DEMAND FOR BUS TRANSPORTATION IN SUBURBS AND SATELLITE CITIES OF METROPOLITAN AREAS

Seikō Higa

TRAN

DEMAND FOR BUS TRANSPORTATION
 IN SUBURBS AND SATELLITE CITIES
 OF METROPOLITAN AREAS

Seikō Higa

Transportation Center Northwestern University Evanston, Illinois 60201

This report was produced as part of a program of Research and Training in Urban Transportation sponsored by the Urban Mass Transportation Administration of the Department of Transportation, Grant Number IL-11-0005, DOT-UT-495.

The results and views expressed are the independent products of university research and are not necessarily concurred in by the Urban Mass Transportation Administration of the Department of Transportation.

TABLE OF CONTENTS

Page
Section 1 Introduction 1
Section 2 Evaluation of Existing Demand Modelling Methods, Pertaining to This Research 3
Section 3 Individual Demand Submode1 7
Section 4 Market Demand Submodel 33
Section 5 Aggregation Function 57
Section 6 Method of Predicting the Demand for Bus Service in Suburbs and Satellite Cities of Metropolitan Areas 60
Section 7 Summary and Recommendations 65
References 69
Appendix A ESTLOG: Computer Program for Individual Demand Submode1 73
Appendix B GRAVITY: Computer Program for Market Demand Submode1 111
Appendix C POLYREG: Computer Program for Aggregation Function 143

Section 1

INTRODUCTION ${ }^{1}$

In recent years, the rapid movement of people and places of work away from city centers to suburbs and satellite cities has occurred in many major metropolitan areas. The public transportation systems in these suburbs and satellite cities, however, are still in a state of low development. The purpose of this project has been to develop a model to predict the demand for work-trip bus transportation in and between suburbs and satellite cities. In particular, we have sought to develop a method for predicting when bus transportation in and between these cities becomes economically feasible.

Since the model that has been developed involves the prediction of both trip distribution and modal split, several methodological problems have arisen. These include:
(1) Should trip distribution and modal split be predicted simultaneously, or separately in some order?
(2) If the latter approach is adopted, how is it best to cope with the problem of simultaneity, which appears to exist in the choice-making process of trip makers?
(3) When and how should we aggregate the data in predicting the choice behavior of a group of individuals?
(4) What form should the model take so that it will be policy responsive?

[^0]These problems have been addressed during the course of our research and will be discussed in this report.

The model developed for this study consists of two submodels and one function. The submodels include one on individual mode choice and the other on market demand for transport service. The function provides a connection between the two. Section 2 of this report evaluates existing demand modeling methods. Section 3 is concerned with the construction of a mode-choice submodel for individuals. The discussion proceeds in order of model building, source and nature of the data, and estimation of structural parameters. In Section 4, a submodel of market demand for transport service is developed. The discussion in this Section consists of a brief review of existing trip distribution models, model building, source and nature of the data, and estimation of model parameters. Section 5 deals with estimation of an aggregation function which is used to predict the mode choice of a group of individuals based on the mode choice decision made by an "average" individual in the group. In Section 6, we present methods of using the submodels and the aggregation function to predict the demand for bus service in suburbs and satellite cities. The findings of the report are summarized and future recommendations are made in Section 7.

Section 2
 EVALUATION OF EXISTING DEMAND MODELLING METHODS PERTAINING TO THIS RESEARCH

The literature on demand modelling in transportation is extensive and well documented $[1,3,5,32,41]^{2}$. The discussion that follows is concerned with modelling methods that are relevant to this research.

The methods of predicting demand for transportation as currently practiced are available in the UMTA software package called Urban Transport Planning System (UTPS). UTPS contains both traditional and more recently developed approaches to predicting transportation demand. In the traditional approach, estimation is first made of the trip generation as a function of characteristics such as population and zone in which the trip originates. The result of this first step is combined with an impedence factor to estimate the flow of trip-makers between zones. The impedence factor is normally represented by the distance between zones or the time required to travel between them. During this stage, gravity models are used to estimate trip distribution.

In the next step, the results of the two previous steps are combined with mode cost, time and other variables to predict the modal split. To do this, functional relationships are derived by such means as use of graphs, tables or logit models. Finally, at the route assignment stage, the results of the modal split estimation are allocated to the route segment with least trip time until its capacity is reached. Then the overflow traffic is assigned to the segment with the next least trip time.

2 The numbers in brackets refer to the reference number at the end of the report.

A major drawback of this traditional approach is that it is not policy oriented. For instance, as the toll charges for an expressway connecting two zones are raised, or the bus fare is lowered, one would expect some shifts in the mode and destination choices of trip-makers. However, under the traditional approach, the effects of such changes cannot be examined since the gravity model which is supposed to predict destination choices does not contain cost variables among its explanatory variables.

There are other criticisms of the traditional approaches [5]. (1) They do not reflect behavior changes of trip-makers resulting from changes in system characteristics such as cost of the trip. (2) The decision as to what time of day to travel is not considered in the model. (3) The supply side of the transportation system is ignored except at the route assignment stage, and consideration is usually not given to equilibrium. (4) The analysis is based on data zonally aggregated. As a result, much of the information in the original data is lost.

In recent years, several studies have been done which improve upon the shortcomings of traditional modelling. The new approach estimates a model which would predict trip frequency, destination, and mode choice simultaneously or sequentially using a logit model and disaggregated data $[1,3,5]$.

Domencich and McFadden use disaggregated data from Pittsburgh to estimate a sequential model for shopping trips. In their study, a mode choice logit model is first estimated. The parameter estimates are then combined with modal cost and time to estimate "inclusive prices" for time of day and for destination. These inclusive prices are then combined with other variables to estimate logit models for choice of time of day and choice of destinations. Finally, the probability of selecting alternative shopping destinations is
combined with the inclusive prices of these destinations to estimate "overall price" of the shopping trip for each household. The same probability of selecting alternative shopping destinations is then combined with employment at alternative shopping centers to obtain the "overall shopping opportunity" variable. These variables are then used to estimate a logit model for shopping frequency.

Ben-Akiva, using disaggregated data from the Washington, D.C. area, estimates and compares both simultaneous destination and mode choice logit models and sequential models for shopping trips. He recommends that the simultaneous models be used to predict mode and destination choice decisions.

In predicting both choice of mode and choice of destination of commuters, however, the simultaneous logit model (or for that matter any logit model used to predict destination choices) has its limitations. When there are cross-commuters, the model tends to misclassify destination choices. For a model to be valid, one would at least expect that it would duplicate the base year destination choices of commuters whose choices were used to estimate the model. However, by construction, logit models assign higher probabilities to destinations with lower commuting cost or shorter trip time. Hence, the cross-commuters tend to be assigned to lower cost and shorter trip time destinations; i.e., those nearer to their home.

In order to test the hypothesis that simultaneous destination-mode choice models are inadequate, a small-scale simultaneous logit model for a work trip with two destination choices and two mode choices was estimated. The model was estimated from a data set that included 15 cross-commuters and 13 non-cross-commuters. When the original data were substituted back into the model, the model classified 11 of 13 non-cross-commuters correctly;
however, only 5 of 15 cross-commuters were classified correctly. That is, in 67% of the cases, the model failed to duplicate the destination choices of cross-commuters.

The phenomenon of cross-commuting arises from the aggregation of data over occupational groups. Hence, in order to make a simultaneous destina-tion-mode choice model effective in its prediction, one is forced to provide enough job classes (perhaps even to the extent of using job seniority to differentiate job classes) just to explain away the cross-commuting. This, however, is a monumental task in terms of data collection and processing. In addition, there is a danger of losing degrees of freedom to the extent that the model might become inestimable. This arises either because the model includes a large number of parameters to be estimated or because of reduction in sample size due to data.stratification. Furthermore, even if such a model could be estimated, the destination choice aspect of the model could be so constrained that it might be effective in predicting only mode choices.

Having shown the 1 imitations of a simultaneous destination-mode choice logit model to predict the work-trip demand for bus service among suburban and satellite cities, we now turn to a discussion of the model adopted in this study. The model used in this study is behavioral and policy responsive. Whenever possible disaggregate data are used. As a work-trip study, the time of day decision was assumed not to be under the control of the trip-makers and hence it was ignored. The supply side of the transport system was also ignored to limit the scope of the study. Therefore, in order to achieve simultaneity, the model that has been developed in this study has to be used in conjunction with a supply model so that trip cost and time can be
determined endogenously. The model is structured as a pure demand model in which the flow of work trips between cities may be studied in terms of the exogenously given mode time and cost which may be influenced by policy makers. The following section discusses in greater detail the individual demand submodel which was developed in the study.

Section 3

INDIVIDUAL DEMAND SUBMODEL

A. Submodel

The individual demand submodel adopted in this study consists of a disaggregate multinomial mode-choice logit model incorporating specific treatment of socioeconomic variables in either continuous or discrete form. It also incorporates dummy coefficients for mode-related variables, while dispensing with the constant term. The dummy coefficients for mode variables and socioeconomic dummy variables enable researchers to combine several model structures estimated through data stratification into one structure while retaining the individual model features.

Consider a model of the following form:
(1) $\quad P_{i j}=\frac{e^{X_{i j} \beta+Y_{i} \gamma_{j}}}{\sum_{j=1}^{J} e^{X_{i j} \beta+Y_{i} \gamma_{j}}}$
where
P_{ij} : The probability of individual \mathbf{i} selecting mode \mathbf{j}.
$X_{i j}$: A $1 x K$ vector of mode-related variables associated with individual i and mode j. For instance, the k-th element of $X_{i j}$ may be the commuting time facing individual i when he takes mode j. Also, $X_{i j}$ may include a
variable which is formed by interaction of two variables. We have specifically excluded the column of 1 's from the matrix X.
Y_{i} : A lxM vector of socioeconomic variables associated with individual i.
β : A Kxl vector of parameters.
γ_{j} : A Mxl vector of parameters specifically associated with mode j.

In equation (1), the exponential term $X_{i j}{ }^{\beta}+\gamma_{i} \gamma_{j}$ constitutes a systematic part of the indirect utility function of individual i that he derives from taking mode j; i.e.,

$$
\begin{equation*}
V_{i j}=X_{i j}^{\beta}+Y_{i} \gamma_{j}+u_{i j} \tag{2}
\end{equation*}
$$

where $V_{i j}$ is the indirect utility, and $u_{i j}$ is a random element in his utility function.

For a case not involving socioeconomic variables as in equation (2), McFadden established that when the random term $u_{i j}$ has Weibull distribution the probability of individual \mathbf{i} selecting mode j takes a logit expression [22]. The validity of his Lemma 1 can be easily extended to equation (2) to obtain equation (1).

As equation (1) is specified, it is based on the assumption of separable utility $[42,43]$, and has the desirable properties that the odds of selecting one mode over another is independent of irrelevant alternatives and that the probabilities of choosing alternative modes sum to unity. Furthermore, even though the model tacitly starts with a notion of cardinal utility, by
transformation and normalization, the objectionable aspects of the cardinality assumption such as interpersonal comparison of utilities are effectively precluded.

The advantage of expressing the socioeconomic variable as in equation (1) (rather than as a submatrix in X matrix, as Manski does [21]) is that in addition to revealing the presence of socioeconomic variables in the model, it greatly facilitates the estimation of parameters by reducing the need for storage space during computation. For instance, if there are 4 alternative modes and 5 socioeconomic variables, the required storage space for the socioeconomic variables under Manski's formulation is equivalent to that of 60 variables, while under the formulation that we have used the required space is equivalent to only 5 variables.

Before forming the likelihood function to estimate the parameters, equation (1) will have to be transformed as in equation (3), or in any similar form, to assure that its log-likelihood function is strictly concave.
(3a)

$$
P_{i l}=\frac{1}{1+\sum_{j \neq 1} e^{\left(x_{i j}-x_{i 1}\right) b+Y_{i} c_{j}}} \text {, for all } i
$$

where $b=\beta$ and $c_{j}=\gamma_{j}-\gamma_{1}$.

Since $P_{i j}$ in equation (3) has a multinomial distribution, the likelihood function for equation (3) is given by:
(4)

$$
L=\prod_{i=1}^{N} \frac{m_{i}!}{\prod_{j} m_{i j}!} \prod_{j=1}^{L} P_{i j}^{m_{i j}}
$$

where $m_{i j}$ is the frequency with which individual i chooses mode j. Here, if we are concerned only with the choice of mode that commuters make in reaching their place of employment, then the available choice is usually made once a day, and m_{i}, which is the sum of $m_{i j}$ over all alternatives, will have value one. The ratio of factorials in equation (4) then reduces to unity, and (4) becomes:
(5) $L=\prod_{i=1}^{N} \prod_{j=1}^{L} P_{i j}{ }^{m_{i j}}$.

The log-1ikelihood function for (5), after substituting equation (3), is given by:

$$
\begin{align*}
\log L= & \sum_{i=1}^{N}\left\{\sum_{j \neq 1} m_{i j}\left[\left(x_{i j}-x_{i 1}\right) b+Y_{i} c_{j}\right]-\right. \tag{6}\\
& \left.-\left(\sum_{j} m_{i j}\right) \log \left[1+\sum_{j \neq 1} e^{\left(x_{i j}-x_{i 1}\right) b+\gamma_{i} c_{j}}\right]\right\} .
\end{align*}
$$

Since a log-1ikel ihood function is a monotonically increasing transformation of a corresponding likelihood function, the parameter values which maximize (6) will also maximize (5).

The gradient vector for log-likelihood function (6) is given by:
where $x_{i j}^{*}=x_{i j}-x_{i\rceil}$, and accent (') denotes transpose.
The Hessian matrix of (6) is given on the following page. The dimension of the Hessian matrix (8) is $K+(L-1) M$, where K is the column number of moderelated variables $X_{i j}$, L is the number of alternative modes, and M is the column number of socioeconomic variables Y_{i}. The strict concavity of the log-likelihood function may be established by showing that the Hessian matrix (8) is negative definite. Also, the fact that the log-likelihood function derived from equation (1) without transformation is not strictly concave, and that it has a singular Hessian matrix, can be established by summing the 2nd column through L-th column of the Hessian matrix of the log-likelihood function derived from (1) without transformation, and showing that the sum is zero. The mathematical proofs are rather lengthy, and use the concept of dominant negative diagonal matrix, among others.

In formulating logit models, some researchers have strong feelings against incorporating socioeconomic variables as was shown in equation (3) above. The objection is that the coefficients of socioeconomic variables are mode specific.

Stopher, therefore, recommends stratifying the data to estimate models for different socioeconomic classes, and letting the socioeconomic variables interact with the coefficient parameters [41, pp. 310-311].

However, there are at least two reasons to advocate inclusion of socioeconomic variables as shown in equation (3). For one, there are many occasions in which mode-specific models prove to be highly useful. For instance, there are situations where changes in bus fares, toll charges, and gasoline taxes occur without the accompanying introduction of a new mode. Policy makers would want to know the impact of these on the mode choice be'havior of trip-makers.

Second, omitting socioeconomic variables because the resulting model will have mode-specific parameters is in itself inconsistent. For instance, most researchers include a constant term in the model. Now, if the constant term is truly independent of modes, it would drop out in the process of transforming the model from equation (1) to (3). The only way the constant term can remain in the model after the transformation is if it is different from mode to mode. That is, the constant term must be modespecific. Furthermore, the constant term reflects the relative bias of an individual toward one mode over another which is not explained by the variables already included in the model. One cannot assume a priori that the same relative bias will apply to a new mode when it is introduced.

In this study, the constant term was excluded from the model. One reason for this pertains to the discussion in the preceding paragraph. Since the constant term is mode-specific, and reflects the relative bias of a trip-maker toward one mode over another, such a bias may well be represented by socioeconomic variables. Secondly, the constant term also
incorporates the mean effects of the variables omitted from the model, as shown below.

Assume a binary mode choice situation, and that the mode choice is completely determined by two variables, X_{7} and X_{2}, which denote the diffference in characteristics of the modes, and that these two variables are independent of each other. Such a model may be expressed by:
(9)

$$
\log \frac{P_{i 1}}{P_{i 2}}=b_{1} x_{i 1}+b_{2} x_{i 2}+u_{i} .
$$

Suppose this model is estimated by including one variable X_{2}, and the constant term, and by using the least squares. Then the estimate of the constant term will be given by:

$$
\hat{a}=\bar{Y}-\hat{b} \bar{X}_{2},
$$

where $\bar{Y}=\frac{1}{N} \sum_{i=1}^{N} \log \left(P_{i 1} / P_{i 2}\right)$, and N is the sample size. Next, substituting $\bar{Y}=b_{1} \bar{X}_{1}+b_{2} \bar{X}_{2}+\bar{u}$, we derive

$$
\hat{a}=b_{1} \bar{x}_{1}-\left(\hat{b}-b_{2}\right) \bar{x}_{2}+\bar{u} \text {, and }
$$

$$
\begin{equation*}
E \hat{a}=b_{1} \bar{x}_{1} \tag{10}
\end{equation*}
$$

That is, the expected value of \hat{a} is $b_{7} \bar{X}_{p}$, since $E \hat{b}=b_{2}$ and $E \bar{u}=0$.
This implies that the model which has a constant term will be suitable for prediction of mode choice for the population which has the same mean value for X_{T}, as the sample from which the parameters are estimated. Thus, replacing the constant term with other variables such as socioeconomic
variables enhances the transferrability of the model to the population which has a different mean for X_{1} than the sample from which the model is estimated.

b. Source and Nature of Data

The basic data on individual mode choices and socioeconomic characteristics used to estimate the parameters of the logit model (3) were obtained from the Illinois Department of Transportation. In the summer of 1969, the Southern Transit Area Coordination Committee conducted a questionnaire survey of employees of selected firms located on the south side of Chicago and in its south suburbs [12]. The questionnaire asked the address of each employee, his choice of mode in reaching his place of work, trip time, trip cost, and socioeconomic attributes such as family income, number of cars available, number of persons over sixteen in the family, occupation, sex, and reasons for choosing a particular mode. A total of 100,300 questionnaires were sent out and approximately 9,500 that were usable were returned (9.5\%).

For this study, twenty-two firms located near the southern border of Chicago and in the southern suburbs were selected from the firms which returned questionnaires. Of these, a 10% systematic random sample of automobile drivers and all questionnaire returns on bus riders, each amounting to approximately 150 observations, were obtained. This was later expanded to include those who walked to work, in order to make the model multimodal.

The reason for selecting approximately an equal number of observations for automobile and bus riders was to avoid swamping the mode choice characteristics of bus riders by those of automobile riders, which would have
been in the ratio of approximately 1 to 10 . One researcher criticized this approach to sampling by stating that if the sample is divided 50-50 in mode choice, the parameters estimated would have values that would always predict a 50-50 mode choice split of the population, regardless of actual choices and regardless of the variables involved. That is, the parameter estimates will all be zero. This argument is incorrect. It should be remembered that what the model predicts is the probability that an individual chooses a given mode on the basis of mode-related and socioeconomic variables.

Suppose, for simplicity, that we formulate the log-likelihood functions for a logit model that includes only mode-related variables, using two different samples: one with a $90-10$ mode split, and the other with a $50-50$ split. Then, as we partially differentiate the log-likelihood functions with respect to the parameters, we obtain the following first order conditions for maximization:
(11a)

$$
\begin{aligned}
& 90-10 \text { mode-split sample } \\
& \frac{\partial \log L_{1}}{\partial \beta}=-\sum_{i \neq 1}^{N_{1}}\left(P_{i 2}-m_{i 2}\right) x_{i j}^{\prime}=0
\end{aligned}
$$

$$
\begin{equation*}
50-50 \text { mode-split sample } \tag{115}
\end{equation*}
$$

$$
\frac{\partial \log L_{2}}{\partial \beta}=-\sum_{i=1}^{N_{2}}\left(P_{i 2}-m_{i 2}\right) x_{i j}^{\prime}=0
$$

where N_{1} and N_{2} are the respective sample sizes, and $P_{i 2}$ is the probability that each individual chooses mode 2. $m_{i 2}$ is 1 if mode 2 is actually chosen by individual i, and 0 otherwise. Thus, in both cases the maximum likelihood method would set the parameters of the model (which are in $\mathrm{P}_{\mathrm{i} 2}$) so
that $P_{i 2}$ tends to be 1 if mode 2 was actually chosen, and it tends to be 0 if mode 1 was chosen. Therefore, the models estimated under both sampling approaches should predict the mode split equally well on the basis of the variables in the model. Once it is known that the mode-split composition of the sample used to estimate the model is not a critical issue, then it is obvious that by adopting the sample ratio, as was done, one can reduce the data processing cost without sacrificing the quality of the model.

Once the basic data were obtained, the location of firms and employees' homes were plotted on a map, and the line-haul distance of driving a car to the place of work was estimated. In this study, the access-egress distance for automobile was assumed to be zero for the home end, and the distance from parking lots for the place of employment. The latter was obtained for each firm by telephone.

In estimating the line-haul time for automobile driving, the average driving speeds within and between rings were obtained by first stratifying car drivers according to the location of their homes and the places of employment, and by taking a simple average of individual speeds (i.e., measured distance divided by reported driving time) for those in each group. The "rings" are a series of concentric areas emanating from the Chicago Loop as defined in Trip Length published by Chicago Area Transportation Study [4], and they partition the Chicago area into zones roughty equal in traffic density. The line-haul time was then obtained by dividing measured distance by the appropriate driving speed for each observation. The reason for using a simple average to obtain the zonal speed was to avoid swamping of the zonal averages by the speed of drivers with relatively longer driving distances. The average zonal speeds estimated are given in Table 1. In

TABLE 1

Average Zonal Driving Speeds (Miles per Hour)

From	$\begin{array}{r} \text { To } \\ 5 \end{array}$	Ring 6	
5	12.86	14.79	36.00
$\stackrel{C_{0}}{\sim}$	15.03	12.46	21.07
7	23.44	24.35	18.86

general, the average driving speed tends to be the slowest for within-ring driving, and becomes faster as the rings grow farther apart and a longer distance is involved.

The automobile access-egress time was estimated from access-egress distance by assuming an average walking speed of three miles per hour; the auto waiting time was assumed to be zero. Finally, the automobile driving cost was estimated by assuming a per mile driving cost of 10ϕ, as was indicated in the questionnaire, and to which were added toll charges and parking fees where applicable.

For bus trips, the line-haul distance was estimated from the map on the basis of the location of firms, homes and bus routes. The accessegress distance for bus trips was estimated by adding the distance from home to the nearest bus route the trip-maker was likely to take and the distance from the bus route to the firm. To this was added the distance walked in order to transfer. In estimating the line-haul time for bus trips, the average speed of buses for each bus route was first calculated from bus schedules for both peak and off-peak hours. The average bus speed for each route was then applied to the length of each segment of bus route likely to be taken by the trip maker, and the results were added. The bus fares were obtained from CTA History of Fares for those in Chicago and from the records of the Illinois Commerce Commission for suburban buses.

Finally, in order to cope with the problem of captive riders, a threshold cost of $\$ 2.50$ and 20ϕ per trip was added to the total driving cost of non-car-owners and those without driver's licenses, respectively. The $\$ 2.50$ represents the per trip allocation of monthly payment of $\$ 100.00$ including cost of the car, insurance and financing that prevailed at the time of survey taking. The 20ϕ represents per trip allocation of the cost of driver training in 1969 amortized in one year. Using the same reasoning, for
commuters without bus routes within normal walking distance (who were regarded as captive to the automobile), we extended access-egress distance to the nearest bus route to estimate cost and time for buses.

It has been argued that inclusion of captive riders in the data set for estimating model parameters would make the model insensitive to policy changes. Ferreri and Cherwony found that inclusion of captive bus riders into a bus demand model caused the model to become insensitive to policy changes [8]. However, the model they constructed was a linear regression model estimated by using aggregated data. Our approach here is that a good model should be able to explain or predict the mode choice behavior of a wide variety of trip makers. There is no reason to expect that the disaggregate model constructed for this study will become insensitive to policy changes, since, as shown in equation (11), the parameters of the model are estimated to reflect the mode choice behavior of individual trip makers rather than a group of individuals.

Once a decision has been made to include the data on captive riders in the model estimation, the next question that one must face is how to express the cost of the mode which is not available to the captive riders. Here, we assumed that for automobile riders, mode choice decisions are in part determined by the variable cost, or its per-trip allocation, of operating a car. The per-trip allocation of the variable cost is approximately equal to the car owner's out-of-pocket automobile costs. For those without a car, it would include the threshold cost of owning a car and the out-ofpocket costs. The implication here is that if non-car-owners were subsidized for the amount of the threshold cost, they would behave like car owners. Similarly, for those without access to buses, the threshold cost
is the added access-egress distance and time to reach the closest bus stop. Notice that if in this case an extremely large number, instead of a threshold cost, is used to express the cost and time of the mode not available to a captive rider, then it amounts to saying that it is a refusal to ride, rather than the unavailability of the mode, which is governing his choice.

The data discussed above were primarily measured values, and only in one case were reported values used. This was the travel time reported by automobile drivers. We used this reported time to estimate the average driving speed within and between the rings. There are some researchers who advocate the use of perceived cost and time values for the estimation of models. Michaels [26] argues that the validity and reliability of a model will be higher if perceived cost and time values are used instead of measured values. Watson [47], on the other hand, concludes that for models to estimate the value of travel time, the perceived values are essential; but for models to predict, the distinction is not so important because the perceived values are unstable over space.

In this study, we have adopted measured values whenever possible for two reasons: (1) perceived values are often unreliable, especially for modes with which a trip-maker is unfamiliar; (2) models estimated with perceived values are not policy responsive unless the model also specifies how policy variables affect perceived values.

c. Estimation

In this study, various combinations of pertinent variables were tested for inclusion into the choice model. Among the first variables to be rejected was family income. On the basis of microeconomic theory, one would
expect family income to play a prominent role on individual mode choice. However, the coefficient associated with the income variable was not statistically significant. Some consider this to be due to the unreliability of reported income data. However, there is a more fundamental reason to believe that family income, in contrast to individual income, plays a less important role in mode choice decisions. In many instances, there is more than one wage earner in a family with a higher income. The higher family income, as expected, would increase the probability of the family owning one car; however, the marginal family income due to the supplementary wage earner's earnings may not be sufficient to add a second car. Hence, the supplementary wage earner may end up riding the bus even though his family income is high. It is noted that supplementary wage earners, usually housewives, tend to take white collar jobs while the main wage earners tend to be professionals, administrators, or skilled blue collar workers. This observation seems to support the notion that the socioeconomic variables that best explain individual mode choice are occupational classifications.

Other socioeconomic variables which were rejected from inclusion in the model were age, sex, and the number of cars available to those over age 16 in the family. The first variable was rejected because of the low statistical significance of its parameter estimate, and the second because as more women enter higher paying occupations, sex becomes a less important indicator of accessibility to the automobile. The last variable was rejected for the low statistical significance of its parameter estimate and because it could not distinguish between main and supplementary wage earners.

Among the mode-related variables, those rejected from the model were access-egress distance, number of transfers, and vehicle waiting time. These were rejected because of the low statistical significance of their parameter estimates.

Thus, in this study, the following variables are included in the individual demand submodel: total trip time, total trip cost, and occupation status. Also, as an alternative to total trip cost, the ratio of total trip cost and family income was retained. Using these variables, the competing models listed below were estimated. The one with the best predictive power in terms both of "percent correctly predicted" (as defined in equation (14) below) and the "coefficient of determination in probability" (equation (12)) was adopted. Model E, however, is an exception. It was included to test the validity of replacing the constant term with socioeconomic variables.

Y_{2} : family income, represented by the midpoint of
income class.
$X_{1} Y_{1}$ and $X_{2} Y_{1}$ are products of total time with occu-
pation status, and total cost with occupation status.
The coefficient estimates for these variables are
dummy coefficients, and in the model associated
with occupation class 1 , the coefficient estimates
of X_{1} and $X_{1} Y_{1}$ must be added to derive the coefficient
for X_{1} variable. The same applies to the X_{2} and
$X_{2} Y_{1}$ coefficients. For an explanation of the use
of dummy coefficients, see Johnston [13].

Model A is the most general of the five models, and it includes all three variables as well as the dummy coefficients for both of the mode-related variables. Therefore, the model is equivalent to two separate models estimated by stratifying the data according to occupation status. Model B is similar to Model A, but is less general in that only the time variable possesses the dummy coefficient. Model C dispenses with all dummy coefficients, and contains only time and cost variables and the occupation dummy variable. As in Model C, Model D involves the cost and time variables and the occupation dummy variable, but its cost variable is deflated by family income. Thus,this model incorporates the differential impact on determining mode choice that modal cost has on families of different income levels. Some studies use wage rates to deflate the cost variable. However, in the absence of data on wage variables, family income may be viewed as its surrogate. Model E is the simplest, involving only trip time and trip cost variables in addition to a constant term.

There are three ways of comparing the efficiency of these logit models: likelihood ratio statistic, coefficient of determination in probability, and percent correctly predicted. The likelihood ratio statistic is defined by:

$$
\text { LRS }=-2 \log (L(0) / L(*)),
$$

where $L(*)$ is the value of the likelihood function at convergence, and $L(0)$ is the same value when the parameters take value zero. This statistic is asymptotically distributed x^{2} with the degrees of freedom equal to $N(L-1)-(K+M)$, where N is the number of observations, L is the number of al ternative modes, and ($K+M$) is the number of parameters estimated [14].

The coefficient of detemination in probability is defined as:

$$
\begin{equation*}
R_{p}^{2}=1-\sum_{i, j}\left(S_{i j}-P_{i j}^{*}\right)^{2} / \sum_{i, j}\left(S_{i j}-P_{i j}^{0}\right)^{2} \tag{12}
\end{equation*}
$$

where $S_{i j}$ is the proportion in which various modes are actually chosen by the i-th observation. $P_{i j}^{*}$ is the probability of choosing mode j at convergence, and $P_{i j}^{0}$ is the same probability when the parameters take zero value. This formulation is distinguished from the coefficient of determination in frequency. The latter is defined as:

$$
\begin{equation*}
R_{f}^{2}=1-\sum_{i, j}\left(n_{i j}-P_{i j}^{*} n_{i}\right)^{2} / \sum_{i, j}\left(n_{i j}-P_{i j}^{0} n_{i}\right)^{2} \tag{13}
\end{equation*}
$$

where $n_{i j}$ is the number of times mode j was chosen, n_{i} is the sum of $n_{i j}$ over j, and P^{*} and P^{0} are as defined in (12). The two formulations will be identical when each observation has only one outcome; i.e., $n_{i}=1$. However, the need for distinction arises when the data are aggregated, and hence n_{i} is greater than unity. The percent correctly predicted is defined as:

$$
\begin{equation*}
P C P=\sum_{i} s_{i} / \sum_{i} n_{i}, \tag{14}
\end{equation*}
$$

where s_{i} is 1 if and only if $p_{i j}^{*}$ has the highest value among the available alternatives and mode j was actually chosen.

These three statistics for the above five models are given in Table 2. In Table 2, Model D uses only 161 observations, while the others use 241. This is due to incomplete reporting of the family income by some respondents, and whenever this happened the particular observation was omitted from the model estimation. This means that we cannot make a direct comparison of likelihood ratio statistics (LRS), since they change with the degrees of freedom. In the case of the coefficient of determination $\left(R_{p}^{2}\right)$, and the percent correctly predicted (PCP), they both agree on ranking among the models. In order of efficiency of prediction, Model B is the most efficient, at least in terms of the data with which the models are estimated. Next comes Model A, and then Models C, E, and D, in that order. The relation between Models A and B is somewhat unexpected since in terms of the likelihood ratio statistic, Model A is preferred, but when R_{p}^{2} and PCP are considered, Model B is preferred. An examination of the coefficient estimate for the $X_{2} \gamma_{1}$ term in Model A reveals that it is not significantly different from zero. Hence, the higher likelihood ratio statistic may be due to the spurious effect caused by the inclusion of an irrelevant variable in the model.

The low ranking of Model D, which has the cost variable deflated by family income, is rather disappointing since one would expect that the higher the family income, the smaller would be the burden of a high cost mode; i.e., automobile. Perhaps, for the same reasons that we discussed in conjunction with inclusion of the family income as a socioeconomic variable,

TABLE 2

Comparison of Several Competing Models

Mode1	LRS	R_{p}^{2}	PCP	No. Obs.
A	378.965	.70946	85.892	241
B	378.644	.70968	86.307	241
C	373.198	.70057	85.477	241
D	238.942	.67675	84.472	161
E	374.174	.69665	84.647	241

the deflation of the cost data with the family income variable may be inappropriate.

Finally, the question of whether to exclude automobile passenger data from estimation of the model parameters was investigated. One would expect that the automobile costs that an automobile passenger bears would be at least lower than that of a car owner driving alone. Indeed, McFadden stated that in one of his recent studies, he divided the automobile cost for car-pool riders by the number of persons in the car, and increased the automobile trip time by five minutes. Hence, it seems plausible to treat automobile passengers separately from automobile drivers.

We decided to test the appropriateness of treating automobile passengers separately by comparing two models: one treating automobile passengers as if they drove a car, and pooling their data with those of car drivers; and the other excluding automobile passengers from the data set. The results are given below:

	LRS	$\mathrm{R}_{\mathrm{p}}^{2}$	PCP	$\frac{\mathrm{N}}{}$
Auto Passengers Included	378.644	.70968	86.307	241
Auto Passengers Excluded	353.880	.70315	85.398	226

The results are rather unexpected. Even if we disregard the likelihood ratio statistic because of the difference in sample size, both the coefficient of determination and the percent correctly predicted indicate that the model performed better when automobile passenger data were pooled with those of automobile drivers, treating passengers as if they actually drove the car themselves. In addition, the t-statistics for parameter estimates were all higher when the data were pooled. Perhaps, this paradox could be explained
in terms of the psychological costs that automobile passengers incur from lack of privacy, loss of flexibility in route selection, and timing conflicts. As a result, the subjective cost of trips borne by automobile passengers may well be equal to the actual outlays of car drivers. In view of the difficulty that public agencies have had in persuading automobile drivers to join car-pools during the recent energy crisis, this interpretation seems appropriate. Accordingly, the data for automobile passengers are pooled with those of automobile drivers in this study.

For the various reasons discussed above, Model B was adopted as the individual demand submodel for this study. Thus, the submodel is a disaggregate multinomial logit mode? having three alternative modes (automobile, bus, and walking). It incorporates total trip time, total trip cost, and occupation status as explanatory variables. The model also differentiates the coefficient of the trip time variable by occupation status.

Computation was performed on the CDC 6400 computer at Northwestern University's Vogel back Computing Center by using a general purpose multinomial logit program written by the author. A copy of the program, named ESTLOG, is attached as Appendix A. The estimates of the model parameters are given in Table 3, and the estimates of the model are given in Table 4.

As shown in Table 3, most of the parameter estimates are significant at the 5% level. One exception is the estimate of $c_{3,1}$, which is significant at the 10% level. The signs of the estimated coefficients are all correct. The coefficients b_{1} and b_{3} are those associated with the time and cost variables, respectively. However, b_{2} is the dummy coefficient for the time variable associated with Job Class 1 , which includes

TABLE 3

Parameter Estimates for
Individual Demand Submodel

Variable	Logit Estimator	Stan. Error	$\begin{aligned} & \text { T- } \\ & \text { Stat. } \end{aligned}$
Time b_{1}	-. 13941	. 02106	-6.61850
Time b_{2}	. 07541	. 03103	2.43040
Cost b_{3}	-. 02418	. 00365	-6.63331
Job $\mathrm{c}_{2,1}$	-. 92316	. 51557	-1.79054
Job c ${ }^{3,1}$	-2.76311	1.11905	-2.46916
Log L		$\begin{gathered} (*) \\ -75.44350 \end{gathered}$	(0) -264.76556
PCP		86.30705	33.33333
D.F.		477	477
LRI		378.64412	
$\mathrm{R}_{\mathrm{p}}^{2}$. 70968	

(*) denotes the value at convergence, and (0) the value when parameters are all zero.

TABLE 4

Individual Demand Submodel

(1) Exponent term for Professionals, Administrators, and Skilled Blue Collar Workers

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{i} 2}= & -.06400\left(\mathrm{~T}_{\mathrm{i} 2}-T_{\mathrm{i} 1}\right)-\left(.02418\left(\mathrm{C}_{\mathrm{i} 2}-\mathrm{C}_{\mathrm{i} 1}\right)\right. \\
& -.00365) \\
& (.5231657) \\
\mathrm{Z}_{\mathrm{i} 3}= & -.06400\left(T_{i 3}-T_{i 1}\right)-\left(.02418\left(C_{i 3}-C_{i 1}\right)\right. \\
& (.02406)(.00365) \\
& (1.76311 \\
& (1.11905)
\end{aligned}
$$

(2) Exponent term for White Collar and Unskilled Blue Collar Workers

$$
\begin{aligned}
& Z_{i 2}=\frac{-.13941}{(.02106)}\left(T_{i 2}-T_{i 1}\right)-\left(.02418\left(C_{i 2}-C_{i 1}\right)\right. \\
& Z_{i 3}=\frac{-.13941\left(T_{i 3}-T_{i 1}\right)-(.02465)}{(.02106)}\left(T_{i 3}\right)
\end{aligned}
$$

The number in parentheses is the standard error of estimate.
professionals, administrators, and skilled blue collar workers (PAB). Thus, when the time coefficient is being estimated in the model for PAB's, b_{2} must be added to $b_{1} . \quad c_{2,1}$ and $c_{3,1}$ show the relative bias of PAB's between car and bus, and between car and walking, respectively. The negative signs indicate that PAB's prefer cars over both bus and walking when trip times and costs of modes are identical.

In Table 4, the individual demand submodels are given by occupation class. $Z_{i 2}$ is the exponent term associated with mode 2 (bus), and $Z_{i 3}$ is the term associated with mode 3 (walking). The coefficient for the time variable in the model for professionals, administrators and skilled blue collar workers was derived, as mentioned previously, by adding b_{1} and b_{2}. Its standard error was obtained by summing the respective variances and covariances, and taking the square root.
d. Summary

In this section, a new disaggregate multinomial mode-choice logit model was discussed. The model incorporates new features such as replacement of the constant term with socioeconomic variables, and inclusion of the dummy coefficients for mode-related variables. This last feature enables estimation of separate slope coefficients for different socioeconomic groups. Indeed, with an appropriate combination of dummy coefficients and dummy variables, the model has the capacity to combine into a single model several models which otherwise would have necessitated stratification of the data.

The theoretical presentation of the model was followed by a discussion of the source and nature of the data. In selecting the form of the submodel to be incorporated into the present study, we investigated the theoretical
plausibility of using various model structures, tested the pertinence of variables, and compared the ability of several competing models to duplicate the base year observations. The result was to adopt a submodel which has a disaggregate multinomial logit form, and which incorporates total trip time with its dummy coefficient, total trip cost, and occupation status as explanatory variables. Upon estimation of the model parameters, it was confirmed that the selected submodel had the highest statistical significance for parameter estimates among the competitors.

Section 4

MARKET DEMAND SUBMODEL

a. Existing Trip Distribution Models

In this section, the various limitations of existing gravity and other trip distribution models are first discussed, and then the error minimizing doubly constrained gravity model is discussed. After discussion of the source and nature of data, the market demand submodel is described.

There are a large number of trip distribution models. They include traditional gravity models, entropy maximizing gravity models, intervening opportunity models, growth factor models, probabilistic distribution models, and structural models.

The traditional gravity model has the following general form:
(15) $T_{i j}=\frac{a_{i}^{P}{ }_{i} P_{j}}{d_{i j}^{b}}$,
where $\quad T_{i j}$: The number of trips made from zone i to zone j.
P_{i}, P_{j} : The population in zone i and zone j, respectively.
$d_{i j}$: The distance between the two zones.
$a, b:$ The structural parameters.
There are various criticisms of this model. The criticism most pertinent to the purpose of the present study is that the forecast of trip flows made with this model does not meet the row sum and column sum conditions. That is, the sum of estimates of $T_{i j}$ by destination may not be equal to the number of people known to have left origin \mathbf{i}, and also the sum of $T_{i j}$ by origins may not give the estimate equal to the number of people known to have arrived in zone j. In addition, this model (15) is nonresponsive to policy changes since it does not include system variables in its formulation.

In recent years, the traditional model has been modified in several ways. In its present form, as incorporated into the UMTA UTPS software package [32], the model assumes the following form:

$$
\begin{equation*}
T_{i j}^{e}=T_{i}^{e} \frac{T_{j}^{e} f_{i j}^{e}}{\sum_{j} T_{j}^{e} f_{i j}^{e}}, \tag{16}
\end{equation*}
$$

where
e : The trip purpose
T_{i}, T_{j} : The trip generation results.
$f_{i j}$: An arbitrary function of travel time.
In this formulation, some of the weaknesses have been removed by imposing the row sum condition. However, the model can still make a prediction where the number of workers arriving in a given zone exceeds the number employed there. Secondly, even though the travel time is incorporated in the model,
the model essentially remains nonresponsive to policy changes, since the cost variable is not included.

In recent years, a new form of gravity model, called the entropy maximizing model, has been introduced by A.G. Wilson [52, 53, 54]. This model has the following form:

$$
\begin{equation*}
T_{i j}=A_{i} B_{j} 0_{i} D_{j} f\left(c_{i j}\right) \tag{17}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{i}=\left[\sum_{j} B_{j} D_{j} f\left(c_{i j}\right)\right]^{-1}, \\
& B_{j}=\left[\sum_{i} A_{i} 0_{i} f\left(c_{i j}\right)\right]^{-1}
\end{aligned}
$$

0_{i} : The number of trips originated in i.
D_{j} : The number of trips terminated in j. $f\left(c_{i j}\right)$: A generalized cost function; e.g., a linear sum of trip costs, travel time, and excess travel time.

The model (17) is subjected to three constraints. Two of these are $\sum_{j} T_{i j}=0_{i}$ and $\sum_{i} T_{i j}=D_{j}$. These constraints are imposed by means of terms A_{i} and B_{j}. The third constraint is:
(18)

$$
\sum_{i, j} T_{i j} c_{i j}=C,
$$

which states that society's budges for total travel is constant.
The parameters of the model are estimated by maximizing the objective function:
(19) $\quad \log w\left(T_{i j}\right)$
subject to the three constraints above. Here, $w\left(T_{\mathbf{i j}}\right)$ is defined as:
(20)

$$
w=T!/ \operatorname{mi,j}_{i j}!
$$

This model nullifies the objections raised against previous models, and can be made policy responsive by an appropriate formulation of the generalized cost function. However, it raises two new problems. One is the constraint on society's travel budget. There is no justification for such a constraint in the real world. The second problem is that when the objective function is maximized, it tends to estimate the parameters of the model in such a way that every cell of the trip distribution matrix has equal entry. That is, $T_{i j}$ will be equal for all i and j, since only then is the objective function w maximized. This problem is partially solved by imposing the row sum and column sum constraints, but not sufficiently to duplicate the base year conditions. An example will help illustrate this.

Assume that the base year trip distribution is as given in Table 5A. Solving the maximization problem without a cost constraint will then lead to the distribution given in Table 5B. Both Tables $5 A$ and $5 B$ satisfy the row sum and column sum constraints. Now, the ratio of $w(B)$ and $w(A)$ is given by:
(21) $\frac{w(B)}{w(A)}=\frac{\frac{20!}{8!4!4!4!}}{\frac{20!}{10!2!2!6!}}=\frac{75}{4}$.

Since $w(B)$ is greater than $w(A)$, the model will estimate the distribution in Table $5 B$ unless the cost constraint is imposed. Therefore, the fixity of society's travel budget seems to be absolutely essential to replicate the base year distributions. The problem, however, occurs when 0_{i} and D_{j} increase. Assuming nonzero intrazonal travel costs, as 0_{i} or D_{j} increases, we would expect more people to travel between zones. However, unless C is increased

TABLE 5

Entropy Maximizing Mode1 and Trip Distributions

A

| From | To | 1 | Total
 0_{i} |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 10 | 2 | 12 |
| 2 | 2 | 6 | 8 |
| Total
 D_{j} | 12 | 8 | 20 |

B

| From | To | 1 | Total
 0_{i} |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 8 | 4 | 12 |
| 2 | 4 | 4 | 8 |
| Total
 D_{j} | 12 | 8 | 20 |

or $\mathbf{c}_{\mathbf{i j}}$ is lowered at the same time, the model will predict that less people will travel than before, because there are more people to whom the travel budget must be allocated. Thus, the levels of C and $c_{i j}$ determine success or failure of prediciton under this model. The model, however, does not say how C and $c_{i j}$ are determined.

In the intervening opportunity models, the number of trips made from zone \mathbf{i} to zone j is defined as a product of the number of trip makers leaving zone i and the probability that a trip will end in zone j. In this formulation, possible destination zones are arranged in increasing order of either distance or time of travel from the origin, and this ordering plays a crucial role. No changes in relative trip time will alter the trip distribution unless there is also a change in the ordering of destination zones. Hence, these models are not policy sensitive. Furthermore, in order to maintain the internal consistency of the model when the row sum constraints are imposed, it is recommended that these models be applied to zones with populations of at least 100,000 [41].

In growth factor models, prediction of trip distribution for a future year is made by adjusting the base year trip distribution matrix with some growth factor which is estimated from the ratio of expected future year and base year zonal totals. Consequently, these models implicitly assume either that the transportation system has no influence on the trip distribution or that the transportation system remains unchanged [41]. Therefore, by construction, these models are incapable of reflecting changes in transport variables, and hence are nonresponsive to policy changes.

The structural model of trip distribution [7] uses a convex programming approach to estimate future flows of trip-makers between zones. Specifically,
the method minimizes the distance between $f_{i j} d / O_{i} D_{j}$ and $f_{i j}^{0}{ }^{d}{ }^{0} / 0_{i} D_{j}^{0}$, while imposing the row sum condition $\sum_{j}\left(0_{i} D_{j} / d-f_{i j}\right)=0$, and the column sum condition $\sum_{i}\left(0_{i} D_{j} / d-f_{i j}\right)=0$. Here, $f_{i j}^{0}$ and $f_{i j}$ are the base year and future year flow of trip-makers from zone \boldsymbol{i} to zone j, and $0_{\mathbf{i}}^{0}$ and 0_{i} are the base year and future year total departures from zone i. D_{j}^{0} and D_{j} are the base year and future year total arrivals in zone j, while d^{0} and d are base year and future year total trips; i.e., $d^{0}=\sum_{i}^{0} 0_{i}^{0}=\sum_{j} D_{j}^{0}$ and $d=\sum_{i} 0_{i}=\sum_{j} \mathrm{D}_{\mathrm{j}}$. The model, however, does not contain any trip cost or trip time variables, and hence it is not responsive to policy changes.

Probabilistic distribtuion models [11] use a transition probability matrix to estimate the number of trips made from zone \mathbf{i} to zone \mathbf{j}. The model is given by

$$
\begin{equation*}
t_{i j}=0_{i} P_{i j}, \text { for all } i \text { and } j \tag{22}
\end{equation*}
$$

where $t_{\mathbf{i j}}$ is the number of trip-makers going from zone \boldsymbol{i} to zone $\boldsymbol{j} ; 0_{\mathbf{i}}$ is the total departures from zone \mathbf{i}; and P_{ij} is the transition probability defined by the conditional probability $P\left(D_{j} \mid 0_{i}\right)$ that a person who originates in zone i will travel to zone j. If the base year flow matrix $\left\{t_{i j}^{0}\right\}$ is known, then the transition probability $P_{i j}$ may be estimated by

$$
\begin{equation*}
P_{i j}=t_{i j}^{0} / 0_{i}^{0} . \tag{23}
\end{equation*}
$$

These models also provide a means for computing the transition probabilities by incorporating various motives, as shown in (24).

$$
\begin{equation*}
P_{i j}=P\left(D_{j} \mid 0_{i}\right)=\sum_{k=1}^{k} P\left(D_{j} \mid 0_{i}, m_{k}\right) P\left(m_{k} \mid 0_{i}\right), \tag{24}
\end{equation*}
$$

where m_{k} is the k-th motive. By definition of the transition matrix, this model satisfies the row sum conditions, but the column sum condition is not imposed.

Furthermore, as formulated, the model can accommodate only one class of "motives" at a time, such as one way classification by age group. As the number of classes of "motives" increases, the computation of the conditional probability becomes increasingly complex. Finally, if continuous system variables are added to the model to make it policy responsive, it becomes necessary to provide for an enormously large number of "motive" cells so that every meaningful combination of values of system variables may be assigned to a cell, and the corresponding conditional probabilities will have to be estimated. It seems that the models that are designed to use continuous variables, such as gravity models, are more suited for building policy responsive trip-distribution models.

Finally, there are a number of aggregate models which are designed to estimate simultaneously trip generation, trip distribution, and modal split. They include the abstract transport model introduced by Quandt and Baumol [33,34] and other similar models. The common characteristic of these models is that the explanatory variables enter the model in product form. As a result, it is implicitly assumed that the elasticity of demand for modes with respect to the explanatory variables is constant. This is a rather implausible assumption, since it implies that as the trip cost declines, or as the level of income rises, the demand for modes will rise without limit.

These shortcomings can be corrected by imposing row sum and column sum constraints on the trip distribution matrix. However, imposing the row sum and column sum constraints removes the trip generation aspect of the models, and they are reduced to aggregate trip distribution and modal choice models. Concerning simultaneous estimation of mode and destination choices, a preferred approach seems to be to treat these decision processes separately
as has been done in this study. The rationale is to incorporate a disaggregate behavioral model into our model as a submodel, and to make full use of its high efficiency in predicting individual modal choice behavior.

The discussion above has shown that trip distribution and other pertinent aggregate models currently in existence do not adequately meet the standard desired for the present sutdy. Specifically, a trip distribution model is needed which has the following characteristics: (1) the model must contain a sufficient number of transport variables to make it policy responsive; (2) the prediction based on the model must reflect the competition among various possible origins and destinations; (3) the prediction must be consistent with total zonal departures and arrivals; and (4) the model must be capable of being interfaced with the modal choice model described in Section 3. The interfacing must reflect the simultaneity of mode choice and destination choice decisions of commuters. A discussion of the model which meets these requirements follows.
b. Error minimizing doubly constrained gravity model.

Consider a model of the following form:

$$
\begin{equation*}
Q_{i j}=\prod_{k} x_{i j k}^{a_{m}} \prod_{i m}^{0_{m}^{b_{m}}} \prod_{j n}^{c_{n}}, \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
0_{i 1}=\sum_{j} Q_{i j}, \tag{26a}
\end{equation*}
$$

$$
\begin{equation*}
D_{j 1}=\sum_{i} Q_{i j} \tag{26b}
\end{equation*}
$$

where
$Q_{i j}$: The flow of commuters from zone \mathbf{i} to zone \mathbf{j} during a given time period, say a day.
$\mathrm{X}_{\mathrm{ijk}}$: \quad The k -th system variable such as the cost or time it takes to travel from \mathbf{i} to j .
$0_{i m}$: The m-th variable that describes a characteristic of zone i, from which the trip originates. This may include such variables as size of labor force and population.
$0_{i 1}$: The first variable among $0_{i m}$, specifically defined as the level of employed labor force.
$D_{i n}$: The n-th variable describing a characteristic of zone j in which the trip terminates. This may include level of economic activities, employment, and population.
$D_{i l}$: The first variable among $D_{i n}$, specifically defined as the level of employment.

The equations (25) and (26) constitute the basic model from which our market demand submodel will be derived.

In this study, we included two variables in $X_{i j k}$, the variables that describe the transport system. These are the composite cost of making a trip from zone i to zone j, and the composite time of doing so. The composite cost and time are the weighted averages of mode costs and mode times in traveling from i to j. The weights used are the proportion by which the total trips flow from \mathbf{i} to \mathbf{j} was divided among the various modes. As the descriptors of zone $i, 0_{i m}$, we initially considered the size of the employed labor force and the labor force composition, and for the descriptor of zone $j, D_{j n}$, we tried the industry composition and the level of employment. However, labor force composition at origin i and industry composition at destination j were later dropped to avoid multicollinearity among the variables. Hence, after
changing the variable symbols for easier identification, the basic model (25) and (26) become:

$$
\begin{align*}
Q_{i j} & =C_{i j}^{a} T_{i j}^{b} L_{i}^{d} E_{j}^{e}, \tag{27}\\
L_{i} & =\sum_{j} Q_{i j}, \tag{28a}\\
E_{j} & =\sum_{i} Q_{i j}, \tag{28b}
\end{align*}
$$

where

$Q_{i j}:$	The flow of commuters from zone \mathbf{i} to zone \mathbf{j} during a day.
$C_{i j}$:	The composite cost of a trip from zone i to zone j.
T_{ij} :	The composite time of a trip from zone i to zone j.
L_{i} :	The size of the employed labor force in i.
E_{j} :	The level of employment at j.
a, b,	e parameters.

As the model (27) is formulated, it is a market demand function for transportation $\mathbf{i n} \mathbf{i j}$-th transport market, with $\mathrm{C}_{\mathbf{i j}}$ and $\mathrm{T}_{\mathbf{i j}}$ being "market price." L_{i} and E_{j} then act as the shift parameters that denote the size of the market. Therefore, changes in policy variables such as changes in bus fare and toll charges would affect the demand for transport service through the composite cost. Improvement of highway conditions that reduces driving time would influence the demand through the composite time variable. Therefore, the model is policy responsive.

The elasticities of trip volumes $Q_{i j}$ for model (27) with respect to its component variables can be expressed as in equations (29a) - (29d). These relations are obtained by imposing constraint (28b) on the model as given in equation (30).

$$
\begin{align*}
& \frac{\partial Q_{i j}}{\partial C_{i j}} \frac{C_{i j}}{Q_{i j}}=\left(1-P_{i j}\right)\left[a+\frac{P_{i j}\left(1-P_{i j}\right) L_{i} a d}{E_{j}}\right), \tag{29a}\\
& \frac{\partial Q_{i j}}{\partial T_{i j}} \frac{T_{i j}}{Q_{i j}}=\left(1-P_{i j}\right)\left[b+\frac{P_{i j}\left(1-P_{i j}\right) L_{i} b d}{E_{j}}\right], \tag{29b}\\
& \frac{\partial Q_{i j}}{\partial E_{j}} \frac{E_{j}}{Q_{i j}}=\left(1-P_{i j}\right) e^{2}\left[\sum_{m=1}^{N} P_{m j}\left(1-P_{m j}\right) L_{m}\right],
\end{align*}
$$

(29c)

$$
\begin{equation*}
\frac{\partial Q_{i j}}{\partial L_{i}} \frac{L_{i}}{Q_{i j}}=1, \tag{29d}
\end{equation*}
$$

where $P_{i j}=Q_{i j} / \sum_{j} Q_{i j}$. Other terms are as defined previously. Except for the labor force elasticity (29d), which has a value of one, all elasticities change with the value of the variables. Specifically, both the cost elasticity (29a) and the time elasticity (29b), which are negative, reduce to 0 as the trip cost and trip time approach zero. They approach coefficients a and b in the model, respectively, as the cost and time variables increase without 1 imit. Employment elasticity (29c) is positive, but moves in an opposite direction to that of changes in level of employment.

Moreover, imposition of the row sum and column sum constraints (28a) and (28b) assures that the competition among various origins and destinations is reflected in the modes and eliminates the possibility of such inconsistencies as more commuters leaving for work from a given zone than there are people living in it or more commuters arriving for work in j than are employed there.

The theoretical justification for a gravity model of this type rests on the fact that there is aggregation over job markets. At the individual level, a commuter may be seen as maximizing his own welfare by selecting that destination which gives him the highest level of satisfaction in terms of resources
sacrificed. Thus, if alternative destinations offer identical levels of satisfaction in all respects, but differ in the cost and time required to reach them, he would choose that destination which involves the least cost and time. Therefore, his action may well be predicted by spatial linear programming.

When welfare maximizing individuals (those whose occupations are different and who hence have different welfare maximizing work destinations) are assigned to spatially delineated zones and aggregated, then the apparent phenomenon of "cross-commuting" is observed. This cross-commuting is not due to the irrationality of trip-makers (indeed they are acting very rationally at the individual level), but it is due to aggregation over job groups. As one tries to duplicate the aggregate behavior of the commuters for the base period by applying spatial linear programming, the optimization process will completely eliminate the phenomenon of cross-commuting. The error here is application of the optimization process at the aggregated level, which implicitly assumes homogeneity of the work force, rather than at the individual level where it is appropriate. Hence, for prediction at the aggregated level, the gravity model, which is capable of duplicating base period observations, is preferred over the spatial linear programming approach.

In estimating the parameters of the model, the row sum condition was first imposed by dividing (27) by (28a) as in (30):

$$
\begin{equation*}
\frac{Q_{i j}}{L_{i}}=\frac{C_{i j}^{a} T_{i j}^{b} E_{j}^{e}}{\sum_{j}^{C} C_{i j}^{a} T_{i j}^{b} E_{j}^{e}} \tag{30}
\end{equation*}
$$

The column sum condition was also imposed by dividing (27) by (28b) as in (31):

$$
\begin{equation*}
\frac{Q_{i j}}{E_{j}}=\frac{C_{i j}^{a} T_{i j}^{b} L_{i}^{d}}{\sum_{i} C_{i j}^{a} T_{i j}^{b} L_{i}^{d}} \tag{31}
\end{equation*}
$$

Equations (30) and (31) were then squared and summed over all zonal pairs to derive equations (32) and (33):

$$
\begin{equation*}
S_{0}=\sum_{i, j}\left(\frac{Q_{i j}}{L_{i}}-\frac{C_{i j}^{a} T_{i j}^{b} E_{j}^{e}}{\sum_{j} C_{i j}^{a} T_{i j}^{b} E_{j}^{e}}\right)^{2} \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
S_{D}=\sum_{i, j}\left[\frac{Q_{i j}}{E_{j}}-\frac{C_{i j}^{a} T_{i j}^{b} L_{i}^{d}}{\sum_{i} C_{i j}^{a} T_{i j}^{b} L_{i}^{d}}\right]^{2} \tag{33}
\end{equation*}
$$

These are the objective functions used to estimate the parameters of the model. In (32), S_{0} signifies that it is the objective function obtained by imposing the origin constraint (28a), while in (33), S_{D} denotes that it is obtained similarly by imposing the destination constraint. Since the objective functions are nonl inear in parameters, their estimation requires minimization of the functions using a nonlinear programming technique.

Once the parameters are estimated, two sets of forecasts of $Q_{i j}$ will be estimated from:

$$
\begin{equation*}
Q_{i j}^{0}=\frac{C_{i j}^{\hat{a}} T_{i j}^{\hat{b}} E_{j}^{\hat{e}}}{\sum_{j} C_{i j}^{\hat{a}} T_{i j}^{\hat{b}} E_{j}^{\hat{e}}} L_{i} \tag{34}
\end{equation*}
$$

Generally, the two sets of estimates $Q_{i j}^{0}$ and $Q_{i j}^{D}$ do not agree. The difference is adjusted by taking the average of equations (34) and (35) for each ij pair, and by applying the Furness iteration method to assure that the constraints are satisfied.

Another approach also was tried, which expresses the objective function in the following way:

$$
\begin{align*}
s & =\sum_{i, j}\left[\frac{Q_{i j}}{L_{i}}-\frac{c_{i j}^{a} T_{i j}^{b} E_{j}^{e}}{\sum_{j} c_{i j}^{a} T_{i j}^{b} E_{j}^{e}}\right]^{2} \tag{36}\\
& +\sum_{j}^{\sum \lambda_{j}}\left[E_{j}-\sum_{i} \frac{c_{i j}^{a} T_{i j}^{b} E_{j}^{e} L_{i}}{\sum_{j}^{a} c_{i j}^{a} T_{i j}^{b} E_{j}^{e}}\right]^{2},
\end{align*}
$$

where λ_{j} is an externally assigned penalty value. Even though convergence was achieved after a few iterations, the resulting estimates of $Q_{i j}$ were far from duplicating the base year values; therefore, this approach was dropped from further considerations. It was suspected that because of the manner in which the constraints are imposed in (36), the objective function lost its strict convexity, and the solution converged to a local optimum rather than to a global optimum.
c. Source and Nature of Data

The data for estimating the parameters of the market demand submodel were obtained from the 1970 Census of Population Journey to Work Report [45].

The reported data is based on a 15% sample adjusted to represent the total population. The report shows the number of workers, and their characteristics, who traveled from one subunit to another subunit in metropolitan areas with populations of 250,000 or more. In the report, cities with populations of 50,000 or more are individually identified, while those cities with populations under 50,000 are aggregated as "remainder of county." For instance, for the Chicago Metropolitan Area, which consists of 6 counties, the report identifies 17 cities of over 50,000 and 6 "remainder of county" units.

For all combinations of pairs of these subunits, the report tabulates by direction of flow the number of workers who traveled, the mode they chose, their socioeconomic attributes such as sex, age, race, family relationship, education, occupation, industry groups, and earnings. Data also exist for travel within each subunit.

In this study, fourteen cities in the Chicago Metropolitan Area were identified. Data on commuters who traveled from any one city to another among the fourteen were tabulated. Excluded from consideration was the city of Chicago proper. In a gravity model, or any aggregated model, the distance between cities is generally measured from city center to city center. However, the city of Chicago is spatially aggregated into only one large unit, and it was decided that no meaningful measure of distance between Chicago and other cities in the study area could be developed. Despite the exclusion of Chicago from the study, the validity of the study results will not be affected since the model is independent of city designations. The study results will apply equally to Chicago if the data for its subdivisions which are similar in size to suburban cities become available.

For the fourteen cities included in the study, the data were tabulated for the number of commuters by mode they selected in reaching their place of employment. Modes included private automobile (as driver); private automobile (as passenger); bus; subway, elevated train or railroad; walked to work; worked at home; and other means including taxicabs. Also tabulated were the proportion of professionals, administrators and skilled blue collar workers among the commuters who traveled between a given city pair in each direction. The stratification of commuters by such a job classification was done to assure conformity with the occupational class adopted in the individual demand submodel.

The tabulated results of commuters by mode were next given minor adjustments of the following types. (1) When the frequency for "walked to work" between two cities which are beyond normal walking distance was nonzero, it was assumed to be a reporting error, and the data were distributed among other modes according to the proportion in which commuters chose those modes. (2) Similarly allocated among other modes were those observations under "others including taxicabs," on the assumption that taxicabs were not a normal means of commuting. (3) In the case of workers who were reported to be commuting to cities other than their own, and yet classified under "worked at home," it was assumed that their normal place of work was as indicated by destination, but on the day of census taking, they worked at home. Hence, these were again distributed among other modes in the same manner. (4) In case of intracity commuters who are classified under "worked at home," it was assumed again that these observations included those who normally worked away from home, but on the day of census taking they worked at home as in

Case (3) above. We, therefore, decided to isolate these individuals from those whose place of work was actually at home. In-so doing, the average "worked at home" to the total commuter ratio was computed for those who worked outside their own cities. This ratio was then multiplied to the total intracity commuters for each city, and the number for those whose normal place of work was away from home but who worked at home on the day of census taking was derived. They were subtracted from the reported frequency of "worked at home" for intracity workers, and assigned to other modes according to the proportion in which modes were used in that city.

Next, the automobile driving time between cities were estimated by measuring the distance between city centers by road segments, then by applying different driving speeds to each road segment according to the traffic condition, and by aggregating the resulting driving time for all road segments. For automobile driving costs, $10 \notin$ per mile cost was applied to the distance between city centers, and whatever toll charges that were applicable were added. Bus and rapid transit commuting time, whenever such service existed, were estimated by applying the average speed of mode on each route to the segment of commuting routes applicable, and by aggregating over the entire commuting route. Added to this were one half bus or transit headway for waiting time; access-egress time of 6 minutes computed at average walking distance of 800 ft . at both ends of the trip and at walking speed of 3 miles per hour; and walking time when transfers were involved. Bus and rapid transit speeds by route were estimated from bus and rapid transit schedules. Bus and transit fares were also obtained from the CTA History of Fares, and from the records of the Illinois Commerce Commission for suburban
buses. Finally, walking time was computed at a walking speed of 3 miles per hour, and walking cost was assumed to be zero. Train time and cost were ignored because the proportion of commuters taking trains between suburban cities was very small, and hence would have a negligible influence on the composite time and cost.

In the case of intracity commuters, the average distance was estimated by assuming uniform distribution of commuters within the city limits, and by assuming that the place of employment was located at the city center. A general formula for this is given by:

$$
\begin{equation*}
\text { Av. Dist. }=\frac{1}{3}\{[1-2 C(1-C)] L+[1-2 D(1-D)] W\} \text {, } \tag{37}
\end{equation*}
$$

where the symbols are defined by:

$$
\begin{aligned}
& A=\text { Place of Employment } \\
& L=\text { Length } \\
& W=\text { Width } \\
& C=Y / L \\
& D=X / W
\end{aligned}
$$

In a special case, when the place of employment is located at the city center, as is assumed in this study, (37) reduces to $(L+W) / 6$. Once the average commuting distance within the city was derived, the time and cost of modes were estimated in the same manner for intercity commuters.

The composite commuting time between and within cities was derived as the weighted average of mode times using the percentage of times that various modes were used by commuters as weights. The composite costs were also estimated in the same manner.

In estimating the parameters of the market demand submodel, automobile passengers were pooled with automobile drivers on the basis of the findings
in Section 3. In addition, when the data for those who "worked at home" were pooled with the data for those who "walked to work," better estimation results were obtained than when they were excluded. The model estimated using the pooled data set produced the "percent correctly predicted" score of 89.9% and the coefficient of determination in frequency of .96218. On the other hand, when the data for those who "worked at home" were excluded, the resulting model had the scores of 88.7% and .95441 , respectively. As such, these data were pooled and the commuting time and cost of those who "walked to work" were assigned.

d. Estimation

Estimation of the parameters for the market demand submodel (34) and (35) was performed again on the CDC 6400 computer at Northwestern's Computing Center, using the computer program written for this purpose by the author. A copy of the program called GRAVITY is attached as Appendix B.

The estimates of the parameters are presented in Table 6. These estimates were obtained using data for six cities. Cities that were excluded were located beyond the normal commuting distance in relation to each other, and the trip frequencies among them were mostly zero.

The estimates are not statistically significant at the 5% level. However, the signs of the estimates are all correct, and both the originconstrained and destination-constrained models "predicted" 92% of the base year observations correctly, and had the coefficient of determination in frequency of .978 and .976 , respectively.

In Table 7, the estimates of commuter trip frequencies among six cities for the base year are presented. These estimates were obtained as discussed
TABLE 6

earlier by taking a simple average of frequencies predicted by both originconstrained and destination-constrained models, and by six iterations of the Furness method to impose the row sum and column sum constraints. Table 7 may be compared with the actual trip frequencies observed, which are given in Table 8. From these tables, it can be observed that the column constraints are not satisfied, suggesting that it would take more than six iterations of the Furness method to achieve the desired results. Nevertheless, the model performs well in that it predicts 89.9% of the observations correctly, and has the coefficient of determination of .96218.

Finally, it is noted that in the gravity model, the commuter flow is expressed as a function of the size of the employed labor force, the level of employment, and the cost and time of commuting between cities. As such, the model is quite general in its applicability, and the parameter estimates performed well in predicting the trip frequencies whether the number of cities was more or less than the number used to estimate the model.

e. Summary

In this section, a brief survey of the existing trip-distribution models was presented and their pertinence to the present study was discussed. The error minimizing doubly constrained gravity model, which successfully solves the limitation of the existing trip-distribution models, was introduced; and the source and nature of the data were discussed. We then presented the estimates of the model parameters, and found that the model performed well in duplicating the base year conditions. The next section is concerned with interfacing the two submodels developed in Sections 3 and 4.

Section 5

AGGREGATION FUNCTION

As will be seen in Section 6, the submodels developed in this study have been used in the following sequence. First, the individual demand submodel was used to predict the modal share of commuter traffic between two cities. The estimates of mode market shares were then used to calculate the composite cost and composite time, which in turn was applied to the market demand submodel to estimate the commuter market demand for transport service. Finally, the estimated commuter market demand was allocated among various modes in proportion to commuters' modal choice prediction.

A difficulty arises, however, in predicting the modal share for the market from the individual demand submodel, which is in disaggregate form. It is known that substituting the mean value of the transport variables (such as average cost and time for the market) leads to valid prediction of mode market share only if the model is linear in the variables involved. However, as we have already seen, the disaggregate model adopted in this study is in logit form, and hence is nonlinear in the variables included. The disaggregate demand model was estimated in such a manner as to give the predicted probability close to 1 when a particular mode was chosen, and near zero otherwise. Hence, a simple substitution of mean values for transport cost and time faced by an "average" individual in the market will lead to an exaggerated prediction of market share either toward one mode or the other depending on the distribution of the variables. The objective of this section is to provide a means of solving such aggregation issues.

Koppelman, in his recent paper, discusses five aggregation procedures used in estimating the aggregate mode share from the disaggregate model. They include: enumeration, summation/integration, statistical differentiation, classification, and naive procedures [15]. The method of aggregation available to a researcher depends to a large extent upon availability and nature of the data. In this study, we have adopted a procedure which combines a modified and simplified version of the statistical differential procedure and the classification procedure.

The statistical differential method proceeds by linearizing the disaggregate model by using a Taylor series expansion, and then obtaining the weighted average or expectation over the group for whicn the prediction is being made. This approach requires estimation of the moments of distribution of the transport and socioeconomic variables. It is known that the series tends to be unstable when the variables are highly dispersed.

In this study, the aggregation function, still unspecified but expressed as a function of the estimates of mode share derived from the disaggregate model, was approximated by use of a Taylor series expansion about some fixed value. In this case, since the partial derivatives of all orders are evaluated at the fixed value, they reduced to constants. When such a function is rearranged and simplified, the market modal share expressed as a polynomial function of the mode share estimated from the disaggregate model is derived. The classification procedure is used in this study to weight the mode share estimated from the disaggregate model by the proportion of commuters in various occupation classes. The latter, as previously noted, were derived from the 1970 Population Census Journey to Work Report.

Before deciding which form of aggregation function to adopt, three different aggregation functions were estimated, and the results were compared. They included: (1) The direct aggregate market share model which estimates a logit model by using the mean value of independent variables and the frequencies of modes chosen, and directly estimates the mode market share. (2) In the naive-statistical differential approach the initial mode share is estimated from the disaggregate model using the mean value of independent variables and the proportion of professionals, administrators and skilled blue collar workers (PAB) as the socioeconomic variable. The resulting probabilities were then used as independent variables of the aggregation function. In this case, separate polynomial functions of the 4 th degree were estimated for each mode, and the results were normalized to assure that the mode shares would sum to unity. (3) The classification-statistical differential approach is similar to the naive-statistical differential approach, except that the initial mode shares were estimated for each job class from the disaggregate model, and the results were weighted by the job proportions before estimating the aggregation function.

On comparing the three methods of deriving the aggregation function, it was found that the third approach gave the best results in terms of the coefficient of determination in probability ($R_{p}^{2}=.952892$), closely followed by the second method ($R_{p}^{2}=.952629$), with the first approach being last $\left(R_{p}^{2}=.923886\right)$. For this reason, the third approach was used to estimate the aggregation function, which has the following form:

$$
\begin{equation*}
S_{m}=\frac{S_{m}^{*}}{\sum_{m} S_{m}^{*}} \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
S_{m}^{*}=a_{0}+a_{1} P_{m}+a_{2} P_{m}^{2}+a_{3} P_{m}^{3}+a_{4} P_{m}^{4}, \tag{39}
\end{equation*}
$$

$$
\begin{aligned}
& \text { where } \quad S_{m}: \\
& \quad S_{m}^{*}: \text { Final estimate of the market share of mode } m . \\
& \text { from the polynomial function. } \\
& P_{m}: \text { Weighted average of the market shares of mode } m, \\
& \text { derived from the disaggregate model for each occu- } \\
& \text { pation class. } \\
& a_{0}, a_{1}, a_{2}, a_{3}, a_{4} \text { are parameters. }
\end{aligned}
$$

The estimates of the parameters of the aggregation function are given in Table 9.

Section 6

METHOD OF PREDICTING THE DEMAND FOR BUS SERVICE IN SUBURBS AND SATELLITE CITIES OF METROPOLITAN AREAS

In the preceding three sections, the individual demand submodel predicting individual mode choice, the market demand submodel for transport service, and the aggregation function to interface the two submodels were presented. Using a few examples, this section discusses methods of estimating the work-trip demand for bus service in suburbs and satellite cities of metropolitan areas on the basis of the submodels and the aggregation function estimated. In order to facilitate discussion, the Flow Chart for the forecasting method is presented in Figure 1.

TABLE 9

Parameter Estimates for
Aggregation Function

Para.	Car	Bus	Walk
${ }^{\text {a }} 0$	$\begin{gathered} 1.52855 \\ (2.05552) \end{gathered}$	$\begin{gathered} .21211 \\ (4.56396) \end{gathered}$	$\begin{gathered} .01440 \\ (.92845) \end{gathered}$
${ }^{\mathrm{a}} 1$	$\begin{gathered} -7.31059 \\ (-1.02466) \end{gathered}$	$\begin{gathered} -2.21352 \\ (-2.27023) \end{gathered}$	$\begin{aligned} & 3.21067 \\ & (.41905) \end{aligned}$
a_{2}	$\begin{gathered} 25.34278 \\ (-1.17762) \end{gathered}$	$\begin{aligned} & 10.74582 \\ & (1.87881) \end{aligned}$	$\begin{array}{r} -29.64260 \\ (-.04366) \end{array}$
a_{3}	$\begin{aligned} & -33.72604 \\ & (-1.31761) \end{aligned}$	$\begin{gathered} -18.67146 \\ (-1.61553) \end{gathered}$	$\begin{array}{r} 946.42417 \\ (.05762) \end{array}$
a_{4}	$\begin{aligned} & 15.02305 \\ & (1.42900) \end{aligned}$	$\begin{aligned} & 10.55681 \\ & (1.45725) \end{aligned}$	$\begin{array}{r} -4272.34375 \\ (-.03604) \end{array}$

The numbers in parentheses are t-statistics.

FIGURE 1
Flow Diagram for Forecasting Work Trip Demand for Bus Transportation

$P A B=$ professionals, administrators and skilled blue collar workers WUB = white collar and unskilled blue collar workers
a. Estimating the Effect of Policy Changes on Demand for Bus Service

For estimating the effect of policy changes on demand for bus service, the following steps are taken:
(1) Estimate or specify the magnitude of policy changes such as the amount of changes in bus fare.
(2) Compute new average cost and time by mode for study area by incorporating the new bus fares.
(3) Compute the proportion of professionals, administrators, and skilled blue collar workers in various commuting groups. This may be derived from the previous census data.
(4) Estimate the probability with which an "average" person among professionals, administrators, and skilled blue collar workers (PAB) would select various modes by substituting into the individual demand submodel the mode costs and times derived in (2) and a dummy value of 1 for the Job variable. Repeat the same process with a dummy value of 0 for the Job variable to estimate the probability with which modes are selected by an "average" individual among white collar and unskilled blue collar workers (WUB). An option to perform these operations, including data processing and card punching, is available in the computer program ESTLOG attached as Appendix A.
(5) Derive the weighted average of disaggregate probabilities by weighting the results of (4) by the proportion of PAB and WUB obtained in (3). Repeat the process for each mode.
(6) Substitute the results of (5) into the aggregation function to estimate the mode market share for each commuting link being studied.
(7) Compute the composite mode cost and mode time by obtaining the weighted average of the mode costs and mode times derived in (2) weighted by the mode market shares estimated in (6).
(8) Obtain estimates on the level of employment and the size of the employed labor force at each community under study.
(9) Substitute the results of (7) and (8) into the market demand submodel to estimate the flow by direction of commuters between city pairs.
(10) Estimate the number of commuters taking the bus by multiplying the results of (9) by the market share for bus estimated in (6).
(11) Finally, compare the results of (10) with the results of previous studies.
b. Predicting When Installation of Bus Service Becomes Economically Feasible

In this case, the process is:
(1) Compute the minimum level of bus demand to make a given bus line economically feasible. This may be obtained by calculating the cost of running a proposed line and the average fares anticipated.
(2) Generate time series of the level of employed labor force at the origin, and the level of employment at the destination as well as the average cost and time of traveling by each mode between the cities in the study area. In this case, the average cost of modes must be deflated by the average income index or the wage index to adjust for price and income changes over time. The average income index may be obtained by dividing the estimate of the median nominal income of commuters for future years by that of the base period; and similarly for the wage index.
(3) On the basis of the data obtained in (2), estimate a time series of the demand for bus service under assumed conditions, and compare them with the minimum level needed for economic feasibility.
(4) In forecasting such as this, it is important to recognize the fact that the demand for bus service is determined not only by changes in the level of service by the bus line itself, but also by changes in service level of other modes, such as toll charges, gasoline prices, parking fees. Hence, in generating the time series data on these variables, as many alternative scenarios as can be perceived should be considered.

In the above, by means of examples, we have demonstrated how the models presented in this report may be applied. Effects of other policy changes and changes in the transportation system on demand for bus transportation may be studied by appropriately modifying the above examples.

Section 7

SUMMARY AND RECOMMENDATIONS

In this report, a method of estimating the commuter demand for bus service in suburbs and satellite cities of metropolitan areas was developed. The basic approach was to estimate the mode market share from a disaggregate model, using the average cost and time of travel ing by three modes: automobile, bus, and walking. The estimates of mode choice probabilities of an "average" person were then adjusted by the aggregation function to derive the market share of modes for commuting between cities. The mode shares were used for computation of the composite cost and composite time, these in turn were used
for estimation of the market demand for transportation. Mode shares were also used for allocating the market demand for commuter traffic to various modes.

The effectiveness of forecasting models such as this one depends largely upon the existing state of technical knowledge, availability and quality of data, and computational facilities. The report offers several innovations. They include:
(1) Discovery that simultaneous destination-mode-choice disaggregate logit models misclassify the destination choice of cross-commuters when they are present.
(2) Identification of a conceptual error in the entropy maximizing gravity model.
(3) Introduction of a disaggregate logit model which incorporates dummy variables and dummy coefficients. Thus, the model combines several models obtained by data stratification into a single model.
(4) Writing of the computer program to perform computation for the logit model of the above type. The program is also efficient in handling the socioeconomic variables in terms of reduced storage space and processing of data. It also has the facility to estimate the direct and cross-elasticities of demand.
(5) Introduction of the aggregation function to derive the market share of modes from the probabilities of mode choice made by an "average" person. The latter is estimated from the disaggregate model using average cost and time of alternative modes.
(6) Introduction of a gravity model which is policy responsive, and which
also reflects the competition among various origins and destinations.
(7) Writing of the computer program to perform computation for the gravity model of the above type.

Availability of data affected the structure of the present study in several ways:
(1) At the disaggregate level, lack of data on wages or individual income prevented deflating of the cost data. This, however, is a minor problem, since future data can be deflated with wage index or income index estimated by dividing the median income for the future year by that of the base period. Also, lack of data to indicate the level of comfort, such as degree of crowdedness, prevented inclusion of a comfort index into the model.
(2) At the aggregate level, absence of data on the distribution (i.e., variances and covariances) of the independent variables prevented application of other aggregation procedures to estimate market share of modes, and the error analysis of the forecast. The use of census data affected the study in several ways. Since the census data are published for cities of populations over 50,000 , many small cities had to be omitted in the estimation of the model. In the case of Chicago, it was omitted because no meaningful measure of distance between Chicago and its satellite cities could be developed for its high degree of spatial aggregation. This, however, is a minor problem since the gravity model estimated in the study is still valid and transferrable to other regions. However, the high degree of spatial aggregation in the Chicago data prevented the author from answering one question. That is: how to estimate the flow of commuters taking buses between Chicago and its satellite cities. To answer this question, we need disaggregated
data of the city of Chicago so that its subunits would be of about the same size as its satellite cities.
(3) Finally, the data used for estimation of the individual demand submodel were collected in the summer of 1969, and that used to estimate the market demand submodel in April, 1970. When data for other times of the year become available, it is recommended that the model presented in this study be reestimated to examine for the presence of seasonal bias due to data.

REFERENCES

(1) Ben-Akiva, M.E., Structure of Passenger Travel Demand Models. Ph.D. Dissertation. (M.I.T.) 1973.
(2) Ben-Akiva, M.E. and F.S. Koppelman, "Multidimensional Choice Models: Alternative Structures of Travel Demand Models," Transportation Research Board Special Report. No. 149, 1974.
(3) Charles River Associates, Inc., A Disaggregated Behavioral Model of Urban Travel Demand. Final Report to Federal Highway Administration, U.S. Department of Transportation, 1973.
(4) Chicago Area Transportation Study, 1970 Travel Characteristics: Trip Length. 1975.
(5) Domencich, T.A. and D. McFadden, Urban Travel Demand: A Behavioral Analysis. North-Holland/American Elsevier, 1975.
(6) Evans, A.W., "Some Properties of Trip Distribution Method," Transportation Research. Vol.4, 1970,. pp. 19-36.
(7) Ferragu, C. and M. Sakarovitch, "A Class of 'Structural' Models for Trip Distribution," Transportation Research. Vo1. 4, 1970, pp. 87-92.
(8) Ferreri, M.G. and W. Cherwony, "Choice and Captive Modal-Split Mode1," Highway Research Record. No. 369, 1971, pp. 80-90.
(9) Halder, A., "An Alternative Approach to Trip Distribution," Transportation Research. Vol. 4, 1970, pp. 63-69.
(10) Hyman, G.M., "Trip Distribution and Modal Split by Categories of Households," Transportation Research. Vol. 4, 1970, pp. 71-76.
(11) Ickler, S.R. and G.M. Flachs, "A Probabilistic Distribution Model with Calibration Technique," Transportation Research. Vol. 6, 1972, pp. 113-117.
(12) Illinois Department of Public Works and Building, Southward Transit Area Coordination Study. 1973.
(13) Johnston, J. Econometric Methods 2nd ed., McGraw-Hill, 1972.
(14) Kenda11, M.G., and A. Stuart, The Advanced Theory of Statistics. Vol. 2, Hafner, 1961.
(15) Koppelman, F.S., "Guidelines for Aggregate Travel Prediction using Disaggregate Choice Models," 'Paper presented at 55th Annual Meeting of Transportation Research Board, 1976.
(16) \qquad , "Methodology for Analysis of Errors in Prediction with Disaggregate Choice Models," Paper presented at 55th Annual Meeting of Transportation Research Board, 1976.
, "Prediction with Disaggregate Models: Aggregation Issue," Transportation Research Record. 1975.
(18) Lisco, T.E., The Value of Commuter's Travel Time: A Study in Urban Transportation. Ph.D. Dissertation (Univ. of Chicago), 1967.
(19) Luce, R.D. and H. Raiffa, Games and Decisions. Wiley, 1957.
(20) Manski, C.F., "Maximum Score Estimation of the Stochastic Utility Model of Choice," Journal of Econometrics Vol. 3, 1975, pp. 205-228.
(21) , "The Conditional/Polytomous Logit Program: Instruction for Use," (Mimeographed).
(22) McFadden, D., "Conditional Logit Analysis of Qualitative Choice Behavior," in Zarembka, P. (ed.), Frontiers in Econometrics. Academic Press, 1974. Demand Forecasting Study, (PB-236-739) National Technical Information Service, U.S. Department of Commerce, 1973.
(24) McGillivray, R.G., "Binary Choice of Urban Transport Mode in the San Francisco Bay Region," Econometrica. Vol. 40, 1972, pp. 827-848. Transportation Economics and Policy. Vol. 4, No. 2, May 1970, pp. 192-207.
(26) Michaels, R.M. "Behavioral Measurement: An Approach to Predicting Transport Demand," in Transportation Research Board Special Report No. 149, 1974, pp. 51-57.
(27) Moses, L.M. and H.F. Williamson, Jr., "Value of Time, Choice of Mode, and the Subsidy Issue in Urban Transportation," Journal of Political Economy. Vol. 71, 1963, pp. 247-264.
(28) Nerlove, M. and S.J. Press, Univariate and Multivariate Log-Linear and Logistic Models. (R-1306-EDA/NIH) Rand Corp., 1973.
(29) Neter, J. and E.S. Mayes, "On the Appropriateness of the Correlation Coefficient with a 0,1 Dependent Variable," Journal of American Statistical Assn. Vol. 65, 1970, pp. 501-509.
(30) 0i, W.Y. and P.W. Shuldiner, An Analysis of Urban Travel Demand. Northwestern Univ. Press, 1962.
(31) O'Sullivan, P. and B. Ralston, "Forecasting Intercity Commodity Transport in the U.S.A.," Regional Studies. Vol. 8, 1974, pp. 191-195.
(32) Peat, Marwick, Mitchell and Co., Software Systems Development Program: Introduction to Urban Travel Demand Forecasting. Vol. I, Demand Modeling. (PB-236-848) National Technical Information Service, U.S. Department of Commerce, 1974.
(33) Quandt, R.E., "Estimation of Modal Splits," Transportation Economics. Vol. 2, 1968, pp. 41-51.
(34) Quandt, R.E. and W.J. Baumol, "The Demand for Abstract Transport Modes: Theory and Measurement," Journal of Regional Science Vol. 1, No. 2, 1966, pp. 13-26.
(35) Quarmby, D.A., "Choice of Travel Mode for the Journey to Work: Some Findings," Journal of Transport Economics and Policies Vol. 1, No. 3, 1967, pp. 273-314.
(36) Reichman, S. and P.R. Stopher, "Disaggregate Stochastic Models of TravelMode Choice," Highway Research Record. No. 369, 1971, pp. 91-103.
(37) Schmidt, P. and R.P. Strauss, "Estimation of Models with Jointly Dependent Qualitative Variables: A Simultaneous Logit Approach," Econometrica. Vol. 43, No. 4, July 1975, pp. 745-755.
(38) Stopher, P.R., "A Probability Model of Travel Mode Choice for the Work Journey," Highway Research Record No. 283, 1969, pp. 57-65.
(39) Stopher, P.R. and J.O. Lavender, "Disaggregate, Behavioral Travel Demand Models: Empirical Tests of Three Hypotheses," Transportation Research Forum Proceedings. Vol. 13, No. 1, 1972; pp. 321-336.
(40) Stopher, P.R. and T.E. Lisco, "Modelling Travel Demand: A Disaggregate Behavioral Approach: Issues and Applications," Papers. Transportation Research Forum, 1970, pp. 195-214.
(41) Stopher, P.R. and A.H. Meyburg, Urban Transportation Modeling and Planning, Lexington Books, 1975.
(42) Strotz, R.H., "The Empirical Implication of a Utility Tree," Econometrica. Vol. 25, No. 2, Apr. 1957, pp. 269-280.
, "The Utility Tree - A Correction and Further Appraisal," Econometrica Vol. 27, No. 3, July 1959, pp. 482-489.
(44) Theil, H., "A Multinomial Extension of the Linear Logit Model," International Economic Review Vol. 10, No. 3, Oct. 1969, pp. 251-259.
(45) U.S. Department of Commerce, 1970 Census of Population: Journey to Work Report. 1973.
(46) Warner, S.L., Stochastic Choice of Mode in Urban Travel: A Study in Binary Choice. Northwestern University Press. 1962.
(47) Watson, P.L., "Problems Associated with Time and Cost Data Used in Travel Choice Modeling and Valuation of Time," Highway Research Record. No. 369, 1971, pp. 148-158.
(48) , The Value of Time, Behavioral Models of Modal Choice. Lexington Books, 1974.
(49) Watson, P.L. and R.B. Westin, "Transferability of Disaggregate Mode Choice Models," Regional Science and Urban Economics. Vol. 5, 1975, pp. 1-23.
$\overline{\text { Models of Mode Choice: Some Tests of Transferability, "Aggregate Predictions from Disaggregate }}$ at the Intersociety Conference on Transportation, 1973.
(51) Westin, R.B., "Predictions from Binary Choice Models," Journal of Econometrics. Vol. 2, No. 1, 1974, pp. 1-16.
(52) Wilson, A.G., "Advances and Problems in Distribution Modeling," Transportation Research. Vol. 4, 1970, pp. 1-18. Models," "Further Developments of Entropy Maximizing Tran pp. 183-193.
(54)
, "The Use of Entropy Maximizing Models," Journal of Transportation Economics and Policy. Vol. 3, No. 1, Jan. 1969, pp. 108-126.
(55) Zarembka, P., (ed.), Frontiers in Econometrics. Academic Press, 1974.

APPENDIX A

ESTLOG:

Computer Program for

 Individual Demand Submodel

NENO =
LOG,
00 1:1 $I=1, N 0 B$
PEAD ($85, \mathrm{MF}$) ($A R P G Y(I, J), J=1, N V A P)$
IF (EOF, 85) 1:2,103
102 HPTTE $(80,3)$ I
3 FGFMAT (4X,27HMO DATA FCR CESERVATION NO., I5)
GO TC. 1000
103 IF (ICO.ED.1) GO TC 101
$\mathrm{K}_{1}=\mathrm{NOH} 1$ (1)
$\mathrm{L} 1=\mathrm{NCH} 2(1)$
LOG $\}$
$\mathrm{K} 2=\mathrm{NCH} 1(2)$
L2=NCH2(2)
$\mathrm{K} 3=\mathrm{NCH} 亡(3)$
L3 $=$ NCH2(3)
IF (ARRAY(I,K1) •NE.ARPAY(I,L1).OR.ARRAY(I,K2).NE, ARRAY(I,LZ) 1.OR.AREAY(I,K3).GE.ARRAY(I,L3)) GO TO 104

GC TC 101
LOGG
104 WRITE $(86,5)$ I
LOGO
5 FORMAT (4X,24HDATA FOR ORSEFVATION NO., IS, $2 X, 12 H O C$ NOT MATCH)
LOGO NEND=1

LOGe
101 CONTINUE
LOG 0
IF (NEND.ED. 1) GO TO_100.
$\begin{array}{rl}105 & K=1 \\ & * P U T \text { DO } 117 I=17,29 * \text { HERE }\end{array}$
$30165 I=1$, NVAR
LOG
C *PUT DO $117 \mathrm{I}=17,2$ g* $^{\text {HERE }}$
LOCECS (I) $=K$
Lor,
Loc
$105 \mathrm{~K}=\mathrm{K}+\mathrm{NOB}$
$00107 \mathrm{I}=1$, NVA?
Lo
CALL WRITEC (ARRAY(1,I), LOCECS(I),NOB) LC
L:
107 CSNTINEE
L.

WRITE (86,10)
1 :
WRITE $(85,10)$
L.

HRITE $(86,5)$
6 FOFMAT (4X, 44 HTHE EASIC RATA HAVE BEEN SUCCESSFULLY LOADED) - L.
WRITE $(86,18)$ IOP,ICD,NPP, NEL,NPCH
Li.

18 FQRMAT $(/ / 4 X, 4$ HIOP $=, I 5,2 X, 4 H I C O=, I 5,2 X, 4 H N P P=, I 5,2 X, 4 H N E L=, I 5,2 X$, 15HNPCH=,I5)
IF (ICD.NE. 1) $G 0$ TO 201 LO
WRTTE (85,19) NOB,NVAR,NOFT,NO1
19 FCRMAT $1 / 14 X, 4$ HNOB $=, I 5,2 X, 5$ HNVAR $=, I 5,2 X, 5 H N O F T=, I 5,2 X, 4 H N O 1=, I 5) \quad$ LO GO TO 202
201 NRITE (85,15) NOB, NVAR,NOFT, $(N C H 1(I), I=1,3),(N C H 2(I), I=1,3)$, NO1 LO

15 FOPMAT://4X, 4 HNO $B=, I 5,2 X, 5$ HNVAR $=, I 5,2 X, 54 N C F T=, I 5,2 X, 54 N C H 1=, 3 I 5$,
$12 X, 5$ HNCH2 $=, 3 I E, 2 X, 4$ HNC1 $=, I 5)$
202 HRITE $(86,17)$ (MFT(I), $I=1$, NOFT)
17 FOPMAT (//4X, 16HVAPIAZLE FCRMAT=//10X, $10410 / 10 X, 10 A 10)$ WRITE $(86,7)(I, I=1,10)$
7 FCPMAT (// 4X,14HVADIABLE NAMES//4X,10(EX,1H(,I2,1H)))
WRITE (85, g) (NAME(I), $I=1, N V A F)$
8 FCPMAT (/10(4x,10A13//))
IF (AD1.EO.C) GO TC 1001
$N O L=23$
LOGE
IF (TVAP.LE.23) NDL=NVAR LOGE
WRITE (86, 3) (I, I=1, MDL)
9 FCFHAT (+1*, $4 X, 1$ CHBASIC DATA//11X,9(2X,1H(,I1,1H)),14(1X,1H(,I2, . LCGE
11H))
$\because=0$
D0 1こ9 I = : , NO3

SUQRGUTINE PROCESS (NCB,NVAF, NALT,NX,NY, NZ, NOP, NOHCW, NCSTH,NBUSZ,
1NT, MSTF, NDY, NAX, NBY, NO2, NCD, NX, NPCH)

 PRO1ANAME（300，16），JSUM（303），h4（4），JFAC（100）COMMON／AAZ／AR（100），BXR（10），CYR（4，10），VECR（10），HEXR（11，10），1S1P（4），T1R（4）， \(\operatorname{A1E}(4), X M N(4,4), Y: 1 N(10), X M B(4,4), C M N(10)\)

 CCMMCN /AA3/ NBZ (300,30), NOCO(8),NYCD(8),NPCD(8, E)COMMCN／AA4／NAME（45），LCCECS（45），NYHON（10），NYSC（10，10），NALTD（4），1NALTX（4，4），NIZ（35），SCLZ（35），NAPG（35），NAMB（10），ITPF（10，14），\(2 \operatorname{ITPC}(10,14), \mathrm{LZ}(30), \mathrm{S} 5(10), \mathrm{NN}(30), \mathrm{NCH} 13), \mathrm{NCH}(3), \mathrm{MFT}(16)\)
 IF :NX.EGOD.CR.NY. CR.OL GO TO 701
 GO TO 7is2
 701 IF (NX.EQ.0) GO TO 703
 GO TC 702
 \(003 \hat{C} 1 \mathrm{I}=1, \mathrm{NY}\)
 IF (NYHOH(I).EO.E) GO TO 331
 PEAD (85,1) (NYSO(I, J), J=1,8)
 301 CCNTINUE
704 IF (NX.EO. ©) GO TO 705
$302 P E A D(85,2)$ NALTO(I), (NALTX(I,J),J=1,NX)
PR
PP:
PE:'
705 REAO $(35,2)$ (NALTD (J), J=1,NALT)
$7 O_{0}$ E REA $(85,2)$ (NIZ $\left.(I), I=1, N Z\right)$
PR:
PF,
PEAD $(35,3)$ (SCLZ(I), $I=1, N Z)$

?EAD (85,1) (NA?G(I), $I=1, N Z)$
PRO
IF (NOP.EQ.0) 60 IO 303

DO 3 U I $=1$, NOP
READ $(85,4)$ NAMB (I), (ITRF $(I, J), J=1,14)$
394 PEAD $(85,5)$ (ITRC(I,J), J=1, 14)
BO $3 \mathrm{~J} 4 \mathrm{I}=1$, NOP
REAO $(85,4)$ NAMB (I), $(I T P F(I, J), J=1,14)$
304 READ $(85,5)$ IITRC(I,J),J=1,14)
303 IF (NCD.EQ.J) GO TO 206
$00352 \quad I=1, N C D$
352 PEAD $(85,35) N \times C O(I), N Y C D(I),(M E C O(I, J), J=1,5)$
35 FORMAT (2A10,5I10)
PFG
$30 C L Z N(I)=1$
1 FOPMAT (BI10)
2 FOPMAT (BA士C)
3 FOEMAT (BF10.3)
4 FCPMAT ($A 13,14$ I5)
5 FCRMAT (10X, 14F5.0)
NXI=NX
WRITE(96,17) NALT,NX,NY,NZ,NCP, NDHCW, NCSTH, N3US2,NC2,NCD
17 FOPHAT $1+1^{*}, 4 x, 13 H C O N T P O L$ COCES, $/ 4 X, \delta X, 4 H M A L T, 8 X, 2 H N X, 8 X, 2 H N Y, 8 X$,
$12 H N Z, 7 X, 3 H N O P, 5 X, 5 H N D H O W, 5 X, 5 H N C S T H, 5 X, 5 H N B U S 2,7 X, 3 H N D 2,7 X, 3 H N C D / /$
24X,11I13)
IF (N:X.Eก. - CP. NY.EQ.0) GC TO 5C5
WEITE $(85,14)$ MOV, $(N A X(I), I=1, N X),(N B Y(I), I=1, N Y)$
1 G FOFMAT (//LX, 12A10)

1ANAME (300,16), JSUM(300), h'4 (4), JFAC(100)
CCMMON /AAZ $\operatorname{AR}(100), B X R(10), C Y R(4,10), V E C R(10), H E X R 111,101$,
1S1P(4), T1R(4), N1E(4), XMN(4, 4),Y:1N(10), XMB(4, 4), CMN(10)

PRO

＿
（NYHOM（I）I

 READ \((85,2)\) NOV, (NAX (I), \(I=1, N X)\), (NBY(I), \(I=1, N Y)\)
 $N B Y(I), I=1, N Y)$PRO．PROQPROOProd

 READ \((85,2)\) NOV, (NAX(I), \(I=1, N X)\)
 READ（85，？）NDV，（NAX（I），I＝1，NX）

702 IF (NY.EO. O) GO TO 704

 PEAO (85,1) (NYHON(I), \(I=1, N Y)\)
 702 IF（NH．

-00 उC̛1 $I=1, N Y$PROC

703 READ $(85,2)$ NOV, $\operatorname{NBY}(I), I=1, N Y)$

\qquadIF（NYHOW（I）．EO．O）GO TO 331PRO
PRO
－

 DO \(302 I=1\), NALT\(302 P E A D(35,2)\) NALTO（I），（NALTX（I，J），J＝1，NX）PRO：
 PRO

 GO TO 705705 READ（ 35,2 ）（MALTD（J），J＝1，NALT）PEAD \((35,3)\)（SCLZ（I），I＝1，NZ）マEAD（85，1）（NAPG（I），I＝1，NZ）PF：
 $(N I Z(I), I=1, N Z)$

 \(206 \quad L Z=N X+N Y+11\)
 $206 \quad L Z=N X+N Y+11$

 \(00300 \quad I=1, \mathrm{LZ}\)
 $00300 \quad \mathrm{I}=1, \mathrm{LZ}$
30 C LZN（I）＝11 FOPMAT（8I10）2 FOPHAT（BAIC）PRO
PRO:
333 IF (NCD.EQ. J) GO TO 206
PRO.
PROO
PROO
PROE
PROE
PROE
PROE
PROE
PFO
PFO. ${ }^{\prime}$
PRO:
PROO
PROO
元

$-$
-
-
-pr．PROPROO
\qquad

PRO
Pro
$)$
46
$\begin{array}{r}\because 3 \\ 3 \\ 3 \\ \hline\end{array}$
\because
, $-\cdots$
$\frac{2}{5}$
5
0.
605. IF (NX.E』. I) GO TO 605
WRITE (35,18) NOV, (NAX(I), $I=1, N X)$
GC TC 607

507 IF (NiY.EO.J) GOTO 万O甘
HRITE $(86,19)$ (NYHCN(I), $I=1, N Y)$
19 FOEMAT $(/ / 4 X, 5 H N Y H O W, / / 4 X, 12 I 10)$
OO бへ9 $\mathrm{I}=1$, NY
IF (NYHDW(I).EO.E) GO TO 500
KRITE (96,26) I, (NYSO (I, J), $j=1,10)$
PPO
PRO
PRO
PRO
PRO
PRO:
PRO
PRO:
PRO
509 CONTINUE
2 C FORMAT (//4X,5HAYSC(, I $2,1 H$) , / $4 X, 12 I 10$)
5J8.IF (NX,EG,0) GO TO 610
WRITE (86,21)
21 FCOMAT (//4X,5X,5HNALTO,5X,5HNALTX)
$30611 \quad I=1, N A L T$
611 WRITE (86,18) NALTO(I). (NALTX(I,J), J=1,NX1)
610 HPITE $(86,22)$
22 FOPMAT (// $1+3,3 H N T Z)$
WRITE (86,18) (NIZ(I), I=1, NZ)
WRITE (85,23)
23 FORMAT ($/ 14 \times, 4 H S C L Z)$
WRITE (86,24) (SCLZ(I), I=1,NZ)
24 FORMAT (// $+\mathrm{X}, 12 \mathrm{~F} 10.3$)
WRITE (8E,2三)
25 FOFMAT (//14X,4HNARG)
\#RIT
26 FOPMAT $(/ / \div X, 12 I 10)$
612
WRITE (96,27)
27 FOPMAT ($/ 14 X, 5 X, 4 H N A M B, 6 X, 4 H I T R F / 20 X, 4 H I T R C)$
$00613 \mathrm{I}=1$, NOP
WRITE $(86,28)$ HANB(I), (ITRF(I, J), J=1, 14)
513 WRITE $(86,29)(I T P C(I, J), J=1,14)$
28 FOPMAT (//4X,410,14I5)
29 FCFMAT (//4X,10X,14F5.1)
E12 IF (NCD.EQ.0) GO TC 378
WRITE $(86,36)(I, I=1,6)$
36 FORNAT (//4X,5X, LHNXCB,6X,4HNYCO, $6(3 X, 5 H N R C D(, I 1,1 H)) / 4 X)$
$30379 \quad I=1, \mathrm{MCO}$
379 WRITE (86,37) NXCO(I), NYCD(I), (NRCO(I, J), $j=1,0$)
37 FCFMAT ($4 X, 2 A 1 \mathrm{~J}, 6 \mathrm{I} 10$)
37830 3.35 $I=1, N Z$
DC 3 こ $\quad J=1, N \cup A ?$
IF (NIZ (I).NE.NAME (J)) GC TC 306
CALL PEACEC (NBZ (1,T), LOCECS(J),NOP)
GOTO 3
306 CONTINUE
305 CCNTINUE
DATA NHA /1EH DSTPP/
DATA NMB /LEH NGAV/
DATA MBC $1:$ ISH MODCH/
DATA WMO/1ड̈H ZERO/
DATA IME /1-ए NAAV/
DATA BMF /iSH DNE/
$\therefore=0$
$30307 \mathrm{I}=1, \mathrm{NO} 3$
00 329 J=1, H2
OSTRP/
MAAV/
MODCH/
ZERO/
NAAV/
DNE/
IF（IIZ（J）．EO．NHA）GO TC 3ח9P：
IF（NBZ（I，J）．EG．－9．OR．NBZ：I，J）．EG．－8）GO TO 307$3 \cup 9$ IF（NBUSZ．EQ．J．ANO．NIZ（J）．EO．MME．AND．NPZ（I，J）．EQ．2）GO TO 307prPR．
IF（NAPG（J）•E゙Q．2 •AND．NBZ（I，J）•EE，D）GO TO 307
IF (NCSTH.E゚O.1 •AND. NIZ(J).EC.MME •AND. NZZ (I,J),NE.11) GO TO 307
308 continue
$N=H+i$
$B 0 \quad 1111 \mathrm{~J}=1, \mathrm{NZ}$
$1111 \mathrm{NBZ}(\mathrm{N}, \mathrm{J})=\mathrm{N} 3 Z(I, J)$
_33 CONTINUE
NT $\mathrm{N}=\mathrm{N}$
IF (N.Y.EQ.J) GO TO 720
DO 431 J=1,NY
CO 4う2 $K=1, N Z$
IF (NBY(J).EQ.NIZ(K)) GOTC 403 PROB
402 CCNTINUE
GO TO 401
402 CCNTINUE
GOTO 401
PR.
\qquadCO 4う2 $K=1, N Z$IF（NBY（J）．EQ．NIZ（K））GOTO 403PRO

 IF (HICSTH.EO. 1 . AND. NIZ (J).EO.NME .ANO. NBZ(I,J).NE.10) GO TO 307
 IF（HICSTH．EO． 1 ．AND．NIZ（J）．EO．NMG ．ANO．NBZ（I，J）．NE．10）GO TO 307308 continue
GO TO 401
PRC

 IF (NYHOK(J).EO.O .OR. NYHCW(J).EQ.3) GC TO 401
 IF（NYHOK（J）．EO．O ．OR．NYHCW（J）．EQ．3）GO TO 401CORTINUE
\qquadPRO．
403 KX NYHOW(J)
GO TC (411,412,4C1,411), KX PROM
$41100404 \quad I=1$, NT
$K 1=N B ?(I, K)$
NBZ $(\underset{I}{*}, K)=N Y S O(J, K 1)$
434 CONTINUE
GOTO 401
434 CONTINUE
GOTO 401
$41200405 I=1$, NT
IF (NEZ(I,K).GE.NYSO (J,1).ANO.NBZ(I,K).LT.NYSO(J,Z)) GO TC 406
$N B Z(I, K)=Z$
50 TC 405
$4.36 \quad \mathrm{NBZ}(\mathrm{I}, \mathrm{K})=1$
405 CONTINUE
PRO
PRO
PRO
PRO
PRO
PRO
PRO
PROd
$+16$
$+17$
$+21$
$+3 \mathrm{C}$
$+31$
$+37$
$+37$
$+51$
$+53$
．$+31$

```
+41
```


D0. $321 \mathrm{~K}=1, \mathrm{H}$
K1 = ITRF (I, K + 2)
321 S5 (K)=NBZ(J,K1)*SCLZ(K1)*ITRC(I,K+2)
$K X=\operatorname{ITFF}(I, 2)$
Go re (241,242), KX
$2 \div 1$ ANAME (J,I)=0.O
$00322 K=1$, N
PRO:
PPO:
322 ANAME (J,I) = ANA:IE (J,I) +S5(K)
GO TC 32.
242 ANAME $(1, I)=1.0$
\qquad-...........
\qquad
- - - . - . - - -
PROIDO $323 \mathrm{~K}=1$, NP食 0
PFO320 CONTINUEPRO.
3:1 CONTINUEPRO
310 IF (NX.EG.0) G0 TO 601PRG
DO $329 \mathrm{~K}=1$, NALT PREPR!
DC $330 \mathrm{~L}=1$, NK
$00331 \mathrm{I}=1, \mathrm{~N} Z$IF (NALTX(K,L).EQ.NIZ(I)) GO TO 332PRCPRC
331 CGNTINUEPRO
DO $333 \mathrm{I}=1$, NOP
IF (NALTX(K,L).EO.NAMB(I)) GO TO 334 PRCPR:
333 CONTINUE
IF (NALTXiK,L), EG.NMF) GC TC 1113
IF (NALTX(K,L).EN.NMD) GC TC 332PRO
MSTP=1WRITE (85,15) NALTX(K,L)15 FORMAT (//4X, BHVAPIABLE,A1G,14HDOES NOT EXIST)GO TC 359PRCPRO
PRO
PRO:
PPO
PRO
1113 DO $108 \mathrm{~J}=1$,NT
$108 \times(J, K, L)=1.0$
\qquadGC TC 330
$33200335 \mathrm{~J}=1, \mathrm{NT}$ P
IF (AALTX(K,L) •NE. NMO) GO TO 111 ? P .
$X(J, K, L)=0.0$ p :
GO TC 335P
$1112 \times(J, K, L)=N S Z(J, I) * S C L Z(I)$ P
335 CONTINUE PF
GO TO 330P:
334 DC $336 \mathrm{~J}=1$, NT P:
$336 \times(J, K, L)=A N A M E(J, I)$ PF
33 C CONTINUE
$00363 \mathrm{I}=1$, NC!PP.
329 CONTINUE
IF (NCD.EO.0) GO TO 709PR:
D0 $384 \quad J=1, N Z$ PR:
IF (NYCD(I).EG.NIZ(J)) GO TC 365 PR:
354 CONTINUE
WRIT三 $(35916) \quad \mathrm{NYCO}(I)$
MSTP $=1$
GO 10 3́b
PROPROPRO
365 00 355 $K=1$, NT$K X=N E Z(K, J)$
365 NBVA $(K, I)=$ NRCD (I,KX)
35z CORTINUE
IF (HSTP.ED.1) 60 TO 359
$B N=0$PRO
PRO1
PROI
PPO 1
PRD 1.PRO:
CO $357 \mathrm{I}=1$, CiCJPRO:
－ $0<$
$N M A X=N D V A(1, I)$
RPO \ddagger
$50368 \mathrm{~J}=1, \mathrm{HIT}$
IF（NDVA（J，I）．LE．MMAX）GO TO 358
NMAX＝NEVA (J, I)
PRO：
PROIS
368 SONTINUE
PROI 1
$\therefore X(I)=N M A X$
$M N=M N+N M A X-1$
367 CONTINUE
กO Зе9 $K=1, N X$
$N F=N X-K+1$
DC $369 \mathrm{~J}=1$ ，NALT
DO $359 \mathrm{I}=1$ ，NT
FRO 19
PROI
PRO1．
PF． 01
PRO：
PRO1
PRO1
PRO1
$359 \times(I, d, N F+M N)=X(I, J, N F)$
$\mathrm{H}=\mathrm{f}$
－0C $370 K=1, N X$
PROI：
$00371 \mathrm{M}=1$ ， NCO
IF（NAX（K）．EQ．VXCD（M））GC TC 372
PRO1S
RRO：C
371 CON：TINUE
JSUM $(K+N)=N A X(K)$
PRO：q

BO $373 \mathrm{~J}=1$ ，NALT
PRO！9
PRO19

DO $373 \mathrm{I}=1$ ，NT
（ T J，K N N
$373 \times(I, J, K+N)=X(I, J, K+Y N)$
GO TO 370
372 ML $=M \times(4)$
$L Z N(K)=M X(Y)$
CC $374 \mathrm{~L}=1$ ，NL
374 JSU，M $(K+N+L-1)=N A X(K)$
DO． $375 \mathrm{I}=1$ ，MI
PRO19
PRO19
PRO1
PRO： C

LA＝NOVA（I，\because ）
DO $375 \mathrm{~J}=1$ ，MALT
$S=X(I, J, K+M!)$
BO $377 \mathrm{~L}=1$ ，NL
$377 \times(I, J, K+M+L-1)=0.0$
$X(I, J,\langle+N)=S$
PROI：
PRO1：
PROI
PRO1 ${ }^{\circ}$
PROIC
PRO1＇
PROI：
PRO1
PRO1：
PRO1：
PROI：

```
IF（NPCH．NE゙．1）GO TO 102
IF（LA，NE，MX（4））X（I，J，K＋N＋LA）＝1．0
GO TO 375
102 IF（LA，NE．MX（M））X（I，J，K＋N＋LA）＝S
375 CONTINUE
\(A_{i}=N_{i}+M \times(M)-1\)
37 C CONTINUE
\(N X=N X+M N\)
CO \(376 \mathrm{I}=1\) ， NX
```

Prot

338 continue
$3034 \mathrm{D}=\mathrm{I}=\mathrm{HOP}$

$34 C$ CONTINUE
IF（ABY（L）．ED．HMF）GO TO 339
MSTP＝1
M只ITE（8́，1б）NBY（L）
GO TO． 359
339 IF（NYHOW（L）．ER． 3.02 ．NYHCH（L）．EO．4）GO TO 342
$M 2=L+M 1$
DO $343 \mathrm{~J}= \pm . \mathrm{NT}$
$\because(J, M 2)=0.0$
IF（NBY（L）．NE．NMF）GO TO 380
$Y(J, M 2)=1.3$
GC TC 343
$380 Y(J, M 2)=N B Z(J, I) * S C L Z(I)$
343 CONTINUE
GO TC 337
$342 \quad M 2=L+M 1$
$00344 \quad J=1, N T$
$30345 \mathrm{~K}=1,5$
$345 \quad Y(J, M 2+K-1)=0$.
IF（NBZ（J，I）．GT．5）GO TO 346
$N=N B Z(J, I)$
$Y(J, M 2+N-1)=1.0$
346 IF（NEZ（J，I），GT，M3）M3 NBZ（J，I）
$346-(N B Z(J, I) \cdot 6 T \cdot N 3)-M 3=N B Z(J, I)$
P．
344 CONTINUE
$111=M 1+M 3-2$
$L Z N(N X+1+L)=M 3-1 \quad P_{i}$
IF（L．EO．NY）$H 2=L+M 1$ P：
GO TO 337
$341 \quad M 2=L+M 1$
$00347 \mathrm{~J}=1$ ，NT
$Y\left(J, \mu_{2}\right)=5.0$
$347 Y(J, N 2)=A N A M E(J, I)$
337 CONTINUE
602 GC TC $(251,251,252,252)$ ，NOHCW
$25100324 \mathrm{~J}=1$ ，NALT
$30324 \mathrm{I}=1, \mathrm{NT}$
Pp
$324 \operatorname{NOVA}(I, N)=0$
PF
DO $325 \mathrm{~K}=1, \mathrm{NZ} \quad \mathrm{PF}$
IF（NIZ（K），EO．NOV）GO TO $32 E$ P：
325 CONTINUE
$M S T P=1$
PR
WマITミ（80，15）NOV
GO TO 359
$326 \quad 00 \quad 327 \quad I=1$ ， MT
L＝NEZ（I，K）／10
$327 \operatorname{NDVA}(\mathrm{I}, \mathrm{L})=1$
GO TO 328
$252 \quad 00 \quad 256 \mathrm{~J}=1$ ，NALT
DC $256 \quad I=1, N T$
256 NOVA $(5, ~ J)=う$
BO $2 ⿰ 氵 \quad \mathrm{~J}=1,: \| A L T$
CC $258 \quad K=1, i: 2$
IF（：ALTDG（J）．EZ．NIZ（K））GC TO 259
$\because S T P=1$
VRITE (86,15) MALTD(J)
PEO1
50 TC. 25 ?
$259 \mathrm{DC} 260 \mathrm{I}=1$, NT
260 NOVA $(I, J)=N B Z(I, K)$
257 CONTINUE
PFO1
PRO 1

329 IF (MSTP.EQ.1) GO TO 359
PROI

GC TO (351,352,351,352), NOHOW
PRO1
PFO1
PRO1

E FCPMAT $\left(* 1^{*}, 4 X, 14\right.$ HPROCESSED CATA//4X,21HOEPENDENT VARIABLE IS,A10, PRO2 15X,26H (INGLUDES AUTD PASSENGEPS))

PRO2 TO TC 353
352 WPITE $(86,7)$ NDV
PROR2
7 FCRMAT $\left(\neq 1^{+}, 4 X, 14 H F R C C E S S E D ~ C A T A / / 4 X, 21 H D E P E N D E N T\right.$ VAÑIAELE IS, A1O, $15 \mathrm{X}, 2$ 万H (EXCLUOES AUTO PASSENGEPS))

PRO2

367
353 IF (NX.EQ. ن) GO TO 603
PRO2

WRITE $(86,8)$ (NAX(I), $I=1, N X)$
PROZ

```
\(+13\)

8 FCRMAT (// \(/ 4,3 B H M O D E\) RELATED INOEPENOENT VARIAPLES ARE, \(/ 114 X\),
PRO2
\(19(410,3 X), / / 14 K, 9(A 10,3 X))\)
PRO2
E03 IF (NY.EQ.O) GO TO 504
PRO?
PRO?
-
9 FCRMAT \((/ / 4 X, 40 H S O C I O-E C O N C M I C\) INDEPENDENT VARIAPLES ARE,//14X,
1 و \((A 10,1 H(, I 1,1 H)), / / 14 X, 9(A 10,1 H(, I 1,1 H)))\)
\(N=0\)
DO \(650 \mathrm{I}=1\), NY
E5C \(N=N+L Z N(N X+I+1)\)
IF (N.EQ.NY) GO TO 651
30 E52 I=1, NiY
\(J=N Y-I+1\)
\(M 1=L Z N(N X+J+1)\)
DC 553 M \(=1, M 1\)
N:BY(M) \(=\operatorname{NEY}(J)\)
\(N=N-1\)
O53 CONTINUE
652 CONTINUE
\(651 \quad S=5 \cdot 0\)
604 NY=M2
PRO2'
\(N X Y=N X+N Y\)
IF (NY,EQ.0) GO TO 101
PRO2'
DO \(733 \mathrm{~K}=1\), NY
PRO2!
\(\mathrm{S}=\mathrm{i} .0\)
\(N=0\)
\(00734 \mathrm{I}=1\), NT
RES2:

\(\begin{array}{ll} & N=N+1 \\ 734 & S=S+Y(I, K) \\ 733 & Y H N i(K)=S / N \\ 101 & D C 354 I=1,30 \\ 354 & N N(I)=I\end{array}\)
\(\begin{array}{ll} & N=N+i \\ 734 & S=S+Y(I, K) \\ 733 & Y: N i(K)=S / N \\ 101 & D C 354 I=1,30 \\ 354 & N N(I)=I\end{array}\)
\(\begin{array}{ll} & N=N+1 \\ 734 & S=S+Y(I, K) \\ 733 & Y H N(K)=S / N \\ 101 & D C 354 I=1,30 \\ 354 & \text { NN }(I)=I\end{array}\)
\(\begin{array}{ll} & N=N+i \\ 73 L & S=S+Y(I, K) \\ 733 & Y H N(K)=S / N \\ 101 & D C 354 \quad I=1,3 U \\ 354 & N N(I)=I\end{array}\)
RES2:
RES?
RES2

IF (NFCH.NE.1) GO TO 103
CO \(104 \mathrm{I}=1\), \(\mathrm{H} T\)
IF (NX.EO.O) GO TO 105
\(301: 6 \quad \mathrm{~J}=1, \mathrm{HAL}\)
10E PUNCH 38, I,J, \((K(I, J, i(K), K=1, N i X)\)
105 IF (MY.EG.J) GOTO 104
\(N=N \cdot \lambda L T+1\)
PUHCH \(33, I, N,(Y(I, K), K=1, N Y)\)
134 CONTIPNE
227. 3. FOPMAT (I3, I2,5X, TF10ـ3)

\section*{\(103 \mathrm{~N}=3\)}


If（N：XY．LE．7）GO TO 355
WRITE（85，10）（NH（I），IE士，7）
10 FOPMAT（／／／9X， 3 ，2HDV， \(7(10 \mathrm{X}, 2 \mathrm{HX}(, \mathrm{I} 2,1 H)\) ）／／4X）
DC 35 G \(I=1\) ，NT
HRITE \((36,11)\) I，NOVA（I，1），\((X(I, 1, K), K \equiv 1, N X)\)
DO \(357 \mathrm{~J}=2\) ，NALT357 认识IE（ 86,12 ）NJVA（I，J），\((X(I, J, K), K=1, N X)\)p
12 FORMAT（9X，I10，7F15．5）po
356 COMTINUEPe
11 FQPMAT（ \(4 \mathrm{X}, 1 \mathrm{H}, \mathrm{I} 3,1 \mathrm{H}\) ），I15，7F15．5） ..... pf\(P\)
HRITE \((36,13)\) PNN（I），\(I=1,11)\) ..... Pi
13 FCRMAT（／／／9X，7（10X，2HY（，I2，1H））／4X） ..... P：BO \(358 \mathrm{I}=1\) ，NT
358 WFITE \((86,14)\) I，（Y（I，K），\(K=1, N Y)\)\(P\)
14 FGRMAT（ \(4 \mathrm{X} / 4 \mathrm{X}, 1 \mathrm{H}(, \mathrm{I} 3,1 \mathrm{H}), 7 \mathrm{~F} 15.5\) ） ..... \(P\)
GC TC 359Pf．
355 WRITE \((36,15) \quad\)（NN（I），\(I=1,7)\) ..... \(p\) p
15 FOOMAT（／／／9X，8X，2HDV，7（11X，1H（，I2，1H））／／4X） ..... PR
DC 360 I＝1，NT ..... P：
WRITE \((85,11) I, N O V A(I, 1),(X(I, 1, K), K=1, N X),(Y(I, K), K \equiv 1, N Y)\) ..... \(P\)
003 ह́1 J＝2，NALTPF
351 WRITE（86，12）NDVA（I，J），（X（I，J，K），K＝1，NX） ..... \(P\)
360 CONTINUE ..... P
E14 IF（NX．EQ．J）GO TO S15
NPITE（ 85,10\() \quad(N N(I), I=1, N K)\)\(0 C 516 \quad I=1\) ，NT内只ITE（ 86,11 ）I，NDVA \((I, 1),(X(I, 1, K), K=1, N X)\)\(30 \quad 617 \quad J=2\) ，NALT
617 WRITE \((36,12)\) NOVA \((I, J),(X(I, J, K), K=1, N X)\)
616 CONTINUEGOTO 359
615 WRITE \((86,30)\)（NN（I），\(I=1, N Y)\)30 FOPMAT（／／／9X，8X，2HDV，7（10X，2HY（，I2，1H）／／／4X）\(-\quad 00618 \quad I=1, N T\)WRITE \((86,11) \mathrm{I}\) ，NOVA \((I, 1),(Y(I, K), K=1, N Y)\)\(00619 \mathrm{~J}=2\) ，NALT
619 WRITE 186,12\()\) NOVA（I， 1\()\)
618 CCNTINUE359 RETUFNENCPr：
Pr：\begin{tabular}{l}
\(P^{\prime}\) \\
\(P_{i}\) \\
\(P^{\prime}\) \\
\hline
\end{tabular}
F\(\frac{P}{P}\)P：\(\stackrel{P}{P}\)
PF\(P\)PR\(p ?\)
```

 SUEROUTINE LOGIT (NALT,NAL,NX,NY,NO,NT,MSTP,NDHOW,INIT,NH,A,GRAO,
 1HESSN,ALGL,NGI
 GIMENSIGN. A (13),GPAD(1C),HESSN(10,10)
    ```

```

 1ANAME(30J,1C),JSUH(30J),S1(4),JFAC(10C)
 COPMCN/AA2/ AR(10[), BX(10), CY(4,1G),VEC(1C),HEX(IO,1C),S1P(4),
 1T1(4),W1(4)
 IFT=1
 IF (INIT.NE.0) GO TO 4O2
 IFT=O
 IF (NX.EG.O) GO TO 403
 REAO_(B5,1) (EX(I),I=1,NX)
    ```

```

 403 IF (NY.EC.j) GO TO 50
 00 4 J1 J=1,NAL
 401.READ (85,1) (OY(J,I),I=1,NY)
1 FORMAT (\&F10.5)
LGTO
50G WRITE (86,2)
2 FORMAT (*1*,4X,17HLOG CF ITEFATIONS)
LGTO
HRITE (86,3)
3 FCPMAT (//4X,23HINITIAL FARAMETEP VALUES ARE/4X)
LGTG
LGTJ
IF (NX,EO.O) GO TO 404
WRITE (86,'+) ((I,BX(I)),I=1,NX)}\mathrm{ LGTO
LGTO
4 FOPMAT (/9X,7(5X,2HB(,I2,2H)=,F6.3)//9X,7(5X,2HB(,I2,2H)=,F6.3)/) LGTG.

```

```

 DO 4ÜG I=1,NAL
 LGTO
 LGTC
 406 WRITE (86,5) ((I,J,CY(I,J)),J=1,NY)
LGTE
5 FOEMAT (/9X,7(3X,2HCI,I1,1H,,I2,2H)=,FE,3)/19X,7(3X,2HC(,I1,1H,.
1I2,2H)=,F(5.3)/4X)
LGTO
LGTO.
405 N=?
L゙E゙NOIF (HX.ES.O) GOTOT03
00 >01 I=1,N诺
N=N+1
701 A(N)=BX(I)
703 IF (N.Y.EC.O) GO TO 7U4
DO 7:2 I=1,NAL
CO 7C2 J=1,NY
LGTC
LGIM
LGTG
LGTE
LGT0
N=N+1
LGTO
702 A(N)=CY(I,J)
704 S=0.0
GF
CT
407 INIT=1
LGTO
GOTC408 LGO
4J2 N=0
LGTE
IF (N:X.EQ.U) GO TO 4U9
LGTU
BC 410 I=1,NX
LGTE
N=N+1
LGTE
LGTE
41C 3X(I)=A(N)
IGTG
409 IF (NY.EG.J) GO TO 408
LGTG
LGTO
BO 411 J=1,NAL_
00 411 I=1,NiY
LGTO
LGTO
N=N+1
411 CY(JTT)=A(ツ) LGTC
411 CY(J,TI)=A(V) _
408 S=0.E
LGTO
501 DO 5E% I=1, NT
CO 412 J=1,H:ALT
LGTS
S1(J)=):
S1(J)=j.i
LGTJ
4i2 T1(J)=0.:
LGTE
OC 5%5 J=1,NAL
LGTS

```

Fで

IF（NX．EG．D）GO＿TO＿551
005 SU \(=1\) ，NX
\(506 S 1(J)=S 1(J)+X(I, J, K) * 3 X(K)\)
551 TF（NY．EC．0）GO TO 505
OC \(5 C 7 \mathrm{~K}=1\) ，NY
537 T1（J）\(=\mathrm{T} 1(\mathrm{~J})+Y(I, K)+C Y(J, K)\)
505 continue
\(552 \mathrm{~L}=0.3\)
DO 5is J＝1，NAL
H1（J）\(=S 1(J)+J 1(J)\)
H1（J）\(=\operatorname{EXP}(W \pm(J))\)
\(508 \quad \mathrm{U}=\mathrm{J}+\mathrm{hi} 1(\mathrm{~J})\)
\(p(I, 1)=1,0 /(1,0+U)\)
\(00509 \mathrm{~J}=2\) ，NALT
\(509 P\left(I, J^{\prime}\right)=W 1(J-1) /(1.0+U)\)
503 CONTINUE
\(A L G L=0.0\)
DC \(510 \mathrm{I}=1, \mathrm{NT}\)
\(\mathrm{H}=0\)
\(\mathrm{S}=0 . \mathrm{C}\)
CO \(511 \mathrm{~J}=1\) ，NALT
\(N=N+N O V A(I, J)\)
LO
\(U=A L C G(P(I, J))\)
\(511 S=S+\operatorname{NDVA}(I, J) * U\)
\(J \operatorname{SUM}(I)=N\)
510 ALGL \(=A L G L+S\)
DC 513 I \(=1\) ，NT
IF（IFT．EO．1）GO ro 513
\(N=J S U M\)（I）
\(S=0.0\)
\(30515 \mathrm{~L}=1, \mathrm{~N}\)
\(U=L\)
\(515 S=S+A \operatorname{LOG}(U)\)
\(1:\)
\(T_{1}(J)=0.0\)
N＝NDVA（I，J）
CO \(517 \mathrm{~L}=1, \mathrm{~N}\)
\(\mathrm{V}=\mathrm{L}\)
\(517 \mathrm{~T} 1(\mathrm{~J})=\mathrm{T} 1(\mathrm{~J})+A L O G(\mathrm{~V})\)
\(516 \mathrm{~T}=\mathrm{T}+\mathrm{T} 1(\mathrm{~J})\)
\(J F A C(I)=S-T\)
513 ALGL＝ALGL＋JFAC（I）
512 IF（NG．EQ．0）GO TO 1000
IF（NX，EC，O） 50 TO 553
DC \(518 \mathrm{~K}=1\) ， NX
```

IF（NDHON．LE．2）GO TO 512

```

\(T=0.0\)

DC \(515 \mathrm{~J}=1\) ，NALT

LLC

LG
LG
L 6
LGT
LGT
```

GRAC $(K)=0.0$
DO $519 \mathrm{I}=1, \mathrm{NT}$
S2 $=0.0$
S3 $=0.0$
DC $520 \mathrm{~J}=1$ ，NAL
$S_{2}=S 2+\bar{N} O V A(I, J+1) \times \bar{X}(I, J, K)$
$520 \quad 53=S 3+P(I, j+1)+x(I, J, K)$
519 万PAO（K）$=$ GRAD（K）$+(S 2-J S U M(I) * S 3)$
518 CCNTINUE
553 L＝iUX
IF（MY．ED．U）GO TO 554

```
LGT
LGT
LGT:
LGTO
LGTE
LGTQ
LG.TD
LGTO

DC． \(521 \mathrm{~J}=1, \mathrm{NAL}\)
LGT1

EC4

DO \(522 \mathrm{~K}=1\) ，NY
LGT1
\(L=L+1\)
LGT1
\(G R A O(L)=0.0\)
LGT1
\(30523 \mathrm{I}=1\) ，NT
LGI亡
523 GRAD（L）＝GRAD（L）＋（NDVA（I，J＋1）＊Y（I，K）－JSUA（I）＊D（I，J＋1）＊Y（I，K））
LGT1
522 CONTINUE
LGT1
521 CONTINUE
\(554 \mathrm{NC}=\mathrm{L}\)
606＿IF（NH，EQ．З）GO TO 1000
LGT1
GOTO 1000 LGT1
\(00524 \mathrm{I}=1\) ，NO
LGT1
DO \(524 \mathrm{~J}=1\) ，NO
LGT1
524 HESSN（I， 1 ）\(=0,0\)
LGT1
DO \(525 \mathrm{I}=1\) ，NT
IF（NX 10 （ 1
（NX．EQ．J）GO TO 555
LGT1
DO \(525 \mathrm{~K} \equiv 1, \mathrm{NX}\)
\(\operatorname{VEC}(k)=\) ह． 0
LGT1
DO \(526 \mathrm{~L}=1, \mathrm{NX}\)
LGT1
526 HEX \((K, L)=0.0\)
LGT1
DO 527 \(K=1, N X\)
LGT1
\[
S=0.0
\]

LGT1
CC \(528 L=1, N A L\)
LGTI
\(528 \quad S=S+P(I, L+1) * X(I, L, K)\)
527 VEC \((K)=S\)
\(00529 \quad M=1, N X\)
LGT1

DO \(529 \mathrm{~N}=1\) ，NX
LGT1．
\(00530 \mathrm{~L}=1\) ，NAL
LGT1

530 HEX \((M, N)=H E X(M, N)+P(I, L+1) * X(I, L, M) * X(I, L, N)\)
LGT1
LGTI
529 HESSN \((N, N)=H E S S N(M, N)-J S U H(I)+(H E X(M, N)-V E C(\because) * V E C(N))\)
IF（NY．ETS．O）GO TO 525
LGT1
\(K 1=N X\)
LGT1
L1＝NX
\(30531 \mathrm{~J}=1\) ，NAL \(\longrightarrow\)
DC \(532 t=1\) ，NY
－ 1 L \(L=1\) ，NY
LGT1
Li＝L1＋1
LGT1
\(00533 \mathrm{~K}=1\) ， NX
LGT1
\(533 \operatorname{HESSN}(K, L 1)=\operatorname{HESSN}(K, L 1)-J S U M(I) *(F(I, J+1) *(X(I, J, K)-V E C(K)) * Y(I, L)\) 1）
\(\frac{\text { LGT1 }}{\text { LGT1 }}\)
532 CCNTINUE
531 CONTINUE
LGT1＇
DC \(524 J=1\) ，NAL
OC \(534 K=1\) ，NY
\(K 1=K 1+1\)
CO \(535 L=1\) ，\(N X\)
535 HESSN \((K 1, L)=H E S S N(K 1, L)-\operatorname{SSUM}(I) *(P(I, J+1) * Y(I, K) *(X(I, J, L)-V E C(L))\)
534 CONTINUE
LGT1
LGT1
LGT1
LGT1
LGT1
\(555 \quad M 1=N X\)
LGT1：
\(555 \mathrm{M} 1=\mathrm{NX}\) LGT11
\(N 1=N X\)
DO \(537 \mathrm{~J}=1\) ，NAL
LGT1

DO \(537 \mathrm{~K}=1\) ，NAL
\(M 1=N X+(J-1)+N Y\)
\(00538 \quad \mathrm{H}=1\) ， MY
\(\because 1=M=+1\)
\(N 1=N Y+(K-1)-N Y\)
OC \(538 \mathrm{~N}=1, \mathrm{~A}: \mathrm{Y}\)
\(\cdots 1=N 1+1\)
IF（J．EO．K）GO TO 539

LGT1S
LGT1：
LGT1
LGT1：
LGT1：
LGTI：
LGTI
LGT！
LGTi：
LGT1

HESSN \((M 1, N 1)=H E S S M(H 1, N 1)+J S U X(I) *(P(I, J+1) * R(I, K+1) * Y(I, M) * Y(I, N), L\)
1)

1 I, N\()\)
Li
538 CONTINUE
\(L 6\)
537 CONTINUE
Le,
525 CONTINUE
LG

SUZROUTINE RESULT INALT,NAL, NX, NY,ND, NT, NSTP, NCD, NOHCH, INIT, NZ, BJ,
131, FGU,FG1,FH1,FH2,FHV,LX,HX,SE,TV, NAX, MEY,FLO, ICO, HFP, NEL)
PESO BIMENSICN BO (15), B1(1J), FGO(1E),FG1(10), FH1(10, 10), FH2(10.10), PRESG 1FHV(10, 15),LX(10), HX(10),SE(10),TV(10), NAX(15), NBY(1j) COMBCN/AA1/ X \(300,4,4), Y(300,10), N D V A(300,4), P(300,4)\),
IANAME (300, 10), JSUM(303), W4 (4), JFAC(100)
RESI
RES:
COMMCN /AA?/ AP(100),BX(10),CY(4,10), VECP(10), HEXR(10,10), S1P(4), RESO 1 T1只(4), M1F(4), XMN(4, 4), YMN(10), XME(4, 4), CMN(10), 2XE(4,4, 4),YE(4,10)
CCMMCN /AA4/ NA:1E(45),LCCECS(45), NYHOW(10), NYSC(10,10), NALTO(4), LOGO
INALTX(4, 4), NIZ (35), SCLZ(35), NACG(35), NAME(13), ITRF(10,14), LOGO
\(2[T Q C(10,14), L Z N(30), S 5(1]), N N(30), N C H 1(3), N C H 2(3), N E T(16) \quad 10 G 0\)
NDD=ND
IF (IOF.NE.3) GO TO 331 RESO

READ (85,26) NE,NALT,NX,NY RESO
26 FOPMAT (8I10) RESO
NAL =NALT-1
IF (NX.EQ.0) GO TO 343 RESO
PEAD \((85,27)(3 \times(I), I=1, N X)\)
27 FORMAT (8F10.0)
RESO
343 IF (NY.EQ.0) GO TO 107
RESC
DO \(332 \mathrm{~J}=1\), NAL
LOAO
332 2FAD ( 85,27 ) (CY (J,I), I=1, NY)
107 WRITE \((85,35)\) NE,NALT,NX,NY
LOAD:
35 FGRMAT (//4X, 8X, 2HNE, \(5 X, 4 H N A L T, 8 X, 2 H N X, 8 X, 2 H N Y / / 4 X, 4110)\) LOAS
110. WPITE (86,32)

LOAD
32 FCRMAT (///4X, 36 HEXTERNALLY SUPPLIEO COEFFICIENTS ARE)
LOAC
IF (NX.EO.0) GO TO 113
LOAG
WRIT \((86,33)((I, B X(I)), I=1, N X)\)
LOAJ
33 FORMAT (// \(8 X, 6(2 H 3(, I 1,2 H)=, F 12.5,3 \times 3)\) LOAO
IF (NY.EG.O) GO TO 114
LOAS
113 DO \(111^{2} J=1, N A L \quad\) LOAD
112 WRITE ( 85,34 ) ( \((J, I, C Y(J, I)), I=1, N Y)\)
LOAJ
34 FORMAT \((/ / 3 X, 5(2 H C(, I \perp, 1 H,, I 1,2 H)=, F 10,5,3 X))\) LOAO
331 IF (NOD.EO. \(3 . O R\).NOD.EO.4) GO TO 601 RESO!
LOAC
HRITE \((86,1)\) RESJ
1 FORMAT (///14X,24HCONVEFGENCE NOT ACHIEVED) - RESOI
6 22 WRITE 186,21 RESU
2 FCRHAT (//4X,59HTHE FOLLOWING ARE THE ESTIMATES OBTAINEO BEFORE T RESO 1ERMINATICN/4X)
\(\frac{\text { RES }}{\text { RESO }}\)
IF (NX.EG.J) GO TO 603
\(\mathrm{N}=\mathrm{J}\)
\(0 C 505 I=1, N X\)
RESO
\(N=N+1\)
\(3 X(I)=8=(N)\)
RESS
бJб \(3 \times(I)=85(N)\)
RESU
WRITE \((86,4)((I, B X(I)), I=1, N X)\)
RESO
4 FORMAT \((\exists X), ~\)
\(14 \mathrm{X})\)

DC \(\quad 0: 7 \mathrm{~J}=1, \mathrm{NAL}\)
RESC
00607 I=1, iHY
\(\mathrm{H}=\mathrm{N}+1\)
\(637 \mathrm{CY}(\mathrm{J}, \mathrm{I})=\mathrm{E} 3(\mathrm{~N})\)
\(00655 \quad I=1,11 A L\)
635 HRITE (85,5) ((I, J,CY(I,J)),J=1,NY)
PESC
RESC
RESO
只ESO
RESIJ
    5 FCRMAT \((/ 3 X, 5(2 X, 2 H C(, I 1,1 H, I I, 2 H)=, F 15,5) / / 3 X, 5(2 X, 2 H G(, I 1,1 H\), ,
        \(1(1,2 H)=, F 15.61 / 4 X)\)
604 GO TO 1000
601. \(\mathrm{NH}=1\)
            NG=1
SALL LCGIT (NALT, MAL, NX,
1FLE, N:G)
IF (N:P?.EQ. C) GO TO 333
DO 15? I=1, MT
            SALL LCGIT (NALT, HAL, NX, NY, NO, NT, MSTP, NBHOW, INIT, NH, BO,FGO,FH2,
            NG=1
SALL LCGIT (NALT, MAL, NX,
1FLE, N:G)
IF (NP?.EQ. C) GO TO 333
DO 15? I=1, MT
            NG=1
SALL LCGIT (NALT, MAL, NX,
1FLE, N:G)
IF (N:P?.EQ. C) GO TO 333
DO 15? I=1, MT
            NG=1
SALL LCGIT (NALT, HAL, NX,
1FLE, NIG)
IF (NP?.EQ. I) GO TO 333
DO 152 I=1, MT
            \(S=3 . G\)
CO \(153 \quad J=1\), MALT
                    \(153 S=S+N C V A(I, J)\)
            DO \(154 \quad J=1\), NALT
    154 ANAME(I,J) \(=\operatorname{NDVA}(I, J) / S\)
    152 CONTINUE
    77 FORMAT \((+, 7,20 X, 47\) HCOMPARISCN CF ACTUAL ANO PREOICTEO MOOE CHOICES/
                        PES

\(4 \div 33\)
1443
9445
451
463
500
506
504
505
512
514
315
こと1
\(5 \geq 1\)
522
今ララ
575
ᄃ75
601
541
1641
©45
\(7 E 5\)
705
713
714
715
715
717
726
740
743
750
750
751
750
757
775
252
उE?
\(3 \pm 2\)
312
\(3: 5\)
        \(1 / 4 X, 13\) HACTUAL CHOICE, \(37 X, 1\) EHPREDICTED CHOICE//4X,4H:CDE, \(1 \times \mathrm{X}\),
        \(24(8 X, 1 H(, I 1,1 H)), 11 X, 4(8 X, 1 H(, I 1,1 H)))\)
            WRITE (85,78)
            \(N=0\)
            DO \(347 \quad I=1, N T\)
            \(N=N+1\)
            IF (N.NE.5) GC TO 348
            WRITE 186,781
            78 FCRMAT \((++)\)
            \(N=1\)
                348 GC TC (1C2,102,1C3,104), NA1T
                102 WPITE \((86,8[) I,(A N A M E(I, J), J=1\), NALT), (P(I,J), J=1, NALT)
        9C FCPMAT \((4 X, 1 H(, I 3,1 H), 2 F 11.5,33 X, 2 F 11.5)\)
            50 TC 347
103 HRTTE \((30,81) I,(A N A M E(I, J), J=1, N A L T),(P(I, J!, J=1, N A L T)\)
        91 FORMAT ( \(4 \mathrm{X}, 1 H(, I 3,1 H), 3 F 11,5,22 X, 3 F 11,5)\)
            GC TC 347
104 WPITE \((86,79) \mathrm{I},(A N A M E(I, J), J=1, N A L T),(P(I, J), J=1, N A L T)\)
    79 FOPMAT ( \(4 X, \pm H(, I 3,1 H), 4 F 11.5,11 X, 4 F 11.5)\)
    347 CONTINUE
        \(S=0.0\)
            \(T=C \cdot 0\)
            \(R E:\)
                    RE:
            \(\begin{array}{ll}D C 150 & I=1, N T \\ 0 C 150 & J=1, N A L T\end{array} \quad R E\)
            \(\begin{array}{ll}D C 150 & I=1, N T \\ D C 150 & N=1, N A L T\end{array} \quad R E=1\)
            \(0 C 150 J=1, N A L T \quad R E:\)
            \(S=S+(\) ANAME \((I, J)-P(I, J)) * * 2\)
                    \(150 \quad \mathrm{~T}=\mathrm{T}+(A N A M E(I, j)-1.0 / N A L T) * * 2\)
                    P2P \(=1 \cdot \bar{u}-5 / T\)
                            P2P \(=1.0-5 / T\)
WRITE \((85,+7)\) P2P
                                    RE
                            \(R E S\)
                            RES
        47 FORMAT (//1/4X,45HCOEFFICISNT OF DETERHINATION IN PROEABIITTY =,
            1F15. 5 )
333 S=0. \(L\)
                            CO \(50 . \quad I=1, \mathrm{ND}\)
                            RESO
                            \(00507 \mathrm{~J}=1,10\)
                            RES:
507 ᄃHV(I, J) \(=-\) FHz(I,J)
            CALL MINV (FHV,ND,D,LX,MX,N2)
                    RESC
            IF (C.NE.0.0) GO TO 7 JI
            WRITE \((86,5)\)
            6 FOPMAT (/AX, БЯHHESSIAN SINGULAR AT CONVERGEMCE, INGICATING EXTREME RESC
            1 MULTICCLLINEA天ITYI
        GO TC EL2
\(731 T=0.0\)
                                    RES
                                    RESi
                                    RESD

25


```

```
62j 31(I)=马1(I)+FH1(I,J)*FG1(J)
```

```
62j 31(I)=马1(I)+FH1(I,J)*FG1(J)
        GC TC 62E
        GC TC 62E
524 [0 619 I=1,N0
524 [0 619 I=1,N0
        S=FHVII,I)+CF
        S=FHVII,I)+CF
        IF (S.GT.U.U) GO TO 3iJ3
        IF (S.GT.U.U) GO TO 3iJ3
        S=-S
        S=-S
303 SE(I)=SQPT(S)
303 SE(I)=SQPT(S)
619 TV(I)=80(I)/SE(I)
619 TV(I)=80(I)/SE(I)
            DO 620 I=1,NO
            DO 620 I=1,NO
620 B1(I)=0.0 RE
620 B1(I)=0.0 RE
            NH=1
            NH=1
        NG=1
        NG=1
        CALL LCGIT (NALT,NAL,NX,NY,NOU,NT,MSTP,NOHOW,INIT,NH,BI,FGI,FH1, R:
        CALL LCGIT (NALT,NAL,NX,NY,NOU,NT,MSTP,NOHOW,INIT,NH,BI,FGI,FH1, R:
    1FL1,NG)
    1FL1,NG)
            CALL MINV (FH1,ND,D,LX,MX,N2) _
            CALL MINV (FH1,ND,D,LX,MX,N2) _
            KO=1
            KO=1
            GC TC 608
            GC TC 608
626 WRITE (86,7)
626 WRITE (86,7)
    7 FOPMAT (*1*, 4X,18HESTIMATION FESULTS//4X,19HPARANETER ESTIMATES// R
    7 FOPMAT (*1*, 4X,18HESTIMATION FESULTS//4X,19HPARANETER ESTIMATES// R
        111X, SHVARIABLE,7X,8HVARIABLE,10X,5HLOGIT,7X,8HSTANRARO,13X,2HT-,
        111X, SHVARIABLE,7X,8HVARIABLE,10X,5HLOGIT,7X,8HSTANRARO,13X,2HT-,
        29X,6HLINEAR/13X, 6HNUMBEP,11X,4HNAME, 6X, THESTIMATCO,10X,5HERROR,6X,
        29X,6HLINEAR/13X, 6HNUMBEP,11X,4HNAME, 6X, THESTIMATCO,10X,5HERROR,6X,
        39HSTATISTIC,6X,9HPROF.EST./4X)
        39HSTATISTIC,6X,9HPROF.EST./4X)
            N=0
            N=0
            IF (NX.EQ.O) GO TO 627
            IF (NX.EQ.O) GO TO 627
        00 52.9 I=1,NX
        00 52.9 I=1,NX
            V=i!+1 R
            V=i!+1 R
6% WRITE (86,9) I,NAX(I),BO(N),SE(N),TV{N),B1(N)
6% WRITE (86,9) I,NAX(I),BO(N),SE(N),TV{N),B1(N)
    8 FORMLT (14X,2H3(,I2,1H),5X,A10,4F15.5)
    8 FORMLT (14X,2H3(,I2,1H),5X,A10,4F15.5)
            WRITE (35,9)
            WRITE (35,9)
    9 FOPMAT (**)
    9 FOPMAT (**)
527 IF (NY.EC.O) GO TO 529
527 IF (NY.EC.O) GO TO 529
            0.53: J=1,NAL
            0.53: J=1,NAL
            20 630 I=1,NY
            20 630 I=1,NY
            N=N+1
            N=N+1
        K.:J+1
        K.:J+1
    630 WH,:TE (86,10) KZ,I,NBY(I),BO(N),SE(N),TV(N),B1(N)
    630 WH,:TE (86,10) KZ,I,NBY(I),BO(N),SE(N),TV(N),B1(N)
    10 FO:MAT (11X,2HC(,I2,1H,,I2,1H),5X,A10,4F15.5)
    10 FO:MAT (11X,2HC(,I2,1H,,I2,1H),5X,A10,4F15.5)
629 HPTTE (86,31)
629 HPTTE (86,31)
    RT
    RT
    31 FORMAT 1/14X,64HWHEN THE NAME OF A MODE-RELATEO VARIABLE APPEARS M LC
    31 FORMAT 1/14X,64HWHEN THE NAME OF A MODE-RELATEO VARIABLE APPEARS M LC
        1ORE THAN ONCE,14X, 35HTHE VARIABLE HAS OUMMY COEFFICIENTS.14X,46HCH L{
        1ORE THAN ONCE,14X, 35HTHE VARIABLE HAS OUMMY COEFFICIENTS.14X,46HCH L{
        2ECK NXCD NYCD AND NRCD FCR MORE INFORMATICN.//4X,59HTO FIND IF A S LC
        2ECK NXCD NYCD AND NRCD FCR MORE INFORMATICN.//4X,59HTO FIND IF A S LC
        2ECK NXCD NYCD AND NRCD FCR NORE INFORMATTINN,//4X,59HTO FIND IF A S LO
        2ECK NXCD NYCD AND NRCD FCR NORE INFORMATTINN,//4X,59HTO FIND IF A S LO
            IF (NOHOW.LE.2) GO TO }73
            IF (NOHOW.LE.2) GO TO }73
            PCP=100.C-PCP
            PCP=100.C-PCP
            PCPD=150.0-PCPO
            PCPD=150.0-PCPO
        730 HRITE (86,25)
        730 HRITE (86,25)
        25 FOPMAT (//4X,2GHAUXILIARY STATISTICS/3EX,14HAT CONVERGENCE,13X,
        25 FOPMAT (//4X,2GHAUXILIARY STATISTICS/3EX,14HAT CONVERGENCE,13X,
        17HAT TERC( 4x)
        17HAT TERC( 4x)
            WRITE (8G,11) FLC,FLI
            WRITE (8G,11) FLC,FLI
        11 FOPMAT (9X,14HLOG LIKELIHOCD, 12X,F15.5,5X,F15.5/4X)
        11 FOPMAT (9X,14HLOG LIKELIHOCD, 12X,F15.5,5X,F15.5/4X)
        HPITE (85,12) SRX2,SRX20
        HPITE (85,12) SRX2,SRX20
    12 FORHLT (9X,19HRESIDUAL CHI-SDUARE,7X,F15.5,5X,F15.5/4X)
    12 FORHLT (9X,19HRESIDUAL CHI-SDUARE,7X,F15.5,5X,F15.5/4X)
        WRITE (86,13) S?2,SR20
        WRITE (86,13) S?2,SR20
    13 FC=MAT (9X,24HSUH OF SOUAREC FESIOUALS,2X,F15.5,5X,F15.5/4X)
    13 FC=MAT (9X,24HSUH OF SOUAREC FESIOUALS,2X,F15.5,5X,F15.5/4X)
        HPITE (95,14) OF,DF
        HPITE (95,14) OF,DF
    14 FOFMAT (9X,19HOEGREES OF FREEDCM, 8X,F15.5,5X,F15.5/4X)
    14 FOFMAT (9X,19HOEGREES OF FREEDCM, 8X,F15.5,5X,F15.5/4X)
        HOITE (85,15) PCP,PCPO
        HOITE (85,15) PCP,PCPO
            RE
            RE
        RE
```

 RE
    ```
```

$\mathrm{NH}=1$

```
```CALL LCGIT（NALT，NAL，NX，NY，NU，NT，MSTP，NOHOW，INIT，NH，BI，FG1，FH1，2R\(R:\)
```

..... R：

```RE
```

```7 FOPMAT（ \(+1^{*}, 4 \times, 18 H E S T I H A T I O N ~ F E S U L T S / / 4 X, 19 H P A R A N E T E R E S T I M A T E S / / ~\)Rc
```

```R
```

```\(29 X, 6\) HLINEAR／ \(13 X, 6\) HMUMBER， \(11 X\) ， 4 HNAME， \(6 X, 9\) HESTIMATCR， \(10 X, 5\) HERROR， \(6 X\),\(R\)
\(R\)
```

R：

```\(N=0\)IF（NX．EQ．0）GO TO＿627\(00523 \mathrm{I}=1\) ，NXR．
```

```R
```

628 WRIT ..... P
8 FORMGT（14X，2H3（，I2，1H），5X，A10，4F15．5） ..... R

```WRITE \((35,9)\)
```

```9 FORMAT \((* *)\)527 IF（NY．EG．O）GO TO 52903 53：\(J=1\) ，MAL\(00630 \mathrm{I}=1, \mathrm{NY}\)P．
```

```N－ 1
```

```630 W，ITE（86，10）KZ，T，NBY（I），BO（N），SE（N），TV（N），B1（N）R
```

10 FO：M\＆T（11X，2HC（，I2，1H，I I2，1H），5X，A10，4F15．5） ..... R

```（31 FO．TE（8．
```

$\qquad$

```1ORE THAN ONCE， \(14 X, 36\) HTHE VARIABLE HAS OUMMY COEFFICIENTS． \(14 \mathrm{X}, 46 \mathrm{HCH}\)
```

R
RE

```
 RE
```

                RE
                R:"
                R:"
            NG=1
            NG=1
        62う 3^(I)=3コ(I)+FHI(I,J)*F(GI(J)
        62う 3^(I)=3コ(I)+FHI(I,J)*F(GI(J)
        P
    ```
 P
```

15 FQPMAT (9X,27HPEFGENT CORRECTLY PFEOICTED,4X,F10.5,1日X,E1U.5/4X)
RI=1.0-FLD/FL1
RS $=-2 \cdot 0^{*}(F L 1-F L J)$
R2=1.0-Sㄹ/SO20
WRITE (86,16)
16 FCPMAT ( $/ / 4 X, 26 H G O C D N E S S$ OF FIT STATISTICS, $35 X, 1$ OHABCUT $7 E R O / 4 X)$
WRITE $(36,17)$ PI
17 FORMAT (9X, 45 HLIKELIHOOO PATIC INOEX $(=1 . \Omega-L G L(*) / L G L(0)), 8 X$,
1F15.5/4X)
WRITE $(36,18)$ RS
18 FCRMAT ( $9 \times 5$ OHLIKELIHOOD RATIG STATISTIC $(=-2 *(L G L(O)-L G L(*)))$,
11X,F15.5/4X)
WFITE $(86,19)$ P2
19 FCGMAT (9X,28HCOEFFICIENT CF CETERMINATION,23X,F15.5/4X)
HRITE (85,20) (I,I=1,ND)
20 FCPMAT $\left(* 1^{*}, 4 X, 13 H M O M E N T\right.$ MATRIX//9X, $7(11 X, 1 H(, I 2,1 H)) / 9 X, 7(11 X$,
$11 H(, I 2,1 H))$ )
CO $631 \quad I=1$,NO
DO $632 \mathrm{~J}=1$, NO
632 FH1 $(I, J)=-F H 2(I, J)$
631 WRITE $(85,21) I$, (FH (I, J), J=1,ND)
21. FOPMAT (/4X,1H(,I2,1H), 7E15.5,/8X, 7E15.6)
WRITE $(86,22)(I, I=1, N O)$
22 FORMAT $\left(* 1^{*}, 4 X, 17\right.$ HCOVARIANCE MATRIX//9X,7(11X,1H(,I2,1H))/9X,7(11X
$1,1 H(, I ?, 1 H))\}$
00 633 $I=1, N D$
DO 53 $\quad \mathrm{J}=1$, ND
634. $F H V(I, J)=C F * F H V(I, J)$
533 HRITE $(86,2 \pm) I,(F H V(I, J), J=1, N D)$
114 IF (ICP.EQ. 3 ) GO TO 172
$N=0$
IF (NX.EC.J) GO TO 173
$00174 \mathrm{~K}=1$, NX
$N=N+1$
$174 B \times(K)=30(N)$
173 IF (NY.EO.0) GO TO 172
DC $175 \mathrm{~J}=1$, NALT
$00175 \mathrm{~K}=1$, NY
$i=i+1$
$175 \mathrm{CY}(J, K)=80(N)$
172 IF (IOP.EQ.1) GO TO 334
LOAO
IF (ICP.EQ. 3 ) GO TO 115
PEAD (85,25) NE
115 IF (NX.EG.O.OR.NY.EQ.O) GO TO 116
PEAD (85,35) (NAX (I), $I=1, N X),(N B Y(I), I=1, N Y)$
GO TO 117
36 FCRMAT (8A10)
116 IF (NX.EG.0) GO TO 118
PEAO $(85,36)$ (NAX(I), $I=1, N X)$
GO TC 117
118 PEAD (85,35) (NBY(I),I=1,NY)
117 DO $119 \quad I=1, \mathrm{NE}$
IF (rix.EC.O) GO TO 120
$00121 \mathrm{~J}=1$, MALT
121 २EAO (85,28) (X(I, J, K), K=1, $1: \times$ )
120 IF (NY, EC,0) GO TO 119
READ (Bう, 29) (Y (I, K), K=1, NY)
23 FORMAT (1OX,7FIG.0)

119 CONTTNUE
HPITE $(86,37)$
37 FCRMAT（／／4X，З3HEXTERNALLY SUPPLIED VARIAELES ARE）
IF．（rix．EC．O．GO TO 122
WPITE（8b，38）（NAX（I），$I=1, N X)$
38 FONMAT（／5X， 2 \＆HMODE RELATED VARIAELES $=, 5(5 X, A 10)$ ）
122 IF（iY．EQ．i）GO TO 123
WRITE $(86,39)(N B Y(I), I=1, N Y)$
39 FOFMAT（／6X，24HSCCIOECONCMIC VARIABLES＝，6（5X，A10））
123 h尺ITE（85，40）
40 FORHAT $/ / \delta X$ ， 9 GHCWEN NAME CF MODE PELATED VARIABLE APPEARS MORE TH LC 1AN ONCE， $17 X, 37 H T H A T ~ V A P I A B L E ~ H A S ~ D U M M Y ~ C C E F F I C I E N T S, ~ / 7 X, 64 H F O R ~ A ~ S ~ L C ~$ 2CCICECCHOMIC VAPIABLE，IF ITS VALUE ISEIIHER 1，O OP O．G，／7K，24HIH 3E VAFIABLE IS A DUMMY．）

WRITE（86，41）
41 FCP：AT $\left({ }^{*} 1^{*}, 4 X, 39 H E X T E P N A L L Y\right.$ SUPPLIED VARIABLE VALUES ARE）
IF（NX．EQ． 3 ．OR．MY．EG．O）GC TO 146
L！
WRITE $(86,42)$（NAX（I），$I=1, N X),(N S Y(I), I=1, N Y)$ L（：
42 FORMAT $(/ / 4 X, 5 X, 7(5 X, A 10))$
L！
GC TC 125
146 IF（NX．EG．0）GO TO 124
WRITE $(86,42)$（NAX（I），$I=1, N X)$
GO TO 125
124 WRITE（85，42）（NBY（I），I＝1，NY）
$125 \quad N=0$
WRITE（86，78）
$00126 \mathrm{I}= \pm$ ，NE
$N=N+1$
1
IF（N．NE．5）GO TO 127
WRITE（8б́，78）
$N=1$
L．
127 IF（NX．EQ．0 •OQ．NY．EQ．0）GC TO 128 L
WRITE $(86,43) I,(X(I, 1, K), K=1, N X),(Y(I, K), K=1, N Y)$
43 FCRMAT $(4 X, 1 H(, I 3,1 H), 7 F 15.5)$
$L$
$30 \pm 29 \mathrm{~J}=2$ ，NALT
129 W尺ITE $(85,44)(X(I, J, K), K=1, N X)$
44 FORMAT（ $9 X, 7 F 15.5$ ）
GC TO 126
128 IF（NY．EC．O）GO TO 130
HRITE $(85,43) I,(Y(I, K), K=1, N Y)$
GO TO 126
13C URITE $(86,43) \quad I,(X(I, 1, K), K=1, N X)$
$00131 J=2$ ，NALT
131 WRITE $(86,+4)(X(I, J, K), K=1, N X)$
126 CONTINUE
GO TC 973
334 IF（NEL．EO．O）GOTO 1000
$N S=1$
IF（NY．EQ．0）GO TO 873
$00840 \mathrm{~K}=1, \mathrm{~N}$
RLT8
$\begin{array}{ll}L X(K)=0 & R L T\end{array}$
$N=0$
PR
00 ヶム1 I＝1，त！T
IF（Y（I，K）。EQ．1．C）$M=M+1$
IF（Y $(\underset{Y}{ }, K) . E O .1 .0, O Q . Y(I, K) . E O . C . C) \quad N=N+1$
$R$
$R$
841 CONTINU三
IF（目 EO．NT）GO TO 340

IE (N.NE.NT) GO TO 840
$L X(K)=1$
840 CONTINUE
DO $842 \mathrm{~K}=1, \mathrm{NY}$
B1(K)=0.0
IF (LX(K).EC.U) BI(k)=YMN(K)
342 CONTINUE
$308 \rightarrow 3 \mathrm{I}=1$, NY
$00360 \quad J=1$, $\mathrm{N}: \mathrm{Y}$
$860 \operatorname{FH1}(I, J)=0.0$
IF (LX(I).NE.1) GO TO 843
$30844 \mathrm{~J}=1$, NY
IF (NBY(I).ER.NBY(J)) FHI(I,J)=1,C
844 CONTINUE
343 COMTINUE
BO 845 JJ=1,NY
$\therefore:=0$
$0 C 84 E \quad I=1$, NY
IF (N.EQ.1) FH1(I,J) $=0.0$
IF (FH1(I, J), EQ, 1.0) $N=1$
846 CCNTITUE
845 CONTINUE
$\mathrm{N}=0$
DO $847 \mathrm{I}=1, \mathrm{NY}$
IF (FH1(I,I).NE.1.0) GOTO 847
$S=0.0$
$\mathrm{N}=\mathrm{N}+\mathrm{+}$
DO $848 \quad J=I, N Y$
$848 \mathrm{~S}=\mathrm{S}+F \mathrm{FH}(I, J)$
LX(N)=I
$M X(N)=S$
347 CONTINUE
$\mathrm{NJ}=\mathrm{N}$
$30159 \quad I=1, N Y$
$159 \mathrm{FH} 2(1, I)=0.0$
IF (NJ.EQ.O) GO TO 873
$S=1.3$
$30850 \mathrm{I}=1, \mathrm{NJ}$
$850 \mathrm{~S}=\mathrm{S}^{*}(\mathrm{M} \times(\mathrm{I})+1.0)$
$N S=S$
DC $851 \quad \mathrm{I}=1$, NS
DC $851 \mathrm{~J}=1, \mathrm{NY}$
$951 \mathrm{FH} 2\left(I, J^{\prime}\right)=0.0$
J1=1
$K 1=0$
$\mathrm{L} .1=0$
$M 1=0$
$K L=M \times(1)+1$
$L L=M \times(2)+1$
$B L=M \times(3)+1$
DO $849 \mathrm{~K}=1, \mathrm{KL}$
$K 1=L \times(1)+K-1$
IF (K.EO.KL) GO TO 355
FH2(J1,K1) $=1.3$
855 IF (AJ.EC.1) GO TO 952
$308 \equiv 3 \mathrm{~L}=1, \mathrm{LL}$
$L 1=L \times(2)+L-1$
IF (L.ED.1) GO TO 853

$T=L X(2)-1$
DO 8 ¢ L $2=1, L T$
$861 F H 2(J 1, L 2)=F H 2(J 1-1, L 2)$
863．IF（L．EQ．LL）GO TO 856
FHC（JI，Li）＝1．0
956［F（NiJ．EQ．2）GO TO 854
○C タフ2 $M=1, \mathrm{Bi}$
$M 1=L \times(3)+M-1$
IF（M．EO．1）GC TG 854
$M T=L X(3)=1$
CC $862 \mathrm{MZ}=1, \mathrm{MT}$
$862 F H 2(J 1, M 2)=F H 2(J 1-1, M 2)$
864 IF（M，EQ．ML）GO TO 8．57
$F H 2(J 1, M 1)=1 . J$
$857 \quad J 1=J 1+1$
872 CCNTINUE
GO TO 853
RL

8 GO R
$854 \mathrm{~J}=\mathrm{J} 1+1$
853 CONTINUE
GO TO 849
$R$
$852 \quad \mathrm{~J}=\mathrm{J} 1+1$
849 CONTINUE
873 IF（NX，EQ．J）GO TO 874
？

DO $304 \mathrm{I}=1, \mathrm{NX}$
DO $3 \mathbb{C} 4=1, N X$
$F H V(I, J)=0.0$
IF（NAX（I）．EQ．NAX（J）） $\operatorname{FHV}(I, J)=1.0$
30ム CCNTINUE
$00305 \mathrm{~J}=1$ ，NX
$N_{i}=C$
DO 305 I＝1，NX
（FH I－1，NX
IF（FHV $(I, J)$ ．EO．O．0）GO TO 305
IF（N．EQ．1）GO TO 306
RE
$\because=1$
GO TC 305
RE
3CE FHV $(I, J)=0.0$
305 CONTINUE
RE：
OC $357 \mathrm{I}=1$ ，NX
$N=0$
DO $3 \div \mathrm{j}=1$ ， NX
$308 \quad \mathrm{~N}=\mathrm{N}+F \mathrm{HV}(I, J)$
$307 \mathrm{NIZ}(\mathrm{I})=\mathrm{N}$
IF IICF．NE．1）GO TO 874
$\mathrm{N}=0$
BO $329 \mathrm{I}=1$ ，NX
IF（NIZ（I）．LE．1）GO TO 309
$N=N+1$
$L X(N)=I$
$M X(N)=N I Z(I)$
309 CONTINUE
$\mathrm{NH}=\mathrm{N}$
RE：
RE
RES
RES
RES
RES LOA
RE：
RES
$S=1 . E$
DC $3: 0 \quad I=1, N$
$\therefore 5=5$
CO $311 \mathrm{I}=1, \mathrm{HS}$
$003: 1 \mathrm{~J}=1,11 \mathrm{X}$
$\therefore 5=5$
RESE
$003: 1 \mathrm{~J}=1, \mathrm{HX}$

$E H_{1}\left(I, I_{i}^{\prime}\right)_{-}=S$
351 CCNTINUE
$R=$
350 CONTINUE
U=?
BC $105 K=1$, N $X$
IF (MIZ(K).EO.G) GO TO 105
$N_{i}=N+1$
00 126 $J=1$, HALT
$106 X_{I} N(U, N)=X M N(J, K)$
105 CONTINUE
874 IX=1 RES
IF (IOP.NE.1) GO TO 132 LO 1
WRIEE (86,71)
10 .
71 FGRMAT $\left({ }^{*} 1^{*}, 4 X, 53\right.$ HFROZABILITIES ANB ELASTICITIES CF MOOE CHOICE AT LC 1 MEAN) Lo $N=0$
IF (NY.EG.O) GO TO 171
DO $161 \mathrm{~J}=1$, NAL
BO $1 E 1 K=1$, NY
$N=N+1$
$161 \mathrm{FG} 1(\mathrm{~N})=\mathrm{CY}(\mathrm{J}, \mathrm{K})$
171 GO TO_133
132 WRITE (86,45)
 IF (NX.EO.O) GO TO 151

LC
DO $149 \mathrm{~K}=1$, $N X$
149 SE (K) =eX (K)
151 IF (NY.ES.J) GO TO 133
La.
DO $150 \quad J=1$,NAL
LC
OO $150 \mathrm{~K}=1$, NY
$15 C$ ANAHE $(J, K)=C Y(J, K)$
Li
$133 \mathrm{H} \times 2=\mathrm{NX}$
L
$\mathrm{N}=0$
IF (NX.EQ.D) GO TO 702
Li
OC $134 K=1$, NX
L.
$\therefore \quad I F$ (NIZ (K).EO.0) GO TC 134
$N=N+1$
$N A X(N)=N A X(K)$
10
134 CONTINUE
$N X=N$
145 IF (NY.EQ.O) GO TO 703
LO

HRITE $(86,72)$ (NAX(I), $I=1, N X),(N B Y(I), I=1, N Y)$
72 FORNAT $(/ / 4 X, G H V A P I A B I E S, 10(1 X, A 10))$
LO
PL
72 FORMAT (//4X,9HVARIABLES,10(1X,A1G))
GO TC 871
702 WPITE ( 8 E, 72) (NBY(I), $I=1, N Y)$
GOTO 871
703 WRITE $(86,72)$ (NAX(I), I $=1, N X)$
$R L$
$R E$
$R E$
$R E$
$R E$
76 FOFHAT (/ $\Psi X, 75 H$ IIGNOFE THE ELASTICITIES UNEEP. A SCCIOECONOMIC VARIA LC: $1 B L E$ WHEN IT IS A DUMHY./5X,O $H$ HALSO IGNORE THE CASE WHERE DUMMY CCE LO. 2FFICIEAT ANB DUMNY VARIABLE CCHBINATIONS ARE INCONSISTENT./5X,57HI LCA
SN TYPE 1 OPERATION, CHECK NYHCW NYSO AND NRCO FOR THIS.I) LOA
$871 \mathrm{IZ}=1$
$I E L=1$
341 IF (IOP.ED.1) SO TO 330
$\begin{array}{rl}\mathrm{N} & \mathrm{F} \\ \mathrm{I}\end{array}$
IF (NX.EC.O) G3 TO 139
SC $125 \quad i=1, N \times 2$
IF (NIZ(I), E?. J) GO TO 135

LQA1
IF (NIZ(I).EO.1) GO TO 136
LCA1
$\mathrm{S}=\mathrm{C} \cdot \mathrm{C}$
LCA1
$137 \begin{aligned} & 00137 K=1, N L \\ & S=S+S E(I+K)+X(I E L, 1, I+K)\end{aligned}$
! OA:
LCA1

```
LOA1
```

FGI(N) $=S E(I)+S$

136 FGI (N) $=$ SE (I)
135 CONTINUE
LOA1

139 IF (NY.EO.J) GO TO 140 LOA1
BO $138 \mathrm{~J}=1$, NAL LOA1
DC $138 \mathrm{~K}=1, \mathrm{NY}$
$\mathrm{N}=\mathrm{N}+1$ LOA1
138 FGI (N) =ANAME $(J, K) \quad$ LOA1

$\mathrm{N}=\mathrm{C}$
CC $141 \mathrm{~K}=1, \mathrm{~N} \times 2$
LOA1
IF (NTZ(K).EO, 0) GO TO 141
LOA1
DC $142 \mathrm{~J}=1$,NALT LOA1
$142 \times(I E L, J, N)=X(I E L, J, K) \quad$ LOA1
141 CCNTINUE
LOA1
DO $143 \mathrm{~J}=1$, NALT LOA1
BO $143 \mathrm{~K}=1, \mathrm{NX}$
143 XMN $(J, K)=X(I E L, J, K) \quad$ LOA1
144 IF (NY.EG.B) GO TO 147 LOA1
$\therefore \quad \mathrm{BO} 148 \mathrm{~K}=1, \mathrm{NY}$ LOA1
$148 \quad Y(1, K)=Y(I E L, K)$
LOA1
$147 \mathrm{ND}=\mathrm{NX}+(\mathrm{NALT}-1)+\mathrm{NY}$
50 TC 755
LOA1!
335 LOA1
-F (NX.EG.0) GO TO 704
REL6:
IF (MN.EC.J) GO TO 155
DC $353 \quad I=1$, NX
REL6:
$353 \mathrm{FG1}(I)=F H 1(I Z, I)$
RE! $E^{\prime}$

- GC TO 158

REL6'
$155 \quad D C \quad 157 \quad I=1, N X$
157 FG1(I) $=B C(I)$
$158 \mathrm{NI}=\mathrm{NAL}$ *NY
$\mathrm{N}=\mathrm{NOO}-\mathrm{N} 1$
$00354 \quad \mathrm{i}=1, \mathrm{~N} 1$
354 FG1 $(N X+I)=80(N+I)$
$N D=N X+N A L+H Y$
705 DO 8'51 K=1,NX RELG
$S=X M N(1, K)$
$00801 J=2$, NALT
REL6'
PELE'
REL6' ${ }^{\prime}$
REL5'
$901 \times(1, J-1, K)=X M N(J, K)-S$
704 IF (NY.EG.U) GO TO 815
IF ITOF.NE. 11 GO TO 815
BC $802 \mathrm{~K}=1, \mathrm{NY}$
$802 Y(1, K)=81(K)+F H 2(I X, K)$
815 NT $1=1$
$\mathrm{NH}=\mathrm{C}$
$N: G=1$
GALL LCGIT (NALT, NAL, NX, NY, ND, NTI, MSTP, NCHOG,INIT,NH,FG1,FGJ,FHV, 1FLJ,NG)
IF (NX.EQ.O) GO TO 706
CO 8 OU J=1, NALT

REL6'
PEL6'
RELG
RELE'
LOA1:
REL7
RELT:
RELT:
RELT.
REL7
REL?
品ELT
RELT
RELT

553

```
803 X,*3(J,K)=XYN(J,K)*FG士(K)
 706 IF (NY.ES.O) 5O TO 314
 N=NX
 DO SiJ j=1,Nal
 DO 813 K=1,NY
 N=N+1
 813CY(J,K)=FG1(N)
 2O 8C4 K=1,NY
 S=O.E
 DO 805 J=1,NAL
 8こ5 S=S+F(1,J+1)+CY(J,K)
```

```\(80 \leq C M N(k)=S\)
 81400 806 I=1,NALT
 IF (NX.EG.O) GO TO 707
 DO 897 J=1, NALT
 BC 807 K=1,NX
 IF (I.EQ.J) GO TO &丁8
 XE(I,J,K)=-P(1,J)*XMB(J,K)
 GO TO 807
 8J8 XE(I,J,K)=(1.U-P(1,J))*XMB(J,K)
 807 CONTINUE
 707 IF (NY.EG.J) GO TO 805
 DO 8&9 K=1,NY
 IF (I.EO.1) GO TO 81U
\(Y E(I, K)=Y(1, K)+(C Y(I-1, K)-C N N(K))\) R
GO TO 309
```81E \(Y E(I, K)=-Y(1, K) * C M N(K)\)809 CONTINUE\(R E\)
```

8Ü CONTINUE

```\(N=0\)IF（IOP．\(=Q .1\) ）GO TO 346WRITE（85，75）IEL75 FOPMAT（／／4X，37HELASTICITIES FOF EXTERNAL DATA NUMPER，I5，1H．）\(R\)
```

R
346 IF（NX．EQ．O）GO TO 708

```IF（MY．EC．O）GO TO 709\(R E\)R
```

R

```74 FOFMAT（／13X，24HEVALUATEC AT MEAN VALUES／4X）GO TC 35 E355 WPITE \((86,82)\)82 FORYAT（／13X，23HEVALUATED AT VARIABLE VALUES／4X）
```

356 PO $3 \equiv 7 \quad J=1$ ，NALT
357 WRITE $(86,83) ~ J,(X M N(J, K), K=1, N X),(Y(1, K), K=1, N Y)$
IF（IOF．NE．1）GO TO 355 $R E$

```\(R\)
```

WRITE（86，74）
83 FORMAT（ $6 X, 5 H M O D E(, I 1,1 H\}, 1 G F 11.5)$
83 FORMAT（ $6 X, 5 H M O D E(, I 1,1 H\}, 1 G F 11.5)$
$30811 J=1$ ，NALT
RE
RE
hPITE $(35,84) \mathrm{J},(F G 1(K), K=1, N O)$ पRITE $(85,4,6)$ पRITE $(85,4,6)$ पRITE $(85,4,6)$ पRITE $(85,4,6)$

34 FGRMAT（／1 $3 X, 32 H B Y$ CHANGING THE VALUES FOR MODE（，I $1,2 H$ ），45HAND U

34 FGRMAT（／1 $3 X, 32 H B Y$ CHANGING THE VALUES FOR MODE（，I $1,2 H$ ），45HAND U

34 FGRMAT（／1 $3 X, 32 H B Y$ CHANGING THE VALUES FOR MODE（，I $1,2 H$ ），45HAND U

34 FGRMAT（／1 $3 X, 32 H B Y$ CHANGING THE VALUES FOR MODE（，I $1,2 H$ ），45HAND U

34 FGRMAT（／1 $3 X, 32 H B Y$ CHANGING THE VALUES FOR MODE（，I $1,2 H$ ），45HAND U ISING THE COMPACTED COEFFICIENT VALUES OF／13X，88H CCOEFFICIENTS ARE $2 A R R A N G E D$ IN ORDER OF B（1）．．．B（NX）C（ALT2，1）．．C（ALT2，NY）．．．C（NALT，LOA $2 A R R A N G E D$ IN ORDER OF B（1）．．．B（NX）C（ALT2，1）．．C（ALT2，NY）．．．C（NALT，LOA $2 A R R A N G E D$ IN ORDER OF B（1）．．．B（NX）C（ALT2，1）．．C（ALT2，NY）．．．C（NALT，LOA $2 A R R A N G E D$ IN ORDER OF B（1）．．．B（NX）C（ALT2，1）．．C（ALT2，NY）．．．C（NALT，LOA $2 A R R A N G E D$ IN ORDER OF B（1）．．．B（NX）C（ALT2，1）．．C（ALT2，NY）．．．C（NALT，LOA 3NY）／／／さ3X，1 CF11．5） 3NY）／／／さ3X，1 CF11．5） 3NY）／／／さ3X，1 CF11．5） 3NY）／／／さ3X，1 CF11．5） 3NY）／／／さ3X，1 CF11．5）

46 FOPMAT（／13X，4 $4 H E L A S T I C I T I E S$ AND POOAABILITIES（LAST COLUMN））

46 FOPMAT（／13X，4 $4 H E L A S T I C I T I E S$ AND POOAABILITIES（LAST COLUMN））

46 FOPMAT（／13X，4 $4 H E L A S T I C I T I E S$ AND POOAABILITIES（LAST COLUMN））

46 FOPMAT（／13X，4 $4 H E L A S T I C I T I E S$ AND POOAABILITIES（LAST COLUMN）） CC $811 \quad \mathrm{I}=1, \mathrm{OALT}$ CC $811 \quad \mathrm{I}=1, \mathrm{OALT}$ CC $811 \quad \mathrm{I}=1, \mathrm{OALT}$ CC $811 \quad \mathrm{I}=1, \mathrm{OALT}$

811 URITE $(86,73) I,(X=(I, J, K), K=1, N X),(Y E(I, K), K=1, N Y), P(1, I)$

811 URITE $(86,73) I,(X=(I, J, K), K=1, N X),(Y E(I, K), K=1, N Y), P(1, I)$

811 URITE $(86,73) I,(X=(I, J, K), K=1, N X),(Y E(I, K), K=1, N Y), P(1, I)$

811 URITE $(86,73) I,(X=(I, J, K), K=1, N X),(Y E(I, K), K=1, N Y), P(1, I)$
73 FOPMAT（／3X，BHE FOR M（，I士，1H），10F11．5）
73 FOPMAT（／3X，BHE FOR M（，I士，1H），10F11．5）
73 FOPMAT（／3X，BHE FOR M（，I士，1H），10F11．5）
73 FOPMAT（／3X，BHE FOR M（，I士，1H），10F11．5）
7J8 IF IIOF．NE．11 GO TO 358
REL
REL
REL
REL 04 04 04 04 04 LOA LOA LOA LOA LOA
LC：
LC：
LC：
LC：
RE：
RE：
RE：
RE：
RE： REL REL REL REL
PEL7
PEL7
PEL7
PEL7 REL7 REL7 REL7 REL7

```RERERERE：RE！R：\(R E\)
\(R E 1\)
```


SUBROUTINE MINV（ $4 H, N, D, L, H, N 2)$I：
OIMENSICN AH（1J，10），L（10），M（10）
COMACN／AAZ／A\｛DDO！I
$K=0$DC $2: 1 \quad \mathrm{I}=1, \mathrm{~N}$กO． $21 J=1, M$I：
2う亡 $\Delta(K)=A H(J, I)$
$N K=-N$
$K=K+1$［1］ $80 \mathrm{~K}=1, \mathrm{~N}$I：

$$
K=K+1
$$20亡 $\Delta(K)=A H(J, I)$I：I

々こ こ こ$N K=-N:$I ${ }^{2}$
$\because K=N K \pm N$I：
$L(K)=K$ I：
334 $H(K)=K$ I：
$K K=N K+K$ If，
BIGG＝A（KK） If：
BO $20 \mathrm{~J}=\mathrm{K}, \mathrm{N}$ I！
$I Z=N:(J-1)$ I
$0020 \mathrm{I}=\mathrm{K}, \mathrm{N}$ If
$I J=I Z+I$ It．
$S=A B S(A(I J))$ II
$T=A B S(B I G A)$ I：
10 IF（T－S）15，20，20 I：
15 BIGA $=A(I J)$ I
$L(K)=I$ I：
$H(K)=J$ IN：
$2 C$ CONTINUE IN，
$J=L(K)$ IN
IF $(J-K) 35,35,25$ IN：
$25 K I=K-N$ INU
$3030 \quad I=1, N$ IN：
くI $=K I+\lambda$ IN
$H O L O=-A(K I)$ IN：
$J I=K I-K+J$ INV
$A(K I)=A(J I)$ INV
30 A（JI）$=$ HOLD INV
$35 I=M(K)$ INV
IF（I－K）45，45， 38 INV
$38 \quad J P=N *(I-1)$ INV
OC 4 C $J=1$ ，N INV
$J K=N K+J$ INV$J I=J F+J$HCLO $=-A(J K)$INVINV$A(J K)=A(J I)$INV
i）$C \quad A(J I)=H O L D$ INYINV
45 IF（T－1．CE－20）46，46，48 INV
$4 \in \quad D=0.0$ INV
PETURN INV
48 DC $55 \mathrm{I}=1, \mathrm{~N}$ INV
IF（I－K）50，55，50 INV
$50 \quad I K=N K+I$IN．V
$A(I K)=A(I K) /(-3 I G A)$ INV
55 CONTINUEINV
万C $55 \mathrm{I}=1, \mathrm{~N}$ INM
$I K=N K+I$INV
4OLO＝A（IK）
633


```
    SUBROUTINE ESTIM (NALT,NAL,NX,NY,NO,NT,MSTP,NOD,NOHON,INIT,NZ,EG,ES
    131,B2,?Z,FG0,FG1,FG2,FG3,FGZ,FHC,FHI,FH2,FHV,OIRS,S4S,LX,MX,FLO)
    OIMENSICN Ba(10),B1(10),B2(10),BZ(10),FGC(10),FG1(10),FG2(10),
```



```
    20IFS(10),S'S(10),LX(10),MX(10)
```



```
    10 FOPHAT ///4X,9ूHHESSIAN IS SINGULAR AT INITIAL PARAYETER VALUES.
        LHAKE SURE THAT THE DATA ARE PROPERLY ARRANGEO.)
            MSTP=1
            IF (NSTP.EQ.1) GO TO 407
            00 205 I=1,ND
            30 255 J=1,NO
            FHV(I, N)=0.D
            IF (I.EQ.J) FHV(I,J)=1.jJ/FH1(I,J)
    205 CCNTINUE
    GC TC 2こE
            501 30441 J=1,NO
            00 431 I=1,NO
        401 FHV(I,J)=FHO(I,J)
206 S=0.u
            ICONV=1
            ITP=0
            Nマ=0
            JK=0
            JS=u
            JT=i
            G:i=0
    500 ITP=ITP+1
        1 FORMAT (///4x, LIHSUMMAPY OF ITEPATIONS)
        2 FOFU4T (// +X, LX, 26HCONVERGENCE ACHIEVED AFTER,I5,13H ITERATICNS.,
        15K,3OHPGST MEAV SOUARE OF GFADIENT =,F15.71
        E:
        ES:
    E
```


165
167
174
175
27ε
$\frac{278}{202}$
212
217
217
221
222
140
R4
243
132
254
162
165
243
244
245
041
25:
252
EELIHOOO)
4 FQEMAT (//8X, 2THCONVERGENCE NOT ACHIEVED IN,I5, 12H IT三RATIONS)

IF (JS.EG.1) GO TO 610
IE (JK.EQ.1) GC TO 51a
IF (ITR.LE.19) GO TO 614
NOC=4

346
3Е1 WRITE (86,1) ESTO
б1L IF (JS.EQ.1) GO TO 611
IF (NOD.EQ. 6 (NO TO 613
б1L IF (JS.EQ, 1) GO TO 611
IF (NOD.EQ. 60 TO 613
ESIU.
WRITE (86,2) ITR,GM
GC_TO 407
511 WRITE (86,5)
6 FORMAT (//4X, 4 BHTEPMINATION DUE TO ABSENCE OF MAXIMUS POINT)
$M S T P=1$
GO TO 407
ESTO
ESTC
513 HRITE (86, 4) ITR
407 PETURN
ESTE
333
341
ESTE
ESTE
252
253
254
ESTC
ESTC
ESTC
ESTE
ESTU
ESTO
342
ESTO
ESTC
345
ESTC
$\frac{346}{347}$ G14 IF (JT.NE.1) GO TO 500
ESIC
355
ESTO
ESTO
363
365
T
374
400
404
454
406
412
420
421

```
        SUBROUTINE NLMAXH (ND,IT,ICCNV,NP,NALT,NAL,NX,NY,NT,MSTP,NDHOH,
        MA;
        1INIT,NH,FLJ, 3J,31,B2,BZ,FGO,FG1,FG2,FG3,FGZ,FH1,FH2,FHV,OIR,S', MA:
        2LX,MX,JK,JS,JI,G4,NOD.)
```



```
        1FG3(10),FGZ(10), FH1(10,10),FH2(10,13),FHV(10,10),0IR(10),S4(10),
        2LX(10),MX(10)
        CONMCN /AA1/ X(300,4, 4),Y(300,13),NOVA(30C,4),P(300,4),
        1ANAME(300,10), JSUM(300), H4(4),JFGC(100)
        GCHMCN/AA2/, AP(100),BXP(10),CYE(4,10),VECP(10),HEXR(10,10),
        1S1R(4),T1R(4),W1R(4)
        IA=1
        jv=a
        DO 501 I=1,ND
        FGZ(I)=FGO(I)
    501 3Z(I)=80(I)
        FLZ=FLO
        OC 502 I=1,NO
        S=C.U
        BC 503 J=1,NO
        503 S=S+FHV(I,J)+FGO(J)
        502OIR(I)=S
        NH=3
        DO 201 I=1,NO
    201FG1(I)=B0(I)
        SIP(1)=FLO
        JJ=1
        ST1=:.J
        3
    317 ST2=ST1+ST1
        DO 232 I=1,NO
    2こ2 FG2(II=FG1(I)+ST1*OIR(I)
        \becauseG=0
        CALL LCGIT (NALT,NAL,NX,NY,NO,NT,MSTP,NOHOW,INIT,NH,FGZ,S4,FH1,
        1FL1,NG)
```



```
            IF (FL1-FLD) 101,102,103
-1)
101 ST1=-ST1
            OC204 I=1,NO
        MAXO
204 FG?(I)=FG1(I)+ST1*OIR(I)
Maxo
            CALL LCGIT (NALT,NAL,NX,NY,NO,HT,HSTP,NDHON,INIT,NH,FG3,SL,FH1,FL2 MAXO
        1,NG)
            IF (FL2.GT.FL]) GO TO 311 MAXO
            MAXO
            ST3=ST1
                                    MAXO
            ST2=ST1+ST1 MAXO
            CC 312 I=1,ND MAXO
            30(I)=FG2(I)
                                    MAXO
            31(I)=FG1(I) MAKO
3 1 2 ~ 3 2 ( I ) = F G 3 ( I )
MAXO
            FL3=FL?
                                    MAXD
    FLZ=FLO
    50 TO 12J
MAXD
311 DO 313 I=1,N0
313 FG2(I)=FG3(I)
    FL1=FL2
    S:F(2)=FL?
    ST?=STi+ST1
    GC TC 10S
1ご STJ=5T1/2.3
```


212 FG3（I）$=F G 2(I)+5 T 2 * D I R(I)$ MA
CALL LGGIT（NALT，NAL，NX，NY，ND，NT，MSTP，NOHCH，INIT，NH，FG3，S4，FH1， HA
1FL2，NG） MA
SiP（iti＝FL？ ria．
$J J=J J+1$ MA
If（JJ．LE，6）GO TO 215 HAX
$J S=1$ MAX
GC TO 10：3
120 IA $=I A+1$Mi：
IF（IA．GE．3）GO TO 315MAST1＝ST3／1：0．0Mi
Ma
QO $315 \quad I=1$ ，ND MA
316 FG1（I）＝B1（I）HA
FL：$=$ FL2MA
$S 1 P(1)=F L O$
GO TC 317 M只：
$315 \mathrm{R}_{1}=(F L 1-F L 2) /(-5 T 3)$MCK：P2 $=(F L 1-F L 3) /(-S T 2)$
ST5＝ST3MS：
WRITE（8́a，21）FL1，FL2，FL3，ST2，ST3
21 FCPMAT（／／／4X，2］HELI，FI2，FL3，ST2，ST3＝／9X，EE15．6）
IF（ミ1．NE．र2）「O TO 301
IF（R1．NE．J．G）GO TO 121
ST4 $=$ ST $3 * 1$ ．JE－ 5
ST3 $=$ ST $3+S T 4$
CC 3 C2 $\mathrm{I}=1$ ，ND
$302 \mathrm{FG}_{1}(\mathrm{I})=81(\mathrm{I})+\mathrm{ST} 4+0 \mathrm{IR}(\mathrm{I})$
CALL LCGIT（NALT，NAL，NX，NY，ND，NT，MSTP，NDHCN，INIT，NH，FGI，FGB，FHV，1S，NGI
P1 $=(F L 1-S) /(-S T 3)$
$P_{2}=(F L 1-F L 3) /(-S T 2)$
ST5＝ST2／2．3－ST4$301 S=0.0$IF（R1．EQ．R2．0～．R1．EG．U．0）GO TO 122M
SC1＝（R1＊（－ST5））／（2．0＊（R1－R．2）） M
DO $220 \quad I=1$ ，NO M
$22030(I)=(30(I)+31(I)) / 2.0-5 C 1+D I R(I)$ $M:$
GO TC 1002M
$12200 \quad 123 \quad I=1, N 0$ M
$12330(I)=82$（I） Mi
$1302 \mathrm{NG}=1$ MA
$\mathrm{NH}=1$
GALI LCGIT（NALT，NAL，NX，NY，ND，NT，MSTP，NOHCW，INIT，NH，EO，FGO，FHV， $M A$
1FLO，NG）MA．
IF（FLJ．GE．FL？）GO TO 4.34
$12100405 \mathrm{I}=1$ ，ND
$405 \quad 80(I)=81(I)$
$N G=1$
$\mathrm{NH}=1$
CALL LOGIT（NALT，NAL，NX，NY，AO，NT，MSTP，NBFCH，INIT，NH，BO，FGO，FHV，
1FLG，NG）
$4 \overline{4}+5=0 . \hat{3}$
DC $5 \pm 3 \mathrm{I}=1,110$MAXE
$513 \mathrm{~S}=\mathrm{S}+\mathrm{FGO}($ I） $\mathrm{FGO}(\mathrm{I})$ MAX：
S＝S／nio MAXE
IF（S．EQ．joU）SC TO 514
$\mathrm{S}=\mathrm{SORT}$（S）MAXEMAY

514 GM=S
$S=0.0$
BC $230 \mathrm{I}=1, \mathrm{NO}$
23C $S=S+(B 1(I)-B Z(I)) * * 2$
225
235
236
237
242
244
2503
25シ
262
265
265
270
273
275
276
314
321
$S=S / N D$
IF (S.EQ.O.0) GO TO 221
$S=$ SQRT (S)
221 STZ=E
BMAX=A SS(BZ(1)-80(1))
DO 231.I $\equiv 1, N 0$
$S=A B S(B Z(I)-B 0(I))$
If (S.LE. B:tAX) GO TO 231
$P M A X=S$
231 CONTINUE
$F L C H=(F L Z-F(O) * 1-0 \cdot \square / F L O$
30 232 $I=1, \mathrm{NO}$
$00232 \mathrm{~J}=1$, ND
232 FHI (I, J) $=F H V(I, J)$
CALL MINV (FHV,NC, D,LX,MX,N2)
IF M.NE•O.O GO TO 233
WRITE $(86,12)$
331
12 FCRMAT (//4X, G)HHESSIAN IS SINGULAR. THE OIAGONAL ELEMENTS ARE USE
$1 B$ FGR ITS INVERSE AT THE NEXT ITEFATION.)
$\begin{array}{ll}331 & 00234 I=1, N D \\ 336 & 00234 \quad J=1, N D \\ 337 & F 4 V(I, J)=0 \cdot 6 \\ 343 & I F(I . E Q . J) \text { FHV }(I, J)=1.0 / F H 1(I, J)\end{array}$
353
360
361.
36. IF (GM.LE.I.(E-15) GO TC 1005

372
374
375
$377 \quad 516$ WRITE $(86,11)$ IT,STZ, BMAX,GM,FLO,FLCH
+1711 FORMAT (//4X,17HITERATICN NUMBEF, I3, $2 X, 16$ HNEMTON-HIGA MODE/8X, $150 H R C O T$ MEAN SUUARE OF CHANGE IN PARAMETER ESTIMATES $=, 615.6 / 8 \mathrm{X}$, 219HMAXIMUM ADJUSTMENT $=$, G15.E/8X, 29 HROOT HEAN SOUARE OF GRADIENT $=$, 3G1E.6/8X,154LOG LIKELIHOCO=, $615.8 / 8 \times, 27 H L C G$ LIKELIHOCD INCREASEO B 4Y,619.3,2X,9H PECCENT.)
$+17 \quad 1000$ RETURN
+20 END

APPENDIX B

GRAVITY:

Computer Program for

Market Demand Submodel
PEAD 2，（NZN（I），I＝〒，NZ）READ 1，（NZTP（I），I＝T，NT）PEAD 7，$(Z S C L(I), I=1, N 7)$（1） 10 ？$i=104 x$

6 FORMAT（5Il0，Alo）DO Jत̃a $I=1, N Y O$
IOG DEAD 6，（MTFYO（I，J），J＝1，5），NYOM（I）
$00110 \mathrm{Y}=1$ ，NYO
GOS
110 PEAD δ ，（MTFYD（I，J），$J=1,5)$ ，NYDM（I）
PRIMT 11．NT，NV，NRO，NOT，NDT
GPa：
Goad
gosGRA：
 GPA：
GD）
GRA：
万osinGRAD
GOAnGRan
1 ЗHNOPRINT 12，（NAME（I），I＝l，NV）
12．FORMAT $1 / / 4 \mathrm{X}, 14 \mathrm{HVAPIABLE}$ NAMES／／9X，l0Alo／9x，loAlö／9x，loAlo／9X， GoGDA$110410)$
IF（NOI．NE．1）GO TO 401ORINT 10
$60 \cdot 1$GP：
$M A=16$G？：
GRAIF（NVOLE．IS）MA＝NY
GRA
PRINT 13，（I，I＝1，MA） 693
13 FORMAT $(/ 14 X, 10$ HAASIC OATA／ $19 \times, 2(1 \bar{x}, 1 \mathrm{H}(, 11,1 H)), 14(4 \times, 1 H(, 12,1 H)))$ Gゴ
$\mathrm{H}=0$DO $4 \overline{0} 2 \quad I=1$ ，NTGRA
$\mathrm{N}=\mathrm{N}+1$ GRA
IF（ $N: N F .6$ ）GO TO 402 GPAPRTNT 14
14 FORMAT（＊＊） 62GQ：－
$\mathrm{N}=1$ 69
$4 \overline{0} 2$ PRINT $35, \mathrm{I},($ ARRAY $(\mathrm{I}, \mathrm{J}), \mathrm{J}=\mathrm{I}, \mathrm{MA})$ GQS
15 FORMAT（ $4 X,{ }^{1} H(, I 3,1 H), 2 I 4,14$ IA）
IF（NV．LEs 1 Ó）GO TO 401 G9：
PRINT 10 68．
PRIAT 13．（I，I＝1．7，NV） GRA
$\mathrm{N}=0$ GR
no $403 \mathrm{I}=1, \mathrm{NT}$ GRA
$\mathrm{N}=\mathrm{N}+1$ GRA
IF（NaNEのか）GO TO 403G9A
PRINT 14 Gád
$\mathrm{N}=1$ GR，
40̄3 PRTNT 15．I，（ARRAY（I，J），J＝17，NV） GRA GRa
401 PRINT 10
401 PRINT 10
IF（IK．E（J．1）－PRINT 6í G9A
61 FOPMAT（ $4 \times, 37 H$ RREDTCTION TEST WITH INDEPENDENT DATA／／5X） GO．PRINT 169 N： R ，NX，NYO，NYR，NZ，ND？
G98
 GFi：
 GRA 3
PRINT 17，（HT（I），I＝1，ND）
17 FOPMAT（ $7 / 4 \times, 4 H W T=, 1 \times, 10 F 10.370 \times, 10 F 1 \%, 3)$GRA 3
FQINT $18,(N R D(I), I=1, N D)$
GRA？
GRA 3
ORINT 19，NDVN，（NXN（T），$I=1, N X)$
PRINT 2 m •（NYON（J），$J=1, N Y O)$
2）FORMAT $(/ 84 x$, SHNYON $=, 10$ AIO）
PRINT 21，（NYON（J），J＝1，NYD）
2l FORMAT（／／4天，54NYDN＝， 1 ÃAl0）
GOX3
GOD
GRA 3
GD33
GOA3PRTAT 2？，（NZN（I），T＝1，NZ）

```
    22 FORMAT (//4X,5HNZN =, 1OA10//9X,10A10)
        PRINT 23, (NZTP(I),I=l,NZ)
        PRINT 37. (ZSCL(I), I=1,NZ)
```



```
    23 FORMAT (//4X,5HNZTF=, iOIIn//9x,jOI10)
        PRINT }2
    24 FORMAT (/14X,5X,6X,4HMTFX,40X,7X,3HNXM)
        DO412 I=1,NX
41? PRINT 25, I,(MTFX(T,J),J=1,5),NXM(I)
    25 FOPMAT (5X,1H(,I2,IH),5I10,A10)
        PRINT 2G
    26 FORMAT (1/4X,10X,5HMTFYO,40X, 6X,4HNYOM)
        00 404 I= = NYO
40̄4 PRINT 25, I, (MTFYO(I,J),J=1,5),NYOM(I)
    PRINT 2.7
    27 FORMAT ( //4X,1CX,5HMTFYD,40X,6X,4HNYDM)
    DO 405 I=1,NYD
405 PRINT 25, I, (MTFYD(I,j), 
    DO 111 I=1,NZ
    DO 112 J=1,NY
    IF (NZN(I),NE,NAME (J)) GO TO 112
    CALL READEC (ARPAY(1,I),LOCEC5(J),NT)
    go TO lll
112 CONTINUE
    PRINT-52, I,NZN(I)
    5 2 \text { FORMAT (//4x,4HNZN(,IZ,2H)=,AlO,2x,14HNCES NOT EXIST)}
        NEND=1
111 CONTINUE
    NRP=NR+!
    00 113 K=1,NZ
    00 113 I=1,NR
    DO 113 J=1,NR
113 Z(I,J,K)=0.0
    nO 114 I=1;NR
    DO 114 J=I.NR
114 NSUMM(I,J)=0
    DO 115 I=1,NT
    DO 1J5 K=1,NR
    IF (ARRAY(I.1).EG=NRD(K)) GO TO 117
116 CONTINIJE
    GO TO 115
117 00 118 L=1,NR
    IF (ARRAY(I,2):EQ.NRD(L)) GOTO 119
ll8 CONTINUE
    GO TO 115
119 00 120 J=1,NZ
1207(K,L,J)=ARRAY(I,J)#ZSCL(J)
115 continume
    0O 2-03\cdotsI=1,NX
    nc 2Ñ4 J=!,Nz
    IF (NXN(I)。EQ.NZH(,I)) GO TO 205
2.44 CONTINUE
    PRTNT 5), I, NXN(I)
    5! FORMAT (//4久,4HNXN(,T2,2H)=,Al0,2X,l4HNOES NOT EXIST)
        NFNO=1
        nO TO 2n3
205 IF (MTFX(I,G) OFQ.MTFY(I,4)) GO TO 206
    NO=MTF^(I,2)
```

 NT=MTFX(I,3)
 NP=MTFX(T,4) GOM:
 DO 207 J=1,NR
    ```

```

 S=0.0
 DO 209 L=N1,N2
 GPA
 Gqa
    ```

```

 X(J,K,I)=Z (J,K,NO)/S
 MT=MTFX{I,5}
 IF (X(J,K,I),EQ,O.O) X(J,K,I)=1.0E-10 GRAI
 go TO (2l1,2l2). MT
 211 X(J,K,I)=ALOG(K(J,K,I))
GRa
GQAI

```

```

208 CONTINUE
207 CONTINUE.
GO T0 203
206 DO 213 J=1,NR
nO 213 K=1,NR
N0}=4TF\times(I,2
X(J,K,I)=Z(J,K,ND}
NT=MTFX(I,5)
IF (X(J,K,I),EQ.0,n) X(J,K,I)=1,0=-10
GO TO (231,232), MT
GRA
G9\&
GOA
GOA-1
X(J.K,I)=aLOG(X(J,K,I))
$231 \times(J, K, I)=a \log (X(J, K, I))$
232 NXM(I)=\!XM(Y)
GE.
213 CONTTNUE
203 CONTTNUE
MATANMC/1DHM-ADO/% GOA
DATA MMMD / IOH COST / GRO
\cap0 71\overline{0}I=1,NR
OO 710 J=I,NR - G%a
nO 710 K=x,NZ Ga,
710Z1(I,J,K)=Z(I,J,K)
DO ?11I=1,NYO GRA.
OO 712 J=1,NZ GRA
IF (NYON(I).EQ.NZN(J)) GO TO 713 GOM
7 1 2 CONTINUEE G口a
712 CONTINUE, I, NYON(T)
5 3 FORMAT (//4̌,5HNYON(,I2,2H)=,AlU,2X,14HOCES NOT EXIST) GRAA
NFNO=1
go TO 711
713 IF (NOT.NE.2) GO TO 124
00 125 K=1. NR
CO 125 L=1,NR
s=0.0
ML=7
IF (NYN(1).EO.NMD) ML=R
CC 126 M=3,ML
126 S=S+2(K,L,M)
OX(K,L)=S
125 7(k,1,3)=5
124 NO=MTFYO(I,2)
NT=MTFYO(I,3)
NZ=NTTFYO(1;4)
MT=MTFYO(I,5)
DO 714 M=N1,N2
nO 714 K=1, HR
S=0.0
GロA

```

```

Gg\
GO?
GRA
GO.
Gप्
GRA
gaA
GRA.
Ga,4
GロA4
GDA⿱⿱㇒日儿心
G044
GOA4*
G0044
GDA44
GRA44
GPA44
GRA44
G7.444
GDA44
GRA44

```
-116-
DO \(742 \mathrm{~N}=\mathrm{I}, \mathrm{NZ}\) ..... GF
\(742 \quad 7(L, M, N)=Z 1(L, M, N)\) ..... GG
731 CONTINUE ..... GO：
IF NDT EQ－2）GOTO 129 ..... 6．7
\(00272 \mathrm{~T}=1, \mathrm{NZ}\) ..... 69
IF（NDVN，EQ．NZN（I））GO TO 2Ol ..... GR
272 CONTINUE ..... GP：
PRINT 55，NDVN
MEND \(=I\)\(\cdot\)
IF（NEND．EO．I）GO TO \(10 \overline{0} 0\)
291 กO \(273 \mathrm{~K}=1\) ，NR ..... GQA
DO 273 L 1 ，NR ..... Gロ：
\(2730 \times(K, L)=Z(K, L, I)\) ..... GR：
\(12900274 \cdot k=1\) ，NR
\(S=0 . \overline{0}\) ..... G7． ..... G0
DO \(275 \mathrm{~L}=1\) ，NQ
\(275 \mathrm{~S}=5+0 \times(\mathrm{K}, \mathrm{L})\)
\(27400(K)=5\)DO \(276 \mathrm{~L}=1\) ， NRGP：
\(5=0 . \overline{0}\)
\(5=0 . \overline{0}\)
\(00277^{\prime} K=10, N p\) ..... G9． ..... Gpar60GD\(277 \quad 5=S+6 \times(K, L)\)276 n（L）\(=5\)GR ：
G？
IF IND2，NE II GO TO 40 ® ..... GP泉
PRTNT 10 ..... GP：
\(004 \overline{0} 7 \quad I=1\) ，\(N X\) ..... GP：
PRINT 2g，I，\((J, J=7, N R)\) ..... G？
28 FORHAT（／／4X，2HX（，T1，1H）／9x，10（8X，1H（，I？，1H））／9X，10（8X，1H（，I2，1H）） 1） ..... GPa
DO 4N8 J＝1，NR
4⿹\zh26灬 PRINT 29，J，\((K(J, K, I), K=1, N Q)\)
29 FORMAT \((/ 5 X, 1 H\{, I 2,1 H), 10 E 12,4 / 9 x, 10 E] 3.4\}\) ..... GR：GQ：
407 CONTINUEGP：
PRINT \(30,(J, J=1, N\) ，\()\)GR
30
DO 4 तो \(9 \mathrm{I}=1\) ，NYO ..... GS ..... GR
4ñ PRINT 29，I，（YO（J，I），J＝1，NR）
PRINT 3）．（J，J＝1，AR ） ..... GP：GD
31 FORMAT（／／／4X，5X， \(10(6 x, 3 H Y O(, I 2,1 H)) / 9 x, 10(6 x, 3 H Y O(12,1 H) / 4 X)\) ..... G？
\(0041 \overrightarrow{0} I=13 \mathrm{NYO}\)
410 PRINT 29，I，（YO（J．I），\(J=1, ~ M P)\) ..... GR：
\(400^{\circ} O R I N T 10\) ..... GO．
PRINT 32，（I，I＝I，NR） ..... GQ
32 FORMAT \((4 x, 4 H Q X=/ / 9 x, 10(A x, I H(, I 2,1 H)) / 9 x, 10(8 x, 1 H(, I 2,1 H))\) ..... GD
ก० \(41: I=I\) ，NR ..... GQ，
411 PRIPT 33，I，（GX（I，J），\(J=1\) ，AR \()\) ..... GR्व
33 FORMAT \((/ 5 \times, 1 H(, I 2,1 H), 10 F J 2,5 / 9 x, 10 F 12.5)\) ..... GRA？
PRINT \(34 \%(I ; I=1\) ；NP） ..... GPA3
 G9D3． FRINT 35，（OO（I），I＝1，NP）
GRA75
GRA75
35 FORMAT（／9x， 1 OFI2－5／9X－10FI2．5）DRINT 36，（I，I＝1，NP）
PRINT 35．（OD（I），\(I=1\) ，NR）
\(K T N=0\)
GRA3：
GRA3
GPA 3
GPA 3
GDAう＝
1001 Do 2ß0 I＝I•N允GमА二नGRAフ？
-118-


SURRCUTIME ESTIH（NX，NY，ND，HSTP，NOD，INTT，BD，R1，RZ，BZ，FGO，FGI，FGZ， IFG3，FGZ，FHO，FH1，FH？，FHV，OIRS，S4S，LX，MX，FLO，WT，NXN，NYN，NR，NUI，NUZ）
 IFG3（10），FGZ（10），FHD（10，10），FH1（10，10），FH2（10．10），FHV（10，10）． 20［RS（10），S4S（10），LX（10），MX（10），WT（14），NXN（5），NYN（10）

1．ค2（15̃），\(F H X(10,10), Y O(14,10), Y O(14,10)\) COMYON／AAこ／AR（100），SjR（4），NOX（14，14），NGD（I4），OXP（14，14）：
 COMMON／AA3／RX（5），CY（10），XM（14，5），YM（16，10），XXM（14，5，5），XYM（14，5
\(1,10), Y Y M(14,10,10), D O P(14,14), \cap D P(14), \cap X M(14,14,5), D Y M(14,14,10)\) 2ПSX \((14,5), \operatorname{DSY}(14,1 \overline{0}), N \cap \backsim\)

PRINT 10
10 FORYAT \((* 1 *, 4 x, 17 H L O G\) OF ITEQATIONS）
IR \(=0\)
\(N Q=\overline{7}\)
ETMO1
\(N=0\)
DO \(297 \quad I=1, N X\)
ETMDT
\(N=N+1\)
\(287 \mathrm{AO}(\mathrm{N})=\mathrm{BX}(\mathrm{I})\)
DO \(288 \mathrm{I}=1, \mathrm{NY}\)
\(\mathrm{i}=\mathrm{N}+\) ？
GRADI
\(288 \mathrm{BO}(\mathrm{N})=\mathrm{CY}(\mathrm{I})\)
\(I N I T=0\)
\(5 \overline{0} 1 \quad N O=\overrightarrow{0}\)
\(\quad N D=N X \rightarrow N Y\)
GRAÓl
\(\mathrm{N} 2=\mathrm{ND} \equiv \mathrm{NO}\)
\(N G=1\)
\(\mathrm{NH}=2\)
ETMOI
ETMO1
ETMOI


МАロ \(=\) 万
CALL GRVMOD（INIT，NG，NH，NX，NY，ND，NR，AO，FLO，FGO，FHO，HT，NUL，NUZ）
\(F S \cup M=F L O\)
\(\mathrm{IC}=\overline{0}\)
00 3011 \(I=4\) yNR
DO 301 \(J=1, N R\)
\(I C=I C^{-}+1\)
IF（IC．GT．ND）GO TO \(30 \overline{0}\)
3 ©̄ \(x(J, I, 5)=80(I C)\)
\(3005=0.0^{\circ}\)
C．DUT NAP \(=1\) HEPE．
IF（NAP。NE．1）GO TO 201
DO \(2 \overline{-1} 2 \quad I=1\) ，NO
DO \(202 \quad J=1, N D\)
IF（I，NE，J）\(F H O(I, J)=0.0\)
IF（I，EQ．J）FHO（I，I）\(=1,0 / F H O(I, J)\)
\(2 \overline{0} 2\) CONTINUE
GO TO 29］
\(2015=0.5\)
CALL MINV（FHO，ND，\(\cap, L, X, M X, N Z)\)
IF（D．NE．O）SO TO 2.91
PRINT 8
8 FORMAT（／／4X，44HHESSIAN SINGULAR AT INTTIAL PARAMETER VALUES）
291 กO 4 İl \(J=1, N D\)
ก० \(401 \mathrm{I}=1\) ，ND
40）FHV（IGJ）＝FHO（I，J）
\(\mathrm{MOC=1}\)
\(M O D=2\)

ETMAD
FTMO？
\(F T T^{4} 0\) ？
FTMถัว
Fデッウヤ
FTMO3
ETMOT
ESTヴ

C PUT \(\$ M O D=2\) \％HERE．
TNTT＝1
CCONV＝1
EST
ITROう
EST
\(\mathrm{NO}=\overline{0}\)
JK＝0
\(J 5=0\)
\(J T=0\)
\(\mathrm{GM}=\overline{0} .0\)
EST：

N U？\(=0\)
\(F L M X=F L 0\)
\(5001 T P=T T R+1\)
EsTaz
IF IFLMXOEQ．FLO）GO TO 121
NU2 \(=0\)
FIMX＝FLC
GO TO 122
121 NUZ＝NUZ +1
IF（NUZ．LE．3）GO TO I2？
PRINT 4 ，ITR
NOD \(=4\)
GO TO 407
\(1225=0.0\)
1 FORMAT（／／／4X，2IHSUMMARY OF ITERATIONS）
ESTO
2 FORMAT（／／4X， \(4 x, 2\) GHCONVERGENCE ACHIEVED AFTER，I5，13H ITERATIONS．． \(15 x\), 3ת̃hROOT MEAN SQIIARE OF GRADIENT \(=\) FF15．7

EST
3 FORMAT（／／BX，57HTERMTNATION DUE TO UNDFDFLOU IN CALCULATION OF 1ELTHOOD）
4 FORMAT（／IGX，27HCONVERGENCE NOT ACHIEVEN IN，I5，I2H ITERATIONSI
\(10 \overline{0} 3 \mathrm{JK}=\overline{0}\)
EST
\(M O D=\) ？
CAll NLMAXH（ND，ITR，ICONV，NRONXONY，MSTP；INITPNHTFLOFBOFB1；BP；RZ，
IFGi，FGI，FG2，FG3，FGZ，FHî，FH2，FHV，DIRS，S4E，LX，MX，JK，JS，JT，GM，NOD，UT，
2NAP，NUl，NUZ）
EST
EST：

IF（FLO．LE．FSUM）GO TO 304
IC＝0
\(00305 \mathrm{I}=4\) ， NR
DO \(305-\mathrm{J}=1\) ； NR
\(\mathrm{IC}=\mathrm{IC} \mathrm{C}+\)
IF（IC．GT．ND）GO TO 3戶́4
\(3005 \times(\mathrm{J}, \mathrm{I}, 5)=80(\mathrm{IC})\)
\(304 \quad s=0.0\)
IF（JS．FO．1）GO TO 610
EST
IF（JK＝EQ．1）GO 10610
EST
IF（ITR．LE．IG）GO TO 614
C PUT \＃F（ITR．LE．＊＊）GO TO 614＊HERE．
NOn＝4
Gn TO 610
614 IF（JT．NE．1）GO TO 500
PRINT 1
610 IF（JS．EO．1）GO TO 611
IF（JK．EO．I）GO TO 612
IF（NOD．E（G．4）GOTTG61？
PRINT 2，ITR，GM
GO TO 407
おll Parnt 6
 MSTP＝1
GO 10407

ESTI
ESTO
ESTO
ESTO
ESTṼ．
ESTÕ
ESTn
FSTOA
ESTAA
ESTA：
EST
ESTO：
ESTO612 PRTINT 5, ITR5 FORMAT (//4天,GgHTEDMTNATION DUE TO SINRILLARITY OF HESSYAN MATRIX AESTดั
        IT ITERATION NUMGER. ISI
            EsTn5j
    MTMOTMOM
    MTMOTMOM
    MTMES=: 
    4O7 RETURN
        FND
                                5, %%号
                            EST\5%
                            ESTD5:
                            ESTD5:
-122
6l2 PRTNT 5, ITR
    5 ~ F O R M A T ~ ( / / 4 N , G G H T E D M T N A T I O N ~ D U E ~ T O ~ S I N P I L L A R I T Y ~ O F ~ H E S S I A N ~ M A T R I X ~ A ~
ESTOS
;
                            EST05%
```

SUAROUTINE GAVMOD IIAIT,NG,NH,NX,NY,ND, AR,A,SUM,FG,FH,WT,NIUI,NUZ)
 COMमिति /AA1, 1RP(10̆), $F H X(10,10), Y O(14,10), Y \cap(14,10)$
COMMON /AA3/ $X X(5), C Y(10), X M(14,5)$, YM(14, 10$), X X M(14,5,5)$, XYM 14,5
GDAO

IF (INIT.EO.0) GO TO 251
$N=0$
DO $190 \mathrm{I}=1$, NK $\mathrm{N}=\mathrm{N}+1$
190 EX(I) $=A(N)$
190 $191 \mathrm{I}=1, \mathrm{NY}$ $\mathrm{N}=\mathrm{N}+1$
$191 \mathrm{CH}^{Y}(\mathrm{I})=\mathrm{A}(\mathrm{N})$
251 DO $2011=1$,NR

- DO $202 J=1$, NR
$5=0.0$
20 2п̃3 $K=1$, Ň
$203 S=5+x(I, J, K) \$ g x(K)$
$T=0.0$
DO $2004 K=1$, NY
$204 T=T+Y(I, K) * C Y(K)$
$P(T, J)=S+T$
GOAB
\qquad GMD

202 CONTJNUE
GMnO

ZÖl CONTINUE
$P M A X=P(1,1)$
PMIN=P(1,1)
חO $101 \mathrm{I}=1$, NR
DO $1 \overline{0} 1 \mathrm{~J}=1$, NQ
IF (P(I,J)=LE,PMAX) GO TO IOI
PMAX $=P(I, J)$
3II CONTINUE
GMDO
GMOH
$00102 I=1, N R$
GMD

กO $1 \overline{0} 2 \mathrm{~J}=1$,NR
IF (PiI,J).GE,PMIN) GOTO 102
PMIN $=P(I, J)$
1012 CONTINUE
$\begin{aligned} P U & =A B S(P M A X) \\ P L & =A B S(P M I N)\end{aligned}$
$\begin{aligned} P U & =A B S(P M A X) \\ P L & =A B S(P M I N)\end{aligned}$
$T=-P M I N$
IF (PU.GE.PL) T=-PMAX
DO $103 \mathrm{I}=1$, NR
DO 1 П̄ $3 \mathrm{~J}=1$, NR
s=P(T, J) + T
$103 P(I, J)=E X P(S)$
no $205 \quad J=1$, NR
$5=0.0$
חO $205 \mathrm{I}=1$, NR
2.0́o
$S=5+P(I, J)$
ก० $2 \overline{0} 7 \mathrm{I}=\mathrm{T}, \mathrm{NP}$
$207 \mathrm{CO}(\mathrm{I}, \mathrm{J})=\mathrm{P}(\mathrm{x}, \mathrm{J}) / \mathrm{S}$
205 CONTINDE
กO 2ñg $K=1$, NK
$00209 \mathrm{~J}=1$, NP
$5=0 . \overline{10}$
$00210 \mathrm{~L}=1$, NR

```
210 S=S+P(L,J)*X(L,J,K)
    209 xM(J,K)=S
    208 CONTINUE
        00 211 K=1 NN
        00211 J=1.NR
        s=0.0
        DO 212 L=1,NR
    212 S=S*&(L,J)*Y(L,K)
    211 Yid(J,K)=S
    no 213 k=1,NX
    no 213 L=1,NX
    no 213 J=1,NR
    S=0.0
    00 214 I=1,NR
214 S=S+P(I,J)*#(I,J,K)*x(I,N,L)
213 XXM(J,K,L)=S
    DO 215 K=1,NX
    NO 215 L=1,NY
    DO 215 J=1,NR
    S=n.0
    DO 216 I=1,NR
216S=S+P(I,J)*X(I,J,K)#Y(I,L)
215 XYM(J,K,L)=S
    nO 217 K=1,NY
    DO 217 L=I,NY
    nO 2l7 J=1,NR
    S=0.0
    DO 21̈3 I=1,NR
    218 S=S+P(I,J)#Y(I,K)*Y(I,L)
    217 YYM(J,K,L)=S
    OO 219 I=1,NK
    DO 219 J=1,NR
219 กOP(I,J)=ロK(T,J)/Oח(J)-P(I,J)
    DO 220 I=1,NR
    s=0.0
    nO 221 J=1,NR
    221 }5=5*2(I,J)*Q0(J
    220 nOP(I)=00(I)-5
    GO TO (1001,1002,1003), Nul
1001 5=0.0
    DO 301 I=1,NR
    00 301 J=1,NR
    T=1000.0/QX(ITJ)
    IF (QX(I,J).LE.100.ñ) T=100.0
    IF (NON.EQ.O) T=10. 
301 5=5+(DQO(T,J)$*2)*T
    SIJM=-S
    IF (NG.EQ.0) GO TO 245
    DO 3\overline{0}2 K=1,NX
    00 302 J=1,NQ
    00 302 T=1,NR
    30̈2- пXM(T,.J,K)=X(I,J,K)-XM(J;K)
    DO 30̄3 K=i,NY
    00 303 I=I,NR
    00 3n3 J=1,NR
    OYM(I,J,K)=Y(I,K)-YM(J,K)
    00 304 K=1,NX
    S=0.0
```

```
    OO 3-י\5 I=1,NIR
    Oก 305 J=1%NR
    T=1\overline{0}\overline{0},0/OX(I,J)
```



```
        G
    IF (NDW.EO.O) T=1.\overline{n}
30}5\mathrm{ S = S+DQP(I,J)#P(I,J)#nXH(I,J,K)#T
304 FG(K)=2,0.$5
    nO S0́a K=1,NY
    S=C.
    O\cap 307 I=1,NR
    0O 397 J=1,NR
    T=100,0/QK(I,J)
    IF (NDN.EQ.O) T=1.0
3007 S=5*DOP(I,J)*P(I,J)*DYM(I,J,K)*T
306 FG(NX+K)=2.0%5
    TF (NH.EQ.O) GO TO 245
    nO 3\̄8 K=1.NK
    DO 30B L=1,NX
    Sl=0.0
    S2=\overline{n}=0
    00 30\9 I=I;NR
    00 3ก9% J=1,NR
    T=10句.0/QX(I,J)
    IF (QX(I,J) LE, 10,O) T=100.0
    IF (NDN,EO.O) T=1,n
    SI=SI*(P(I,J)**Z)*#XN(I,J,K)#DXM(I, J,I-}*T
```



```
    IX̌MM(J,K,L))&T
    30̄g FH(K,L)=-2.0*(51-5?)
    00 310 K=1;NX
    OC 310 L=1,NY
    SI=त⿹勹口
    S2=0.0
    DO 311 J=1,NP
    DO 311 I=1,NR
```



```
    IF (QX(I,J).LE. 10,0) T=100.0
    IF (NDW.EN.0) T=1.0
    SI=SI+(P(I,J)## )
31I S2=S2+DOP(I,J)#P(I,J)#(DKM(I,J,K)#DYM(I,J,L) & XM(J,K)#YM(J,L)-
    IXYM(J,K,L))>T
310 FH(K,NX+L)=-2,0*(5\}-52
    DO 312 I=1,NX
    OO 312 J=1,NY
312FH(NX+J->I)=FH(IONXFJ)
    00 313 K=1,NY
    DO 313 L=1.NY
    5l=0
    S2=0.0
    nO 314 J=3,NR
    no 314 I=1.NR
    T=1㑒句.0/OX(I,J)
    IF (OX(Y,J),LE.1号O) T=100.0
    JF (NDV.EO.0) T=1, %
    S!=SI+(P(I,J)**2)*nYM(T,J,K)*\capYM(I,J,L)*T
314 S己=SZ*DOP(I,J)*P(I,J)*(DYM(I,J,K)*DYM(Y,J,L) *YM(J,K) *YM(J,L)-
    IYY行(J,K,L);#
```

313 FH(NX+K,NX+L)=-2,0;(S1-S2)
GO TO 245
lnñ2 }5=0.0
-
卸
T=?:0
no 252 T=1,NR
S=S+(0DP(I)**2)*\$T(I)
DO 252 J=1 ,NR
252T=T+D(NP(I,J)\#\$2
SUM=-(T+5)
IF (NG.EO.O) GO TO 245
DO 222 K=1,NX
DO 222 J=1,NR GMnN̈g\&
DO 222 I=1,NR
222 nXM(I,J,K)=X(I,J,K)-XN(J,K)
DO 223 K=1,NY
DO 223 I=1,NR
00223 J=1,NR
223 DYM(I, J,K)=Y(I,K)-YM(N,K)
DC 224 K=1,NX
S=0.0
DO 225 I=1,NR
DO 225 j=1,NR
225S=S+DQP (I,J)*P(I,J)*DKM(I,.J,K)
T=0.\overline{0}
00 220́c I=1,NR
U=0.0
no 227 J=3,NR
2.27UUU+QD(J)*P(I,J)*DXM(I.J.KK)
0SX(I,K)=U
226T=T+WT(I)*DOP(I)*U
224 FG(K)=2.0*(S+T)
00 228 K=1,NY
S=0.0
00 229 I=1,NR
OO 229 J=1,NR
2.29 S=S*DGP(I,J)*P(I,J)*DYM(I,J,K)
T=0.\overline{0}
DC 23-1 I=1,NR
U=0.0
00 231 J=1.NR
2.31 U=U +OD(J)*P(I,J)\#DYM(I,J,K)
OSY(I,K)=U
230-T=T+WT(T)*OOP(T)*15
230T=T+WT(T)*OOP(T)*\
228 FG(NX+K)=2-0+(S+T)
NA=1
IF (NH:ET:0)-GO-TO-245
00 232 K=1,NX
00 232 L=1,NX
\$1=0.0
S?=0.0
DO 233 r=1,NR
nO 233-J=19iNR
Sl=Sl->(P(I,J)\#\#ट)*ňM(T,J,K)*DXM(I,J,L)

```

```

 |XXM(J,X,L)।
 sl=2.0*(51-52)
 S3=0.0
 S4=0.0
 GM0त7%
 GMD⿹丁口#
 GMDOg1
 GMOOZう
 GMOD#3
 GMDĂAá
 GMDN̆B%
 GMnnga
GMDOA7
GMDÖ%Q
gM008ם

```
```

 00 234 I=1,NR
 S3=53+4T(I)*DSX(T,K) 二人, 汉 (I,L)
 55=5.0
 nO 235 J=1, NR
    ```

```

 l Xx隹(J,K,_)))
 234 54=54+HT(I) क1OOP(I) 455
 232 FH(K,L)=-51-2.0%(S3-54)
 nO 236 K=1,NX
 DO 2.36 L=1,NY
 S1=0.0
 S2=0.0
 nO 237 j=1,NR
 00 237 I=1,NR
 SI=SI*(P(I,J)**2) #DXM(I,J,K)*DYM(I,J,L)
 237 ST=52+DQP(I,J)*P(I,J)#(DXM(I,J,K)*DYM(T,J,L.)+XM(J,K)#YM(J.L)-
 IXYMSJ_K,L\)
 S3=0.0
 54=500
 DO 238 I=I,NR
 S3=53+HT(I)*DSX(I,K)*DSY(I,L)
 55=0.0
 00 239 J=1,NR
 239 55=55+QD(J)*P(I,J)*(DXM(I,J,K)*DYM(I,J,L)+KM(J,K)#YM(J,L)-XYM(J,KK,
 IL))
 238 S4=54*HT(I)*DOP(I)}$5
 236 FH(K,Nx+L)=-2. D"(51-52+53-54)
 0O 240 T=1,NK
 DO 240 J=1,NY
 240 FH(N\check{n}+J,I)=FH(I,NX+J)
 00 241 K=1,NY
 nO 241 L=1,NY
 S1=0.0
 S2=0.0
 DO 242 J=1,NR
 DO 242.I=1,NR
 SI=Sl + (P(I;J)##2)कロYM(I;J,K)#DYM(I,J,LL)
 GM%
 242 5?=S2&DOP(I,J)#P(I,J)#{DYM(I,J,K)#DYM(T;J,L)+YM(J*K)#YM{J,L}-YYM(JGMA
 1,K,!)!
 GM0
 S 3= =0,0
 GMO
 54=0.0
 nO 2.43 I=1, NR
 S3=S3*HT(I)*DSY(I,K)#DSY(I,L)
 S5=5.5
 DO 244 J=1,NR
 G
    ```

```

 1())
 GMDl
 243 S4=54+4T(I)#0OP(T)*S5
 241FH(NX+K,NX+L)=-2.0*(51-52+53-54)
 GO TO 245
 1003 5=0.0
 245 RETUPN
 F.ND
 $I J=I-N$
$0065 \mathrm{~J}=1, \mathrm{~N}$
IJ $=I J+N$

60 IF（J－K）62，65，62
$62 K J=I J-I+K$
$A(I J)=H O L D * A(K J)-A(I J)$
65 CONTINUF
$K J=K-N$
กด $75 \mathrm{~J}=1 \mathrm{~N}$
$K J=K J+N$
IF（J－K）70，75，7i
70 A（KJ）$=A(K J) / 8 I G A$
75 continue
$D=0 *$ 白 $G A$
$A(K K)=1.0 / B I G A$
80 CONTINUE
$K=N$
$100 k=(k-1)$
IF（K） $150,150,105$
$105 \mathrm{I}=\mathrm{L}(\mathrm{K})$
IF（I－K） $120,120,108$
1クロ JQ＝N＊（K－1）
$J R=N \neq(I-1)$
$00110, J=1, N$
$J K=J Q+J$
HOLD＝A（JK）
$J I=J R+J$
$A(J K)=-A(J I)$
$110 \mathrm{~A}(\mathrm{~J})=\mathrm{HOLD}$
$120 \mathrm{~J}=\mathrm{M}(\mathrm{K})$
IF（J－K） $100,100,125$
$125 \mathrm{KI}=\mathrm{K}-\mathrm{N}$
DO $130 \mathrm{I}=1, \mathrm{~N}$ IN
$\mathrm{KI}=\mathrm{KI} \leftrightarrow \mathrm{N}$
I
HOLD $=A(K I)$
$J I=K I-K+J$
$A(K I)=-A(J I)$
130 A（JI）$=$ HOLD GOTOIDO
$150 \mathrm{~K}=0$
$002002 \quad \mathrm{E}=1, N$
$00202-J=1, N$
$k=k+1$
$202 A H(J, I)=A(K)$
RETIJRN
END
 $1, F H V, L X, H X, S E, T V, F L O, K T N, H T, N X N \neq N Y N, N R, N U 1, N U Z, I X)$

RLTO

 IRR（10），FHX（10，10），YO（14，10），YD（14，10）
 INOXP（14，14），NQOP（14），NODP（14），NOO（14），NOXPI（14，14），BT1（10），BTR（10） COMMON／AA3／BX（5），CY（10），XM（14，5），YM（14，10），XXM（14，5，5），XYM（14，5 $1,10), Y Y M(14,10,10), D O P(14,14), \operatorname{DOP}(14), \cap X M(14,14,5), D Y M(14,14,10)$, 2ПSX（14，5），DSY（14，1才），NDW

G品云？
GAADI
GRADIZ
GQÁOT
IF（NXOEO．O）GOTO 103
$\mathrm{N}=0$
D0 $6 \overline{5} 6 \quad I=1, N X$
$N=N+1$
GQADIt
RLTÖ́s
RLTOLC
RLTO2
$608 \mathrm{BX}(\mathrm{I})=\mathrm{BO}(\mathrm{N})$
103 IF（NY．EQ．O）GO TO 10̈a
Rட̆
DO $607 \mathrm{I}=1$ ，NY
$N=N-1$
$6 \overline{0} 7 \mathrm{CY}(I)=B \cap(N)$
104 IF（NOO．EO．3．OA．NOO．EO．4）GO TO 601 PRINT 1
1 FORMAT（／／／4X，24HCONVERGENCE NOT ACHIEVEO）
6022 PRINT Z
2 FORMAT（／／AX，59HTHE FOLLOHTNG ARE THE E®TIMATES OBTAIMED BEFORE TE IRMINATION／4X）

IF（A！X．EO．OS GO TO 603
PQINT $4, ~(I, B X(I)), I=\bar{I}, N X)$
4 FORHAT $(/ 9 X, 7(5 X, 2 H B(, I 2,2 H)=, F 6,3) / / 9 x, 7(5 X, 2 H 8(, I 2,2 H)=, F 6,3) /$
14X）
603 IF（NY．EO．0）GO TO 604
PRINT 5，（ $I, C Y(I)), I=7, N Y)$
5 FORMAT $(/ 9 X, 7(5 x, 2 H C(, T 2,24)=, F 6,3) / 19 x, 7(5 x, 2 H C(, I 2,2 H)=56.3) /$
14×1
604 GO TO 1000
$601 \mathrm{NH}=1$
$N G=1$
$0=1 . \therefore$
$\mathrm{NZ}=\mathrm{NO} * \mathrm{NO}$
INTT＝1
IF（IX．EQ．I）GO TO 310
กก $119 \mathrm{~T}=1$ ，ND
IF（KYN．EQ．0）GO TO İZ
9T2（I）＝8j（I）
GOTO 119
I20 BTI（I）＝80（I）
119 CONTINUE
$31 \overline{0}$ IF（IX．NE，1）GO TO 1 ？i
ก0 $\overline{1} 22 \quad I=1$ ，NO
IF（KTN．EQ．O）GO TO 123
ค力（I）＝RTC（I）
Gก TO 122
123 An（I）＝BTI（I）
122 CONTINUE
$1215=0.0$
IF（IX．FR．I）INIT＝2
CALL GRVHOD（INIT，NG，AH，NX，NY，NO，NR，$\because O, F I, O, F G O, F H Z, N T, N U 1, N U Z)$
RLT02？
RLT027
RLTODE
RITOT
RLTOI
RLTO1
ALTOI
QLTVIE
PLT云Ts
R1T017
R！Tロロデ
Ríropa
R17024
RETV？
Rt TOTs
RLTO3
RLTO3i
RLTOB
RLTO3
RLT03：
RLTた3i
RLTO32
RLTO34
RLT03i
RLTO34
RLTO3
RLTO3：
RLTO3
RLTO3：
RLT0̄á
RLT0̇3
RiTñ
PLTO3
RLTतु
R1T03：
RLTOB：
R！T03i
RLTOT．
FLTOヲ・

```
    -131-
    nO 5ñ7 I=1,ND
    NO 507 J=1,NO
507 FHV(I,J)=-FHC{I,J)
    RLT\tilde{O}
    [-
    CALL MTNY (FHV NO, N:IX,MX,NZ)
    MM=亏
    KO=0
    IF (D.NF.O.O) GO TO 60̈A
    PRINT Ǵ
    6 FORMAT I8X, 7THHESSTAN SINGULAR AT CONVEOGENCE, INDICATING THAT THE
    1 CONSTRAINTS ARE JUST METJ
    IF (D.EQ.D.O) MM=1
    IF (MM,EO.I) GO TO GDAA
    60 TO 6,?2
6008 NL=丮
    S1=易.0
    T=0,0
    V=0.\overline{0}
    DO 60゙9 I =1,NR
    N=?
    DO 610 J=1.NR
    NOX(J,I)=OX(J,I)+0.5
510 N=N+NQX(J,I)
    NOD(i)=N
    DO 6!1 J=I,NR
    SI=51+(P(J,I) #NQD(I)-0X(J,I))
    V=V +(QX(J,I) }+P(J,I)*NGG(I))*#
611 T=T+(QN(J,I)-P(J,I)*NG\cap(I))**2/(P(J,I)&NOD(I))
    Nl=N1+NOD(I)
6\overparen{9 CONTINUE}
    N=N-2*NR
    N]=
    S=0.0
    DO 612 I=I,gNR
    Nl=Nl+NQO(I)
    00 618 J=1,NR
    N2=P(J.I)*NQD(I)+0.5
    Tl=NOM(J,I)-N2
    JF (TI.LT.O.0) GO TO 6Tg
    S=5+TI
618 CONTINUE
612 CONTINUE
    IF (KO.EO.I) GO TO 621
    PCP=S/N1*100.0
    FRM=51/(NR*NR)
    RIH2R=V/(NR*NR)
    RH2R=SQQT(RM2R)
    SRX2=T
    U=(NR-1)}\approx(NR-1
    DF=U-ND
    CF=U/DF
    5R?=V
    DO 70l J=1,NR
    DO 701 I=1,NR
    nKP(I,J)=q(I,J) &NOn(J)
701 NOKP(I,J)=0XP(I,J)*0.5
    00 T\overline{02 I=I MR}
    N!= = =
    N2= \overline{0}
```

-132-

Rit 1 IIX, QHYAPIABLE, Ť, QHVARIABLE, $10 \times, 5 H L O G T T, 7 X$, AHSTANDARD, $13 X, 2 H T-1$ RIT
 34x)
$N=$?
IF (NX.ER.O) GO TO 627
IF (MH.NE.I) GO TO 302
DO $303 \mathrm{I}=1$, NK
$\mathrm{N}=\mathrm{N}+1$
303 PRINT 8, I,NKN(I),RO(N)
go ro 306
$3025=0.0$
$00628 \quad I=19$ NX
PLT
$N=N+1$
PRINT $\delta, I, N X N(I), B \tilde{n}(N), S E(N), T V(N)$
6 6.8 PAINT $8, I, N X N(I), B त ̄(N): S E(N), T V(N)$
8 FORMAT ($14 \times, 2 H B(, 12, I H), 5 X, A 10,4 F 15.5)$
$305 \quad 5=0 . \overline{0}$
PRINT 9
9 FORMAT (*
627 IF (NY.EQ.O) GO TO 629
IF (MMのIIE. 1) GO TO 304
DO $3 \overline{0} 5 \mathrm{I}=\overline{1}$, NY
$N=N+1$
$3 \overline{0} 5$ PRINT 1ñ, I,NYN(I): Bō(N)
GO TO 629
$354 \quad 5=0.0$
$0063 \overline{0} \quad I=1$, NY
$\mathrm{N}=\mathrm{N}+1$
630 PRINT 10, I,NYN(I),B0(N),SE(N),TV(N)
RLT:
10 FOPMAT ($11 \mathrm{X}, 3 \mathrm{X}, 2 \mathrm{HCl}, \mathrm{T} 2,1 \mathrm{H}$),5X,A10,4F15.5)
529 PCP $=100.0-P C P$
$\begin{aligned} 529 P C P & =100.0-P C P \\ \text { PCPD } & =100.0-P C P O\end{aligned}$
DRINT 25
RLT

25 FORMAT ($/ 14 \mathrm{X}, 2$ OHAUXILIARY STATISTICS/3Ex, 14HAT CONVERGENCE, $13 X$,
ITHAT ZERO/4X)
PRINT 11,FLÖ,FLI
11 FORMAT ($9 x, 19 H V A L U E$ OF FUNCTION, 7 TX,F15. $5,5 x, F 15.5 / 4 \%$)
PRINT 12,SRX2,SRX20
12 FORMAT (9X, IGHRESIDUAL CHI-SOUARE, $7 X, F i 5,5,5 \times, F 15.5 / 4 X$)
PRINT 13. SR2,SR20

PRINT 14, DF, OF
14 FORMAT ($9 x, 18$ HDEGREES OF FREEOOM, $8 \mathrm{X}, \mathrm{F} 15.5,5 \mathrm{~F}, \mathrm{~F} 15.5 / 4 \mathrm{X}$)
PRINT 15, PCP, PCP
15 FORNAT ($9 \times, 27 H$ PERCENT CORRECTLY PREDICTED, $4 X, F 100.5,10 \times, F 10.5 / 4 X$)
IF (SR20.EO.0.0) GO TO 101
$R 2=1.0-5 R 2 / S R 20$
PRINT 19,RZ
19 FORMAT ($9 x, 28 H C O E F F I C I E N T$ OF DETERMINATION, $23 X, F 15.5 / 4 X$) PRINT 53, FRM, FRMO
53 FORMAT (/GX, 2ZHMEAN FORECASTING ERROR, $4 \times, F 15.5,5 X, F 15.5$)
PRINT 54, RM2R, RM2ロO
54 FORMAT (/9X, 34 HROOT MEAN SOUARE ERROR OF FORECAST,F15.5.5X,F15.5) PRINT 55, TFM, TRMZ, TR2

Ri
RLT
RLT $\frac{1}{1}$
RLTI
R! T13
Riti
RiTI
QTTI
RL?
PLTTI:


```
        11H(,I2,(H)))
            กn 831 I=1,ND
            00632 j=1,N0
    632 FHI (I,J)=-FH2 (I,J)
    631 PRINT 45, I, (FHI (IgJ):J=1,NO)
        45 FORMAT (/4x,IH(,I2,TH),7El5.5/8X,7El5.6)
    21 FORNAT (/4X,IH(,I2,1H),8[15)
        IF (MM.EO.1) GO TO 30®
        PRINT 22, (I,I=1,NN)
    22 FORMAT (///4X,17HCOVARTANCE MATRIX//9X,7(11X,1H(,I2,jH))/9X,7(11X, RiLT15:
        11H(,I2,1H)!)
        00633 I=1,ND
        DO 634 J=1,ND
    634 FHV(I,J)=CF#FHV(I,J)
    633 PRINT 45, I,(FHV(I,J),j=1,ND)
    308 5=0.0
        IF (NP.GT.7) GO TO 131
    PRINT 3I, (I,I=1,NR)
    31 FCRMAT ($I#/4X,15HOREUICTION TEST//9X,I9HINTER-REGIONAL FLOU%OX RLTIG4
        lg(lly (H)),
        IF (KTN.EQ.O) GO TO 711
        DO 712 I=1,NR
        PRINT 2I, I,(NQXP(J,I),J=1,NR),NODP(I)
712 PRINT 32, (NOX(J,I),J=1,NR),NOD(I)
        FRINT 33, (NOCP(J), J=l,NR)
        PRINT 34, (NNO(J),J=1,NR)
        GO TO 801:
    711 DO 70̄7 I=1,NR
    PPINT 2l, I,(NOXP(I,J),J=1,NR),NOOP(I)
    70̈7 PRINT 32, (NOX(I,J),J=T,NR),NQO(I)
    32 FORMAT (8X,8I15)
    PRINT 33, (NOQP(J),J=1,NR)
    PRINT 34, (NQD (J), j=1,NR)
    33 FORMAT (/4X,4HSUMP,8I15)
    34 FORMAT (4X,4HSUMT,GI15)
801 GO TO 132
131 PRINT 3I, (I,I=1,8)
    IF (KTN.EO.G) GO YO 133
    DO 134 I=1,NR
    PRINT 21, I;(NNXP(J,I);J=1,8)
134 PRINT 32, (NQX(J,I),J=1,g)
    PRINT 33, (NOOP(J), J=1,8)
    PRTNT 34, (NOO(J),J=1,0,)
    PRINT 31, (I,I=9,ND)
    00 135 I=1,NR
    PRINT 2l, I,(NOXP(.J.I),J=9,NR),NODP(I)
135 PRINT 32, (NOX(J,I),J=9,NR),NOD(I)
    PRINT 33,* (NOOP(j), J=9,NR)
    PRINT 34, (NOC(J),J=9,NR)
    GO TO 132
133 DO 136 I=1,NR
    PRINT 2!, I,(NOXP(T,J),J=1,8)
    136 PRTNT 3?, (NOX(I,J);J=1,8)
    PRTNT 33, (NODP(J), J=1,8)
    PRINT 34, (NQD(J),J=1,a)
    PRINT 31, (I,I=9,ND)
    nO 137 T=i,N!
```

PITIF
RITIS：
RTTE
0175%
PLTIS
Ri 115
RIT15；
P！tifs
Ril T15
11H（，I2，1H））
Rivise
RLTIAA
RLTIB：
$634 \operatorname{FHV}(\mathrm{I}, \mathrm{J})=\mathrm{CF} \Rightarrow F \mathrm{HV}(\mathrm{I}, \mathrm{J})$
PiTMG
$3085=0.0$
IF（NP．GT．7）GO TO 131
RLTIG
Ritigi
31 FCRMAT（\＄1\＃／4X，15HOREUICTION TEST／／9X，I9HINTER－REGIONAL FLOM／／9X，RLTIG9 $18(11 x, I 2,1 H))\}$
IF（KTN．EQ．O）GO TO 711
DO $712 \quad I=1$ ，N_{R}
R！T163
PRJNT 2 i，I，（NQXP（J，I），J＝1，NR），NQDP（I）
R！Tī69
712 PRINT 32，（NOX（J，I），J＝1，NR）NOD（I）
RLTIGS

PRINT 34，（NNO（J），J＝1，NR）
711 DO 70̄7 $\mathrm{I}=1, \mathrm{NR}$
PPINT 2l，I，（NOXP（I，J），J＝1，NR），NOOP（I）
RLTIT
$7 \overline{6} 7$ PRINT 32，（NOX（I，J） $9 \mathrm{~J}=\mathrm{T}, \mathrm{NR}$ ），NQO（I）
A분
RLTITi
32 FORMAT（8X，\＆I 15）
PRINT 33．（NOQP（J），$J=1$, NR $)$
पilit
PTIT
RLTET
RLT17\％
RLTITE
RLTlol
RLTMI
RLTE5：
PLTמす！
RLTÉs
P！
RLT6G
RIT $7 \overline{5}$ ：
RLT TG
RLT65i
RLTGक：
RL＇T®6：
Rit Tó
RIT66：
RLT
PLTST
pitrif
RIT67：
R！ 167°
OLTウT：
自行7：
Ril T6？
PLTf7＊

```
    PRINT 21, I,(NQXP(T:J),J=9,NR),NODP(I)
    137 PRINT 32, (NOX(I,J),J=0,NR),NOO(I)
    PRINT 3`, (NODP(J),J=9,NR)
    Ri
```



```
    ALT
    Ri
    132 5=0.0
    DO 70̃8 I=\,NR
    RL
    DO 7-8 J=1,NR
    RL
    T=(NQXP(T,J)-NQX(I,J)) 
    IF (NQX(I,J).LE.5) GO TO 7\overline{0}
    70% S=5+T/Ox(I,J)
    x?P=S
    DF`2P=(NR-1)*(NR-1)
    PRINT 35% X2P,0FX2口
    35 FOPMAT (////4X,26HCHI-SNIJARE FOR PREDJCTION=,F15.5/4X,19HDEGREES OF
    1 FREEOOM=,F15.5)
        G0 TO 710
    709 PRINT 36
    36 FORHAT ////4X,91HCHI-SNUARE VALUE WAS NOT CALCULATED SINCE ONE OF
    lCELL FREDUENCIES WAS FOUND TO &E 5 OR LESSI
    710 PRINT 37
    37 FOPMAT ///4X, &9HROW NUNAERS INDICATE THE REGIONS OF ORIGIN, AND CO
    ILUMN NUMRERS THE RFGICNS OF DESTINATION//4X,9GHFOR EACH ENTRY THE
    ZUPPER FIGIIRE DENOTES THE PREGICTEO VALIIE, AND THE LOWER FIGURE THE
```



```
        4 5|MS)
        IF (KTN.NE,0) GO TO 15\overline{0}
        00 112 I=19NR
        -no il2 j=1.NP
    112 NOXP1 (J,T)=NQKP(I,J)
        GO TO 1000
    150 10=0
        1C=0
        IC=1
        IC=2
C PUT *IC=I* FOR HIGA METHOD OR *IC=2# FOR FURNESS METHOD
Ri.r
    NID=6
    NYD=2%
C OUT #NIN=XX* HERE FOP THE NUMEER OF ITFRATIONS.
    DO 113 I=1,NR
    RLT
    DO 113 J=1,NR RLT
    113 OXP(I,J)=(NQXP(I,J) +NGXPI(I,J))/2.0
        IF (IC.EO.1) GO TO 151
        ID=0
15a DO 152 J=1,NR
    s=0.0
        DO 153 [%1,NR
    153 S=S+0ヘP(I,J)
        OC 154 I=1,NQ
    154 ロXP(T,J)=OXP(I,J)*N(DO(J)/5
152 contimive
        ח0 155 I=1,NR
    S=0.0
    OO 156 J=1,NR
150́ S=S*ロXP(I,J)
        DO 157 J=1,NR
157 OKO (T,J)=OXP (I,J) NOD (T)/S
155 CONTINUE
    TO=ID+1
RLT
    R1.T
    RLT
    RLT
    RLTG
    RIT:
    RiTE
    RLTG
    RLTG
    RLTo
    RLTS
    PITG
    RLT⿱一𫝀口
    Dit%
    RITT=0
    RLTse
    Rİise
    RLY&G!
```

IF（ID－LEANID）GO TO 158
151 IF（IC．EO．2）GO TO 171
$Y=\overline{0}$
$17500160 \mathrm{~J}=1$ ANR
IE $=$
$16451=\overline{0} \cdot \overline{0}$
$52=0.0$
DO $161 \mathrm{I}=1$ ，NR
IF（OXP（I，J）．LE．0．n） $\operatorname{OXP}(I, J)=0.0$

```

```

SI $=51+0 \times P(I, J)$
$52=52+N Q O(I)$
161 CONTINUE
S3＝NOD（．J）-51
IF（S3．LE．O．0）GO TO 110
$52=0.0$
DO $111 \mathrm{I}=1$ ，NR
$11152=52+$ NOO（I）
110 IF $(53 . \mathrm{LT}, 0.5 . A N O, S 3 . G T .-0.5)$ GO TO 16 ？
DO $163 \mathrm{I}=1$ ，NR
IF（\＄3．GT．0．0）GO TO 165
IF $10 \times P(T, J), E O, 0,0) G O T O 163$
165 カニค（I，J）$=\operatorname{axP}(I, J) \div 53 * N \cap O(I) / S 2$
163 CONTINUE．
$\mathrm{T} E=I E+1$
IF（IE，LE．NID）GO TO IBA
160 CONTINUE

```

```

$174 \begin{aligned} & \text { IE } \\ & 51=0 \\ & 51\end{aligned}$
$52=0.0$
DO $167 \mathrm{~J}=1$ ，NR
IF $(O X P(I, J), L E \cdot 0.0) \quad Q K P(T, J)=0,0$
IF（QXP（T，J），EQ．O．万）GOTO 167
$S_{1}=51+Q X P(I, J)$
$S 2=5 ?+\operatorname{NOD}(\mathrm{J})$
167 CONTINUE
S3＝NOO（I）－51
IF（S3．LE．0．0）GO TO lस9
$S 2=0.0$
DO $170 \mathrm{~J}=1, \mathrm{NR}$
$170 \quad 52=52+\mathrm{NOD}(\mathrm{J})$
169 IF（S3．LT． $1.5 . A N D . S 3 . E T-0.5)$ GOTO 171
DO $172, \mathrm{~J}=\mathrm{I}, \mathrm{NR}$
IF（53．GT．0．0）GO TO 173
IF（0xp（r，j）。EQ．
$173 \operatorname{OKP}(I, J)=\operatorname{OXP}(I, J)+53 \therefore N \cap D(J) / S 2$
172 CONTINUE
$\mathrm{IE}=\mathrm{IE}+1$
IF（IE．LE．5）GO TC 174
165 CONTTANE
$\mathrm{I}=\mathrm{F}=\mathrm{O}+1$
IF（IDaLE．3）GO TO 175
171 กO $176 \mathrm{I}=1$ ， HP
กO $175 \mathrm{~J}=\mathrm{I}, \mathrm{NP}$
176 NQXP（I，J）$=0 \times 9(I, J)+0.5$
no $177 \quad \mathrm{I}=1$ ，NP．
$51=0.0$

```

Ri 7
Pl． 760 g
PLTTती
PLTTO
RL rToj
RLYTN
RLT70
RLTTD
PLTTÓS
PLTフラ
RITプラ
R！T7̄̆
PL TPI
RLTラ1
PLT71
RLTT1
RITTil
RiLTle
ALTT15
QCTY
RLTT18
RLTT16
RLT72！
PLTT21
RLT72
PLT 7
RLTTPA

RLTT？
RLTフマ
RIT？
RLTTZe
RLTT3
RiTTJ
RLTT3
ALT734
RITT3：
9LT73
RLT73：
QLT738
RLTTBC
मLT74i
PLT741
RIT74：
Q！ 174
RLT 744
RITT4E
RLT74E
RLT74
RLT74＝
RL r 74 t
RLT75
R \(175=\)
R1．775
Pl－T75！
RLTTラ


RLT,
PL
DLT
RIT 7
```

177 NOOP(I)=52+0.5
LT

```

DO \(118 \quad i=9 . N P\)
RLT
\(S=S+\lambda O D P(T)\)
-
\(N O T P=S\)
RLTK
\(S 1=\overline{0} \cdot 0 \quad\) RI: IG
\(52=0.0\)
RLTA
\(T=0 . \overline{1}\)
PLT:
DO \(116 \quad I=1\),NR
PLTE
\(T=T+N Q X(I, J)\)
\(S=N Q X P(I, J)-N Q X(I, J)\)
RLTK
\(53=53+5\)
RIT
IF (S.LT.0.0) GO TO 116
PLT
PLI
PI. P
\begin{tabular}{|c|c|c|}
\hline \multirow{8}{*}{140} & no \(140 \mathrm{I}=1\) ，NR & RLTヶタ4 \\
\hline & PRINT 21，I，（NQXP（J，I），J＝1，8） & PLTEA \\
\hline & PPINT 32，（NOX（J，I），J \(=1,8\) ） & PLTSA \\
\hline & PRTNT 33，（NOOP（J）＝\(=1=8\) ） & PTT50： \\
\hline & PRINT 34，（NOO（J）， \(\mathrm{J}=1,8)\) & सit \\
\hline & PRINT 51，（I，I＝9，NR） & RIT \({ }^{\text {Pai }}\) \\
\hline & On \(141 \mathrm{I}=1\) ， \(\mathrm{N} / 8\) & PLTAO： \\
\hline &  & Ri Tóg \\
\hline \multirow[t]{3}{*}{141} & PRINT 32，（NQX（J，I），J＝0，NR），NOD（I） & PI T89 \\
\hline & PRINT 33，（NOOP（ \(j\) ），\(j=9, N\) ），NOTP & PLT69 \\
\hline & DRINT 34，（NQO（J），J＝9，NR），NQTT & PLT69： \\
\hline \multirow[t]{2}{*}{139} & PPINT 37 & RiT69e \\
\hline & PRTNT \(5 ?\) & PITC35 \\
\hline \multirow[t]{6}{*}{52} & FORMAT（／／／） & RLT 65 \\
\hline & PPINT 15，PCP & PLT65 \\
\hline & PRINT 19，R2 & RLT654 \\
\hline & PRINT 53，FRM & RLT20 \\
\hline & PRINT 54，HMPR & Rit Ṫ̃i \\
\hline & PRINT 55，TRM，TRM2，TR2 & \\
\hline \multirow[t]{2}{*}{1000} & RETURN & PLTさら \\
\hline & END & RLTEN \\
\hline
\end{tabular}
 IRT，\(F G \overline{0}, F G 1, F G 2, F G 3, F G 7, F H 1, F H 2, F H V, D I P, S 4, L X, M X, J K, J S, J T, G M, N O D\), 2UT \＃NAP NUT NU2：
 1FG3（10），FGZ（10），FHi（10，10），FH2（10，10），FHV（10，10），DIP（10），54（10）． 2L×（1）
\(I_{\text {RR }}(10), F H X(10,10), Y 0(14,10), Y D(14,10)\)

\title{
\(1,10), Y Y^{\prime 4}(14,10,10), D O P(14,14), D O P(14), 10 K M(14,14,5), D Y M(14,14,10)\) ， \\ GQAB
} 2DSX（14，5），USY（14，1年），NกN
I \(A=1\)
\(J V=\overline{0}\)
nn 501 \(x=1, N D\)
FGZ（I）＝FGO（I）
\(501 \mathrm{AZ}(\mathrm{I})=80(\mathrm{I})\)
Gáa
\(F L Z=F L O\)
Dก 50̃2 \(\mathrm{I}=\mathrm{I}\) ，ND
\(5=0.0\)
DO 5 万̄3 \(J=1\) ，ND
\(5 \overline{0} 3 S=S+F H V(I, J)=F G O(J)\)
502 DIR（I）\(=5\)


MĀX 0

\(\begin{aligned} & N H=0 \\ & D O 2 \bar{O} 1 \quad I=1, N \\ & 2 \bar{O} \mathcal{F G l ( I )}=R O(I) \\ & \operatorname{SIR}(I)=F(0.0\end{aligned}\)
JJ＝1
\(S T 1=1.0\)
317 STP \(=5 T 1+5 T 1\)
\(002 \overline{0} 2 \mathrm{I}=2\) ， NO
\(202 F G 2(I)=F G I(I)+5 T 1 \geqslant O I R(I)\)
\(N G=0\)
CALL GRVMOD（INIT，NG，NH，NX，NY，ND，NR，FG？，FLI，S4，FHI，WT，NUI，NUZ）
\(5 \ln (2)=\bar{F}(1\)
IF（FLl－FLO）101，102，10̃3
\(M \bar{A} X_{B}\)
MĀ \(x^{-}\)
MAy：
MAXI
\(M \bar{A} \times \dot{r}\)
\(M \bar{A} \times\)
MAXC
－－－

Max？
MAX
Maxa
MAX
Mäxa
MAXD
MAX
MÄ
MAX
\(M \bar{A} \times \overline{0}\)
\(M A \times A\)
Màa

DO \(20{ }^{5} 4 T=1\) ．ND
20̄4 FG3（I）＝FGI（I）＋5T13TIR（T）
CALL GRVMOD（INIT，NG，NHI，NX，NY，ND，NR，FG3，FLZ，S4，FH1，WT，NUI，NUZ）
IF（FLZ．GT．FLO）GO TO 311
ST3＝STl
STZ \(=5 T 1+S T 1\)
\(00312 \mathrm{I}=\) ？，iND
日ワ（I）\(=\) FGC（I）
RI（I）\(=\) FGI（I）
\(312 \mathrm{B2}(\mathrm{~J})=\mathrm{FG3}(\mathrm{I})\)
FL \(3=F L 2\)
FLZ \(=F L 0\)
GO TO 120
\(31100313 \quad I=19 \mathrm{ND}\)
313 FGZ（I）＝FG3（I）
FI． \(1=F L 2\)
STZ＝ST1＋ST1
Gก TO \(1: 3\)
\(1025 T 3=5 T 1 / 2.0\)
\(S T 2=5 T 1\)
\(M A X O\)
\(M A X A\)
MA्AX \(\vec{i}\)
Maxn
\(1015 T 1=-5 T 1\)
MĀX
\(M \bar{A} X \overline{0}\)
MAXO：
MĀHO：
МӒ้믐
MAX
MAX
MAX
MAXD̄
MAX \(\overline{0}\) ？
MAXOZ
MaXO3：
Max 03

\(\mathrm{Ma} \times \mathrm{O}^{-}\)
Max
\(M \bar{A} \overline{0}\)


```

2l6 FGO(I)=FGl(I) +ST3*חTP(I)
CALL GRVMOD (INIT,NG,NH,NM,NY,NO,NR,FGO,FLZ,S4,FHI,WT,NUL,NUZ)
IF (FLL,GEoF!.0) GO T0 2l7
MA゙^043
PPINT 10, IT,(FGO(I),I=1,NN)
10 FCRMAT (//4x,47HTHE FUNCTION IS NOT CONCAVE AT ITERATION NUMAER, MAXÖLAR
155,3HAND//4ू,2HE=,10F10̈.5)
Max040
DO 218 }\textrm{I}=1,\textrm{ND
218 An(I)=FG2(I)
Mä`п̃ラत Mäxosi Gח T0 1002 MĀ`0ॅ5?
21700 219 I=1,NO
MĀxด̄53
RO(I)=FGl(I)
MĀXO5-
H1(I)=FGO}(I
219 82(I)=FG2(I)
M4ॅ\overline{055}
MAXO55%
FLl=S1R(1)
MĀX057
FL. 3=SIR(2)
MÄXO59
gO TO 120
MA KO59
lō3 DO 2\overline{5 T=!,ND}

```

```

205 FG3(I)=FGR(I) +STZ*तIR(T)
MA`0゙S! CALL GRVHOD (INIT,NG,NH,NX,NY,ND,NR,FG3,FLZ,S4,FHI,WT,NUL,NUZ) MӒхก̈я己 SIR(4)=FL2 215 SI=SIR(2) MĀ`064
MAX065
S?=SlR(4)
S?=SlR(4)}\mathrm{ MAXOGA

```

```

111 5TJ=STE/2.0
MAX069
DC 206 I=2,ND
MAYOK?
206 FGN(I) =FG2(T) +ST3\#\#IR(T)
CALL GPVMOD (INIT,NG,NH,NX,NY;NOGNRFFGO,FL3;S4,FHI;WT,NUI;NUZ)
S1P(3)=FL3
Mä\times070
MAX071
IF (SlP(2).LT.SlR(3)) f0 TO 2nA
DO 209 I=1,ND MAXOス2
MA X त >= \
RG(I)=FGI(I)
Mӓх087

```

```

2ñ9 GZ(T)=FGO(I)
MA<095
FLl=SIR(1)
MӒYこAG
FL?=51R(2)
M\Deltā`0̆87

```

```

 GO TO 120
 20.8 DO 210}1=1,N
MAхп̄89
MĀ\timesn9त̄
RO(I)=FGZ(I)
MA*09?
RI(I)=FGO(I)

```

```

210 R2(I)=FG3(T)
MÃ`Õ93 FLl=SlR(2) MAX094 FLZ=51R(3) M\overline{A}}\times\overline{0}9 FL3=S!R(4) MÄ`ก96
GO TO 120
11300 211 I=1,ND
Ma`007 FGl(I)=FG2(I) MAX098 211FG2(I)=FG3(I) SIR(1)=SlR(2) S1P(2)=51R(4) MÄX000 Mã\100 STT=STL+STZ- M@x101 Maxi0% 0ח212 I=1,Nn Max103 212 FG?(I)=FG2(I)+5TZ##IP(T) MA`\IOA
CAIL GPVMOD (INIT,NG,NH,NA,NY,ND,NR,FGZ,FLZ,S4,FHI,MT,NUI,NUZ)
51:(4)=FL2
MǍ\10=
JJ=J.J+1
IF (JJ.LE.6) GO TO 215

```

```

M4x)
M\tilde{yyn}
Maxlñ
MAXI1%

```

120 \(1 A=[A+1\)
IF (IA 5 GE .3\() \quad 60\) TO 315
IF (IA.GE.4) GO TO 335
C PUT \(\$ I F(I A, G E .4)\) GO TO 315 HERE.
\(5 T 1=5 T 3 / 10.0\)
MÃ?
DO \(315 \quad I=1\), ND
316 FGI (I) \(=\) El(I)

\(F \ln =F L 2\)

S1P(1) \(=F \mathrm{~L} 0\)
GO TO 317
\(315 \mathrm{R}=(F L 1-F L 2) /(-5 T 3)\)
\(R 2=(F L l-F L 3) /(-S T 2)\)
ST5 5 ST3
FOPMAT (///4n,2OHFL1,FL2,FL3,ST2,ST3=/9X,5E15.6)
FRINT 21, FL1,FL2,FL3,ST2,ST3
C PUT *GO TO \(121 *\) HERE FOR SKIPPING THE INTERPOLATION
IF (R1,NE,R2) GO TO 301
IF (R1.NE.0.0) GO TO 121
ST4ㄷST3*1.0E-5
ST3=ST3-ST4
DO 3 ก̄2 \(\mathrm{I}=1\), ND
\(3 \overline{0} 2\) RI (I) \(=\) Rl (I) \(\rightarrow 5 T 4 * \operatorname{DIR}(I)\)
CALL GRVMOD (INIT,NG,NH,NX,NY,ND,NR,G1,FLZ,S4,FH1,HT,NUI,NUZ)
\(\mathrm{R} 1=(F L 1-F(2) /(-5 T 3)\)
\(R 2=(F L 1-F L 3) /(-5 T 2)\)
ST5=ST2/2,0-ST4
\(3 \overline{0} 15=0.0\)
SCIs(R1*(-ST5))/(2.0*(D1-R2))
กO \(220 \quad \mathrm{r}=1\), NO
\(220 \mathrm{AO}(\mathrm{I})=(\mathrm{BO}(\mathrm{I}) \div 81(I)) / 2.0-S C \ln \operatorname{DIR}(I)\)
\(1002 \mathrm{NG}=1\)
\(\mathrm{NH}=1\)
CALL GPVMOD (INIT,NG,NH,NX,NY,ND,NR,RO,FLO,FGO,FHV,HT,NU1,NUZ)
IF (ELO.GE.FLZ) GO TO 404
121 D \(405 \mathrm{I}=1\), ND
\(405 \mathrm{~B}^{0}(\mathrm{I})=8^{1}\) (I)
\(\mathrm{NG}=1\)
\(\mathrm{NH}=1\)
CALL_GRVMOD(INIT,NG,NH,NX,NY,ND,NR•\&\#,FLO,FGO,FHV,WT,NUI,NUZ)
\(4 \overrightarrow{0} 4 \quad \mathrm{~S}=0 . \overline{0}\)
nO \(513 \mathrm{I}=\mathrm{I}\), ND
\(513 \mathrm{~S}=\mathrm{S}+\mathrm{FGO}(\mathrm{T}) \mathrm{BFGO}(\mathrm{I})\)
\(S=S / N D\)
IF \((S, E Q, 0,0) \quad\) GO TO 514
\(S=\operatorname{SORT}(S)\)
514 GM=S
\(S=0 . \overline{0}\)
DO \(23 \overline{0} \quad I=1, N D \quad\) M \(\times \overline{0}\)
\(230 \mathrm{~S}=5+(\mathrm{y})(\mathrm{I})-82(\mathrm{r}) \mathrm{l}) * 2\)
\(S=S / A D\)
IF (S.EQ.0.0) GO TO 22
\(S=\) SORT (S)
221 STZ=5
AMAX=ABS(8Z(i)-B0⒤)
DO \(231 \quad i=1, N D\)
\(S=\operatorname{ABS}(B Z(I)-B O(I))\)



Mas
Mào
MÃo.
```

 IF (S.LE.BMAX) GO TO 231
 RMAX=S
 2 3 1 ~ C O N T I N U E ~
FLCH=(FLZ-FLO)=100,\#%LO
IF (NAP.NE.I) GO TO 30n
nO 30T I=1,ND
DO 307 J=1,ND
IF (I.NE.J) FHV (I,J)=0.0
IF (I.EO.J) FHV(I,J)=1.0/FHV(I,J)
307 CONTINUE
GO TO 528
30}6 S=0.0
CALL MINV (FHV,ND,D,LX,MX,N2)
IF (GM.LE.1.0E-15) GO TO 1005
IF (D.E.O.O.O) JK=1
MÄX0̄O
52% 5=0.0
IF (ABS((FLZ-FLO)/FLO}).GT.1.0E-6) GO TO 51

```

```

 MĀX0̄%
 1005 NOD=3
JT=1
go TO 516
516 PRINT 11, IT,STZ,GMAX,GM,FLO,FLCH
11 FORMAT (//4X,17HITERATION NUMEER ,I3, 2x,16HNEHTON-HIGA MODE/8X,
15OHROOT MEAN SOUARE OF CHANGE IN PARAMETER ESTIMATES =,G15.5/8X.
219HMAXIMIM ADJUSTMENT=,G15.6/BK.?9HROOT NEAN SQUARE OF GRADIENT=.
3G15.6/8K.laHVALUE OF FUNCTION=,G15.8/g`;27HFUNCTION VALUE INCREASE
IO BY,G10.3,2X,9H PERCENT.)
1000% RETURN
M4x10
END
-143-

APPENDIX C

POLYREG:

Computer Program for
Aggregation Function

PRCGRAM POLYREG（INPUT，OUTPUT）
DIMENSION XXV（10，10），LX（10），MX（10）

COMMON／AAZ，A（100）
READ 1，NT，NV，NALJ
NSET $=1$
302 DO $101 \mathrm{I}=\mathrm{I}$ ，NT
101 READ 2，（YO（I，1）， $1=1, N A L T),(N D(I, d), j=1, N A L T)$
1 FORMAT（8I10）
2 FOGMAT（8F10．0）
DO 302 IL $=1 . \mathrm{NV}$
$\mathrm{NVI}=\mathrm{II}+1$
DU 200 M＝1，NALT
DO． $102 \mathrm{~J}=1$ ，NVI
IF（J．EQ．l）GO TO 103
IF（J．EQ．2）GO TO 104
$N=J-1$
DO $105 \mathrm{I}=1, \mathrm{NT}$
$105 x(I, J)=X D(I, M) \sim N N$
GU TO 102
103 DO $106 \mathrm{I}=1, \mathrm{NT}$
$106 x(\operatorname{Ig} J)=1.0$
GO TO 1.02
$10400107 \mathrm{I}=\mathrm{I}$ ， NT
$107 x(I, J)=x_{0}(I, M)$
102 cuntinue
$00201 \mathrm{I}=\mathrm{I}, \mathrm{MT}$
$201 \mathrm{Y}(\mathrm{I})=\mathrm{YD}(\mathrm{I}, \mathrm{M})$
DU $108 \quad I=1$ ，NVI
DO $108 \quad \mathrm{~J}=1$ ，NVI
$5=0.0$
DO $109 \mathrm{~K}=1$ ，NT
$1095=5 * x(k, I) \sharp x(k, J)$
$108 \times x(1, J)=5$
DO $110 \mathrm{I}=1, \mathrm{NV}]$
$\mathrm{S}=0.0$
OU $111 \mathrm{~K}=1, \mathrm{NT}$
$111 S=S+X(K, I) \nexists Y(K)$
$110 \times Y(I)=5$
DO 112 ［＝1，NVI
DO $112 \mathrm{~J}=1$ ，NV 1
$112 \times x \overline{(I}, J)=X \times(I ; \sqrt{2})$
$\mathrm{N} 2=\mathrm{NVIFNVI}$
CAl－MINV（XXV，NVI，$D,(X, N X, N Z)$
DO $113 \mathrm{I}=1$ ，Ny1
$\mathrm{S}=0.0$
$00114 \mathrm{~J}=1$ ， NVI
$1145=5+x \times v(1, J) ぁ x y(J)$
$113 \mathrm{~B}(\mathrm{I}, \mathrm{H})=5$
DO $117 \quad[=1, N T$
$5=0.0$
$0 \cup 118 \mathrm{~J}=1$ ，NYI
$118 \mathrm{~S}=\mathrm{S}+\mathrm{x}(\mathrm{I}, \mathrm{J}) * \mathrm{~A}(\mathrm{j}, \mathrm{M})$
$Y P(1, M)=5$
117 PE（I）$=$ Y（I）－S
$\mathrm{S}=\mathrm{4}, \mathrm{j}$

PLYOOI
PL．YOO？
PLYo03，
PLYOO4
PLY005
PLY006
PLY007
PLY008
PLYOO9
PI．Y010
PLYOil
PLYOll
PLYOll
PLYolZ
PLYOI3
PLYO14
PLYO15
PLYOIG
PLYO17
PLYOl 8
PLYOI9
PLY020
PLYOZI
PLY022
PLY023
PLY024
PLY024
PLY024
PLY025
PLYOZG
PLy027
PLy028
PLY029
PLYO30
PLYo31
PLY032
PLY033
PLY0．34
PLY035
PLY03万
PLY037
PLYO38
PLYOJの
PLYO40
PLY041
PLYO4Z
PLYO43
PLYO44
PLYO\＆5
PLY045
PLY047
PLYÓ48
PLY0ヶ9
PLY050
PLY05：
PLY05？
DO $119 \ldots \mathrm{I}=1, \mathrm{NT}$
Plyo
$119 S=5+R E(1) \$ 42$
SRE=S
YAF=S/(NT-NV1)
PLYO
SE=SHTIVAR)
DO $115 \mathrm{I}=1$, NVI
IF (XXY(I, I).EU.C.02) GQ TO 116

$T V(I)=B(I, M) / B S E(I, M)$
GOTO 115 \qquad ————
$116 \mathrm{BSE}(\mathrm{I}, \mathrm{M})=0.0$
115 continue
$s=0.0$ \qquad
$1205=5+Y$ (I)
$Y M(M)=S / N T$
$S=0.0$
DO $121 \quad \mathrm{I}=1, \mathrm{NT}$
$121 S=5+(Y(I)-Y M(M)) 屯 * 2$
PLYO
Pirus
DLY. 05
PLYOS
PLYOG
PLYO
PLYO
PLYO
PLYG
PLYO
PLYO
PLYE
\qquad
PLYe
$R 2=1.0-582 / \mathrm{S}$
PRINT 10, NSET
PLYO.
PLYO
RZ $=1.0-5 R 2 / S$
PRINT $10, ~ N S E T$
10 FORMAT ($* 1 *, 4 \bar{x}, 1($ HDATA SET $=, I 3)$
PRINT 11, NT,I.
PLYO
PLYO
PLYO
11 FOPMAT (//4X,8X,2HNT,4X,6HDEGREE//4X,2T10)
PRINT 12
PLYO
PLYO
12 FOFMAT $/ / / / 4 x, 4 H!$ ITAT//4ň,13x,7HDEP VAR,23x,7HIND VAR) PRINT 13
$\mathrm{N}=1$
DO $122 \mathrm{I}=1$, NT
$\mathrm{N}=\mathrm{N}+1$
IF (N.NE.6) GO ID 122 \qquad PRINT 13
13 FOGMAT (*) *)
$\mathrm{N}=1$
122 PRINT 14, I,Y(I),XD(I,M)
14 FOFMAT (4 X, 1H (, 13,1H),F15.6,15X,F15.6) PRINT 15
 18ス, 7HT-VALUE/f) DO 123 - $\mathrm{I}=1$, NY1
123 PRINT 16, I, $\mathrm{H}(\mathrm{I}, \mathrm{M}), \mathrm{BSE}(\mathrm{I}, \mathrm{M})$, TV(I)
16 FGFMAT ($4 \mathrm{X}, 1 \mathrm{H}(1,13,1 \mathrm{H}$), 3F15.6)
PRINT 17, SE
17 FORMAT ($/ 14 x, 18$ RESTIMATE OF SIGMA $=9$ F15.6)
PRINT 18, P 2
18 FOFMAT (//4X, ZOHCOEFFICIENT OF DETEGMINATION $=, F 15.6$)
PRINT 19
19 FORMAT (* 1 *, $4 \times, 1$ BHMOMENT MATRIK/)
DO $1241=1, N \mathrm{Na}$
124 PHINT $20, I$ (KX(I, J), $J=1$, NVI)
20 FORMAT $(4 X, 1 H(, 13,1 H), 8 E 15.6)$
PRINT 21
21 FOFMAT (///4x, 1 (HCOVARTANCE MATRIX/)
$00125 \quad \mathrm{I}=1, \mathrm{NUI}$
$00126 \mathrm{~J}=\mathrm{L}, \mathrm{NV}$

125 PRINT 20, I, (xay (I, J), J=1,NVI) PRINT 22

PLYO
PLYo
PLYO
PLYO
PLYo:
PLY0.Z
PLYO?
PLYO:
PLYO:
PLYOG
PLYO:
Pl-YOE
PLYO:
PLYOS:
PLYO
PLYO
PLYOG
PLYOG
PLYOG
PLYOQ:
PLynG
PLYOG
PLYO9:
PLY090
PLYIO
PLYloi
PLYIO
PLY10
PLYIO
PLY105
PLYID:
PLY107
PlyIO?
 14X,12X, 8HDEP.VAH.96X,9HEST OF [DV, $7 \times$, GHRFSIDUAL) PRINT 13
$\mathrm{N}=0$
DO 127 I=I, ivi
$\mathrm{N}=\mathrm{N}+1$
IF (N.NE.6) GO TO 127
PRINT 13
$\mathrm{N}=1$
127 PRINT 20. I,Y(I),YP(I.M),RE(L)
200 CONTINUE
$\mathrm{Sl}=0.0$
$52=0.0$
$53=0.0$
DO $203 \mathrm{I}=1$, NT
$S=0.0$
PLY10\%
$00204 \mathrm{~J}=1$, NaLT
IF (YP(I,J).GT, 1,0$) \quad Y F(I, J)=1.0$
IF (YP(I,JLELI.0.0) YF $(1, J)=0.0$
PLYiln
PLY111
PLylle
piylig
P1Y114
PLY.115-
PLYIlG
PI.Y117
PLYA-Z
pLYllal
PLY119
Pt-Yt20-
PLY121
PL-Yl-ZZ
PLY123
PLY1231
PLY\&Z3e
$204 S=S+Y P(I, J)$
DO $205 \mathrm{~J}=1$, NAL.T
YPP (IQJ) $=Y P(I, G 1 / S$
PLY124

S3=S3 $+(Y D(I, J)-1.0 / N A L T) * 2$
$205 S 2=S 2+(Y D(I, J)-Y M(J)) \psi 2$
PLYI25
-PLYEZ6-
PLYlZ7
plyiza
203 CONTINUE
P!yl29
$K=N T *(N A L T-1)-N A L T * N \cup 1$
$V A R=51 / K$
PIY130
SE=SQRT(VAR)
PLY:13I
$P_{2}=1 \cdot 0-51 / 52$
PL.Y132
$R 2 P=1.0-51 / 53$
PRINT $30,(\mathrm{I}, \mathrm{I}=1$, NALT:,$(\mathrm{J}, \mathrm{J}=1, \mathrm{NALT})$
PLY133

30 FORMAT (*1*, $4 x$, bTHAOJISTED ESTIMATES OF AGGREGATE MODE-CHOICE PROB IABILITIES//9X,1OHTRUE VALUE, 35X, BHESTIMATE//9X,3(12X,1H(,IL,1H)),
23(12X,1H(,I1,14))/)
$\mathrm{N}=0$
$00206 \quad I=1, N T$
$\mathrm{N}=\mathrm{N}+1$
IF (NoNE.6) GO IO 206
$\mathrm{N}=1$
PRINT 13
206 PRINT 31, $I,(Y 1)(I, J), J=1, N A L T),(Y P P([, J), J=1$, NALT)
31 FORMAT ($4 \mathrm{X}, \pm \mathrm{H}(, 13,1 H), 6 \mathrm{~F} 15.6$)
PLY1 34
PLY135
PLY135
PLY137
PLY138
PLY139.
PIY140
PLY141
PLY 142
PIY143
PI_Y144
FRINT 17,SE
PRINT iy, R2
PRINT 23, R2P
PLYI45
PLY14́
PLY147
23 FOFMAT $/ / 4924$ NCOEFFICIENT OF DETERAINAIION IN PROHABILITY $=$, 1F15.6)
301 CONTINUE
NSET = NSET +1
IF (NSET.LE,Z) GO TO 302
STCP
END
PLY148
PLY149
SUQROUTINE MINV（AH，N，D，L，M，M2） INVO！
DIMENSION AH（10，10），L（10），M（10） INVO．COMMON／AAZ／A（100）
Invo
$\mathfrak{i}=\mathrm{u}$
invoe
$002011=19 \mathrm{~N}$INVOU：
DO 2u1 $J=1, N$INVOO
$k=k+1$
$201 A(K)=A H(J, I)$
D=1,
INVDO
NK=-N
DU 8r, $K=1, N$
$\mathrm{NK}=\mathrm{NK}-\mathrm{N}$
$L(K)=K$
$M(K)=K$
$K K=N K+K$
$B I G A=A(K K)$
DO 2C J=K, N
$I Z=N \div(J-1)$
DO $201=K, N$
IJごス
$S=A B S(A(I J))$
$T=\angle B S(B I G A)$
10 IF (T-S) 15,20.20
15 HIGA=A(IJ)
$L(K)=I$
$M(K)=\jmath$
20 COATINUE
$J=L(k)$
If (J-K) $35,35,25$
$25 K I=K-N$
$003 \mathrm{JI} I \mathrm{IN}$
$K I=K I+N$
HOLD $=-A(K I)$
$j 1=k I-k+j$
$A(K I)=A(J I)$
30 A(JI) $=$ HOLD
$35 I=M(K)$
IF (I-K) 45,45,33
$\begin{array}{rl}38 \mathrm{JP} & =\mathrm{N} \rightarrow(\mathrm{I}-1) \\ 00 \mathrm{~J} & \mathrm{~J}=1, \mathrm{~N}\end{array}$
$38-\frac{N O}{40-J J 1, N}$
JKニNK $+J$
$J I=J P+J$
HOLDE-Z (jK)
$A(\downarrow K)=A(J I)$
40 A(NI)=HOLD
$\bar{\gamma}=A B S(G I G A)$
45 IF (T-1.0E-20) 46,46,48
$45 \mathrm{D}=0.0$
REIURN
48 DO $55 \mathrm{I}=1$, Ni
IF (I-K) $50,55,30$
$50 I K=N K+1$
$A(I K)=A(I K) /(-B \perp G A)$
55 COATINUE
no $65 \mathrm{I}=1$, N
IK=NK+I
HOLD $=A(I K)$
INVOO
INYOO
INVOO
INVCI
fNuO:
Inval
INVO:
INKOE
INVOI
INVCI
INvor:
INVOl
INVOI
INVOI
INVOI
INVOZ
.. -....IMVo?
INVOZ
INVE?:
INVOZ
INVOZ
INvOC
Imvaz
INVOZ
Invoz.
INVG3
INV03I
INYOZ
Tavo?
INVO.
INY034
INV035
INYロ3e
INvu3
INVOB.
INYOSA
INVO4
INvor
INVO4
IN以O4?
invouz
INVO43
INV0.44
INVO45
INVO4:
INvor:
INV04:
I $N: 0.49$
INVO4O
INVO50
INVB5I
INV052
INV053

```
                        -748-
    DU 65 J=1,N
    Ij =IJ*N
    IF (I-K) 60,65,00
    60 IF (J-K) 62,55,02
    62. KJ=IJ-I +K
        A(IJ)=HOLD*A(KN) +A(IJ)
    6 5 \text { CONTINUE}
        Kj=K-N
        DO 75 J=1,N
        kJ=kJ+N
        It (J-K) 70,75,70
    70_ASKJ) =A(KN2<BIGA
    75 contInuE
        D=D*BIG\
        A(KK)=1.0/9LGA
    80 CONTINUE
    K=人
    100 K=(K-1)
        IF (K) 150,150,105
    105I=L(K)
    IF (I-K) 12U,120,108
    108 JQ=N*(K-1)
        JP=N*(I-1)
        DO 110 Jシ1,N
        JK= JO+J
        HOLD=A(JK)
        J=JR+J
        A(JK)=-A(JI)
    110 A(JI)=HOLD
    120 J=N(K)
        IF (J-K) 100,100,125
    125 KI=K-N
        OO 130 1=1,N
        KI=KI I N
        HOLD = A(KI)
        JL=KI-K+J
    A(KI) =-4(JI)
    130 A(JI)=HOLD
    g0 T0 100
    150 K=0
        DO 202 I=1,N
        DO 202 J=1,M
    k=k+1
    202 AH(N,I)=A(K)
    RETURN
    ENO
\(150 \mathrm{~K}=0\)
DO \(202 I=1, N\)
DO \(202 \mathrm{~J}=1\) ，M
\(K=K+1\)
\(202 \Delta H(J, I)=A(K)\)
ENO
```

INYOS～
INVO5今
Ir：U055
INVO57
子Nv059
I なV057
INVÓO
INVO6I．
INV06？
INVOちヨ
IN：V064
INV065
INVO6S
INVO67
INVDGA
INIV069
INY070
INVOTI
INVOT？
INV073
INV074
IAVOTS
INVO76
INVO77
INy0．78
INV079
INV080
I Mu0．
INVOEZ
INvo83
INVOE 4
INYOQ5
INVOGS
INv087
INvors
INv089
INuOGD
INVO9I
INVO92

INVO－3
INV：944
INVOF5
IN以OǴ
INVG97
INVO98
INV0．99
INVI 00

[^0]: 1 The author gratefully acknowledges the editorial assistance of Ms. Dian Younker of the Transportation Center. He also acknowledges the kind assistance given to him at the data collection stage by various officials of the Illinois Department of Transportation, Illinois Commerce Commission in Springfield, Illinois, Chicago Transit Authority, Chicago Area Transportation Study, and South Suburban Safeway Lines, Inc.

