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ABSTRACT

Inexact Sequential Quadratic Programming Methods for

Large-Scale Nonlinear Optimization

Frank Edward Curtis

This thesis concerns the development of robust algorithms for large-scale nonlinear pro-

gramming. Despite recent advancements in high-performance computing power, classes of

problems exist that continue to challenge the practical limits of contemporary optimization

methods. The focus of this dissertation is the design and analysis of algorithms intended

to achieve economy of computation for the solution of such problems, where, for ease of

presentation, the discussion is framed in the context of equality constrained optimization.

The first part of this thesis concerns the development of a globally convergent inexact

Sequential Quadratic Programming (SQP) framework. The novelty of the approach is that

it is matrix-free (i.e., only mechanisms for computing products of vectors with Jacobian

and Hessian matrices are required), thereby avoiding a need for the explicit formation of

the arising iteration matrices. Iterative linear algebra techniques, for example, can then

be used in place of factorization methods, allowing the introduction of inexactness into

the step computation process to achieve further savings in computation. The algorithm

automatically determines when a given inexact SQP step makes sufficient progress toward

a solution of the nonlinear program, as measured by an exact penalty function, in order to

ensure global convergence to a first order optimal point. An analysis of the global behavior

of the algorithm is presented under common conditions, and numerical results are presented

for a large collection of test problems and two realistic applications. Finally, algorithmic
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enhancements are provided for cases where certain convexity assumptions about the problem

formulation may fail to hold.

In the latter part of this thesis, a new globalization mechanism is proposed. The method

expands the definition of a standard penalty function so that during each iteration the

penalty parameter can be chosen as any number within a prescribed interval, rather than a

fixed value. This increased flexibility in the step acceptance procedure is designed to promote

long productive steps and fast convergence. An analysis of the global convergence properties

of the mechanism in the context of a line search SQP method and numerical results for the

KNITRO software package are presented.
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Chapter 1

Introduction

A persistent challenge in the field of nonlinear optimization has been the design of algo-

rithms for very large problems that test the limits of available computing machinery. Recent

decades have witnessed significant advances in all types of mathematical programming algo-

rithmic design that, along with the maturation of a variety of optimization software tools,

have greatly expanded the range of applications that can be solved efficiently and reliably.

However, certain classes of problems exist that continue to pose a number of computational

obstacles. A prominent example is the class of problems where the constraints are given by a

discretized set of partial differential equations (PDEs), as in such cases the dimension of the

problem may increase ad infinitum with the fineness of a grid. For the solution of problems

of this type, algorithm developers are faced with the challenge of designing methods that can

achieve economy of computation when applied to problems of ever increasing complexity.

In this dissertation we present techniques for enhancing the computational efficiency of

certain nonlinear programming techniques in two ways:

• First, we develop, analyze, and implement a globally convergent inexact Sequential

Quadratic Programming (SQP) framework. The novelties of the approach are that it is
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matrix-free (i.e., only mechanisms for calculating products of vectors with Hessian and

Jacobian matrices are required) and that it allows for the introduction of inexactness

into the step computation procedure.

• Second, we propose a new globalization strategy that extends the definition of a stan-

dard exact penalty function as a tool for guiding convergence. The method proposed

is designed to inhibit the computed search direction as little as possible in order to

promote long productive steps and fast convergence.

Overall, we are interested in methods that are able to compute steps in a relatively cheap

manner, and in globalization strategies that allow the search to roam freely, yet quickly, to

a solution point.

The computational benefits of inexact methods have been studied extensively in the

contexts of unconstrained optimization and the solution of systems of nonlinear equations.

Moreover, techniques of this type have been implemented in many popular software packages

and have proved to be quite successful. The same cannot be said, however, about inexact

methods for constrained optimization. This is due to the difficulty of designing algorithms

that deal effectively with the paired goals of minimizing the objective and satisfying the

constraints. In this dissertation, we provide methods that maintain the global convergence

properties of contemporary algorithms while being economical enough for very large appli-

cations.

The structure of this dissertation is as follows. Chapter 2 includes relevant background

on the theory of equality constrained optimization that forms the basis of the discussions

in later chapters. In Chapter 3 we develop and analyze our proposed inexact SQP method

and investigate its global behavior under common conditions. Chapter 4 presents some

numerical results for an implementation of our inexact SQP method applied to a large set of

test problems and a pair of realistic PDE-constrained applications. We present algorithmic
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enhancements to the method in Chapter 5 for cases where certain convexity assumptions

related to the problem formulation may not hold. Finally, in Chapter 6 we present, analyze,

and provide numerical results for a new globalization strategy before presenting final remarks

and comments on extending all of the methods in this dissertation to generally constrained

problems and other algorithmic frameworks in Chapter 7.
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Chapter 2

Equality Constrained Optimization

2.1 Problem Formulation

We frame this dissertation in the context of the equality constrained optimization problem

min
x∈Rn

f(x)

s.t. c(x) = 0,

(2.1)

where f : R
n → R and c : R

n → R
t are smooth nonlinear functions, but consider ways in

which our methods can be extended to general nonlinear programming problems in Chap-

ter 7. We are particularly interested in problems where the number of variables n and the

number of constraints t, with t ≤ n, are very large.

Algorithms for solving problem (2.1) often focus on producing first order optimal points,

which can be defined in the following manner. First, the Lagrangian function corresponding

to problem (2.1) is

L(x, λ) , f(x) + λT c(x), (2.2)

where λ ∈ R
t are Lagrange multipliers. If the functions f and c are continuously differen-
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tiable, then a point x∗ is first order optimal if there exist multipliers λ∗ such that (x∗, λ∗) is

a solution to the nonlinear system of equations

∇L(x, λ) =




g(x) + A(x)T λ

c(x)


 = 0, (2.3)

where g(x) , ∇f(x) is the gradient of the objective function and A(x) is the Jacobian of

c(x). The components in (x, λ) are referred to as the primal and dual variables, respectively.

In this dissertation, we are primarily concerned with globally convergent algorithms;

i.e., methods that are guaranteed, under certain common assumptions, to converge to a

first order optimal solution from remote starting points. Most globally convergent iterative

algorithms for problem (2.1) have the following general form. First, at a given iterate xk, a

step is computed in either the primal or primal-dual space based on local and/or historical

information of the problem functions. The step is then either accepted or rejected based on

the reductions attained in the nonlinear objective f(x), a constraint infeasibility measure

‖c(x)‖, or some combination of both quantities. Here, ‖ · ‖ denotes a norm on R
t. Such a

globalization strategy, i.e., step acceptance method, is intended to direct the search toward

solutions to (2.3) that correspond to local solutions of the nonlinear program (2.1). In the

remainder of this chapter we describe one step computation method and the motivation

behind two contemporary globalization mechanisms that form the basis of our proposed

techniques.

Notation. In the remainder of this dissertation, we drop functional notation once values

are clear from the context and use a subscript to delimit iteration number information of an

optimization algorithm for functions and variables; i.e., we denote fk , f(xk) as the objective

function value corresponding to the kth iterate xk, and similarly for other quantities. All

norms are considered Euclidean (or l2) norms unless otherwise indicated, though much of
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our analysis will apply for any norm.

2.2 Sequential Quadratic Programming

One of the leading methods for solving constrained optimization problems is sequential

quadratic programming (SQP). (In fact, modern interior point methods reduce to SQP when

inequality constraints are not present in the problem formulation [28].) Algorithms in this

class enjoy global convergence guarantees and typically require few iterations and function

evaluations to locate a solution point.

Let us formalize a basic SQP approach for use throughout our discussion. From a given

iterate xk, the SQP methodology applied to problem (2.1) defines an appropriate displace-

ment dk in the primal space as the minimizer of a quadratic model of the objective subject

to a linearization of the constraints. The quadratic program can be defined as

min
d∈Rn

f(xk) + g(xk)
T d + 1

2
dT W (xk, λk)d (2.4a)

s.t. c(xk) + A(xk)d = 0, (2.4b)

where

W (x, λ) ≈ ∇2
xxL(x, λ) = ∇2

xxf(x) +
m∑

i=1

λi∇2
xxc

i(x) (2.5)

is equal to, or is a symmetric approximation for, the Hessian of the Lagrangian. Here, ci(x)

and λi denote the ith constraint function and its corresponding dual variable, respectively.

If the constraint Jacobian A(xk) has full row rank and W (xk, λk) is positive definite on the

null space of A(xk), then a solution to (2.4) is well defined in this context. An alternative

characterization of the SQP step dk is given by the fact that it can equivalently be obtained
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under similar assumptions as part of the solution to the primal-dual system (see [28]):




W (xk, λk) A(xk)
T

A(xk) 0







dk

δk


 = −




g(xk) + A(xk)
T λk

c(xk)


 . (2.6)

We remark that the primal-dual matrix in the left-hand-side of this expression is symmetric

and indefinite.

2.3 Globalization Techniques

Upon the calculation of an appropriate step (i.e., search direction), a globalization procedure

must be invoked to ensure that the algorithm will converge to a first order optimal solution

from remote starting points. We discuss the basic forms of two popular tools used for this

purpose, penalty functions and filter mechanisms, for use throughout our discussion. We

then present further details related to the implementation of a line search SQP approach

that employs a penalty function to promote convergence — the method that forms the basis

of the algorithms in this dissertation.

A penalty function combines the nonlinear objective and a constraint infeasibility measure

into a function of the form

φπ(x) , f(x) + π‖c(x)‖, (2.7)

where π ≥ 0 is a penalty parameter. During iteration k, a step is deemed acceptable only

if a sufficient reduction in φπk
is attained for a suitable value πk of the penalty parame-

ter. In current algorithms, the sequence {πk} is typically monotonically increasing through-

out the run of the algorithm. Figure 2.1 illustrates the region of acceptable points from

pk = (‖c(xk)‖, f(xk)), corresponding to the current iterate xk, in ‖c‖-f space. A step dk is

acceptable if the resulting point x̄ = xk + dk yields a pair (‖c(x̄)‖, f(x̄)) lying sufficiently
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below the solid line through pk, where the slope of the line is defined by the current value of

the penalty parameter πk. The global convergence properties of such an approach were first

shown in [22, 30].

f

||c||

k−π

p
k

Figure 2.1: Region of acceptable points from pk for the penalty function φπk

A filter mechanism avoids the definition of a parameter to balance reductions in the

objective with reductions in the constraints. In the spirit of multiobjective optimization, a

filter considers pairs of values (‖c(x)‖, f(x)) obtained by evaluating the functions ‖c‖ and f

at all iterates preceding the current one. A pair (‖c(xi)‖, f(xi)) is said to dominate another

pair (‖c(xj)‖, f(xj)) if and only if both ‖c(xi)‖ ≤ ‖c(xj)‖ and f(xi) ≤ f(xj). The filter F is

then defined to be an index set corresponding to a list of pairs such that no pair dominates

any other. A step dk from xk is considered acceptable if the resulting point x̄ = xk + dk

corresponds to a pair (‖c(x̄)‖, f(x̄)) such that either

‖c(x̄)‖ < ‖c(xi)‖ or f(x̄) < f(xi) (2.8)

for all i ∈ F . Upon the acceptance of such a step, the pair (‖c(x̄)‖, f(x̄)) may be added to

the filter, in which case all points dominated by this pair are removed from F . Figure 2.2

illustrates the region of acceptable points as that lying sufficiently below and to the left of
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the piecewise linear function. The global convergence guarantees of such an approach have

been shown when paired with certain types of step computation methods [15, 16, 18, 36].

f

||c||

Figure 2.2: Region of acceptable points for a filter with three entries

Penalty functions and filters both have their own advantages and disadvantages. In

Chapter 6 we consider globalization strategies in more detail, where we also propose a new

technique designed to promote long steps and fast convergence to a solution point. In

the majority of this dissertation, however, we exclusively consider penalty functions in the

context of a line search SQP framework. We outline the main aspects of this framework now

for use later in our discussion.

First, we note that φπ is not differentiable. However, this penalty function is exact in

the sense that if π is greater than a certain threshold, then a first order optimal point x∗

of problem (2.1) is a stationary point of φπ. That is, the directional derivative of φπ in a

direction d, denoted by Dφπ(d), is nonnegative at x∗ for all d ∈ R
n.

A critical component of an algorithm employing a penalty function to promote conver-

gence is the technique implemented to set the penalty parameter πk during each iteration

k. For this purpose, we describe the general form of an effective approach used in some

contemporary algorithms. Inspired by [11, 39], we begin by considering the following model
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of φπ around the current iterate xk:

mπ(d) = fk + gT
k d + ω(d)

2
dT Wkd + π‖ck + Akd‖, (2.9)

where

ω(d) ,





1 if dT Wkd ≥ 0

0 otherwise.
(2.10)

With this approximation, we can estimate the reduction in φπ yielded by the computed

primal step dk by evaluating

mredπ(dk) , mπ(0)−mπ(dk)

= −gT
k dk − ωk

2
dT

k Wkdk + π(‖ck‖ − ‖ck + Akdk‖) (2.11)

(where we note that ck + Akdk = 0 for dk in (2.6)). Following [6, 29, 39], we choose the

penalty parameter so that the reduction in the model mπ obtained by dk is sufficiently large

with respect to the improvement in the infeasibility measure, as in

mredπ(dk) ≥ σπ‖ck‖ (2.12)

for some constant 0 < σ < 1. From (2.11) and (2.12), we have that if

‖ck + Akdk‖ ≤ ε‖ck‖ (2.13)

for 0 < ε < 1, then

πk ≥
gT

k dk + ωk

2
dT

k Wkdk

(1− τ)(‖ck‖ − ‖ck + Akdk‖)
, χk (2.14)

with 0 < τ < 1 satisfies this requirement for σ = τ(1 − ε). Further details related to
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techniques for updating the penalty parameter will be considered extensively in Chapter 3.

Upon the calculation of a search direction dk and penalty parameter πk, we perform a

backtracking line search to compute a steplength coefficient αk satisfying the Armijo condi-

tion

φπk
(xk + αkdk) ≤ φπk

(xk) + ηαkDφπk
(dk) (2.15)

for some 0 < η < 1. Accordingly, a primal-dual step will only be accepted if its primal

component is a direction of nonincrease for the penalty function φπk
.

In summary, the algorithms proposed and analyzed in this dissertation are based on

a standard line search SQP framework where during each iteration a search direction is

computed as a (approximate) solution to the quadratic subproblem (2.4) and a line search is

performed on the penalty function φπ to ensure convergence to first order optimal points.
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Chapter 3

An Inexact SQP Method for Equality

Constrained Optimization

3.1 Background and Motivation

In this chapter we propose an algorithm for the equality constrained optimization problem

(2.1). Our interest is in methods for very large problems for which the exact computation

of steps in contemporary methods can be prohibitively expensive. One class of problems of

this type that demands algorithmic improvements are those where the nonlinear constraint

functions are defined by systems of partial differential equations (PDEs).

We consider a line search SQP framework as described in Chapter 2. Despite their strong

theoretical properties and superior practical performance, a drawback of many contemporary

SQP algorithms is that they require explicit representations of exact derivative information

and the exact solution of one or more linear systems during every iteration. The acquisition

of these quantities is particularly cumbersome in large-scale settings and the factorization of

large iteration matrices is often impractical.
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One way to overcome these difficulties is to solve the SQP subproblem (2.4) approximately

using iterative linear algebra techniques. The main purpose of this chapter is to determine

the accuracy with which the SQP subproblems must be solved in order to ensure global

convergence in the context of a practical algorithm for problem (2.1). We both propose such

a method and analyze its global behavior.

Our method resembles those in the class of inexact Newton methods for solving nonlinear

systems of equations. There are, however, important differences between the two approaches.

Inexact Newton methods for systems of equations are controlled by forcing parameters that

ensure that the norm of the entire residual of the Newton equations decreases at every

iteration [8]. Our approach, on the other hand, is based on requirements that the step

decreases a model of a penalty function, while also satisfying bounds on the primal and

dual components of the residual. We present sets of easily calculable conditions that handle

these two residuals as separate quantities when determining if a given inexact solution is

appropriate for the algorithm to follow. Such a solution may, for example, allow for an

increase in the residual corresponding to primal feasibility provided it yields a substantial

decrease in dual feasibility, or vice versa. The behavior of these components also helps

determine when it is appropriate to increase the penalty parameter in the penalty function.

A variety of methods for constrained optimization with inexactness in step computations

have been proposed recently. Jäger and Sachs [24] describe an inexact reduced SQP method

in Hilbert space. Lalee, Nocedal, and Plantenga [26], Byrd, Hribar, and Nocedal [6] and

Heinkenschloss and Vicente [23] propose composite-step approaches where the step is com-

puted as an approximate solution to an SQP subproblem with a trust region constraint.

Similarly, Walther [38] provides a composite-step method that allows incomplete constraint

Jacobian information. Leibfritz and Sachs [27] analyze an interior point method that benefits

from a reformulation of the quadratic programming subproblems as mixed linear complemen-
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tarity problems. Our approach has some features in common with the algorithms of Biros

and Ghattas [2, 3], Haber and Ascher [20], and Prudencio, Byrd and Cai [32] as we follow

a full space SQP method and perform a line search to promote convergence. Unlike these

papers, however, we present conditions that guarantee the global convergence of inexact SQP

steps.

This chapter is organized as follows. In Section 3.2 we provide an overview of our approach

and globalization strategy. Section 3.3 contains details about the most crucial aspect of our

algorithm, namely, the sets of conditions used to determine if a given inexact SQP solution

is considered an acceptable step. The well-posedness of our approach is also discussed, the

accountability of which allows us to present global convergence guarantees under common

conditions in Section 3.4. Closing remarks and issues related to extensions of this work are

presented in Section 3.5, and numerical experience for a particular implementation of the

method on a wide range of problems is presented in Chapter 4.

3.2 Outline of the Algorithm

Recall that the SQP search direction dk from an iterate xk can be obtained as part of the

solution of the primal-dual system (2.6). An explicit representation of the primal-dual matrix




W (xk, λk) A(xk)
T

A(xk) 0


 (3.1)

and an exact solution of (2.6) can be expensive to obtain, particularly when the factors of

(3.1) are not very sparse. We are interested, therefore, in identifying inexact solutions of

(2.6) that can also be considered appropriate steps for the algorithm to accept during a given

iteration. Such inexact solutions can be obtained in a variety of ways, such as by applying an
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iterative linear system solver to the primal-dual system. Regardless of the method chosen,

for an inexact solution (dk, δk) we define the residual vectors (ρk, rk) by the equation




W (xk, λk) A(xk)
T

A(xk) 0







dk

δk


 = −




g(xk) + A(xk)
T λk

c(xk)


+




ρk

rk


 . (3.2)

The step can then be appraised based on properties of the residual vector and other quantities

related to the SQP subproblem formulation (2.4). For convex problems, an inexact Newton

method intended for nonlinear equations will suffice [8]. That is, the norm of the right-

hand-side vector in (2.6) can serve as a merit function, and convergence can be guaranteed

by systematically decreasing this value (provided that W (xk, λk) is the exact Hessian of

the Lagrangian). For nonconvex problems, however, a step that decreases the first order

optimality error may move away from a minimizer, or may be trapped near a stationary point

of the Lagrangian. Thus, merit functions more appropriate to constrained optimization, such

as the penalty function φπ defined in Section 2.3, should be considered. The challenge is to

compute inexact SQP steps and a value for π that ensure progress in the penalty function

φπ during every iteration.

In summary, our approach follows a standard line search SQP framework. During each

iteration, a step is computed as an inexact solution to the primal-dual system (2.6) satisfying

appropriate conditions that deem the step acceptable. The penalty parameter is then set

based on properties of the computed step, after which a backtracking line search is performed

to compute a steplength coefficient αk satisfying the Armijo condition (2.15). Finally, the

iterate is updated along with function and derivative information at the new point. The

novelty of our approach, i.e., the precise definition of what constitutes an acceptable step,

and the convergence properties of this algorithm are considered in the remainder of this

chapter.
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3.3 Step Computation and Selection

This section contains the details of our algorithm related to the computation of an acceptable

inexact SQP step. We present conditions that the steps of the algorithm must satisfy so that

the method is well-posed and will converge to a local solution of (2.1) from remote starting

points under common conditions.

An intuitive condition that one may impose on an inexact SQP step is that the directional

derivative of the penalty function Dφπk
(dk) along the primal component dk must be suffi-

ciently negative. Such a condition could be used in the development of a globally convergent

SQP approach, but quantifying an appropriate steepness of the directional derivative is a

difficult task in practice.

As an alternative, we borrow from the ideas outlined in Section 2.3 related to the com-

putation of steps that sufficiently reduce the model mπ of the penalty function φπ. At the

heart of our approach is the claim that a given primal-dual step is often beneficial for the

algorithm to follow provided the following condition is satisfied.

Model Reduction Condition. A step (dk, δk) computed in an inexact SQP algorithm must

satisfy

mredπk
(dk) ≥ σπk max{‖ck‖, ‖rk‖ − ‖ck‖} (3.3)

for a given constant 0 < σ < 1 and appropriate πk > 0.

We will see the effects of this condition below and in Section 3.4. In particular, (3.3) will

indeed ensure that the directional derivative of the penalty function is sufficiently nega-

tive along the primal step component dk while also providing a mechanism for determining

appropriate values of the penalty parameter. We note that conditions similar to the model re-

duction condition (3.3) are presented in the context of the inexact SQP algorithm proposed

by Heinkenschloss and Vicente [23]. However, their conditions relate to a composite-step



27

strategy while (3.3) relates to ensuring sufficient decrease in a model of a penalty function

for the full primal step dk.

3.3.1 Step Acceptance Conditions

An acceptable step will be required to satisfy one of two sets of conditions. Although the step

computations can be performed using almost any technique, we refer to the conditions as

“termination tests” in reference to algorithms that apply an iterative solver to the primal-dual

system (2.6), as in this framework the conditions are used to determine when to terminate

the iteration. Each termination test ensures that the step satisfies (3.3) for a sufficiently

large value of the penalty parameter and enforces requirements on the residuals (ρk, rk) to

ensure convergence to a local solution of (2.1). In particular, for both termination tests we

require that the relative residual of the entire primal-dual system remains bounded; i.e., we

require ∥∥∥∥∥∥∥




ρk

rk




∥∥∥∥∥∥∥
≤ κ

∥∥∥∥∥∥∥




gk + AT
k λk

ck




∥∥∥∥∥∥∥
(3.4)

for some constant κ > 0 over all k. In addition, the tests impose restrictions on when it is

allowed to increase the penalty parameter in order to satisfy the model reduction condition

(3.3).

The first termination test addresses those steps providing a sufficiently large reduction

in the model of the penalty function for the most recent value of the penalty parameter. We

assume that an initial value π−1 > 0 is given.

Termination Test I. Let 0 < ε, σ < 1 and β, κ > 0 be given constants. A step (dk, δk)

computed in an inexact SQP algorithm is acceptable if (3.4) holds, the model reduction
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condition (3.3) holds for πk = πk−1, and

‖ρk‖ ≤ max{β‖ck‖, ε‖gk + AT
k λ‖}, (3.5)

where the residuals (ρk, rk) are defined by (3.2).

We claim that Termination Test I allows for productive steps to be taken that may have

been computed in a relatively cheap manner, say after only a few iterations of an iterative

solver applied to the primal-dual system (2.6). For steps satisfying this test, given that a

sufficient reduction in the model of the penalty function has been obtained we need only

enforce a generally loose bound on the dual infeasibility measure ‖ρk‖.

The second termination test addresses those steps providing a sufficiently large reduction

in the linear model of the constraints.

Termination Test II. Let ε, β, and κ be given by Termination Test I. A step (dk, δk)

computed in an inexact SQP algorithm is acceptable if (3.4) holds,

‖rk‖ ≤ ε‖ck‖, (3.6a)

and ‖ρk‖ ≤ β‖ck‖, (3.6b)

where the residuals (ρk, rk) are defined by (3.2).

A step satisfying Termination Test II may not satisfy the model reduction condition (3.3)

for πk = πk−1. However, for such steps we require that the penalty parameter be increased

to satisfy (2.14), which we rewrite for convenience in our updated notation as

πk ≥
gT

k dk + ωk

2
dT

k Wkdk

(1− τ)(‖ck‖ − ‖rk‖)
, χk (3.7)

with 0 < τ < 1. Notice from (3.6a) that the denominator in the above expression is positive
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and along with (2.11) the rule (3.7) implies

mredπk
(dk) ≥ τπk(‖ck‖ − ‖rk‖) ≥ τ(1− ε)πk‖ck‖. (3.8)

Thus, when (3.6a) is satisfied, the model reduction condition (3.3) holds with σ = τ(1− ε).

In summary, a step (dk, δk) will be required to satisfy Termination Test I or II. In each

case, the model reduction condition (3.3) will hold; Termination Test I demands it explicitly

and the rule (3.7) is used to enforce it when Termination Test II is satisfied. For consistency

between Termination Test I and II and (3.7), we may set σ = τ(1−ε) for Termination Test I.

In this case, it can be seen that for any step satisfying Termination Test II that does not

satisfy Termination Test I, the rule (3.7) will increase the penalty parameter beyond its most

recent value. This follows from the fact that under (3.4) the bounds (3.6) are tighter than

(3.5), and so any step satisfying Termination Test II and (3.7) for πk = πk−1 would satisfy

(3.3) for this same value of the penalty parameter and thus would satisfy Termination Test I.

Algorithm 3.1. Inexact SQP Method

Given parameters 0 < ε, τ, σ, η < 1 and 0 < β, κ, ε

Initialize x0, λ0, and π−1 > 0

for k = 0, 1, 2, . . . , until a convergence test for (2.1) is satisfied

Compute fk, gk, ck,Wk, and Ak and set πk ← πk−1 and αk ← 1

Compute a step (dk, δk) satisfying Termination Test I or II

if Termination Test II is satisfied and (3.7) does not hold, set πk ← χk + ε

Perform a backtracking line search to obtain αk satisfying (2.15)

Set (xk+1, λk+1)← (xk, λk) + αk(dk, δk)

endfor

In practice, the step can be computed by producing a sequence of candidate steps {(d, δ)}
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via the application of an iterative solver to (2.6). The corresponding residuals {(ρ, r)} can

then be computed and Termination Tests I and II can be evaluated during each iteration or

after a few steps of the iterative solver. The constants (ε, β) should be tuned for a specific

application and can significantly influence the practical performance of the algorithm. In

particular, the value for β should be chosen to reflect the relationship between the scales

of the primal and dual feasibility measures. The scale dependence of such a parameter is

not ideal, but a bound similar to (3.6b) is used to ensure the boundedness of the penalty

parameter πk (as we show in Lemma 3.11) if the rule (3.7) is enforced. Since such a method

for setting the penalty parameter has proved to work well in practice [39], we employ this

update rule in Algorithm 3.1 and define β and (3.6b) as given. The remaining constants can

generally be set to default values. Further discussion of appropriate values for the constants

and an example implementation of Algorithm 3.1 are given in Chapter 4.

3.3.2 Well-posedness of the Algorithm

We conclude this section with a few observations to show that Algorithm 3.1 is well-defined

under common conditions.

Suppose, during iteration k, that Algorithm 3.1 has not terminated. We may then assume

that the optimality conditions (2.3) evaluated at the current iterate are nonzero and we have

not reached a stationary point for the penalty function φπk
for a sufficiently large value of the

penalty parameter πk. Moreover, assume that for any κ > 0 the step computation procedure

will eventually produce a step with corresponding residual satisfying (3.4) whenever (2.6) is

consistent. Then, (3.5) or (3.6) will eventually be satisfied and an acceptable step satisfying

Termination Test I or II will be computed.

Once an acceptable step is obtained, we must ensure that a positive steplength coefficient

αk can be calculated to satisfy the Armijo condition (2.15). We consider this issue by first
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presenting the following result.

Lemma 3.2. The directional derivative of the penalty function φπ along a step d satisfies

Dφπ(d) ≤ gT d− π(‖c‖ − ‖r‖).

Proof. Applying Taylor’s theorem, we find for some constant γ1 > 0

φ(x + αd)− φ(x) = f(x + αd)− f(x) + π(‖c(x + αd)‖ − ‖c(x)‖)

≤ αgT d + γ1α
2‖d‖2 + π(‖c(x) + αAd‖ − ‖c(x)‖)

= αgT d + γ1α
2‖d‖2 + π(‖(1− α)c(x) + αr‖ − ‖c(x)‖)

≤ α(gT d− π(‖c(x)‖ − ‖r‖)) + γ1α
2‖d‖2,

where r = c(x) + Ad as in (3.2). Dividing both sides by α and taking the limit as α → 0

yields the result. �

Given this result, we present the following consequence of our model reduction condition.

(A stronger result will be given as Lemma 3.9.)

Lemma 3.3. If the model reduction condition (3.3) holds for a step (dk, δk) and penalty

parameter πk, then the directional derivative of the penalty function satisfies Dφπk
(dk) ≤ 0.

Proof. Observe from (2.11) that the inequality (3.3) can be rewritten as

gT
k dk − πk(‖ck‖ − ‖rk‖) ≤ −ωk

2
dT

k Wkdk − σπk max{‖ck‖, ‖rk‖ − ‖ck‖},
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so, by Lemma 3.2, a step (dk, δk) satisfying (3.3) yields

Dφπk
(dk) ≤ gT

k dk − πk(‖ck‖ − ‖rk‖)

≤ −ωk

2
dT

k Wkdk − σπk max{‖ck‖, ‖rk‖ − ‖ck‖}. (3.9)

The result follows from the above inequality and (2.10). �

We have shown under common conditions that an acceptable inexact SQP step (dk, δk)

can always be computed by Algorithm 3.1 and that steps satisfying the model reduction

condition (3.3) correspond to directions of nonincrease for the penalty function φπk
. These

results allow us to show that the Armijo condition (2.15) is satisfied by some positive αk (see

Lemma 3.10), and so Algorithm 3.1 is well-posed.

We mention in passing that, as a corollary to Lemma 3.2, we may avoid the exact

computation of the directional derivative of the penalty function along a step d by defining

the estimate

D̃φπ(d) , gT d− π(‖c‖ − ‖r‖). (3.10)

As such, the Armijo condition (2.15) can be substituted by

φπk
(xk + αkdk) ≤ φπk

(xk) + ηαkD̃φπk
(dk). (3.11)

All of the analysis in this chapter holds when either (2.15) or (3.11) is observed in the line

search procedure of Algorithm 3.1.

3.4 Global Analysis

Let us begin our investigation of the global behavior of the algorithm by making the following

assumptions about the problem and the set of computed iterates.
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Assumptions 3.4. The sequence {(xk, λk)} generated by Algorithm 3.1 is contained in a

convex set Ω and the following properties hold:

(a) The functions f and c and their first and second derivatives are bounded on Ω.

(b) The sequence {λk} is bounded.

(c) The constraint Jacobians Ak have full row rank and their smallest singular values are

bounded below by a positive constant.

(d) The sequence {Wk} is bounded.

(e) There exists a constant µ > 0 such that for any u ∈ R
n with u 6= 0 and Aku = 0 we

have uT Wku ≥ µ‖u‖2.

These assumptions are fairly standard [22, 31]. Assumption 3.4 is a little weaker than the

common assumption that the iterates are contained in a compact set. Assumptions 3.4(b)

and (c) are strong; we use them to simplify the analysis in order to focus on the issues

related to inexactness. It would be of interest in future studies of inexact SQP methods

to relax these assumptions. Assuming that Wk is positive definite on the null space of the

constraints is natural for line search algorithms, for otherwise there would be no guarantee

of descent unless certain enhancements to the algorithm are implemented (see Chapter 5).

We comment on the validity of Assumption 3.4(b) in Section 3.5.

We now assume that during iteration k we have obtained an acceptable step (dk, δk) with

residuals (ρk, rk) defined by (3.2). We consider the decomposition

dk = uk + vk, (3.12)

where uk lies in the null space of the constraint Jacobian Ak and vk lies in the range space

of AT
k . We do not intend to compute the components explicitly; the decomposition is only
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for analytical purposes [5, 7]. We refer to uk, which by definition satisfies Akuk = 0, as the

tangential component and vk as the normal component of the step. In this manner we may

rewrite

mredπk
(dk) = −gT

k (uk + vk)− ωk

2
(uk + vk)

T Wk(uk + vk) + πk(‖ck‖ − ‖rk‖)

= −gT
k uk − ωk

2
uT

k Wkuk

− ωku
T
k Wkvk − gT

k vk − ωk

2
vT

k Wkvk + πk(‖ck‖ − ‖rk‖). (3.13)

Our analysis hinges on our ability to classify the effects of two types of steps: those

lying sufficiently in the null space of the constraints and those sufficiently orthogonal to the

linearized feasible region. We show that such a distinction can be made by observing the

relative magnitudes of the normal and tangential components of the primal component dk.

We first present a result related to the magnitude of the normal step.

Lemma 3.5. For all k, the normal component vk is bounded in norm and for some γ2 > 0

satisfies

‖vk‖2 ≤ γ2 max{‖ck‖, ‖rk‖}. (3.14)

Furthermore, for all k such that Termination Test II is satisfied, there exists γ3 > 0 such

that

‖vk‖ ≤ γ3(‖ck‖ − ‖rk‖). (3.15)

Proof. From Akvk = −ck + rk and the fact that vk lies in the range space of AT
k , it follows

that

vk = AT
k (AkA

T
k )−1(−ck + rk),

and so

‖vk‖ ≤ ‖AT
k (AkA

T
k )−1‖(‖ck‖+ ‖rk‖). (3.16)
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This, along with (3.4), the fact that Assumptions 3.4(a) and (b) imply that ‖ck‖ and ‖gk +

AT
k λk‖ are bounded, and the fact that Assumptions 3.4(a) and (c) imply that ‖AT

k (AkA
T
k )−1‖

is bounded, implies vk is bounded in norm for all k. The inequality (3.16) also yields

‖vk‖2 ≤
(
‖AT

k (AkA
T
k )−1‖(‖ck‖+ ‖rk‖)

)2

≤
(
2‖AT

k (AkA
T
k )−1‖max{‖ck‖, ‖rk‖}

)2

=
[
4‖AT

k (AkA
T
k )−1‖2 max{‖ck‖, ‖rk‖}

]
max{‖ck‖, ‖rk‖}, (3.17)

where (3.4) and Assumptions 3.4(a), (b), and (c) also imply that the bracketed expression

in (3.17) is bounded. Thus, (3.14) holds. Finally, if Termination Test II is satisfied, then

from (3.6a) and (3.16) we have

‖vk‖ ≤ ‖AT
k (AkA

T
k )−1‖(1 + ε)‖ck‖

≤ ‖AT
k (AkA

T
k )−1‖

(
1+ε
1−ε

)
(‖ck‖ − ‖rk‖),

and so (3.15) holds. �

A similar result can be proved for the tangential component.

Lemma 3.6. The tangential components {uk} are bounded in norm.

Proof. Assumption 3.4(e), the fact that uk lies in the null space of the constraint Jacobian

Ak, and the first block equation of (3.2) yield

µ‖uk‖2 ≤ uT
k Wkuk

= −gT
k uk + ρT

k uk − uT
k Wkvk

≤ (‖gk‖+ ‖ρk‖+ ‖Wkvk‖)‖uk‖,
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and so

‖uk‖ ≤ (‖gk‖+ ‖ρk‖+ ‖Wkvk‖) /µ.

The result follows from the facts that Assumptions 3.4, Lemma 3.5, and the bounds (3.4),

(3.5), and (3.6) imply that all terms in the right-hand-side of this inequality are bounded.

�

We now turn to the following result addressing the relative magnitudes of the normal

and tangential components of a given step.

Lemma 3.7. There exists γ4 > 0 such that ‖uk‖2 ≥ γ4‖vk‖2 implies 1
2
dT

k Wkdk ≥ µ

4
‖uk‖2.

Proof. Assumption 3.4(e) implies that for any γ4 such that ‖uk‖2 ≥ γ4‖vk‖2 we have

1
2
dT

k Wkdk = 1
2
uT

k Wkuk + uT
k Wkvk + 1

2
vT

k Wkvk

≥ µ

2
‖uk‖2 − ‖uk‖‖Wk‖‖vk‖ − 1

2
‖Wk‖‖vk‖2

≥
(

µ

2
− ‖Wk‖√

γ4

− ‖Wk‖
2γ4

)
‖uk‖2.

Thus, Assumption 3.4(d) implies that the result holds for some sufficiently large γ4 > 0. �

With the above results, we can now formalize a distinction between two types of steps.

Let γ4 > 0 be chosen large enough as described in Lemma 3.7 and consider the sets of indices

K1 , {k : ‖uk‖2 ≥ γ4‖vk‖2}

and K2 , {k : ‖uk‖2 < γ4‖vk‖2}.

Most of the remainder of our analysis will be dependent on these sets and the corresponding

quantity

Θk ,




‖uk‖2 + ‖ck‖, k ∈ K1,

max{‖ck‖, ‖rk‖}, k ∈ K2.
(3.18)
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The relevance of Θk will be seen in the following three lemmas as a quantity that can be

used for bounding the length of the primal step and the directional derivative of the penalty

function, which will then provide a lower bound for the sequence of steplength coefficients

{αk}.

Lemma 3.8. There exists γ5 > 1 such that, for all k,

‖dk‖2 ≤ γ5Θk,

and hence

‖dk‖2 + ‖ck‖ ≤ 2γ5Θk. (3.19)

Proof. For k ∈ K1, we find

‖dk‖2 = ‖uk‖2 + ‖vk‖2

≤
(
1 + 1

γ4

)
‖uk‖2

≤
(
1 + 1

γ4

)
(‖uk‖2 + ‖ck‖).

Similarly, Lemma 3.5 implies that for k ∈ K2

‖dk‖2 = ‖uk‖2 + ‖vk‖2

< (γ4 + 1)‖vk‖2

≤ (γ4 + 1)γ2 max{‖ck‖, ‖rk‖}.

To establish (3.19) we note that Θk + ‖ck‖ ≤ 2Θk for all k. �

The directional derivative of the penalty function φπk
can be bounded in a similar manner.



38

Lemma 3.9. There exists γ6 > 0 such that, for all k,

D̃φπk
(dk) ≤ −γ6Θk.

Proof. Recalling (3.9) and (3.10) we have

D̃φπk
(dk) ≤ −ωk

2
dT

k Wkdk − σπk max{‖ck‖, ‖rk‖ − ‖ck‖}.

By Lemma 3.7 and (2.10), we have that ωk = 1 for k ∈ K1 and thus

D̃φπk
(dk) ≤ −µ

4
‖uk‖2 − σπk‖ck‖.

Similarly, for k ∈ K2 we have from (2.10)

D̃φπk
(dk) ≤ −σπk max{‖ck‖, ‖rk‖ − ‖ck‖}

≤ −1
2
σπk max{‖ck‖, ‖rk‖}.

The result holds for γ6 = min{µ

4
, 1

2
σπk}, which is bounded away from zero as {πk} is nonde-

creasing. �

Together, the previous two lemmas can be used to bound the sequence of steplength

parameters.

Lemma 3.10. The sequence {αk} is bounded below and away from zero.

Proof. Recall that the line search condition requires (3.11), which we rewrite for conve-

nience as

φπk
(xk + αkdk)− φπk

(xk) ≤ ηαkD̃φπk
(dk).
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Suppose that the line search condition fails for some ᾱ > 0, so

φπk
(xk + ᾱdk)− φπk

(xk) > ηᾱD̃φπk
(dk).

From the proof of Lemma 3.2 and (3.10) we have

φπk
(xk + ᾱdk)− φπk

(xk) ≤ ᾱD̃φπk
(dk) + ᾱ2γ1‖dk‖2,

so

(η − 1)D̃φπk
(dk) ≤ ᾱγ1‖dk‖2.

Lemmas 3.8 and 3.9 then yield

(1− η)γ6Θk < ᾱγ1γ5Θk,

so

ᾱ > (1− η)γ6/(γ1γ5).

Thus, αk need never be set below (1− η)γ6/(γ1γ5) for the line search condition (3.11) to be

satisfied. �

Another important property of Algorithm 3.1 is that under Assumptions 3.4 the penalty

parameter remains bounded. We prove this result in the following lemma, illustrating the

importance of the bound (3.6b).

Lemma 3.11. The sequence of penalty parameters {πk} is bounded above and πk = πk̄ for

all k ≥ k̄ for some k̄ ≥ 0.

Proof. Recall that the penalty parameter is increased during iteration k of Algorithm 3.1

only if Termination Test II is satisfied. Therefore, for the remainder of this proof let us
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assume that Termination Test II is satisfied and so the inequalities in (3.6) hold. By (3.7)

the parameter πk is chosen to satisfy the first inequality in (3.8), namely

mredπk
(dk) ≥ τπk(‖ck‖ − ‖rk‖). (3.20)

Let us also recall equation (3.13):

mredπk
(dk) =

[
−gT

k vk − ωk

2
vT

k Wkvk

]

+
[
−gT

k uk − ωk

2
uT

k Wkuk − ωku
T
k Wkvk

]
+ πk(‖ck‖ − ‖rk‖).

The result follows from our ability to bound the terms inside the brackets with respect to

the constraint reduction. First, by Lemma 3.5 and Assumptions 3.4 there exists γ ′
3 such that

−gT
k vk − ωk

2
vT

k Wkvk ≥ −γ′
3(‖ck‖ − ‖rk‖).

Second, the first block equation of (3.2) yields

− gT
k uk − ωk

2
uT

k Wkuk − ωku
T
k Wkvk

=




−ρT

k uk + 1
2
uT

k Wkuk if dT
k Wkdk ≥ 0

−(ρk −Wkvk)
T uk + uT

k Wkuk otherwise.

If dT
k Wkdk ≥ 0, then Lemma 3.6, Assumption 3.4(e), and the bounds (3.6) on the residuals
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(ρk, rk) imply that there exists γ7, γ
′
7 > 0 such that

−gT
k uk − ωk

2
uT

k Wkuk − ωku
T
k Wkvk ≥ −‖ρk‖‖uk‖+ 1

2
uT

k Wkuk

≥ −γ7‖ρk‖

≥ −γ7β‖ck‖

≥ −γ7

(
β

1−ε

)
(‖ck‖ − ‖rk‖)

= −γ′

7(‖ck‖ − ‖rk‖).

If dT
k Wkdk < 0, Lemma 3.6, Assumptions 3.4(d) and (e), the bounds (3.6) on the residuals

(ρk, rk), and Lemma 3.5 imply that there exists γ8, γ
′
8 > 0 such that

−gT
k uk − ωk

2
uT

k Wkuk − ωku
T
k Wkvk ≥ −‖ρk‖‖uk‖ − ‖Wkuk‖‖vk‖+ uT

k Wkuk

≥ −γ8(‖ρk‖+ ‖vk‖)

≥ −γ8

(
β

1−ε
+ γ3

)
(‖ck‖ − ‖rk‖)

= −γ′

8(‖ck‖ − ‖rk‖).

These results together imply

mredπk
(dk) ≥ (−max{γ ′

7, γ
′

8} − γ′

3 + πk)(‖ck‖ − ‖rk‖),

and so (3.20) is always satisfied for

πk ≥ (max{γ ′

7, γ
′

8}+ γ′

3) /(1− τ).

Therefore, if πk̄ ≥ (max{γ ′
7, γ

′
8}+ γ′

3)/(1− τ) for some iteration number k̄ ≥ 0, then πk = πk̄

for k ≥ k̄. This, together with the fact that whenever Algorithm 3.1 increases the penalty
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parameter it does so by at least a positive finite amount, proves the result. �

We can now present the following result related to the lengths of the primal components of

the steps computed in Algorithm 3.1 and the convergence of the iterates toward the feasible

region of problem (2.1).

Lemma 3.12. Algorithm 3.1 yields

lim
k→∞
‖ck‖ = 0 and lim

k→∞
‖dk‖ = 0.

Proof. For all k, it can easily be seen that

φπk
(xk)− φπk

(xk + αkdk) ≥ γ9Θk

for some γ9 > 0 follows from (3.11) and Lemmas 3.9 and 3.10. By Lemma 3.11 the algorithm

eventually computes, during iteration k̄, a finite value πk̄ beyond which the penalty parameter

will never be increased. Therefore, the penalty parameter πk remains fixed for k ≥ k̄, i.e.,

φπk
= φπ

k̄
for k ≥ k̄, and (3.19) implies

φπ
k̄
(xk̄)− φπ

k̄
(xk) =

k−1∑

j=k̄

(φπ
k̄
(xj)− φπ

k̄
(xj+1))

≥ γ9

k−1∑

j=k̄

Θj

≥ γ9

2γ5

k−1∑

j=k̄

(‖dj‖2 + ‖cj‖).

The result follows from the above and the fact that Assumption 3.4(a) implies φπ
k̄

is bounded

below. �

We are now ready to present the main result of this section.
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Theorem 3.13. Algorithm 3.1 yields

lim
k→∞

∥∥∥∥∥∥∥




gk + AT
k λk

ck




∥∥∥∥∥∥∥
= 0.

Proof. Recall that αk ≤ 1 for all k and from Lemma 3.10 we have that {αk} is bounded

below and away from zero. An expansion of the first block of the optimality conditions (2.3)

yields

‖gk+1 + AT
k+1λk+1‖ ≤ ‖gk + AT

k λk + αk(∇2
xxLkdk + AT

k δk)‖+ α2
kE(dk, δk),

where

E(dk, δk) = O(‖dk‖2 + ‖dk · δk‖).

This, along with the first block equation in (3.2) and Assumptions 3.4, implies

‖gk+1 + AT
k+1λk+1‖

≤ ‖gk + AT
k λk + αk(Wkdk + AT

k δk) + αk(∇2
xxLk −Wk)dk‖+ α2

kE(dk, δk)

≤ ‖gk + AT
k λk + αk(ρk − gk − AT

k λk)‖+ αk‖(∇2
xxLk −Wk)dk‖+ α2

kE(dk, δk)

≤ (1− αk)‖gk + AT
k λk‖+ αk‖ρk‖+ αkE

′(dk, δk) (3.21)

where

E ′(dk, δk) = O(‖dk‖+ ‖dk‖2 + ‖dk · δk‖). (3.22)



44

The bounds (3.5) and (3.6b) imply

(1− αk)‖gk + AT
k λk‖+ αk‖ρk‖

≤ max{(1− (1− ε)αk)‖gk + AT
k λk‖, (1− αk)‖gk + AT

k λk‖+ αkβ‖ck‖}

which, along with (3.21) and the boundedness of {αk}, implies that for some 0 < γ10 < 1

and γ11 > 0 we have

‖gk+1 + AT
k+1λk+1‖ ≤ max{(1− γ10)‖gk + AT

k λk‖, γ11‖ck‖}+ αkE
′(dk, δk). (3.23)

The boundedness of {αk}, Lemma 3.12, and the fact that Assumption 3.4(b) implies δk is

bounded in norm imply, together with (3.22), that

lim
k→∞

αkE
′(dk, δk) = 0. (3.24)

Consider an arbitrary γ̂ > 0. Lemma 3.12 and the limit (3.24) imply that there exists

k′ ≥ 0 such that for all k ≥ k′ we have

γ11‖ck‖ < (1− γ10)γ̂ and αkE
′(dk, δk) < 1

2
γ10γ̂. (3.25)

Suppose k ≥ k′ and ‖gk + AT
k λk‖ > γ̂. We find from (3.23) that

‖gk+1 + AT
k+1λk+1‖ ≤ (1− γ10)‖gk + AT

k λk‖+ 1
2
γ10γ̂

≤ ‖gk + AT
k λk‖ − 1

2
γ10γ̂.

Therefore, {‖gk + AT
k λk‖} decreases monotonically by at least a constant amount for k ≥ k ′

while {‖gk + AT
k λk‖} > γ̂, so we eventually find ‖gk + AT

k λk‖ ≤ γ̂ for some k = k′′ ≥ k′.
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Then, for k ≥ k′′ we find from (3.23) and (3.25) that

‖gk+1 + AT
k+1λk+1‖ ≤ (1− γ10)γ̂ + 1

2
γ10γ̂

≤ (1− 1
2
γ10)γ̂,

so ‖gk + AT
k λk‖ ≤ γ̂ for all k ≥ k′′. Since the above holds for any γ̂ > 0, we have

lim
k→∞
‖gk + AT

k λk‖ = 0,

and so the result follows with the above and the result of Lemma 3.12. �

3.5 Final Remarks

In this chapter we have developed an inexact SQP algorithm for equality constrained opti-

mization that is globally convergent under common conditions. We close with some remarks

about the assumptions used in our analysis, the rate of convergence of our approach, and

possible extensions of this work.

First, let us recall Assumption 3.4(b), related to the boundedness of the multipliers.

Our analysis does not guarantee that the multipliers remain bounded in general; in fact,

Algorithm 3.1 does not exert direct control over them. We can ensure that {λk} remains

bounded, however, by adding to Termination Test I a requirement of the form

‖ρk‖ ≤ κ′ max{‖gk‖, ‖Ak‖}

for a constant κ′ > 0. Such a condition ensures that ρk is bounded independently of the

multipliers λk, so then (3.2) and Assumptions 3.4 will imply that λk+1 is bounded. An
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alternative would be to include a safeguard in the algorithm by which the multiplier estimate

λk is set to a nominal value, say λk = 0, if ‖gk + AT
k λk‖ is larger than a given constant.

Second, the rate of convergence of Algorithm 3.1 may be slow for a given problem. One

can ensure a fast convergence rate, however, by imposing at each step a requirement of the

form ∥∥∥∥∥∥∥




ρk

rk




∥∥∥∥∥∥∥
≤ κk

∥∥∥∥∥∥∥




gk + AT
k λk

ck




∥∥∥∥∥∥∥
(3.26)

where 0 < {κk} < 1 [8]. Then, tightening the values of κk during any point of a run of

Algorithm 3.1 will influence the convergence rate if unit steplengths are taken. For example,

if 0 ≤ κk ≤ κ̂ < 1 for all large k, then the rate of convergence is linear with rate κ̂. If, in

addition, κk → 0, then the rate of convergence is superlinear [8]. In practice, the penalty

function φπ can reject unit steps even close to the solution, but this difficulty can be overcome

by the use of a second order correction or non-monotone techniques [28]. In this manner,

we can be sure that the rate of convergence of Algorithm 3.1 will be fast once the penalty

parameter is stabilized.

In addition it is worth noting that imposing condition (3.26) with sufficiently small κk

implies that the bound (3.5) in Termination Test I is automatically satisfied, and the bounds

(3.6) of Termination Test II are satisfied in the case where ‖ck‖ is greater than some constant

times ‖gk + AT
k λk‖.

Finally, it would be of interest to analyze the behavior of inexact SQP methods in the

presence of Jacobian singularities. However, such an analysis can be complex and would

have brought the focus away from the intended scope of this chapter. Therefore, we chose

to discuss the design of inexact SQP methods in the benign context of Assumptions 3.4.

However, we do consider algorithmic enhancements for cases where Wk is not positive definite

on the null space of Ak in Chapter 5.
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Chapter 4

Numerical Experience with an

Inexact SQP Method for Equality

Constrained Optimization

This chapter contains a description of a particular implementation of Algorithm 3.1 and cor-

responding numerical results to illustrate the robustness of our approach and its effectiveness

on two instances of a realistic PDE-constrained model problem. We begin by providing some

general comments that may be useful for any implementation before presenting our chosen

approach.

In terms of the input parameters required for Algorithm 3.1, we make the following

general comments on their practical effects. First, the values (ε, β) should receive special

attention as they may greatly affect the ease with which Termination Tests I and II, and

therefore the model reduction condition (3.3), are satisfied; larger values for (ε, β) allow

more steps to satisfy at least one of the tests at a given point. In general, looser bounds

in Termination Tests I and II will result in cheaper step computations, but these savings
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must be balanced against possible increases in the number of outer iterations required to

find a solution. The parameters may also influence the magnitude of the penalty parameter

computed in the algorithm; larger values may yield larger values for πk. A similar effect

on the penalty parameter will be seen for smaller values of the input τ in (3.7) and larger

values of σ in (3.3), and so together all of the parameters may affect the number of iterations

required until the penalty parameter stabilizes, an important phenomenon in the analysis

of Section 3.4. In general, however, we claim that the parameters (σ, τ), as well as the

remaining constants, can be set to default values or to promote consistency between the two

termination tests, as we do in (4.3) below.

An appropriate stopping condition for the overall nonlinear program is given by

‖gk + AT
k λk‖∞ ≤ max{‖gk‖∞, 1}εopt, (4.1)

‖ck‖∞ ≤ max{‖c(x0)‖∞, 1}εfeas, (4.2)

where 0 < εopt, εfeas < 1 and x0 is the starting point (e.g., see [39]).

The following algorithm was implemented in a stand-alone Matlab code and incorpo-

rated into the Matlab environment for benchmarking PDE-constrained optimization solvers

provided by Haber and Hanson [21]. We use the generalized minimum residual (GMRES)

method [33] in the stand-alone implementation for the step computations, for which we

adapted the implementation by Kelley [25]. The GMRES method does not exploit the sym-

metry of the matrix (3.1) in the primal-dual system (2.6), but the stability of the approach

is ideal for illustrating the robustness of Algorithm 3.1. In the benchmarking environment,

we use an implementation of the symmetric quasi-minimum residual (SymQMR) method

[17] to exploit the symmetry of the primal-dual matrix and perform fast step computations.

The termination variable is used to indicate the successful or unsuccessful termination of

the solver near a local solution of problem (2.1).
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Algorithm 4.1. Inexact SQP Method (isqp)

Given parameters 0 < εfeas, εopt, ε, τ, σ, η, αmin < 1 and 0 < kmax, β, κ, ε

Initialize x0, λ0, and π−1 > 0

Set termination← success

for k = 0, 1, 2, . . . , kmax, or until (4.1) and (4.2) are satisfied

Compute fk, gk, ck,Wk, and Ak and set πk ← πk−1 and αk ← 1

for j = 0, 1, 2, . . . , n + t, or until Termination Test I or II is satisfied

Set (dk, δk) as the jth iterative solver solution

endfor

if D̃φπ(dk) > 0 for all π ≥ πk, set termination← failure and break

if Termination Test II is satisfied and (3.7) does not hold, set πk ← χk + ε

while (3.11) is not satisfied and αk ≥ αmin, set αk ← αk/2

if αk < αmin, set termination← failure and break

Set (xk+1, λk+1)← (xk, λk) + αk(dk, δk)

endfor

if (4.1) or (4.2) is not satisfied, set termination← failure

return termination

We recognize three types of failures in the above approach. First, due to the iteration

limit imposed on the inner for loop, or if the positive definiteness of Assumption 4.1(e) is

violated, the iterative linear system solver may not provide a solution satisfying Termination

Test I or II. In this case, we will try to use the last computed step dk anyway, and, if

necessary, we will try increasing πk to yield a negative value for the directional derivative

Dφπk
(dk). However, if the directional derivative is nonnegative for any value π ≥ πk−1 of

the penalty parameter, then the step is deemed an ascent direction for the penalty function

and the algorithm terminates. Second, if the steplength coefficient must be cut below a
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given αmin in order to obtain a step satisfying the Armijo condition (3.11), then the search

direction is deemed unsuitable and the algorithm fails. Even if we have a descent direction,

this failure can occur due to finite precision arithmetic errors or if αmin is too large relative

to the curvature of the functions. Finally, if the algorithm terminates without satisfying

the nonlinear program stopping conditions (4.1) and (4.2), then the maximum number of

iterations has been reached. Though there exist techniques for continuing a stagnated run

of the algorithm when an ascent direction for the penalty function or a short steplength

coefficient is computed, we implement näıve failure tests in Algorithm 4.1 to aggressively

challenge the robustness of our approach.

4.1 The CUTEr and COPS Collections

We first applied our stand-alone Matlab implementation of Algorithm 4.1 to a set of 44

equality constrained problems from the CUTEr [4, 19] and COPS [10] collections. Problems

from these sets, for which AMPL models were available, were selected based on size — fewer

than 10,000 variables — and were only considered if the code was able to provide a solution

in the case where steps are computed via an exact solution of the primal-dual system (2.6)

during each iteration. We note that Wk was set to the exact Hessian of the Lagrangian

and that a multiple of the identity matrix was added to Wk, when necessary, to satisfy the

positive definiteness of Assumption 3.4(e).

Table 4.1 contains a listing of the input parameters implemented in our code.

For the remaining parameters, we set, as is generally appropriate,

σ ← τ(1− ε) (4.3)

and β ← max

{‖g0 + AT
0 λ0‖

‖c0‖+ 1
, 1

}
. (4.4)
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Input Value Input Value
εfeas 10−6 ε 10−4

εopt 10−6 αmin 10−8

ε 0.1 kmax 1000
τ 0.1 κ 1
η 10−8 π−1 1

Table 4.1: Input values for Algorithm 4.1 for CUTEr and COPS problems

As previously mentioned, this value for σ promotes consistency between Termination Tests I

and II and (3.7). Such a value for β aims to reflect the relationship in scale between the

primal and dual feasibility measures.

We illustrate the robustness of Algorithm 4.1 for problems in our test set by comparing it

to a näıve inexact method that only enforces a reduction in the entire primal-dual residual.

Our implementation of this approach, also done in Matlab, is identical to Algorithm 4.1

except that the stopping test

for j = 0, 1, 2, . . . , n + t, or until Termination Test I or II is satisfied

for the inner for loop is replaced by

for j = 0, 1, 2, . . . , n + t, or until (3.4) is satisfied

with 0 < κ < 1. We performed multiple runs of this algorithm, which we call ires, for each

problem in the test set and will refer to each run by the particular value of κ used.

It is important to note that as the results provided in this section are intended only as

a simple illustration of the robustness of our approach, we did not implement a precondi-

tioner for the primal-dual system for these numerical experiments. We stress, however, that

preconditioning is an essential part of any implementation for many large-scale problems, as

can be seen in Section 4.2.
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Table 4.2 provides the percentage of problems successfully solved for each of the solvers.

All of the failures for the ires algorithm occurred due to the fact that either the directional

Algorithm ires isqp

κ 2−1 2−3 2−5 2−7 2−9 10
% Solved 50% 68% 80% 82% 86% 100%

Table 4.2: Success rates for algorithms ires and isqp

derivative Dφπk
(dk) of the penalty function was nonnegative for all allowable values of the

penalty parameter πk or the backtracking line search reduced the steplength coefficient αk

below the given tolerance αmin. Thus, we find that even for relatively small values of the

tolerance parameter κ, the primal component dk provided by GMRES can yield a value for

the directional derivative Dφπk
(dk) of the penalty function that is not sufficiently negative for

any π ≥ πk−1. In other words, ires runs the risk of computing nearly-exact solutions of the

primal-dual system (2.6) that correspond to directions of insufficient decrease for the penalty

function φπk
. Detailed results for algorithms ires and isqp are provided in Appendix A.

We close this section with a remark related to an extension of Algorithm 4.1 described

in Section 3.5. Specifically, we claim that the rate of convergence can be controlled by

requiring, within Termination Tests I and II, a condition of the form (3.26) for 0 < {κk} < 1.

Incidentally, by implementing such an approach, one can directly observe the extra cost

associated with evolving the ires algorithm described above into a robust method. We

performed addition tests of this type and found this extra cost to be minimal for the problems

in our test set. For example, we compared ires with a hybrid approach, call it ires-isqp,

that imposes inequality (3.26) within the step computation of Algorithm 4.1, where κ for

the ires algorithm was set equal to κk = 2−5 for all k. For the 35 problems solved by both

of these algorithms, an average of only 0.5 extra total GMRES iterations over the entire run

of the algorithm were required by ires-isqp. Moreover, by observing Termination Tests I

and II within the iterative solver, the 9 problems left unsolved by ires (approximately 20%
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of the total number of 44 problems) were all solved successfully by ires-isqp. Indeed, the

extra cost is minimal with respect to the added robustness.

4.2 A Model PDE-constrained Problem

This section provides numerical results for Algorithm 4.1 applied to two instances of a model

PDE-constrained problem. We present an overview of the model problem formulation, briefly

describe a few details of the implementation, and present results related to tuning the input

parameters κ, ε, and β to achieve fast convergence. Further details of the problem formulation

and Matlab implementation can be found in [21].

PDE-constrained optimization problems represent a large class of difficult applications

for which mathematical programming techniques are actively being applied and specialized.

Types of problems in this class include optimal design, optimal control, shape optimization,

and parameter estimation of PDE systems. Examples of specific applications include weather

forecasting [12], aerodynamic design [41], optimal flow control [2, 3, 32], chemical engineering

[1], and environmental engineering [21]. The computational requirements of Algorithm 4.1

are well-suited for many large-scale PDE-constrained problems due to its matrix-free nature.

Thus, we are particularly interested in the efficiency of the algorithm for problems in this

class.

The benchmarking environment of Haber and Hanson [21] considers a number of in-

stances of the inverse problem of recovering an approximation for a model xm(z) based on

measurement data qd(z) on the solution of a forward problem xf (z). The forward problem

is assumed to be linear with respect to xf (z), so that the PDE — which is assumed to be

defined on an appropriate domain Ω and equipped with suitable boundary conditions — can

be written as

B(xm(z))xf (z) = qr(z), (4.5)
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where B is a differential operator depending on the model xm(z) and qr(z) is an appropriate

right-hand-side for the (nonlinear) constraints. The problem to be solved is chosen as the

minimization of a Tikhonov functional to find xm(z), which, after appropriate discretiza-

tions of the PDE and regularization functional have been applied, can be formulated as the

constrained optimization problem

min
x∈Rn

1
2
‖Qxf − qd‖2 + ν

2
‖L(xm − xref )‖2

s.t. B(xm)xf = qr,

(4.6)

where x = (xm, xf ). Here, xm is the grid function approximating xm(z) and arranged as a

vector, and similarly for qr, xf and qd. Q is a projection operator for xf onto the locations

in Ω to which the data qd are associated, L is a regularization matrix not dependent on xm,

ν > 0 is a regularization parameter, xref is a given reference model, and B is a nonsingular

matrix dependent on xm.

We briefly describe the basic components of a SQP method for (4.6) before providing

numerical results for two particular instances of the problem. In particular, let us derive the

elements of the primal-dual system (2.6) used in the Matlab implementation described in

[21]. The Lagrangian function (see (2.2)) for the finite-dimensional problem (4.6) is

L(x, λ) = 1
2
‖Qxf − qd‖2 + ν

2
‖L(xm − xref )‖2 + λT V (B(xm)xf − qr) (4.7)

where λ ∈ R
t are Lagrange multipliers and V ∈ R

t×t is a diagonal matrix defined to maintain

the meaning of λ as a discretization of a continuous Lagrange multiplier λ(z). Thus, the
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first order optimality conditions for problem (4.6) are

∇L(x, λ) =




QT (Qxf − qd) + BT
f V λ

νLT L(xm − xref ) + BT
mV λ

V (B(xm)xf − qr)




= 0 (4.8)

where Bf , ∂(B(xm)xf )/∂xf = B(xm) and Bm = ∂(B(xm)xf )/∂xm. As the computation

of second order information is impractical for the given problem instances, the code uses a

Gauss-Newton method (e.g., see [28]) to approximate the Hessian. Thus, for our test results

we define the primal-dual system (see (2.6)) as




QT Q 0 BT
f V

0 νLT L BT
mV

V Bf V Bm 0







dm

df

δ




= −




QT (Qxf − qd) + BT
f V λ

νLT L(xm − xref ) + BT
mV λ

V (Bfxf − qr)




. (4.9)

It is worth noting that Assumptions 3.4(c) and (e) hold for the quantities in (4.9). Moreover,

the code applies a preconditioner to (4.9) that uses a few steps of a Jacobi iteration for the

forward problem and a limited memory BFGS approximation of the inverse of the reduced

Hessian; again, details can be found in [21].

We apply Algorithm 4.1 to two instances of problem (4.6). For the first instance, which

we refer to as Elliptic, the forward problem (4.5) takes on the form of an elliptic PDE and

has applications in groundwater modeling and DC resistivity. In the second instance, call it

Parabolic, the PDE is parabolic and time-dependent and the optimization problem (4.6)

arises in fields such as optimal tomography and electromagnetic imaging. In general, the

goal is to solve each problem on a relatively fine grid for a small value of the regularization

parameter ν. However, for illustrative purposes we simply set ν ← 0.1 and consider easily-

managed grid sizes: 16 grid points in each of the three spatial dimensions for a total of



56

n = 8192 variables and t = 4096 constraints for problem Elliptic, and 8 grid points in

each of three spatial and one time dimension for a total of n = 4608 variables and t = 4096

constraints for problem Parabolic.

Our goal in the following numerical experiments is to determine values for the parameters

(κ, ε, β) that provide the best algorithmic performance; i.e., we are interested in appropriate

values for three critical inputs so that the optimization process requires the least amount of

computational effort. With respect to the remaining inputs, Table 4.3 contains a listing of

the values implemented in our code, where again the value for σ depends on the input ε.

Input Value Input Value
εfeas 10−4 ε 10−4

εopt 10−4 αmin 10−8

τ 0.1 kmax 100
σ τ(1− ε) π−1 10−8

η 10−8

Table 4.3: Input values for Algorithm 4.1 for two PDE-constrained problems

In terms of the three critical parameters (κ, ε, β), let us first claim (similarly to (4.4))

that an appropriate form for β is given by

β ← β ′

(‖g0 + AT
0 λ0‖

‖c0‖+ 1

)
(4.10)

with β ′ > 0. In our tests, we set β according to (4.10) for various values of β ′. Overall, we

consider all possible combinations of the values in Table 4.4.

Input Values
κ {1.0, 0.5, 0.1}
ε {0.9, 0.5, 0.1}
β′ {100, 10, 1}

Table 4.4: Critical inputs for Algorithm 4.1 for two PDE-constrained problems

Data was accumulated for three performance measures: the numbers of optimization
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iterations (k), total SymQMR iterations (j), and matrix-vector products (Mv) with the

constraint Jacobian. Matrix-vector products with the constraint Jacobian are performed

both for the application of the preconditioner for the primal-dual system and within the

iterative linear system solver itself. In fact, as the preconditioner can be seen to be highly

effective for these problem instances — which is reflected in the fact that only small numbers

of optimization and SymQMR iterations are required to find a solution for most combinations

of the input parameters — we consider the required number of matrix-vector products with

the constraint Jacobian as the primary measure of performance.

Results for all combinations of the input values (κ, ε, β) can be found in Appendix A. In

particular, Tables 4.5 and 4.6 provide the two best input combinations in terms of required

matrix-vector products with the constraint Jacobian (corresponding to the bold entries in

Table A.4) for problems Elliptic and Parabolic, respectively.

κ ε β′ k j Mv
1.0 0.9 10 11 17 3768
1.0 0.5 10 8 19 3599

Table 4.5: Results for Algorithm 4.1 on problem Elliptic

κ ε β′ k j Mv
1.0 0.1 10 6 9 5635
0.5 0.1 10 5 11 5305

Table 4.6: Results for Algorithm 4.1 on problem Parabolic

Overall, the results provided in Tables 4.5, 4.6, and A.4 suggest the following general

guidelines for the inputs (κ, ε, β). First, the failures illustrated in Table A.4 can be directly

attributed to the fact that a low value for the input κ can hinder an otherwise convergent

approach in the presence of an ill-conditioned primal-dual iteration matrix. That is, for

problem Parabolic, the algorithm failed when SymQMR was unable to provide a solution

satisfying (3.4) for κ = 0.1, and so the implementation was forced to use whatever final
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primal step dk was provided by the iteration, which in many cases turned out to be an

ascent direction for the penalty function for all allowable values of the penalty parameter.

Even without these failures, however, the results for problem Elliptic for κ = 0.1 suggest

that the algorithm may spend an unnecessarily large amount of computational effort to

compute nearly-exact solutions of the primal-dual system (4.9), despite the fact that steps

satisfying Termination Test I or II for a larger κ may have been encountered during the

solution process. Thus, the results suggest that relatively large values of the input κ may be

appropriate, at least during early iterations, and fast convergence will instead be attained

via careful selection of the parameters (ε, β). With respect to these values, the results imply

that setting β by (4.10) with β ′ ← 10 may be appropriate. A specific value for ε did not

entirely dominate the other tested values, though by examining Table A.4 in detail we find

that ε in the range of 0.5 may be a reasonable initial choice.

In the end, if it is computationally tractable to do so, values of the inputs (κ, ε, β) should

be tuned separately for each application, or should be set based on practical experience with

related problem instances.
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Chapter 5

Negative Curvature and Equality

Constrained Optimization

5.1 Background and Motivation

In this chapter we consider issues related to the extension of the inexact line search SQP

method for solving problem (2.1) described in Chapter 3 for applications where certain con-

vexity assumptions about the problem formulation may fail to hold at some of the algorithm

iterates. We present some preliminary strategies for this case and verify their usefulness,

for clarity and simplicity, in the case where exact solutions of the primal-dual system are

computed.

As previously mentioned, a standard assumption for line search SQP methods is that

during each iteration, Wk is positive definite on the null space of the constraint Jacobian

Ak (see Assumption 3.4(e)), in which case the SQP subproblem (2.4), rewritten here for
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convenience as

min
d∈Rn

fk + gT
k d + 1

2
dT Wkd (5.1a)

s.t. ck + Akd = 0, (5.1b)

is well defined. For many applications, however, such an assumption is invalid in the sense

that during iteration k there may exist u ∈ R
n with

Aku = 0 and uT Wku < 0. (5.2)

We refer to such a u as a direction of negative curvature for the subproblem (5.1) and note

that the presence of directions of this type may thwart the progress of an SQP approach

unless certain precautions are made. A solution to (5.1) does not exist in this setting, and

so if a solution to the primal-dual system




Wk AT
k

Ak 0







dk

δk


 = −




gk + AT
k λk

ck


 (5.3)

exists, then it corresponds to a saddle point or perhaps a maximizer of the quadratic model

of the objective (5.1a) over the linearized constraints (5.1b). Thus, (dk, δk) obtained via (5.3)

may not be an appropriate search direction with respect to the nonlinear program (2.1) and

algorithmic modifications may be necessary to ensure progress and guarantee convergence.

Despite the difficulties that arise in this framework, a number of methods for constrained

optimization that provide global convergence guarantees despite the presence of negative

curvature directions have been proposed and implemented. Methods that impose a trust re-

gion boundary in the step computation procedure, such as those implemented in Filter-SQP
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[13, 14, 16] and KNITRO-CG [6], are generally not disrupted in this setting as a solution to the

SQP subproblem becomes well defined with the additional constraint. Line search methods,

on the other hand, such as those implemented in LOQO [34] and IPOPT [35, 36, 37], often cope

with negative curvature directions by first obtaining spectral information of the primal-dual

matrix (3.1) via factorization techniques. It is known that if (3.1) has exactly n positive and

t negative eigenvalues, then Assumption 3.4(e) holds at the current iterate (e.g., see [28]).

Thus, an iterative procedure can be implemented to modify Wk in such a way that after a

finite number of modifications the matrix is positive definite on the null space of Ak, and so

usual SQP techniques can be applied in an unadulterated manner. The methods we develop

in this chapter have some features in common with this approach, except that we may not

always modify Wk if negative curvature directions are known to be present.

In summary, we are interested in the extension of our inexact SQP method for problems

where negative curvature directions may be present; i.e., cases where Assumption 3.4(e)

may not hold. A significant challenge in this context is that, without access to spectral

information of the primal-dual matrix, it may not even be known whether directions of

negative curvature are present at the current iterate for the given Wk. Thus, we begin by

returning to the relatively benign case where exact solutions of the primal-dual system are

obtained during each iteration. In this setting, we can more clearly present an enhancement

to contemporary matrix modification strategies that should prove to be useful in an inexact

environment, in ways that will be described in the last section.

This chapter is organized as follows. In Section 5.2, we consider an SQP algorithm

where steps are computed via an exact solution to the primal-dual system and motivate

an enhancement to common matrix modification strategies normally used to eliminate the

presence of negative curvature directions. The global behavior of the approach will be

discussed in Section 5.3, after which we present some numerical results for a set of test
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problems in Section 5.4. Closing remarks and issues related to extending the ideas of this

chapter to an inexact SQP framework are presented in Section 5.5.

5.2 Step Computation and Selection

In this section, we develop new ideas for handling the presence of negative curvature direc-

tions in a line search SQP framework. As in Chapter 3, we suggest that a powerful tool

for ensuring global convergence is the reinforcement of certain model reductions through

appropriately chosen conditions, as opposed to relying on the accurate solution of a series of

well defined subproblems.

Let us begin by presenting the general form of a particular component of the approach

that will be developed in detail in the remainder of this section. As mentioned above, some

contemporary line search methods [34, 37] will iteratively modify Wk until the matrix is

positive definite on the null space of Ak, which can be verified if the primal-dual matrix

(3.1) has n positive, t negative eigenvalues, and no zero eigenvalues; i.e., the inertia of the

primal-dual matrix is correct in that

inertia







Wk AT
k

Ak 0





 = (n, t, 0). (5.4)

We frame our techniques around this type of procedure, and still assume that after a finite

number of modifications the matrix Wk will be positive definite on the null space of Ak, but

emphasize that a step may be accepted before (5.4) holds. The algorithm is to be used as the

step computation procedure in a line search SQP framework, resulting in the primal-dual

step (dk, δk).

Algorithm 5.1. Outline of a Matrix Modification Strategy
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for j = 0, 1, 2, . . .

Compute (dk, δk) via (5.3)

if (5.4) holds, then break

if (dk, δk) is acceptable, then break

Modify Wk

endfor

The key difference between Algorithm 5.1 and standard matrix modification strategies

is that we intend to characterize certain properties of the solution (dk, δk) that may deem

the step acceptable despite the fact that negative curvature may be present. Modifications

of Wk may still be necessary in the step computation procedure, though excessive modifica-

tions may be avoided if an acceptable search direction is encountered early and recognized

appropriately.

We develop the notion of an acceptable step in the following manner. First, let us recall

the decomposition

dk = uk + vk (5.5)

with the tangential component uk lying in the null space of Ak and the normal component

vk lying in the range space of AT
k . As part of a solution to the primal-dual system (5.3), the

component vk can be viewed as a productive move toward satisfying the constraints. Then,

in conjunction with this step, the component uk would ideally correspond to a step towards

optimality; i.e., minimizing the quadratic model of the objective from the point xk + vk over

the null space of Ak.

An unfortunate consequence of the presence of negative curvature directions, however, is

that the tangential component may be unbounded, or may not correspond to a productive

step for minimizing the objective. Still, despite any undesirable properties of uk, we claim
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that the full step dk can be considered acceptable if the behavior of this tangential step can

be observed and subsequently controlled. This can be done in one of two ways. First, if the

curvature along the complete primal step dk is sufficiently positive with respect to the length

of uk, as in

ξ1‖uk‖2 ≤ dT
k Wkdk (5.6)

with ξ1 > 0, then we may assume that uk is an appropriate step towards optimality and the

step may be acceptable. Here, ‖ · ‖ denotes a norm on R
n. Alternatively, if the length of the

tangential component is not too large with respect to the length of the normal component,

as in

ξ2‖uk‖2 ≤ ‖vk‖2 (5.7)

with ξ2 > 0, then regardless of the quality of uk the full step dk may be considered acceptable

in that it at least provides a sufficient move towards satisfying the constraints. Overall, a

given step dk may be deemed acceptable based on properties of its corresponding tangen-

tial and normal components, which, in the presence of negative curvature directions, must

correspond to having a bounded tangential step with respect to appropriate quantities.

Later on, in our analysis in Section 5.3, we find that an alternative motivation for the

inequalities (5.6) and (5.7) relates to our ability to label the resulting steps as corresponding

to one of two index sets, K ′
1 and K ′

2, defined similar to K1 and K2 from Section 3.4.

A difficulty, of course, of relying on the inequalities (5.6) and (5.7) is that we do not have

access to the components uk and vk during the solution of the primal-dual system (5.3). We

never compute these components explicitly. Practically, however, we can exploit available

information in order to verify that one or both of the conditions hold for a given dk. We

consider this issue with the following lemma.
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Lemma 5.2. If a step dk satisfies

θ1

(
‖dk‖2 − ‖Akdk‖2/‖Ak‖2

)
≤ dT

k Wkdk (5.8)

for θ1 > 0, then (5.6) holds for some ξ1 > 0. Similarly, if

θ2‖dk‖2 ≤ ‖Akdk‖2/‖Ak‖2 (5.9)

for 0 < θ2 < 1, then (5.7) holds for some ξ2 > 0.

Proof. First, by the fact that Akuk = 0, we have

‖Akdk‖ = ‖Akvk‖ ≤ ‖Ak‖‖vk‖,

and so

‖vk‖2 ≥ ‖Akdk‖2/‖Ak‖2. (5.10)

Moreover, Akuk = 0 and the fact that vk lies in the range space of AT
k implies

‖dk‖2 = ‖uk‖2 + ‖vk‖2. (5.11)

By (5.10) and (5.11),

‖uk‖2 = ‖dk‖2 − ‖vk‖2

≤ ‖dk‖2 − ‖Akdk‖2/‖Ak‖2,

and so a step satisfying (5.8) satisfies (5.6) for ξ1 = θ1. Similarly, by (5.10) and (5.11), a
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step satisfying (5.9) has

‖uk‖2 = ‖dk‖2 − ‖vk‖2

≤ 1
θ2

‖Akdk‖2/‖Ak‖2 − ‖vk‖2

≤
(

1−θ2

θ2

)
‖vk‖2,

and so (5.7) holds for ξ2 = θ2/(1− θ2). �

We are now ready to present a complete algorithm for this framework.

Algorithm 5.3. SQP with Negative Curvature Safeguards

Given parameters 0 < τ, η, θ2 < 1 and 0 < θ1, ε

Initialize x0, λ0, and π−1 > 0

for k = 0, 1, 2, . . . , until a convergence test for (2.1) is satisfied

Compute fk, gk, ck,Wk, and Ak and set πk ← πk−1 and αk ← 1

for j = 0, 1, 2, . . .

Compute (dk, δk) via (5.3)

if (5.4) holds, then break

if (5.8) or (5.9) holds, then break

Modify Wk

endfor

if (3.7) does not hold, set πk ← χk + ε

Perform a backtracking line search to obtain αk satisfying (2.15)

Set (xk+1, λk+1)← (xk, λk) + αk(dk, δk)

endfor
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5.3 Global Analysis

This section contains an outline of a global convergence proof for Algorithm 5.3 under As-

sumptions 3.4(a)-(d). We assume that Assumption 3.4(e) holds, but only for iterations where

(5.4) is found to be satisfied; i.e., we tighten our notion of the primal-dual matrix (3.1) having

the correct inertia by only including cases where Assumption 3.4(e) is satisfied. We borrow

the results from Section 3.4 that remain relevant in this context and intend only to pinpoint

changes in the theory required to confront the presence of negative curvature.

Again, our analysis hinges on our ability to classify different types of productive steps.

In Section 3.4, such a distinction was made implicitly by relying on our assumptions of

the problem formulation and the required qualities of an accepted step. In the presence of

negative curvature directions, however, this sort of analysis breaks down as certain desirable

properties of the tangential component uk are lost. Thus, the importance of enforcing the

inequalities (5.8) and (5.9) in the definition of an appropriate search direction when (5.4)

fails to hold can be seen almost immediately when trying to extend analysis similar to that

of Section 3.4 to the negative curvature context. Through these conditions, we are able

to impose an explicit distinction between two types of desirable steps when an implicit

distinction cannot be made.

The analysis proceeds as follows. First, we can begin by noting that under Assump-

tions 3.4(a)-(d), the results of Lemma 3.5 are unaffected by negative curvature directions.

Thus, we may refer to Lemma 3.5 in the results that follow. Unfortunately, the results of

Lemmas 3.6 and 3.7 hold only for those steps computed when (5.4) is satisfied, but along
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with inequalities (5.8) and (5.9) we may consider the sets of indices

K1 , {k : (5.4) holds and ‖uk‖2 ≥ γ4‖vk‖2},

K2 , {k : (5.4) holds and ‖uk‖2 < γ4‖vk‖2},

K ′

1 , {k : (5.8) holds when (5.4) does not},

and K ′

2 , {k : (5.9) holds when (5.4) and (5.8) do not},

where it can be seen that k ∈ K1 ∪K2 ∪K ′
1 ∪K ′

2 for all k in Algorithm 5.3. Here, γ4 > 0 is

chosen large enough as described in Lemma 3.7 and, similar to the analysis of Section 3.4,

the quantity

Θ′

k ,




‖uk‖2 + ‖ck‖, k ∈ K1 ∪K ′

1,

‖ck‖, k ∈ K2 ∪K ′
2.

(5.12)

can be used for bounding the length of the primal step and the directional derivative of the

penalty function.

The next result has a flavor similar to Lemma 3.8.

Lemma 5.4. There exists γ5 > 1 such that, for all k,

‖dk‖2 ≤ γ5Θ
′

k,

and hence

‖dk‖2 + ‖ck‖ ≤ 2γ5Θ
′

k. (5.13)

Proof. For k ∈ K1 ∪K ′
1, we find by Lemma 3.5 that

‖dk‖2 = ‖uk‖2 + ‖vk‖2

≤ ‖uk‖2 + γ2‖ck‖.
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Similarly, Lemmas 3.5 and 5.2 and (5.9) imply that for k ∈ K2 ∪K ′
2

‖dk‖2 = ‖uk‖2 + ‖vk‖2

≤ (max{(1− θ2)/θ2, γ4}+ 1)‖vk‖2

≤ (max{(1− θ2)/θ2, γ4}+ 1)γ2‖ck‖.

To establish (5.13) we note that Θ′
k + ‖ck‖ ≤ 2Θ′

k for all k. �

Similarly, the following resembles Lemma 3.9.

Lemma 5.5. The directional derivative of φπ along a step d satisfies

Dφπ(d) = gT d− π‖c‖. (5.14)

Moreover, there exists γ6 > 0 such that, for all k,

Dφπk
(dk) ≤ −γ6Θ

′

k.

Proof. The proof of equality (5.14) can be found in [28].

From the penalty parameter update (3.7) we have

Dφπk
(dk) ≤ −ωk

2
dT

k Wkdk − τπk‖ck‖.

By Lemma 3.7, (5.8), and (2.10), we have that ωk = 1 for k ∈ K1 ∪K ′
1 and thus

Dφπk
(dk) ≤ −min

{
θ1

2
, µ

4

}
‖uk‖2 − τπk‖ck‖.
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Similarly, for k ∈ K2 ∪K ′
2 we have from (2.10)

Dφπk
(dk) ≤ −τπk‖ck‖.

The result holds for γ6 = min
{

θ1

2
, µ

4
, τπk

}
, which is bounded away from zero as {πk} is

nondecreasing. �

Together, the previous two lemmas can be used to bound the sequence of steplength

coefficients in a manner similar to that of Lemma 3.10; details of the proof are omitted

here. However, the fact that the penalty parameter remains bounded relies heavily on our

definition of the index sets K ′
1 and K ′

2.

Lemma 5.6. The sequence of penalty parameters {πk} is bounded above and πk = πk̄ for all

k ≥ k̄ for some k̄ ≥ 0.

Proof. By Lemma 3.11, we claim that there exists some penalty parameter value, call it

π̂, beyond which πk will never be increased during at iteration when (5.4) holds. Thus, in

the remainder of this proof let us assume that for the current iteration we have k ∈ K ′
1∪K ′

2.

In Algorithm 5.3, the parameter πk is chosen to satisfy (3.7), and so

[
−gT

k dk − ωk

2
dT

k Wkdk

]
+ (1− τ)πk‖ck‖ ≥ 0. (5.15)

The result follows from our ability to bound the term inside the square brackets with re-

spect to the infeasibility measure. First, by (2.10), ωk = 1 for k ∈ K ′
1, and so (5.3) and
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Assumption 3.4(b) imply that for some γ7 > 0 we have

−gT
k dk − 1

2
dT

k Wkdk ≥ −gT
k dk − dT

k Wkdk

= −dT
k AT

k (λk + δk)

= −cT
k (λk + δk)

≥ −γ7‖ck‖.

Similarly, for k ∈ K ′
2, Assumptions 3.4 and the analysis of Lemma 3.8 imply that for some

γ8, γ
′
8 > 0 we have

−gT
k dk − ωk

2
dT

k Wkdk ≥ −γ8‖dk‖2

≥ −γ′

8‖vk‖2

≥ −γ′

8γ2‖ck‖.

These results together imply

−gT
k dk − ωk

2
dT

k Wkdk ≥ −max{γ7, γ
′
8γ2}‖ck‖,

and so (5.15) is always satisfied for

πk ≥ max{γ7, γ
′

8γ2}/(1− τ).

Therefore, if πk̄ ≥ max{π̂, max{γ7, γ
′
8γ2}/(1 − τ)} for some iteration number k̄ ≥ 0, then

πk = πk̄ for k ≥ k̄. This, together with the fact that whenever Algorithm 5.3 increases the

penalty parameter it does so by at least a positive finite amount, proves the result. �

Finally, we claim that results similar to those of Lemma 3.12 and Theorem 3.13 fol-
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low from the lemmas above and so Algorithm 5.3 is globally convergent under Assump-

tions 3.4(a)-(d).

5.4 Numerical Results

This section contains numerical results for a particular implementation of Algorithm 5.3

based on the KNITRO-Direct algorithm from the KNITRO 5.0 software package [40]. The

goal of these numerical experiments is to investigate the computational tradeoffs between

a standard matrix modification strategy and new approach described in this chapter. In

fact, the default KNITRO-Direct algorithm usually reverts to a trust region iteration in

the presence of negative curvature directions. For our tests, however, we enabled internal

options to ensure that our implementation runs as a pure line search algorithm. The matrix

modifications are performed by adding to Wk, which is initially set to the Hessian of the

Lagrangian, a constant ν times the identity matrix, where ν is initialized to zero for each

new iterate, set to 10−15 if a first modification is needed, and increased by a factor of 102 for

each remaining modification iteration.

We tested our code using a set of 36 equality constrained problems from the CUTEr [4, 19]

and COPS [10] test set collections. The set is composed of all of the problems considered in

the numerical experiments of Section 4.1 for which the inertia of the primal-dual matrix was

found to be incorrect during at least one iteration. For evaluating our new step acceptance

conditions, we computed l2-norms for all components in inequalities (5.8) and (5.9) except

for Ak, for which we computed the l1-norm and observed the inequality ‖Ak‖21 ≤ t‖Ak‖22.

Table 5.1 contains a listing of the parameters used in our code. The remaining parameters,

such as those related to the termination test for solving the nonlinear program and the line

search procedure, are equal to those in Table 4.1.

We compare the results of a line search SQP method using a standard matrix modification



73

Parameter Value Parameter Value
τ 0.1 θ1 1
η 10−8 θ2 0.75
π−1 1 ε 1

Table 5.1: Input values for Algorithm 5.3

approach (i.e., an approach similar to Algorithm 5.3 except that inequalities (5.8) and (5.9)

are never observed), call it algorithm matmod, and our implementation of Algorithm 5.3,

which we refer to as matmod new in the results that follow. It is clear from the description of

Algorithm 5.3 that during a single iteration for the same iterate, matmod new will perform

at most, but never more than the number of matrix modifications performed by matmod.

However, as the algorithms may compute different search directions in the solution process,

the total number of iterations for solving the nonlinear program may differ between the

two approaches. For these reasons, and since a majority of the computational effort for each

algorithm is often spent in the step computation procedure, we suggest that the total number

of iterations and the total number of primal-dual matrix factorizations over a complete run

of each algorithm are appropriate measures for comparison.

Results for the two algorithms are summarized in Figures 5.1 and 5.2 in terms of log-

arithmic performance profiles, as described in [9]. Here, the leftmost values indicate the

percentage of times each algorithm solves a given problem using the least value of the given

measure, i.e., number of iterations or matrix factorizations. The values fail to add to one as

ties are present. The rightmost function values illustrate the robustness of each approach;

i.e., the percentage of times that a given problem is solved.

The results are quite good for the new approach. Not only does an algorithm that

employs inequalities (5.8) and (5.9) often require fewer iterations to find a solution, but a

considerable amount of savings is often experienced in terms of factorizations of a primal-

dual matrix. Possible explanations for the impressive performance of matmod new are that
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Figure 5.1: Performance profile for iterations in Algorithm 5.3

good search directions are indeed computed despite the presence of negative curvature or

that the algorithm benefits by simply escaping troubling regions quickly. In any case, we

believe that these results are an encouraging sign for extending the ideas of this chapter to

an inexact SQP framework, for reasons described in the following section. Detailed results

for both algorithm matmod and matmod new can be found in Appendix B.

5.5 Final Remarks

In this chapter we have motivated and presented an enhancement to standard matrix mod-

ification strategies for ensuring the global convergence of a line search SQP method in the

presence of negative curvature directions. The main idea of the approach is to quantify spe-

cific properties that may deem a solution to the primal-dual system (5.3) acceptable despite

the fact that a solution to the corresponding SQP subproblem (5.1) may not exist. In this

manner, we found that global convergence guarantees can be maintained and for a set of test
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Figure 5.2: Performance profile for matrix factorizations in Algorithm 5.3

problems the total number of primal-dual matrix factorizations – and in many cases even

the number of total iterations for solving the nonlinear program – was consistently reduced.

We believe that the ideas and analysis of this chapter will prove to be particularly useful

in an inexact SQP framework. Certainly, in cases where spectral information of the primal-

dual matrices is known, a reduction in the number of factorizations required to find a solution

can correspond to significant savings in computational effort. However, in such cases one

can still be comforted in the fact that as soon as Wk has been modified sufficiently in order

for the matrix to be positive definite on the null space of Ak, the solution to the primal-dual

system can instantly be recognized as acceptable.

In an inexact setting, we do not have this luxury and the question of when to modify

Wk becomes a very difficult one. For example, consider a situation where the algorithm has

performed a significant amount of work without yet computing an acceptable step. Without

spectral information of the current primal-dual matrix, it is unknown whether Wk must be



76

modified before an acceptable solution could be found or if simply a more exact solution to

the primal-dual system is required. Thus, the establishment of conditions that may deem a

step acceptable even before the correct inertia has been obtained can yield significant gains.

Matrix modifications may still be necessary, though we hope that the number of times that

the algorithm must confront the difficult choice between modifying the matrix and solving

the system more exactly will be reduced. Thus, inequalities (5.8) and (5.9) may prove quite

useful in an inexact environment.

Finally, we note that one disadvantage of Algorithm 5.3 is that the solution (dk, δk) must

be computed before inequalities (5.8) and (5.9) can be verified. Computationally, this may

negate the benefits attained by having to perform fewer factorizations. In an inexact SQP

framework, however, such as when an iterative linear system solver is applied to the primal-

dual system, this may not be an issue as the (inexact) solution (dk, δk) is often available

throughout the step computation process.
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Chapter 6

Flexible Penalty Functions for

Equality Constrained Optimization

6.1 Introduction

In this chapter we focus on step acceptance mechanisms for nonlinear constrained optimiza-

tion. We discuss some of the main advantages and disadvantages of contemporary strategies

and present a new globalization approach designed to promote long productive steps and

fast convergence. The method is supported by global convergence guarantees to first order

optimal points under common conditions.

As previously mentioned (see Section 2.3), the two most popular step acceptance tools in

use today are penalty functions and filter mechanisms. One disadvantage of a penalty func-

tion relates to the monotonicity required when updating the penalty parameter π throughout

a run of the algorithm. In fact, nonmonotone updates for the penalty parameter are avail-

able that maintain global convergence guarantees, but such methods often rely on ad hoc

heuristics that eventually fall back on the convergence properties of monotone strategies,
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and so we do not discuss them here. Depending on the specific update strategy used, π may

at some point be set to an excessively large value, even at a point that is relatively far from

a solution. As a result, a large priority will be placed on computing steps that produce suffi-

cient reductions in constraint infeasibility, effectively “blocking” steps that move away from

the feasible region. This can be detrimental as empirical evidence has shown that accepting

steps that temporarily increase infeasibility can often lead to fast convergence. Figure 6.1

illustrates this blocking behavior of a penalty function, where we highlight the region where

the step would have produced a reduction in the objective f (and so may have been ac-

ceptable to a filter). Here, the point pk = (‖c(xk)‖, f(xk)) corresponds to the constraint

infeasibility measure and objective function evaluated at the current iterate xk.

f

||c||

k−π

p k

Figure 6.1: A region of points blocked by the penalty function φπk

We note that a second disadvantage of a penalty function is that a low value of π may

block steps that improve feasibility but increase f . However, modern step acceptance strate-

gies effectively deal with this problem by defining local models of φπ, such as the model

mk defined in Section 2.3, with which an adequately large value of π can be determined to

avoid excessive blocking. In summary, our view is that the main weakness of penalty-based

strategies is the blocking effect illustrated in Figure 6.1.
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One disadvantage of a filter mechanism is that a step can be blocked by a filter entry,

i.e., historical information of the problem functions, when in fact the step is a productive

move toward a solution from the current iterate. This is particularly worrisome when steps

are blocked that would amount to a sufficient reduction in constraint infeasibility. Figure 6.2

depicts a filter with a single element, call it a, where the point pk corresponding to the current

iterate is shown as the isolated point with an objective value sufficiently less than the filter

entry. The shaded portion illustrates one region of points that are blocked by the filter,

despite the fact that a step into this region would correspond to a reduction in constraint

infeasibility from the current iterate (and so would be accepted by a penalty function for a

sufficiently large value of the penalty parameter).

f

||c||

a

p k

Figure 6.2: A region of points blocked by a filter with entry a

In an extreme example, consider the case where the filter entry a in Figure 6.2 is a

Pareto optimal solution to the multiobjective optimization problem of minimizing the pair

(‖c(x)‖, f(x)) over all x ∈ R
n. A point is Pareto optimal if it cannot be dominated by any

other point. Thus, if the current iterate again corresponds to the point pk in Figure 6.2, then

all paths from pk to the feasible region must pass through a region of points dominated by

a. Feasibility can only be attained if a single computed step were to fall beyond the region
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dominated by the filter entry or if a backup mechanism, such as a feasibility restoration

phase, were implemented.

In summary, both penalty functions and filters can be shown to block different types of

productive steps. A penalty function suffers from high priority being placed on improving

feasibility and convergence can be slowed by forcing the algorithm to hug the feasible region.

A filter mechanism, on the other hand, suffers from handling problem (2.1) too much like

a multiobjective optimization problem, when in fact a certain priority on converging to the

feasible region may be appropriate, especially as the algorithm progresses.

This chapter is organized as follows. In Section 6.2 we develop our new globalization

mechanism, which will be used in the presentation of a complete line search SQP algorithm

presented in Section 6.3. An analysis of the global behavior of this approach is provided

in Section 6.4, after which we present some numerical results for a set of test problems in

Section 6.5.

6.2 A Flexible Penalty Function

In this section, we outline a new step acceptance strategy for iterative algorithms for solving

problem (2.1). By observing the strengths and weaknesses of penalty functions and filters,

we hope to emulate the accepting behavior of both methods while attempting to avoid any

blocking of productive steps.

We make the following remarks related to the appropriateness of using a filter or a

penalty function during different stages of an algorithm for problem (2.1). First, during

early iterations, the filter mechanism has the benefit that a variety of types of steps are

considered acceptable. For example, for a one-element filter, i.e., a filter containing only an

entry corresponding to the current iterate, a step will be accepted as long as a sufficient

reduction in the objective, constraint infeasibility, or both, is attained. This may be of use
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to promote long steps during early iterations when an appropriate value for the penalty

parameter may not yet be known. However, during later iterations, it may be reasonable

to assume that an appropriate value for the penalty parameter may be determinable based

on information computed throughout the run of the algorithm. This value can be used to

correctly block certain types of steps from increasing constraint infeasibility. The use of a

penalty function in later iterations may also avoid the risk of blocking steps that decrease

constraint infeasibility when convergence toward the feasible region should be prioritized.

In an attempt to define a single mechanism that will capture all of the these characteris-

tics, and given that the penalty function approach appears to be more flexible than a filter

in that it permits a reweighting of objective and constraint infeasibility measures, we present

an improvement to the penalty strategies.

Let us begin by commenting on an enhancement of a penalty function approach im-

plemented in some current strategies (e.g., see [39]) in order to motivate our method. At

the start of iteration k, a specific value πk−1 of the penalty parameter is carried over from

the previous iteration. If the algorithm were to maintain this value, then only a step cor-

responding to a move into the region sufficiently below the solid line in Figure 6.3 would

be acceptable. Upon the calculation of dk, the strategy may determine that an increase of

the penalty parameter to some value π̄k > πk−1 may be appropriate, in which case only a

step corresponding to a move into the region sufficiently below the dashed line in Figure 6.3

would be acceptable. Rather than automatically set πk ← π̄k, however, a simple heuristic

that maintains the global convergence properties of the algorithm is to first compute the

function values for x̄ = xk + dk, namely ‖c(x̄)‖ and f(x̄). If (‖c(x̄)‖, f(x̄)) lies sufficiently

below the dashed line in Figure 6.3, then we may accept the step and indeed set πk ← π̄k.

However, if (‖c(x̄)‖, f(x̄)) lies sufficiently below the solid line, then the step could be con-

sidered acceptable for πk ← πk−1, effectively avoiding an increase in the penalty parameter.
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In summary, these strategies do not consider a single value of π at xk, but rather may select

from a pair of values depending on the actual reductions attained by the step. Thus, we can

view the region of acceptable points as that lying below the solid or dashed line in Figure 6.3.

f

||c||

−π k

k−1−π

p
k

Figure 6.3: Illustration of the iterative nature of penalty parameter updates

An extension of this idea forms the basis of the method we now propose. Consider the

collection of penalty functions

φπ(x) , f(x) + π‖c(x)‖,

π ∈ [πl, πu],

(6.1)

for 0 ≤ πl ≤ πu. We define a step to be acceptable if a sufficient reduction in φπ has

been attained for at least one π ∈ [πl, πu]. Clearly, if πl is always chosen to equal πu, then

this approach is equivalent to using a penalty function with a fixed π during each iteration.

Alternatively, if πl = 0 and πu = ∞, then this approach has the form of a one-element

filter. In general, the region of acceptable points is that given by the region down and to

the left of the piecewise linear function illustrated in Figure 6.4, where the “kink” in the

function always occurs at pk = (‖c(xk)‖, f(xk)), corresponding to the current iterate xk. As

the penalty parameter π is allowed to fluctuate in the interval [πl, πu], we refer to (6.1) as a
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“flexible” penalty function.

l
k−π

f

||c||

p

u
k−π

k

Figure 6.4: Region of acceptable points from pk for a flexible penalty function

The practical behavior of an algorithm employing a standard penalty function φπ depends

heavily on the update strategy of the single penalty parameter π. For our method, we now

need to consider the update strategies for two parameters, πl and πu. However, as different

requirements in terms of convergence guarantees are necessary for each of these two boundary

values, and as they have significantly different practical effects, we have the ability to design

their updates in a manner suitable for accepting long productive steps within a globally

convergent framework.

6.3 A Line Search SQP Method

In this section we propose a technique for employing a flexible penalty function in the context

of a line search SQP method for problem (2.1). An analysis of the global behavior of the

approach under common conditions is the topic of Section 6.4.

In order to motivate our handling of πl and πu and clarify the necessary features of the

algorithm, let us recall the general form of a convergence proof for a SQP method employing



84

a penalty function (see Chapters 3 and 5). We claim that convergence can be guaranteed

under common assumptions in the following manner.

(a) First, consider a penalty function φπ for some given π > 0 and suppose that an infinite

sequence of steps are computed such that each step yields a sufficient reduction in φπ.

If the reduction attained in each step is large with respect to appropriate measures,

including the infeasibility measure ‖c‖, then we claim that these steps will eventually

correspond to reductions in the first order optimality conditions of (2.1), thus driving

the search toward a solution point of the nonlinear program. This phenomenon does

not require that π takes on any specific value — only that the penalty parameter

eventually remains fixed. In our method, φπl will play the role of this penalty function.

(b) At a given point x, it may not be possible to compute a step that will yield a reduction

in φπl that is large enough with respect to the current infeasibility measure ‖c(x)‖.

Such can be the case, for example, if x is a stationary point of φπl and is infeasible to

problem (2.1). In this situation, πl must be set to a higher value, call it π̄l, so that

reductions in φπ̄l are attainable from x.

(c) Increases in πl must be performed in such a way that the parameter eventually becomes

fixed at a finite value, or else the algorithm may not adequately drive the optimality

conditions of problem (2.1) to zero. Rather than control πl directly in this manner,

however, we propose to control an upper bound for the penalty parameter, πu, that

can be shown to remain bounded under common conditions if updated using an ap-

propriate strategy. By maintaining a separate quantity πu as an upper bound on πl in

(6.1), we allow the algorithm to be more accepting of points that reduce constraint in-

feasibility while being able to maintain a value of πl that is as small as possible so that

the algorithm can also move freely away from the feasible region. As πu will remain
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bounded, so will πl, and so eventually the algorithm will compute an infinite number

of steps that reduce φπl and move toward a first order optimal point of problem (2.1).

With this general form of a convergence theory in mind, we present an algorithm with

the following features. For simplicity, we assume that the step is computed via the exact

solution to the primal-dual system (2.6), after which we perform a backtracking line search

to compute a steplength coefficient αk satisfying a condition similar to the Armijo condition

(2.15). The specific quantities involved in the line search procedure are presented later on

as they are better described once further details of the approach have been established.

Overall, the complete globalization strategy requires effective methods for handling three

parameters. First, we require a concrete strategy for updating the values π l and πu defined

in the previous section. Second, we require a mechanism for choosing a value, call it π̇, in

the establishment of an appropriate line search condition. Since πu and π̇ will be set before

the line search and πl will be updated after the line search, we define strategies to set πu
k ,

π̇k, and πl
k+1 during iteration k (where πl

0 > 0 is assumed to be provided as a small initial

value). We consider each of these parameters in turn.

First consider the parameter πu. A large value of πu indicates that the algorithm considers

almost any step that provides a sufficiently large reduction in constraint infeasibility to be

acceptable. As approaching the feasible region is a necessity for any algorithm for solving

problem (2.1), we may choose to initialize πu to such a large value and increase it only when

necessary. In fact, an increase may be necessary if at the current iterate we are unable to

compute a step that reduces the constraint infeasibility measure ‖c‖ without significantly

increasing the objective f . Thus, we propose to increase πu if and only if the computed

step indicates that a large increase in the objective will result from a reduction in constraint

infeasibility.

In fact, we can establish such an update for πu by setting its value according to current
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methods for updating π for a standard penalty function. In particular, we can emulate [39]

and set

πu
k ←





πu
k−1 if πu

k−1 ≥ χk

χk + ε otherwise,
(6.2)

for some small constant ε > 0, where we recall from (2.14) the quantity

χk ,
gT

k dk + ωk

2
dT

k Wkdk

(1− τ)(‖ck‖ − ‖ck + Akdk‖)
(6.3)

with 0 < τ < 1 and ωk defined by (2.10). It can be seen that in this case πu will be increased

during an iteration if and only if the model mπ (see (2.9)) of the penalty function φπ indicates

that an increase in the objective, reflected by a positive numerator in (6.3), will be produced

by a step toward the feasible region, implied by the fact that the step satisfies the linearized

constraints ck + Akdk = 0 in (2.4).

Once the step has been computed and πu
k has been set, we must perform a backtracking

line search to compute a steplength αk. With Dφπ(dk) denoted as the directional derivative

of φπ along dk, we require that αk satisfy the Armijo condition

φπ(xk + αkdk) ≤ φπ(xk) + ηαkDφπ̇k
(dk)

for some π ∈ [πl
k, π

u
k ]

(6.4)

where 0 < η < 1 and π̇ ∈ [πl
k, π

u
k ]. Observe that the more negative the value of Dφπ̇(dk), the

fewer the number of values of αk satisfying this condition for a given dk. Thus, we would

like this term to be negative enough to ensure sufficient descent, while also being as small as

possible so as to allow the largest number of acceptable steplengths. We consider the issue

of choosing π̇ by presenting the following lemma.
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Lemma 6.1. The directional derivative of φπ along a step d satisfies

Dφπ(d) = gT d− π‖c‖. (6.5)

Moreover, for iteration k, π ≥ χk implies Dφπ(dk) ≤ 0.

Proof. The proof of equality (6.5) can be found in [28]. Then, from (6.3) and the fact

that ck + Akdk = 0 from (2.6), we have during iteration k

Dφχk
(dk) = gT

k dk − χk‖ck‖

≤ −ωk

2
dT

k Wkdk − τχk‖ck‖,

and so Dφχk
(dk) ≤ 0 follows from (2.10). This, along with the fact that π ≥ χk yields

Dφπ(d) = gT d− π‖c‖ ≤ gT d− χk‖c‖ = Dφχk
(d),

implies that Dφπ(d) ≤ 0 for all π ≥ χk. �

Thus, the line search will be performed with

Dφπ̇k
(dk) = gT

k dk − π̇k‖ck‖,

where π̇k , max{πl
k, χk + ε},

(6.6)

which along with (6.2) and the fact that πl
k ≤ πu

k−1 ensures π̇k ∈ [πl
k, π

u
k ].

Finally, a good update strategy for πl is perhaps the most difficult issue. On the one hand,

one can simply set πl equal to πu during each iteration so that, along with the update strategy

(6.2) for πu, global convergence can be guaranteed. As previously mentioned, however, this

can be overly restrictive and block productive steps that move away from the feasible region.

At the other extreme, a strategy that does not sufficiently increase πl may not yield a
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convergent method. In particular, a fixed small value for πl may allow an infinite number of

steps to be accepted that do not approach the feasible region of problem (2.1).

To motivate the update strategy for πl that we propose, consider the numbered regions

illustrated in Figure 6.5, where the position and shape of each portion depends on the

parameters πl
k (set during iteration k − 1) and πu

k , and the location of the point pk =

(‖c(xk)‖, f(xk)). A step into region I would not be acceptable to the flexible penalty function

(6.1), as opposed to a step into region II, III, or IV, which would be acceptable.

l
k−π

f

||c||

III

III IV

p

u
k−π

k

Figure 6.5: Regions defined by the current state of a flexible penalty function

One technique for updating πl is based on the observation that steps into region IV

correspond to an increase in constraint infeasibility. A large number of steps of this type

have the potential to drive the search far from the feasible region. Thus, as a certain priority

should be placed on the algorithm eventually approaching the feasible region, it may be

appropriate to increase πl after any step into region IV.

Despite the obvious logic behind an approach that increases πl in this manner, a few ob-

jections should be raised. First, an update of this type instantly reduces the area composing

region IV. Thus, by increasing πl precisely at the time when steps into this region are being

produced by the step computation procedure, we may be blocking productive steps toward
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a desirable region of the search space. In addition, consider the case where πl is greater than

or equal to the threshold value such that stationary points of the penalty function are first

order optimal points of the nonlinear program. An increase of πl in this case may not only

slow convergence, but may be completely unnecessary to ensure that the feasible region will

eventually be reached.

Thus, we motivate our proposed method as follows. First, recall our observation that for

a fixed πl, an infinite number of steps that sufficiently reduce φπl (i.e., that lead exclusively

into regions III or IV in Figure 6.5) would converge to an optimal solution. Thus, we consider

an increase in πl to be appropriate only after a step into region II has been accepted. This

has the logical interpretation that we only become more restrictive by blocking steps that

increase infeasibility when the algorithm is confronted with steps that indicate that moves

toward the feasible region correspond to significant increases in the objective.

Thus, our update rule for πl depends on the region in the ‖c‖-f space to which the step

αkdk moved upon the conclusion of the line search. If the Armijo condition (6.4) was satisfied

for π = πl
k (i.e., the step was into region III or IV in Figure 6.5), then we set πl

k+1 ← πl
k.

Otherwise (i.e., if the step was into region II), πl will be increased. Since we would prefer to

block as few future steps as possible, we propose to increase πl gradually, but sufficiently in

order to ensure convergence. We propose an update of the form

πl
k+1 ← min{πu

k , πl
k + max{0.1(π − πl

k), ε
l}} (6.7)

for some π ∈ [πl
k, π

u
k ] and some small constant εl > 0. The implications of rule (6.7) can be

seen in Section 6.4. In particular, the update guarantees that πl = πu after a finite number

of steps into region II have been taken for a fixed πu. We propose a method for choosing an

appropriate value of π for (6.7) in Section 6.5.

Overall, we have described the following algorithm.
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Algorithm 6.2. SQP Method with a Flexible Penalty Function

Initialize x0, λ0, 0 ≤ πl
0 ≤ πu

−1, 0 < ε, εl, and 0 < η, τ < 1

for k = 0, 1, 2, . . . , until a convergence test for problem (2.1) is satisfied

Compute fk, gk, ck,Wk, and Ak and set πl
k+1 ← πl

k and αk ← 1

Compute (dk, δk) via (2.6)

Set πu
k according to (6.2) and π̇k by (6.6)

Perform a backtracking line search to obtain αk satisfying (6.4)

If the Armijo condition (6.4) does not hold for π = πl
k, set πl

k+1 by (6.7)

Set (xk+1, λk+1)← (xk, λk) + αk(dk, δk)

endfor

In the backtracking line search, we have in mind that the algorithm first fixes αk = 1

and then tries to find a π ∈ [πl
k, π

u
k ] satisfying the Armijo condition (6.4). If no such value is

found, then αk is iteratively decreased, where for each value all π ∈ [πl
k, π

u
k ] are tested, and

the procedure terminates once a pair (αk, π) satisfying (6.4) is encountered. Further details

related to a tractable implementation of the line search procedure are given in Section 6.5.

6.4 Global Analysis

In this section we explore the global convergence properties of Algorithm 6.2 where we

again assume that the problem formulation and the set of computed iterates satisfy As-

sumptions 3.4. We show that it is easy to extend the analysis of Section 3.4 to our approach

employing a flexible penalty function, where here we argue that the algorithm will eventually

compute an infinite sequence of steps that sufficiently reduce the penalty function φπl for a

fixed πl > 0, thus driving the first order optimality conditions (2.3) of the nonlinear program

(2.1) to zero.
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Our analysis is again facilitated by the notion of a decomposition dk = uk + vk (see

(3.12)), where the tangential component uk lies in the null space of the constraint Jacobian

Ak and the normal component vk lies in the range space of AT
k . Many of the first results

provided in Section 3.4 are unrelated to the step acceptance procedure, and thus still apply

for Algorithm 6.2 under Assumptions 3.4. In particular, Lemmas 3.5 through 3.8 can be

proved in a similar manner, and so we can refer to those results, the sets of indices K1 and

K2, and the quantity Θk defined in (3.18), in the analysis that follows.

The first result we need, related to the step acceptance procedure, bounds the quantity

Dφπ̇k
(dk) with π̇ defined by (6.6).

Lemma 6.3. There exists γ6 > 0 such that, for all k,

Dφπ̇k
(dk) ≤ −γ6Θk.

Proof. By (6.6), we have that π̇k ≥ χk. Thus, combining (6.3) and (6.5) we have that

Dφπ̇k
(dk) ≤ −

ωk

2
dT

k Wkdk − σπ̇k‖ck‖. (6.8)

By Lemma 3.7 and (2.10), we have that ωk = 1 for k ∈ K1 and thus

Dφπ̇k
(dk) ≤ −

µ

4
‖uk‖2 − σπ̇k‖ck‖.

Similarly, for k ∈ K2 we have from (6.8) and (2.10)

Dφπ̇k
(dk) ≤ −σπ̇k‖ck‖.

The result holds for γ6 = min{µ

4
, σπ̇k}, which is positive as π̇k ≥ πl

k > 0. �

The next result bounds the sequence of steplength coefficients.



92

Lemma 6.4. The sequence {αk} is bounded below by a positive constant.

Proof. Let us rewrite the Armijo condition (6.4) for convenience as

φπ(xk + αkdk)− φπ(xk) ≤ ηαkDφπ̇k
(dk) (6.9)

for π ∈ [πl
k, π

u
k ]. Suppose that the line search fails for some ᾱ > 0, which means that (6.9)

does not hold for any π ∈ [πl
k, π

u
k ]. In particular,

φπ̇k
(xk + ᾱdk)− φπ̇k

(xk) > ηᾱDφπ̇k
(dk),

where we recall that π̇ ∈ [πl
k, π

u
k ]. As seen in [28], it can be shown under Assumptions 3.4

that for some γ7 > 0 we have

φπ̇k
(xk + ᾱdk)− φπ̇k

(xk) ≤ ᾱDφπ̇k
(dk) + ᾱ2γ7‖dk‖2,

so

(η − 1)Dφπ̇k
(dk) ≤ ᾱγ7‖dk‖2.

Lemmas 3.8 and 6.3 then yield

(1− η)γ4Θk < ᾱγ3γ7Θk,

so

ᾱ > (1− η)γ4/(γ3γ7).

Thus, αk need never be set below (1 − η)γ4/(γ3γ7) for the Armijo condition (6.4) to be

satisfied for some π ∈ [πl
k, π

u
k ]. �

Another important property of Algorithm 6.2 is that under Assumptions 3.4 the sequence
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{πu
k} remains bounded. In fact, this result can be proved in a manner similar to that of

Lemma 3.11 as in Algorithm 6.2 the parameter πu is updated in a manner similar to that of

π in Chapter 3. Thus, πu
k remains bounded, which can be used to prove the following similar

result for {πl
k}.

Lemma 6.5. The sequence {πl
k} is bounded above and πl

k remains constant for all sufficiently

large k.

Proof. First note that πu
k remains fixed for all sufficiently large k. By (6.7) we have that

if πl is increased, then it is done so by at least a finite constant amount, or it is set equal to

the current value of πu. Thus, the result follows from (6.7) and the fact that there can only

be a finite number of increases of πl. �

We can now present the following result related to the lengths of the primal components of

the steps computed in Algorithm 6.2 and the convergence of the iterates toward the feasible

region of problem (2.1).

Lemma 6.6. Algorithm 6.2 yields

lim
k→∞
‖ck‖ = 0 and lim

k→∞
‖dk‖ = 0.

Proof. By Lemma 6.5 the algorithm eventually computes, during a certain iteration

k∗ ≥ 0, a finite value π∗ beyond which the value of the parameter πl will never be increased.

This means that for all sufficiently large k, the Armijo condition (6.4) is satisfied for π l = π∗

(or else πl would be increased). From Lemmas 6.3 and 6.4, we then have that for all k ≥ k∗

φπ∗(xk)− φπ∗(xk + αkdk) ≥ γ8Θk



94

for some γ8 > 0. Therefore, (3.19) implies

φπ∗(xk∗)− φπ∗(xk) =
k−1∑

j=k∗

(φπ∗(xj)− φπ∗(xj+1))

≥ γ8

k−1∑

j=k∗

Θj

≥ γ8

2γ5

k−1∑

j=k∗

(‖dj‖2 + ‖cj‖).

The result follows from the above and the fact that Assumption 3.4(a) implies φπ∗ is bounded

below. �

Finally, with this result we can again apply the analysis in Theorem 3.13 to show that

for Algorithm 6.2 we have

lim
k→∞

∥∥∥∥∥∥∥




gk + AT
k λk

ck




∥∥∥∥∥∥∥
= 0.

Thus, Algorithm 6.2 is globally convergent to first order optimal solutions from remote

starting points.

6.5 Numerical Results

In this section we present numerical results for a particular implementation of Algorithm 6.2

based on the KNITRO-Direct algorithm from the KNITRO 5.0 software package [40]. We

tested the code using a set of 85 equality constrained problems from the CUTEr [4, 19]

and COPS [10] collections. The default KNITRO-Direct algorithm may revert to a trust

region iteration to handle negative curvature and to ensure global convergence. In our

tests, we enabled internal options — including one that modifies Wk if necessary to ensure

that the resulting matrix is positive definite on the null space of Ak — to ensure that our
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implementation performs as a pure line search algorithm.

Let us make a few remarks related to the implementation of our step acceptance strategy

before illustrating the numerical results in detail. First, we claim that during iteration k the

Armijo condition (6.4) is satisfied for π ∈ [πl
k, π

u
k ] if and only if it is satisfied for either π = πl

k

or π = πu
k . Thus, the line search for a given step dk can be performed simply by evaluating

the reductions attained in φπl

k

and φπu

k
. Second, in the update rule (6.7) we propose to use

π =
f(xk + αkdk)− f(xk)− ηαkDφπ̇k

(dk)

‖c(xk)‖ − ‖c(xk + αkdk)‖
, (6.10)

which can be defined as the smallest value such that the step αkdk would have been accepted.

Here, it can easily be seen that for a step into region II (see Figure 6.5) this value for π lies

in the interval [πl
k, π

u
k ], as desired.

As the globalization strategy described in this chapter is designed to promote long steps

for fast convergence, we propose that the numbers of iterations and function evaluations

required to find a solution are appropriate measures for comparison with other methods.

We compare the results of the algorithm using the standard penalty function approach

in KNITRO-Direct, call it pi default, with the results using a flexible penalty function.

For pi default and the algorithm with a flexible penalty function, we initialize π and

πl to 10−8, respectively. We consider the four initial values 1, 10, 100, and 1000 for πu,

which correspond to the algorithms we refer to as pi flex 1, pi flex 10, pi flex 100, and

pi flex 1000, respectively. Table 6.1 contains a complete listing of the input parameters

for our implementation of Algorithm 6.2; further details of the implementation can be found

in [40].

The results for the five algorithms are summarized in Figures 6.6 and 6.7 in terms of

logarithmic performance profiles, as described in [9]. Here, the leftmost values indicate the

percentage of times each algorithm solves a given problem using the least value of the given
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Parameter Value
πl

0 10−8

πu
−1 {1, 10, 100, 1000}

ε 10−4

εl 10−4

η 10−8

τ 10−1

Table 6.1: Input values for Algorithm 6.2

measure, i.e., number of iterations or function evaluations. The values fail to add to one as

ties are present. The rightmost function values illustrate the robustness of each approach;

i.e., the percentage of times that a given problem is solved.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32

pi_default
pi_flex_1

pi_flex_10
pi_flex_100

pi_flex_1000

Figure 6.6: Performance profile for iterations in Algorithm 6.2

The results are encouraging. Not only does an algorithm with a flexible penalty function

approach often require fewer iterations to find a solution, but a considerable amount of sav-

ings is often experienced in terms of function evaluations. This can be understood as the line

search procedure generally has to perform fewer backtracks for a given step, leading to longer
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Figure 6.7: Performance profile for function evaluations in Algorithm 6.2

steps and a higher percentage of unit steplengths (i.e., full Newton steps). Detailed results

for algorithms pi default, pi flex 10, and pi flex 100 can be found in Appendix C.
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Chapter 7

Conclusion

In this dissertation, we have presented a robust and efficient inexact method for the solu-

tion of large-scale nonlinear optimization problems, as well as a new globalization scheme

intended to allow uninhibited and fast convergence. The global behavior of each approach

under common conditions has been studied and numerical results have been provided to

demonstrate the practical performance of the techniques on a wide range of test problems

and realistic applications.

A major theme in this work has been the importance of tying various aspects of the

optimization process into one cohesive unit. For example, in the case of our inexact SQP

method we found that a certain model of a penalty function, which is normally observed

solely within the step acceptance mechanism, could be incorporated into the step computa-

tion procedure as a meaningful and effective tool for controlling inexactness. Likewise, with

our new globalization strategy we found that a mathematical device could be defined that

allows for relatively unrestricted movement during early iterations, but can also automat-

ically tighten itself to forcefully guide convergence when necessary, thus manipulating the

search appropriately throughout a run of the algorithm.

We close this dissertation with a few remarks related to the extension of our methods to
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general nonlinear programming problems and other algorithmic frameworks. We claim that

many of the ideas and much of the analysis described in earlier chapters can be applied, and

predict that the strong theoretical properties and impressive practical performance illustrated

by our work can be carried over to other settings.

A general nonlinear programming problem has the form

min
x∈Rn

f(x)

s.t. cE(x) = 0,

cI(x) ≤ 0,

(7.1)

where f : R
n → R, cE : R

n → R
tE , and cI : R

n → R
tI are smooth nonlinear functions. In

comparison to the equality constrained problem (2.1), the presence of inequality constraints

in (7.1) introduces a combinatorial aspect to the problem as at an optimal point any of

the bounds in cI(x) ≤ 0 may or may not be tight. Still, algorithms for solving (7.1) have

been studied extensively and the methods described in this dissertation may prove useful for

problems of this type.

For example, an interior-point method applied to problem (7.1) introduces a log-barrier

term with parameter µ > 0 for the inequalities into the objective to form the perturbed

subproblem

min
x∈Rn

f(x)− µ
∑

i∈I

ln si

s.t. cE(x) = 0,

cI(x) + s = 0.

(7.2)

A solution for problem (7.1) is then found via the (approximate) solution of a sequence of

problems of the form (7.2) for µ → 0, where throughout the process the vector of slack

variables s = (s1, . . . , stI) ∈ R
tI is implicitly assumed to be positive. As in Chapter 2, we
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may define for a given µ the Lagrangian function

L(x, s, λ) , f(x)− µ
∑

i∈I

ln si + λET
cE(x) + λIT

(cI(x) + s) (7.3)

with Lagrange multipliers λ = (λE , λI) ∈ R
tE+tI , and derive the first-order optimality con-

ditions

∇L(x, s, λ) =




g(x) + AE(x)T λE + AI(x)T λI

−µS−1e + λI

cE(x)

cI(x) + s




= 0. (7.4)

Here, AE(x) and AI(x) represent the Jacobians of the equality and inequality constraints,

respectively, with respect to x, S is a diagonal matrix with elements corresponding to the

entries in s, and e ∈ R
tI is the vector of ones. Thus, the primal-dual system arising in a line

search SQP approach for problem (7.2) can be written as




Wk 0 AE
k

T
AI

k

T

0 µS−2
k 0 I

AE
k 0 0 0

AI
k I 0 0







dx
k

ds
k

δEk

δIk




= −




gk + AE
k

T
λE

k + AI
k

T
λI

k

−µS−1
k e + λI

k

cEk

cIk + sk




(7.5)

with Wk ≈ ∇2
xxLk.

We claim that inexactness can be introduced into the step computation procedure in this

setting as in that of Chapter 3. In particular, we can again define a penalty function of the

form

ϕπ(x, s) , f(x)− µ
∑

i∈I

ln si + π

∥∥∥∥∥∥∥




cE(x)

cI(x) + s




∥∥∥∥∥∥∥
(7.6)
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with penalty parameter π > 0 as our globalization mechanism. A model for ϕπ about the

iterate (xk, sk) is given by

mπ(dx, ds) , fk + gT
k dx + ω(dx)

2
dxT Wkd

x + π

∥∥∥∥∥∥∥




cEk

cIk + sk


+




AE
k 0

AI
k I







dx

ds




∥∥∥∥∥∥∥

− µ

(
∑

i∈I

ln si
k + eT S−1

k ds − 1
2
dsT S−2

k ds

)
(7.7)

with ω(d) defined in (2.10), with which we can estimate the reduction in ϕπ given by an

inexact solution (dx
k, d

s
k) to (7.5) by evaluating mredπ(dx

k, d
s
k) = mπ(0, 0)−mπ(dx

k, d
s
k). Accep-

tance conditions for a given inexact solution, similar to Termination Tests I and II provided

in Chapter 2, can then be defined in order to ensure that this model reduction is sufficiently

large for an appropriate choice of π. The main challenge in the development of such an ap-

proach will be careful observations related to the values of the variables in s. As mentioned

above, these slack variables must remain positive throughout the run of the algorithm, which

must be strictly enforced, for example, via a fraction to the boundary rule. If the algorithm

is to perform effectively in practice, algorithmic features must be set in place, such as an

appropriate scaling of the slack variables or extra conditions imposed in the termination

tests, to ensure that the maintanence of positive slacks does not result in series of stagnated

steps.

Similarly, the ideas outlined in Chapter 6 can be extended to this context via the definition

of the flexible penalty function

ϕπ(x) , f(x)− µ
∑

i∈I

ln si + π

∥∥∥∥∥∥∥




cE(x)

cI(x) + s




∥∥∥∥∥∥∥
,

π ∈ [πl, πu],
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for a given µ > 0, where 0 ≤ πl ≤ πu. An algorithm similar to Algorithm 6.2 can be applied

to each barrier subproblem (7.2), where again careful consideration must be made for the

updates of the parameters πl and πu and for the selection of an appropriate line search

condition. A mechanism must also be set for choosing appropriate values for π l and πu for

each new value of the barrier parameter µ.

Finally, we make the following brief remarks related to the application of a flexible penalty

function to other algorithmic frameworks, such as a trust region SQP approach, where, for

simplicity, we again consider the equality constrained formulation (2.1). In contrast to

satisfying the Armijo condition for some appropriate penalty parameter, in a trust region

method a step dk from xk is typically accepted if and only if the actual reduction in the

penalty function φπ, defined by

φredπ(dk) , φπ(xk)− φπ(xk + dk),

is large with respect to the reduction obtained in a model such as mπ, defined in Section 2.3.

This condition can be written as

φredπ(dk)

mredπ(dk)
≥ η

for some 0 < η < 1, where it should be noted that we may necessarily have ‖ck + Akdk‖ > 0

due to the imposed trust region boundary. Instead of restricting the step acceptance criteria

to this inequality for a fixed π > 0 during each iteration k, however, we claim that an

effect similar to that expressed in Chapter 6 can be achieved if instead a step is considered

acceptable if
φredπl

k

(dk)

mredπ̇k
(dk)

≥ η or
φredπu

k
(dk)

mredπ̇k
(dk)

≥ η,

where [πl
k, π

u
k ] is a prescribed interval and π̇k ∈ [πl

k, π
u
k ] is chosen carefully so that mredπ̇k

(dk)

is sufficiently positive. All of the quantities πl
k, πu

k , and π̇k can be defined and updated in a
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manner similar to that described in Chapter 6.
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[1] L. T. Biegler and A. Wächter. SQP SAND strategies that link to existing modeling sys-
tems. In L. Biegler, O. Ghattas, M. Heinkenschloss, B. van Bloemen Waanders, editor,
Large-scale PDE-constrained optimization, Lecture notes in computational science and
engineering, Heidelberg, Berlin, New York, 2003. Springer Verlag.

[2] G. Biros and O. Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods for PDE-
constrained optimization. Part I: the Krylov-Schur solver. SIAM Journal on Scientific
Computing, 27(2):687–713, 2005.

[3] G. Biros and O. Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods for PDE-
constrained optimization. Part II: the Lagrange-Newton solver, and its application
to optimal control of steady viscous flows. SIAM Journal on Scientific Computing,
27(2):714–739, 2005.

[4] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained and
Unconstrained Testing Environment. ACM Transactions on Mathematical Software,
21(1):123–160, 1995.

[5] R. H. Byrd, J.-Ch. Gilbert, and J. Nocedal. A trust region method based on interior
point techniques for nonlinear programming. Mathematical Programming, 89(1):149–
185, 2000.

[6] R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm for large scale
nonlinear programming. SIAM Journal on Optimization, 9(4):877–900, 1999.

[7] R. H. Byrd and J. Nocedal. An analysis of reduced Hessian methods for constrained
optimization. Mathematical Programming, 63(4):129–156, 1994.

[8] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact-Newton methods. SIAM Journal
on Numerical Analysis, 19(2):400–408, 1982.
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[37] A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior point
filter line search algorithm for large-scale nonlinear programming. Mathematical Pro-
gramming, 106(1):25–57, 2006.

[38] A. Walther. A first-order convergence analysis of trust-region methods with inexact
Jacobians. Technical Report MATH-WR-01-2005, Institute of Scientific Computing,
Technische Universitat Dresden, Dresden, Germany, 2005.

[39] R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban. An interior algorithm for
nonlinear optimization that combines line search and trust region steps. Mathematical
Programming, Series A, 107:391–408, 2006.

[40] R. A. Waltz and J. Nocedal. KNITRO user’s manual. Technical Report OTC 2003/05,
Optimization Technology Center, Northwestern University, Evanston, IL, USA, April
2003.

[41] D. P. Young, W. P. Huffman, R. G. Melvin, C. L. Hilmes, and F. T. Johnson. Nonlinear
elimination in aerodynamic analysis and design optimization. In Proceedings of the
First Sandia Workship on Large-scale PDE Constrained Optimization, Lecture Notes in
Computational Science and Engineering, Heidelberg, Berlin, New York, 2002. Springer
Verlag.



108

Appendix A. Algorithm 4.1

Table A.1: Key for Table A.2

Symbol Meaning
Name Name of problem
n Number of variables
t Number of constraints
κ Value of input κ
k Number of optimization iterations
j Number of iterative solver iterations
— Algorithm failure
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Table A.2: Results for Algorithm 4.1 on CUTEr and COPS problems

Algorithm ires isqp

κ 2−1 2−3 2−5 2−7 2−9 1

Name n t k j k j k j k j k j k j

aug3dc 3873 1000 20 149 8 143 5 129 4 121 3 107 6 106
bt1 2 1 — — — — — — — — — — 38 83
bt2 3 1 — — 14 46 12 43 10 36 12 46 24 66
bt3 5 3 8 28 7 45 2 12 1 8 1 8 31 62
bt4 3 2 — — 7 30 6 30 6 30 6 30 17 61
bt5 3 2 15 49 7 29 6 26 7 35 7 35 9 30
bt6 5 2 — — 12 67 9 55 8 53 9 61 28 75
bt7 5 3 — — — — — — — — 18 135 37 145
bt9 4 2 13 47 10 46 9 46 8 42 8 45 19 58
bt10 2 2 — — 6 21 6 22 6 24 6 24 15 42
bt11 5 3 20 99 — — 8 55 7 52 7 55 20 80
bt12 5 3 — — 8 43 7 46 5 35 5 35 27 116
dtoc1nd 735 490 — — — — 25 2558 22 2604 23 3422 77 2275
eigena2 110 55 — — — — — — 19 917 16 1071 72 991
eigenaco 110 55 — — — — — — — — 8 163 79 539
eigencco 30 15 39 502 19 437 16 304 14 331 14 398 116 2502
elec1 150 50 — — — — — — — — — — 142 10214
fccu 19 8 18 100 8 75 5 65 4 61 3 48 54 118
genhs28 10 8 18 114 7 65 5 66 3 41 3 44 42 132
hs006 2 1 — — — — 5 15 5 15 5 15 30 60
hs007 2 1 — — 10 22 7 18 7 19 7 21 14 24
hs008 2 2 10 20 5 16 4 14 4 16 4 16 10 20
hs027 3 1 — — — — 25 92 22 83 10 37 27 90
hs028 3 1 4 9 1 4 1 4 1 4 1 4 1 4
hs039 4 2 13 47 10 46 9 46 8 42 8 45 19 58
hs040 4 3 16 64 4 23 4 26 4 28 4 28 13 45
hs046 5 2 471 3257 303 2113 16 109 18 126 18 126 316 2095
hs047 5 3 22 119 18 123 16 122 16 128 16 128 57 265
hs048 5 2 19 60 6 24 5 23 1 7 1 7 24 35
hs049 5 2 — — 17 93 16 92 16 95 16 98 43 138
hs050 5 3 26 107 11 50 9 56 9 65 9 72 47 94
hs051 5 3 18 61 5 18 3 19 2 8 2 8 35 89
hs052 5 3 6 25 2 11 2 13 1 8 1 8 11 30
hs061 3 2 11 25 — — 5 22 — — — — 12 28
hs077 5 2 17 65 11 62 10 61 9 60 9 63 21 74
hs078 5 3 19 79 7 35 4 28 4 28 4 28 36 84
hs079 5 3 18 83 6 42 4 30 4 31 4 31 36 89
hs100lnp 7 2 — — 9 53 7 50 6 50 7 61 16 54
hs111lnp 10 3 — — — — — — 13 143 15 169 42 301
maratos 2 1 — — 4 11 5 14 5 14 7 20 6 15
mwright 5 3 — — 10 59 7 51 7 52 7 54 28 132
orthrega 517 256 — — — — — — — — — — 105 4657
orthregb 27 6 — — — — — — — — — — 31 120
robot 7 2 — — — — — — — — — — 15 80
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Table A.3: Key for Table A.4

Symbol Meaning
n Number of variables
t Number of constraints
κ Value of input κ
ε Value of input ε
β′ Value of input β ′

k Number of optimization iterations
j Number of iterative solver iterations
Mv Number of matrix-vector products with constraint Jacobian
— Algorithm failure

Table A.4: Results for Algorithm 4.1 on two PDE-constrained problems

Elliptic Parabolic

(n = 8192, t = 4096) (n = 4608, t = 4096)
κ ε β′ k j Mv k j Mv

1.0 0.9 100 10 1250 142158 9 9 6785
1.0 0.9 10 11 17 3768 9 9 6785
1.0 0.9 1 8 41 5438 9 9 6785
1.0 0.5 100 9 25 4243 9 9 6785
1.0 0.5 10 8 19 3599 7 10 6479
1.0 0.5 1 7 49 6192 6 14 6956
1.0 0.1 100 9 3704 477477 9 9 6785
1.0 0.1 10 6 38 5178 6 9 5635

1.0 0.1 1 7 1456 197349 5 883 319735
0.5 0.9 100 8 26 4440 6 11 5640
0.5 0.9 10 7 38 5372 6 11 5640
0.5 0.9 1 9 1278 177352 6 14 6956
0.5 0.5 100 8 26 4440 6 11 5640
0.5 0.5 10 7 38 5372 6 11 5640
0.5 0.5 1 8 67 7975 6 14 6956
0.5 0.1 100 9 3704 477477 6 11 5640
0.5 0.1 10 6 38 5178 5 11 5305

0.5 0.1 1 7 1456 197349 5 883 319735
0.1 0.9 100 6 24 4064 — — —
0.1 0.9 10 6 1355 107576 — — —
0.1 0.9 1 6 188 23837 5 18 8030
0.1 0.5 100 6 24 4064 — — —
0.1 0.5 10 6 1355 107576 — — —
0.1 0.5 1 6 188 23837 5 18 8030
0.1 0.1 100 6 24 4064 — — —
0.1 0.1 10 6 1355 107576 — — —
0.1 0.1 1 5 186 23442 5 18 8030
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Appendix B. Algorithm 5.3

Table B.5: Key for Table B.6

Symbol Meaning
Name Name of problem
n Number of variables
t Number of constraints
k Number of optimization iterations
j Number of primal-dual matrix factorizations
— Algorithm failure
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Table B.6: Iteration and matrix modification counts for Algorithm 5.3

matmod matmod new

Name n t k j k j

bt1 2 1 15 40 14 14
bt4 3 2 11 17 10 13
bt7 5 3 13 27 7 15
bt9 4 2 9 12 9 12
catenary 496 166 43 57 43 57
chain1 799 600 6 8 6 8
chain2 1599 1200 9 12 9 12
chain3 3199 2400 8 10 8 10
dtoc1nc 1485 990 9 12 26 43
dtoc1nd 735 490 28 57 35 70
dtoc2 5994 3996 10 15 6 6
eigena2 110 55 — — 27 57
eigenb2 110 55 — — — —
eigenbco 110 55 41 101 2 2
eigenc2 462 231 6717 6733 20 35
eigencco 30 15 12 22 11 17
elec1 150 50 31 67 55 117
elec2 300 100 73 157 56 118
elec3 600 200 86 195 402 775
gilbert 1000 1 19 22 17 23
hs006 2 1 9 17 9 17
hs007 2 1 8 14 8 14
hs027 3 1 19 29 30 35
hs039 4 2 9 12 9 12
hs047 5 3 17 21 17 21
hs061 3 2 27 48 27 48
hs100lnp 7 2 7 13 7 7
hs111lnp 10 3 14 21 13 22
lch 600 1 38 91 1 1
mwright 5 3 8 14 8 14
orthrds2 203 100 — — — —
orthrega 517 256 124 284 41 67
orthregb 27 6 2 4 2 4
orthregc 10005 5000 13 22 12 17
orthrgds 10003 5000 87 187 — —
robot 7 2 9 28 9 21
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Appendix C. Algorithm 6.2

Table C.7: Key for Tables C.8 and C.9

Symbol Meaning
Name Name of problem
n Number of variables
t Number of constraints
k Number of iterations
feval Number of function evaluations
— Algorithm failure
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Table C.8: Iteration and function evaluation counts for Algorithm 6.2

pi default pi flex 10 pi flex 100

Name n t k feval k feval k feval
aug2d 20192 9996 3 5 3 5 2 3
aug3dc 3873 1000 2 3 2 3 2 3
aug3d 3873 1000 2 3 2 3 2 3
bt1 2 1 32 678 12 92 7 15
bt2 3 1 11 14 11 13 12 13
bt3 5 3 2 3 2 3 2 3
bt4 3 2 11 15 12 13 12 13
bt5 3 2 6 7 6 7 6 7
bt6 5 2 9 11 9 11 9 11
bt7 5 3 32 189 16 36 16 36
bt8 5 2 10 11 10 11 10 11
bt9 4 2 13 15 13 14 13 14
bt10 2 2 6 7 6 7 6 7
bt11 5 3 9 15 7 8 7 8
bt12 5 3 4 6 3 4 3 4
byrdsphr 3 2 62 63 62 63 62 63
catena 32 11 6 7 6 7 6 7
catenary 496 166 — — — — — —
chain1 799 600 6 7 6 7 6 7
chain2 1599 1200 8 11 7 9 7 9
chain3 3199 2400 13 23 24 28 24 28
channel1 1598 1598 3 4 3 4 3 4
channel2 3198 3198 3 4 3 4 3 4
channel3 6398 6398 3 4 3 4 3 4
dixchlng 10 5 10 13 9 10 9 10
dtoc1l 14985 9990 6 7 6 7 6 7
dtoc1na 1485 990 6 7 6 7 6 7
dtoc1nb 1485 990 5 6 5 6 5 6
dtoc1nc 1485 990 9 12 11 15 11 15
dtoc1nd 735 490 59 174 31 43 31 43
dtoc2 5994 3996 8 43 8 11 8 11
dtoc3 14996 9997 2 3 2 3 2 3
dtoc4 14996 9997 6 52 3 4 3 4
dtoc5 9998 4999 6 49 3 4 3 4
dtoc6 10000 5000 11 13 11 12 11 12
eigena2 110 55 — — — — — —
eigenaco 110 55 3 4 3 4 3 4
eigenb2 110 55 2602 49273 — — — —
eigenbco 110 55 41 42 41 42 41 42
eigenc2 462 231 4486 50451 8067 104728 — —
eigencco 30 15 12 14 12 14 12 14
elec1 150 50 31 66 50 51 50 51
elec2 300 100 73 171 59 68 59 68



115

Table C.9: Iteration and function evaluation counts for Algorithm 6.2

pi default pi flex 10 pi flex 100

Name n t k feval k feval k feval
elec3 600 200 86 231 54 60 54 60
fccu 19 8 2 3 2 3 2 3
genhs28 10 8 2 3 2 3 2 3
gilbert 1000 1 18 21 19 20 19 20
gridnetb 13284 6724 2 3 2 3 2 3
hager1 10000 5000 2 3 2 3 2 3
hager2 10000 5000 2 3 2 3 2 3
hager3 10000 5000 2 3 2 3 2 3
hs006 2 1 5 6 5 6 5 6
hs007 2 1 20 32 26 40 26 40
hs008 2 2 5 6 5 6 5 6
hs009 2 1 4 30 4 30 4 30
hs026 3 1 19 20 19 20 19 20
hs027 3 1 134 916 27 84 27 84
hs028 3 1 2 3 2 3 2 3
hs039 4 2 13 15 13 14 13 14
hs040 4 3 3 4 3 4 3 4
hs046 5 2 13 14 13 14 13 14
hs047 5 3 18 21 18 21 18 21
hs048 5 2 2 3 2 3 2 3
hs049 5 2 16 17 16 17 16 17
hs050 5 3 8 9 8 9 8 9
hs051 5 3 2 3 2 3 2 3
hs052 5 3 2 3 2 3 2 3
hs061 3 2 27 62 16 18 16 18
hs077 5 2 8 10 8 10 8 10
hs078 5 3 4 5 4 5 4 5
hs079 5 3 4 5 4 5 4 5
hs100lnp 7 2 8 9 8 9 8 9
hs111lnp 10 3 14 16 13 14 13 14
lch 600 1 38 39 38 39 38 39
maratos 2 1 3 4 3 4 3 4
mwright 5 3 8 9 8 9 8 9
orthrdm2 4003 2000 8 61 5 7 5 7
orthrds2 203 100 — — — — — —
orthrega 517 256 133 436 78 137 78 137
orthregb 27 6 3 13 2 3 2 3
orthregc 10005 5000 15 72 11 13 41 182
orthregd 10003 5000 9 65 6 8 6 8
orthrgdm 10003 5000 10 67 6 8 6 8
orthrgds 10003 5000 752 7469 19 31 19 31
robot 7 2 — — 7 12 8 10


