x.

Then, given a transformer with L layers, the self-importance of token w in position p in a sample

xi is

IS(w, xi) =

(
L−1∏
k=1

a(p, p; k;xi)

)
· a(p, 1;L;xi) ≈ a(p, 1;L;xi),(4.10)

The importance of token w to others is

IR(w, xi) =

[
L−1∏
k=1

max
j,j 6=p

a(pk−1, j; k;xi)

]
· a(pL−1, 1;L;xi),(4.11)

where pk−1 = argmaxj,j 6=pa(pk−2, j; k−1;xi) for k = 2, 3, · · · , L−1, and p0 = p. The first term

computes the product of the maximum attention values through the path which does not contain

p until the second to last layer. For the second term, as it has been shown in (Devlin et al.,

2019), the classification layer only takes the 1st position of the last transformer layer which

is corresponding to the classification token, therefore, the formula in (4.11) does not check all

possible attention distributions; instead, it counts the attention value from the position pL−1

to the 1st position in the last transformer layer directly. After the aforementioned importance

values are computed, the importance value of the word w is

I(w) =
∑

xi,w∈xi

(
IS(w, xi) + IR(w, xi)

)
.(4.12)

Then, the algorithm uses the importance index to select the most important tokens. After the

tokens are selected, subsequence BoostTransformer creates a new sample xti at iterate t, which

contains only the important tokens, and is used by the weak learner. The modified minimization

117

problem and the boosting weak learner are explicitly presented in (4.8) and (4.9), respectively.

The proposed algorithm (subsequence BoostTransformer) is summarized in Algorithm 7.

Different from standard BoostTransformer, subsequence BoostTransformer first reviews the

whole dataset in steps 3-4 and generates the basic weak learner g∗0 . Once the basic weak learner

is created, in each iteration, subsequence BoostTransformer first updates the attention-based

importance vector Iw for any w ∈ Vt−1 in step 7, and selects σ fraction of the tokens to form

the vocabulary set Vt, and lastly constructs a new sample xti by deleting any tokens not in Vt in

step 8. After the new sample xti is constructed, subsequence BoostTransformer initializes the

weights of the current transformer by using the weights in g∗t−1 and trains the transformer with

xti to minimize the squared error in (4.8) in steps 9-10. Lastly, the algorithm finds the boosting

coefficient αt by minimizing (4.6) in step 11 and adds the additive weak learner to the ensemble

in step 12.

118

Algorithm 7 subsequence BoostTransformer
1: Inputs:

number of classes M , number of boosting iterations Nb, shrinkage

parameter ν, dataset D = {(x1, z1), · · · , (xn, zn)} where

zi ∈ {1, · · · ,M} is the label of sample xi, and 0 < σ < 1
2: Initialize:

set f(x) = 0 ∈ RM , V0 = {w|w ∈ xi for some xi}

3: compute w(xi, zi) for all (xi, zi), using (4.3)

4: train a transformer g∗0 to optimize (4.5)

5: f(x) = g∗0

6: for t = 1, 2, · · · , Nb do

7: update importance values Iw for w ∈ Vt−1, using (4.10), (4.11) and (4.12)

8: select σ fraction of the tokens based on Iw, update vocabulary set Vt, and form a new

sample xti for each sample i

9: compute w(xi, zi) for all i, using (4.3) and (4.9)

10: train a transformer g∗t to optimize (4.8)

11: find the optimal coefficient αt, using (4.6) and (4.9)

12: f(x) = f(x) + ναtg
∗
t

13: end for

4.4.3. Importance-sampling-based BoostTransformer

Importance sampling, a strategy for preferential sampling of more important samples capable

of accelerating the training process, has been well studied in stochastic gradient descent (SGD)

119

(Alain et al., 2015). However, there is virtually no existing work combining the power of impor-

tance sampling with the strength of boosting. Motivated by the phenomenon that overfitting ap-

pears early in standard BoostTransformer, we propose importance-sampling-based BoostTrans-

former, which combines importance sampling and BoostTransformer. Importance-sampling-

based BoostTransformer mimics importance sampling SGD by introducing a new loss function

and computing a probability distribution for drawing samples. Similarly, importance-sampling-

based BoostTransformer computes a probability distribution in each iteration, and draws a sub-

set of samples to train the weak learner based on the distribution. The probability distribution

is

P (I = i) =
‖w(xi, zi)‖∑

(xj ,zj)∈D ‖w(xj, zj)‖
,(4.13)

which yields the new loss function for a subset of samples I to be

L̄I(w, g) =
∑

(xi,zi)∈I

1

|D|P (I = i)
‖g(xi)− w(xi, zi)‖2 .(4.14)

We then apply any optimization algorithm with respect to (4.14) (by further using mini-batches

or importance sampling). The entire algorithm is exhibited in Algorithm 8.

120

Algorithm 8 importance-sampling-based BoostTransformer
1: Inputs:

number of classes M , number of boosting iterations Nb, shrinkage

parameter ν, dataset D = {(x1, z1), · · · , (xn, zn)} where

zi ∈ {1, · · · ,M} is the label of sample xi, and 0 < σ < 1
2: Initialize:

set f(x) = 0 ∈ RM

3: compute w(xi, zi) for all xi, using (4.3)

4: train a transformer g∗0 to optimize (4.5)

5: f(x) = g∗0

6: for t = 1, 2, · · · , Nb do

7: compute probability distribution Pt, using (4.13)

8: draw independently |It| samples, which is σ fraction of the samples, based on Pt

9: compute w(xi, zi) for (xi, zi) ∈ It, using (4.3)

10: train a transformer g∗t to optimize (4.14) on It

11: find the optimal coefficient αt, using (4.6) on It

12: f(x) = f(x) + ναtg
∗
t

13: end for

Importance-sampling-based BoostTransformer starts with learning the full-size dataset and

training a basic weak learner in steps 3-4. In each iteration, the algorithm first computes the

probability distribution Pt in step 7 and selects a subset It of samples based on the distribution

in step 8. Once the dataset is created, it computes the weights and trains a transformer by

121

using the unbiased loss function (4.14), following by finding an optimal boosting coefficient in

steps 9-12.

In the rest of this section, we provide all analysis of the optimal probability distribution

in importance-sampling-based BoostTransformer. Given current aggregated classifier ft−1 =∑t−1
i=1 g

∗
i , let us define the expected training progress attributable to iteration t as

EPt
[
∆(t)

]
= ‖ft−1 − f ∗‖2 − EPt

[
‖ft − f ∗‖2

∣∣Ft−1] .
Here f ∗ denotes the solution to (4.1), and the expectation is taken over the probability distribu-

tion Pt, and Ft−1 contains the whole history of the algorithm up until iterate t− 1. We assume

that gradient sampling is unbiased. Inspired by the work in (Zhao and Zhang, 2015), we prove

that the optimal probability distribution is proportional to the boosting weight at each iteration.

Theorem 13. In maxPt EPt
[
∆(t)

]
, the optimal distribution for importance-sampling-based

BoostTransformer to select each sample i is proportional to its “boosting weight norm:”

P (I = i) =
‖w(xi, zi)‖∑

(xj ,zj)∈D ‖w(xj, zj)‖
.(4.15)

PROOF. See Appendix A. �

Based on the fact that the new loss function with respect to the probability distribution is

unbiased, we discover that maximizing the improvement of the boosting algorithm is equivalent

to minimizing the functional gradient variance. By applying Jensen’s inequality, the optimal

probability distribution is essentially proportional to the boosting weights, which are easy to

obtain, in boosting algorithms.

122

4.5. Experimental Study

In this section, we first compare subgrid BoostCNN with standard BoostCNN and deep

CNNs, next, we compare the standard transformer, BoostTransformer, subsequence Boost-

Transformer and importance-sampling-based BoostTransformer in the second half of the sec-

tion. We conduct experiments on three different datasets for both CNN related and transformer

related algorithms. From all of these datasets, we study the performance of the boosting tech-

nique, the subgrid trick and the importance sampling strategy. All the algorithms are imple-

mented in Python with PyTorch (Paszke et al., 2017). Training is conducted on an NVIDIA

Titan XP GPU.

4.5.1. Image

In this subsection, we illustrate properties of the proposed subgrid BoostCNN and compare its

performance with other methods on several image classification tasks. In subgrid BoostCNN,

the risk function (4.1) we employ is cross entropy, and the input of each weak learner is an image

with 3 channels which can be handled by standard Conv2d functions in PyTorch. Meanwhile,

we implement the subgrid strategy based on (4.7) with respect to each pixel (j, k). We delete

approximately 10% of the rows and columns, which leads to σ = 81%, and fix the shrinkage

parameter ν to be 0.02. In each weak learner, we apply the ADAM algorithm with the learning

rate of 0.0001 and weight decay being 0.0001.

We consider CIFAR-10 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011) and Ima-

geNetSub (Deng et al., 2009) datasets as shown in Table 4.1. For the last dataset, since the

original ImageNet dataset is large and takes significant amount of time to train, we select a

subset of samples from the original ImageNet dataset. More precisely, we randomly pick 100

123

labels and select the corresponding samples from ImageNet, which consists of 124, 000 images

for training and 10, 000 images for testing. We denote it as ImageNetSub. Data preprocessing

consists of three steps: 1. random resizing and cropping with output size 224 × 224, scale

uniformly sampled from [0.08, 1.0] and make the aspect ratio uniformly sampled from [0.75,

1.33]; 2. random horizontal flipping with flipping probability 0.5; 3. normalization for each

channel.

Number of Training/Testing Samples Number of Classes

CIFAR-10 50k/10k 10

SVHN 73k/26k 10

ImageNetSub 124k/10k 100

Table 4.1. Image Datasets

For training, we employ three different deep CNNs, which are ResNet-18, ResNet-50 and

ResNet-101. For each combination of dataset/CNN, we first train the deep CNN for a certain

number of epochs, and then initialize the weights in the basic weak learner for the boosting

algorithms as the weights in the deep CNN. In the subgrid BoostCNN experiments, we use

10 CNN weak learners. We train each weak learner for 15 epochs which has been calibrated.

For comparison, we train BoostCNN, the ensemble method (without boosting weight update

and always using all features) denoted by e-CNN and the subgrid ensemble method named as

subgrid e-CNN (without boosting weight update in step 10 in Algorithm 6) for 10 iterates as

well. Notice that subgrid e-CNN essentially mimics random forests. We also train the single

deep CNN for the same number of 150 epochs.

124

We start by applying ResNet-18 as our weak learner for all different ensemble methods.

Figures 4.1, 4.3 and 4.5 compare the relative performances with respect to single ResNet-18

vs the running time. The solid lines in green and yellow show the relative performances of

BoostCNN and subgrid BoostCNN, respectively, while the dotted lines in green and yellow

represent the relative performances of e-CNN and subgrid e-CNN, respectively. As shown in

these figures, taking the same amount of time, subgrid BoostCNN outperforms all of the re-

maining algorithms. Furthermore, we observe that subgrid BoostCNN outperforms BoostCNN,

and subgrid e-CNN has the same behavior when compared with e-CNN. In conclusion, the sub-

grid technique improves the performance of the boosting algorithm. Moreover, Figures 4.2, 4.4

and 4.6 depict subgrid BoostCNN and subgrid e-CNN using three different seeds with respect

to their averages. The solid and dotted lines in the same color represent the same seed used in

corresponding subgrid BoostCNN and subgrid e-CNN. As the figures show, the solid lines are

closer to each other than the dotted lines, which indicates that subgrid BoostCNN is more robust

with respect to the variation of the seed when compared with subgrid e-CNN. Furthermore, the

standard deviations of the accuracy generated by subgrid e-CNN and subgrid BoostCNN are

shown in Table 4.2. The standard deviations of the accuracy generated by subgrid e-CNN are

significant compared to those of subgrid BoostCNN, which in turn indicates that subgrid Boost-

CNN is less sensitive to the choice of the seed. Therefore, subgrid BoostCNN is more robust

than subgrid e-CNN.

125

subgrid BoostCNN subgrid e-CNN

CIFAR-10 0.478 2.519

SVHN 0.385 0.891

ImageNetSub 2.489 7.915

Table 4.2. Standard deviation times 103 of the accuracy results by different seeds

126

Figure 4.1. ResNet-18 on CIFAR-10 Figure 4.2. Different Seeds

Figure 4.3. ResNet-18 on SVHN Figure 4.4. Different Seeds

Figure 4.5. ResNet-18 on ImageNetSub Figure 4.6. Different Seeds

127

Next, we evaluate relative performances of subgrid BoostCNN using ResNet-50 as the weak

learner on CIFAR-10 and ImageNetSub datasets with respect to the single ResNet-50. We do

not evaluate the relative performances on the SVHN dataset since the accuracy of the single

ResNet-50 on the SVHN dataset is over 98%. From Figures 4.7 and 4.9, we also observe the

benefits of the subgrid technique. Besides, Figures 4.8 and 4.10 confirm that subgrid BoostCNN

is more stable than subgrid e-CNN since the solid series are closer to each other compared with

the dotted series. Furthermore, we establish the relative performances of subgrid BoostCNN

using ResNet-50 as the weak learner with respect to the single ResNet-101 in Figure 4.11. Al-

though single ResNet-101 outperforms single ResNet-50, subgrid BoostCNN using ResNet-50

as the weak learner outperforms single ResNet-101 significantly in Figure 4.11, which indicates

that subgrid BoostCNN with a simpler CNN is able to exhibit a better performance than a sin-

gle deeper CNN. Lastly, we conduct experiments with ResNet-101 on the ImageNetSub dataset.

From Figure 4.12, we not only discover the superior behaviors of BoostCNN, e-CNN, subgrid

BoostCNN and subgrid e-CNN over ResNet-101 as we expect, but also observe the benefit of

the subgrid technique.

128

Figure 4.7. ResNet-50 on CIRFAR-10 Figure 4.8. Different Seeds

Figure 4.9. ResNet-50 on ImageNetSub Figure 4.10. Different Seeds

Figure 4.11. ResNet-50 on Ima-
geNetSub compared to ResNet-101

Figure 4.12. ResNet-101 on Ima-
geNetSub

129

4.5.2. Text

In this section, we explore properties of the proposed Boost Transformer, subsequence Boost

Transformer and importance-sampling-based Boost Transformer, and compare their perfor-

mances with other methods on several text classification tasks. In the following experiments,

the weak learner used is Roberta-based (Liu et al., 2019) from the HuggingFace library with

only word embeddings to be pre-trained weights. Using transformer based boosting algorithms,

we train an ensemble of 6 transformers each with 5 epochs (these numbers yield good perfor-

mance). In subsequence BoostTransformer, we pick the most important 80% of the tokens in the

vocabulary and reconstruct the dataset based on this new vocabulary. In importance-sampling-

based BoostTransformer, the first flavor, in each iteration, we select 80% of the samples based

on the probability distribution in (4.13) without further subsequence technique. In subsequence

importance-sampling-based BoostTransformer, we first select 80% of the samples based on the

probability distribution in (4.13), and then pick the most important 80% of the tokens in the cur-

rent vocabulary given by the selected 80% samples, after that, we reconstruct the dataset based

on this modified vocabulary. For comparison, we train the vanilla transformer and subsequence

transformer, which randomly removes 20% of the tokens and trains the network on the dataset

for 30 epochs. To train the model, we use AdamW (Loshchilov and Hutter, 2019) with learning

rate 10−5, weight decay 0.01 and batch size 16. We use linear learning rate decay with warmup

ratio 0.06.

We start by presenting the three public datasets used: IMDB (Maas et al., 2011), Yelp

polarity reviews and Amazon polarity reviews (McAuley and Leskovec, 2013). The IMDB

dataset, which is for binary sentiment classification, contains a set of 25,000 highly polar movie

reviews for training, and 25,000 for testing. The Yelp polarity reviews dataset, which is a subset

130

of the dataset obtained from the Yelp Dataset Challenge in 2015, consists of 100, 000 training

samples and 38, 000 testing samples. The classification task for this dataset is predicting a

polarity label by considering stars 1 and 2 negative, and 3 and 4 positive for each review text.

The last dataset we use is the Amazon polarity reviews dataset, which is a subset of the original

Amazon reviews dataset from the Stanford Network Analysis Project (SNAP). Dealing with the

same classification task as the Yelp polarity review dataset, the Amazon polarity reviews dataset

contains 100, 000 training samples and 25, 000 testing samples. The subsampled datasets are

standard, i.e. we did not create our own subsamples. Empirically we found that a weak learner

with 6 heads and 6 layers achieves good robust performance.

Given the architecture of the weak learner, we start by discussing experiments on IMDB. In

Figure 4.13, we compare the relative performances of the algorithms with respect to the vanilla

transformer. As it shows, all versions of BoostTransformer do not perform as good as the

standard transformer and subsequence transformer in the first few epochs. However, they catch

up quickly and dominate the performance in the remaining training epochs. Even more, based

on Figure 4.14, which represents each model’s relative improvement with respect to its initial

weights, all versions of BoostTransformer maintain their performances as the number of epochs

increases, while the performances of the standard transformer and the subsequence transformer

start decreasing and fluctuating dramatically after the first few epochs, which implies that all

versions of BoostTransformer are more robust than the standard and subsequence transformer.

Next, we evaluate relative performances with respect to the vanilla transformer on the Yelp

and Amazon polarity review datasets. From Figures 4.15-4.18, we discover that the superior

and more robust behavior of boosting algorithms over transformer is vigorous.

131

Figure 4.13. Relative Accuracy on
IMDB

Figure 4.14. Improvement on IMDB

Figure 4.15. Relative Accuracy on Yelp Figure 4.16. Improvement on Yelp

Figure 4.17. Relative Accuracy on
Amazon

Figure 4.18. Improvement on Amazon

132

Furthermore, we zoom in on the performances at iterates larger than 2. In Figures 4.19-4.21,

compared with the standard BoostTransformer, we observe that the subsequence BoostTrans-

former, importance-sampling-based BoostTransformer and subsequence importance-sampling-

based BoostTransformer demonstrate a superior performance. Therefore, we conclude that

the subsequence and importance sampling techniques are beneficial for the boosting algo-

rithms. Moreover, we observe that the importance-sampling-based BoostTransformer gradu-

ally improves its performance and maintains its performance later on, while the subsequence

BoostTransformer hits its best accuracy in early epochs and then starts fluctuating and decay-

ing. The gap between the importance-sampling-based BoostTransformer and the subsequence

BoostTransformer is more significant on the IMDB dataset, which has a much smaller size

than the Yelp and Amazon polarity review datasets. For the subsequence importance-sampling-

based BoostTransformer, compared to the subsequence BoostTransformer, although the subse-

quence importance-sampling-based BoostTransformer does not fluctuate and decrease as much

as the subsequence BoostTransformer, which is more obvious in a small dataset (i.e. the IMDB

dataset), its best accuracy is lower than that of the subsequence BoostTransformer, which is

more obvious in larger datasets (i.e. the Yelp and Amazon datasets). On the other hand, com-

pared to the importance-sampling-based BoostTransformer, although the subsequence importance-

sampling-based BoostTransformer obtains its best accuracy earlier than the importance-sampling-

based BoostTransformer, its overall performance fluctuates while the importance-sampling-

based BoostTransformer keeps increasing and maintains its high-quality performance in all

of the datasets, which implies that the subsequence importance-sampling-based BoostTrans-

former is less stable than the importance-sampling-based BoostTransformer. In conclusion, the

133

subsequence BoostTransformer fits well for datasets with enough samples and the importance-

sampling-based BoostTransformer is more suitable for datasets with a limited number of sam-

ples.

134

Figure 4.19. IMDB

Figure 4.20. Yelp

135

Figure 4.21. Amazon

Table 4.3 illustrates the running time of each algorithm on the different datasets in minutes.

As we see in the table, the subsequence technique not only improves the performance of the

boosting algorithms but also reduces the running time. Furthermore, the importance sampling

technique reduces the running time significantly without hurting the performance.

Trans.
subsequence

Trans.
BT

subsequence

BT

imp.-samp.

-based BT

subsequence

imp.-samp.

-based BT

IMDB 21 14 23 17 13 12

Yelp 76 52 84 66 52 46

Amazon 75 53 79 58 46 41

Table 4.3. Running time for different algorithms

136

In conclusion, a subsequence transformer is a good choice if the running time cost is the

most important concern, however, if accuracy performance is as crucial as the running time,

then the subsequence BoostTransformer is the go-to option since it requires a slight increase

in the running time but provides superior and more robust performance when compared to the

subsequence transformer. In addition, if a dataset has a limited number of samples, i.e., it is easy

to cause overfitting, then the importance-sampling-based BoostTransformer can outperform.

137

Bibliography

Jacob D Abernethy, Elad Hazan, and Alexander Rakhlin. 2012. Interior-point methods

for full-information and bandit online learning. IEEE Transactions on Information Theory,

58(7):4164–4175.

Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing. 2008. Mixed

membership stochastic blockmodels. Journal of machine learning research, 9:1981–2014.

Guillaume Alain, Alex Lamb, Chinnadhurai Sankar, Aaron C. Courville, and Yoshua Bengio.

2015. Variance reduction in SGD by distributed importance sampling. ArXiv, abs/1511.06481.

Mohammad Assaad, Romuald Boné, and Hubert Cardot. 2008. A new boosting algorithm for

improved time-series forecasting with recurrent neural networks. Information Fusion, 9:41–

55.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation

by jointly learning to align and translate. CoRR, abs/1409.0473.

Pierre Baldi and Kurt Hornik. 1989. Neural networks and principal component analysis:

Learning from examples without local minima. Neural Networks, 2(1):53–58.

Adrian Benton, Michael J. Paul, Braden Hancock, and Mark Dredze. 2016. Collective super-

vision of topic models for predicting surveys with social media. In AAAI.

138

Albert Benveniste, Michel Métivier, and Pierre Priouret. 2012. Adaptive algorithms and sto-

chastic approximations, volume 22. Springer Science & Business Media.

Lorenz Berger, Eoin Hyde, Matt Gibb, Nevil Pavithran, Garin Kelly, Faiz Mumtaz, and

Sébastien Ourselin. 2018. Boosted training of convolutional neural networks for multi-class

segmentation. ArXiv, abs/1806.05974.

Dimitri P Bertsekas and John N Tsitsiklis. 1989. Parallel and distributed computation: nu-

merical methods, volume 23. Prentice Hall Englewood Cliffs.

Dimitri P Bertsekas and John N Tsitsiklis. 2000. Gradient convergence in gradient methods

with errors. SIAM Journal on Optimization, 10(3):627–642.

David M. Blei and Michael I. Jordan. 2003. Modeling annotated data. In SIGIR.

David M. Blei and Jon D. McAuliffe. 2007. Supervised topic models. In NIPS.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet allocation. Jour-

nal of machine learning research, 3:993–1022.

Avrim Blum. 1998. On-line algorithms in machine learning. In Online algorithms, pages 306–

325. Springer.

Vivek S Borkar. 2008. Stochastic approximation: a dynamical systems viewpoint. Baptism’s

91 Witnesses.

Sourour Brahimi, Najib Ben Aoun, and Chokri Ben Amar. 2016. Boosted convolutional neural

networks. In BMVC.

139

Sourour Brahimi, Najib Ben Aoun, and Chokri Ben Amar. 2019. Boosted convolutional neural

network for object recognition at large scale. Neurocomputing, 330:337–354.

Hugh Chen, Scott Lundberg, and Su-In Lee. 2018. Hybrid gradient boosting trees and neural

networks for forecasting operating room data. ArXiv, abs/1801.07384.

Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. 2016. Revis-

iting distributed synchronous SGD. arXiv preprint arXiv:1604.00981.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A scalable tree boosting system. Proceed-

ings of the 22nd ACM SIGKDD.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. 2019. On the convergence of a class of

ADAM-type algorithms for non-convex optimization. In International Conference on Learn-

ing Representations.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,

Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using RNN

Encoder-Decoder for statistical machine translation. In EMNLP.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun.

2015a. The loss surfaces of multilayer networks. In Artificial Intelligence and Statistics, pages

192–204.

Anna Choromanska, Yann LeCun, and Gérard Ben Arous. 2015b. Open problem: The land-

scape of the loss surfaces of multilayer networks. In Conference on Learning Theory, pages

1756–1760.

https://openreview.net/forum?id=H1x-x309tm
https://openreview.net/forum?id=H1x-x309tm

140

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. 2019. What does

BERT look at? An analysis of BERT’s attention. ArXiv, abs/1906.04341.

Dominik Csiba and Peter Richtárik. 2018. Importance sampling for minibatches. ArXiv,

abs/1602.02283.

Amit Daniely, Alon Gonen, and Shai Shalev-Shwartz. 2015. Strongly adaptive online learning.

In International Conference on Machine Learning, pages 1405–1411.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and

Yoshua Bengio. 2014. Identifying and attacking the saddle point problem in high-dimensional

non-convex optimization. In Advances in Neural Information Processing Systems, pages

2933–2941.

Soham De and Tom Goldstein. 2016. Efficient distributed SGD with variance reduction. In

2016 IEEE 16th International Conference on Data Mining, pages 111–120. IEEE.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A

large-scale hierarchical image database. In CVPR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-

training of deep bidirectional transformers for language understanding. In NAACL-HLT.

Mattia A Di Gangi, Matteo Negri, and Marco Turchi. 2019. Adapting transformer to end-to-

end spoken language translation. In INTERSPEECH.

141

Laura Dietz, Steffen Bickel, and Tobias Scheffer. 2007. Unsupervised prediction of citation

influences. In ICML.

Linhao Dong, Shuang Xu, and Bo Xu. 2018. Speech-Transformer: A no-recurrence sequence-

to-sequence model for speech recognition. In ICASSP.

Simon Du, Jason Lee, Yuandong Tian, Aarti Singh, and Barnabas Poczos. 2018a. Gradient

descent learns one-hidden-layer CNN: Don’t be afraid of spurious local minima. In Proceed-

ings of the 35th International Conference on Machine Learning, volume 80 of Proceedings

of Machine Learning Research, pages 1339–1348, Stockholmsmässan, Stockholm Sweden.

PMLR.

Simon S. Du, Jason D. Lee, and Yuandong Tian. 2018b. When is a convolutional filter easy to

learn? In International Conference on Learning Representations.

John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online

learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–

2159.

Elena A. Erosheva, Stephen E. Fienberg, and John Lafferty. 2004. Mixed-membership models

of scientific publications. Proceedings of the National Academy of Sciences of the United

States of America, 101:5220 – 5227.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich feature hierar-

chies for accurate object detection and semantic segmentation. In CVPR.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press.

https://openreview.net/forum?id=SkA-IE06W
https://openreview.net/forum?id=SkA-IE06W

142

Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai, Ting

Liu, Xingxing Wang, Gang Wang, and Jianfei Cai. 2018. Recent advances in convolutional

neural networks. Pattern Recognition, 77:354–377.

Shizhong Han, Zibo Meng, Ahmed-Shehab Khan, and Yan Tong. 2016. Incremental boosting

convolutional neural network for facial action unit recognition. In NIPS.

Reza Harikandeh, Mohamed Osama Ahmed, Alim Virani, Mark Schmidt, Jakub Konečnỳ,

and Scott Sallinen. 2015. Stop wasting my gradients: Practical SVRG. In Advances in Neural

Information Processing Systems, pages 2251–2259.

Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. 2009. Multi-class AdaBoost. Statistics

and Its Interface, 2:349–360.

Elad Hazan, Amit Agarwal, and Satyen Kale. 2007. Logarithmic regret algorithms for online

convex optimization. Mach. Learn., 69(2-3):169–192.

Elad Hazan and Comandur Seshadhri. 2007. Adaptive algorithms for online decision prob-

lems. In Electronic colloquium on computational complexity (ECCC), volume 14.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification. Proceedings of the IEEE in-

ternational conference on computer vision.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for

image recognition. In CVPR.

https://doi.org/10.1007/s10994-007-5016-8
https://doi.org/10.1007/s10994-007-5016-8

143

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. 2018. AMC: AutoML

for model compression and acceleration on mobile devices. In ECCV.

Mingyi Hong, Meisam Razaviyayn, Zhi-Quan Luo, and Jong-Shi Pang. 2015. A unified algo-

rithmic framework for block-structured optimization involving big data: With applications in

machine learning and signal processing. IEEE Signal Processing Magazine, 33(1):57–77.

Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross Girshick, Trevor Darrell, and

Kurt Keutzer. 2014. DenseNet: Implementing efficient ConvNet descriptor pyramids. ArXiv,

abs/1404.1869.

Martin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay Krishnan, Thomas

Hofmann, and Michael I Jordan. 2014. Communication-efficient distributed dual coordinate

ascent. In Advances in Neural Information Processing Systems, pages 3068–3076.

Angelos Katharopoulos and François Fleuret. 2018. Not all samples are created equal: Deep

learning with importance sampling. ArXiv, abs/1803.00942.

Kenji Kawaguchi. 2016. Deep learning without poor local minima. In Advances in Neural

Information Processing Systems, pages 586–594.

Halil Kilicoglu, Dongwook Shin, Marcelo Fiszman, Graciela Rosemblat, and Thomas C Rind-

flesch. 2012. SemMedDB: a PubMed-scale repository of biomedical semantic predications.

Bioinformatics, 28(23):3158–3160.

Diederik P. Kingma and Jimmy Ba. 2015. ADAM: A method for stochastic optimization.

CoRR, abs/1412.6980.

144

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features from tiny

images. Citeseer.

Simon Lacoste-Julien, Fei Sha, and Michael I. Jordan. 2008. DiscLDA: Discriminative learn-

ing for dimensionality reduction and classification. In NIPS.

Ni Lao and William W Cohen. 2010. Relational retrieval using a combination of path-

constrained random walks. Machine Learning, 81(1):53–67.

Jason D. Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz, Michael I. Jordan,

and Benjamin Recht. 2017. First-order methods almost always avoid saddle points. CoRR,

abs/1710.07406.

Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. 2016. Gradient descent

only converges to minimizers. In Conference on Learning Theory, pages 1246–1257.

Shin-Jye Lee, Tonglin Chen, Lun Yu, and Chin-Hui Lai. 2018. Image classification based on

the boost convolutional neural network. IEEE Access, 6:12755–12768.

Fei-Fei Li and Pietro Perona. 2005. A Bayesian hierarchical model for learning natural scene

categories. In ICCV.

Naihan Li, Shujie Liu, Yanqing Liu, Sheng Zhao, and Ming Liu. 2019. Neural speech synthesis

with transformer network. In AAAI.

Yuanzhi Li and Yang Yuan. 2017. Convergence analysis of two-layer neural networks with

ReLU activation. In Advances in Neural Information Processing Systems, pages 597–607.

145

Jason Liang, Elliot Meyerson, Babak Hodjat, Dan Fink, Karl Mutch, and Risto Miikkulainen.

2019. Evolutionary neural AutoML for deep learning. In GECCO.

Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. 2015. Bilinear CNN models for

fine-grained visual recognition. In ICCV.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,

Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized

bert pretraining approach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization. In ICLR.

Liangchen Luo, Yuanhao Xiong, and Yan Liu. 2019. Adaptive gradient methods with dynamic

bound of learning rate. In International Conference on Learning Representations.

Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I Jordan, Peter Richtárik, and Martin

Takáč. 2015. Adding vs. averaging in distributed primal-dual optimization. arXiv preprint

arXiv:1502.03508.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher

Potts. 2011. Learning word vectors for sentiment analysis. In ACL.

Jakub Mareček, Peter Richtárik, and Martin Takáč. 2015. Distributed block coordinate descent

for minimizing partially separable functions. In Numerical Analysis and Optimization, pages

261–288. Springer.

https://openreview.net/forum?id=Bkg3g2R9FX
https://openreview.net/forum?id=Bkg3g2R9FX

146

Julian McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics: understanding

rating dimensions with review text. In RecSys.

Andrew McCallum, Xuerui Wang, and Andrés Corrada-Emmanuel. 2007. Topic and role dis-

covery in social networks with experiments on Enron and academic email. Journal of artificial

intelligence research, 30:249–272.

David Mimno and Andrew McCallum. 2008. Topic models conditioned on arbitrary features

with Dirichlet-multinomial regression. In UAI.

Aryan Mokhtari, Alec Koppel, and Alejandro Ribeiro. 2016. A class of parallel doubly sto-

chastic algorithms for large-scale learning. arXiv preprint arXiv:1606.04991.

Aryan Mokhtari and Alejandro Ribeiro. 2016. DSA: Decentralized double stochastic averag-

ing gradient algorithm. The Journal of Machine Learning Research, 17(1):2165–2199.

Indraneel Mukherjee and Robert E Schapire. 2013. A theory of multiclass boosting. Journal

of Machine Learning Research, 14:437–497.

Tomohiro Nakatani. 2019. Improving transformer-based end-to-end speech recognition with

connectionist temporal classification and language model integration. In INTERSPEECH.

Alexey Natekin and Alois Knoll. 2013. Gradient boosting machines, a tutorial. Frontiers in

Neurorobotics, 7.

147

Alexandros Nathan and Diego Klabjan. 2017. Optimization for large-scale machine learning

with distributed features and observations. In International Conference on Machine Learning

and Data Mining in Pattern Recognition, pages 132–146.

Deanna Needell, Rachel Ward, and Nati Srebro. 2014. Stochastic gradient descent, weighted

sampling, and the randomized Kaczmarz algorithm. Mathematical Programming, 155:549–

573.

Yurii Nesterov. 2013. Introductory lectures on convex optimization: A basic course, vol-

ume 87. Springer Science & Business Media.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.

2011. Reading digits in natural images with unsupervised feature learning.

Neal Parikh and Stephen Boyd. 2014. Block splitting for distributed optimization. Mathemat-

ical Programming Computation, 6(1):77–102.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,

Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation

in pytorch.

Ross J. Quinlan. 2004. Induction of decision trees. Machine Learning, 1:81–106.

Alexander Rakhlin and A Tewari. 2009. Lecture notes on online learning. Draft, April.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. 2018. On the convergence of ADAM and

beyond. In International Conference on Learning Representations.

https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ

148

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN: Towards real-

time object detection with region proposal networks. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 39:1137–1149.

Thomas C Rindflesch and Marcelo Fiszman. 2003. The interaction of domain knowledge and

linguistic structure in natural language processing: interpreting hypernymic propositions in

biomedical text. Journal of Biomedical Informatics, 36(6):462–477.

Alex rizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2017. Imagenet classification with

deep convolutional neural networks. In CACM.

Herbert Robbins and Sutton Monro. 1951. A stochastic approximation method. The Annals of

Mathematical Statistics, pages 400–407.

Michal Rosen-Zvi, Thomas L. Griffiths, Mark Steyvers, and Padhraic Smyth. 2004. The

author-topic model for authors and documents. ArXiv, abs/1207.4169.

Mohammad J Saberian and Nuno Vasconcelos. 2011. Multiclass Boosting: Theory and algo-

rithms. In NIPS.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. 2017. Minimizing finite sums with the

stochastic average gradient. Mathematical Programming, 162(1-2):83–112.

Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding machine learning: From the-

ory to algorithms. Cambridge University Press.

149

Erik B. Sudderth, Antonio Torralba, William T. Freeman, and Alan S. Willsky. 2005. Learning

hierarchical models of scenes, objects, and parts. In ICCV.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with

neural networks. ArXiv, abs/1409.3215.

John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. 1986. Distributed asynchronous de-

terministic and stochastic gradient optimization algorithms. IEEE Transactions on Automatic

Control, 31(9):803–812.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, A. Gomez,

L. Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In NIPS.

Chong Wang, David M. Blei, and Fei-Fei Li. 2009. Simultaneous image classification and

annotation. In ICCV.

Xingyu Wang, Lida Zhang, and Diego Klabjan. 2020. Keyword-based topic modeling and

keyword selection. ArXiv, abs/2001.07866.

Xuerui Wang and Andrew McCallum. 2006. Topics over time: a non-Markov continuous-time

model of topical trends. Proceedings of the 12th ACM SIGKDD.

Xuerui Wang, Natasha Mohanty, and Andrew McCallum. 2005. Group and topic discovery

from relations and their attributes. In NIPS.

150

Markus Weimer, Sriram Rao, and Martin Zinkevich. 2010. A convenient framework for ef-

ficient parallel multipass algorithms. In LCCC: NIPS 2010 Workshop on Learning on Cores,

Clusters and Clouds.

Papis Wongchaisuwat and Diego Klabjan. 2018. Truth Validation with Evidence. arXiv

preprint arXiv:1802.05786.

Chenwei Wu, Jiajun Luo, and Jason D Lee. 2018. No spurious local minima in a two hidden

unit ReLU network.

Ching-Feng Yeh, Jay Mahadeokar, Kaustubh Kalgaonkar, Yongqiang Wang, Duc Le, Ma-

haveer Jain, Kjell Schubert, Christian Fuegen, and Michael L Seltzer. 2019. Transformer-

Transducer: End-to-end speech recognition with self-attention. ArXiv, abs/1910.12977.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. 2019. Small ReLU networks are powerful mem-

orizers: a tight analysis of memorization capacity. In NIPS.

Caoxie Zhang, Honglak Lee, and Kang Shin. 2012. Efficient distributed linear classification

algorithms via the alternating direction method of multipliers. In Artificial Intelligence and

Statistics, pages 1398–1406.

Lijun Zhang, Tie-Yan Liu, and Zhi-Hua Zhou. 2019. Adaptive regret of convex and smooth

functions. In Proceedings of the 36th International Conference on Machine Learning, vol-

ume 97 of Proceedings of Machine Learning Research, pages 7414–7423, Long Beach, Cali-

fornia, USA. PMLR.

151

Peilin Zhao and Tong Zhang. 2015. Stochastic optimization with importance sampling for

regularized loss minimization. In ICML.

Shiyu Zhou, Linhao Dong, Shuang Xu, and Bo Xu. 2018. Syllable-based sequence-

to-sequence speech recognition with the transformer in mandarin chinese. ArXiv,

abs/1804.10752.

Changbo Zhu and Huan Xu. 2015. Online gradient descent in function space. CoRR,

abs/1512.02394.

Jun Zhu, Amr Ahmed, and Eric P. Xing. 2012. MedLDA: maximum margin supervised topic

models. Journal of machine learning research, 13:2237–2278.

Martin Zinkevich. 2003. Online convex programming and generalized infinitesimal gradient

ascent. In Proceedings of the 20th International Conference on Machine Learning (ICML-03),

pages 928–936.

Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. 2010. Parallelized stochastic

gradient descent. In Advances in neural information processing systems, pages 2595–2603.

Masrour Zoghi, Tomas Tunys, Mohammad Ghavamzadeh, Branislav Kveton, Csaba Szepes-

vari, and Zheng Wen. 2017. Online learning to rank in stochastic click models. In Proceedings

of the 34th International Conference on Machine Learning - Volume 70, ICML’17, pages

4199–4208. JMLR.

http://dl.acm.org/citation.cfm?id=3305890.3306115

152

APPENDIX A

Additional Experimental Details for

A.1. Problem Set-up

We study the optimization problem of minimizing

min
ω∈Rd

F (ω) :=
1

N

N∑
i=1

fi(xiω) =
1

N

P∑
k=1

n∑
j=1

fkj

(
Q∑
q=1

P∑
p=1

xp,q,kj ωq,πq(p)

)
,

where the features and the observations of the data {(xi, yi)}Ni=1 are split intoQ and P partitions

respectively, and each feature partition is further separated into P smaller divisions. We have

n = N/P, m = d/Q, m̃ = d/QP,

ω = (ω11, ω12, · · · , ω1P , ω21, · · · , ω2P , · · · , ωQP) .

A.2. Notation

Recall that in steps 9- 18, the inner loop of SODDA performs iterations on each parameter

subset ωq,πq(p) (for i ≥ 0):

ω̄
(i+1)
q,πq(p)

= ω̄
(i)
q,πq(p)

− γt+1

[
Oωq,πq(p)f

p
jq,πq(p)

(x
p,q,πq(p)
jq,πq(p)

ω̄
(i)
q,πq(p)

)−Oωq,πq(p)f
p
jq,πq(p)

(x
p,q,πq(p)
jq,πq(p)

w̃q,πq(p))

+ µtq,πq(p)

]
,

153

where jq,πq(p) is a randomly selected observation in sub-block xp,q,πq(p). It is convenient to use

the notation

vt,i =



Oω11f
π−1
1 (1)

j11

(
x
π−1
1 (1),1,1
j11

ω̄t,i−111

)
− Oω11f

π−1
1 (1)

j11

(
x
π−1
1 (1),1,1
j11

ω̃11

)
Oω12f

π−1
1 (2)

j12

(
x
π−1
1 (2),1,2
j12

ω̄t,i−112

)
− Oω12f

π1(2)

π−1
1 (2)

(
x
π−1
1 (2),1,2
j12

ω̃12

)
...

Oω1P
f
π−1
1 (P)

j1P

(
x
π−1
1 (P),1,P
j1P

ω̄t,i−11P

)
− Oω1P

f
π−1
1 (P)

j1P

(
x
π−1
1 (P),1,P
j1P

ω̃1P

)
Oω21f

π−1
2 (1)

j21

(
x
π−1
2 (1),2,1
j21

ω̄t,i−121

)
− Oω21f

π−1
2 (1)

j21

(
x
π−1
2 (1),2,1
j21

ω̃21

)
...

Oω2P
f
π−1
2 (P)

j2P

(
x
π−1
2 (P),2,P
j2P

ω̄t,i−12P

)
− Oω2P

f
π−1
2 (P)

j2P

(
x
π−1
2 (P),2,P
j2P

ω̃2P

)
...

OωQP f
π−1
Q (P)

jQP

(
x
π−1
Q (P),Q,P

jQP
ω̄t,i−1QP

)
− OωQP f

π−1
Q (P)

jQP

(
x
π−1
Q (P),Q,P

jQP
ω̃QP

)



∈ Rd,

where π−1q (p) ∈ {1, 2, · · · , P} is the inverse function of πq(p), for all q and p. With this notation,

we can integrate all subsets ωq,πq(p) and simplify the inner loop of the SODDA as follows

ωt

ω̄t,0 = ωt

ω̄t,1 = ω̄t,0 − γt+1 (µt + vt,1)

ω̄t,2 = ω̄t,1 − γt+1 (µt + vt,2)

...

ω̄t,B = ω̄t,B−1 − γt+1

(
µt + vt,B

)
ωt+1 = ω̄t,B .

In what follows corresponding assumptions hold. Lastly, we define Ft as the sigma algebra

that measures the history of the algorithm up until iteration t.

154

We also introduce f ∈ Ô(g) if there exists a constant C > 0 such that f(x) ≤ C · g(x) for

every x ≥ 0.

A.3. Diminishing L.R. Convergence without Feature and Sample Sampling

Lemma 1. Let Φ = {φ1, · · · , φR} be a set of random vectors measurable with respect to

σ−algebra H, let g : Φ → Rk be a measurable function, and let b be an integer such that

1 ≤ b ≤ R. Let B be a set of size b uniformly and randomly selected vectors from Φ without

replacement. Given two constants w1 and w2, we have

E

[
w1

∑
i∈B

g(φi) + w2

∑
i/∈B

g(φi)

∣∣∣∣∣H
]

=

(
b

R
w1 +

R− b

R
w2

) R∑
i=1

g(φi).

PROOF. Using the definition of the expectation we obtain

E

[
w1

∑
i∈B

g(φi) + w2

∑
i/∈B

g(φi)

∣∣∣∣∣H
]

=
∑
B

1(
R
b

) [w1

∑
i∈B

g(φi) + w2

∑
i/∈B

g(φi)

]
,

where the first summation indicates summation over all subsets of B of cardinality b. Thus, the

expected value of w1

∑
i∈B g(φi) + w2

∑
i/∈B g(φi) with respect to B and conditioning on H is

E

[
w1

∑
i∈B

g(φi) + w2

∑
i/∈B

g(φi)

∣∣∣∣∣H
]

=

(
b

R
w1 +

(
1− b

R

)
w2

) R∑
i=1

g(φi)

=

(
b

R
w1 +

R− b

R
w2

) R∑
i=1

g(φi),

since each i is selected with probability b
R

. �

155

We assume that ω∗ is the unique optimal solution to (1). Under these standard assump-

tions and the previous results, our first proposition argues a supermartingale relationship for the

sequence of the loss function errors F (ωt)− F (ω∗).

Proposition 1. If there is neither feature sampling in step 5 nor sample sampling in step 7

and Assumptions 1-2 hold, and the number of iteration for the inner loop B is B ≥ C1d where

C1 is a positive constant, and the sequence of learning rates satisfies γt ≤ 1 for all t, and are

non-summable
∑∞

t=1 γt = ∞ and square summable
∑∞

t=1 γ
2
t < ∞, and the sequence (ct)∞t=0

is selected so that ct ≤ d, then the loss function error sequence F (ωt) − F (ω∗) generated by

SODDA satisfies

E
[
F (ωt+1)− F (ω∗)|Ft

]
≤
[
1− 2ξγt+1

(
B

d
− C1γt+1

)]
[F (ωt)− F (ω∗)],(A.1)

where C1 is a positive constant.

PROOF. We write OF (ωt) = (OF (ωt)11, · · · ,OF (ωt)1P ,OF (ωt)21, · · · ,OF (ωt)QP) and

et = (et11, · · · , et1P , et21, · · · , etQP). In order to simplify the notation, we also denote π = (πq)
Q
q=1

and j
(i)
q,πq(p)

, the index drawn in step 10 of the algorithm for given πq(p), where everything

computed is at iteration t.

Claim 1. For any t we have

E

[
1

N

N∑
j=1

ŌωCt
fj(xjω

t)

∣∣∣∣∣Ft

]
=

ct

d
OF (ωt),(A.2)

E

∥∥∥∥∥ 1

N

N∑
j=1

ŌωCt
fj(xjω

t)

∥∥∥∥∥
2
∣∣∣∣∣∣Ft

 =
ct

d

∥∥OF (ωt)
∥∥2 .(A.3)

156

PROOF. For each j, we have

E
[
ŌωCt

fj(xjω
t)
∣∣Ft

]
=

1(
d
ct

)∑
Ct

ŌωCt
fj(xjω

t)

=
1(
d
ct

) · (d− 1

ct − 1

)
Ofj(xjω

t) =
ct

d
Ofj(xjω

t).

This yields

E

[
1

N

N∑
j=1

ŌωCt
fj(xjω

t)

∣∣∣∣∣Ft

]
=

1

N

N∑
j=1

ct

d
Ofj(xjω

t) =
ct

Nd

N∑
j=1

Ofj(xjω
t).(A.4)

By substituting the definition of OF (ωt) into (A.4) claim (A.2) follows.

Let us proceed to find a relationship between the value of
∥∥∥ 1
N

∑N
j=1 ŌωCt

fj(xjω
t)
∥∥∥2 given

Ft and ‖OF (ωt)‖. Similarly,

E

∥∥∥∥∥ 1

N

N∑
j=1

ŌωCt
fj(xjω

t)

∥∥∥∥∥
2
∣∣∣∣∣∣Ft

 =
1(
d
ct

)∑
ct

∥∥∥∥∥ 1

N

N∑
j=1

Ofj(xjω
t)

∥∥∥∥∥
2

=
1(
d
ct

) · (d− 1

ct − 1

)∥∥∥∥∥ 1

N

N∑
j=1

Ofj(xjω
t)

∥∥∥∥∥
2

=
ct

d

∥∥∥∥∥ 1

N

N∑
j=1

Ofj(xjω
t)

∥∥∥∥∥
2

.(A.5)

By substituting the definition of OF (ωt) into (A.5) claim (A.3) follows. �

157

For i = 1, 2, · · · , B, the expected value of ‖vt,i‖2 given all the preceding information is

E
[∥∥vt,1∥∥2 |Ft,Bt,Ct,Dt, π

]
= 0(A.6)

E
[∥∥vt,i∥∥2 |Ft,Bt,Ct,Dt, π, j

(1)
11 , j

(1)
12 , · · · , j

(1)
QP , j

(2)
11 , · · · , j

(2)
QP , · · · , j

(i−2)
11 , · · · , j(i−2)QP

]
=

n∑
j
(i−1)
QP =1

· · ·
n∑

j
(i−1)
11 =1

1

nQP

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



Oω11f
π−1
1 (1)

j
(i−1)
11

(
x
π−1
1 (1),1,1

j
(i−1)
11

ω̄t,i−111

)
− Oω11f

π−1
1 (1)

j
(i−1)
11

(
x
π−1
1 (1),1,1

j
(i−1)
11

ωt11

)
...

Oω1P
f
π−1
1 (P)

j
(i−1)
1P

(
x
π−1
1 (P),1,P

j
(i−1)
1P

ω̄t,i−11P

)
− Oω1P

f
π−1
1 (P)

j
(i−1)
1P

(
x
π−1
1 (P),1,P

j
(i−1)
1P

ωt1P

)
...

OωQP f
π−1
Q (P)

j
(i−1)
QP

(
x
π−1
Q (P),Q,P

j
(i−1)
QP

ω̄t,i−1QP

)
− OωQP f

π−1
Q (P)

j
(i−1)
QP

(
x
π−1
Q (P),Q,P

j
(i−1)
QP

ωtQP

)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

,(A.7)

for i = 2, 3, · · · , B.

We prove a bound of the value of ‖vt,i‖2 given Ft by induction for i ∈ {1, 2, · · · , B}.

Claim 2. For i = 1, 2, · · · , B, we have

E
[∥∥vt,i∥∥2 |Ft

]
= Ô(γ2t+1

∥∥OF (ωt)
∥∥2).(A.8)

PROOF. The claim holds for i = 1 due to (A.40).

For i = 1, 2, · · · , k − 1, we assume that

E
[∥∥vt,i∥∥2 |Ft

]
= Ô(γ2t+1

∥∥OF (ωt)
∥∥2).(A.9)

158

Now consider vt,k. Let us show that the expected value of
∥∥vt,k∥∥2 is bounded. By using

(A.7) we have

E
[∥∥vt,k∥∥2 |Ft,Bt,Ct,Dt, π, j

(1)
11 , j

(1)
12 , · · · , j

(1)
QP , j

(2)
11 , j

(2)
12 , · · · , j

(2)
QP , · · · , j

(k−2)
11 , · · · , j(k−2)QP

]
≤

n∑
j
(k−1)
QP =1

· · ·
n∑

j
(k−1)
11 =1

Q∑
q=1

P∑
p=1

1

nQP

∥∥∥Oωqpfπ−1
q (p)

j
(k−1)
qp

(
x
π−1
q (p),q,p

j
(k−1)
qp

ω̄t,k−1qp

)

− Oωqpf
π−1
q (p)

j
(k−1)
qp

(
x
π−1
q (p),q,p

j
(k−1)
qp

ωtqp

)∥∥∥2
=

Q∑
q=1

P∑
p=1

 1

n

n∑
j
(k−1)
q,πq(p)

=1

∥∥∥Oωqpfπ−1
q (p)

j
(k−1)
qp

(
x
π−1
q (p),q,p

j
(k−1)
qp

ω̄t,k−1qp

)
− Oωqpf

π−1
q (p)

j
(k−1)
qp

(
x
π−1
q (p),q,p

j
(k−1)
qp

ωtqp

)∥∥∥2


≤
Q∑
q=1

P∑
p=1

(
1

n
· nL2

∥∥ω̄t,k−1qp − ω̄t,0qp
∥∥2) =

Q∑
q=1

P∑
p=1

(
L2
∥∥ω̄t,k−1qp − ω̄t,0qp

∥∥2)

=

Q∑
q=1

P∑
p=1

L2
∥∥γt+1

[
(k − 1)µtqp + vt,1qp + · · ·+ vt,k−1qp

]∥∥2 .
(A.10)

Applying the definition of µt yields

E
[∥∥µt∥∥2 |Ft

]
= E

∥∥∥∥∥ 1

N

N∑
j=1

ŌωCt
fj(xjω

t)

∥∥∥∥∥
2
∣∣∣∣∣∣Ft

 =
ct

d

∥∥OF (ωt)
∥∥2 .(A.11)

159

The second inequality holds due to (A.3) in Claim 1. By using the law of iterated expectation,

(A.9), (A.10) and (A.11) we get

E
[∥∥vt,k∥∥2 |Ft

]
= E

[
E
[∥∥vt,k∥∥2 |Ft, ,Bt,Ct,Dt, π, j

(1)
11 · · · , j

(k−2)
QP

]
|Ft
]

≤ E

 Q∑
q=1

P∑
p=1

L2

∥∥∥∥∥γt+1

[
(k − 1)µtqp +

k−1∑
i=1

vt,iqp

]∥∥∥∥∥
2
∣∣∣∣∣∣Ft


≤ kL2γ2t+1

Q∑
q=1

P∑
p=1

(
E
[∥∥(k − 1)µtqp

∥∥2∣∣∣Ft
]

+
k−1∑
i=1

E
[∥∥vt,iqp∥∥2 |Ft

])

≤ kL2γ2t+1QP

(
(k − 1)2 E

[∥∥µt∥∥2∣∣∣Ft
]

+
k−1∑
i=1

E
[∥∥vt,i∥∥2 |Ft

])

= kL2γ2t+1QP
[
(k − 1)2

∥∥OF (ωt)
∥∥2 + (k − 1)Ô(γ2t+1

∥∥OF (ωt)
∥∥2)]

= Ô(γ2t+1

∥∥OF (ωt)
∥∥2).

(A.12)

This completes the proof of the claim. �

By using the conditional Jensen’s inequality and (A.9) we get

E[
∥∥vt,i∥∥ | Ft] = E[

√
‖vt,i‖2 | Ft] ≤

√
E[‖vt,i‖2 | Ft] = Ô(γt+1

∥∥OF (ωt)
∥∥).(A.13)

By summing up all increments in iteration t, we obtain

ωt+1 = ωt − γt+1

[
Bµt + vt,1 + vt,2 + · · ·+ vt,B

]
.

160

Then, the expected value of the difference ωt+1 − ωt given Ft is

E
[
ωt+1 − ωt|Ft

]
= −γt+1 E

[
Bµt + vt,1 + · · ·+ vt,B|Ft

]
= −γt+1B

ct

d
OF (ωt)− γt+1

B∑
i=1

E[vt,i | Ft],

(A.14)

by using (A.2) in Claim 1. Moreover, the expected value of the squared norm ‖ωt+1 − ωt‖2

given Ft is

E
[∥∥ωt+1 − ωt

∥∥2 |Ft
]

= E
[∥∥γt+1

[
Bµt + vt,1 + vt,2 + · · ·+ vt,B

]∥∥2 |Ft
]

≤ γ2t+1(B + 1)

{
B2 E

[∥∥µt∥∥2 |Ft
]

+
B∑
i=1

E
[∥∥vt,i∥∥2 |Ft

]}

= Ô(γ2t+1)

{
B2 · c

t

d

∥∥OF (ωt)
∥∥2 +B · Ô(γ2t+1

∥∥OF (ωt)
∥∥2)} = Ô(γ2t+1

∥∥OF (ωt)
∥∥2),

(A.15)

due to (A.3), (A.8) and (A.11). From

−OF (ωt) · vt,i ≤
∥∥OF (ωt)

∥∥∥∥vt,i∥∥ ,
for every OF (ωt) and vt,i, by using and (A.13) we obtain

−γt+1OF (ωt) · E
[
vt,i|Ft

]
= γt+1 E

[
−OF (ωt) · vt,i|Ft

]
≤ γt+1 E

[∥∥OF (ωt)
∥∥ · ∥∥vt,i∥∥ |Ft

]
= γt+1

∥∥OF (ωt)
∥∥ · E [∥∥vt,i∥∥ |Ft

]
= Ô(γ2t+1

∥∥OF (ωt)
∥∥2),(A.16)

since E [XY |H] = X E [Y |H] if X is H−measurable.

161

For convex F we have

F (ωt+1) ≤ F (ωt) + OF (ωt)T
(
ωt+1 − ωt

)
+
L

2

∥∥ωt+1 − ωt
∥∥2 ,

which in turn yields

E
[
F (ωt+1)|Ft

]
≤ F (ωt) + OF (ωt)T E

[(
ωt+1 − ωt

)
|Ft
]

+
L

2
E
[∥∥ωt+1 − ωt

∥∥2 |Ft
]

= F (ωt) + OF (ωt)T

{
−γt+1B

ct

d
OF (ωt)− γt+1

B∑
i=1

E[vt,i | Ft]

}

+
L

2
E
[∥∥ωt+1 − ωt

∥∥2 |Ft
]

= F (ωt)− γt+1
ctB

d

∥∥OF (ωt)
∥∥2 − γt+1OF (ωt)T

B∑
i=1

E
[
vt,i|Ft

]
+
L

2
E
[∥∥ωt+1 − ωt

∥∥2 |Ft
]

≤ F (ωt)− γt+1
ctB

d

∥∥OF (ωt)
∥∥2 + Ô(γ2t+1

∥∥OF (ωt)
∥∥2)

≤ F (ωt)− γt+1
ctB

d

∥∥OF (ωt)
∥∥2 + C1γ

2
t+1

∥∥OF (ωt)
∥∥2 ,

where C1 is a positive constant and we use (A.14), (A.15) and (A.16). Subtracting the optimal

objective function F (ω∗) to the both sides of (A.17) and using the fact that ct ≥ 1 imply that

(A.17)

E
[
F (ωt+1)− F (ω∗)|Ft

]
≤ F (ωt)− F (ω∗)− γt+1

B

d

∥∥OF (ωt)
∥∥2 + C1γ

2
t+1

∥∥OF (ωt)
∥∥2 .

We proceed to find a lower bound of ‖OF (ωt)‖2 in terms of F (ωt)−F (ω∗). Assumption 1

implies that, for any y, z ∈ Rm

F (y) ≥ F (z) + OF (z)T (y − z) +
ξ

2
‖y − z‖2 .(A.18)

162

For fixed z, the right hand side of (A.18) is a quadratic function of y and it gets its minimum at

ŷ = z − 1
ξ
OF (z). Therefore

F (y) ≥ F (z) + OF (z)T (ŷ − z) +
ξ

2
‖ŷ − z‖2 = F (z)− 1

2ξ
‖OF (z)‖2 ,(A.19)

for any y, z ∈ Rd. Setting y = ω∗ and z = ωt in (A.19) gives

∥∥OF (ωt)
∥∥2 ≥ 2ξ

(
F (ωt)− F (ω∗)

)
.(A.20)

Substituting the lower bound in (A.20) by the norm of gradient square ‖OF (ωt)‖2 in (A.17)

yields the proposition in (A.1). �

Proposition 1 represents a relationship for the sequence of the loss function errors F (ωt)−

F (ω∗). In the following theorem, by employing Taylor expansion, we show that if the sequence

of learning rates satisfy the standard stochastic approximation diminishing learning rate rule

(non-summable and squared summable), the sequence of loss function errors F (ωt) − F (ω∗)

converges to 0.

Proof of Theorem 1.

PROOF. Since B > dC1 and γt ≤ 1, we have B
d
> C1γt+1, therefore, let us define φ =

B
d
− C1 > 0 and B

d
− C1γj+1 > φ. Consequently, we have

Aj = 1− 2ξ

(
B

d
− C1γj+1

)
γj+1 < 1− 2ξφγj+1,

163

which in turn yiels

t∏
j=1

Aj <

t∏
j=1

(1− 2ξφγj+1) .(A.21)

Applying (A.21) and Taylor expansion log(1− x) = −
∑∞

n=1
xn

n
, we consider the logarithm of

the production

log(
t∏

j=1

Aj) < log

(
t∏

j=1

(1− 2ξφγj+1)

)
=

t∑
j=1

log(1− 2ξφγj+1)

=
t∑

j=1

−
∞∑
n=1

(2ξφγj+1)
n

n
= −

t∑
j=1

(
2ξφγj+1 +

∞∑
n=2

(2ξφγj+1)
n

n

)

= −
t∑

j=1

2ξφγj+1 −
t∑

j=1

∞∑
n=2

(2ξφγj+1)
n

n
< −

t∑
j=1

2ξφγj+1

= −2ξφ
t∑

j=1

γj+1 = −∞,

which essentially implies limt→∞
∏t

j=1Aj = 0.The last equality uses the fact that the learning

rate is non-summable. Thus, applying the law of iterated expectation to (A.1) implies (1.2) in

Theorem 1. �

A.4. Counter Example without Assumptions 3 and 4

Proof of Theorem 2.

PROOF. We consider the setting where there are two samples [A|b] =

a11 a12

a21 a22

∣∣∣∣∣∣∣
b1

b2

,

which are split into four partitions, and the parameter vector is specified as ω = [ω1, ω2]. Then,

164

applying MSE and linear regression yields

F ([ω1, ω2]) =
1

2
‖Aω − b‖22 .(A.22)

Consequently, the gradient is

5F = ATAω − AT b,

and the Hessian H = ATA. Note that Assumption 1 holds. For Assumption 2, we can select

L = maxi,j |Hij|. Notice that

∥∥ATA∥∥ = ‖A‖2 ≥
(

1√
2
‖A‖F

)2

=
a211 + a212 + a221 + a222

2
.(A.23)

Let us consider the inner loop in steps 12-18. The approximate individual loss functions using

each sample are

f1(ω1) =
1

2
(ω1a11 − b1)2, f1(ω2) =

1

2
(ω2a12 − b1)2,

f2(ω1) =
1

2
(ω1a21 − b2)2, f2(ω2) =

1

2
(ω2a22 − b2)2,

which in turn yields

5ω1f1(ω1a11) = a211ω1 − a11b1, 5ω2f1(ω2a12) = a212ω2 − a12b1,

5ω1f2(ω1a21) = a221ω1 − a21b2, 5ω2f2(ω2a22) = a222ω2 − a22b2.

165

The update formulas in the algorithm for the first sample and ω1 read

ω̄
(i+1)
1 = ω̄

(i)
1 − γt+1

(
a211ω̄

(i)
1 − a211ωt1 + µt1

)
ω̄
(i+1)
1 =

(
1− a211γt+1

)
ω̄
(i)
1 + γt+1

(
a211ω

t
1 − µt1

)
ω̄
(i+1)
1 −

(
ωt1 −

µt1
a211

)
=
(
1− a211γt+1

)(
ω̄
(i)
1 −

(
ωt1 −

µt1
a211

))
.

Therefore,

ω̄
(i+1)
1 =

(
1− a211γt+1

)i+1
(
ω̄
(0)
1 −

(
ωt1 −

µt1
a211

))
+

(
ωt1 −

µt1
a211

)
.

Since ω̄(0)
1 = ωt1 due to step 13, we obtain

ω̄
(i+1)
1 =

(
1− a211γt+1

)i+1 µt1
a211

+

(
ωt1 −

µt1
a211

)
.

If γt ≤ 1

min{a211,a212,a221,a222}
, then a211γt < 1, which in turn yields

lim
i→∞

ω̄
(i+1)
1 = ωt1 −

µt1
a211

.

Thus, if the number of iterationsB for the inner loop is big enough, then, approximately, ωt+1
1 =

ωt1 −
µt1
a211

. Similarly, when using the same data point to update ω2, we obtain

ωt+1
2 = ωt2 −

µt2
a212

.

When using ([a21, a22], b2) to update ω1 and ω2, we obtain

ωt+1
1 = ωt1 −

µt1
a221

, ωt+1
2 = ωt2 −

µt2
a222

.

166

Therefore, the inner loop mimics gradient descent with constant learning rate. Then, the explicit

update formula for ωt is

ωt+1 = ωt − η5 F (ωt) = (I − ηATA)ωt + ηAT b,(A.24)

where the second equality holds due to the definition of 5F , and η =

 1
a211

0

0 1
a212

 when using

the first sample and η =

 1
a221

0

0 1
a222

 when using the second sample. Thus, if |a11| = |a12| =

min {|a11| , |a12| , |a21| , |a22|} and max {|a21| , |a22|} > |a11|, then, when using ([a11, a12], b1) to

update ω1, the corresponding
∥∥I − ηATA∥∥ > 1 since

∥∥ηATA∥∥ ≥ ‖ATA‖‖η−1‖ >
∣∣∣a211+a212+a221+a2222a211

∣∣∣ =

2, which in turn yields the divergence of the algorithm. Similarly, the same conclusion applies

to ([a21, a22], b2) when |a21| = |a22| = min {|a11| , |a12| , |a21| , |a22|} and max {|a11| , |a12|} >

|a21|. Some possible values of A and b are in Table A.1.

a11 a12 b1 a21 a22 b2 optimal ω∗ ω100

1 1 1 2 3 0 [3,−1] [3.651× 1055,−6.811× 1056]

2 1 1 1 1 0 [1,−1] [54.606,−29.148]

1 2 1 1 3 0 [3,−1] [−4.414× 1011,−8.765× 1011]

1 2 1 2 3 1 [−27, 17] [4.973× 1029,−3, 455× 1030]

1 4 1 2 3 0 [−3
5
, 2
5
] [−177.419, 2976.815]

Table A.1. Counter Examples

�

167

A.5. Diminishing L.R. Convergence with Feature Sampling

We assume that ω∗ is the unique optimal solution to (1), and also that ‖ω∗‖ ≤ M2

2
. By using

Assumption 3, we conclude that the distance between any ω ∈ Ω and ω∗ is bounded, i.e.

∥∥ωt − w∗∥∥ ≤M2.(A.25)

The second moment of ωt is also bounded for all t, i.e.

∥∥ωt∥∥2 ≤ M2
2

4
,(A.26)

for any t. Let us define µt = 1
dt

∑
j∈Dt ŌωCt

fj(xjω
t) + et, where et is defined as

et :=
1

dt

∑
j∈Dt
ŌωCt

fj(x
Bt

j ω
t
Bt)−

1

dt

∑
j∈Dt
ŌωCt

fj(xjω
t).(A.27)

Lemma 2. If Assumptions 2-4 hold, then ‖OF (ωt)‖ and
∑N

j=1 ‖Ofj(xjωt)‖
2 for any t

satisfy

∥∥OF (ωt)
∥∥ ≤M2L,(A.28)

N∑
j=1

∥∥Ofj(xjωt)∥∥2 ≤ (N − 1)G2 +NM2
2L

2.(A.29)

PROOF. Using the fact that ω∗ is the optimal solution and Assumptions 2 and 3 we obtain

∥∥OF (ωt)
∥∥ =

∥∥OF (ωt)− OF (ω∗)
∥∥ ≤ L

∥∥ωt − ω∗∥∥ ≤ LM2.

168

The last inequality holds due to (A.25). Assumption 4 implies that, for any ωt we have

1

N − 1

N∑
j=1

(∥∥Ofj(xjωt)∥∥2 − ∥∥OF (ωt)
∥∥2) ≤ G2,

which in turn yields

1

N − 1

N∑
j=1

∥∥Ofj(xjωt)∥∥2 ≤ G2 +
N

N − 1

∥∥OF (ωt)
∥∥2 ,

and

N∑
j=1

∥∥Ofj(xjwt)∥∥2 ≤ (N − 1)G2 +N
∥∥OF (ωt)

∥∥2 .(A.30)

Inserting (A.28) into (A.30) gives (A.29). �

Claim 3. If Assumptions 2 and 3 hold and for some constant η ≥ 0 and the learning rate

γt+1, we have

bt ∈

max

ct,
d

1 +
4dηγ2t+1

ctM2
2L

2

 , d

(A.31)

for every t, then the expected value of ‖et‖2 conditioned on Ft generated by SODDA is bounded

by ηγ2t+1, that is

E
[∥∥et∥∥2 |Ft

]
≤ ηγ2t+1,

where η is a constant unrelated to B.

169

PROOF. By using (A.27) we obtain

E
[∥∥et∥∥2 |Ft

]
= E

∥∥∥∥∥∥ 1

dt

∑
j∈Dt
ŌωCt

fj(x
Bt

j ω
t
Bt)−

1

dt

∑
j∈Dt
ŌωCt

fj(xjω
t)

∥∥∥∥∥∥
2∣∣∣∣∣∣Ft


=

1

(dt)2
E

∥∥∥∥∥∥
∑
j∈Dt

(
ŌωCt

fj(x
Bt

j ω
t
Bt)− ŌωCt

fj(xjω
t)
)∥∥∥∥∥∥

2∣∣∣∣∣∣Ft


≤ 1

dt
E

∑
j∈Dt

∥∥∥ŌωCt
fj(x

Bt

j ω
t
Bt)− ŌωCt

fj(xjω
t)
∥∥∥2
∣∣∣∣∣∣Ft


=

1

dt
E

∑
j∈Dt

E
[∥∥∥ŌωCt

fj(x
Bt

j ω
t
Bt)− ŌωCt

fj(xjω
t)
∥∥∥2∣∣∣∣Ft,Bt,Dt

]∣∣∣∣∣∣Ft

 .(A.32)

Applying Lemma 1 with w1 = 1, w2 = 0,Φ =
{(
ŌωBt

fj(x
Bt

j ω
t
Bt)− ŌωBt

fj(xjω
t)
)
i

}bt

i=1
,

g(z) = z2, H = σ(Ft,Bt,Dt) and B = Ct to (A.32) yields

E
[∥∥et∥∥2 |Ft

]
≤ ct

btdt
E

∑
j∈Dt

∥∥∥ŌωBt
fj(x

Bt

j ω
t
Bt)− ŌωBt

fj(xjω
t)
∥∥∥2
∣∣∣∣∣∣Ft


=

ct

btdt
E

∑
j∈Dt

∥∥ŌωBt
fj(xjω

t
(Bt,0))− ŌωBt

fj(xjω
t)
∥∥2∣∣∣∣∣∣Ft


≤ L2ct

btdt
E

∑
j∈Dt

∥∥ωt(Bt,0) − ωt∥∥2
∣∣∣∣∣∣Ft


=
L2ct

btdt
E

E
∑
j∈Dt

∥∥ωt[d]\Bt∥∥2
∣∣∣∣∣∣Ft,Bt

∣∣∣∣∣∣Ft


=
L2ct

btdt
E
[
E
[
dt
∥∥ωt[d]\Bt∥∥2∣∣∣Ft,Bt

]∣∣∣Ft
]

=
L2ct

bt
E
[∥∥ωt[d]\Bt∥∥2∣∣∣Ft

]
.

170

The second inequality uses Assumption 2 and we use [d] = {1, · · · , d}. Now, let us use Lemma

1 again with w1 = 0, w2 = 1, Φ = {(ωt)i}
d

i=1, g(z) = z2, H = Ft and B = Bt to get

E
[∥∥et∥∥2 |Ft

]
≤ L2ct

bt
d− bt

d

∥∥ωt∥∥2
≤ L2ct(d− bt)

dbt
M2

2

4
.

The last inequality uses (A.26). In order to bound the expected value of ‖et‖2 by ηγ2t+1, we

require

L2ct(d− bt)

dbt
M2

2

4
≤ ηγ2t+1,

which is equivalent to

bt ≥ d

1 +
4dηγ2t+1

ctM2
2L

2

.

Meanwhile, in order to make OωCt
fj(x

Bt

j ω
t
Bt) well defined, we require bt ≥ ct. �

Next, similar to Proposition 1, we present the following proposition.

Proposition 2. If Assumptions 1-4 hold, and the sequence of learning rates satisfies γt ≤ 1

for all t, and the sequences (bt, ct, dt)∞t=0 are selected so that (A.31) for some constant η ≥ 0,

ct ≤ d and dt ≤ N , then the loss function error sequence F (ωt)−F (ω∗) generated by SODDA

satisfies

E
[
F (ωt+1)− F (ω∗)|Ft

]
≤ (1− 2ξB

d
γt+1)[F (ωt)− F (ω∗)] + C3γ

2
t+1,(A.33)

where C3 is a positive constant.

171

PROOF. We write OF (ωt) = (OF (ωt)11, · · · ,OF (ωt)1P ,OF (ωt)21, · · · ,OF (ωt)QP) and

et = (et11, · · · , et1P , et21, · · · , etQP). In order to simplify the notation, we also denote π = (πq)
Q
q=1

and j
(i)
q,πq(p)

, the index drawn in step 10 of the algorithm for given πq(p), where everything

computed is at iteration t.

Claim 4. For any t we have

E

 1

dt

∑
j∈Dt
ŌωCt

fj(xjω
t)

∣∣∣∣∣∣Ft

 =
ct

d
OF (ωt),(A.34)

E

∥∥∥∥∥∥ 1

dt

∑
j∈Dt
ŌωCt

fj(xjω
t)

∥∥∥∥∥∥
2∣∣∣∣∣∣Ft

 ≤ ct

Nd

[
(N − 1)G2 +NM2

2L
2
]
.(A.35)

PROOF. Applying Lemma 1 with w1 = 1, w2 = 0, Φ =
{
ŌωCt

fj(xjω
t)
}N
j=1

, g(z) = z,

H = σ(Ft,Ct), B = Dt and the law of iterated expectation imply

E

E
 1

dt

∑
j∈Dt
ŌωCt

fj(xjω
t)

∣∣∣∣∣∣Ft,Ct

∣∣∣∣∣∣Ft

 =
1

dt
· d

t

N

N∑
j=1

E
[
ŌωCt

fj(xjω
t)
∣∣Ft

]
.

For each j, we in turn have

E
[
ŌωCt

fj(xjω
t)
∣∣Ft

]
=

1(
d
ct

)∑
Ct

ŌωCt
fj(xjω

t)

=
1(
d
ct

) · (d− 1

ct − 1

)
Ofj(xjω

t) =
ct

d
Ofj(xjω

t).

This yields

E

 1

dt

∑
j∈Dt
ŌωCt

fj(xjω
t)

∣∣∣∣∣∣Ft

 =
1

N

N∑
j=1

ct

d
Ofj(xjω

t) =
ct

Nd

N∑
j=1

Ofj(xjω
t).(A.36)

172

By substituting the definition of OF (ωt) into (A.36) claim (A.34) follows.

Let us proceed to find an upper bound for the expected value of
∥∥∥ 1
dt

∑
j∈Dt ŌωCt

fj(xjω
t)
∥∥∥2

given Ft. Applying the law of iterated expectation and Lemma 1 with w1 = 1, w2 = 0,

Φ =
{
ŌωCt

fj(xjω
t)
}N
j=1

, g(z) = ‖z‖2, H = σ(Ft, ct) and B = Dt give

E

∥∥∥∥∥∥ 1

dt

∑
j∈Dt
ŌωCt

fj(xjω
t)

∥∥∥∥∥∥
2∣∣∣∣∣∣Ft

 ≤ 1

dt
E

∑
j∈Dt

∥∥ŌωCt
fj(xjω

t)
∥∥2∣∣∣Ft


=

1

dt
E

E
∑
j∈Dt

∥∥ŌωCt
fj(xjω

t)
∥∥2∣∣∣∣∣∣Ft,Ct

∣∣∣∣∣∣Ft

 =
1

dt
· d

t

N
E

[
N∑
j=1

∥∥ŌωCt
fj(xjω

t)
∥∥2∣∣∣Ft

]

=
1

N

N∑
j=1

E
[∥∥ŌωCt

fj(xjω
t)
∥∥2∣∣∣Ft

]
,

which in turn yields

E

∥∥∥∥∥∥ 1

dt

∑
j∈Dt
ŌωCt

fj(xjω
t)

∥∥∥∥∥∥
2∣∣∣∣∣∣Ft

 ≤ 1

N

N∑
j=1

ct

d
E
[∥∥Ofj(xjωt)∥∥2∣∣∣Ft

]

=
ct

Nd

N∑
j=1

∥∥Ofj(xjωt)∥∥2 ,(A.37)

where we apply Lemma 1 for each j again with w1 = 1, w2 = 0, Φ =
{

(Ofj(xjωt))i
}d
i=1

,

g(z) = z2, H = Ft and B = Ct. By inserting (A.29) from Lemma 2 into (A.37) the claim in

(A.35) follows. �

From Claim 3 we conclude

E
[∥∥et∥∥2 |Ft

]
= O(γ2t+1).(A.38)

173

By using the conditional Jensen’s inequality and (A.38) we get

E
[∥∥et∥∥ |Ft

]
= E

[√
‖et‖2|Ft

]
≤
√
E
[
‖et‖2 |Ft

]
≤ √ηγt+1 = O(γt+1).(A.39)

For i = 1, 2, · · · , B, the expected value of ‖vt,i‖2 given all the preceding information is

E
[∥∥vt,1∥∥2 |Ft,Bt,Ct,Dt, π

]
= 0

(A.40)

E
[∥∥vt,i∥∥2 |Ft,Bt,Ct,Dt, π, j

(1)
11 , j

(1)
12 , · · · , j

(1)
QP , j

(2)
11 , j

(2)
12 , · · · , j

(2)
QP , · · · , j

(i−2)
11 , · · · , j(i−2)QP

]
=

n∑
j
(i−1)
QP =1

· · ·
n∑

j
(i−1)
11 =1

1

nQP

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



Oω11f
π−1
1 (1)

j
(i−1)
11

(
x
π−1
1 (1),1,1

j
(i−1)
11

ω̄t,i−111

)
− Oω11f

π−1
1 (1)

j
(i−1)
11

(
x
π−1
1 (1),1,1

j
(i−1)
11

ωt11

)
...

Oω1P
f
π−1
1 (P)

j
(i−1)
1P

(
x
π−1
1 (P),1,P

j
(i−1)
1P

ω̄t,i−11P

)
− Oω1P

f
π−1
1 (P)

j
(i−1)
1P

(
x
π−1
1 (P),1,P

j
(i−1)
1P

ωt1P

)
...

OωQP f
π−1
Q (P)

j
(i−1)
QP

(
x
π−1
Q (P),Q,P

j
(i−1)
QP

ω̄t,i−1QP

)
− OωQP f

π−1
Q (P)

j
(i−1)
QP

(
x
π−1
Q (P),Q,P

j
(i−1)
QP

ωtQP

)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

,

(A.41)

for i = 2, 3, · · · , B.

We prove a bound of the value of ‖vt,i‖2 given Ft by induction for i ∈ {1, 2, · · · , B}.

174

Claim 5. For i = 1, 2, · · · , B, we have

E
[∥∥vt,i∥∥2 |Ft

]
= O(γ2t+1).(A.42)

PROOF. The claim holds for i = 1 due to (A.40).

For i = 1, 2, · · · , k − 1, we assume that

E
[∥∥vt,i∥∥2 |Ft

]
= O(γ2t+1).(A.43)

Now consider vt,k. Let us show that the expected value of
∥∥vt,k∥∥2 is bounded. By using

(A.41) we have

E
[∥∥vt,k∥∥2 |Ft,Bt,Ct,Dt, π, j

(1)
11 , j

(1)
12 , · · · , j

(1)
QP , j

(2)
11 , j

(2)
12 , · · · , j

(2)
QP , · · · , j

(k−2)
11 , · · · , j(k−2)QP

]
≤

n∑
j
(k−1)
QP =1

· · ·
n∑

j
(k−1)
11 =1

Q∑
q=1

P∑
p=1

1

nQP

∥∥∥Oωqpfπ−1
q (p)

j
(k−1)
qp

(
x
π−1
q (p),q,p

j
(k−1)
qp

ω̄t,k−1qp

)

−Oωqpf
π−1
q (p)

j
(k−1)
qp

(
x
π−1
q (p),q,p

j
(k−1)
qp

ωtqp

)∥∥∥2
=

Q∑
q=1

P∑
p=1

 1

n

n∑
j
(k−1)
q,πq(p)

=1

∥∥∥Oωqpfπ−1
q (p)

j
(k−1)
qp

(
x
π−1
q (p),q,p

j
(k−1)
qp

ω̄t,k−1qp

)
− Oωqpf

π−1
q (p)

j
(k−1)
qp

(
x
π−1
q (p),q,p

j
(k−1)
qp

ωtqp

)∥∥∥2


≤
Q∑
q=1

P∑
p=1

(
1

n
· nL2

∥∥ω̄t,k−1qp − ω̄t,0qp
∥∥2) =

Q∑
q=1

P∑
p=1

(
L2
∥∥ω̄t,k−1qp − ω̄t,0qp

∥∥2)

=

Q∑
q=1

P∑
p=1

L2
∥∥γt+1

[
(k − 1)µtqp + vt,1qp + · · ·+ vt,k−1qp

]∥∥2 .
(A.44)

175

Applying the definition of µt yields

E
[∥∥µt∥∥2 |Ft

]
≤ 2

E
[∥∥et∥∥2∣∣∣Ft

]
+ E

∥∥∥∥∥∥ 1

dt

∑
j∈Dt
ŌωCt

fj(xjω
t)

∥∥∥∥∥∥
2∣∣∣∣∣∣Ft


= O(γ2t+1) + O(1).(A.45)

The second equality holds true due to (A.35) in Claim 4 and (A.38). By using the law of iterated

expectation, (A.43), (A.44) and (A.45) we get

E
[∥∥vt,k∥∥2 |Ft

]
= E

[
E
[∥∥vt,k∥∥2 |Ft, ,Bt,Ct,Dt, π, j

(1)
11 · · · , j

(k−2)
QP

]
|Ft
]

≤ E

 Q∑
q=1

P∑
p=1

L2

∥∥∥∥∥γt+1

[
(k − 1)µtqp +

k−1∑
i=1

vt,iqp

]∥∥∥∥∥
2
∣∣∣∣∣∣Ft


≤ kL2γ2t+1

Q∑
q=1

P∑
p=1

(
E
[∥∥(k − 1)µtqp

∥∥2∣∣∣Ft
]

+
k−1∑
i=1

E
[∥∥vt,iqp∥∥2 |Ft

])

≤ kL2γ2t+1QP

(
(k − 1)2 E

[∥∥µt∥∥2∣∣∣Ft
]

+
k−1∑
i=1

E
[∥∥vt,i∥∥2 |Ft

])

= kL2γ2t+1QP
[
2(k − 1)2

(
O(γ2t+1) + O(1)

)
+ O(γ2t+1)

]
= O(γ2t+1).

(A.46)

This completes the proof of the claim. �

By using the conditional Jensen’s inequality and (A.42) we get

E[
∥∥vt,i∥∥ | Ft] = E[

√
‖vt,i‖2 | Ft] ≤

√
E[‖vt,i‖2 | Ft] = O(γt+1).(A.47)

By summing up all increments in iteration t, we obtain

ωt+1 = ωt − γt+1

[
Bµt + vt,1 + vt,2 + · · ·+ vt,B

]
.

176

Then, the expected value of the difference ωt+1 − ωt given Ft is

E
[
ωt+1 − ωt|Ft

]
= −γt+1 E

[
Bµt + vt,1 + · · ·+ vt,B|Ft

]
= −γt+1B

(
E[et | Ft] +

ct

d
OF (ωt)

)
− γt+1

B∑
i=1

E[vt,i | Ft],

(A.48)

by using (A.34) in Claim 4. Moreover, the expected value of the squared norm ‖ωt+1 − ωt‖2

given Ft is

E
[∥∥ωt+1 − ωt

∥∥2 |Ft
]

= E
[∥∥γt+1

[
Bµt + vt,1 + vt,2 + · · ·+ vt,B

]∥∥2 |Ft
]

≤ γ2t+1(B + 1)

{
B2 E

[∥∥µt∥∥2 |Ft
]

+
B∑
i=1

E
[∥∥vt,i∥∥2 |Ft

]}

= O(γ2t+1)
{
O(γ2t+1) + O(1) + O(γ2t+1)

}
= O(γ2t+1),

(A.49)

due to Claim 3, (A.35), (A.42) and (A.45). From

−OF (ωt) · vt,i ≤
∥∥OF (ωt)

∥∥∥∥vt,i∥∥ ,
for every OF (ωt) and vt,i, by using (A.28) and (A.47) we obtain

−γt+1OF (ωt) · E
[
vt,i|Ft

]
= γt+1 E

[
−OF (ωt) · vt,i|Ft

]
≤ γt+1 E

[∥∥OF (ωt)
∥∥ · ∥∥vt,i∥∥ |Ft

]
= γt+1

∥∥OF (ωt)
∥∥ · E [∥∥vt,i∥∥ |Ft

]
= O(γ2t+1),(A.50)

177

since E [XY |H] = X E [Y |H] if X is H−measurable. Similarly, applying (A.28) and (A.39)

yields

−γt+1BOF (ωt)T E
[
et|Ft

]
≤ γt+1B

∥∥OF (ωt)
∥∥E [∥∥et∥∥ |Ft

]
= O(γt+1) ·O(γt+1) = O(γ2t+1).(A.51)

For convex F we have

F (ωt+1) ≤ F (ωt) + OF (ωt)T
(
ωt+1 − ωt

)
+
L

2

∥∥ωt+1 − ωt
∥∥2 ,

which in turn yields

E
[
F (ωt+1)|Ft

]
≤ F (ωt) + OF (ωt)T E

[(
ωt+1 − ωt

)
|Ft
]

+
L

2
E
[∥∥ωt+1 − ωt

∥∥2 |Ft
]

= F (ωt) + OF (ωt)T

{
−γt+1B

(
E[et | Ft] +

ct

d
OF (ωt)

)
− γt+1

B∑
i=1

E[vt,i | Ft]

}

+
L

2
E
[∥∥ωt+1 − ωt

∥∥2 |Ft
]

= F (ωt)− γt+1
ctB

d

∥∥OF (ωt)
∥∥2 − γt+1BOF (ωt)T E

[
et|Ft

]
− γt+1OF (ωt)T

B∑
i=1

E
[
vt,i|Ft

]
+
L

2
E
[∥∥ωt+1 − ωt

∥∥2 |Ft
]

≤ F (ωt)− γt+1
ctB

d

∥∥OF (ωt)
∥∥2 + O(γ2t+1) ≤ F (ωt)− γt+1

ctB

d

∥∥OF (ωt)
∥∥2 + C3γ

2
t+1,

(A.52)

where C3 is a positive constant and we use (A.48), (A.49), (A.50) and (A.51). Subtracting the

optimal objective function F (ω∗) to the both sides of (A.52) and using the fact that ct ≥ 1 imply

178

that

(A.53) E
[
F (ωt+1)− F (ω∗)|Ft

]
≤ F (ωt)− F (ω∗)− γt+1

B

d

∥∥OF (ωt)
∥∥2 + C3γ

2
t+1.

We proceed to find a lower bound of ‖OF (ωt)‖2 in terms of F (ωt)−F (ω∗). Assumption 1

implies that, for any y, z ∈ Rm

F (y) ≥ F (z) + OF (z)T (y − z) +
ξ

2
‖y − z‖2 .(A.54)

For fixed z, the right hand side of (A.54) is a quadratic function of y and it gets its minimum at

ŷ = z − 1
ξ
OF (z). Therefore

F (y) ≥ F (z) + OF (z)T (ŷ − z) +
ξ

2
‖ŷ − z‖2 = F (z)− 1

2ξ
‖OF (z)‖2 ,(A.55)

for any y, z ∈ Rd. Setting y = ω∗ and z = ωt in (A.55) gives

∥∥OF (ωt)
∥∥2 ≥ 2ξ

(
F (ωt)− F (ω∗)

)
.(A.56)

Substituting the lower bound in (A.56) by the norm of gradient square ‖OF (ωt)‖2 in (A.53)

yields the proposition in (A.33). �

Proposition 2 represents a supermartingale relationship for the sequence of the loss function

errors F (ωt) − F (ω∗). In the following theorem, by employing the supermartingale conver-

gence argument, we show that if the sequence of learning rates satisfy the standard stochastic

approximation diminishing learning rate rule (non-summable and squared summable), the se-

quence of loss function errors F (ωt) − F (ω∗) converges to 0 almost surely. Combining with

179

strong convexity of F (ω) in Assumption 1, this result implies that ‖ωt − ω∗‖ converges to 0

almost surely.

Proof of Theorem 3.

PROOF. We use the relationship in (A.33) to build a supermartingale sequence. First, let us

define

αt := F (ωt)− F (ω∗) +
∞∑
u=t

C1γ
2
u+1,(A.57)

βt :=
2ξB

d
γt+1

(
F (ωt)− F (ω∗)

)
.(A.58)

Note that αt is well-defined since
∑∞

u=t γ
2
u+1 <

∑∞
u=1 γ

2
u <∞ . The definition of αt and βt in

(A.57) and (A.58), and the inequality in (A.33) imply the expected value of αt+1 given Ft is

E
[
αt+1|Ft

]
≤ αt − βt.(A.59)

Since αt and βt are nonnegative and due to (A.59), they satisfy the conditions of the super-

martingale convergence theorem. Thus, we conclude that

(i) αt converges to a limit a.s., and(A.60)

(ii)
∞∑
t=1

βt <∞. a.s.(A.61)

Property (A.61) yields

∞∑
t=0

2ctξB

d
γt+1

(
F (ωt)− F (ω∗)

)
<∞. a.s.

180

Since
∑∞

t=0 γt+1 =∞, there exists a subsequence of F (ωt)− F (ω∗) which converges to 0, i.e.

lim inf
t→∞

F (ωt)− F (ω∗) = 0. a.s.(A.62)

Since
∑∞

u=tC1γ
2
u+1 is deterministic and due to (A.60), F (ωt) − F (ω∗) converges to a limit

almost surely. In association with (A.62) we conclude

lim
t→∞

F (ωt)− F (ω∗) = 0. a.s.(A.63)

We proceed to show the almost convergence of ‖ωt − ω∗‖2. Using (A.54) again and setting

y = ωt and z = ω∗ implies

F (ωt) ≥ F (ω∗) + OF (ω∗)T (ωt − ω∗) +
ξ

2

∥∥ωt − ω∗∥∥2 .(A.64)

Since the gradient of the optimal solution is 0, i.e.OF (ω∗) = 0, (A.64) can be rearranged as

F (ωt)− F (ω∗) ≥ ξ

2

∥∥ωt − ω∗∥∥2 .
Observing that the upper bound of ‖ωt − ω∗‖2 converges to 0 almost surely by (A.63), we

conclude that the sequence ‖ωt − ω∗‖2 converges to zero almost surely. Hence, the claim in

(1.3) is valid. �

Proof of Theorem 4.

181

PROOF. Replacing γt+1 by 1
t+1

and computing the expected value of (A.33) given F0 by

using the law of iterated expectation we obtain

E[F (ωt+1)− F (ω∗)] ≤
(

1− 2ξB

(t+ 1)d

)
E[F (ωt)− F (ω∗)] +

C1

(t+ 1)2
.(A.65)

Let us define

at := E[F (ωt+1)− F (ω∗)]

λ :=
2ξB

d

β := C1.

Note that β is positive. Based on the relationship in (A.65), we obtain

at+1 ≤
(

1− λ

t+ 1

)
at +

β

(t+ 1)2
.(A.66)

for all times t ≥ 0. Now, we proceed to show

at ≤
Q

t+ 1
,(A.67)

where Q = max
{
a0, 2a1, · · · , ([λ] + 1)a[λ], ([λ] + 2) a[λ]+1,

β
λ−1

}
. The definition of Q implies

that the relationship in (A.67) holds for t = 1, 2, · · · , [λ]. The remaining cases are shown by

induction.

When t = [λ] + 1, the definition of Q implies

a[λ]+1 ≤
Q

[λ] + 2
.

182

When t = k − 1, we assume that the relationship in (A.67) holds. Considering the case

when t = k and using (A.66) implies

ak+1 ≤
(

1− λ

k + 1

)
ak +

β

(k + 1)2
≤
(

1− λ

k + 1

)
Q

k + 1
+

β

(k + 1)2
.

In order to satisfy (A.67), we require

(
1− λ

k + 1

)
Q

k + 1
+

β

(k + 1)2
≤ Q

k + 2
.

Elementary algebraic manipulation shows that this is equivalent to

β(k + 2) ≤ Q [λ(k + 2)− (k + 1)]

and in turn

β(k + 2)

λ(k + 2)− (k + 1)
=

β

λ− k+1
k+2

≤ Q,

where we require λ ≥ 1. The definition of Q, i.e. Q ≥ β
λ−1 and the relationship that λ− k+1

k+2
>

λ− 1 imply that

β

λ− k+1
k+2

<
β

λ− 1
≤ Q,

and thus (A.67) holds for t = k. Thus, if B ≥ d
2ξ

, for any time t ≥ 0, the result in (1.4) holds

where the constant Q is defined based on (1.5). �

183

Corollary 1 If Assumptions 1-2 hold and the sequence of learning rates are non-summable∑∞
t=1 γt =∞ and square summable

∑∞
t=1 γ

2
t <∞, then the sequence of parameters ωt gener-

ated by RADiSA converges almost surely to the optimal solution ω∗, that is

lim
t→∞

∥∥ωt − ω∗∥∥2 = 0 a.s.(A.68)

Moreover, if learning rate is defined as γt := 1
t

for t = 1, 2, · · · and the batch size is chosen such

that B ≥ 1
2ξ

, then the expected loss function errors E[F (ωt) − F (ω∗)] of RADiSA converges

to 0 at least with a sublinear convergence rate of order O(1/t), i.e.

E[F (ωt)− F (ω∗)] ≤ Q

1 + t
,(A.69)

where constant Q is defined in (1.5) with some positive constant C ′1 taking the place of C1 and

ct = d.

PROOF. RADiSA is a special case of SODDA with ct = d, dt = N . �

A.6. Constant Learning Rate with Feature Sampling

Proposition 3. If Assumptions 1-4 hold, and the learning rate is constant γt = γ such that

BLγQP ≤ 1 and γ ≤ 1, and the sequences (bt, ct, dt)∞t=0 satisfy the same conditions as in

Theorem 3, then the loss function error sequence F (ωt)−F (ω∗) generated by SODDA satisfies

E
[
F (ωt+1)− F (ω∗)

∣∣Ft
]
≤
(

1− 2ξB

d
γ

)[
F (ωt)− F (ω∗)

]
+ C4B

4γ2,(A.70)

where C4 is a positive constant.

184

PROOF. For i = 1, 2, · · · , B, the expected value of ‖vt,i‖ given all the preceding information

is

E
[∥∥vt,1∥∥ |Ft,Bt,Ct,Dt, π

]
= 0

(A.71)

E
[∥∥vt,i∥∥ |Ft,Bt,Ct,Dt, π, j

(1)
11 , j

(1)
12 , · · · , j

(1)
QP , j

(2)
11 , j

(2)
12 , · · · , j

(2)
QP , · · · , j

(i−2)
11 , j

(i−2)
12 , · · · , j(i−2)QP

]
=

n∑
j
(i−1)
QP =1

· · ·
n∑

j
(i−1)
11 =1

1

nQP

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



Oω11f
π−1
1 (1)

j
(i−1)
11

(
x
π−1
1 (1),1,1

j
(i−1)
11

ω̄t,i−111

)
− Oω11f

π−1
1 (1)

j
(i−1)
11

(
x
π−1
1 (1),1,1

j
(i−1)
11

ωt11

)
...

Oω1P
f
π−1
1 (P)

j
(i−1)
1P

(
x
π−1
1 (P),1,P

j
(i−1)
1P

ω̄t,i−11P

)
− Oω1P

f
π−1
1 (P)

j
(i−1)
1P

(
x
π−1
1 (P),1,P

j
(i−1)
1P

ωt1P

)
...

OωQP f
π−1
Q (P)

j
(i−1)
QP

(
x
π−1
Q (P),Q,P

j
(i−1)
QP

ω̄t,i−1QP

)
− OωQP f

π−1
Q (P)

j
(i−1)
QP

(
x
π−1
Q (P),Q,P

j
(i−1)
QP

ωtQP

)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

,

(A.72)

for i = 2, 3, · · · , B.

We prove a bound of the expected value of
∑B

i=1 ‖vt,i‖ and
∑B

i=1 ‖vt,i‖
2 given Ft by induc-

tion.

185

Claim 6. For any t, if BLγQP ≤ 1 and γ ≤ 1, we have

B∑
i=1

E
[∥∥vt,i∥∥∣∣Ft

]
= Ô(B3γ)(A.73)

B∑
i=1

E
[∥∥vt,i∥∥2∣∣∣Ft

]
= Ô(B4γ2) + Ô(B7γ4).(A.74)

PROOF. By using (A.71) we have

E
[∥∥vt,1∥∥∣∣Ft

]
= E

[
E
[∥∥vt,1∥∥ |Ft,Bt,Ct,Dt, π

]∣∣Ft
]

= 0.(A.75)

For i = 2, 3, · · · , B, using (A.72) gives

E
[∥∥vt,i∥∥ |Ft,Bt,Ct,Dt, π, j

(1)
11 , j

(1)
12 , · · · , j

(1)
QP , j

(2)
11 , j

(2)
12 , · · · , j

(2)
QP , · · · , j

(i−2)
11 , j

(i−2)
12 , · · · , j(i−2)QP

]
≤

n∑
j
(i−1)
QP =1

· · ·
n∑

j
(i−1)
11 =1

Q∑
q=1

P∑
p=1

1

nQP

∥∥∥Oωqpfπ−1
q (p)

j
(k−1)
qp

(
x
π−1
q (p),q,p

j
(k−1)
qp

ω̄t,k−1qp

)

−Oωqpf
π−1
q (p)

j
(k−1)
qp

(
x
π−1
q (p),q,p

j
(k−1)
qp

ωtqp

)∥∥∥
=

Q∑
q=1

P∑
p=1

 1

n

n∑
j
(i−1)
q,πq(p)

=1

∥∥∥Oωqpfπ−1
q (p)

j
(k−1)
qp

(
x
π−1
q (p),q,p

j
(k−1)
qp

ω̄t,k−1qp

)
− Oωqpf

π−1
q (p)

j
(k−1)
qp

(
x
π−1
q (p),q,p

j
(k−1)
qp

ωtqp

)∥∥∥


≤
Q∑
q=1

P∑
p=1

(
1

n
· nL

∥∥ω̄t,i−1qp − ω̄t,0qp
∥∥) =

Q∑
q=1

P∑
p=1

(
L
∥∥ω̄t,i−1qp − ω̄t,0qp

∥∥)

=

Q∑
q=1

P∑
p=1

L
∥∥γ [(i− 1)µtqp + vt,1qp + · · ·+ vt,i−1qp

]∥∥ .
(A.76)

186

By using the law of iterated expectation and (A.76) we get

E
[∥∥vt,i∥∥ |Ft

]
= E

[
E
[∥∥vt,i∥∥ |Ft, ,Bt,Ct,Dt, π, j

(1)
11 · · · , j

(i−2)
QP

]
|Ft
]

≤ E

[
Q∑
q=1

P∑
p=1

L

∥∥∥∥∥γ
[

(i− 1)µtqp +
i−1∑
j=1

vt,jqp

]∥∥∥∥∥
∣∣∣∣∣Ft

]

≤ Lγ

Q∑
q=1

P∑
p=1

(
E
[∥∥(i− 1)µtqp

∥∥∣∣Ft
]

+
i−1∑
j=1

E
[∥∥vt,jqp∥∥ |Ft

])

≤ LγQP

(
(i− 1)E

[∥∥µt∥∥∣∣Ft
]

+
i−1∑
j=1

E
[∥∥vt,j∥∥ |Ft

])
.

(A.77)

Let us define

ai := E
[∥∥vt,i∥∥∣∣Ft

]
ν = LγQP

D1 := E
[∥∥µt∥∥∣∣Ft

]
.

Then the recursive formula becomes

a1 = 0

ai ≤ ν

(
(i− 1)D1 +

i−1∑
j=1

aj

)
,(A.78)

for i = 2, 3, · · · , B. Let us define āi as

āi =

 0, i = 1

ν
(

(i− 1)D1 +
∑i−1

j=1 āj

)
, i 6= 1.

(A.79)

187

Now, let us show that ai ≤ āi for i = 1, 2, · · · , B by induction. When i = 1, applying the

definitions of ai and āi yields a1 = ā1. Assume that when i = 1, 2, · · · , k − 1, ai ≤ āi holds

true. Now, consider āk. Since ν,D1, ai ≥ 0 for any i, by using (A.78) and (A.79) we have

āk = ν

(
(k − 1)D1 +

k−1∑
j=1

āj

)
≥ ν

(
(k − 1)D1 +

k−1∑
j=1

aj

)
≥ ak.

Therefore, Sl ≤ S̄l, where we define Sl =
∑l

i=1 ai and S̄l =
∑l

i=1 āi. Summing up all the

recursive equations for āi in (A.79) up to l implies

S̄l =
l(l − 1)

2
νD1 + ν

(
S̄1 + · · ·+ S̄l−1

)
(A.80)

and

S̄l+1 − S̄l = lνD1 + νS̄l,

which in turn yields

S̄l+1

(1 + ν)l+1
− S̄l

(1 + ν)l
=

lνD1

(1 + ν)l+1
.

By summing up all increments for l = 1, · · · , B − 1, we obtain

S̄B

(1 + ν)B
=

S̄B

(1 + ν)B
− S̄1

(1 + ν)
=

νD1

(1 + ν)

B∑
l=1

l

(1 + ν)l
=
D1

[
(1 + ν)B − 1− νB

]
ν(1 + ν)B

,

which in turn yields

B∑
i=1

E
[∥∥vt,i∥∥∣∣Ft

]
=

B∑
i=1

ai = SB ≤ S̄B =
D1

[
(1 + ν)B − 1− νB

]
ν

.

188

Since
(
B
l

)
= B!

l!(B−l)! ≤ Bl, we obtain

(1 + ν)B =
B∑
l=0

(
B

l

)
νl ≤

B∑
l=0

(Bν)l,

which in turn yields

B∑
i=1

E
[∥∥vt,i∥∥∣∣Ft

]
≤ D1

∑B
l=2(Bν)l

ν
.(A.81)

Substituting the definitions of ν and C back into (A.81) gives

B∑
i=1

E
[∥∥vt,i∥∥∣∣Ft

]
≤ E [‖µt‖|Ft]

∑B
l=2 (BLγQP)l

LγQP
.(A.82)

By using the conditional Jensen’s inequality and (A.45) we get

E
[∥∥µt∥∥∣∣Ft

]
= E

[√
‖µt‖2

∣∣∣∣Ft

]
≤
√
E
[
‖µt‖2

∣∣Ft
]

=

√
Ô(1) + Ô(γ2) = Ô(1).(A.83)

The last equality holds due to the property that γ ≤ 1. Moreover, since BLγQP ≤ 1, we have

B∑
l=2

(BLγQP)l = B · Ô(B2γ2) = Ô(B3γ2).(A.84)

Substituting (A.83) and (A.84) in (A.82) implies the claim in (A.73).

Now, let us proceed to find an upper bound for
∑B

i=1 E
[
‖vt,i‖2

∣∣∣Ft
]
. From (A.46), we have

E
[∥∥vt,1∥∥2∣∣∣Ft

]
= 0

E
[∥∥vt,i∥∥2∣∣∣Ft

]
≤ iL2γ2QP

(
(i− 1)2 E

[∥∥µt∥∥2∣∣∣Ft
]

+
i−1∑
j=1

E
[∥∥vt,j∥∥2∣∣∣Ft

])
.

189

Let us define

bi := E
[∥∥vt,i∥∥2∣∣∣Ft

]
θ := L2γ2QP

D2 := E
[∥∥µt∥∥2∣∣∣Ft

]
.

Then the recursive formula becomes

b1 = 0

bi ≤ iθ

(
(i− 1)2D2 +

i−1∑
j=1

bj

)
,(A.85)

for i = 2, 3, · · · , B. Let us define b̄i as

b̄i =

 0, i = 1

iθ
(

(i− 1)2D2 +
∑i−1

j=1 b̄j

)
, i 6= 1.

(A.86)

As before we derive bi ≤ b̄i for i = 1, 2, · · · , B. Therefore, Sl ≤ S̄l, where we define Sl =∑l
i=1 bi and S̄l =

∑l
i=1 b̄i. Summing up all the recursive equations for b̄i in (A.86) up to l

implies

S̄l = θD2

l−1∑
i=1

(i+ 1)i2 + θ

l−1∑
i=1

(i+ 1)S̄i,(A.87)

and

S̄l+1 − S̄l = θD2(l + 1)l2 + θ(l + 1)S̄l,

190

which in turn yields

S̄l+1

Πl+1
i=1 (1 + iθ)

− S̄l

Πl
i=1 (1 + iθ)

=
θD2(l + 1)l2

Πl+1
i=1 (1 + iθ)

.

By summing up all increments for l = 1, 2, · · · , B − 1, we obtain

S̄B

ΠB
i=1 (1 + iθ)

=
S̄B

ΠB
i=1 (1 + iθ)

− S̄1

(1 + θ)
= θD2

[
B−1∑
l=1

(l + 1)l2

Πl+1
i=1(1 + iθ)

]
,

which in turn yields

B∑
i=1

E
[∥∥vt,i∥∥2∣∣∣Ft

]
=

B∑
i=1

bi = Sl ≤ S̄B = θD2

[
B−1∑
l=1

(
(l + 1)l2ΠB

i=l+2(1 + iθ)
)]

≤ θD2B(B − 1)2

[
B−1∑
l=1

(
ΠB
i=l+2(1 + iθ)

)]
,(A.88)

where we denote ΠB+1
i=B (1 + iθ) = 1. Since

B−1∑
l=1

(
ΠB
i=l+2(1 + iθ)

)
≤

B−1∑
l=1

(
ΠB
i=1(1 + iθ)

)
≤

B−1∑
l=1

(1 +Bθ)B = (B − 1) (1 +Bθ)B ,

it in turn yields

B∑
i=1

E
[∥∥vt,i∥∥2∣∣∣Ft

]
≤ θD2B(B − 1)3(1 +Bθ)B.(A.89)

Substituting the definitions of θ and D2 back into (A.89) gives

B∑
i=1

E
[∥∥vt,i∥∥2∣∣∣Ft

]
≤ L2γ2QP E

[∥∥µt∥∥2∣∣∣Ft
]
B4(BL2γ2QP + 1)B.(A.90)

191

Since BLγQP ≤ 1 and QP ≥ 1, we conclude

B2L2γ2QP ≤ (BLγQP)2 ≤ 1,

which in turn yields

(1 +BL2γ2QP)B = 1 +
B∑
i=1

(
B

i

)
(BL2γ2QP)i ≤ 1 +

B∑
i=1

Bi(BL2γ2QP)i

= 1 +
B∑
i=1

(B2L2γ2QP)i = 1 +
B∑
i=1

Ô(B2L2γ2QP)

= 1 + Ô(B3L2γ2QP).(A.91)

Combining (A.45) and (A.91) gives

B∑
i=1

E
[∥∥vt,i∥∥2∣∣∣Ft

]
= Ô(B4γ2)(1 + Ô(B3L2γ2QP)) = Ô(B4γ2) + Ô(B7γ4).

This completes the proof of the claim. �

192

By using (A.28), (A.45), (A.73), (A.74) and Lipschitz continuity of OF (ω) we have

E
[
F (ωt+1)|Ft

]
≤ F (ωt) + OF (ωt)T E

[(
ωt+1 − ωt

)
|Ft
]

+
L

2
E
[∥∥ωt+1 − ωt

∥∥2 |Ft
]

= F (ωt) + OF (ωt)T

{
−γB ct

d
OF (ωt)− γ

B∑
i=1

E[vt,i | Ft]

}

+
L

2
γ2(B + 1)

{
B2 E

[∥∥µt∥∥2 |Ft
]

+
B∑
i=1

E
[∥∥vt,i∥∥2 |Ft

]}

≤ F (ωt)− γB
d

∥∥OF (ωt)
∥∥2 + γ

∥∥OF (ωt)
∥∥ B∑
i=1

E
[∥∥vt,i∥∥ |Ft

]
+
L

2
γ2(B + 1)

{
B2 E

[∥∥µt∥∥2 |Ft
]

+
B∑
i=1

E
[∥∥vt,i∥∥2 |Ft

]}

≤ F (ωt)− γB
d

∥∥OF (ωt)
∥∥2 + Ô(B3γ2) + Ô(Bγ2)

{
Ô(B2) + Ô(B4γ2) + Ô(B7γ4)

}
= F (ωt)− γB

d

∥∥OF (ωt)
∥∥2 + Ô(B3γ2) + Ô(B5γ4) + Ô(B8γ6).

Since LQP ≥ 1 and BLγQP ≤ 1, the above equation becomes

E
[
F (ωt+1)|Ft

]
≤ F (ωt)− γB

d

∥∥OF (ωt)
∥∥2 + Ô(B4γ2).(A.92)

Subtracting F (ω∗) from both sides of (A.92) and applying (A.56) yields the claim in (A.70),

where C2 is a positive constant. �

Proof of Theorem 5.

193

PROOF. We use the relationship in (A.70) to construct a supermartingale sequence. Define

the stochastic processes αt and βt as

αt :=
[
F (ωt)− F (ω∗)

]
× 1{

minu≤t F (ωu)−F (ω∗)>
C2dB

3γ
2ξ

}(A.93)

βt :=
2ξB

d
γ

[
F (ωt)− F (ω∗)− C2dB

3γ

2ξ

]
× 1{

minu≤t F (ωu)−F (ω∗)>
C2dB

3γ
2ξ

}.(A.94)

The process αt tracks the optimality gap F (ωt) − F (ω∗) until the gap becomes smaller than

C2dB3γ
2ξ

for the first time. Notice that the stochastic process αt is never negative. Likewise, the

same properties hold for βt. Based on the relationship in (A.70) and the definitions of stochastic

processes αt and βt in (A.93) and (A.94), we obtain that for all t ≥ 0

E
[
αt+1

∣∣Ft
]
≤ αt − βt.(A.95)

Given the relationship in (A.95) and non-negativity of stochastic processes αt and βt we obtain

that αt is supermartingale. The supermartingale convergence theorem yields

(i) αt converges to a limit a.s., and

(ii)
∞∑
t=1

βt <∞. a.s.(A.96)

Property (A.96) implies that the sequence βt is converging to 0 almost surely, i.e.,

lim
t→∞

βt = 0 a.s.(A.97)

194

Based on the definition of βt in (A.94), the limit in (A.97) is true if one of the following events

holds:

(i) the indicator function is 0 after large t,

(ii) lim
t→∞

F (ωt)− F (ω∗)− C2dB
3γ

2ξ
= 0.

From either one of these two events we conclude that

lim inf
t→∞

F (ωt)− F (ω∗) ≤ C2dB
3γ

2ξ
a.s.(A.98)

Therefore, the claim in (1.6) is valid. The result in (A.98) shows that the loss function value

sequence F (ωt) almost sure converges to a neighborhood of the optimal loss function value

F (ω∗).

We proceed to prove the result in (1.7). We compute the expected value of (A.70) given F0

to obtain

E
[
F (ωt+1)− F (ω∗)

]
≤
(

1− 2ξB

d
γ

)
E
[
F (ωt)− F (ω∗)

]
+ C2B

4γ2.(A.99)

Rewriting the relationship in (A.99) for step t− 1 gives

E
[
F (ωt)− F (ω∗)

]
≤
(

1− 2ξB

d
γ

)
E
[
F (ωt−1)− F (ω∗)

]
+ C2B

4γ2.(A.100)

195

Substituting the upper bound in (A.100) for the expectation of F (ωt)−F (ω∗) in (A.99) implies

E
[
F (ωt+1)− F (ω∗)

]
≤
(

1− 2ξB

d
γ

)2

E
[
F (ωt−1)− F (ω∗)

]
+ C2B

4γ2
(

1 +

(
1− 2ξB

d
γ

))
.(A.101)

By recursively applying steps (A.100) and (A.101) we can bound the expectation of F (ωt+1)

−F (ω∗) in terms of the initial loss function error F (ω0)− F (ω∗) as

E
[
F (ωt+1)− F (ω∗)

]
≤
(

1− 2ξB

d
γ

)t+1 [
F (ω0)− F (ω∗)

]
+ C2B

4γ2
t∑

u=0

(
1− 2ξB

d
γ

)u
.

(A.102)

Substituting t by t− 1 and simplifying the sum in the right-hand side of (A.102) yields

E
[
F (ωt)− F (ω∗)

]
≤
(

1− 2ξB

d
γ

)t [
F (ω0)− F (ω∗)

]
+
C2dB

3γ

2ξ

[
1−

(
1− 2ξB

d
γ

)t]
.

(A.103)

Since γ < d
2ξB

, the term 1 −
(
1− 2ξB

d
γ
)t

in the right-hand side of (A.103) is strictly smaller

than 1 and the claim in (1.7) follows. �

A.7. Convergence of Constant L.R. with Feature Sampling

Proof of Theorem 6.

196

PROOF. Given bt = d and dt = N , applying Claim 4 implies

E

[
1

N

N∑
j=1

ŌCtfj(xjω
t)

∣∣∣∣∣Ft

]
=

ct

N
OF (ωt),(A.104)

E

∥∥∥∥∥ 1

N

N∑
j=1

ŌCtfj(xjω
t)

∥∥∥∥∥
2
∣∣∣∣∣∣Ft

 =
1(
d
ct

)∑
Ct

∥∥∥∥∥ 1

N

N∑
j=1

ŌCtfj(xjω
t)

∥∥∥∥∥
2

=
1(
d
ct

)(d− 1

ct − 1

)∥∥∥∥∥ 1

N

N∑
j=1

ŌCtfj(xjω
t)

∥∥∥∥∥
2

=
ct

d

∥∥OF (ωt)
∥∥2 ,(A.105)

which in turn gives an upper bound to E
[∥∥∥ 1

N

∑N
j=1 ŌCtfj(xjω

t)
∥∥∥∣∣∣Ft

]
; that is

E

[∥∥∥∥∥ 1

N

N∑
j=1

ŌCtfj(xjω
t)

∥∥∥∥∥
∣∣∣∣∣Ft

]
≤

√√√√√E

∥∥∥∥∥ 1

N

N∑
j=1

ŌCtfj(xjωt)

∥∥∥∥∥
∣∣∣∣∣
2

Ft

 =

√
ct

d

∥∥OF (ωt)
∥∥ .

(A.106)

On the one hand, given BLγQP ≤ 1, we find that

B∑
l=2

(BLγQP) ≤ (B − 1)(BLγQP)2 = (B − 1)B2L2γ2Q2P 2.(A.107)

By combining this expression with (A.82), we conclude that

E

[∥∥∥∥∥
B∑
i=1

vt,i

∥∥∥∥∥
∣∣∣∣∣Ft

]
≤

B∑
i=1

E
[∥∥vt,i∥∥∣∣Ft

]
≤ E

[∥∥µt∥∥∣∣Ft
]

(B − 1)B2LγQP.(A.108)

On the other hand, given γ ≤ 1, from expression (A.91), we find that

(1 +BL2γ2QP)B ≤ 1 +
B∑
i=1

(B2L2γ2QP)i = 1 +B3L2QP.(A.109)

197

By applying (A.109) to (A.90), we deduce that

E

∥∥∥∥∥
B∑
i=1

vt,i

∥∥∥∥∥
2
∣∣∣∣∣∣Ft

 ≤ B
B∑
i=1

E
[∥∥vt,i∥∥2∣∣∣Ft

]
≤ B5(1 +B3L2QP)L2γ2QP E

[∥∥µt∥∥2∣∣∣Ft
]
.

(A.110)

Second, let us evaluate the error after each iteration. By summing up all increments in iteration

t, we obtain

E
[∥∥ωt+1 − ω∗

∥∥2∣∣∣Ft
]

= E

∥∥∥∥∥ωt − γ
(
Bµt +

B∑
i=1

vt,i

)
− ω∗

∥∥∥∥∥
2
∣∣∣∣∣∣Ft


=
∥∥ωt − ω∗∥∥2 − 2

〈
E

[
γ

(
Bµt +

B∑
i=1

vt,i

)∣∣∣∣∣Ft

]
, ωt − ω∗

〉

+ E

∥∥∥∥∥γ
(
Bµt +

B∑
i=1

vt,i

)∥∥∥∥∥
2
∣∣∣∣∣∣Ft


≤
∥∥ωt − ω∗∥∥2 − 2γB

〈
E
[
µt
∣∣Ft

]
, ωt − ω∗

〉
+ 2γ E

[∥∥∥∥∥
B∑
i=1

vt,i

∥∥∥∥∥
∣∣∣∣∣Ft

]∥∥ωt − ω∗∥∥
+ 2γ2B2 E

[∥∥µt∥∥2∣∣∣Ft
]

+ 2γ2 E

∥∥∥∥∥
B∑
i=1

vt,i

∥∥∥∥∥
2
∣∣∣∣∣∣Ft

 .

(A.111)

198

Based on (A.104), (A.105), (A.106), (A.108) and (A.110), (A.111) can be further simplified as

E
[∥∥ωt+1 − ω∗

∥∥2∣∣∣Ft
]
≤
∥∥ωt − ω∗∥∥2 − 2γBct

d

〈
OF (ωt), ωt − ω∗

〉
+

2γ2B2ct

d

∥∥OF (ωt)
∥∥2

+ 2(B − 1)B2Lγ2QP E
[∥∥µt∥∥∣∣Ft

] ∥∥ωt − ω∗∥∥
+ 2B5(1 +B3L2QP)L2γ4QP E

[∥∥µt∥∥2∣∣∣Ft
]

≤
∥∥ωt − ω∗∥∥2 − 2γBct

d

〈
OF (ωt), ωt − ω∗

〉
+

2γ2B2ct

d

∥∥OF (ωt)
∥∥2

+ 2(B − 1)B2Lγ2QP

√
ct

d

∥∥OF (ωt)
∥∥∥∥ωt − ω∗∥∥

+ 2B5(1 +B3L2QP)L2γ4QP
ct

d

∥∥OF (ωt)
∥∥2 .

(A.112)

Recalling the Lipschitz continuity of the gradient of the objective function stated in Assumption

2, we have that [(Nesterov, 2013),Theorem 2.1.5]

1

L

∥∥OF (ωt)
∥∥2 =

1

L

∥∥OF (ωt)− OF (ω∗)
∥∥2 ≤ 〈OF (ωt)− OF (ω∗), ωt − ω∗

〉
.(A.113)

Because F (ω) is strongly convex by Assumption 1, we have

1

ξ

∥∥OF (ωt)
∥∥ =

1

ξ

∥∥OF (ωt)− OF (ω∗)
∥∥ ≥ ∥∥ωt − ω∗∥∥ .(A.114)

199

By using (A.113) and (A.114), (A.112) can be reformulated as

E
[∥∥ωt+1 − ω∗

∥∥2∣∣∣Ft
]
≤
∥∥ωt − ω∗∥∥2 − 2γBct

Ld

∥∥OF (ωt)
∥∥2 +

2γ2B2ct

d

∥∥OF (ωt)
∥∥2

+
2(B − 1)B2Lγ2QP

ξ

√
ct

d

∥∥OF (ωt)
∥∥2 + 2B5(1 +B3L2QP)L2γ4QP

ct

d

∥∥OF (ωt)
∥∥2

=
∥∥ωt − ω∗∥∥2 +

(
−2γBct

Ld
+

2γ2B2ct

d
+

2(B − 1)B2Lγ2QP

ξ

√
ct

d

+2B5(1 +B3L2QP)L2γ4QP
ct

d

)∥∥OF (ωt)
∥∥2

=
∥∥ωt − ω∗∥∥2 + A(t)

∥∥OF (ωt)
∥∥2 ,

(A.115)

with

A(t) = −2γBct

Ld
+

2γ2B2ct

d
+

2(B − 1)B2Lγ2QP

ξ

√
ct

d
+ 2B5(1 +B3L2QP)L2γ4QP

ct

d
.

Therefore, E
[
‖ωt+1 − ω∗‖2

∣∣∣Ft
]
≤ ‖ωt − ω∗‖2 as long as A(t) ≤ 0 for all t, BLγQP ≤ 1

and γ ≤ 1.

200

In view of Assumption 2 we have

E
[
F (ωt+1)

∣∣Ft
]
≤ E

[
F (ωt) +

〈
OF (ωt), ωt+1 − ωt

〉
+
L

2

∥∥ωt+1 − ωt
∥∥2∣∣∣∣Ft

]

= F (ωt) + E

[〈
OF (ωt),−γBµt − γ

t∑
i=1

vt,i

〉∣∣∣∣∣Ft

]
+
L

2
E

∥∥∥∥∥γBµt + γ

B∑
i=1

vt,i

∥∥∥∥∥
2
∣∣∣∣∣∣Ft


≤ F (ωt)− γB

〈
OF (ωt),E

[
µt
∣∣Ft

]〉
+ γ

∥∥OF (ωt)
∥∥E[∥∥∥∥∥

B∑
i=1

vt,i

∥∥∥∥∥
∣∣∣∣∣Ft

]

+ Lγ2B2 E
[∥∥µt∥∥2∣∣∣Ft

]
+ Lγ2 E

∥∥∥∥∥
B∑
i=1

vt,i

∥∥∥∥∥
2
∣∣∣∣∣∣Ft

 .

(A.116)

Substituting (A.104), (A.105), (A.108) and (A.110) implies

E
[
F (ωt+1)

∣∣Ft
]
≤ F (ωt)− γBct

d

∥∥OF (ωt)
∥∥2 + (B − 1)B2Lγ2QP

√
ct

d

∥∥OF (ωt)
∥∥2

+
Lγ2B2ct

d

∥∥OF (ωt)
∥∥2 +B5(1 +B3L2QP)L3γ4QP

ct

d

∥∥OF (ωt)
∥∥2

= F (ωt) +

(
−γBct

d
+ (B − 1)B2Lγ2QP

√
ct

d
+
Lγ2B2ct

d

+B5(1 +B3L2QP)L3γ4QP
ct

d

)∥∥OF (ωt)
∥∥2

= F (ωt) +B(t)
∥∥OF (ωt)

∥∥2 .

(A.117)

A similar requirement is needed in (A.117) as that in (A.115), i.e. B(t) < 0 for all t.

Let us denote4t = F (ωt)− F (ω∗). Then if A(t) ≤ 0 for all t, we obtain

4t = F (ωt)− F (ω∗) ≤
〈
OF (ωt), ωt − ω∗

〉
≤
∥∥ω0 − ω∗

∥∥ ∣∣OF (ωt)
∥∥ .

201

Thus, if B(t) < 0 for all t and by using the law of iterated expectation, (A.117) becomes

E [4t+1] ≤ E [4k] + min
t
B(t)E

[∥∥OF (ωt)
∥∥2] ≤ E [4k] +

mintB(t)

‖ω0 − ω∗‖2
E
[
42
k

]
,

which in turn yields

1

E [4t+1]
≥ 1

E [4t]
− mintB(t)

‖ω0 − ω∗‖2
E [4t]

E [4t+1]
≥ 1

E [4t]
− mintB(t)

‖ω0 − ω∗‖2
.

Summing up these inequalities, we get

1

E [4t+1]
≥ 1

40

− mintB(t)

‖ω0 − ω∗‖2
(t+ 1),

which in turn yields

(A.118) lim
t→∞

E [4t+1] = 0.

Hence, (1.8) follows from (A.118) and similar reasoning as Theorem 3, provided A(t) ≤ 0,

B(t) < 0 for all t and BLγQP ≤ 1, i.e.

2γBct

Ld
≥ 2γ2B2ct

d
+

2(B − 1)B2Lγ2QP

ξ

√
ct

d
+ 2B5(1 +B3L2QP)L2γ4QP

ct

d
(A.119)

γBct

d
> (B − 1)B2Lγ2QP

√
ct

d
+
Lγ2B2ct

d
+B5(1 +B3L2QP)L3γ4QP

ct

d
(A.120)

BLγQP ≤ 1(A.121)

γ ≤ 1.(A.122)

202

By multiplying (A.119) and (A.120) by 1
2γB

and 1
γB

, respectively, we have that

ct

Ld
≥ γBct

d
+

(B − 1)BLγQP

ξ

√
ct

d
+B4(1 +B3L2QP)L2γ3QP

ct

d
,(A.123)

ct

d
> (B − 1)BLγQP

√
ct

d
+
LγBct

d
+B4(1 +B3L2QP)L3γ3QP

ct

d
.(A.124)

Note that if we are able to find a constant learning rate γ satisfying

Ā1 =
mint c

t

Ld
≥ γ

[(
B +

(B − 1)BLQP

ξ

)
+B4(1 +B3L2QP)L2γ2QP

]
= B̄1γ + C̄1γ

3

(A.125)

Ā2 =
mint c

t

d
> γ

[
((B − 1)BLQP + LB) +B4(1 +B3L2QP)L3γ2QP

]
= B̄2γ + C̄2γ

3,

(A.126)

with

Ā1 =
mint c

t

Ld

B̄1 = B +
(B − 1)BLQP

ξ

C̄1 = B4(1 +B3L2QP)L2QP

Ā2 =
mint c

t

d

B̄2 = (B − 1)BLQP + LB

C̄2 = B4(1 +B3L2QP)L3QP,

then the same constant learning rate γ is also valid for (A.123) and (A.124). Observing that

the right-hand sides of both (A.125) and (A.126) have the same form, i.e. they are both cubic

203

equations with 0 being the only real root. Solving (A.125) and (A.126) show that

γ ∈ (0,min {γ1, γ2}) ,

where

γ1 = −2

√
B̄1

3C̄1

sinh

1

3
arcsinh

−3Ā1

2B̄1

√
3C̄1

B̄1


γ2 = −2

√
B̄2

3C̄2

sinh

1

3
arcsinh

−3Ā2

2B̄2

√
3C̄2

B̄2

 .

Combining (A.121), (A.122) with the above equation, finally, the constant learning rate is re-

quired to be

γ ∈
(

0,min

{
1,

1

BLQP
, γ1, γ2

})
.

�

204

APPENDIX B

Appendix

B.1. Extensions

We first introduce techniques to guarantee boundedness of the weight ω, i.e. how to remove

condition 1 in Assumption 1. We then point out problems in the proofs of AMSGRAD (Reddi

et al., 2018) and ADABOUND (Luo et al., 2019) and provide a different proof for AMSGRAD.

B.1.1. Unbounded Case

Projection is a popular technique to guarantee that a weight does not exceed a certain bound

((Blum, 1998), (Hazan et al., 2007), (Duchi et al., 2011), (Luo et al., 2019)). For unbounded

weight ω̂, we introduce the following notation. Given convex sets P1, P2, vectors ω1, ω
′
1, g1 and

matrix v̂, we define projections

ΠP1(ω̂) = argmin
ω∈P1

‖ω − ω̂‖

Π1
P1,P2,ω1,g1,ω′1

(ω̂2)

= argmin
ω′2:ω

′
2·
[
‖ω′1−ηg1‖/

√
1
2
+ξ1

]
∈P2

∥∥∥∥∥ω′2 − argmin
ω2:ωT1 ω2∈P1

∥∥ωT1 ω2 − ωT1 ω̂2

∥∥∥∥∥∥∥
Π2

P1,P2,ω1,g1,ω′1,v̂
(ω̂2)

= argmin
ω′2:ω

′
2·
[
‖ω′1−ηg1‖/

√
1
2
+ξ2

]
∈P2

∥∥∥∥∥ω′2 − argmin
ω2:ωT1 ω2∈P1

∥∥∥∥(4
√
v̂ � ω2

)T
ω1 −

(
4
√
v̂ � ω̂2

)T
ω1

∥∥∥∥
∥∥∥∥∥ .

205

Projection Π is the standard projection which maps vector ω̂ into set P1. If an optimal weight

ω∗ is such that ω∗ ∈ P1, then we have

‖ΠP1(ω̂t+1)− ω∗‖ ≤ ‖ω̂t+1 − ω∗‖ ,

which could be directly applied in the proofs of Theorem 7 and 8.

For Π1 and Π2, we could regard them as a combination of two standard projections. Note

that, for the outer projection, we require that it does not affect the product of ωT1 ω2, which could

be done by projection methods for linear equality constraints. In this way, we have

∥∥∥ωT1,t+1Π
1
P1,P2,ω1,t+1,g1,t,ω1,t

(ω̂2,t+1)− ωT1,∗ω2,∗

∥∥∥ ≤ ∥∥ωT1,t+1ω̂2,t+1 − ωT1,∗ω2,∗
∥∥∥∥∥∥(4

√
v̂2,t � Π2

P1,P2,ω1,t+1,g1,t,ω1,t,v̂2,t
(ω̂2,t+1)

)T
ω1,t+1 −

(
4
√
v̂2,t � ω2,∗

)T
ω1,∗

∥∥∥∥
≤
∥∥∥∥(4
√
v̂2,t � (ω̂2,t+1)

)T
ω1,t+1 −

(
4
√
v̂2,t � ω2,∗

)T
ω1,∗

∥∥∥∥ ,
which could also be directly applied in the proofs of Theorem 9 and 10.

B.1.2. Standard setting of ADAM

First, let us point out the problem in AMSGRAD (Reddi et al., 2018). At the bottom of Page 18

in (Reddi et al., 2018), the authors obtain an upper bound for the regret which has a term contain-

ing
∑T

t=1

β1tv̂
1/2
t,i

αt
. Without assuming that β1t is exponentially decaying, it is questionable to es-

tablish O(
√
T) given αt = 1√

t
since

∑T
t=1

√
t > O(

√
T). Although this questionable term can

be bounded by assumptions on β1t, the last term in Theorem 4 is O(log(T)
∑d

i=1 ‖g1:T,i‖2) =

O(log(T)
√
T) since g1:T,i is the concatenation of the gradients from 0 to current time T in the

206

ith coordinate. Moreover, the authors argue that decaying β1t is crucial to guarantee the con-

vergence, however, our proof shows O(
√
T) regret for AMSGRAD with constant β and both

constant and diminishing stepsizes, which is more practically relevant. For a diminishing step-

size, the slight change we need to make in the proof is that ηt needs to be considered together

with
√
v̂t,j in (B.11) and the rest of proof of Theorem 8. Applying the fact that

√
v̂t,j

ηt
≥
√
v̂t−1,j

ηt

and
∑T

t=1
1√
t

= 2
√
T − 1 yields O(

√
T) regret in standard online setting.

Table B.1 summarizes the various regret bounds in different convex settings.

gradient descent Adam

constant diminishing constant diminishing

standard online
O(
√
T)(us)

O(T)(Zinkevich, 2003)

O(
√
T)(us)

O(
√
T)(Zinkevich, 2003)

O(
√
T)(us)

O(
√
T)(us)

O(
√
T)(Reddi et al., 2018) (flawed)

O(log(T)
√
T)(Reddi et al., 2018) (true)

streaming O(
√
T)(us) O(T)(us) O(

√
T)(us) O(T)(us)

Table B.1. Summary of known regret bounds for online learning and
streaming in convex setting

B.2. Regret with Rolling Window Analysis of OGD

Proof of Theorem 7.

PROOF. For any p ∈ N and fixed T , from step 4 in Algorithm 2, for any ω∗, we obtain

‖ωt+1 − ω∗‖2 = ‖ωt − η5 ft(ωt)− ω∗‖2

= ‖ωt − ω∗‖2 − 2η 〈ωt − ω∗,5ft(ωt)〉+ η2 ‖5ft(ωt)‖2 ,

207

which in turn yields

〈ωt − ω∗,5ft(ωt)〉 =
‖ωt − ω∗‖2 − ‖ωt+1 − ω∗‖2

2η
+
η

2
‖5ft(ωt)‖2 .(B.1)

Applying convexity of ft yields

ft(ωt)− ft(ω∗) ≤ 〈ωt − ω∗,5ft(ωt)〉 .(B.2)

Inserting (B.1) into (B.2) gives

ft(ωt)− ft(ω∗) ≤
‖ωt − ω∗‖2 − ‖ωt+1 − ω∗‖2

2η
+
η

2
‖5ft(ωt)‖2 .

By summing up all differences, we obtain

T+p∑
t=p

[ft(ωt)− ft(ω∗)] ≤
1

2

T+p∑
t=p

[
‖ωt − ω∗‖2 − ‖ωt+1 − ω∗‖2

η
+ η ‖5ft(ωt)‖2

]

≤ 1

2

(
‖ωp − ω∗‖2

η

)
+ dG∞

T+p∑
t=p

η

≤ D2
∞
√
T

2η1
+ dG∞η1

√
T = O(

√
T).(B.3)

The second inequality holds due to 2 in Assumption 1 and the last inequality uses 4 in Assump-

tion 1 and the definition of η. Since (B.3) holds for any p and ω∗, setting ω∗ = ω∗p for each p

yields the statement in Theorem 7. �

208

B.3. Regret with Rolling Window Analyses of CONVGADAM

Lemma 3. Under the conditions assumed in Theorem 8, we have

T+p∑
t=p

∥∥∥∥∥ 1
4
√
v̂t
�mt

∥∥∥∥∥
2

≤ O(T).

PROOF. By the definition of v̂t, for any t = p, p+ 1, · · · , T + p, we obtain∥∥∥∥∥ 1
4
√
v̂t
�mt

∥∥∥∥∥
2

=
d∑
j=1

m2
t,j√
v̂t,j
≤

d∑
j=1

m2
t,j√
vt,j

=
d∑
j=1

(
(1− β1)

∑t
i=1 β

t−i
1 gi,j

)2√
(1− β2)

∑t
i=1 β

t−i
2 g2i,j

≤ (1− β1)2√
1− β2

d∑
j=1

(∑t
i=1 β

t−i
1

) (∑t
i=1 β

t−i
1 g2i,j

)√∑t
i=1 β

t−i
2 g2i,j

≤ 1− β1√
1− β2

d∑
j=1

∑t
i=1 β

t−i
1 g2i,j√∑t

i=1 β
t−i
2 g2i,j

≤ 1− β1√
1− β2

d∑
j=1

t∑
i=1

(
β1√
β2

)t−i
‖gi,j‖2

=
1− β1√
1− β2

d∑
j=1

t∑
i=1

λt−i ‖gi,j‖2 .(B.4)

The second equality follows from the updating rule of Algorithm 3. The second inequality fol-

lows from the Cauchy-Schwarz inequality, while the third inequality follows from the inequality

209

∑t
i=1 β

t−i
1 ≤ 1

1−β1 . Using (B.4) for all time steps yields

T+p∑
t=p

1√
v̂t
� (mt �mt)

≤ 1− β1√
1− β2

T+p∑
t=p

d∑
j=1

t∑
i=1

λt−i ‖gi,j‖2

=
1− β1√
1− β2

d∑
j=1

T+p∑
t=p

(
t∑

i=p+1

λt−i ‖gi,j‖2 +

p∑
i=1

λt−i ‖gi,j‖2

)

=
1− β1√
1− β2

d∑
j=1

(
T+p∑
t=p+1

t∑
i=p+1

λt−i ‖gi,j‖2 +

T+p∑
t=p

p∑
i=1

λt−i ‖gi,j‖2

)

=
1− β1√
1− β2

d∑
j=1

(
T+p∑
t=p+1

t∑
i=p+1

λt−i ‖gi,j‖2 +

(
p∑
i=1

λp−i ‖gi,j‖2

)(
T∑
i=0

λi

))
.(B.5)

We first bound the first term in (B.5) for each j as follows,

T+p∑
t=p+1

t∑
i=p+1

λt−i ‖gi,j‖2 =

T+p∑
i=p+1

‖gi,j‖2
T+p∑
t=i

λT+p−t

≤ 1

1− λ

T+p∑
t=p+1

‖gi,j‖2 ≤
TG∞
1− λ

.(B.6)

The first inequality follows from the fact that
∑T+p

t=i λ
T+p−t < 1

1−λ and the last inequality is due

to 2 in Assumption 1. Using a similar argument, we further bound the second term in (B.5) as

follows, (
p∑
i=1

λp−i ‖gi,j‖2

)(
T∑
i=0

λi

)
≤ 1

1− λ

(
p∑
i=1

λp−i ‖gi,j‖2

)

≤ G∞
1− λ

(
p∑
i=1

λp−i

)
≤ G∞

(1− λ)2
.(B.7)

210

Inserting (B.6) and (B.7) into (B.5) implies

T+p∑
t=p

∥∥∥∥∥ 1
4
√
v̂t
�mt

∥∥∥∥∥
2

≤ d (1− β1)√
1− β2

(
TG∞
1− λ

+
G∞

(1− λ)2

)
.

This completes the proof of the lemma. �

In order to establish the regret analysis of Algorithm 3, we further need the following inter-

mediate result.

Lemma 4. Under the conditions in Theorem 8, we have

T+p∑
t=p

‖mt−1‖2 ≤ O(T).

PROOF. By the definition of mt, we obtain

T+p∑
t=p

‖mt−1‖2 =

T+p∑
t=p

d∑
j=1

m2
t−1,j

=

T+p∑
t=p

d∑
j=1

(
(1− β1)

t∑
i=1

βt−i1 gi,j

)2

≤(1− β1)2
T+p∑
t=p

d∑
j=1

(
t∑
i=1

βt−i1

)(
t∑
i=1

βt−i1 g2i,j

)

≤(1− β1)
T+p∑
t=p

d∑
j=1

(
t∑
i=1

βt−i1 g2i,j

)
≤ (1− β1)

T+p∑
t=p

d∑
j=1

(
G∞

t∑
i=1

βt−i1

)

≤
T+p∑
t=p

d∑
j=1

G∞ = dTG∞.

211

The first inequality follows from the Cauchy-Schwarz inequality. The second and the last in-

equalities use the fact that
∑t

i=1 β
t−i
1 ≤ 1

1−β1 . The third inequality is due to 2 in Assumption 1.

This completes the proof of the lemma. �

Proof of Theorem 8.

PROOF. Based on the update step 8 in Algorithm 3 and given any ω∗ ∈ Rd, we obtain

‖ωt+1 − ω∗‖2 =

∥∥∥∥ωt − η√
v̂t
�mt − ω∗

∥∥∥∥2
= ‖ωt − ω∗‖2 − 2

〈
ωt − ω∗,

η√
v̂t
�mt

〉
+

∥∥∥∥ η√
v̂t
�mt

∥∥∥∥2
= ‖ωt − ω∗‖2 − 2

〈
ωt − ω∗,

η(1− β1)√
v̂t

� gt
〉
− 2

〈
ωt − ω∗,

ηβ1√
v̂t
�mt−1

〉
+

∥∥∥∥ η√
v̂t �mt

∥∥∥∥2 .(B.8)

The first inequality uses the same argument as those used in Theorem 7. Rearranging (B.8)

gives

〈ωt − ω∗, gt〉 =

[∥∥∥ 4
√
v̂t � (ωt − ω∗)

∥∥∥2 − ∥∥∥ 4
√
v̂t � (ωt+1 − ω∗)

∥∥∥2]
2η(1− β1)

− β1
1− β1

〈
ωt − ω∗√

η
,mt−1

√
η

〉
+

1

2η(1− β1)

∥∥∥∥∥ η
4
√
v̂t
�mt

∥∥∥∥∥
2

≤

[∥∥∥ 4
√
v̂t � (ωt − ω∗)

∥∥∥2 − ∥∥∥ 4
√
v̂t � (ωt+1 − ω∗)

∥∥∥2]
2η(1− β1)

+
β1

1− β1

[
‖ωt − ω∗‖2

2η
+
mt−1 �mt−1η

2

]
+

η

2(1− β1)

∥∥∥∥∥ 1
4
√
v̂t
�mt

∥∥∥∥∥
2

.(B.9)

212

From the strong convexity property of ft in 4 in Assumption 1, we obtain

ft(ωt)− ft(ω∗) ≤ 〈ωt − ω∗,5ft(ωt)〉 −
H

2
‖ωt − ω∗‖2 .

Using (B.9) in the above inequality and summing up over all time steps yields

T+p∑
t=p

[ft(ωt)− ft(ω∗)]

≤
T+p∑
t=p


[∥∥∥ 4
√
v̂t � (ωt − ω∗)

∥∥∥2 − ∥∥∥ 4
√
v̂t � (ωt+1 − ω∗)

∥∥∥2]
2η(1− β1)

+ ‖ωt − ω∗‖2
[

β1
2η(1− β1)

− H

2

]

+
η

2(1− β1)

β1mt−1 �mt−1 +

∥∥∥∥∥ 1
4
√
v̂t
�mt

∥∥∥∥∥
2
 .

(B.10)

213

We proceed by separating (B.10) into 3 parts and find upper bounds for each one of them.

Considering the first part in (B.10), we have

T+p∑
t=p

[∥∥∥ 4
√
v̂t � (ωt − ω∗)

∥∥∥2 − ∥∥∥ 4
√
v̂t � (ωt+1 − ω∗)

∥∥∥2]
2η(1− β1)

≤

∥∥∥ 4
√
v̂p � (ωp − ω∗)

∥∥∥2
2η(1− β1)

+
1

2η(1− β1)

T+p∑
t=p+1

(∥∥∥ 4
√
v̂t � (ωt − ω∗)

∥∥∥2
−
∥∥∥ 4
√
v̂t−1 � (ωt − ω∗)

∥∥∥2)

=
1

2η(1− β1)

[∥∥∥ 4
√
v̂p � (ωp − ω∗)

∥∥∥2 +

T+p∑
t=p+1

(
d∑
j=1

√
v̂t,j(ωt,j − ω∗,j)2

−
d∑
j=1

√
v̂t−1,j(ωt,j − ω∗,j)2

)]

=
1

2η(1− β1)

[∥∥∥ 4
√
v̂p � (ωp − ω∗)

∥∥∥2 +

T+p∑
t=p+1

(
d∑
j=1

(ωt,j − ω∗,j)2
(√

v̂t,j −
√
v̂t−1,j

))]
.

(B.11)

214

Since v̂t,j is maximum of all vt,j for each j until the current time step, i.e.
√
v̂t,j−

√
v̂t−1,j ≥ 0,

by using 1 in Assumption 1, (B.11) can be further bounded as follows,

T+p∑
t=p

[∥∥∥ 4
√
v̂t � (ωt − ω∗)

∥∥∥2 − ∥∥∥ 4
√
v̂t � (ωt+1 − ω∗)

∥∥∥2]
2η(1− β1)

≤ 1

2η(1− β1)

[∥∥∥ 4
√
v̂p � (ωp − ω∗)

∥∥∥2 +D2
∞

d∑
j=1

T+p∑
t=p+1

(√
v̂t,j −

√
v̂t−1,j

)]

≤ 1

2η(1− β1)

[
D2
∞

d∑
j=1

√
v̂p,j +D2

∞

d∑
j=1

T+p∑
t=p+1

(√
v̂t,j −

√
v̂t−1,j

)]

=
1

2η(1− β1)
D2
∞

d∑
j=1

√
v̂p+T,j.

By the definition of v̂t in step 6 in Algorithm 3, for any t and j, we have

vt,j = (1− β2)
t∑
i=1

βt−i2 g2i,j ≤ (1− β2)G2
∞

t∑
i=1

βt−i2 ≤ G2
∞,

which in turn yields

T+p∑
t=p

[∥∥∥ 4
√
v̂t � (ωt − ω∗)

∥∥∥2 − ∥∥∥ 4
√
v̂t � (ωt+1 − ω∗)

∥∥∥2]
2η(1− β1)

≤ dD2
∞G∞

2η(1− β1)
= O(

√
T).(B.12)

The last equality is due to the setting of the stepsize, i.e. η = η1√
T

. For the second term in (B.10),

from the relationship between β1 and H , we obtain

β1
1− β1

≤ Hη,

215

which in turn yields

β1
2η(1− β1)

− H

2
≤ 0.(B.13)

Thus, (B.13) guarantees negativity of the second term in (B.10). For the third term in (B.10),

by using Lemmas 3 and 4, we assert

η

2(1− β1)

β1mt−1 �mt−1 +

∥∥∥∥∥ 1
4
√
v̂t
�mt

∥∥∥∥∥
2
 ≤ O(

1√
T

) ·O(T) = O(
√
T).(B.14)

The desired result follows directly from (B.10), (B.12), (B.13) and (B.14). �

B.4. Regret with Rolling Window Analysis of dnnOGD for Two-Layer ReLU Neural

Network

For a two-layer ReLU neural network, we first introduce Ft that records all previous iterates

up until t.

Lemma 5. If conditions 1 and 2 hold from Assumption 2, we have

E
[
lt (ω1,t, ω2,t) | Ft

]
=
ρ2

2
(ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t)2.(B.15)

216

PROOF. Based on condition 2 in Assumption 2, we obtain

Eσ1,σ2
[
ft(ω1,t, ω2,t) | Ft

]
=

1

2
Eσ1

[
ωT1,tσ1

(
ω2,tz

t
)
− yt | Ft

]
· Eσ2

[
ωT1,tσ2

(
ω2,tz

t
)
− yt | Ft

]
=

1

2

(
ρωT1,tω2,tz

t − yt
)
·
(
ρωT1,tω2,tz

t − yt
)

=
1

2

(
ρωT1,tω2,tz

t − yt
)2

=
ρ2

2
(ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t)2.

On the other hand, we get

Eσ1,σ2
[
ft(ω1,∗, ω2,∗) | Ft

]
=

1

2
Eσ1

[
ωT1,∗σ1

(
ω2,∗z

t
)
− yt | Ft

]
· Eσ2

[
ωT1,∗σ2

(
ω2,∗z

t
)
− yt | Ft

]
=

1

2

(
Eσ1

[
ωT1,∗σ1

(
ω2,∗z

t
)
| Ft

]
− yt

)
·
(
Eσ2

[
ωT1,∗σ2

(
ω2,∗z

t
)
| Ft

]
− yt

)
=0,

which in turn yields

E
[
lt (ω1,t, ω2,t) | Ft

]
=Eσ1,σ2

[
ft(ω1,t, ω2,t) | Ft

]
− Eσ1,σ2

[
ft(ω1,∗, ω2,∗) | Ft

]
=
ρ2

2
(ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t)2.

This completes the proof of the lemma. �

217

Lemma 6. Under the conditions assumed in Theorem 9, we have

Eσ1,σ2
[
g1,t | Ft

]
= ρ2

(
ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t
)
ω2,tz

t(B.16)

Eσ1,σ2
[
g2,t | Ft

]
= ρ2

(
ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t
)
ω1,t

(
zt
)T
.(B.17)

PROOF. From steps 4 and 5, we have

Eσ1,σ2
[
g1,t | Ft

]
=Eσ1,σ2

[
5ω1

(
1

2

(
ωT1,tσ1

(
ω2,tz

t
)
− yt

) (
ωT1,tσ2

(
ω2,tz

t
)
− yt

))
| Ft

]
=Eσ1,σ2

[(
ωT1,tσ1

(
ω2,tz

t
)
− yt

)
σ2
(
ω2,tz

t
)
| Ft

]
=Eσ1

[
ωT1,tσ1

(
ω2,tz

t
)
− ωT1,∗σ1

(
ω2,∗z

t
)
| Ft

]
Eσ2

[
σ2
(
ω2,tz

t
)
| Ft

]
=ρ
(
ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t
)
ρω2,tz

t = ρ2
(
ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t
)
ω2,tz

t.

Similarly,

Eσ1,σ2
[
g2t | Ft

]
=Eσ1,σ2

[
5ω2

(
1

2

(
ωT1,tσ1

(
ω2,tz

t
)
− yt

) (
ωT1,tσ2

(
ω2,tz

t
)
− yt

))
| Ft

]
=Eσ1,σ2

[(
ωT1,tσ1

(
ω2,tz

t
)
− yt

)
ω1,t

(
σ2(z

t)
)T | Ft

]
=Eσ1

[
ωT1,tσ1

(
ω2,tz

t
)
− ωT1,∗σ1

(
ω2,∗z

t
)
| Ft

]
Eσ2

[
ω1,t

(
σ2(z

t)
)T | Ft

]
=ρ
(
ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t
)
ρω1,t

(
zt
)T

=ρ2
(
ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t
)
ω1,t

(
zt
)T
.

218

This completes the proof of the lemma. �

B.5. Proof of Theorem 9

PROOF. First, based on the update step 6 and 7 in Algorithm 4, we obtain

Eσ1,σ2
[∥∥ωT1,t+1ω2,t+1 − ωT1,∗ω2,∗

∥∥2 | Ft
]

= Eσ1,σ2
[∥∥ωT2,t+1ω1,t+1 − ωT2,∗ω1,∗

∥∥2 | Ft
]

=Eσ1,σ2
[∥∥∥(ω2,t − ηg2,t)T (ω1,t − ηg1,t)− ωT2,∗ω1,∗

∥∥∥2 | Ft

]
=Eσ1,σ2

[∥∥ωT2,tω1,t − ωT2,∗ω1,∗ − η
(
gT2,tω1,t + ωT2,tg1,t

)
+ η2gT1,tg2,t

∥∥2 | Ft
]

=Eσ1,σ2
[∥∥ωT2,tω1,t − ωT2,∗ω1,∗

∥∥2 − 2η
〈
ωT2,tω1,t − ωT2,∗ω1,∗, g

T
2,tω1,t + ωT2,tg1,t

〉
+η2

(
2
〈
ωT2,tω1,t − ωT2,∗ω1,∗, g

T
2,tg1,t

〉
+
∥∥ηgT1,tg2,t − (gT2,tω1,t + ωT2,tg1,t

)∥∥2) | Ft
]

=
∥∥ωT2,tω1,t − ωT2,∗ω1,∗

∥∥2 − 2η
〈
ωT2,tω1,t − ωT2,∗ω1,∗,Eσ1,σ2

[
gT2,t | Ft

]
ω1,t

+ωT2,t Eσ1,σ2
[
g1,t | Ft

]〉
+ η2 Eσ1,σ2

[
2
〈
ωT2,tω1,t − ωT2,∗ω1,∗, g

T
2,tg1,t

〉

+
∥∥ηgT1,tg2,t − (gT2,tω1,t + ωT2,tg1,t

)∥∥2 | Ft
]
.

(B.18)

219

By Lemma 6 we conclude that E [‖g1,t‖ | Ft] and E [‖g2,t‖ | Ft] are bounded due to 3 in As-

sumption 2, which in turn yields

Eσ1,σ2
[
2
〈
ωT2,tω1,t − ωT2,∗ω1,∗, g

T
2,tg1,t

〉
+
∥∥ηgT1,tg2,t − (gT2,tω1,t + ωT2,tg1,t

)∥∥2 | Ft
]

≤
∥∥ωT2,tω1,t − ωT2,∗ω1,∗

∥∥2 · Eσ1,σ2 [∥∥gT2,tg1,t∥∥2 | Ft
]

+ Eσ1,σ2
[∥∥ηgT1,tg2,t − (gT2,tω1,t + ωT2,tg1,t

)∥∥2 | Ft
]

≤M1,(B.19)

where M1 is a fixed positive number. The first inequality comes from the Cauchy-Schwarz

inequality and the second inequality is due to the boundedness of ω1,t, ω2,t, ω1,∗, ω2,∗, g1,t, g2,t

and η. Inserting (B.19) into (B.18) gives

〈
ωT2,tω1,t − ωT2,∗ω1,∗,Eσ1,σ2

[
gT2,t | Ft

]
ω1,t

〉
+
〈
ωT2,tω1,t − ωT2,∗ω1,∗, ω

T
2,t Eσ1,σ2

[
g1,t | Ft

]〉
=
〈
ωT2,tω1,t − ωT2,∗ω1,∗,Eσ1,σ2

[
gT2,t | Ft

]
ω1,t + ωT2,t Eσ1,σ2

[
g1,t | Ft

]〉

≤

∥∥ωT2,tω1,t − ωT2,∗ω1,∗
∥∥2 − Eσ1,σ2

[∥∥ωT1,t+1ω2,t+1 − ωT1,∗ω2,∗
∥∥2 | Ft

]
2η

+
ηM1

2
.

(B.20)

220

Using (B.16) yields

〈
ωT2,tω1,t − ωT2,∗ω1,∗,Eσ1,σ2

[
gT2,t | Ft

]
ω1,t

〉
=
〈
ωT2,tω1,t − ωT2,∗ω1,∗, ρ

2
(
ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t
)
ztωT1,tω1,t

〉
=ρ2

(
ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t
) (
ωT1,tω2,t − ωT1,∗ω2,∗

)
zt ‖ω1,t‖2

=ρ2
(
ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t
)2 ‖ω1,t‖2 = E

[
lt (ω1,t, ω2,t) | Ft

]
· 2 ‖ω1,t‖2 .(B.21)

The last equality follows from (B.15) in Lemma 5. Then, we have

∣∣〈ωT2,tω1,t − ωT2,∗ω1,∗, ω
T
2,t Eσ1,σ2

[
g1,t | Ft

]〉∣∣
=
∣∣〈ωT2,tω1,t − ωT2,∗ω1,∗, ω

T
2,tρ

2
(
ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t
)
ω2,tz

t
〉∣∣

=
∣∣ρ2 (ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t
) (
ωT1,tω2,t − ωT1,∗ω2,∗

)
ωT2,tω2,tz

t
∣∣

≤ρ2
(
ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t
)2 ∥∥ωT1,tω2,t − ωT1,∗ω2,∗

∥∥∥∥ωT2,tω2,t

∥∥ ‖zt‖∣∣(ωT1,tω2,t − ωT1,∗ω2,∗
)
zt
∣∣

≤ρ2
(
ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t
)2 ∥∥ωT2,tω2,t

∥∥ ∥∥ωT1,tω2,t − ωT1,∗ω2,∗
∥∥ ‖zt‖∣∣(ωT1,tω2,t − ωT1,∗ω2,∗
)
zt
∣∣

≤ρ2
(
ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t
)2 α

cos (ε)
= E

[
lt (ω1,t, ω2,t) | Ft

]
· 2α

cos (ε)
.(B.22)

Note that
∥∥ωT2,tω2,t

∥∥ = σmax (ωT2,t) ≤
∥∥ωT2,t∥∥F ≤ α by 3 in Assumption 2. If

(
ωT1,tω2,t − ωT1,∗ω2,∗

)
zt = 0, then the inequality holds trivially. Using (B.20), (B.21) and (B.22) we obtain

Eσ1,σ2
[
lt (ω1,t, ω2,t) | Ft

]
· 2
(
‖ω1,t‖2 −

α

cos(ε)

)

≤

∥∥ωT2,tω1,t − ωT2,∗ω1,∗
∥∥2 − Eσ1,σ2

[∥∥ωT1,t+1ω2,t+1 − ωT1,∗ω2,∗
∥∥2 | Ft

]
2η

+
ηM1

2
.(B.23)

221

From update step 6 we notice that ‖ω1,t‖2 = 1
2

+ ξ1 = 1
2

+ α
cos(ε)

, thus, (B.23) could be further

simplified as

Eσ1,σ2
[
lt (ω1,t, ω2,t) | Ft

]
≤

∥∥ωT2,tω1,t − ωT2,∗ω1,∗
∥∥2 − Eσ1,σ2

[∥∥ωT1,t+1ω2,t+1 − ωT1,∗ω2,∗
∥∥2 | Ft

]
2η

+
ηM1

2
.

Applying the law of iterated expectation implies

E [lt (ω1,t, ω2,t)] ≤
E
[∥∥ωT2,tω1,t − ωT2,∗ω1,∗

∥∥2]− E
[∥∥ωT1,t+1ω2,t+1 − ωT1,∗ω2,∗

∥∥2]
2η

+
ηM1

2

By summing up all differences, we obtain

T+p∑
t=p

E [lt (ω1,t, ω2,t)] ≤
1

2

T+p∑
t=p

E
[∥∥ωT2,tω1,t − ωT2,∗ω1,∗

∥∥2]− E
[∥∥ωT1,t+1ω2,t+1 − ωT1,∗ω2,∗

∥∥2]
η

+
M1

2
ηT

=
1

2

E
[∥∥ωT2,pω1,p − ωT2,∗ω1,∗

∥∥2]− E
[∥∥ωT1,p+T+1ω2,p+T+1 − ωT1,∗ω2,∗

∥∥2]
η

+
M1

2
ηT

= O(
√
T).

(B.24)

The last equality uses 3 from Assumption 2 and the definition of η = η1√
T

. The desired result in

Theorem 9 follows directly from (B.24) since it holds for any p.

�

222

B.6. Regret with Rolling Window Analyses of dnnAdam for Two-Layer NN

Lemma 7. In Algorithm 5, given ω2,t, ω1,t, ω2,∗, ω1,∗ and v̂2,t, there exists a bounded matrix

ṽ2,t such that

(√
v̂2,t � ω2,t

)T
ω1,t −

(√
v̂2,t � ω2,∗

)T
ω1,∗ =

(√
ṽ2,t

)T (
ωT2,tω1,t − ωT2,∗ω1,∗

)
,(B.25)

where � is an element-wise multiplication operation.

PROOF. From step 10 in Algorithm 5, v2t is a matrix with same value in the same column,

which in turn yields

(√
v̂2,t � ω2,t

)T
ω1t =

(√
ṽ2,t

)T
ωT2,tω1,t,

where ṽ2,t is a diagonal matrix with ṽ2,t = diag
(

[v̂2,t]1,:

)
, and [v̂2,t]1,: is the 1st row of matrix

v̂2,t. Applying the same argument for
(√

v̂2,t � ω2,∗
)T
ω1,∗ yields (B.25). Next, let us show that

ṽ2,t is bounded. It is sufficient to show that v̂2,t is bounded. From steps 12 and 9, we conclude

that

v̂2,t ≤ max (v2,1, v2,2, · · · , v2,t) .

Therefore, it is sufficient to show that v̇2,t is bounded for all t. For each entry in the matrix,

since
∣∣∣[g2,t]ij∣∣∣ ≤ G2,∞, we obtain

∣∣[v̇2,t]ik∣∣ =

∣∣∣∣∣(1− β22)
t∑

j=1

βt−j22

(
max
p

[g2,j]
2
pk

)∣∣∣∣∣ ≤
∣∣∣∣∣(1− β22)

t∑
j=1

βt−j22 G
2
2,∞

∣∣∣∣∣ ≤ G2
2,∞.(B.26)

223

By combining with the fact that g2 is bounded due to step 5 and the boundedness of ω1,t, ω2,t, z
t

and yt from condition 3 in Assumption 2, Lemma 7 follows. �

Lemma 8. In Algorithm 5, given m1,t−1,m1,t, v̂1,t ∈ Rn and m2,t, v̂2,t ∈ Rn×d for any

t, and β111, β121, β21 and β22 are constants between 0 and 1 such that λ1 := β111
β21

< 1 and

λ2 := β121
β22

< 1, then

∥∥∥∥∥ 1√
v̂1,t
�m1,t−1

∥∥∥∥∥
2

≤ n

(1− β111) (1− β21) (1− λ1)
(B.27)

∥∥∥∥∥ 1√
v̂1,t
�m1,t

∥∥∥∥∥
2

≤ n

(1− β111) (1− β21) (1− λ1)
(B.28)

∥∥∥∥∥ 1√
v̂2,t
�m2,t

∥∥∥∥∥
2

≤ nd

(1− β121) (1− β21) (1− λ2)
(B.29)

∥∥∥∥∥ 1
4
√
v̂2,t
�m2,t

∥∥∥∥∥
2

≤ ndG2,∞

(1− β121)
√

1− β21 (1− λ2)
.(B.30)

PROOF. Based on steps 6 - 12 in Algorithm 5, we obtain

m1,t =
t∑

j=1

[
(1− β11j)

t−j∏
k=1

β11(t−k+1)g1,j

]
(B.31)

m2,t =
t∑

j=1

[
(1− β12j)

t−j∏
k=1

β12(t−k+1)g2,j

]
(B.32)

v̂1,t ≥ (1− β21)
t∑

j=1

βt−j21 g1,j � g1,j(B.33)

v̂2,t ≥ (1− β22)
t∑

j=1

βt−j22 g2,j � g2,j.(B.34)

224

Then, combining (B.31) and (B.33) yields

∥∥∥∥∥ 1√
v̂1,t
�m1,t

∥∥∥∥∥
2

≤
n∑
i=1

(∑t
j=1

[
(1− β11j)

∏t−j
k=1 β11(t−k+1) [g1,j]i

])2(
(1− β21)

∑t
j=1 β

t−j
21 [g1,j]

2
i

)

≤
n∑
i=1

(∑t
j=1

∏t−j
k=1 β11(t−k+1) [g1,j]i

)2(
(1− β21)

∑t
j=1 β

t−j
21 [g1,j]

2
i

)
≤

n∑
i=1

(∑t
j=1

∏t−j
k=1 β11(t−k+1)

)(∑t
j=1

∏t−j
k=1 β11(t−k+1) [g1,j]

2
i

)
(

(1− β21)
∑t

j=1 β
t−j
21 [g1,j]

2
i

)
≤

n∑
i=1

(∑t
j=1 β

t−j
111

)(∑t
j=1 β

t−j
111 [g1,j]

2
i

)
(

(1− β21)
∑t

j=1 β
t−j
21 [g1,j]

2
i

)
≤ 1

(1− β111) (1− β21)

n∑
i=1

t∑
j=1

βt−j111 [g1,j]
2
i

βt−j21 [g1,j]
2
i

≤ 1

(1− β111) (1− β21)

n∑
i=1

t∑
j=1

λt−j1

≤ n

(1− β111) (1− β21) (1− λ1)
.

The first inequality follows from the definition of v̂1,t, which is maximum of all v1,t until the

current time step. The third inequality follows from the Cauchy-Schwarz inequality and the

forth inequality uses the fact that β11t ≤ β111 for any t. Applying the same argument to∥∥∥∥ 1√
v̂2,t
�m2,t

∥∥∥∥2 implies (B.29). Then, applying the fact that v̂1,t ≥ ˆv1,t−1 yields

∥∥∥∥∥ 1√
v̂1,t
�m1,t−1

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1√
v̂1,t−1

�m1,t−1

∥∥∥∥∥
2

≤ n

(1− β111) (1− β21) (1− λ1)
,

225

where the last inequality follows from (B.28). Lastly, λ2 = β121
β22

< 1 implies β121√
β22

< λ2 < 1.

By combining (B.32) and (B.34), we get

∥∥∥∥∥ 1
4
√
v̂2,t
�m2,t

∥∥∥∥∥
2

≤
n∑
p=1

d∑
q=1

(∑t
j=1

[
(1− β12j)

∏t−j
k=1 β12(t−k+1) [g2,j]pq

])2
√(

(1− β21)
∑t

j=1 β
t−j
22 [g2,j]

2
pq

)

≤
n∑
p=1

d∑
q=1

(∑t
j=1

[∏t−j
k=1 β12(t−k+1) [g2,j]pq

])2
√(

(1− β21)
∑t

j=1 β
t−j
22 [g2,j]

2
pq

)

≤
n∑
p=1

d∑
q=1

(∑t
j=1

∏t−j
k=1 β12(t−k+1)

)(∑t
j=1

∏t−j
k=1 β12(t−k+1) [g2,j]

2
pq

)
√(

(1− β21)
∑t

j=1 β
t−j
22 [g2,j]

2
pq

)

≤
n∑
p=1

d∑
q=1

(∑t
j=1 β

t−j
121

)(∑t
j=1 β

t−j
121 [g2,j]

2
pq

)
√(

(1− β21)
∑t

j=1 β
t−j
22 [g2,j]

2
pq

)
≤ 1

(1− β121)
√

1− β21

n∑
p=1

d∑
q=1

t∑
j=1

βt−j121 [g2,j]
2
pq√

βt−j22 [g2,j]
2
pq

≤ 1

(1− β121)
√

1− β21

n∑
p=1

d∑
q=1

t∑
j=1

λt−j2

∣∣∣[g2,j]pq∣∣∣
≤ ndG2,∞

(1− β121)
√

1− β21 (1− λ2)
.

�

226

B.7. Proof of Theorem 10

PROOF. Now, let us multiply
∥∥ωT2,t+1ω1,t+1 − ωT2∗ω1∗

∥∥2 by
√
v̂2,t, then take expectation

given all records until time t. Then, from steps 6 - 14, we obtain

E

[∥∥∥∥(4
√
v̂2,t � ω2,t+1

)T
ω1,t+1 −

(
4
√
v̂2,t � ω2,∗

)T
ω1,∗

∥∥∥∥2 | Ft

]
(B.35)

=E

∥∥∥∥∥∥
(

4
√
v̂2,t �

(
ω2,t −

η√
v̂2,t
�m2,t

))T (
ω1,t −

η√
v̂1,t
�m1,t

)

−
(

4
√
v̂2,t � ω2,∗

)T
ω1,∗

∥∥∥∥2 | Ft

]

(B.36)

227

=E

[∥∥∥∥(4
√
v̂2,t � ω2,t

)T
ω1,t −

(
4
√
v̂2,t � ω2,∗

)T
ω1,∗

∥∥∥∥2 | Ft

]

− 2E

[〈(√
v̂2,t � ω2,t

)T
ω1,t −

(√
v̂2,t � ω2,∗

)T
ω1∗, ω

T
2,t

η√
v̂1,t
�m1,t

〉
| Ft

](B.37)

− 2E

〈(√v̂2,t � ω2,t

)T
ω1,t −

(√
v̂2,t � ω2,∗

)T
ω1,∗,

(
η√
v̂2,t
�m2,t

)T

ω1,t

〉
| Ft


(B.38)

+ 2η2 E
[〈(√

v̂2,t � ω2,t

)T
ω1,t −

(√
v̂2,t � ω2,∗

)T
ω1,∗,

(
η√
v̂2,t
�m2,t

)T (
η√
v̂1,t
�m1,t

)〉
| Ft


(B.39)

+ η2 E

∥∥∥∥∥∥
(

4
√
v̂2,t � ω2,t

)T (η√
v̂1,t
�m1,t

)
+

(
4
√
v̂2,t �

(
η√
v̂2,t
�m2,t

))T

ω1,t+

(
4
√
v̂2,t �

(
η√
v̂2,t
�m2,t

))T (
η√
v̂1,t
�m1,t

)∥∥∥∥∥∥
2

| Ft

 .
(B.40)

Let us first consider the expectations in (B.39) and (B.40). From (B.26), we conclude that v̂2,t

is bounded. Similarly, given β11t = β111γ
t
1 and β12t = β121γ

t
2 with 0 < γ1, γ2 < 1, for each

228

entry, we attain

∣∣[m1,t]i
∣∣ ≤ ∣∣∣∣∣(1− β111)

t∑
j=1

βt−j111 [g1,j]i

∣∣∣∣∣ ≤ max
j

∣∣[g1,j]i∣∣
∣∣[m2,t]ik

∣∣ ≤ ∣∣∣∣∣(1− β121)
t∑

j=1

βt−j121 [g2,j]ik

∣∣∣∣∣ ≤ max
j

∣∣[g2,j]ik∣∣ .
Since

∥∥∥∥ 1√
v̂1,t
�m1,t

∥∥∥∥2,
∥∥∥∥ 1√

v̂2,t
�m2,t

∥∥∥∥2 and
∥∥∥∥ 1

4
√
v̂2,t
�m2,t

∥∥∥∥2 are bounded from Lemma 8 and

ω1,t, ω2,t, ω1,∗, ω2,∗, v̂2,t are also bounded from Assumption 2 and Lemma 7, applying Lemma 8

229

and Cauchy-Schwarz inequality yields

2η2 E

〈(√v̂2,t � ω2,t

)T
ω1,t −

(√
v̂2,t � ω2,∗

)T
ω1,∗,

(
η√
v̂2,t
�m2,t

)T

(
η√
v̂1,t
�m1,t

)〉
| Ft

]
+ η2 E

[∥∥∥∥∥(4
√
v̂2,t � ω2,t

)T (η√
v̂1,t
�m1,t

)

+

(
4
√
v̂2,t �

(
η√
v̂2,t
�m2,t

))T

ω1,t +

(
4
√
v̂2,t �

(
η√
v̂2,t
�m2,t

))T

(
η√
v̂1,t
�m1,t

)∥∥∥∥∥
2

| Ft


=2η2 E

〈(√v̂2,t � ω2,t

)T
ω1,t −

(√
v̂2,t � ω2,∗

)T
ω1,∗,

(
η√
v̂2,t
�m2,t

)T

(
η√
v̂1,t
�m1,t

)〉
| Ft

]
+ η2 E

[∥∥∥∥∥(4
√
v̂2,t � ω2,t

)T (η√
v̂1,t
�m1,t

)

+

(
η

4
√
v̂2,t
�m2,t

)T

ω1,t +

(
η

4
√
v̂2,t
�m2,t

)T (
η√
v̂1,t
�m1,t

)∥∥∥∥∥∥
2

| Ft


≤η2 E

∥∥∥∥(√v̂2,t � ω2,t

)T
ω1,t −

(√
v̂2,t � ω2,∗

)T
ω1,∗,

∥∥∥∥2 +

∥∥∥∥∥ η√
v̂2,t
�m2,t

∥∥∥∥∥
2

·

∥∥∥∥∥ η√
v̂1,t
�m1,t

∥∥∥∥∥
2

| Ft

+ 2η2 E

∥∥∥ 4
√
v̂2,t � ω2,t

∥∥∥2 ∥∥∥∥∥ η√
v̂1,t
�m1,t

∥∥∥∥∥
2

+

∥∥∥∥∥ η
4
√
v̂2,t
�m2,t

∥∥∥∥∥
2

‖ω1,t‖2 +

∥∥∥∥∥ η
4
√
v̂2,t
�m2,t

∥∥∥∥∥
2 ∥∥∥∥∥ η√

v̂1,t
�m1,t

∥∥∥∥∥
2

| Ft


≤ η2 ·M1,(B.41)

230

where M1 is a fixed constant. Now, let us proceed to show an upper bound for the term in

(B.37). Applying Lemma 7 to (B.37) yields

E

[〈(
2
√
v̂2,t � ω2,t

)T
ω1,t −

(
2
√
v̂2,t � ω2,∗

)T
ω1,∗, ω

T
2,t

η√
v̂1,t
�m1,t

〉
| Ft

]

=E

[〈(√
ṽ2,t

)T (
ωT2,tω1,t − ωT2,∗ω1,∗

)
, ωT2,t

η√
v̂1,t
�m1,t

〉
| Ft

]

=E

[〈(√
ṽ2,t

)T (
ωT2,tω1,t − ωT2,∗ω1,∗

)
, ωT2,t

η√
v̂1,t
� (β11tm1,t−1 + (1− β11t)g1,t)

〉
| Ft

]

=E

[〈(√
ṽ2,t

)T (
ωT2,tω1,t − ωT2,∗ω1,∗

)
, ωT2,t

η√
v̂1,t
� β11tm1,t−1

〉
| Ft

](B.42)

+ E

[〈(√
ṽ2,t

)T (
ωT2,tω1,t − ωT2,∗ω1,∗

)
, ωT2,t

η√
v̂1,t
� (1− β11t)g1,t

〉
| Ft

]
.

(B.43)

Since ω2,t, ω1,t, ω2,∗, ω1,∗,
m1,t−1√

v̂1,t
, ṽ2,t and m1,t−1 are all bounded, for the term in (B.42), there

exists a constant M2 such that

E

[〈(√
ṽ2,t

)T (
ωT2,tω1,t − ωT2,∗ω1,∗

)
, ωT2,t

η√
v̂1,t
� β11tm1,t−1

〉
| Ft

]

=ηβ11t E

[(
ωT1,tω2,t − ωT1,∗ω2,∗

)√
ṽ2,tω

T
2,t

1√
v̂1,t
�m1,t−1 | Ft

]

≤ηβ11t
2

E

∥∥∥(ωT1,tω2,t − ωT1,∗ω2,∗
)√

ṽ2,tω
T
2,t

∥∥∥2 +

∥∥∥∥∥ 1√
v̂1,t

m1,t−1

∥∥∥∥∥
2

| Ft

 ≤ ηβ11tM2.(B.44)

231

Next, let us bound the term in (B.43). Based on Lemma 8, we have∣∣∣∣∣E
[〈(√

ṽ2,t

)T (
ωT2,tω1,t − ωT2,∗ω1,∗

)
, ωT2,t

η√
v̂1,t
� (1− β11t)g1,t

〉
| Ft

]∣∣∣∣∣
=η(1− β11t)

∣∣∣∣∣E
[(
ωT1,tω2,t − ωT1,∗ω2,∗

)√
ṽ2,tω

T
2,t

1√
v̂1,t
� g1,t | Ft

]∣∣∣∣∣
≤η(1− β11t)

∥∥ωT1,tω2,t − ωT1,∗ω2,∗
∥∥E[∥∥∥∥∥√ṽ2,tω

T
2,t

1√
v̂1,t
� g1,t

∥∥∥∥∥ | Ft

]
.

Now, let us focus on the product in the expectation. Since
√
ṽ2,t ∈ Rd×d is a diagonal matrix,

let us denote the ith element on diagonal as [ṽ2,t]i. Then,

√
ṽ2,tω

T
2,t

1√
v̂1,t
� g1,t = (Vt � ω2,t)

T g1,t,

where V12 ∈ Rn×d such that [V12]ij =

√
[ṽ2,t]j
[v̂1,t]i

. Then, we obtain

∣∣∣∣∣E
[〈(√

ṽ2,t

)T (
ωT2,tω1,t − ωT2,∗ω1,∗

)
, ωT2,t

η√
v̂1,t
� (1− β11t)g1,t

〉
| Ft

]∣∣∣∣∣
≤η(1− β11t)

∥∥ωT1,tω2,t − ωT1,∗ω2,∗
∥∥E [‖(Vt � ω2,t)‖ ‖g1,t‖ | Ft

]
.

Based on (B.26) and condition 5 from Assumption 2, we discover

[V12]ij =

√
[ṽ2,t]j
[v̂1,t]i

≤ G2,∞

µ
,(B.45)

232

which in turn yields∣∣∣∣∣E
[〈(√

ṽ2,t

)T (
ωT2,tω1,t − ωT2,∗ω1,∗

)
, ωT2,t

η√
v̂1,t
� (1− β11t)g1,t

〉
| Ft

]∣∣∣∣∣
≤η(1− β11t)

αG2,∞

µ

∥∥ωT1,tω2,t − ωT1,∗ω2,∗
∥∥E [‖g1,t‖ | Ft

]
.(B.46)

Note that in (B.45), we assume that [v̂1,t]i is nonzero on the ith coordinate. On the other hand,

if [v̂1,t]i is zero on the ith coordinate, then it implies [g1,j]i = 0 for j = 1, 2, · · · , t on the ith

coordinate, which in turn yields [g1,t]i = 0. Thus, (B.46) directly follows. Then, based on step 4

in Algorithm 5, we obtain∣∣∣∣∣E
[〈(√

ṽ2,t

)T (
ωT2,tω1,t − ωT2,∗ω1,∗

)
, ωT2,t

η√
v̂1,t
� (1− β11t)g1,t

〉
| Ft

]∣∣∣∣∣
=η(1− β11t)

αG2,∞

µ

∥∥ωT1,tω2,t − ωT1,∗ω2,∗
∥∥E [∥∥(ωT1,tσ1 (ω2,tz

t
)
− yt

)
σ2
(
ω2,tz

t
)∥∥ | Ft

]
≤η(1− β11t)

αG2,∞

µ

∥∥ωT1,tω2,t − ωT1,∗ω2,∗
∥∥E [∣∣ωT1,tσ1 (ω2,tz

t
)
− ωT1,∗σ1

(
ω2,∗z

t
)∣∣ | Ft

]
· E
[∥∥σ2 (ω2,tz

t
)∥∥ | Ft

]
=η(1− β11t)

αG2,∞

µ

∥∥ωT1,tω2,t − ωT1,∗ω2,∗
∥∥ ρ ∣∣(ωT1,tω2,t − ωT1,∗ω2,∗

)
zt
∣∣ ρ∥∥ω2,tz

t
∥∥

=η(1− β11t)
αG2,∞

µ

∥∥ωT1,tω2,t − ωT1,∗ω2,∗
∥∥ ρ2 ∣∣(ωT1,tω2,t − ωT1,∗ω2,∗

)
zt
∣∣ ∥∥ω2,tz

t
∥∥

≤η(1− β11t)
αG2,∞

µ
ρ2 ‖ω2,t‖

(
ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t
)2 ∥∥ωT1,tω2,t − ωT1,∗ω2,∗

∥∥ ‖zt‖∣∣ωT1,tω2,tzt − ωT1,∗ω2,∗zt
∣∣

≤2η
αG2,∞(1− β11t)

µ cos ε
E
[
lt | Ft

]
.

(B.47)

233

The last inequality follows by applying conditions 3 and 4 in Assumption 2. Next, Let us deal

with the term in (B.38). Based on step 7 in Algorithm 5, we observe

E

〈(2
√
v̂2,t � ω2,t

)T
ω1,t −

(
2
√
v̂2,t � ω2,∗

)T
ω1,∗,

(
η√
v̂2,t
�m2,t

)T

ω1,t

〉
| Ft


=η E

[〈
ωT2,tω1,t − ωT2,∗ω1,∗,m

T
2,tω1,t

〉
| Ft

]
=η E

[〈
ωT2,tω1,t − ωT2,∗ω1,∗, (β12tm2,t−1 + (1− β12t) g2,t)T ω1,t

〉
| Ft

]
=η
[
β12t

〈
ωT2,tω1,t − ωT2,∗ω1,∗,m

T
2,t−1ω1t

〉
+ (1− β12t)

〈
ωT2,tω1,t − ωT2,∗ω1,∗,E

[
gT2,t | Ft

]
ω1,t

〉]
=ηβ12t

〈
ωT2,tω1,t − ωT2,∗ω1,∗,m

T
2,t−1ω1t

〉
+ η (1− β12t)

·
〈
ωT2,tω1,t − ωT2,∗ω1,∗,

(
E
[(
ωT1,tσ1

(
ω2,tz

t
)
− yt

)
ω1,t

(
σ2
(
zt
))T | Ft

])T
ω1,t

〉

=ηβ12t
(
ωT1,tω2,t − ωT1,∗ω2,∗

)
mT

2,t−1ω1,t

(B.48)

+ ηρ2 (1− β12t)
〈
ωT2,tω1,t − ωT2,∗ω1,∗,

(
ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t
)
ztωT1,tω1,t

〉
.

(B.49)

The last equality holds true due to (B.17) in Lemma 6. By using the fact that ω1,t, ω2,t, ω1,∗, ω2,∗

and m2,t−1 are all bounded, for the term in (B.48), there exists a constant M3 such that

∣∣ηβ12t (ωT1,tω2,t − ωT1,∗ω2,∗
)
mT

2,t−1ω1,t

∣∣ ≤ ηβ12tM3.(B.50)

234

At the same time, by inserting (B.15) from Lemma 5 into (B.49) we get

ηρ2 (1− β12t)
〈
ωT2,tω1,t − ωT2,∗ω1,∗,

(
ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t
)
ztωT1,tω1,t

〉
=ηρ2(1− β12t)

(
ωT1,tω2,tz

t − ωT1,∗ω2,∗z
t
) (
ωT1,tω2,t − ωT1,∗ω2,∗

)
ztωT1,tω1,t

=2(1− β12t)η ‖ω1,t‖2 E
[
lt | Ft

]
≥2(1− β121)η ‖ω1,t‖2 E

[
lt | Ft

]
.(B.51)

By inserting (B.41),(B.44),(B.47), (B.50), and (B.51), into (B.35) we obtain

2E
[
lt | Ft

](
(1− β121) ‖ω1,t‖2 −

αG2,∞(1− β11t)
µ cos ε

)

≤1

η

{
E

[∥∥∥∥(4
√
v̂2,t � ω2,t+1

)T
ω1,t+1 −

(
4
√
v̂2,t � ω2,∗

)T
ω1,∗

∥∥∥∥2 | Ft

]

−E

[∥∥∥∥(4
√
v̂2,t � ω2,t

)T
ω1,t −

(
4
√
v̂2,t � ω2,∗

)T
ω1,∗

∥∥∥∥2 | Ft

]}

+ 2 (β11tM2 + β12tM3) + ηM1.

Since ‖ω1,t‖ =
√[

1
2

+ ξ2
]
/ (1− β121) =

√[
1
2

+ αG2,∞
µ cos (ε)

]
/ (1− β121), which in turn yields

2

(
(1− β121) ‖ω1,t‖2 −

αG2,∞(1− β11t)
µ cos ε

)
≥ 1.

235

Therefore, by recalling the law of iterated expectations and summing up all loss functions for

t = p, p+ 1, · · · , p+ T , we get

T+p∑
t=p

E [lt] ≤
1

η

p+T∑
t=p

{
E

[∥∥∥∥(4
√
v̂2,t � ω2,t+1

)T
ω1,t+1 −

(
4
√
v̂2,t � ω2,∗

)T
ω1,∗

∥∥∥∥2
]

−E

[∥∥∥∥(4
√
v̂2,t � ω2,t

)T
ω1,t −

(
4
√
v̂2,t � ω2,∗

)T
ω1,∗

∥∥∥∥2
]}

+ 2

p+T∑
t=p

(β11tM2 + β12tM3) + TηM1.(B.52)

Applying the definition of β11t and β12t implies

p+T∑
t=p

(β11tM2 + β12tM3) =

p+T∑
t=p

(
β111γ

t
1M2 + β121γ

t
2M3

)
=β111M2

p+T∑
t=p

γt1 + β121M3

p+T∑
t=p

γt2 ≤
β111M2

1− γ1
+
β121M3

1− γ2
.(B.53)

236

Since z ∈ Rd, we notice that ṽ2,t ∈ Rd×d. Applying Lemma 7 yields

p+T∑
t=p

{
E

[∥∥∥∥(4
√
v̂2,t � ω2,t+1

)T
ω1,t+1 −

(
4
√
v̂2,t � ω2,∗

)T
ω1,∗

∥∥∥∥2
]

−E

[∥∥∥∥(4
√
v̂2,t � ω2,t

)T
ω1,t −

(
4
√
v̂2,t � ω2,∗

)T
ω1,∗

∥∥∥∥2
]}

=

p+T∑
t=p

{
E

[∥∥∥∥(4
√
ṽ2,t

)T (
ωT2,t+1ω1,t+1 − ωT2,∗ω1,∗

)∥∥∥∥2
]

−E

[∥∥∥∥(4
√
ṽ2,t

)T (
ωT2,tω1,t − ωT2,∗ω1,∗

)∥∥∥∥2
]}

=

p+T∑
t=p

{
E

[
d∑
i=1

[√
ṽ2,t

]
i

[
ωT2,t+1ω1,t+1 − ωT2,∗ω1,∗

]2
i

]

−E

[
d∑
i=1

[√
ṽ2,t

]
i

[
ωT2,tω1,t − ωT2,∗ω1,∗

]2
i

]}

=E

[
d∑
i=1

[√
ṽ2,p

]
i

[
ωT2,pω1,p − ωT2,∗ω1,∗

]2
i

]
+

T+p∑
t=p+1

{
E

[
d∑
i=1

[√
ṽ2,t

]
i

[
ωT2,tω1,t − ωT2,∗ω1,∗

]2
i

]

−E

[
d∑
i=1

[√
ṽ2,t−1

]
i

[
ωT2,tω1,t − ωT2,∗ω1,∗

]2
i

]}

=E

[
d∑
i=1

[√
ṽ2,p

]
i

[
ωT2,pω1,p − ωT2,∗ω1,∗

]2
i

]

+

T+p∑
t=p+1

d∑
i=1

{
E
[[√

ṽ2,t

]
i

[
ωT2,tω1,t − ωT2,∗ω1,∗

]2
i
−
[√

ṽ2,t−1

]
i

[
ωT2,tω1,t − ωT2,∗ω1,∗

]2
i

]}

=E

[
d∑
i=1

[√
ṽ2,p

]
i

[
ωT2,pω1,p − ωT2,∗ω1,∗

]2
i

]

+

T+p∑
t=p+1

d∑
i=1

E
[[(√

ṽ2,t −
√
ṽ2,t−1

)]
i

[
ωT2,tω1,t − ωT2,∗ω1,∗

]2
i

]
,

(B.54)

237

where
[√

ṽ2,t
]
i

represents the ith element on diagonal in matrix ṽ2,t and
[
ωT2,tω1,t − ωT2,∗ω1,∗

]
i

represents the ith coordinate in vector ωT2,tω1,t − ωT2,∗ω1,∗. Since ω1,t, ω2,t, ω1,∗ and ω2,∗ are all

bounded for any t, e.g.
∣∣∣[ωT2,tω1,t − ωT2,∗ω1,∗

]2
i

∣∣∣ ≤ W∞ and ṽ2,t ≥ ṽ2,t−1 due to the fact that

v̂2,t ≥ v̂2,t−1, (B.54) can be further simplified as

p+T∑
t=p

{
E

[∥∥∥∥(4
√
v̂2,t � ω2,t+1

)T
ω1,t+1 −

(
4
√
v̂2,t � ω2,∗

)T
ω1,∗

∥∥∥∥2
]

−E

[∥∥∥∥(4
√
v̂2,t � ω2,t

)T
ω1,t −

(
4
√
v̂2,t � ω2,∗

)T
ω1,∗

∥∥∥∥2
]}

≤W∞
d∑
i=1

E
[[√

ṽ2,p

]
i

]
+W∞

T+p∑
t=p+1

d∑
i=1

E
[[(√

ṽ2,t −
√
ṽ2,t−1

)]
i

]

=W∞

d∑
i=1

E
[[√

ṽ2,p+T

]
i

]
.(B.55)

Substituting (B.53) and (B.55) in (B.52) gives

T+p∑
t=p

E [lt] ≤
1

η
W∞

d∑
i=1

E
[[√

ṽ2,p+T

]
i

]
+ 2

(
β111M2

1− γ1
+
β121M3

1− γ2

)
+ TηM1 = O(

√
T).

(B.56)

The last equality uses the definition of η = η1√
T

. The desired result in Theorem 9 follows directly

from (B.56) since it holds for any p. �

238

APPENDIX C

Appendix

C.1. Probability Distribution of LDA

Given the generative process of LDA, which is formally presented in (Blei et al., 2003), we

obtain the marginal distribution of a document d = w with text only as

P2(w | α, β) =

∫
p̂(θ | α)

(
N∏
n=1

∑
zk

p̂(zk | θ)p̂(wn | zk, β)

)
dθ

=

∫
p̂(θ | α)

(
N∏
n=1

K∑
i=1

V∏
j=1

(θiβij)
wjn

)
dθ,

which in turn yields

P2(D | α, β) = E

∫ p̂(θd | α)

 N∏
n=1

∑
zdk

p̂(zdk | θd)p̂(wdn | zdk , β)

 dθd


= E

[∫
p̂(θd | α)

(
N∏
n=1

K∑
i=1

V∏
j=1

(θiβij)
wjn

)
dθd

]
,

where p̂(θd | α) = p(θd | α).

239

C.2. Proof of Theorem 11

PROOF. By finite sample expressivity of g(γ; ·), there exists a model with parameters γ1

such that

g(γ1; s) = α∗,

which in turn yields

˜̃p(θ | s, γ1) = p̂(θ | g(γ1; s)) = p̂(θ | α∗).

Therefore,

P2(D | α∗, β∗) = ˜̃P1(D | S, γ1, β∗) = P1(µ
∗, σ∗, γ1, β

∗).

Since nnLDA also optimizes over the network parameter γ, we have

P1(D | µ∗, σ∗, γ∗, β∗) ≥ P1(D | µ∗, σ∗, γ1, β∗),

and thus,

P1(D | µ∗, σ∗, γ∗, β∗) ≥ P2(D | α∗, β∗).

�

240

C.3. Proof of Theorem 12

PROOF. Note that

P1(D | µ∗, σ∗, γ∗, β∗)− P2(D | α∗, β∗)
P2(D | α∗, β∗)

=
E
[∫

p̃(θd | µ∗, σ∗, γ∗)
(∏N

n=1

∑
zdk

p̃(zdk | θd)p̃(wdn | zdk , β∗)
)

dθd

]
E
[∫

p̂(θd | α∗)
(∏N

n=1

∑
zdk

p̂(zdk | θd)p̂(wdn | zdk , β∗)
)

dθd

]
−

E
[∫

p̂(θd | α∗)
(∏N

n=1

∑
zdk

p̂(zdk | θd)p̂(wdn | zdk , β∗)
)

dθd

]
E
[∫

p̂(θd | α∗)
(∏N

n=1

∑
zdk

p̂(zdk | θd)p̂(wdn | zdk , β∗)
)

dθd

] .(C.1)

Since

p̃(θd | µ∗, σ∗, γ∗)

 N∏
n=1

∑
zdk

p̃(zdk | θd)p̃(wdn | zdk , β∗)


=p̃(θd | µ∗, σ∗, γ∗)

(
N∏
n=1

p̃(wdn | θd, β∗)

)
=

N∏
n=1

p̃(wdn | γ∗, β∗, µ∗, σ∗)

and

p̂(θd | α∗)

 N∏
n=1

∑
zdk

p̂(zdk | θd)p̂(wdn | zdk , β∗)


=p̂(θd | α∗)

(
N∏
n=1

p̂(wdn | θd, β∗)

)
=

N∏
n=1

p̂(wdn | α∗, β∗),

241

equation (C.1) could be further simplified as

P1(D | µ∗, σ∗, γ∗, β∗)− P2(D | α∗, β∗)
P2(D | α∗, β∗)

=
E
[∫ ∏N

n=1 p̃(wdn | µ∗, σ∗, γ∗, β∗)dθd
]
− E

[∫ ∏N
n=1 p̂(wdn | α∗, β∗)dθd

]
E
[∫ ∏N

n=1 p̂(wdn | α∗, β∗)dθd
]

≥
E
[∫

C
∏N

n=1 p̂(wdn | α∗, β∗)dθd
]
− E

[∫ ∏N
n=1 p̂(wdn | α∗, β∗)dθd

]
E
[∫ ∏N

n=1 p̂(wdn | α∗, β∗)dθd
]

=
C · E

[∫ ∏N
n=1 p̂(wdn | α∗, β∗)dθd

]
− E

[∫ ∏N
n=1 p̂(wdn | α∗, β∗)dθd

]
E
[∫ ∏N

n=1 p̂(wdn | α∗, β∗)dθd
] = C − 1.

�

242

APPENDIX D

Appendix

D.1. Proof of Theorem 13

PROOF. Given a probability distribution P for dataset (xi, zi), by assumption, the stochastic

gradient of the loss function is unbiased, i.e.

EP
[
∂L̄i(zi, f(xi))

∂f

]
=
∂R

∂f
,(D.1)

with

R[f] =
1

|D|
∑

(xi,zi)∈D

L(zi, f(xi)) = EP
[
L̄i(zi, f(xi))

]
and

L̄i(zi, f(xi)) =
1

|D|P (I = i)
L(zi, f(xi)).

243

At iterate t, in importance-sampling-based Boosting algorithms, given probability distribu-

tion Pt and P i
t = Pt(I = i), the current gradient given a subset It of samples is

ḡI
t

t =
1

|It|
∑

(xi,zi)∈It

∂L̄i(zi, ft−1(xi) + εg(xi))

∂g

∣∣∣∣
ε=0

=
1

|It|
∑

(xi,zi)∈It

1

|D|P i
t

∂Li(zi, ft−1(xi) + εg(xi))

∂g

∣∣∣∣
ε=0

=
1

|It|
∑

(xi,zi)∈It

1

|D|P i
t

git =
1

|It|

|It|∑
k=1

Gk,(D.2)

where git = ∂Li(zi,ft−1(xi)+εg(xi))
∂g

∣∣∣
ε=0

and Gk is the random variable corresponding to sample k.

Note that

gt =
∂R[ft−1; g]

∂g
=
∂R[ft−1 + εg]

∂g

∣∣∣∣
ε=0

(D.3)

and

EPt(Gt) = EPt
[
ḡI

t

t

]
= gt,(D.4)

due to the unbiased gradient in (D.1). Given ḡI
t

t computed on a subset It with probability

distribution Pt, we consider

EPt
[
∆(t)

]
= ‖ft−1 − f ∗‖2 − EPt

[
‖ft − f ∗‖2

∣∣Ft−1]
= ‖ft−1 − f ∗‖2 − EPt

[∥∥∥ft−1 + αtḡ
It

t − f ∗
∥∥∥2∣∣∣∣Ft−1

]
= −2αt

〈
ft−1 − f ∗,EPt

[
ḡI

t

t

∣∣∣Ft−1
]〉
− α2

tEPt
[∥∥∥ḡItt ∥∥∥2∣∣∣∣Ft−1

]
.(D.5)

244

By inserting (D.4) into (D.5), we have

EPt
[
∆(t)

]
= −2αt 〈ft−1 − f ∗, gt〉 − α2

tEPt
[∥∥∥ḡItt ∥∥∥2∣∣∣∣Ft−1

]
.(D.6)

Thus, maximizing EPt
[
∆(t)

]
is equivalent to minimizing the variance of the gradient. Conse-

quently, consider

EPt
[∥∥∥ḡItt ∥∥∥2∣∣∣∣Ft−1

]
= EPt

[∥∥∥ḡItt − gt + gt

∥∥∥2∣∣∣∣Ft−1
]

= EPt
[∥∥∥ḡItt − gt∥∥∥2∣∣∣∣Ft−1

]
+ EPt

[
2 < ḡI

t

t − gt, gt >
∣∣∣Ft−1

]
+ ‖gt‖2

= EPt
[∥∥∥ḡItt − gt∥∥∥2∣∣∣∣Ft−1

]
+ 2 < EPt

[
ḡI

t

t

∣∣∣Ft−1
]
− gt, gt > + ‖gt‖2

= EPt
[∥∥∥ḡItt − gt∥∥∥2∣∣∣∣Ft−1

]
+ ‖gt‖2 ,(D.7)

245

where the last equality holds due to (D.4). Continuing, we have

EPt
[∥∥∥ḡItt − gt∥∥∥2∣∣∣∣Ft−1

]
= EPt

∥∥∥∥∥ 1

|It|
∑
i∈It

(
1

|D|P i
t

git − gt
)∥∥∥∥∥

2
∣∣∣∣∣∣Ft−1


=

1

|It|2
EPt

∥∥∥∥∥∑
i∈It

(
1

|D|P i
t

git − gt
)∥∥∥∥∥

2
∣∣∣∣∣∣Ft−1


=

1

|It|2
EPt

∑
i∈It

∥∥∥∥ 1

|D|P i
t

git − gt
∥∥∥∥2 +

∑
(i,j)∈It,i 6=j

<
1

|D|P i
t

git − gt,
1

|D|P j
t

gjt − gt >

∣∣∣∣∣∣Ft−1


=

1

|It|2

(
EPt

[∑
i∈It

∥∥∥∥ 1

|D|P i
t

git − gt
∥∥∥∥2
∣∣∣∣∣Ft−1

]

+EPt

 ∑
(i,j)∈It,i 6=j

<
1

|D|P i
t

git − gt,
1

|D|P j
t

gjt − gt >

∣∣∣∣∣∣Ft−1


=
|It|
|It|2

EPt
[
‖G1 − gt‖2

∣∣Ft−1]
+

2

|It|2

(
|It|
2

)
< EPt

[
G1 − gt|Ft−1] ,EPt [G2 − gt|Ft−1] >

=
1

|It|
EPt

[
‖G1 − gt‖2

∣∣Ft−1]

=
1

|It|
(
EPt

[
‖G1‖2

∣∣Ft−1]− ‖gt‖2) .
(D.8)

The fifth equality holds sinceGi andGj are independent, moreover, the seventh equality is valid

due to (D.4). Inserting (D.8) into (D.7) yields

EPt
[∥∥∥ḡItt ∥∥∥2∣∣∣∣Ft−1

]
=

1

|It| |D|2
∑

(xi,zi)∈D

1

P i
t

∥∥git∥∥2 − 1

|It|
‖gt‖2 + ‖gt‖2 .(D.9)

246

As (D.9) shows, maximizing EPt
[
∆(t)

]
is equivalent to minimizing 1

P it
‖git‖

2. By using the

Jensen’s inequality, it follows that

∑
(xi,zi)∈D

1

P i
t

∥∥git∥∥2 =
∑

(xi,zi)∈D

P i
t

(
‖git‖
P i
t

)2

≥

 ∑
(xi,zi)∈D

∥∥git∥∥
2

,(D.10)

and the equality holds when P i
t = ‖git‖ /

∑
(xj ,zj)∈D

∥∥gjt∥∥. Note that git = ∂L(zi,ft−1(xi)+εg(xi)
∂g

∣∣∣
ε=0

is proportional to the boosting weights wt(xi, zi) of sample (xi, zi) as stated in (4.4), therefore,

the claim in (4.15) follows. �

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Stochastic Large-scale Machine Learning Algorithms with Distributed Features and Observations
	1.1. Introduction
	1.2. Related Work
	1.3. Algorithm
	1.4. Analysis
	1.5. Numerical Study

	Chapter 2. Convergence Analyses of Online ADAM
	2.1. Introduction
	2.2. Related Work
	2.3. Regret with Rolling Window
	2.4. Convex Setting
	2.5. Two-Layer ReLU Neural Network
	2.6. Numerical Study

	Chapter 3. Topic Analysis for Text with Side Data
	3.1. Introduction
	3.2. Related Work
	3.3. Model and Algorithm
	3.4. Experimental Study

	Chapter 4. Tricks and Plugins to GBM on Images and Sequences
	4.1. Introduction
	4.2. Related Work
	4.3. Algorithms for CNN as Weak Learner
	4.4. Algorithms for Transformer as Weak Learner
	4.5. Experimental Study

	Bibliography
	Appendix A. Additional Experimental Details for
	A.1. Problem Set-up
	A.2. Notation
	A.3. Diminishing L.R. Convergence without Feature and Sample Sampling
	A.4. Counter Example without Assumptions 3 and 4
	A.5. Diminishing L.R. Convergence with Feature Sampling
	A.6. Constant Learning Rate with Feature Sampling
	A.7. Convergence of Constant L.R. with Feature Sampling

	Appendix B. Appendix
	B.1. Extensions
	B.2. Regret with Rolling Window Analysis of OGD
	B.3. Regret with Rolling Window Analyses of convgAdam
	B.4. Regret with Rolling Window Analysis of dnnOGD for Two-Layer ReLU Neural Network
	B.5. Proof of Theorem 9
	B.6. Regret with Rolling Window Analyses of dnnAdam for Two-Layer NN
	B.7. Proof of Theorem 10

	Appendix C. Appendix
	C.1. Probability Distribution of LDA
	C.2. Proof of Theorem 11
	C.3. Proof of Theorem 12

	Appendix D. Appendix
	D.1. Proof of Theorem 13

