
NORTHWESTERN UNIVERSITY

Learning under Adversarial Resilience

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Mathematics

By

Abhratanu Dutta

EVANSTON, ILLINOIS

December 2020

2

c© Copyright by Abhratanu Dutta 2020

All Rights Reserved

3

ABSTRACT

Learning under Adversarial Resilience

Abhratanu Dutta

In this thesis we study two problems, one in unsupervised learning - k-means clustering and

the other in a supervised learning setting with the presence of adversarial perturbations. We

do a beyond-worst case style analysis and show that in either case instances that are resilient

to adversarial perturbations are also tractable.

Resilience to adversarial perturbations imply margin conditions of different flavors. For

the k-means problem, the resilience comes in the form of an assumption related to Bilu-Linial

stability. We give an efficient algorithm for the k-means problem under the assumption that

perturbing each point slightly does not alter the optimal clustering. This assumption implies

that there exists an angular margin between any two clusters in an optimal clustering.

In the adversarial learning problem we assume realizability, i.e. there exists a perfect

classifier that is resilient to adversarial perturbations. This in turn implies that this perfect

classifier has a margin and we show that under this assumption we can achieve adversarial

robustness.

4

We also show hardness of approximation in the adversarial learning setting. One of the

perhaps surprising observation of this thesis is the role of the adversarial resilience assumption

in making NP-hard problems tractable in both the supervised and the unsupervised setting.

5

Acknowledgements

A thesis is never a solo undertaking and I want to take the time to acknowledge everyone

that made this document possible. First and foremost, I am greatly indebted to my advisor

Aravindan Vijayaraghavan. I have always been awed at the breadth of his knowledge and the

depth of his insight. Over the years he guided me through the research landscape patiently

and with understanding. He has always encouraged me to find exciting new problems to work

on and follow them through. I could not have asked for a better advisor and I’m grateful to

be his first PhD student.

I would like to thank my collaborators Alex Wang and Pranjal Awasthi. It was really

enjoyable working with Alex and he has become a great friend since. I have learnt a lot from

working with Pranjal and he has become a mentor in my research journey. I would also like

to thank Avrim Blum for numerous useful discussions regarding our clustering paper.

I am thankful to Aravindan, Pranjal and Kostya for serving in my PhD committee. I

would like to thank the faculty at the Theory department at Northwestern over the years,

particularly Jason, Anindya and Kostya for their encouragement and very constructive

feedback in all my talks and presentations. I have learnt a lot from them. I would like to

thank Jake Abernathy for inviting me to Georgia Tech to work on our project.

I would also like to thank Sam, Aleck, Yiding, Aravind, Liren, Madhav, Johes and all my

other friends in the CS Department for making this journey that much more interesting and

6

enjoyable. Special thanks to Sushobhan, Khadija, and Vineet for sticking with me throughout

the years and the very fun times. I am thankful to my friends in Ames. They gave me a

sense of community and belonging.

I want to thank June Ghosh for being the awesome friend that she is and for being my

support system. I feel blessed to have shared all the ups and downs of grad school and life

with her.

I am thankful to my sister Priyanka and Agnivo for their affection and encouragement.

Finally I would like to thank Ma and Bapi for their incredible love and support. This

dissertation would not have been possible without them.

7

Table of Contents

ABSTRACT 3

Acknowledgements 5

Table of Contents 7

List of Tables 9

List of Figures 10

Chapter 1. Introduction 13

The Instance Stability Assumption 14

1.1. Case Study : Stability and Clustering 15

1.2. Our Contributions for Stable Clustering 16

1.3. Case Study : Adversarial Learning 18

1.4. Our contributions for Adversarial Learning 19

1.5. Organization of the Thesis 20

Chapter 2. Background 21

2.1. Stable Clustering 21

2.2. Adversarial Learning 24

Chapter 3. Stable Clustering 31

8

3.1. Stability definitions and geometric properties 31

3.2. k-means clustering for k = 2 36

3.3. k-means clustering for general k 42

3.4. Robust k-means 48

Chapter 4. Adversarial Learning : Upper Bound 56

4.1. Finding Adversarial Examples Using Polynomial Optimization 56

4.2. From Adversarial Examples to Robust Learning Algorithms 63

4.3. Finding Adversarial Examples for Two Layer Neural Networks 68

Chapter 5. Adversarial Learning : Lower Bound 71

5.1. Computational Intractability of Learning Robust Classifiers 71

5.2. A Lower Bound for Weak Robust Learning 91

Chapter 6. Experiments 105

6.1. Stable Clustering 105

6.2. Adversarial Learning 108

Chapter 7. Open Problems 113

7.1. Lower Bounds for ε Additive Stable k-means Instances 113

7.2. Further Directions in Adversarial Learning 114

7.3. Adversarial Resilience and tractability of NP-hard problems 115

References 116

9

List of Tables

6.1 Comparison of k-means cost for Alg 3.3.1 and k-means++ 105

6.2 Values of ε satisfying Lemma 3.1.5 105

6.3 Values of (ρ, ε,∆) satisfied by (1− η)-fraction of points 106

6.4 For δ = 0.3, we report mean and standard deviation of number of adversarial

examples found by running our SDPattack algorithm on 6 batches of 50

random examples from PGDpass and 8 batches of 100 random samples from

PGDfail. For δ = 0.01, we run SDPattack on all 138 examples in PGDpass

and first 100 sorted examples from PGDfail. 112

10

List of Figures

3.1 a. An ε-APS instance. The means are separated by a distance D, the

half-angle of each cone is arctan(1/ε) and the distance between µ1 and the

apex of the cone ∆ ≤ D/2. b. A (ρ,∆, ε)-separated instance with scale

parameter ∆. The half-angle of each cone is arctan(1/ε) and the distance

between the apexes of the cones is at least ρ. 33

3.2 An example from the family of perturbations considered by Lemma 3.1.5.

Here v is in the upwards direction. If a is to the right of the diagonal solid

line, then a′ will be to the right of the slanted dashed line and will lie on

the wrong side of the separating hyperplane. 34

4.1 The SDP-based algorithm for the degree-2 optimization problem. 59

4.2 The convex program for finding a polynomial g ∈ F with zero robust

empirical error. 67

4.3 The SDP-based algorithm for Problem (4.14). 69

5.1 Reduction from the QP problem. 75

5.2 Reduction from the QP problem. 80

5.3 Reduction from the QP problem. 93

11

5.4 The figure shows the construction of a hard instance for the robust learning

problem. First, points (x(j), z(j)) are sampled randomly and staisfying

z(j) = p(x(j)). Each such point is then perturbed along the direction of the

sign vector of the gradient at (xj, z(j)) to get two data points of the training

set, one labeled as +1, and the other labeled as −1. 94

5.5 The figure shows the radius of robustness around the point (x(i), z(i)). Any

degree-2 PTF that is δ-robust at all the data points, must take a value of

+1 in the upper ball around each (x(i), z(i)) of `∞ radius of 2δ and must take

a value of −1 in the lower ball around each (x(i), z(i)) of `∞ radius of 2δ.

We use this fact to establish that such a PTF must pass through the points

(x(i), z(i)). 96

6.1 The figure shows three MNIST random samples from PDGfail (i.e.,

examples where PGDattack failed to find an adversarial perturbation),

where SDPattack successfully finds adversarial perturbations for δ = 0.3.

The images in the first column represent the original images corresponding

to three, the second column represents the perturbed images produced by

the failed PGDattack, and perturbed images produced by the successful

SDPattack. Visual inspection of these examples suggest that our method

often produces sparse targeted perturbations. 109

6.2 The figure shows three MNIST random samples from PDGpass (i.e.,

examples where PGDattack succeeded to find an adversarial perturbation),

where SDPattack successfully finds adversarial perturbations for δ = 0.3.

12

The images in the first column represent the original images corresponding

to three, the second column represents the perturbed images produced by

the successful PGDattack, and perturbed images produced by the successful

SDPattack. Visual inspection of these examples suggest that our method

often produces sparse targeted perturbations. 110

13

CHAPTER 1

Introduction

In practice, we often care about problems that are NP-hard to solve, for which we do not

expect to find worst-case efficient algorithms. While theoretically we have various tools like

approximation algorithms to tackle these problems, in the real world these often fall short

and we resort to heuristics. These heuristics while being very inefficient in the worst-case

seem to work really well in real life. On the other hand, often we do not have the necessary

theoretical techniques needed to explain why these heuristics work well in practice. A possible

explanation to this is that the generic "worst-case" complexity view of the world is too bleak

- we rarely ever face worst-case instances. We need a new way to measure performance of

and distinguish between algorithms for hard problems and this is where beyond worst case

complexity comes in.

Average case analysis also often provides brittle and non-robust solutions that depend

crucially on the exact distributional assumptions. Beyond worst case analysis fills this

gap between worst-case and purely average-case analysis. In the words of Tim Roughgar-

den [Roughgarden, 2018], beyond worst case analysis is about "articulating properties of

’real-world’ inputs, and proving rigorous and meaningful algorithmic guarantees for inputs

with these properties.

This thesis considers important questions in the frontiers of beyond worst-case analysis

both in the unsupervised and the supervised regime. In particular it considers two NeurIPS

14

papers Dutta, Vijayaraghavan and Wang ’17 [Dutta et al., 2017] and Awasthi, Dutta and

Vijayaraghavan ’19 [Awasthi et al., 2019b]. The first one explores beyond worst case analysis

in the ubiquitous k-means clustering problem and comes up with a new algorithm with

provable guarantees and experiments to validate the results. The second work explores

the topical subject of adversarial learning and draws a perhaps surprising connection to

polynomial optimization. This thesis does further experimentation and goes on to ask some

important follow up questions on how to generalize these results to bring them closer to

practice and applicability in the real world.

In the following section, we define a natural property that we expect real-world instances

to have : instance stability, and give an efficient algorithm for k-means clustering for instances

with such properties. Then we explore an intriguing connection between beyond worst case

notions like stability and the realizability assumption in the adversarial learning setting.

The Instance Stability Assumption

The instance stability assumption was first introduced by Bilu and Linial [2010] in a

seminal paper. They put forward the argument that in order to prove a problem like clustering

is NP-hard we reduce say SAT to some clustering instances. This proves that an algorithm

that solves these clustering instances also solves SAT. However all these hard instances may

be of no practical interest at all. And this does not preclude the existence of an algorithm

that solves all the practical instances of clustering that might crop up in the real world.

Bilu and Linial’s assumption is a way to formalize the notion that the optimal solution

does not change much with small changes in the input. Their original paper tackles the

15

Max-Cut problem which they think of as "clustering into two clusters". With respect to

Max-Cut, they define γ stability as follows :

Definition 1.0.1 (Bilu and Linial). Let W be an n× n symmetric, non-negative matrix.

A γ-perturbation of W , for γ ≥ 1, is an n× n matrix W ′ such that ∀i, j = 1, · · · , n,Wi,j ≤

W ′
i,j ≤ γ ·Wi,j. Let (S, [n] \ S) be a maximal cut of W , i.e. a partition that maximizes∑
i∈S,j /∈SWi,j. The instance W (of the Max-Cut problem) is said to be γ-stable, if for every

γ-perturbation W ′ of W , (S, [n] \ S) is the unique maximal cut of W’.

To rule out spurious examples, they need another assumption that there are no small cuts

in the graph. Under these assumptions, they find an efficient algorithm for solving Max-Cut

instances. They however concede that this formulation is a first step and "it is of great

interest to study more permissive notions of stability where a small perturbation can slightly

modify the optimal solution." The additive perturbation notion of stability that we define in

our work is inspired by this formulation and tries to maintain the spirit of the assumption.

There has been a lot of further work with the instance stability assumption on various

NP-hard problems. These include works on MAP inference [Lang et al., 2018], Minimum

Multiway Cut [Makarychev et al., 2013] and clustering [Awasthi et al., 2010]. We give a brief

overview of the works on stability with respect to clustering in the next section.

1.1. Case Study : Stability and Clustering

Clustering is an unsupervised learning problem, where given a set of points in some high

dimensional space, we have to partition them into coherent groups. This is quantified by

defining an objective function that we want to minimize. In theory, most natural formulations

16

of the objective function are NP-hard to solve. However, in practice, heuristics like the

Lloyd’s algorithm consistently recover the intuitively correct solution, i.e. ground truth. How

do we reconcile this difference between theory and practice?

Clustering is difficult only when it does not matter [Ackerman and Ben-David, 2009] has

been posited as a possible explanation. That is, the hard instances of clustering does not

appear organically and the real-world instances have additional structure that we should

explore and exploit. Bilu and Linial [Bilu and Linial, 2010]’s instance stability is a way to

formalize this notion. Broadly speaking, the idea is that the optimum solution to a problem

shouldn’t change too much if the input is perturbed a little. In the context of clustering, this

has been studied in multiple papers as multiplicative perturbation stability [Awasthi et al.,

2010] [Makarychev and Makarychev, 2016].

Definition 1.1.1. Multiplicative Perturbation Stability : For any γ ≥ 1, a metric

clustering instance (X, d) on point set X ⊂ Rd and metric d : X ×X → R+ is said to be

γ-factor (multiplicative) stable iff the (unique) optimal clustering C1, · · · , Ck of X remains

the optimal solution for any instance (X, d′) where any (subset) of the the distances are

increased by up to a γ factor i.e., d(x, y) ≤ d′(x, y) ≤ γd(x, y) for any x, y ∈ X.

1.2. Our Contributions for Stable Clustering

While this formulation has multiple advantages, it has a few disadvantages as well.

Specifically, in practice the assumption often turns out to be too strong and the algorithms

that we know even in these strong cases are often non-robust. In our 2017 work [Dutta

et al., 2017], we formulated a more natural notion of instance stability for clustering in the

Euclidean space. It starts by defining an ε additive perturbation.

17

Definition 1.2.1. ε-additive perturbation : LetX = {x1, · · · , xn} be a k-means clustering

instance with unique optimal clustering C1, · · · , Ck whose means are given by µ1, · · · , µk.

Let D = maxi,j‖µi − µj‖. We say that X ′ = {x′1, · · · , x′n} is an ε-additive perturbation of X

if for all i, ‖x′i − xi‖ ≤ εD

Now we can define ε-additive perturbation stability as the property that the optimal

clustering remains unchanged under any ε-additive perturbation.

Definition 1.2.2. (ε-additive perturbation stability). Let X be a k-means clustering

instance with unique optimal clustering C1, C2, · · · , Ck. We say that X is ε-additive pertur-

bation stable (APS) if every ε-additive perturbation of X has an optimal clustering given by

C1, C2, · · · , Ck.

This is a natural interpretation of the crux of Bilu-Linial stability in Euclidean domains.

For instance, it captures measurement errors which usually produces such additive errors.

And we want our clustering to be well-defined enough so that it remains unchanged under

small measurement errors.

For the theoretical results, we also required some ρ-amount of margin separation between

the optimal clusters. We defined this set of assumptions as (ρ,∆, ε)-separation and gave an

efficient algorithm that found the optimal k-means clustering.

We also extended the results to the robust setting, where we have the required guarantee

on only a fraction of data points. We complement the theoretical results with experimental

results on real world datasets where we compare our algorithm to k-means++ and show

comparable performance .

18

1.3. Case Study : Adversarial Learning

The field of adversarial learning is quickly becoming very relevant as we deploy more

machine learning systems in the real world. We often find that these systems are very

non-robust to adversarial perturbations. This was first identified by [Szegedy et al., 2013].

In recent times a group of researchers at Keen Security Labs managed to confuse Tesla’s

self-driving system into driving onto oncoming traffic by just placing three stickers on the

road. There are plenty of other real world examples - adversarial sunglasses that makes the

wearer’s face undetectable or intentionally misclassified, a 3D printed turtle that is recognized

as a rifle from all angles and so on.

The setting is as follows : we first train a classifier on good training data. During test

time, an adversary that has access to our classifier (white-box) makes a small perturbation

on the test input from x to x + ε. We want our classifier f to return a correct answer on

the perturbed input, i.e. f(x+ ε) = y where y is the correct label for x. In this work, there

is a key assumption we make - realizability. That is, we assume that exists a classifier that

is robust to ε adversaries. The question then becomes, how robust a classifier can we find

efficiently?

Although the previous work and this work looks quite different at first sight, they have

a few common themes. Somewhat surprisingly, the well known assumption of realizability

is related to the assumption of stability in this case. In the first paper we proved that the

assumption of stability implies the existence of an angular margin between the different

clusters. On the other hand, the existence of a ε-adversarially robust classifier implies a

margin separation of 2ε between any two classes. The first one is unsupervised, so we just

19

find a perfect clustering of the data. In the second work however, we have access to training

data and so we try to find something stronger - an adversarially robust perfect classifier.

1.4. Our contributions for Adversarial Learning

In this work, we make four main contributions as follows : first, for degree 1 and degree

2 polynomial threshold functions(PTFs) we find the first provably efficient algorithms that

finds an adversarial example when one exists.

Secondly, we use these algorithms designed above for finding adversarial examples to

design the first optimal approximately robust polynomial time learning algorithms for the

class of degree-1 and degree-2 polynomial threshold functions (PTFs).

We also show a matching hardness of approximation bound for the above result derived

from the hardness of quadratic programming(QP) problem [Charikar and Wirth, 2004].

Theorem 1.4.1. There exists δ > 0, and a distribution D over Rn×{−1,+1} and ε > 0,

such that assuming NP 6= RP there is no polynomial time algorithm that given a set of

poly(n, 1
ε
) points from D labeled by a degree-2 PTF that has δ-robust error of 0 w.r.t. D,

outputs a degree-2 PTF of o(√ηapproxδ)-robust error at most ε w.r.t. D, where ηapprox is the

hardness of approximation factor of the QP problem.

Finally, we show that we can leverage the connection to polynomial optimization to

generate adversarial attacks on neural networks. For 2-layer networks with ReLU activations,

we show that given a network and a test input, the problem of finding an adversarial example

corresponds to a natural optimization problem. We design a semi-definite programming (SDP)

based polynomial time algorithm to generate an adversarial attack for such networks. We

20

show that under a natural condition on the structure of the SDP solution, our attack provably

finds an adversarial example or certifies that none exists. We empirically show that condition

holds true in practice and compare our attack to the state-of-the-art attack of Madry et

al. [Madry et al., 2017] on the MNIST data set.

1.5. Organization of the Thesis

First we mention some preliminaries of Stable Clustering and Adversarial Learning in

Chapter 2. We also provide our model and discuss some related work. The rest of the thesis

is broadly split into two parts. In Chapter 3 we discuss k-means clustering under a Bilu-Linial

stability assumption. We give algorithms for k = 2, general k and robust k-means setting.

The second part is Chapters 4 and 5. In Chapter 4 we give algorithms for adversarial learning

of degree-2 PTFs with theoretical guarantees and for two layer neural networks. In Chapter

5 we give a matching hardness of approximation proof degree-2 PTFs. We also give a lower

bound for robust weak learning. We finally end the thesis with experimental results of both

stable clustering and adversarial learning in Chapter 6.

21

CHAPTER 2

Background

2.1. Stable Clustering

2.1.1. Models and Preliminaries

In the k-means clustering problem, we are given n points X = {x1, . . . , xn } in Rd and need

to find k centers µ1, . . . , µk ∈ Rd minimizing

∑
x∈X

min
i∈[k]
‖x− µi‖2 .

A given choice of centers µ1, . . . , µk determines an optimal clustering C1, . . . , Ck where

Ci = {x | i = arg minj‖x− µj‖ }. We can rewrite the objective as

∑
i∈[k]

∑
x∈Ci

‖x− µi‖2 .

On the other hand, a given choice for cluster Ci determines its optimal center as µi =

1
|Ci|
∑

x∈Ci x, the mean of the points in the set. Thus, we can reformulate the problem as

minimizing over clusters C1, C2, . . . , Ck of {xi } the objective

∑
i∈[k]

∑
y∈Ci

∥∥∥∥∥y −
(

1

|Ci|
∑
x∈Ci

x

)∥∥∥∥∥
2

.

22

k-means clustering is NP-hard for general Euclidean space Rd even in the case of k = 2

[Dasgupta, 2008].

2.1.2. Related Work

Awasthi et al. [2012] showed that γ-multiplicative perturbation stable instance also satisfied

the notion of γ-center based stability (every point is a γ-factor closer to its center than to any

other center). They showed that an algorithm based on the classic single linkage algorithm

works under this weaker notion when γ ≥ 3. This was subsequently improved by [Balcan and

Liang, 2011], and the best result along these lines [Angelidakis et al., 2017] gives a polynomial

time algorithm that works for γ ≥ 2. A robust version of (γ, η)-perturbation resilience was

explored for center-based clustering objectives [Balcan and Liang, 2011]. As such, the notions

of additive perturbation stability, and (ρ,∆, ε)-separated instances are incomparable to the

various notions of multiplicative perturbation stability. Further as argued in [Ben-David,

2015], we believe that additive perturbation stability is more realistic for Euclidean clustering

problems.

Ackerman and Ben-David [2009] initiated the study of various deterministic assumptions

for clustering instances. The measure of stability most related to this work is Center

Perturbation (CP) clusterability (an instance is δ-CP-clusterable if perturbing the centers

by a distance of δ does not increase the cost much). A subtle difference is their focus on

obtaining solutions with small objective cost[Ackerman and Ben-David, 2009], while our

goal is to recover the optimal clustering. However, the main qualitative difference is how

the length scale is defined — this is crucial for additive perturbations. The run time of

the algorithm in[Ackerman and Ben-David, 2009] is npoly(k,L(X)/δ), where the length scale

23

of the perturbations is L(X), the diameter of the whole instance. Our notion of additive

perturbations uses a much smaller length-scale of ∆ (essentially the inter-mean distance;

see Prop. 1.1 for a geometric interpretation), and Theorem 1.2 gives a run-time guarantee

of npoly(∆/δ) for k = 2 (Theorem 1.2 is stated in terms of ε = ∆/δ). By using the largest

inter-mean distance instead of the diameter as the length scale, our algorithmic guarantees

can also handle unbounded clusters with arbitrarily large diameters and outliers.

The exciting results of Kumar and Kannan [2010] and Awasthi and Sheffet [2012] also

gave a deterministic margin-separation condition, under which spectral clustering (PCA

followed by k-means) 1 finds the optimum clusters under deterministic conditions about the

data. Suppose σ = ‖X−C‖2
op/n is the “spectral radius” of the dataset, where C is the matrix

given by the centers. In the case of equal-sized clusters, the improved results of [Awasthi and

Sheffet, 2012] proves approximate recovery of the optimal clustering if the margin ρ between

the clusters along the line joining the centers satisfies ρ = Ω(
√
kσ). Our notion of margin

ρ in (ρ,∆, ε)-separated instances is analogous to the margin separation notion used by the

above results on spectral clustering [Awasthi and Sheffet, 2012; Kumar and Kannan, 2010].

In particular, we require a margin of ρ = Ω(∆/ε2) where ∆ is our scale parameter, with no

extra
√
k factor. However, we emphasize that the two margin conditions are incomparable,

since the spectral radius σ is incomparable to the scale parameter ∆.

We now illustrate the difference between these deterministic conditions by presenting a

couple of examples. Consider an instance with n points drawn from a mixture of k Gaussians

in d dimensions with identical diagonal covariance matrices with variance 1 in the first O(1)

coordinates and roughly 1/d in the others, and all the means lying in the subspace spanned

1This requires appropriate initializers, that they can obtain in polynomial time.

24

by these first O(1) co-ordinates. In this setting, the results of [Awasthi and Sheffet, 2012;

Kumar and Kannan, 2010] require a margin separation of at least
√
k log n between clusters.

On the other hand, these instances satisfy our geometric conditions with ε = Ω(1), ∆
√

log n

and therefore our algorithm only needs a margin separation of ρ
√

log n (hence, saving a factor

of
√
k)2. However, if the n points were drawn from a mixture of spherical Gaussians in high

dimensions (with d� k), then the margin condition required for [Awasthi and Sheffet, 2012;

Kumar and Kannan, 2010] is weaker.

We note another strand of recent works show that convex relaxations for k-means

clustering become integral under distributional assumptions about points and sufficient

separation between the components [Awasthi et al., 2014; Mixon et al., 2016].

Finally, we mention some very recent work on hardness of multiplication stable cluster-

ing instances that assume a plausible PCP hypothesis [Friggstad et al., 2018] which was

subsequently proved in [Paradise, 2020].

2.2. Adversarial Learning

2.2.1. Preliminaries and Model

We focus on binary classification, and adversarial perturbations are measured in `∞ norm.

For a vector x ∈ Rn, we have ‖x‖∞ = maxi |xi|. We study robust learning of polynomial

threshold functions (PTFs). These are functions of the form sgn(p(x)), where p(x) is a

polynomial in n variables over the reals. Here sgn(t) equals +1, if t ≥ 0 and −1 otherwise.

Given y, y′ ∈ {−1, 1}, we study the 0/1 loss defined as `(y, y′) = 1 if y 6= y′ and 0 otherwise.

2Further, while algorithms for learning GMM models may work here, adding some outliers far from the
decision boundary will cause many of these algorithms to fail, while our algorithm is robust to such outliers.

25

Given a binary classifier sgn(g(x)), an input x∗, and a budget δ > 0, we say that x∗ + z is an

adversarial example (for input x∗) if sgn(g(x∗ + z)) 6= sgn(g(x∗)) and that ‖z‖∞ ≤ δ. One

could similarly define the notion of adversarial examples for other norms. For a classifier

with multiple outputs, we say that x∗ + z is an adversarial example iff the largest co-ordinate

of g(x∗ + z) differs from the largest co-ordinate of g(x∗). We now define the notion of robust

error of a classifier.

Definition 2.2.1 (δ-robust error). Let f(x) be a Boolean function mapping Rn to {−1, 1}.

Let D be a distribution over Rn × {−1, 1}. Given δ > 0, we define the δ-robust error of f

with respect to D as errδ,D(f) = E(x,y)∼D
[

supz∈Bn∞(0,δ) `(f(x+ z), y)
]
. Here Bn

∞(0, δ) denotes

the `∞ ball of radius δ, i.e., Bn
∞(0, δ) = {x ∈ Rn : ‖x‖∞ ≤ δ}.

Analogous to empirical error in PAC learning, we denote ˆerrδ,S(f) to be the δ-robust

empirical error of f , i.e., the robust error computed on the given sample S. To bound

generalization gap, we will use the notion of adversarial VC dimension as introduced in [Cullina

et al., 2018]. Next we define robust learning for PTFs.

Definition 2.2.2 (γ-approximately robust learning). Let F be the class of degree-d PTFs

from Rn 7→ {−1, 1} of VC dimension ∆ = O(nd). For γ ≥ 1, an algorithm A γ-approximately

robustly learns F if the following holds for any ε, δ, η > 0: Given m = poly(∆, 1
ε
, 1
η
) samples

from a distribution D over Rn×{−1, 1}, if F contains a function f ∗ such that errδ,D(f ∗) = 0,

then with probability at least 1− η, A runs in time polynomial in m and outputs f ∈ F such

that errδ/γ,D(f) ≤ ε. If F admits such an algorithm then we say that F is γ-approximately

robustly learnable. Here γ quantifies the price of achieving computationally efficient robust

learning, with γ = 1 implying optimal learnability.

26

A note about the model and the realizability assumption. Our definition of an adversarial

example requires that sgn(g(x∗ + z)) 6= sgn(g(x∗)), whereas for robust learning we require

a classifier that satisfies sgn(g(x∗ + z)) 6= y, where y is the given label of x∗. This might

create two sources of confusion to the reader: a) In general the two requirements might

be incompatible, and b) It might happen that initially sgn(g(x∗)) predicts the true label

incorrectly but there is a perturbation z such that sgn(g(x∗ + z)) predicts the true label

correctly. In this case one may not count z as an adversarial example. To address (a) we would

like to stress that all our guarantees hold under the realizability assumption, i.e., we assume

that there is true function c∗ such that for all examples x in the support of the distribution

and all perturbations of magnitude upto δ, sgn(c∗(x∗ + z)) = sgn(c∗(x∗)). Hence, there will

indeed be a target concept for which no adversarial example exists and as a result will have

zero robust error. To address (b) we would like to point out that in Section 4.2 where we use

the subroutine for finding adversarial examples to learn a good classifier sgn(g), we always

enforce the constraint that on the training set sgn(g(x∗)) = sgn(c∗(x∗)) and g is as robust as

possible. Hence when we find an adversarial example for a point x∗ in our training set, it

will indeed satisfy that sgn(g(x∗ + z)) 6= sgn(c∗(x)) and correctly penalize g for the mistake.

More generally, we could also define an adversarial example as one where given pair (x∗, y)

the goal is to find a z such that sgn(g(x∗ + z)) 6= y. All of our guarantees from Section 4.1

apply to this definition as well. Finally, in the non-realizable case, the distinction between

defining adversarial robustness as either sgn(g(x∗ + z)) 6= sgn(g(x∗)), or sgn(g(x∗ + z)) 6= y,

or even sgn(g(x∗ + z)) 6= sgn(c∗(x)) matters and has different computational and statistical

implications [Diochnos et al., 2018; Gourdeau et al., 2019]. Understanding when one can

27

achieve computationally efficient robust learning in the non-realizable case is an important

direction for future work.

The definition of γ-approximately robustly learnability has the realizability assumption

built into it. So, when we prove that a class F is γ-approximately robustly learnable, we find

an approximate robust learner from F under the realizability assumption on F i.e. for a set

of points from the distribution, the algorithm guarantees to return an approximate robust

learner only if there exists a perfect robust learner in the class F of learners.

The work of [Cullina et al., 2018] defines the notion of adversarial VC dimension to bound

the generalization gap for robust empirical risk minimization. Additionally, the authors

show that for linear classifiers the adversarial VC dimension remains the same as that of the

original class. The bound below then follows by viewing PTFs as linear classifiers in a higher

dimensional space.

Lemma 2.2.3. Let F be a class of degree-d polynomial threshold functions from Rn 7→

{−1, 1} of VC dimesion ∆ = O(nd). Given δ, η > 0, and a set S ofm examples (x1, y1), . . . , (xm, ym)

generated from a distribution D over Rn × {−1, 1}, with probability at least 1− η, we have

that supf∈F |errδ,D(f)− ˆerrδ,S(f)| ≤ 2
√

2∆ logm/m+
√

log(1/η)/(2m).

2.2.2. Related Work

As mentioned in the introduction, there has been a recent explosion of works on understanding

adversarial robustness from both empirical and theoretical aspects. Here we choose to discuss

the theoretical works that are the most relevant to our paper. We refer the interested reader

to a recent paper by [Gilmer et al., 2018a] for a broader discussion. Prior to their relevance

28

for deep networks, robust optimization problems have been studied in machine learning and

other domains. The works of [Bhattacharyya, 2004; Globerson and Roweis, 2006; Shivaswamy

et al., 2006] studies optimization heuristics for optimizing a robust loss that can handle

noisy or missing data. The works of [Xu and Mannor, 2012; Xu et al., 2009] proved an

equivalence between robust optimization and various regularized variants of SVMs. They

used this relation to re-derive standard generalization bounds for SVMs and their kernel

versions. Akin to classifier stability, these bounds depend on the robustness of the classifier

on the training set. A recent work of [Bietti et al., 2018] views deep networks as functions in

an RKHS and designs new norm based regularization algorithms to achieve robustness.

Motivated by connections to deep networks a recent line of work studies generalization

bounds for robust learning. The work of [Schmidt et al., 2018] provides specific constructions

of a linear binary classification task where a single example is enough to learn the problem in

the usual sense, i.e., to achieve low test error, whereas learning the problem robustly requires

a significantly large training set. The authors also show that in certain cases, non-linearity

can help reduce the sample complexity of robust learning. The work of [Cullina et al., 2018]

proposes a PAC model for robust learning and defines adversarial VC dimension as a combi-

natorial quantity that captures robust learning via robust empirical risk minimization (ERM).

The authors show that for linear classifiers the adversarial VC dimension is the same as the

VC dimension, although there are functions classes and distributions where the gap between

the two quantities could be much higher. The recent works of [Yin et al., 2018] and [Khim

and Loh, 2018] analyze Rademacher complexity of robust loss functions classes. In particular,

it is observed that even for linear models with bounded weight norm, there is an unavoidable

dependence on the data dimension in the Rademacher complexity of robust loss function

29

classes. These results point to the fact that for many distributions robust learning could

require many more training samples than their non-robust counterpart. The work of [Attias

et al., 2018; Feige et al., 2015] studies algorithms and generalization bounds for a model

where the adversary can choose perturbations from a known finite set of small size k.

Another recent line of work studies the trade-off between traditional test error and robust

error. The work of [Tsipras et al., 2018] designs a classification task that is efficiently learnable

with a linear classifier to low standard error, but has the property that any classifier that

achieves low test error will have high robust error on the task. The work of [Gilmer et al.,

2018b] designs a task that is learnable by a degree-2 polynomial and relates the test error of

any model to its robust error. Similar conclusions have been observed in [Diochnos et al., 2018;

Mahloujifar and Mahmoody, 2018; Mahloujifar et al., 2018] and have been used to design

various data poisoning attacks. These results essentially follows from the use of isoperimetric

inequalities for distributions such as the Gaussian and the uniform distribution over the

Boolean hypercube. However, as noted in [Gilmer et al., 2018b], it is not clear if the same

relation holds between test error and robust error for real world data distributions. The work

of [Fawzi et al., 2016] relates robustness to the curvature of the decision boundary and uses

it to quantify robustness to random perturbations.

Yet another line of work concerns the design of certificates of perturbation robustness

or distributional robustness of a given classifier (e.g., deep neural networks) at a given

point [Raghunathan et al., 2018; Sinha et al., 2017; Wong and Kolter, 2018]. This is achieved

by the use of convex relaxations of the optimal robustness at a given point. These works

also conclude that by augmenting the training objective with a penalty that depends on the

certificates, one can empirically achieve increased robustness. However these algorithms do

30

not give any guarantees for relating the bound achieved by the certificate of robustness to

the optimal robustness around a given point.

The work of Bubeck et al. [Bubeck et al., 2018a,b] provides a cryptographic lower bound

by designing a computational task in Rn that is robustly learnable using poly(n) samples to

any given robustness parameter M , but is hard to learn robustly to any non-trivial robustness

parameter ε > 0, in polynomial time. When translated to our model, this provides an instance

of a cryptographic learning task that is computationally hard to γ-approximately robustly

learn for any constant γ ≥ 1. However, this does not rule out the possibility that natural

function classes can be robustly learned without any loss in robustness parameter. Our result

rules this out for the class of degree-2 and higher PTFs, even in the realizable setting, i.e.,

when there exists a robust classifier of zero error! Finally, to the best of our knowledge, our

upper bounds are the first to establish the robustness tradeoff for computationally efficient

learning for a large natural class of functions.

31

CHAPTER 3

Stable Clustering

In this chapter, in Section 3.1 we formally state our notion of stability and define

parameters that capture this notion. We also provide some geometric intuition and explain

what this notion entails. Then we move on to stable clustering algorithms and theoretical

guarantees for k means (k = 2 and general k) in Sections 3.2 and 3.3. We finally end the

chapter with a robust k-means algorithm and theoretical guarantees in Section 3.4.

3.1. Stability definitions and geometric properties

3.1.1. Balance parameter

We define an instance parameter, β, capturing how balanced a given instance’s clusters are.

Definition 3.1.1 (Balance parameter). Given an instance X with optimal clustering

C1, . . . , Ck, we say X satisfies balance parameter β ≥ 1 if for all i 6= j, β|Ci| > |Cj|.

3.1.2. Additive perturbation stability

Definition 3.1.2 (ε-additive perturbation). Let X = {x1, . . . , xn } be a k-means clus-

tering instance with unique optimal clustering C1, C2, . . . , Ck whose means are given by

µ1, µ2, . . . , µk. Let D = maxi,j ‖µi − µj‖. We say that X ′ = {x′1, . . . , x′n } is an ε-additive

perturbation of X if for all i, ‖x′i − xi‖ ≤ εD.

32

Definition 3.1.3 (ε-additive perturbation stability). Let X be a k-means clustering

instance with unique optimal clustering C1, C2, . . . , Ck. We say that X is ε-additive pertur-

bation stable (APS) if every ε-additive perturbation of X has an optimal clustering given by

C1, C2, . . . , Ck.

Intuitively, the difficulty of the clustering task increases as the stability parameter ε

decreases. For example, when ε = 0 the set of ε-APS instances contains any instance with a

unique solution. In the following we will only consider ε > 0.

3.1.3. Geometric implication of ε-APS

Let X be an ε-APS k-means clustering instance such that each cluster has at least 4 points.

Fix i 6= j and consider clusters Ci, Cj with means µi, µj. We fix the following notation.

• Let Di,j = ‖µi − µj‖ and let D = maxi′,j′ ‖µi′ − µj′‖.

• Let u =
µi−µj
‖µi−µj‖ be the unit vector in the intermean direction. Let V = u⊥ be the

space orthogonal to u. For x ∈ Rd, let x(u) and x(V) be the projections x onto u and

V .

• Let p =
µi+µj

2
be the midpoint between µi and µj.

Clusters in the optimal solution of an ε-APS instance satisfy a natural geometric condition

— there is an “angular separation” between every pair of clusters.

Proposition 3.1.4 (Geometric Implication of ε-APS). Let X be an ε-APS instance and

let Ci, Cj be two clusters in its optimal solution. Any point x ∈ Ci lies in a cone whose axis is

along the direction (µi − µj) with half-angle arctan(1/ε). Hence if u is the unit vector along

33

Figure 3.1. a. An ε-APS instance. The means are separated by a distance
D, the half-angle of each cone is arctan(1/ε) and the distance between µ1 and
the apex of the cone ∆ ≤ D/2. b. A (ρ,∆, ε)-separated instance with scale
parameter ∆. The half-angle of each cone is arctan(1/ε) and the distance
between the apexes of the cones is at least ρ.

µi − µj then

∀x ∈ Ci,
|〈x− µi+µj

2
, u〉|

‖x− µi+µj
2
‖2

>
ε√

1 + ε2
. (3.1)

The distance between µi and the apex of the cone is ∆ = (1
2
− ε)D. We will call ∆ the

scale parameter of the clustering. See Figure 3.1a for an illustration.

We can establish geometric conditions that X must satisfy by considering different

perturbations. As an example, one could move all points in Ci and Cj towards each other in

the intermean direction a distance of εD; by assumption no point has crossed the separating

hyperplane and thus we can conclude the existence of a margin of width 2εD.

A careful choice of a family of perturbations allows us to prove Proposition 3.1.4. Consider

the perturbation which moves µi and µj in opposite directions orthogonal to u while moving

a single point towards the other cluster parallel to u (see figure 3.2). The following lemma

establishes Proposition 3.1.4.

Lemma 3.1.5. For any x ∈ Ci ∪ Cj, ‖(x− p)(V)‖ ≤ 1
ε

(
‖(x− p)(u)‖ − εDi,j

)
.

34

Figure 3.2. An example from the family of perturbations considered by Lemma
3.1.5. Here v is in the upwards direction. If a is to the right of the diagonal
solid line, then a′ will be to the right of the slanted dashed line and will lie on
the wrong side of the separating hyperplane.

Proof. Let v ∈ V be a unit vector perpendicular to u. Without loss of generality, let

a ∈ Ci (taking u or −u does not change the inequality). Let b, c, d ∈ Ci such that a, b, c, d ∈ Ci

are distinct. Let δ = εDi,j ≤ εD and consider the ε-additive perturbation X ′ given by the

union of

{ a− δu, b+ δu, c− δv, d− δv } ∪ { x− δ
2
v | x ∈ Ci \ { a, b, c, d } } ∪ {x+ δ

2
v | x ∈ Cj }

and an unperturbed copy of X \ (Ci ∪ Cj).

By assumption, {Ci, Cj } remain optimal clusters in X ′. We have constructed X ′ such

that the new means of Ci, Cj are µ′i = µi − δ
2
v and µ′j = µj + δ

2
v, and the midpoint between

the means is p′ = p. The halfspace containing µ′i given by the linear separator between µ′i

and µ′j is 〈x− p′, µ′i − µ′j〉 ≥ 0. Hence, as a′ is classified correctly by the ε-APS assumption,

〈a′ − p′, µ′i − µ′j〉 = 〈a− p− δu,Di,ju− δv〉

= Di,j(〈a− p, u〉 − ε〈a− p, v〉 − δ) ≥ 0

35

Then noting that 〈a− p, u〉 ≥ 0, we have that 〈a− p, v〉 ≤ 1
ε

(
‖(a− p)(u)‖ − δ

)
. �

This geometric property follows from perturbations which only affect two clusters at a

time. Our results follow from this weaker notion.

3.1.4. (ρ,∆, ε)-separation

Motivated by Lemma 3.1.5, we define a geometric condition where the angular separation and

margin separation are parametrized separately. These separations are implied by a stronger

stability assumption where any pair of clusters is ε-APS with scale parameter ∆ even after

being moved towards each other a distance of ρ.

We say that a pair of clusters is (ρ,∆, ε)-separated if their points lie in cones with axes

along the intermean direction, half-angle arctan(1/ε), and apexes at distance ∆ from their

means and at least ρ from each other (see figure 3.1b). Formally, we require the following.

Definition 3.1.6 (Pairwise (ρ,∆, ε)-separation). Given a pair of clusters Ci, Cj with

means µi, µj, let u =
µi−µj
‖µi−µj‖ be the unit vector in the intermean direction and let p =

(µi + µj)/2. We say that Ci and Cj are (ρ,∆, ε)-separated if Di,j ≥ ρ + 2∆ and for all

x ∈ Ci ∪ Cj,

‖(x− p)(V)‖ ≤
1

ε

(
‖(x− p)(u)‖ − (Di,j/2−∆)

)
.

Definition 3.1.7 ((ρ,∆, ε)-separation). We say that an instance X is (ρ,∆, ε)-separated

if every pair of clusters in the optimal clustering is (ρ,∆, ε)-separated.

36

3.2. k-means clustering for k = 2

In this section, we give an algorithm that is able to cluster 2-means ε-APS instances

correctly.

Theorem 3.2.1. There exists a universal constant c ≥ 1 such that for any fixed ε > 0,

there exists an nO((1/ε)c)d time algorithm that correctly clusters all ε-APS 2-means instances.

The algorithm is inspired by work in Blum and Dunagan [2002] showing that the perceptron

algorithm runs in poly-time with high probability in the smoothed analysis setting.

3.2.1. Review of perceptron algorithm

Suppose y1, . . . , yn is a sequence of labeled {+1,−1 }-samples consistent with a linear thresh-

old function, i.e., there exists vector w∗ such that the labeling function `(yi) is consistent

with sgn(〈yi, w∗〉). At time t = 0, the perceptron algorithm sets w0 = 0. At each subsequent

time step, the algorithm sees sample yt, outputs sgn(〈yt, wt−1〉) as its guess for `(yt), sees

the true label `(yt), and updates wt. On a correct guess, wt = wt−1, and on a mistake

wt = wt−1 + `(yt)yt/ ‖yt‖.

The following well-known theorem Block [1962] bounds the number of total mistakes the

perceptron algorithm can make in terms of the sequence’s angular margin.

Theorem 3.2.2. The number of mistakes made by the perceptron algorithm is bounded

above by (1/γ)2 for

γ = min
i∈[n]

|〈yi, w∗〉|
‖yi‖ ‖w∗‖

.

37

For a universe U of elements and a function f : U → Z≥0, we will denote by (U, f) the

multiset where u ∈ U appears in the multiset f(u)-many times. The size of a multiset is∑
u∈U f(u). The next lemma is an immediate consequence of the above theorem.

Lemma 3.2.3. There exists a multiset M = ({ y1, . . . , yn } , f) of size at most (1/γ)2

such that
∑

y∈M `(y) y
‖y‖ correctly classifies all of { y1, . . . , yn }.

Proof. Let r = (1/γ)2 + 1. Consider the performance of the perceptron algorithm on r

consecutive runs of the y1, . . . , yn, i.e., let the input be

1 run︷ ︸︸ ︷
y1, . . . , yn, y1, . . . , yn, . . . , y1, . . . , yn︸ ︷︷ ︸

r runs

.

A mistake can only be made on a given run if mistakes were made on every previous run.

Suppose the perceptron algorithm makes a mistake on the rth run, then the algorithm must

have made at least (1/γ)2 + 1 mistakes, a contradiction. Hence the direction of w after r − 1

runs correctly classifies all of { y1, . . . , yn }. The value of w is
∑

i∈[n] f(yi)`(yi)
yi
‖yi‖ where f(yi)

is the number of times yi was misclassified. �

3.2.2. A perceptron-based clustering algorithm

Fix the following notation: let X = {x1, . . . , xn } ⊆ Rd be an ε-APS 2-means clustering

instance with optimal clusters C1, C2 such that each cluster has at least 4 points. Let

D = ‖µ1 − µ2‖, u = µ1−µ2
‖µ1−µ2‖ , p = µ1+µ2

2
. Without loss of generality, assume that

∑
i xi = 0.

Lemma 3.1.5 gives a lower bound for γ in the correctly-centered set {x1 − p, . . . , xn − p }.

Thus Lemma 3.2.3 might suggest a simple algorithm: for each multiset of bounded size and

each of its possible labels, compute the cost of the associated clustering, then output the

38

clustering of minimum cost. However, a difficulty arises as the clusters C1, C2 may not be

linearly separable (in particular the separating hyperplane may not pass through the origin).

Note that the guarantees of the perceptron algorithm, and hence Lemma 3.2.3, do not hold

in this case. Instead, we will apply the above idea to an instance Y , constructed from X, in

which C1, C2 are linearly separable and we can efficiently lower bound γ.

Consider the following algorithm.

Algorithm 3.2.4.

Input: X = {x1, . . . , xn }, ε

1: If necessary, translate X such that
∑
xi = 0

2: for all pairs a, b of distinct points in {xi } do

3: Let δ = ‖a− b‖

4: Let Ya,b = { y1, . . . , yn } be an instance given by yi = (xi, δ) ∈ Rd+1

5: for all multisets M of size at most c−2
1 ε−8 and assignments ` : M → {±1 } do

6: Let w =
∑

y∈M `(y) y
‖y‖

7: Calculate k-means cost of C1 = {xi | 〈w, yi〉 ≥ 0 } , C2 = {xi | 〈w, yi〉 < 0 }.

8: Return clustering with smallest k-means objective found above

3.2.3. Overview of proof of Theorem 3.2.1

Each new instance Ya,b constructed in the algorithm has labeling consistent with some linear

threshold function: `(yi) = `(xi) = sgn(〈xi − p, u〉) = sgn(〈xi, u〉 + 〈−p, u〉). Then taking

w∗ = (u, 〈−p,u〉/δ), we have that `(yi) = sgn(〈yi, w∗〉).

39

We will lower bound γ for a particular instance Ya,b in which a, b have nice properties.

The following lemma states that on one of the iterations of its outer for loop, Algorithm 3.2.4

will pick such points.

Lemma 3.2.5. There exist points a ∈ C1, b ∈ C2 such that 〈a − p, u〉 ≤ ∆/2 and

〈b− p,−u〉 ≤ ∆/2.

The geometric conditions implied by ε-APS allow us to bound δ = ‖a− b‖ in terms of

ε,D. In particular, using this handle on δ, it is possible to prove the following lower bound

on γ.

Lemma 3.2.6. There exists constant c1 such that for any a, b satisfying Lemma 3.2.5,

the corresponding instance Ya,b has

γ = min
i∈[n]

|〈yi, w∗〉|
‖yi‖ ‖w∗‖

≥ c1ε
4.

The correctness of Algorithm 3.2.4 for all ε-APS 2-means clustering instances in which

each cluster has at least 4 points then follows from Lemmas 3.2.3, 3.2.5, and 3.2.6. On the

other hand, the optimal 2-means clustering where one of the clusters has at most 3 points

can be calculated in O(n4d) time. An algorithm that returns the better of these two solutions

thus correctly clusters all ε-APS 2-means instances, completing the proof of Theorem 3.2.1.

3.2.4. Proof of Lemmas 3.2.5, 3.2.6

We state two lemmas that follow immediately from Lemma 3.1.5 and will be useful for the

proofs in this section.

40

Lemma 3.2.7. For any x ∈ X,

‖〈x− p, u〉‖ ≥ εD.

In particular, for x ∈ C1, 〈x− p, u〉 ≥ εD and for x ∈ C2, 〈x− p, u〉 ≤ −εD.

Lemma 3.2.8. For any x ∈ X,

|〈x− p, u〉|
‖x− p‖

≥
√

ε2

1 + ε2
.

Lemma 3.2.5. We restate and prove Lemma 3.2.5 below.

Lemma. There exist points a ∈ C1, b ∈ C2 such that 〈a− p, u〉 ≤ ∆/2 and 〈b− p,−u〉 ≤

∆/2.

Proof of Lemma 3.2.5. Note that 〈µ1− p, u〉 = 1
|C1|
∑

x∈C1
〈x− p, u〉. As 〈µ1− p, u〉 =

∆/2, there must be some a ∈ C1 such that { a− p, u } ≤ ∆/2. The second assertion is proved

similarly. �

Lemma 3.2.6. Note that Lemmas 3.2.7 and 3.2.5 together imply that we cannot have an

instance with ε > 1/2.

Lemma 3.2.9. There is no ε-APS k-means clustering instance for ε > 1/2.

The following lemma bounds δ = ‖a− b‖ in terms of ε, D.

Lemma 3.2.10. Let a, b ∈ X be points satisfying Lemma 3.2.5. Then,

(2ε)D ≤ ‖a− b‖ ≤

(√
1 + ε2

ε2

)
D.

41

Proof. For the first inequality, ‖a− b‖ ≥ |〈u, a− b〉| = |〈u, a− p〉 − 〈u, b− p〉|. Then

by Lemma 3.2.7, ‖a− b‖ ≥ 2εD.

For the second inequality, ‖a− b‖ ≤ ‖a− p‖+ ‖p− b‖. By assumption, 〈a− p, u〉 ≤ ∆/2.

Then by Lemma 3.2.8, ‖a− p‖ ≤
√

(1 + ε2)/ε2D/2. Similarly, ‖b− p‖ ≤
√

(1 + ε2)/ε2D/2.

�

Finally, we restate and prove Lemma 3.2.6 below.

Lemma. There exists constant c1 such that for any a, b satisfying Lemma 3.2.8, the

corresponding instance Ya,b has

γ = min
i∈[n]

|〈yi, w∗〉|
‖yi‖ ‖w∗‖

≥ c1ε
4.

Proof. We bound each term in the minimization individually. Let i ∈ [n], then

|〈yi, w∗〉|
‖yi‖ ‖w∗‖

=
|〈xi − p, u〉|√

‖xi‖2 + δ2

√
1 +

(
〈p,u〉
δ

)2
.

We first observe the following facts.

• From Lemma 3.2.8, |〈xi − p, u〉| ≥
√

ε2

1+ε2
‖xi − p‖ ≥ ε

1+ε
‖xi − p‖

• By Lemma 3.2.8, ‖xi‖2 ≤ 2 ‖xi − p‖2 + 2 ‖p‖2 ≤ 2 ‖xi − p‖2 + 1
2

1+ε2

ε2
D2

• From Lemma 3.2.10, δ2 ≤ 1+ε2

ε2
D2

• As p and the origin both lie on the line between µ1 and µ2, |〈p, u〉| ≤ D
2
≤ δ

4ε

• From Lemma 3.2.7, ‖xi − p‖ ≥ εD

42

Making each of the substitutions above,

|〈yi, w∗〉|
‖yi‖ ‖w∗‖

≥ ε
‖xi − p‖

(1 + ε)
√

2 ‖xi − p‖2 + 3
2

1+ε2

ε2
D2

√
1 + 1

16ε2

≥ ε
1

(1 + ε)

√
2 + 3

2
1+ε2

ε2

(
D

‖xi−p‖

)2√
1 + 1

16ε2

≥ ε
1

(1 + ε)
√

2 + 3
2ε2

+ 3
2ε4

√
1 + 1

16ε2

.

Then, completing both squares,

|〈yi, w∗〉|
‖yi‖ ‖w∗‖

≥ ε
1

(1 + ε)

(√
2 +

√
3/2

ε2

)(
1 + 1/4

ε

)
= ε4 1

(1 + ε)
(√

2ε2 +
√

3/2
)

(ε+ 1/4)

As ε ≤ 1/2 by Lemma 3.2.9, we can bound the fraction below by some constant c1 ≈

0.563. �

3.3. k-means clustering for general k

For general k, we will require the stronger (ρ,∆, ε)-separation. Consider the following

algorithm.

Algorithm 3.3.1.

Input: X = {x1, . . . , xn }, k.

1: for all pairs a, b of distinct points in {xi } do

2: Let r = ‖a− b‖ be our guess for ρ

43

3: procedure INITIALIZE

4: Create graph G on vertices {x1, . . . , xn } where xi and xj have an edge iff ‖xi −

xj‖ < r

5: Let a1, . . . , ak ∈ Rd where ai is the mean of the ith largest connected component

of G

6: procedure ASSIGN

7: Let C1, . . . , Ck be the clusters obtained by assigning each point in X to the closest

ai

8: Calculate the k-means objective of C1, . . . , Ck

9: Return clustering with smallest k-means objective found above

Theorem 3.3.2. Algorithm 3.3.1 recovers C1, . . . , Ck for any (ρ,∆, ε)-separated instance

with ρ = Ω
(

∆
ε2

+ β∆
ε

)
and can be implemented in Õ(n2kd) time.

This running time can be achieved by inserting edges into a dynamic graph in order,

maintaining connected components and their means using a union-find data structure, and

noting that the number of connected components can change at most n times.

In particular, note that this algorithm does not need any prior knowledge of the stability

parameters and its running time has no dependence on ρ, ∆, or ε.

Define the following regions of Rd for every pair i, j. Given i, j, let Ci, Cj be the

corresponding clusters with means µi, µj . Let u =
µi−µj
‖µi−µj‖ be the unit vector in the inter-mean

direction.

44

Definition 3.3.3.

• S(cone)
i,j = {x ∈ Rd | ‖(x− (µi −∆u))(V)‖ ≤ 1

ε
〈x− (µi −∆u), u〉 },

• S(nice)
i,j = {x ∈ S(cone)

i,j | 〈x− µi, u〉 ≤ 0 },

• S(good)
i =

⋂
j 6=i S

(nice)
i,j .

See Figure 3.1b. for an illustration.

It suffices to prove the following two lemmas. Lemma 3.3.4 states that the initialization

returned by the INITIALIZE subroutine satisfies certain properties when we guess r = ρ

correctly. As ρ is only used as a threshold on edge lengths, testing the distances between all

pairs of data points i.e. { ‖a− b‖ : a, b ∈ X } suffices. Lemma 3.3.5 states that the ASSIGN

subroutine correctly clusters all points given an initialization satisfying these properties.

Lemma 3.3.4. For a (ρ,∆, ε)-separated instance with balance parameter β and ρ =

Ω(β∆/ε), the INITIALIZE subroutine finds a set { a1, . . . , ak } where ai ∈ S(good)
i when r = ρ.

Lemma 3.3.5. For a (ρ,∆, ε)-separated instance with ρ = Ω(∆/ε2), the ASSIGN sub-

routine recovers C1, C2, · · ·Ck correctly when initialized with k points { a1, a2, . . . , ak } where

ai ∈ S(good)
i .

3.3.1. Proof of Lemma 3.3.4.

Suppose r = ρ and consider the graph constructed by Algorithm 3.3.1. We start by defining

the core region of each cluster.

Definition 3.3.6 (S(core)). Let S(core)
i = {x ∈ Rd | ‖x− µi‖ ≤ ∆/ε }.

45

The core regions are defined in such a way that for each cluster Ci, all points in Ci∩S(core)
i

belong to a single connected component. Although S(core)
i may not contain too many points

on its own, the connected component containing S(core)
i will contain most (at least β/(1 + β)

fraction) of the points in Ci. Hence, the k largest components will be the connected components

containing the k different core regions. Finally, since the connected component containing

S
(core)
i contains most of the points in Ci, the geometric conditions of (ρ,∆, ε)-separation

ensure that the empirical mean of the connected component lies in S(good)
i . The following

lemma states some properties of the connected components in our graph.

Lemma 3.3.7.

(1) Any connected component only contains points from a single cluster.

(2) For all i, j, S(core)
i ⊇ S

(nice)
i,j . There is a point x ∈ Ci such that x ∈ S(core)

i ∩ S(nice)
i,j .

(3) For all i, j, let Ai,j = {x ∈ Ci | 〈x− µi, u〉 ≤ β∆ }. Then, |Ai,j| ≥ β
1+β
|Ci|.

(4) For all i, S(core)
i ∩X is connected in G.

(5) For all i, j, Ai,j is connected in G.

(6) The largest component, Ki, in each cluster contains Ai,j for each j 6= i. In particular,

|Ki| ≥ β
1+β
|Ci|, and Ki contains S

(core)
i ∩X.

Proof.

(1) Let x ∈ Ci and y ∈ Cj. Then ‖x− y‖ ≥ |〈x− y, u〉| ≥ ρ, thus no edge connecting

points in different clusters is added to G.

(2) For x ∈ S(nice)
i,j , ‖(x− µi)(V)‖ ≤ 1

ε
(∆− ‖(x− µi)(u)‖), hence ‖x− µi‖ ≤ ∆/ε. Recall

µi is the mean of the points in cluster Ci. By an averaging argument, S(nice)
i,j ∩

46

X = {x ∈ Ci | 〈x− (µi −∆u), u〉 ≤ ∆ } is nonempty and hence S(core)
i ∩ S(nice)

i,j is

nonempty.

(3) µi is the mean of the points in cluster Ci. By an averaging argument, |Ai,j|∆ −

(|Ci| − |Ai,j|)β∆ ≥ 0. Rearranging, |Ai,j| ≥ β
1+β
|Ci|.

(4) For x, y ∈ S(core)
i , ‖x− y‖ ≤ 2∆/ε. Thus for ρ = Ω(∆/ε), the points S(core)

i ∩X are

connected.

(5) From 2 above, S(nice)
i,j ∩X is nonempty; fix such a point x. For y ∈ Ai,j, ‖x− y‖2 =

‖(x− y)(u)‖2 + ‖(x− y)(V)‖2 ≤ ((β + 1)∆)2 + ((β + 1)∆/ε)2. Thus for ρ = Ω(β∆/ε),

all of Ai,j is connected through x.

(6) Let Ki be the component containing S(core)
i ∩X. By 2 above, for all j there exists

a point x(j) ∈ S(core)
i such that x(j) ∈ S(nice)

i,j ⊆ Ai,j. Then as Ai,j is connected, Ki

must also contain Ai,j . As |Ki| ≥ |A| and β ≥ 1, part 3 above tells us that Ki is the

largest connected component in Ci.

�

Lemma 3.3.8 states that the k largest components (and hence { a1, . . . , ak }) must belong

to different clusters while Lemma 3.3.9 states that each ai lie inside a good region. Together,

they imply Lemma 3.3.4, i.e. each ai comes from a different good region.

Lemma 3.3.8. The set of k largest components of G contains the largest component of

each cluster.

Proof. Let Ki be the largest component in Ci and let K ′j be a component in Cj that is

not the largest. Then by the β parameter, |Ki| ≥ β
1+β
|Ci| > 1

1+β
|Cj| ≥ |K ′j|. It follows that

the k largest connected components are K1, K2, . . . , Kk. �

47

Lemma 3.3.9. The mean of points in Ki lies in S(good)
i .

Proof. Let ai be the mean of the points in Ki. As Ki ⊆ S
(cone)
i,j is a convex set,

ai ∈ S(cone)
i,j . As Ki ⊇ S

(core)
i ∩X ⊇ S

(nice)
i,j ∩X, the points x ∈ Ci not contained in Ki have

〈x − µi, u〉 > 0. Noting that
∑

x∈Ci〈x − µi, u〉 = 0, it follows that 〈ai − µi〉 ≤ 0. Hence,

ai ∈ S(nice)
i,j . As this holds for each j 6= i, ai ∈ S(good)

i . �

3.3.2. Proof of Lemma 3.3.5.

We will show that for any ai ∈ S(nice)
i,j , aj ∈ S(nice)

j,i , and x ∈ Ci, x is closer to ai than to aj.

The following lemma states some properties of the perpendicular bisector between ai and aj.

These statements follow from the definitions of the nice regions and the angular separation.

Lemma 3.3.10. Suppose ρ = Ω(∆/ε2). Then, for ai ∈ S(nice)
i,j and aj ∈ S(nice)

j,i , we have

(1) ‖(ai − aj)(u)‖ ≥
‖(ai−aj)(V)‖

ε
,

(2) 〈ai+aj
2
− p, u〉 ≤ ∆

2
, and

(3)
∥∥∥ (ai+aj2

− p
)

(V)

∥∥∥ ≤ ∆/ε.

Proof.

(1) We have ‖(ai − aj)(V)‖ ≤ 2∆/ε. On the other hand, ρ ≤ ‖(ai − aj)(u)‖. Thus the

inequality holds for ρ ≥ 2∆/ε2.

(2) 〈ai+aj−2p, u〉 = 〈ai−p, u〉+ 〈aj−p, u〉 ≤ Di,j/2+(−Di,j/2+∆) = ∆. Multiplying

by 1/2 gives the desired inequality.

(3) ‖(ai + aj − 2p)(V)‖ ≤ ‖(ai− p)(V)‖+ ‖(aj − p)(V)‖ ≤ 2∆/ε. Multiplying by 1/2 gives

the desired inequality.

48

�

To prove Lemma 3.3.5, we rewrite the condition ‖x− ai‖ ≤ ‖x− aj‖ as 〈x− p− (1
2
(ai +

aj)− p), ai− aj〉 ≥ 0. Then we write each vector in terms of their projection on u and V and

use the above lemma to bound each of the terms.

Proof of Lemma 3.3.5. It suffices to show that for any ai ∈ S(nice)
i,j , aj ∈ S(nice)

j,i , and

x ∈ Ci, ‖x− ai‖ ≤ ‖x− aj‖. Then by Lemma 3.3.10 above,

〈
(x− p)−

(
ai + aj

2
− p
)
, ai − aj

〉
=
〈
(x− p)(u), (ai − aj)(u)

〉
+
〈
(x− p)(V), (ai − aj)(V)

〉
−
〈
(1

2
(ai + aj)− p)(u), (ai − aj)(u)

〉
−
〈
(1

2
(ai + aj)− p)(V), (ai − aj)(V)

〉
≥ ‖(x− p)(u)‖‖(ai − aj)(u)‖ −

1

ε

(
‖(x− p)(u)‖ − ρ/2

)
ε‖(ai − aj)(u)‖

− ∆

2
‖(ai − aj)(u)‖ −

∆

ε
ε‖(ai − aj)(u)‖

=

(
ρ

2
− 3

2
∆

)
‖(ai − aj)(u)‖ ≥ 0

where the first inequality follows because of equality on the first term and Cauchy-Schwarz

on the rest. So, for all ai ∈ S(nice)
i,j , aj ∈ S(nice)

j,i , and x ∈ Ci, x is closer to ai than aj. �

3.4. Robust k-means

A simple extension of algorithm 3.3.1 does well even in the presence of adversarial noise for

instances with (ρ,∆, ε)-separation for large enough ρ. Specifically, we consider the following

model.

49

Let X = {x1, . . . , xn } ⊂ Rd be a k-means clustering instance with optimal clustering

C1, . . . , Ck. We call X the set of pure points. An additional set of at most ηn-many impure

points Z ⊂ Rd is added by an adversary. Our goal is to find a clustering of X ∪Z that agrees

with C1, . . . , Ck on the pure points.

Let wmax = max|Ci|/n and let wmin = min|Ci|/n be the maximum and minimum weight

of clusters. We will assume that η < wmin.

Algorithm 3.4.1.

Input: X ∪ Z, r, t

1: procedure INITIALIZE

2: Create graph G on X ∪ Z where vertices u and v have an edge iff ‖u− v‖ < r

3: Remove vertices with vertex degree < t

4: Let a1, . . . , ak ∈ Rd where ai is the mean of the ith largest connected component of G

5: procedure ASSIGN

6: Let C1, . . . , Ck be the clusters obtained by assigning each point in I ∪Z to the closest

ai

Theorem 3.4.2. Given X ∪ Z where X satisfies (ρ,∆, ε)-separation for

ρ = Ω

(
∆

ε2

(
wmax + η

wmin − η

))
,

50

|X| = n and |Z| ≤ ηn for η < wmin, there exists values of r, t such that Algorithm 3.4.1

returns a clustering consistent with C1, . . . , Ck on X. Algorithm 3.4.1 can be implemented in

Õ(n2kd) time.

Proof. Fix the following parameters.

α = 2

(
wmax + η

wmin − η

)
, r = ∆(α + 1)(1 + 2/ε), t = wminn

α

α + 1
.

Define the following extended and robust versions of the regions defined in Section 3.3.

Given i, j, let Ci, Cj be the corresponding clusters with means µi, µj. Let u =
µi−µj
‖µi−µj‖ be the

unit vector in the inter-mean direction.

Definition 3.4.3.

• S(e nice)
i,j = {x ∈ S(cone)

i,j | 〈x− µi, u〉 ≤ α∆ },

• S(r e nice)
i,j = {x ∈ Rd | d(x, S

(e nice)
i,j) ≤ r },

• S(r good)
i =

⋂
j 6=i S

(r e nice)
i,j .

Again, it suffices to prove the following two lemmas. Lemma 3.4.4 states that the

initialization returned by the INITIALIZE subroutine satisfies certain properties when given

r, t. As in the case of Algorithm 3.3.1, this algorithm uses r and t as thresholds. Hence, it is

possible to guess r from the
(
n
2

)
pairwise edge lengths and t from [n] if necessary. Lemma

3.4.5 states that the ASSIGN subroutine correctly clusters all points given an initialization

satisfying these properties.

51

Lemma 3.4.4. Given X∪Z where X is a (ρ,∆, ε)-separated instance with ρ = Ω(α∆/ε2)

and η < wmin, for the choices of r and t as above, the INITIALIZE subroutine finds a set

{ a1, . . . , ak } where ai ∈ S(r good)
i

Lemma 3.4.5. Given X∪Z where X is a (ρ,∆, ε)-separated instance with ρ = Ω(α∆/ε2)

and η < wmin, the ASSIGN subroutine finds a clustering consistent with C1, . . . , Ck on X when

initialized with k points { a1, . . . , ak } where ai ∈ S(r good)
i .

3.4.1. Proof of Lemma 3.4.4

Consider the graph constructed by Algorithm 3.4.1. The following lemma states some

properties of the connected components in our graph.

Lemma 3.4.6.

(1) For any i 6= j, the set of vertices S(e nice)
i,j ∩ X forms a clique and the size of this

clique is greater than t. In particular, no vertex in S(e nice)
i,j is deleted.

(2) Fix i. For all j 6= i, the vertices S(e nice)
i,j ∩X belong to a single connected component.

Let Ki be this connected component.

(3) Before vertex deletion (and after), no vertex is adjacent to pure points from different

clusters.

(4) After vertex deletion, every remaining point lies in S
(r good)
i for some i. Hence by

part 2, every connected component contains pure points from at most a single cluster.

In particular, K1, . . . , Kk are distinct.

Proof.

52

(1) The diameter of S(e nice)
i,j is L(S

(e nice)
i,j) ≤ (α+ 1)2∆/ε < r. Thus every pair of points

in this region is connected. Recall that µi is the mean of the pure points in cluster

Ci. By an averaging argument, |S(e nice)
i,j ∩ X|∆ − (|Ci| − |S(e nice)

i,j ∩ X|)α∆ ≥ 0.

Rearranging, |S(e nice)
i,j ∩X| ≥ α

α+1
|Ci| ≥ α

α+1
nwmin = t.

(2) Fix i. Let j 6= i. Recall S(nice)
i,j ∩ X is nonempty; let x ∈ S

(nice)
i,j ∩ X. Then

‖x− µi‖ ≤ ∆/ε. We show that for any j′ 6= i, the connected component containing

x contains S(e nice)
i,j′ ∩X. Let y ∈ S(e nice)

i,j′ ∩X. Then ‖y− x‖ ≤ ‖y−µi‖+ ‖x−µi‖ ≤

(α + 1)∆/ε+ α∆ + ∆/ε < ∆(α + 1)(1 + 2/ε) = r.

(3) Pure points in different clusters are at distance at least ρ whereas two vertices

sharing a neighbor must be at distance less than 2r. Thus the inequality holds for

ρ ≥ Ω(α∆/ε).

(4) Let x be a point not in
⋃
i S

(r good)
i . By part 3 above, x can only be connected to

pure points in a single cluster. Suppose it is connected to pure points in cluster Ci.

By assumption, there exists a j such that x /∈ S(r e nice)
i,j . We bound the degree of

x above by the number of points in X \ S(e nice)
i,j and the ηn-many impure points,

i.e., deg(x) ≤ ηn+ |Ci|
α+1
≤ n(η + wmax

α+1
). By our choice of t, we have that deg(x) < t.

Thus x is deleted and all remaining points lie in
⋃
i S

(r good)
i .

For any i, j, the minimum distance between S(r good)
i and S(r good)

j is at least ρ−2r.

For some ρ ≥ Ω(α∆/ε) then, the distance between these regions is greater than

ρ− 2r > r and no connected component contains pure points from multiple clusters.

�

53

Lemma 3.4.7 state that the k largest components contain pure points corresponding to

different clusters while Lemma 3.4.8 states that each ai lies inside a robust good region.

Together, they imply Lemma 3.4.4, i.e. each ai lies in a different robust good region.

Lemma 3.4.7. Let Ki be defined as above. For any arbitrary connected component K

not in K1, . . . , Kk, |Ki| > |K|. In particular, the k largest components of G are K1, . . . , Kk.

Proof. As in part 2 above, the size of Ki is bounded below by the averaging argument

|Ki| ≥ α
α+1
|Ci|. By part 3 above, K contains pure points from at most a single cluster Cj.

By part 5 above, the size of the connected component K is bounded above by the number of

remaining points after Kj is removed and the ηn-many impure points, i.e., |Cj| ≤ 1
α+1
|Cj|+ηn.

Then by our choice of α, |K| < |Ki|. �

Lemma 3.4.8. The mean of Ki lies in S(r good)
i .

Proof. By above, Ki ⊆ S
(r good)
i . As S(r good)

i is convex, the mean of Ki also lies in

S
(r good)
i . �

3.4.2. Proof of Lemma 3.4.5

We will show that for any ai ∈ S(r e nice)
i,j , aj ∈ S(r e nice)

j,i and x ∈ Ci, x is closer to ai than aj.

The following lemma states some properties of the perpendicular bisector between ai and aj.

Lemma 3.4.9. Suppose ρ = Ω(α∆/ε2). Then, for ai ∈ S(r e nice)
i,j and aj ∈ S(r e nice)

j,i , we

have

(1) ‖(ai − aj)(u)‖ ≥
‖(ai−aj)(V)‖

ε
,

54

(2) 〈ai+aj
2
− p, u〉 ≤ (α + 1)∆/2 + r,

(3)
∥∥∥ (ai+aj2

− p
)

(V)

∥∥∥ ≤ (α + 1)∆/ε+ r.

Proof.

(1) By triangle inequality, ‖(ai − aj)(V)‖ ≤ 2((α + 1)∆/ε + r). On the other hand,

‖(ai − aj)(u)‖ ≥ ρ− 2r. Thus the inequality holds for ρ ≥ 2r + 2
ε
((α + 1)∆/ε+ r).

(2) 〈ai +aj− 2p, u〉 = 〈ai− p, u〉+ 〈aj− p, u〉 ≤ (Di,j/2 +α∆ + r) + (−Di,j/2 + ∆ + r) =

(α + 1)∆ + 2r. Multiplying by 1/2 gives the desired inequality.

(3) ‖(ai + aj − 2p)(V)‖ ≤ ‖(ai− p)(V)‖+ ‖(aj − p)(V)‖ ≤ 2((α+ 1)∆/ε+ r). Multiplying

by 1/2 gives the desired inequality.

�

To prove Lemma 3.4.5, we rewrite the condition ‖x− ai‖ ≤ ‖x− aj‖ as 〈(x− p)− (1
2
(ai +

aj)− p), ai− aj〉 ≥ 0. Then we write each vector in terms of their projection on u and V and

use the above lemma to bound each of the terms.

55

Proof of Lemma 3.4.5. It suffices to show that for any ai ∈ S(r e nice)
i,j , aj ∈ S(r e nice)

j,i

and x ∈ Ci, ‖x− ai‖ ≤ ‖x− aj‖. Then by Lemma 3.4.9 above,

〈
(x− p)−

(
ai + aj

2
− p
)
, ai − aj

〉
=
〈
(x− p)(u), (ai − aj)(u)

〉
+
〈
(x− p)(V), (ai − aj)(V)

〉
− 1

2

〈
(ai + aj − 2p)(u), (ai − aj)(u)

〉
− 1

2

〈
(ai + aj − 2p)(V), (ai − aj)(V)

〉
≥ ‖(x− p)(u)‖‖(ai − aj)(u)‖ −

1

ε

(
‖(x− p)(u)‖ − ρ/2

)
ε‖(ai − aj)(u)‖

− ((α + 1)∆/2 + r) ‖(ai − aj)(u)‖

− ((α + 1)∆/ε+ r) ε‖(ai − aj)(u)‖

=

(
ρ

2
−
(

3

2
(α + 1)∆ + (1 + ε)r

))
‖(ai − aj)(u)‖

where the inequality follows because of equality on the first term and Cauchy-Schwarz on the

rest. So, when ρ = Ω(α∆/ε2), for all ai ∈ S(r e nice)
i,j , aj ∈ S(r e nice)

j,i , and x ∈ Ci, x is closer to

ai than aj. �

�

56

CHAPTER 4

Adversarial Learning : Upper Bound

In this chapter, we introduce a broad class of polynomial optimization problems and show

a connection between them and designing adversarial examples for depth 2 neural networks

with ReLU gates.

4.1. Finding Adversarial Examples Using Polynomial Optimization

The following proposition shows the crucial connection between finding adversarial ex-

amples and polynomial optimization. It proves the existence of an algorithm that finds

adversarial examples if given access to an algorithm that optimizes polynomials. While our

theory is written in terms of deterministic binary classification, it extends fairly easily to

multiclass classification and randomized algorithms.

Proposition 4.1.1. Let γ ≥ 1. There is an efficient algorithm that given a classifier

sgn(f(x)) and a point x∗, and budget δ > 0, guarantees to either (a) find an adversarial

example in Bn
∞(x∗, γδ), or (b) certify the absence of any adversarial example in Bn

∞(x∗, δ),

given access to an efficient optimization algorithm that takes x∗ and a polynomial g(z) ∈

{ f(x∗ + z),−f(x∗ + z) } as input and finds a ẑ such that g(ẑ) ≥ max‖z‖∞≤δ g(z) with ‖ẑ‖∞ ≤

γδ.

Proof of Proposition 4.1.1. Let ALGγ be the optimization algorithm. Suppose

there exists an adversarial example x∗ + z∗ with ‖z∗‖∞ ≤ δ, and let y∗ := sgn(f(x∗)) be the

57

label for the point x∗. Then we have that maxz:‖z‖∞≤δ(−y∗)f(x∗ + z) ≥ (−y∗)f(x∗ + z∗) > 0.

Now for g(z) = −y∗f(x∗ + z) (a polynomial in z), we get that ALGγ finds a point ẑ with

‖ẑ‖∞ ≤ γδ that also satisfies (−y∗)f(x∗ + ẑ) > 0 i.e., sgn(f(x∗)) 6= sgn(f(x∗ + ẑ)), as

required. Furthermore, if ALGγ fails, i.e., outputs a ẑ such that (−y∗)f(x∗ + ẑ) < 0, then

from the guarantee of the algorithm we know that maxz:‖z‖∞≤δ(−y∗)f(x∗ + z) < 0 and hence

no adversarial example exists within a δ ball around x∗. �

While the proof of the proposition only requires that the algorithm returns ẑ with g(ẑ) > 0,

it effectively requires that ẑ attains at least as large an objective value because the constant

term can be arbitrary. When the classifier is a degree-d PTF of the form sgn(f), it leads

to the following approximate optimization problem: given as input a degree d polynomial

g : Rn → R (potentially different from f) and any η, δ > 0, find in time poly(n, log(1
η
)) and

w.p. at least 1− η a point x̂ s.t.

g(x̂) ≥ max
x∈Bn∞(0,δ)

g(x) and x̂ ∈ Bn
∞(0, γδ). (4.1)

Given a n-variate polynomial g, consider the following basic polynomial optimization

problem

val∗ := max
x∈Bn∞(0,δ)

g(x). (4.2)

This simple version of polynomial optimization problem is NP-hard for polynomials of degree-2

or more (see Section 5.1 for example). We study a natural approximation variant of this

problem, that asks, given a polynomial g(x) such that maxx∈Bn∞(0,δ) g(x) = val∗, can one

output in polynomial time, a point x̂ in a larger ‖‖∞ ball such that g(x̂) ≥ val∗? The above

proposition proves that if there exists an algorithm that can solve this approximate version of

58

the maximization problem for a particular class of polynomials, then we can find adversarial

examples in the relaxed ball or certify their absence for the corresponding class of PTFs.

As a warm-up, using this framework, we prove that we can find adversarial examples for

linear separators.

Claim 4.1.2. There is a deterministic linear-time algorithm that given any linear threshold

function sgn(bTx+ c), a point x∗ and δ > 0, provably finds an adversarial example in the `∞

ball of δ around x∗ when it exists.

Proof. We use Proposition 4.1.1 and give a corresponding polynomial maximization

algorithm for linear functions. For linear function g(x) represented by g(x) := bTx+ c where

b ∈ Rn, c ∈ R, we can easily find a solution x̂ ∈ Bn
∞(0, δ) such that g(x̂) = maxx∈Bn∞(0,δ) g(x).

This is because the linear form bTx+ c is maximized within Bn
∞(0, δ) by setting each variable

xi to be δ if the corresponding bi ≥ 0, and −δ, otherwise. �

Maximizing a degree-1 polynomial is easy, so in the case of linear threshold functions we

can exactly find adversarial examples when they exist. The following theorem is the main

theoretical result that gives an algorithm to provably find adversarial examples of degree-2

PTFs.

Theorem 4.1.3. For any δ, η > 0, there is a polynomial time algorithm that given a

degree-2 PTF sgn(f(x)) and an example (x∗, sgn(f(x∗))), guarantees at least one of the

following holds with probability at least (1− η): (a) finds an adversarial example (x∗ + ẑ) i.e.,

sgn(f(x∗)) 6= sgn(f(x∗ + ẑ)), with ‖ẑ‖∞ ≤ Cδ
√

log n, or (b) certifies that ∀z : ‖z‖∞ ≤ δ,

sgn(f(x∗)) = sgn(f(x∗ + z)) for some constant C > 0.

59

(1) Given (A, b, c) that defines the polynomial g(z) := zTAz + bT z + c.
(2) Solve the SDP given by following vector program:

max
∑

i,j Aij〈ui, uj〉+
∑

i bi〈ui, u0〉+ c subject to ‖ui‖2
2 ≤ δ2 ∀i ∈ [n], ‖u0‖2

2 = 1.
(3) Let u⊥i represent the component of ui orthogonal to u0. Draw ζ ∼ N(0, I) a

standard Gaussian vector, and set ẑi := 〈ui, u0〉+ 〈u⊥i , ζ〉 for each i ∈ { 0, 1, . . . , n }.
(4) Repeat rounding O(log(1/η)) random choices of ζ and pick the best choice.

Figure 4.1. The SDP-based algorithm for the degree-2 optimization problem.

To establish the above theorem using Proposition 4.1.1, we need to design a polynomial

time algorithm that given any degree-2 polynomial g(x) = xTAx+bTx+c with A ∈ Rn×n, b ∈

Rn, c ∈ R, finds a solution x̂ with ‖x̂‖∞ ≤ O(
√

log n) · δ such that g(x̂) ≥ max‖x‖∞≤δ g(x).

We use a semi-definite programming (SDP) based algorithm shown in Figure 4.1, that is

directly inspired by the SDP-based algorithm for quadratic programming (QP) by [Charikar

and Wirth, 2004; Nesterov, 1998]. However, the goal in quadratic programming is to find an

assignment x ∈ {−1, 1 }n that maximizes
∑

i 6=j aijxixj . There are three main differences from

the QP problem. Firstly, unlike QP which finds a solution with ‖x‖∞ = 1 with sub-optimal

objective value, our goal is to output a solution which attains at least as large a value as

max‖x‖∞≤δ g(x) while violating the `∞ length of the vector. Secondly, unlike QP where the

diagonal terms are all 0, in our problem the diagonal terms can be non-zero and hence it is no

longer true that the solution with ‖x‖∞ ≤ 1 will have each co-ordinate being {±1 }. Finally

and most crucially, QP corresponds to optimizing a homogeneous degree 2 polynomial, with

no linear term. These challenges necessitates non-trivial modifications to the algorithm and

in the analysis. We also remark that it seems unlikely that the upper bound of O(
√

log n) on

the approximation factor can be improved even for the special case of homogeenous degree-2

60

polynomials, based on the current state of the approximability of Quadratic Programming

(see Remark 4.1.5 for details).

The SDP we consider is given by the following equivalent vector program (the SDP

variables correspond to Xij = 〈ui, uj〉), which can be solved in polynomial time up to

arbitrary additive error (using the Ellipsoid algorithm).

max
{u0,u1,...,un }

n∑
i,j=1

Aij〈ui, uj〉+
n∑
i=1

bi〈ui, u0〉+ c (4.3)

s.t. ‖ui‖2
2 ≤ δ2 ∀i ∈ { 1, 2, . . . , n } , and ‖u0‖2

2 = 1. (4.4)

Let SDPval denote the optimal value of the above SDP relaxation. Clearly the above SDP is

a valid relaxation of the problem; for any valid solution x ∈ [−δ, δ]n, there is a corresponding

SDP solution with the same objective value, given by
(
ui = xiu0 : i ∈ [n]

)
for any unit vector

u0. Hence SDPval ≥ max‖x‖∞≤δ g(x). Moreover, when the SDP value SDPval is negative,

then max‖x‖∞≤δ g(x) is negative which means that the classifier is robust around the given

sample x∗.

We prove Theorem 4.1.3 by designing a polynomial time rounding algorithm that takes

the SDP solution and obtains a valid ẑ satisfying the requirements of the theorem.

Gaussian Rounding Algorithm. Given the SDP solution, let u⊥i represent the component

of ui orthogonal to u0. Consider the following randomized rounding algorithm that returns a

solution { x̂i : i ∈ [n] } :

∀i ∈ { 0, 1, . . . , n } , x̂i := 〈ui, u0〉+ 〈ui, ζ〉 = 〈ui, u0〉+ 〈u⊥i , ζ〉, with ζ ∼ N
(

0,Π⊥
)
, (4.5)

61

where Π⊥ is the projection matrix onto the subspace of span({u⊥1 , . . . , u⊥n }). For convenience,

we can assume without loss of generality that u0 = e0, where e0 is a standard basis vector,

and ui ∈ Rn+1. Let e0, e1, . . . , en represent an orthogonal basis for Rn+1. Then

∀i ∈ { 0, 1, . . . , n } , x̂i = 〈ui, u0〉+ 〈u⊥i , ζ〉 where 〈ζ, e0〉 = 0, 〈ζ, v〉 ∼ N(0, ‖v‖2
2) for every v ⊥ e0,

(4.6)

and x̂0 = 1. The rounding algorithm just tries O(log(1/η)) independent random draws for ζ,

and picks the best of these solutions.

We now give the analysis of the algorithm. We prove Theorem 4.1.3 by showing the

following guarantee for the rounding algorithm.

Lemma 4.1.4. There is a polynomial time randomized rounding algorithm that takes as

input the solution of the SDP as defined in Equations (4.3), and 4.4, and outputs a solution

x̂ given by Equation 4.6 such that

P̂
x

[
g(x̂) ≥ max

‖x‖∞≤δ
g(x) and ‖x̂‖∞ ≤ O(

√
log n) · δ

]
≥ Ω(1). (4.7)

Assuming (4.7), we can repeat the algorithm at least O(log(1/η)) times to get the

guarantee of Theorem 4.1.3.

Proof of Lemma 4.1.4. We start with a simple observation that follows from the

standard properties of spherical Gaussians. For any i, j ∈ [n], we have Eζ [〈u⊥i , ζ〉〈u⊥j , ζ〉] =

62

(u⊥i)TΠ⊥u⊥j = 〈u⊥i , u⊥j 〉. Hence we get the key observation that for ∀i, j ∈ { 0, . . . , n },

E
[
x̂ix̂j

]
= E

ζ

[(
〈ui, u0〉+ 〈u⊥i , ζ〉

)(
〈uj, u0〉+ 〈u⊥j , ζ〉

)]
= 〈ui, u0〉〈uj, u0〉+ E

ζ

[
〈u⊥i , ζ〉〈u⊥j , ζ〉

]
= 〈ui, u0〉〈uj, u0〉+ 〈u⊥i , u⊥j 〉 = 〈ui, uj〉. (4.8)

Note that this also holds when i = j. We now consider the expected value of g(x̂). Using

(4.8), x̂0 = 1 and since Eζ [〈u⊥i , ζ〉] = 0, we have

E[g(x̂)] =
n∑

i,j=1

Aij E
ζ

[
x̂ix̂j

]
+

n∑
i=1

bi E
ζ
[x̂ix̂0] + cE

ζ
[x̂2

0]

=
n∑

i,j=1

Aij〈ui, uj〉+
n∑
i=1

bi〈ui, u0〉+ c‖u0‖2
2 = SDPval. (4.9)

We now show that x̂i ≤ O(
√

log n) · δ w.h.p. For each fixed i ∈ { 1, . . . , n }, 〈u⊥i , ζ〉 is

distributed as a Gaussian with mean 0 and variance ‖u⊥‖2
2 ≤ δ2 ,

|x̂i| ≤ |〈ui, u0〉|+ |〈u⊥i , ζ〉| ≤ δ + |〈u⊥i , ζ〉| ≤
√
C log n · δ with probability at least 1− 1/nC/2,

using standard tail properties of Gaussians. Hence, using a union bound over all i ∈ [n], we

have that

E[g(x̂)] ≥ max
‖x‖∞≤δ

g(x), and P
[
‖x̂‖∞ ≤ O(

√
log n) · δ

]
≥ 1− 1

n2
. (4.10)

for C ≥ 4. Further note that g(x̂) can be expressed a degree-d polynomial of the Gaussian

vector ζ. Hence using hypercontractivity of low-degree polynomials [O’Donnell, 2014, Theorem

63

10.23], we have

P
ζ

[
g(x̂) ≥ E

ζ
g(x̂)

]
≥ Ω(1).

Hence (4.7) follows. �

Remark 4.1.5. Obtaining an approximation factor of O(γ) in the `∞ norm of ẑ, even

for the special case of homogeneous degree-2 polynomials
∑n

i<j=1 aijxixj with no diagonal

entries (aii = 0 ∀i ∈ [n]) over ‖x‖∞ ≤ δ is equivalent to obtaining a O(γ2)-factor approxi-

mation algorithm for the problem called Quadratic Programming (QP) which maximizes∑n
i<j=1 aijxixj over x ∈ {−1, 1 }n (this is also called the Grothendieck problem on complete

graphs). The best known approximation algorithm for Quadratic Programming (QP) gives an

O(log n)-factor approximation in polynomial time [Charikar and Wirth, 2004; Nesterov, 1998].

Further Arora et al. [2005] showed that it is hard to approximate QP within a O(logc n) for

some universal constant c > 0 assuming NP does not have quasi-polynomial time algorithms.

Moreover integrality gaps for SDP relaxations [Alon et al., 2006; Khot and O’Donnell, 2006]

suggest that O(log n) factor maybe be tight for polynomial time algorithms. Hence even for

the special case of homogeneous degree-2 polynomials, improving upon the bound of
√

log n

in the approximation factor seems unlikely.

4.2. From Adversarial Examples to Robust Learning Algorithms

In this section we will show how to leverage the algorithms for finding adversarial

examples to design polynomial time robust learning algorithms for various sub-classes of

Polynomial Threshold Functions (PTF). In particular, these include general degree-1 and

degree-2 polynomial threshold functions. We obtain our upper bounds by establishing a

64

general algorithmic framework that relates robust learnability of PTFs to the polynomial

maximization problem studied in Section 4.1.This is formalized in the definition below:

Definition 4.2.1 (γ-factor admissibility). For γ ≥ 1, we say that a sub-class F of PTFs

is γ-factor admissible if F has the following properties:

(1) For any a, b, c ∈ R, sgn(f(x)), sgn(g(x)) ∈ F , sgn(af(x) + bg(x) + c) ∈ F .

(2) For any b ∈ Rn and sgn(g(x)) ∈ F , we have that sgn(g(x+ b)) ∈ F .

(3) There is a γ-admissible approximation for { g : sgn(g) ∈ F }.

The first two conditions above are natural and are satisfied by many sub-classes of PTFs.

The third condition in the above definition concerns the optimization problem studied in

Section 4.1. The main result of this section, stated below, is the claim that any admissible

sub-class of PTFs is also robustly learnable in polynomial time.

Theorem 4.2.2. Let F be a sub-class of PTFs that is γ-factor admissible for γ ≥ 1.

Then F is γ-approximately robustly learnable.

Remark 4.2.3. While we state our upper bounds for perturbations measured in the `∞

norm, we would like to point out that one can define analogously γ-factor admissibility for

any `p norm and the above theorem will still hold true with the new definition.

To learn a g ∈ F we formulate robust empirical risk minimization as a convex program,

shown in Figure 4.2. Here we use the fact that the value of any polynomial g of degree d at

a given point x can be expressed as the inner product between the co-efficient vector of g

(denoted by coeff(g) ∈ RD) and an appropriate vector ψ(x) ∈ RD where D =
(
n+d−1

d

)
. Our

65

goal is to find a polynomial g ∈ F that correctly classifies all the training examples (xi, yi).

This corresponds to the constraint yig(xi) > 0 expressed as yi〈coeff(g), ψ(x)〉 > 0, a linear

constraint in the unknown coefficients coeff(g) of the polynomial g. For example, if g(x) is a

degree-2 polynomial of the form xTAx + bTx + c, then the constraint yig(xi) > 0 is linear

in the unknown coefficients, ai,j, bi and c, of the polynomial. Here ai,j corresponds to the

(i, j) entry of the matrix A and bi is the ith coordinate of vector b. We also want to ensure

that g is robust around each point in the training set. These two constraints together can

be enforced by the convex program in Figure 4.2, where the ri’s are additional variables

apart from the coefficients of g. Note that the set of all g is convex because of condition 1 of

Definition 4.2.1. While constraints in (4.12) are linear in the variables and easy to implement,

(4.13) is really asking to check the robustness of g at a given point (xi, yi), which is an

NP-hard problem [Charikar and Wirth, 2004]. Instead, we will use the fact that F is γ-factor

admissible to design an approximate separation oracle for the type of constraints enforced

in (4.13). We would like to mention that the classical literature on robust optimization of

linear and convex programs studies a similar setting where typically the goal is to bound

the probability of each constraint being violated while achieving the maximum objective

value [Ben-Tal and Nemirovski, 1999; Bertsimas and Sim, 2004; El Ghaoui and Lebret, 1997].

In contrast, we are interested in precisely quantifying how much a constraint can be violated

by and relate the bound to the robustness of the final classifier obtained. We are now ready

to prove the main theorem of this section.

Proof of Theorem 4.2.2. Let η > 0 be the success probability desired for the robust

learning algorithm and ε > 0 be the final robust error that is desired. Let B be an algorithm

66

that achieves the γ-factor admissibility for the class F . Given S, we will run the Ellipsoid

algorithm on the convex program in Figure 4.2. Let T (m,n) be a (polynomial) upper bound

on the number of iterations of the algorithm. In each iteration, given g, r1, r2, . . . , rm, we

will first check whether yig(xi) > ri. If not, then we have found a violated constraint with

the corresponding separating hyperplane being sgn(ri − yig(xi)), and the algorithm proceeds

to the next iteration. If all the constraints in (4.12) are satisfied, then for each i ∈ [m], we

run B on the polynomial yi(g(xi)− g(xi + z)), where z is the variable and xi is fixed to be

the ith data point. Furthermore, we will set η′, the failure probability of B, to be equal to

η/(mT (m,n)) and set δ′ that is input to B to be δ/γ. From the guarantee of B we get that

if there exists an i such that

ri < sup
z∈Bn∞(0, δ

γ
)

yi

(
g(xi)− g(xi + z)

)
, (4.11)

with probability at least 1− η/T (m,n), the B will output a violated constraint of the convex

program, i.e., an index i ∈ [m] and ẑ ∈ Bn
∞(0, δ) such that

ri < sup
z∈Bn∞(0,δ)

yi

(
g(xi)− g(xi + ẑ)

)
.

This gives us a separating hyperplane of the form sgn(yi(g(xi) − g(xi + ẑ)) − ri), and

the algorithm continues. Hence, we get that when the Ellipsoid algorithm terminates, with

probability at least 1 − η, it will output a polynomial g ∈ F such that the constraints in

(4.12) and (4.11) are satisfied. This means that we would have the empirical robust error

67

(1) Let S = (x1, y1), (x2, y2), . . . , (xm, ym) be the given training set.
(2) Find a degree polynomial g ∈ F that satisfies

yig(xi) > ri, ∀i ∈ [m] (4.12)

ri ≥ sup
z∈Bn∞(0,δ)

yi

(
g(xi)− g(xi + z)

)
, ∀i ∈ [m] (4.13)

Figure 4.2. The convex program for finding a polynomial g ∈ F with zero
robust empirical error.

ˆerrδ/γ,S(sgn(g)) = 0. Hence, by Lemma 2.2.3, we get that

errδ/γ,D(sgn(g)) ≤ 2

√
2∆ logm

m
+

√
log 1

η

2m
,

where ∆ is the VC dimension of F . Choosingm = c∆+log(1/η)
ε2

, makes errδ/γ,D(sgn(g)) ≤ ε. �

It is easy to check that for any fixed d ∈ N, general degree-d PTFs satisfy conditions 1

and 2 of Definition 4.2.1 (however homogeneous degree d polynomials do not satisfy condition

2). We conclude the section by stating the following corollaries about robust learnability of

general degree-1 and degree-2 PTFs.We begin with the following claim about admissibility

and hence robust learnability of degree-1 PTFs.

Corollary 4.2.4. The class of degree-1 PTFs is optimally robustly learnable.

The proof just follows from Claim 4.1.2 and since any linear combination or shift of

a linear function is also linear. Similarly, the following corollary about degree-2 PTFs is

immediate from Theorem 4.1.3.

Corollary 4.2.5. The class of degree-2 PTFs is O(
√

log n)-approximately robustly learn-

able.

68

4.3. Finding Adversarial Examples for Two Layer Neural Networks

Next we use the framework in Section 4.1 to design new algorithms for finding adversarial

examples in two layer neural networks with ReLU activations. The description that follows

applies to binary classification and can be easily extended to multiclass classification. The

binary classifier corresponding to the network is sgn(f1(x)− f2(x)) = sgn(vTσ(Wx)) where

v = v1 − v2. The optimization problem that arises is the following: given an instance with

A ∈ Rm1×n, β ∈ Rm2 , B ∈ Rm2×n, c1 ∈ Rn, c2 ∈ Rm1 , c0 ∈ R, the goal is to find opt(A,B, β, c),

defined as :

opt(A,B, β, c) := max
z:‖z‖∞≤δ

‖c2 + Az‖1 + cT1 z − ‖β +Bz‖1 + c0

= max
z:‖z‖∞≤δ

max
y:‖y‖∞≤1

yTAz + cT1 z + cT2 y −
m2∑
j=1

|βj +BT
j z|. (4.14)

Here Bj is the jth row of B. Let c denote (c0, c1, c2), and let opt(A,B, β, c) be the optimal

value of the above problem.

To see the connection to polynomial optimization, notice that if B = 0, then the above

problem is exactly the one we considered in Section 4.1 in the context of degree-2 PTFs.

Furthermore, if A = 0, then 4.14 is a linear program. However, the presence of both the

terms involving A and B make 4.14 a challenging optimization problem. Next we discuss

how the problem is related to finding adversarial examples for 2-layer neural networks. A two

layer neural network with ReLU gates is given by parameters (v1, v2,W) and outputs f1(x) =

vT1 σ(Wx), f2(x) = vT2 σ(Wx) where x ∈ Rn, v1, v2 ∈ Rk and W ∈ Rk×n. Here σ : Rm → Rm

69

(1) Given instance I = (A,B, β, c) of (4.14), solve SDP with parameter η ∈ (0, 1):

sdp = max
∑

j∈[m1],i∈[n]

Aj,i〈vj, ui〉+
n∑
i=1

c1(i)〈ui, u0〉+

m1∑
j=1

c2(j)〈u0, vj〉 −
∑
j∈[m2]

rj + c0

s.t.∀j ∈ [m1] ‖vi‖2 ≤ 1, ∀i ∈ { 1, . . . , n } ‖ui‖2 ≤ δ2, and ‖u0‖2 = 1

∀j ∈ [k2] rj ≥ (βj +
∑
j

Bj,i〈ui, u0〉), and rj ≥ −(βj +
∑
j

Bj,i〈ui, u0〉).

(2) Let u⊥i , v⊥j represent the components of ui, vj orthogonal to u0. Let ε ∈ (0, 1)

with ε = Ω(1)/
√

logm1. Let ζ ∼ N(0, I) be a Gaussian vector; set ∀i ∈
{ 0, 1, . . . , n } , ẑi := 〈ui, u0〉+ 1

ε
〈u⊥i , ζ〉, ŷj := 〈vj, u0〉+ ε〈v⊥j , ζ〉.

(3) Repeat rounding with poly(n) random choices of ζ and pick the best choice.

Figure 4.3. The SDP-based algorithm for Problem (4.14).

is a co-ordinate wise non-linear operator σ(y)i = max { 0, yi } for each i ∈ [m]. The classifier

corresponding to the network is sgn(f1(x)−f2(x)) = sgn((v1−v2)Tσ(Wx)) = sgn(vTσ(Wx)).

Our algorithm for solving (4.14) given in Figure 4.3 is inspired by Algorithm 4.1 for

polynomial optimization. However, the rounding algorithm differs because the variables yj

and variables zi serve different purposes in (4.14), and we need to simultaneously satisfy

different constraints on them to produce a valid perturbation. Moreover when the SDP is

negative, then this gives a certificate of robustness around x.

We remark that one can obtain provable guarantees similar to Theorem 4.2.2 for Al-

gorithm 4.3 under certain regularity conditions about the SDP solution. However, this is

unsatisfactory as this depends on the SDP solution to the given instance, as opposed to an

explicit structural property of the instance. Obtaining provable guarantees of the latter kind

is an interesting open question. The following proposition holds in a more general setting

where there can be an extra linear term as described below.

70

Proposition 4.3.1. Let γ ≥ 1. Suppose there is an algorithm that given an instance

of problem (4.14) finds a solution ẑ, ŷ with ‖ẑ‖∞ ≤ γδ, ‖ŷ‖∞ ≤ 1 such that ŷTAẑ + cT1 ẑ +

cT2 ŷ − ‖β + Bẑ‖1 + c0 > 0 when opt(A,B, β, , c) > 0, then there is a polynomial time

algorithm that given a classifier sgn(f(x)) corresponding to a two layer neural net where

f(x) := vTσ(Wx) + (v′)Tx and an example x∗, guarantees to either (a) find an adversarial

example in the `∞ ball of γδ around x∗, or (b) certify the absence of any adversarial example

in the `∞ ball of δ.

Proof. Let `(x∗) = sgn(f(x∗)). We first observe that σ(yj) = 1
2
(|yj|+yj), and σ(Wx)j =

1
2
(|〈Wj, x〉|+ 〈Wj, x〉), where Wj is the jth row of W . We want to find a ẑ with ‖ẑ‖∞ ≤ γδ,

such that (−`(x∗))f(x∗ + ẑ) > 0, or certify that there is no such ẑ with ‖ẑ‖∞ ≤ δ.

Let S+ = { j ∈ [k] : −`(x∗)vj ≥ 0 } and S− = [k] \ S+ and let k1 = |S+|. We now split

the rows of W into two (A and B) as follows: for every j ∈ S+, define the row Aj := 1
2
|vj|Wj ;

otherwise let Bj := 1
2
|vj|Wj.

−`(x∗)f(x∗ + z) = 1
2

∑
j∈S+

|vj||〈Wj, x
∗ + z〉|+ 1

2
〈vTW,x∗ + z〉 − 1

2

∑
j∈S−

|vj||〈Wj, x
∗ + z〉|

= max
y∈{−1,1 }k1

∑
j∈S+

yj〈Aj, x∗ + z〉 −
∑
j∈S−

|〈Bj, x
∗ + z〉|+ cT1 z + c0,

where cT1 = 1
2
vTW + (v′)T and c0 = 1

2
vTWx∗ are constants. Since the dependence on y is

linear we also get by substituting c2 := Ax∗, β := Bx∗,

max
‖z‖∞≤δ

(−`(x∗))f(x∗ + z) = max
‖z‖∞≤δ

max
y:‖y‖∞≤1

∑
j∈S+

yj〈Aj, z〉+ cT2 y + cT1 z −
∑
j∈S−

|βj + 〈Bj, z〉|+ c0,

as required. Now the proposition follows from the same argument as in Proposition 4.1.1. �

71

CHAPTER 5

Adversarial Learning : Lower Bound

5.1. Computational Intractability of Learning Robust Classifiers

In this section, we leverage the connection to polynomial optimization to complement

our upper bound with the following nearly matching lower bound.We give a reduction from

Quadratic Programming (QP) where given a polynomial p(x) =
∑

i<j aijxixj, and a value

s, the goal is to distinguish whether maxx∈{−1,1}np(x) < s or whether exists an x such that

p(x) > sηapprox. It is known that the distinguishing problem is hard for ηapprox = O(logc n)

for some constant c > 0, see Arora et al. [2005]; moreover the state-of-the-art algorithms give

a ηapprox = O(log n) factor approximation, see Charikar and Wirth [2004] and improving upon

this factor is a major open problem. By appropriately scaling the instance, this immediately

implies the hardness of checking whether a given degree-2 PTF is robust around a given

point.

However, this does not suffice for hardness of learning, since given a distribution supported

at a single point, there is a trivial constant classifier that robustly classifies the instance

correctly. More generally, there could exist a different degree-2 PTF that could be easy to

certify for the given point. Instead, given a degree-2 PTF sgn(p(x)), we carefully construct a

set of O(n2) points such that any classifier that is robust on an instance supported on the set

will have to be close to the given polynomial p. Having established this, we can distinguish

72

between the two cases of the QP problem by whether the learning algorithm is able to output

a robust classifier or not. This is formalized below.

Theorem 5.1.1. There exists δ, ε > 0, such that assuming NP 6= RP there is no

algorithm that given a set of N = poly(n, 1
ε
) samples from a distribution D over Rn ×

{−1,+1}, runs in time poly(N) and distinguishes between the following two cases for any

δ′ = o(
√
ηapproxδ):

• Yes: There exists a degree-2 PTF that has δ-robust error of 0 w.r.t. D.

• No: There exists no degree-2 PTF that has δ′-robust error at most ε w.r.t. D.

Here ηapprox is the hardness of approximation factor of the QP problem.

Remark 5.1.2. The above theorem proves that any polynomial time algorithm that

always outputs a robust classifier (or declares failure if it does not find one) will have to incur

an extra factor of Ω(
√
ηapprox) in the robustness parameter δ. Our upper bound in Section 4.2

on the other hand matches this bound.

While our lower bound applies to algorithms that output a classifier of low error, in

Section 5.2 (see Theorem 5.2.1) we also prove a more robust lower bound that rules out the

possibility of an efficient robust learner that incurs an error less than 1/4.

We will represent an instance of Quadratic Programming (QP) by a polynomial p(x) =

xTAx where A is a symmetric matrix with zeros on the diagonal, and Aij = Aji = aij/2.

Formally, the NP -hard problem QP [Arora et al., 2005; Garey and Johnson, 2002] is the

following: given β > 0 and a polynomial p(x) = xTAx distinguish whether

No Case : there exists an assignment x∗ ∈ {−1, 1 }n such that p(x∗) > βηapprox,

73

Yes Case : for every assignment x ∈ {−1, 1 }n, p(x) < β.

We prove that there exists a δ > 0 and a set of N = poly(n) points such that it is hard

to distinguish whether there exists a degree-2 PTF that is δ robust at all the points or that

no degree-2 PTF is ηδ robust for η = Ω(1/
√
ηapprox).

Theorem 5.1.3. [Hardness] There exists δ > 0, such that assuming NP 6= RP there is no

polynomial time algorithm that given a set of N = O(n2) labeled points { (x(1), y(1)), . . . , (x(N), y(N)) }

with (x(j), y(j)) ∈ Rn+1 × {−1, 1 } for all j ∈ [N] can distinguish between the following two

cases

YES Case: There exists a degree-2 PTF that has δ-robust empirical error of 0 on these

N points.

NO Case: No degree-2 PTF is ηδ-robust on these points for η = Ω(1/
√
ηapprox).

Theorem 5.1.1 follows from Theorem 5.1.3 and the standard fact used in establishing

learning theoretic hardness [Kearns et al., 1994], namely if there were a robust learning

algorithm for every distribution and ε > 0, then one could use it on the uniform distribution

over the instance from Theorem 5.1.3 with ε = 1
2N

to determine whether there exists a

degree-2 PTF that has δ-robust empirical error of 0 on the points in the instance. Hence our

main goal is to prove Theorem 5.1.3.

5.1.1. Warm up Lower Bound

Before we prove Theorem 5.1.3 we state and prove a simpler version of the Theorem where

we show hardness of approximation of all degree-2 homogeneous PTFs. In this case we only

74

have to deal with the homogeneous second order term and the degree-1 z term, and thus do

not have to control the other terms.

Note : In what follows, we slightly abuse terminology and refer to a polynomial of the

form p(x, z) = xTAx− z as homogeneous even though it has the extra z term. For the sake

of simplicity, we do not define a new term.

Theorem 5.1.4. [Simpler Version of Theorem 5.1.3] There exists δ > 0 such that

assuming NP 6= RP there is no polynomial time algorithm that given a set of N = O(n2)

labeled points { (x(1), y(1)), . . . , (x(N), y(N)) } with (x(j), y(j)) ∈ Rn+1 × {−1, 1 } for all j ∈ [N]

can distinguish between the following two cases

YES Case: There exists a homogeneous degree-2 PTF that has δ-robust empirical

error of 0 on these N points.

NO Case: No homogeneous degree-2 PTF (of the form q(x, z) = xTAx−z) is ηδ-robust

on these points for η = Ω(1/
√
ηapprox).

Proof. We carefully define the point set S ′. We want to achieve two things. First, in

the YES case, the polynomial p(x, z) = xTAx − z should be δ robust to all points in S ′.

Second, the correctness of any other deg-2 homogeneous polynomial q(x, z) = xTA′x− z on

S ′ will force it to be close to p(x, z) in terms of its parameters. This will ensure that in the

NO case, if q(x, z) is ηδ robust to S ′ then xTA′x will be upper bounded around 0 and so

will xTAx, thereby leading to a contradiction. Formally, for any ε, δ < 1/10 let

75

S ′ ={((0, 2δ)− 1)}
⋃

{((ei, γ),−1), ((ei,−γ), 1)∀i ∈ [n]}⋃
{((ei,j, 2),−1), ((2ei,j, 1), sgn(ai,j))∀i 6= j ∈ [n]}

where ei is the vector (0, 0, . . . , τ, 0, . . . , 0) and ei,j is the vector

(0, 0, . . . , 1√
2(ε+|ai,j |)

, 0, . . . , 1√
2(ε+|ai,j |)

, 0, . . . , 0). We now state the two cases

YES case: maxx∈{−1,1}n x
TAx < s

NO case: maxx∈{−1,1}n x
TAx > sηapprox

The reduction is as follows :

(1) Scale the entries of A such that each non zero entry is greater than 10. Scale s by
the same factor. Set δ = 1/s and ε = 200/n2.

(2) Generate the labeled point set S ′ in Rn+1 with τ = Ω(n
ε
) max(1, 1/(ε+mini 6=j |ai,j|)),

γ = 4nτ .

Figure 5.1. Reduction from the QP problem.

Under the NO Case we analyse soundness of the reduction :

Claim 5.1.5. There does not exist an ηδ-robust degree-2 polynomial on S for η =

Ω(1/
√
ηapprox)

Proof. First we show that if q(x, z) = xTA′x − z correctly classifies S ′ then A′ is

entrywise close to A. First we show that the diagonal entries of A′ are less than ε. From

correctness at (ei, γ) and (ei,−γ) we get

76

−γ < τ 2a′i,i < γ (5.1)

|a′i,i| < γ/τ 2 < ε/10 (5.2)

From correctness at (ei,j, 2) and (ei,j,−2) we get :

a′i,i
2ãi,j

+
a′j,j
2ãi,j

+
a′i,j
ãi,j

< 2 (5.3)

2
a′i,i
ãi,j

+ 2
a′j,j
ãi,j

+ 4
a′i,j
ãi,j

> 1 (5.4)

Combining them we get

1

4
− δ − ε

4
<
a′i,j
ãi,j

< 2 + 4δ + ε (5.5)

This gives us the necessary parameter closeness between A and A′ because it implies that

max
x∈Bn∞(0,ηδ)

xTAx = Θ(max
x∈Bn∞(0,ηδ)

xTA′x)

. Now we prove by contradiction. Let q(x, z) be ηδ-robust on S’. The fact that q(x, z) is

ηδ-robust on (0, 2δ) gives us :

77

max
x∈Bn∞(0,ηδ)

xTA′x < 2δ (5.6)

max
x∈Bn∞(0,δ)

xTA′x <
2δ

η2
(5.7)

max
x∈Bn∞(0,δ)

xTAx <
5δ

η2
(5.8)

where the last inequality follows from our earlier observation. However since we are in

the NO case, we have :

max
x∈Bn∞(0,δ)

xTAx > δ2sηapprox = δηapprox (5.9)

This contradicts the fact η = Ω(1/ηapprox) for some appropriately chosen constant. �

Under the YES Case we analyse completeness by showing δ-robustness of p(x, z) on S ′ :

Claim 5.1.6. The polynomial p(x, z) = xTAx− z is δ-robust on S ′

The proof of this is the same as in the main Theorem since S ′ is a subset of S. See 5.1.9.

�

5.1.2. Main Lower Bound

For the proof of the main theorem , we use a similar idea. As before, our set of points will

have the property that in the YES case of the QP instance, the polynomial xTAx− z will be

δ robust at all the points (see Claim 5.1.9). Furthermore, the points will enforce the property

78

that any other degree-2 PTF that classifies the points correctly will have to be very close

to xTAx − z in terms of the parameters. In this case, apart from the parameters in the

quadratic term, we will also control the linear and constant terms. This will help us rule out

the existence of an ηδ robust classifier in the NO case, since if one exists, it must be close to

xTAx− z, thereby implying an upper bound on the value of xTAx around the neighborhood

of zero. This is established in the following key lemma.

Lemma 5.1.7. Let p(x, z) = xTAx − z be a given polynomial where A is a symmetric

matrix with zeros on the diagonal. For any ε, δ < 1/10, consider the labeled set S =

S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 where,

S1 = {((0, 1),−1), ((0,−1),+1), ((0, τ ′),−1), ((0,−τ ′),+1), ((0, 2δ),−1), ((0,−2δ),+1)},

S2 = {((ei, γ),−1), ((ei,−γ),+1), ((−ei, γ),−1), ((−ei,−γ),+1)}, ∀i ∈ [n],

S3 = {((ei,j, 2),−1), ((e−i,j, 2),−1), ((ei,−j, 2),−1), ((e−i,−j, 2),−1)}, ∀i 6= j ∈ [n],

S4 = {((2ei,j, 1), sgn(ai,j)), ((2e−i,j, 1),−sgn(ai,j)), ((2ei,−j, 1),−sgn(ai,j)),

((2e−i,−j, 1), sgn(ai,j))}, ∀i 6= j ∈ [n],

and

S5 = {((ei,j,−2),+1), ((e−i,j,−2),+1), ((ei,−j,−2),+1), ((e−i,−j,−2),+1)}, ∀i 6= j ∈ [n],

79

Here ei is the vector (0, 0, . . . , τ, 0, . . . , 0) and ei,j is the vector

(0, 0, . . . , 1√
2(ε+|ai,j |)

, 0, . . . , 1√
2(ε+|ai,j |)

, 0, . . . , 0). For every general degree 2 polynomial q′(x, z)

with the coefficient of z = cz, such that sgn(q′) has zero error on S, we must have cz 6= 0.

Moreover, let q(x, z) = 1
−cz q

′(x, z) = xTA′x+ cT1 x+ c2z
2 − z + c4 +

∑
i βizxi, where A

′ be a

symmetric matrix. Then we must have that

max(|c2|, ‖β‖∞, |a′i,i|) ≤ ε,

|c4| ≤ 4δ,

|c1,i| ≤ min
j 6=i

8δ
√
ε+ |ai,j|,

and
1

4
− δ − ε

4
≤ max(

|a′i,j|
ε+ |ai,j|

) ≤ 2 + 4δ + ε

provided τ ′ = Ω(n
2

ε
) max(1, 1/(ε + mini 6=j |ai,j|)), τ = Ω(n

ε
) max(1, 1/(ε + mini 6=j |ai,j|)),

γ = 4nτ .

We first prove Theorem 5.1.3 assuming the lemma above and finally end the section with

the proof of the lemma. This proof relies on the fact stated above that if any degree-2 PTF

correctly classifies all these points, then it must be close to xTAx − z in parameter space.

This implies that in the NO case, since xTAx− z is bounded away from 0 any degree-2 PTF

close to the polynomial must also be bounded away from 0. This however contradicts the ηδ

robustness of the polynomial to S. The YES case of the proof is relatively simple; we just

have to verify that xTAx− z correctly classifies and is δ robust to all the points in S.

80

Proof of Theorem 5.1.3. Given an n×n symmetric matrix A with zeros on diagonals

and given s > 100, we assume that the following cases are hard to distinguish for some

ηapprox > 1,

YES Case: maxx∈{−1,1}n x
TAx < s.

NO Case: maxx∈{−1,1}n x
TAx > sηapprox. The reduction from the instance of the QP

problem is sketched below. Next we establish completeness and soundness of the reduction.

(1) Scale the entries of A such that each non zero entry is greater than 10. Scale s by
the same factor. Set δ = 1/s and ε = 200/n2.

(2) Generate the labeled point set S in Rn+1 as specified in Lemma 5.1.7 with τ ′ =

Ω(n
2

ε
) max(1, 1/(ε+ mini 6=j |ai,j|)), τ = Ω(n

ε
) max(1, 1/(ε+ mini 6=j |ai,j|)), γ = 4nτ .

Figure 5.2. Reduction from the QP problem.

NO Case: The following claim captures the soundness analysis of the reduction.

Claim 5.1.8. There does not exist an ηδ-robust degree-2 polynomial on S for η =

Ω(1/
√
ηapprox).

Proof. We will prove by contradiction. Let q(x, z) = xTA′x+cT1 x+c2z
2−z+c4+

∑
i βizxi

be an ηδ-robust polynomial on S.1 The fact that q is correct on (0, 2δ) gives us

4c2δ
2 − 2δ + c4 < 0 (5.10)

Furthermore, the fact that q is ηδ-robust on (0, 2δ) gives us that

max
x∈Bn∞(0,ηδ),z∈(2δ−ηδ,2δ+ηδ)

q(x, z) < 0 (5.11)

1We can always scale q to get it into this form.

81

From Lemma 5.1.7 this implies that

max
x∈Bn∞(0,ηδ)

xTA′x < ηδ‖c1‖1 + (2δ + ηδ) + 12δ + ε(2δ + ηδ)2 + nεηδ(2δ + ηδ) (5.12)

We now need to bound ‖c1‖1.

‖c1‖1 < 8δ(n
√
ε+

∑
i

min
j 6=i

√
|ai,j|)

< 8δ(n
√
ε+

∑
i

min
j 6=i
|ai,j|)

< c′δ + 16δ

∑
i,j |ai,j|
n

< c′δ + 16δs = c′δ + 16

Substituting the value of ε in 5.12 we get that

max
x∈Bn∞(0,ηδ)

xTA′x < 20δ. (5.13)

Again using Lemma 5.1.7 we get that

max
x∈Bn∞(0,δ)

xTAx <
50δ

η2
. (5.14)

But since we are in the NO case we also know that

max
x∈Bn∞(0,δ)

xTAx > δ2sηapprox = δηapprox. (5.15)

This contradicts the fact that η = Ω(1/
√
ηapprox). �

82

YES Case: The analysis of the YES case relies on the following claim which establishes

δ-robustness of the PTF given by p(x, z) on the point in S.

Claim 5.1.9. The polynomial p(x, z) = xTAx− z is δ-robust on S.

Proof. It is fairly straightforward to check that sgn(xTAx−z) classifies all of S correctly.

Robustness at ((0, 2δ),−1). Follows from the fact that we are in the YES case and hence

maxx∈Bn∞(0,δ) x
TAx < δ2s = δ.

Robustness at ((0, 1),−1), ((0, τ ′),−1), ((0,−1),+1), ((0,−τ ′),+1). Follows from the fact

that we are in the YES case and hence maxx∈Bn∞(0,δ) x
tAx < δ2s = 1/s < 1/100 and that

τ ′ > n/(20δ) > 5n.

Robustness at ((0, 2δ),−1), ((0,−2δ),+1). Follows from the fact that we are in the YES

case and hence maxx∈Bn∞(0,δ) x
TAx < δ2s = δ and that εn/10 = 20δ.

Robustness at ((ei, γ),−1), ((ei,−γ),+1), ((−ei, γ),−1), ((−ei,−γ),+1). Let’s argue ro-

bustness at ((ei, γ),−1) and the other calculations are similar. The maximum value of xTAx

in a δ-ball around ei is at most

(τ + δ)δ
∑
j

|ai,j|+ δ2s.

Hence to establish robustness we need that

(τ + δ)δ
∑
j

|ai,j|+ δ2s ≤ γ − δ. (5.16)

83

Substituting the value of δ and noticing that γ, τ are much larger than δ = 1/s < 1/100 we

get that it is enough for the following to hold

2τδ
∑
j

|ai,j| ≤
γ

2
. (5.17)

In other words we need that

γ

τ
≥ 4δ

∑
j

|ai,j| (5.18)

Substituting the values of γ, τ we get that

n ≥ δ
∑
j

|ai,j| (5.19)

This is true since δ = 1/s and the fact that s ≥ 1
n

∑
i,j |ai,j| >

1
n

∑
j |ai,j| where the first

inequality is from [Charikar and Wirth, 2004].

Robustness at ((ei,j, 2),−1), ((e−i,j, 2),−1), ((ei,−j, 2),−1), ((e−i,−j, 2),−1). Let’s argue

robustness at ((ei,j, 2),−1) and the other calculations are similar. The maximum value of

xTAx in a δ-ball around ei,j is at most

2δmaxi
∑

j |ai,j|√
2(ε+ |ai,j|)

+ δ2s+ 1

Hence to establish robustness we need that

2δmaxi
∑

j |ai,j|√
2(ε+ |ai,j|)

+ δ2s+ 1 ≤ 2− δ. (5.20)

84

Noticing that δ = 1/s and much smaller than 1/100, we get that it is enough for the following

to hold

δmaxi
∑

j |ai,j|√
2(ε+ |ai,j|)

≤ 1

4
. (5.21)

This is again true since δ = 1/s and by our assumption |ai,j| ≥ 4 for non-zero entries of A.

Robustness at ((2ei,j, 1), sgn(ai,j)), ((2e−i,j, 1),−sgn(ai,j)), ((2ei,−j, 1),−sgn(ai,j)), ((2e−i,−j, 1),

sgn(ai,j)). We’ll argue robustness at ((2ei,j, 1),+1) and the other calculations are similar.

Also for simplicity, assume sgn(ai,j) > 0. The other case is similar. The minimum value of

xTAx in a δ-ball arond ei,j is at least

2−
2δmaxi

∑
j |ai,j|√

2(ε+ |ai,j|)
− δ2s

So for robustness, we need

2−
2δmaxi

∑
j |ai,j|√

2(ε+ |ai,j|)
− δ2s > 1 + δ

This is true since we have
δmaxi

∑
j |ai,j|√

2(ε+ |ai,j|)
≤ 1

4
.

�

This ends the proof of Theorem 5.1.3. All that is left is the proof of Lemma 5.1.7. �

Bounding coefficients of q(x,z) : Lemma 5.1.7 bounds all the coefficients of any degree-2

polynomial that is correct on S. The point set S consists of five sets of points. Set S1 is used

to bound the constant terms. Set S2 is used to get a bound on the diagonal terms and βi.

85

Set S3 gives an upper bound on the ratio between the entries of A and A′ while set S4 gives

a lower bound. Sets S3 and S5 also bounds the linear term c1.

Proof of Lemma 5.1.7. We now prove the key lemma that is used in the analysis of our

reduction.

Proof. First we prove that if q′(x, z) has zero error on S then cz must be non zero.

Then it is clear that if q′(x, z) has zero error on S, then so does q(x, z). Consider the case

when cz = 0. Now q′(x, z) classifies S1 correctly. More specifically, it classifies the two points

((0, 1),−1) and ((0,−1), 1) correctly. This gives us the following equations

c2 + c4 < 0

c2 + c4 > 0

and hence we get a contradiction. Moving on to the main part of the proof about the

coefficients of q(x, z), the constraints at (0, 1), (0,−1), (0, τ ′), (0,−τ ′) give us

c2 − 1 + c4 < 0 (5.22)

c2 + 1 + c4 > 0 (5.23)

τ ′2c2 − τ ′ + c4 < 0 (5.24)

τ ′2c2 + τ ′ + c4 > 0 (5.25)

86

From (5.22) and (5.23) we get that

−1 < c2 + c4 < 1 (5.26)

Similarly, from (5.24) and (5.25) we get that

−τ ′ < τ ′2c2 + c4 < τ ′ (5.27)

This implies that |c2| < 1/(τ ′ − 1) < ε/10 for τ ′ = Ω(1/ε).

The constraints at ((0, 2δ),−1), ((0,−2δ) gives us that

4c2δ
2 − 2δ + c4 < 0

4c2δ
2 + 2δ + c4 > 0

From the above equations we get that

|c4| ≤ c2(2δ)2 + 2δ < 4δ. (5.28)

The constraints at (ei, γ), (−ei, γ), (ei,−γ), (−ei,−γ) give us

τ 2a′i,i + τc1,i + c2γ
2 − γ + c4 + τγβi < 0 (5.29)

τ 2a′i,i − τc1,i + c2γ
2 − γ + c4 − τγβi < 0 (5.30)

τ 2a′i,i + τc1,i + c2γ
2 + γ + c4 − τγβi > 0 (5.31)

87

τ 2a′i,i − τc1,i + c2γ
2 + γ + c4 + τγβi > 0 (5.32)

From (5.29) and (5.32) we get that

τc1,i < γ (5.33)

Similarly, from (5.30) and (5.31) we get that

τc1,i > −γ (5.34)

Plugging back into the equations above we get that

−(4δ + 2γ +
γ2

τ ′ − 1
) < τ 2a′i,i + τγβi < (4δ + 2γ +

γ2

τ ′ − 1
) (5.35)

and

−(4δ + 2γ +
γ2

τ ′ − 1
) < τ 2a′i,i − τγβi < (4δ + 2γ +

γ2

τ ′ − 1
) (5.36)

This implies that

|a′i,i| ≤
1

τ 2
(4δ + 2γ +

γ2

τ ′ − 1
) ≤ ε/10

for τ ′ = Ω(n
2

ε
) max(1, 1/mini,j |ai,j|), τ = Ω(n

ε
) max(1, 1/mini,j |ai,j|), γ = 4nτ . We also get

that

|βi| ≤
1

τγ
(4δ + 2γ +

γ2

τ ′ − 1
) ≤ ε/10

for τ ′ = Ω(n
2

ε
) max(1, 1/mini,j |ai,j|), τ = Ω(n

ε
) max(1, 1/mini,j |ai,j|), γ = 4nτ .

88

The constraints at (ei,j, 2), (e−i,j, 2), (ei,−j, 2), (e−i,−j, 2) give us

a′i,i
2ãi,j

+
a′j,j
2ãi,j

+
a′i,j
ãi,j

+
c1,i√
2ãi,j

+
c1,j√
2ãi,j

+ 4c2 − 2 + c4 +
2βi√
2ãi,j

+
2βj√
2ãi,j

< 0 (5.37)

a′i,i
2ãi,j

+
a′j,j
2ãi,j

−
a′i,j
ãi,j
− c1,i√

2ãi,j
+

c1,j√
2ãi,j

+ 4c2 − 2 + c4 −
2βi√
2ãi,j

+
2βj√
2ãi,j

< 0 (5.38)

a′i,i
2ãi,j

+
a′j,j
2ãi,j

−
a′i,j
ãi,j

+
c1,i√
2ãi,j

− c1,j√
2ãi,j

+ 4c2 − 2 + c4 +
2βi√
2ãi,j

− 2βj√
2ãi,j

< 0 (5.39)

a′i,i
2ãi,j

+
a′j,j
2ãi,j

+
a′i,j
ãi,j
− c1,i√

2ãi,j
− c1,j√

2ãi,j
+ 4c2 − 2 + c4 −

2βi√
2ãi,j

− 2βj√
2ãi,j

< 0 (5.40)

where ãi,j = ε+ |ai,j|. Combining (5.37) and (5.40) we get

a′i,i
2ãi,j

+
a′j,j
2ãi,j

+
a′i,j
ãi,j

+ 4c2 − 2 + c4 < 0 (5.41)

From this we get that

a′i,j
ãi,j

< 2 + 4δ + 4
ε

10
+

4δ + 2γ + γ2

τ ′−1

τ 2 mini,j |ai,j|
< 2 + 4δ + ε (5.42)

for large enough τ . Similarly, combining (5.38) and (5.39) we get

a′i,i
2ãi,j

+
a′j,j
2ãi,j

−
a′i,j
ãi,j

+ 4c2 − 2 + c4 < 0 (5.43)

89

From this we get that

a′i,j
ãi,j

> −2− 4δ − ε. (5.44)

The constraints at (ei,j,−2), (e−i,j,−2), (ei,−j,−2), (e−i,−j,−2) give us

a′i,i
2ãi,j

+
a′j,j
2ãi,j

+
a′i,j
ãi,j

+
c1,i√
2ãi,j

+
c1,j√
2ãi,j

+ 4c2 + 2 + c4 +
2βi√
2ãi,j

+
2βj√
2ãi,j

> 0 (5.45)

a′i,i
2ãi,j

+
a′j,j
2ãi,j

−
a′i,j
ãi,j
− c1,i√

2ãi,j
+

c1,j√
2ãi,j

+ 4c2 + 2 + c4 −
2βi√
2ãi,j

+
2βj√
2ãi,j

> 0 (5.46)

a′i,i
2ãi,j

+
a′j,j
2ãi,j

−
a′i,j
ãi,j

+
c1,i√
2ãi,j

− c1,j√
2ãi,j

+ 4c2 + 2 + c4 +
2βi√
2ãi,j

− 2βj√
2ãi,j

> 0 (5.47)

a′i,i
2ãi,j

+
a′j,j
2ãi,j

+
a′i,j
ãi,j
− c1,i√

2ãi,j
− c1,j√

2ãi,j
+ 4c2 + 2 + c4 −

2βi√
2ãi,j

− 2βj√
2ãi,j

> 0 (5.48)

Combining (5.37) and (5.46) we get

a′i,j
ãi,j

+
c1,i√
2ãi,j

− 2 +
2βi√
2ãi,j

< 0 (5.49)

From this we get that

c1,i < (4δ + ε)
√

2ãi,j (5.50)

90

for large enough τ . Similarly, from (5.47) and (5.39) we get

c1,i > −(4δ + ε)
√

2ãi,j. (5.51)

Finally, the constraints at (2ei,j, 1), (2e−i,j, 1), (2ei,−j, 1), (2e−i,−j, 1) give us

2
a′i,i
ãi,j

+ 2
a′j,j
ãi,j

+ 4
a′i,j
ãi,j

+
2c1,i√
2ãi,j

+
2c1,j√
2ãi,j

+ c2 − 1 + c4 +
4βi√
2ãi,j

+
4βj√
2ãi,j

> 0 (5.52)

2
a′i,i
ãi,j

+ 2
a′j,j
ãi,j
− 4

a′i,j
ãi,j
− 2c1,i√

2ãi,j
+

2c1,j√
2ãi,j

+ c2 − 1 + c4 −
4βi√
2ãi,j

+
4βj√
2ãi,j

< 0 (5.53)

2
a′i,i
ãi,j

+ 2
a′j,j
ãi,j
− 4

a′i,j
ãi,j

+
2c1,i√
2ãi,j

− 2c1,j√
2ãi,j

+ c2 − 1 + c4 +
4βi√
2ãi,j

− 4βj√
2ãi,j

< 0 (5.54)

2
a′i,i
ãi,j

+ 2
a′j,j
ãi,j

+ 4
a′i,j
ãi,j
− 2c1,i√

2ãi,j
− 2c1,j√

2ãi,j
+ c2 − 1 + c4 −

4βi√
2ãi,j

− 4βj√
2ãi,j

> 0 (5.55)

Combining (5.52) and (5.55) we get

2
a′i,i
ãi,j

+ 2
a′j,j
ãi,j

+ 4
a′i,j
ãi,j

+ c2 − 1 + c4 > 0 (5.56)

From this we get that

a′i,j
ãi,j

>
1

4
− δ − ε

4
(5.57)

91

for large enough τ . Similarly, combining (5.53) and (5.54) we get

2
a′i,i
ãi,j

+ 2
a′j,j
ãi,j
− 4

a′i,j
ãi,j

+ c2 − 1 + c4 < 0 (5.58)

From this we get that

a′i,j
ãi,j

> −1

4
− δ − ε

4
(5.59)

for large enough τ . �

5.2. A Lower Bound for Weak Robust Learning

In this section we prove a robust lower bound that rules out the possibility of weak robust

learning with γ = 1. This hardness result allows the algorithm to output a robust classifier

that makes errors on constant fraction of the points! Hence, even when there is a degree-2

PTF that has δ robust error of 0, it is computationally hard to output a degree-2 PTF that

has δ-robust error of ε ≤ 1
4
.

Theorem 5.2.1. [Stronger Distributional Hardness] For every δ > 0 and ε ∈ (0, 1
4
),

assuming NP 6= RP there is no polynomial time algorithm that given a set of N = poly(n, 1
ε
)

samples from a distribution D over Rn × {−1,+1} can distinguish between the following two

cases:

• Yes: There exists a degree-2 PTF that has δ-robust error of 0 w.r.t. D.

• No: There exists no degree-2 PTF that has δ-robust error at most ε w.r.t. D.

In this section we prove Theorem 5.1.3, which in turns uses the non-distributional hardness

in Theorem 5.2.11. But to begin with we first prove an alternate NP hardness result. Although

92

weaker than the hardness result of the previous section, this will help us prove the more

robust bound. More formally, we will prove that

Theorem 5.2.2. [Hardness] For every δ > 0, assuming NP 6= RP there is no polynomial

time algorithm that given a set of N = O(n2) labeled points { (x(1), y(1)), . . . , (x(N), y(N)) }

with (x(j), y(j)) ∈ Rn+1×{−1, 1 } for all j ∈ [N] can determine whether there exists a degree-2

PTF that has δ-robust empirical error of 0 on these N points.

The above theorem immediately implies the following result about hardness of optimal

robust learning of degree-2 PTFs.

Corollary 5.2.3. [Distributional Hardness] For every δ > 0, there exists an ε > 0 such

that assuming NP 6= RP there is no algorithm that given a set of N = poly(n, 1
ε
) samples

from a distribution D over Rn × {−1,+1}, runs in time poly(N) and distinguishes between

the following two cases:

• Yes: There exists a degree-2 PTF that has δ-robust error of 0 w.r.t. D.

• No: There exists no degree-2 PTF that has δ-robust error at most ε w.r.t. D.

We again reduce from the QP problem (Problem QP) which is known to be NP hard.

The reduction is sketched below.

To argue the soundness and the completeness of our reduction, we will first analyze

the robustness of degree-2 PTFs on the 2m added labeled examples ((u(`), z
(`)
u), y

(`)
u) and

((v(`), z
(`)
v), y

(`)
v). We will show that the “intended” PTF sgn(z − p(x)) is the unique degree-

2 PTF (up to scaling) that is robust at all these 2m points. Note that a degree-2 PTF

sgn(q(x, z)) on the n+ 1 variables (x, z) may not necessarily be of the form sgn(z − g(x))

93

(1) Let p(x) := xTAx be the polynomial given by Problem QP, and let β, δ be the
given parameters. Set α := δ2β + δ, ρ := c3δn

3/2m, for some sufficiently large
constant c3 ≥ 1.

(2) Using A we generate m points (x(j), z(j)) ∈ Rn+1 as follows. Sample point x(j) from
N(0, ρ2)n, then set z(j) = p(x(j)) = (x(j))TAx(j) for each j ∈ [m].

(3) Define s(j) = sgn(∇p(x(j))) where the sgn(x) ∈ {−1, 1 }n refers to a vector with
entry-wise signs, and ∇p stands for the gradient of p at x(j). From each (x(j), z(j))

generate (u(j), z
(j)
u) = (x(j)− δs(j), z(j) + δ) with label y(j)

u = sgn(z
(j)
u − p(u(j))) and

(v(j), z
(j)
v) = (x(j) + δs(j), z(j) − δ) with label y(j)

v = sgn(z
(j)
v − p(v(j))).

(4) Generate α (depends on δ and β from problem QP) and input the 2m+ 1 points
in Rn+1 × {±1 } given by ((u(j), z

(j)
u), y

(j)
u), ((v(j), z

(j)
v), y

(j)
u) for each j ∈ [m] and

(0, α,+1) to the algorithm.

Figure 5.3. Reduction from the QP problem.

for some degree-2 polynomial g(x). We need to rule out the existence of any other degree-2

PTF of the form sgn(q(x, z)) that is δ-robust at these points. Once we have established this,

we will then show that the “intended” PTF sgn(z − p(x)) is δ-robust at ((0, α),+1) in the

Yes case, and not δ-robust at ((0, α),+1) in the No case.

We proceed by first proving that the intended PTF sgn(z−p(x)) is robust at the 2m added

examples. Recall that the points x(j) ∈ Rn are chosen according to a Gaussian distribution

with variance ρ2 in every direction. The following lemma shows a property that holds w.h.p.

for the points {x(`) : ` ∈ [m] } that will be key in proving the robustness of sgn(z − p(x)) at

the 2m added points in Lemma 5.2.6.

Lemma 5.2.4. There exists some universal constant C > 0 such that for any η > 0,

assuming ρ ≥ Cδn3/2m/η we have with probability at least 1− η that

∀` ∈ [m], ∀i ∈ [n],
|〈Ai, x(`)〉|
‖Ai‖1

> δ, (5.60)

94

Figure 5.4. The figure shows the construction of a hard instance for the robust
learning problem. First, points (x(j), z(j)) are sampled randomly and staisfying
z(j) = p(x(j)). Each such point is then perturbed along the direction of the sign
vector of the gradient at (xj, z(j)) to get two data points of the training set, one
labeled as +1, and the other labeled as −1.

where Ai denotes the ith row of A.

Proof. The proof follows from the following standard anti-concentration fact about

Gaussians.

Fact 5.2.5. Let x∗ be sampled from N(0, ρ2)n. Let a ∈ Rn. There exists a universal

constant C > 0 such that for any η′ > 0,

P
[
|〈a, x∗〉| ≤ C‖a‖2ρη

]
≤ η′.

95

Set η′ := η/(mn). Fix ` ∈ [m], i ∈ [n]. Using Fact 5.2.5 we have with probability at least

1− η′

|〈Ai, x(j)〉| ≥ ‖Ai‖2ρη
′ ≥ ‖Ai‖1√

n
· ρ · η

mn
≥ δ,

from our assumption on ρ. The lemma follows from a union bound over all ` ∈ [m], i ∈ [n]. �

We now prove the δ-robustness of the “intended” degree-2 PTF sgn(z − p(x)) at the 2m

added points w.h.p.

Lemma 5.2.6. There exists constant C > 0 such that for any η > 0, assuming ρ ≥

Cδn3/2m/η, then with probability at least 1− η, the degree-2 PTF sgn(z − p(x)) = sgn(z −

xTAx) is δ-robust at all the 2m points { ((u(`), z
(`)
u), y

(`)
u), ((v(`), z

(`)
v), y

(`)
v) : ` ∈ [m] }.

Proof. Consider a fixed ` ∈ [m]. For convenience let x∗, z∗, u, v, zu, zv denote x(`), z(`), u(`),

v(`), z
(`)
u , z

(`)
v respectively, and let s = sgn(∇p(x(`))) ∈ {−1, 1 }n. Hence z∗ = x∗TAx∗,

(u, zu) = (x∗ − δs, z∗ + δ) and (v, zv) = (x∗ + δs, z∗ − δ). We want to prove that the points

(u, zu) and (v, zv) are δ robust i.e., these points are δ away in `∞ distance from the decision

boundary of sgn(z − p(x)). We now prove the following claim:

Claim. Any point (x, z) ∈ Bn+1
∞ (u, zu) is on the ‘positive’ side i.e., z − xTAx > 0.

Note that (u, zu) itself lies inside the ball, and hence the claim will show that sgn(z−xTAx)

is δ-robust at (u, zu). An analogous proof also holds that δ-robustness at (v, zv).

Proof of Claim. Let’s now define x̃ = x − x∗, z̃ = z − z∗. A simple observation is that

(x, z) lies on the opposite orthant with respect to (x∗, z∗) as s , and we have (as shown in

96

Figure 5.5. The figure shows the radius of robustness around the point (x(i), z(i)).
Any degree-2 PTF that is δ-robust at all the data points, must take a value of
+1 in the upper ball around each (x(i), z(i)) of `∞ radius of 2δ and must take a
value of −1 in the lower ball around each (x(i), z(i)) of `∞ radius of 2δ. We use
this fact to establish that such a PTF must pass through the points (x(i), z(i)).

Figure 5.5)

∀j ∈ [d],−2δ ≤ s(j)x̃(j) ≤ 0, and z̃ ≥ 0.

97

Using z∗ = p(x∗) and z̃ ≥ 0, for all (x, z) ∈ Bn+1((u, zu), δ) we have

z − p(x) = z∗ + z̃ − p(x̃+ x∗) = z̃ + p(x∗)− p(x̃+ x∗) = z̃ − 〈∇p, x̃〉 − 1

2
x̃T∇2px̃

≥ −
n∑
i=1

x̃(i)
(n∑
j=1

aijx
∗(j)

)
− 1

2

n∑
i=1

x̃(i)
(n∑
j=1

aijx̃(j)
)

=
n∑
i=1

(−x̃(i)s(i))
∣∣∣ n∑
j=1

aijx
∗(j)

∣∣∣− 1

2

n∑
i=1

x̃(i)
n∑
j=1

aijx̃(j)

≥
n∑
i=1

|x̃(i)|
(∣∣∣ n∑

j=1

aijx
∗(j)

∣∣∣− δ n∑
j=1

|aij|
)
,

using the fact that x̃(i)s(i) ∈ [−2δ, 0] for each i ∈ [n]. Applying Lemma 5.2.4 we see that

with probability at least (1− η), (5.60) holds, and hence |〈x∗, Ai〉| > δ‖Ai‖1 for each i ∈ [n]

as required. This establishes the claim, and proves the lemma.

�

We now prove that the “intended” PTF sgn(z − p(x)) is the only degree-2 PTF that is

robust at the added 2m examples.

Lemma 5.2.7. Consider any degree-2 PTF sgn(q(x, z)) that is δ-robust at the 2m labeled

points { ((u(`), z
(`)
u),+1) : ` ∈ [m] } and { ((v(`), z

(`)
v),−1) : ` ∈ [m] } and is consistent with

their labels. Then q(x, z) = C(z − p(x)) for some C 6= 0.

The proof of Lemma 5.2.7 follows immediately from the following two lemmas (Lemma 5.2.8

and Lemma 5.2.9).

Lemma 5.2.8. Consider any degree-2 PTF on n+ 1 variables sgn(q(x, z)) that satisfies

the conditions of Lemma 5.2.7. Then q(x(`), z(`)) = 0 for each ` ∈ [m].

98

Proof. Since sgn(q(u(`), z
(`)
u)) 6= sgn(q(v(`), z

(`)
v)), by the Intermediate Value Theorem,

∃γ ∈ [0, 1] s.t. (x̂, ẑ) = γ(u(`), z(`)
u) + (1− γ)(v(`), z(`)

v) and q(x̂, ẑ) = 0.

Also, since q is δ-robust at (u(`), z
(`)
u) and (v(`), z

(`)
v), we must have that (x̂, ŷ) is atleast δ

far away in `∞ distance from both (u(`), z
(`)
u) and (v(`), z

(`)
v). Further by design two points are

separated by exactly 2δ in each co-ordinate (see Figure 5.5 for an illustration)! Hence it is

easy to see that γ = 1/2 i.e., (x̂, ẑ) = (x(`), z(`)) as required.

�

We now show that q(x, z) = z − p(x) is the only polynomial over (n+ 1) variables that

evaluates to 0 on all points { (x(`), z(`)) : ` ∈ [m] }. Together with Lemma 5.2.8 this establishes

the proof of Lemma 5.2.7.

Lemma 5.2.9. Let m > (n+ 1)2 and let q : Rn+1 → R be any degree-2 polynomial with

q(x(`), z(`)) = 0 for all ` ∈ [m], where z(`) = (x(`))TA∗x(`) and x(`) ∼ N(0, ρ2)n with ρ > 0.

Then with probability 1, q(x, z) = C(z − xTA∗x) for C 6= 0.

Proof. We can represent a general degree-2 polynomial q : Rn+1 → R given by

q(x, z) = xTAx+ bT1 x+ c1 + zbT2 x+ c2z
2 + c3z, where x ∈ Rn, z ∈ R.

This polynomial is parameterized by a vector w = (A, b1, c1, b2, c2, c3) ∈ Rr where r =(
n+1

2

)
+2n+3 (since A is symmetric). Now given a point (x(`), z(`)), the equation q(x(`), z(`)) = 0

is a linear equation over the coefficients w of q. Hence, the set of conditions q(x(`), z(`)) = 0

can be expressed as a systems of linear equations Mw = 0 over the (unknown) co-efficients

99

w. Hence any valid polynomial q corresponds to a solution of the linear system Mw = 0 and

vice-versa. We now describe the matrix M ∈ Rm×r. Define

f(x, z) := (1)⊕ (x1, . . . , xn)⊕ (xixj : i ≤ j ∈ [n])⊕ (x1z, . . . xnz)⊕ (z2),⊕(z) ∈ Rr,

and M` := f(x(`), z(`)) ∀` ∈ [m],

where u⊕ v refers to the concatenation of vectors u and v, and M` represents the row ` of

M . In other words f(x, z) = (1, x1, . . . , xn, x
2
1, . . . , xjxk, . . . , x

2
n, x1z, . . . , xjz . . . , xnz, z

2, z),

where xj is the jth component of x and z = xTA∗x. Observe that the “intended” polynomial

q∗(x, z) = z − xTA∗x is a valid solution to this system of equations. Hence, it will suffice to

prove that M has rank exactly r − 1 i.e., M has full column rank minus one. First observe

that as polynomials over the formal variables x, z, all but one of the columns of f are linearly

independent – in fact the only linear dependency in f(x, z) corresponds to the column z

that can be expressed as a linear combination of degree-2 monomials {xixj : i ≤ j } since

z := xTA∗x is a homogenous degree-2 polynomial. Further the columns {xjz : j ∈ [n] } have

degree 3 and z2 has degree 4. Hence excluding the column corresponding to z, it is easy to

see that the rest of the columns are linearly independent (either they correspond to different

monomials, or the degrees are different). Now define g(x, z),M ′ analogously to f(x, z) and

M respectively, without the last column that corresponds to z i.e.,

g(x, z) := (1)⊕ (x1, . . . , xn)⊕ (xixj : i ≤ j ∈ [n])⊕ (x1z, . . . xnz)⊕ (z2) ∈ Rr−1,

and M ′
` := g(x(`), z(`)) ∀` ∈ [m].

100

From our earlier discussion, the columns of g(x, z) when seen as polynomials over the formal

variables x, z are linearly independent. Hence, it suffices to prove the following claim:

Claim: M ′ has full column rank i.e., rank of M ′ is r.

To see why the claim holds consider the first ` rows of the matrix M ′ and look at their

span S(R`). If ` ≤ r − 1 then the space orthogonal to S(R`) i.e., S(R`)
⊥ is non-empty.

Consider any direction v in S(R`)
⊥.

〈v,M ′
`+1〉 = q̂(x(`+1), z(`+1)), where q̂(x, z) := 〈v, g(x, z)〉

is a non-zero polynomial of degree 2 in x, z (it is not identically zero because the columns

of g(x, z) are linearly independent as polynomials over x, z). Hence using a standard result

about multivariate polynomials evaluated at randomly chose points (See Fact 5.2.10), we get

that q̂(x(`+1), z(`+1)) 6= 0 and so 〈v,M ′
`+1〉 6= 0 with probability 1. Taking a union bound over

all the ` ∈ { 1, . . . , r } completes the proof.

�

Fact 5.2.10. A non-zero multivariate polynomial p : Rn → R evaluated at a point

x ∼ N(0, ρ2)n with ρ > 0 evaluates to zero with zero probability.

We remark that the statement of Lemma 5.2.9 can also be made robust to inverse

polynomial error by using polynomial anti-concentration bounds (e.g., Carbery-Wright

inequality) instead of Fact 5.2.10; however this is not required for proving NP-hardness. We

now complete the proof of Theorem 5.2.2.

101

Proof of Theorem 5.2.2. We start with the NP-hardness ofQP , and for the reduction

in Figure 5.3, we will show that in the Yes case, we will show that there is a δ-robust degree-2

PTF (completeness), and in the No case we will show that there is no δ robust degree-2 PTF

(soundness). As a reminder, the NP-hard problem QP is the following: given a symmetric

matrix A ∈ Rn×n with zeros on diagonals, and β > 0 distinguish whether

No Case : there exists an assignment y∗ with ‖y∗‖∞ ≤ 1 such that q(y∗) = (y∗)TAy∗ > β,

Yes Case : max‖y‖∞≤1 y
TAy < β.

Completeness (Yes Case): Consider the degree-2 PTF given by sgn(z − p(x)) = sgn(z −

xTAx). From Lemma 5.2.6, we have that it is δ robust at the 2m points { ((u(`), z
(`)
u), y

(`)
u) : ` ∈ [m] }

and { ((v(`), z
(`)
v), y

(`)
v) : ` ∈ [m] } with probability at least 1− η (for η being any sufficiently

small constant). Further, from multilinearity of p we have that,

max
‖y‖∞≤δ

yTAy = δ2 max
‖y‖∞≤1

yTAy < δ2β = α− δ.

Hence (α− δ)− max
‖y‖∞≤δ

yTAy > 0,

which establishes robustness at ((0, α),+1) for sgn(z − xTAx). Hence sgn(z − p(x)) is

δ-robust at the 2m + 1 points with probability at least 1 − η (for η being any sufficiently

small constant).

Soundness (No Case): From Lemma 5.2.7, we see that the degree-2 PTF given by sgn(z −

p(x)) = sgn(z − xTAx) is the only degree-2 PTF that can potentially be robust at all the

2m+ 1 points with probability 1. Again analyzing robustness at the example ((0, α),+1), we

102

see that from multilinearity of p,

max
‖y‖∞≤δ

yTAy = δ2 max
‖y‖∞≤1

yTAy > δ2β = α− δ.

Hence (α− δ)− max
‖y‖∞≤δ

yTAy < 0,

which shows that the degree-2 PTF sgn(z − p(x)) is not robust at (0, α). Hence there is no

δ-robust degree-2 PTF at the 2m+ 1 given points, with probability 1. This completes the

analysis of the reduction, and establishes the theorem.

�

Stronger Hardness. We now prove the robust lower bound stated below.

Theorem 5.2.11. [Stronger Hardness] For every δ > 0 and ε ∈ (0, 2
7
), assuming NP 6=

RP there is no polynomial time algorithm that given a set of N = poly(n, 1/ε) labeled points

{ (x(1), y(1)), . . . , (x(N), y(N)) } in Rn+1 × {−1, 1 } such that there is a degree-2 PTF with

δ-robust empirical error of 0, can output a degree-2 PTF that has δ-robust empirical error of

at most ε on these N points.

Proof. The proof of this theorem closely follows the proof of Theorem 5.2.2 (the

ε = 0 case), so we only point out the differences here. The reduction uses the same gadget

(Figure 5.3) used in Theorem 5.2.2. The main challenge is the soundness analysis (NO case),

where we need to rule out the existence of degree-2 PTFs which are δ-robust and consistent

at all but an ε fraction of the points. To handle this, we introduce “redundancy” by including

more points (of both kinds) to ensure that even when an arbitrary ε fraction of these points

103

are ignored (the PTF makes errors on them), we can still use the arguments in the soundness

analysis of Theorem 5.2.2.

Recall that our reduction (see Figure 5.3) generated two sets of points. We have

one point of the form (0, α) (let us denote this type as Type A) and m pairs of points

{ (u(`), z
(`)
u), (v(`), z

(`)
v) : ` ∈ [m] } which are obtained by modifying (x(`), z(`) = p(x(`))) with

x(`) generated randomly (let us denote these 2m points as of Type B).

Set N1 := n3, N2 := 2n3. In our modified instance, we will have N1 points of Type A

i.e., N1 identical points (0, α) (note that we can also perturb these points slightly so that

they are all distinct, if required). Further, we will have N2 points of Type B i.e., we will

generate N2/2 pairs of points { (u(`), z
(`)
u) : ` ∈ [N2/2] } which are generated as described in

Figure 5.3 after drawing x(`) ∼ N(0, ρ2)n for ` ∈ [N2/2] (here a larger ρ = O(δn3/2N2) will

suffice). Hence, we have in total N = N1 +N2 = 3n3 points.

The completeness analysis (YES case) is identical to that of Theorem 5.2.2, as sgn(z−p(x))

will be δ-robust at all of the N points (from Lemma 5.2.6 and our choice of α).

We now focus on the soundness analysis (NO case). From ε < 1
3
and our choice of N1

and N2,

N1 > ε(N1 +N2) (5.61)

(1− ε)(N1 +N2) > N1 +
N2

2
+ (n+ 1)2 (5.62)

From (5.62) and a pigeonhole argument, any subset of size (1− ε)(N1 +N2) is guaranteed

to have (n+ 1)2 pairs of points of the form (u(`), z
(`)
u) and (v(`), z

(`)
v). This is because the LHS

of (5.62) represents a lower bound on the number of points the candidate degree-2 PTF is

104

robust on. The RHS of (5.62) represents the number of points needed to ensure that atleast

(n + 1)2 pairs of points from Type B are picked. Hence using Lemma 5.2.7 along with a

union bound over all the
(

N2

(n+1)2

)
choices of the pairs (note that the failure probability in

Lemma 5.2.9 is 0), the “intended” PTF sgn(z − p(x)) is the only surviving degree-2 PTF.

Again from (5.61) and the pigeonhole principle, any (1 − ε) fraction of the points will

contain atleast one point of the Type A i.e., (0, α). Hence in the NO case, the “intended”

PTF sgn(z − p(x)) is not δ-robust. This completes the soundness analysis and establishes

the theorem.

�

105

CHAPTER 6

Experiments

6.1. Stable Clustering

We evaluate Algorithm 3.3.1 on multiple real world datasets and compare its performance

to the performance of k-means++, and also check how well these datasets satisfy our geometric

conditions.

Table 6.1. Comparison of k-means cost for Alg 3.3.1 and k-means++

Dataset Alg 3.3.1 k-means++ Alg 3.3.1 with Lloyd’s k-means++ with Lloyd’s
Wine 2.376e+06 2.426e+06 2.371e+06 2.371e+06
Wine (normalized) 48.99 65.50 48.99 48.95
Iris 81.04 86.45 78.95 78.94
Iris (normalized) 7.035 7.676 6.998 6.998
Banknote Auth. 44808.9 49959.9 44049.4 44049.4
Banknote (norm.) 138.4 155.7 138.1 138.1
Letter Recognition 744707 921643 629407 611268
Letter Rec. (norm.) 3367.8 4092.1 2767.5 2742.3

Table 6.2. Values of ε satisfying Lemma 3.1.5

Dataset Minimum ε Average ε Maximum ε
Wine 0.0115 0.0731 0.191
Wine (normalized) 0.000119 0.0394 0.107
Iris 0.00638 0.103 0.256
Iris (normalized) 0.00563 0.126 0.237
Banknote Auth. 0.00127 0.00127 0.00127
Banknote (norm.) 0.00175 0.00175 0.00175
Letter Recognition 3.22e-05 0.0593 0.239
Letter Rec. (norm.) 8.49e-06 0.0564 0.247

106

Table 6.3. Values of (ρ, ε,∆) satisfied by (1− η)-fraction of points

Dataset η ε minimum ρ/∆ average ρ/∆ maximum ρ/∆

Wine
0.05 0.1 0.355 0.992 2.19

0.01 0.374 1 2.2

0.1 0.1 0.566 1.5 3.05
0.01 0.609 1.53 3.07

Wine (normalized)
0.05 0.1

0.01 0.399 1.06 2.29

0.1 0.1 0.451 1.3 2.66
0.01 0.735 1.96 3.62

Iris
0.05 0.1 0.156 2.47 5.37

0.01 0.263 2.88 6.43

0.1 0.1 0.398 4.35 7.7
0.01 0.496 5.04 9.06

Iris (normalized)
0.05 0.1 0.0918 1.89 3.08

0.01 0.213 2.21 3.4

0.1 0.1 0.223 3.74 7.12
0.01 0.391 4.42 8.3

Banknote Auth.
0.05 0.1 0.0731 0.0731 0.0731

0.01 0.198 0.198 0.198

0.1 0.1 0.264 0.264 0.264
0.01 0.398 0.398 0.398

Banknote (norm.)
0.05 0.1

0.01 0.197 0.197 0.197

0.1 0.1 0.246 0.246 0.246
0.01 0.474 0.474 0.474

Letter Recognition
0.05 0.1

0.01 0.168 2.06 6.96

0.1 0.1 0.018 2.19 7.11
0.01 0.378 3.07 11.4

Letter Rec. (norm.)
0.05 0.1

0.01 0.157 1.97 7.14

0.1 0.1
0.01 0.378 2.92 11.2

Datasets : Experiments were run on unnormalized and normalized versions of four

labeled datasets from the UCI Machine Learning Repository: Wine (n = 178, k = 3, d = 13),

107

Iris (n = 150, k = 3, d = 4), Banknote Authentication (n = 1372, k = 2, d = 5), and Letter

Recognition (n = 20, 000, k = 26, d = 16). Normalization was used to scale each feature to

unit range.

Performance : The cost of the solution returned by Algorithm 3.3.1 for each of the

normalized and unnormalized versions of the datasets is recorded in Table 6.1 column

2. Our guarantees show that under (ρ,∆, ε)-separation for appropriate values of ρ (see

section 3.3), the algorithm will find the optimal clustering after a single iteration of Lloyd’s

algorithm. Even when ρ does not satisfy our requirement, we can use our algorithm as

an initialization heuristic for Lloyd’s algorithm. We compare our initialization with the

k-means++ initialization heuristic (D2 weighting). In Table 6.1, this is compared to the

smallest initialization cost of 1000 trials of k-means++ on each of the datasets, the solution

found by Lloyd’s algorithm using our initialization and the smallest k-means cost of 100 trials

of Lloyd’s algorithm using a k-mean++ initialization.

Separation in real data sets : As the ground truth clusterings in our datasets are not

in general linearly separable, we consider the clusters given by Lloyd’s algorithm initialized

with the ground truth solutions.

Values of ε for Lemma 3.1.5. We calculate the maximum value of ε such that every pair

of clusters satisfies the angular and margin separations implied by ε-APS (Lemma 3.1.5).

The results are recorded in Table 6.2. We see that the average value of ε lies approximately

in the range (0.01, 0.1).

Values of (ρ,∆, ε)-separation. We attempt to measure the values of ρ, ∆, and ε in the

datasets. For η = 0.05, 0.1, ε = 0.1, 0.01, and a pair of clusters Ci, Cj, we calculate ρ as

the maximum margin separation a pair of axis-aligned cones with half-angle arctan(1/ε) can

108

have while capturing a (1− η)-fraction of all points. For some datasets and values for η and

ε, there may not be any such value of ρ, in this case we leave the corresponding entry blank.

These results are collected in Table 6.3.

Ground truth recovery : The clustering returned by our algorithm recovers well

(≈ 97%) the solution returned by Lloyd’s algorithm initialized with the ground truth for

Wine, Iris, and Banknote Authentication across normalized and unnormalized datasets.

6.2. Adversarial Learning

In this section, we evaluate the performance of the SDP based rounding algorithm outlined

in Figure 4.3 to generate adversarial examples for depth-2 neural networks with ReLU gates,

and compare it with the projected gradient descent(PGD) based attack of Madry et al. Madry

et al. [2017]. We will show that our approach indeed finds more adversarial examples. This

however, comes at a computational cost since we need to solve one SDP per example and per

pair of classes. We use the MNIST data set and our two layer neural network has d = 784

input units, k = 1024 hidden units and 10 output units. This leads to an SDP with d+ k + 1

vector variables. On an standard desktop with Intel i5 4590 processor, and 4 cores 3.30GHz,

solving one SDP instance takes 200 seconds on average. As a consequence we perform our

experiments on randomly chosen subsets of the MNIST data set. Another optimization we

perform for computational reasons is that given an example x with predicted class i, rather

than checking for every class j, if one can find an attack example z that misclassifies x+ z

to be in class j, we simply pick j to be the class label of the second highest prediction at

x. Hence, the numbers we report below are an underestimate of the effectiveness of the full

SDP based algorithm

109

Figure 6.1. The figure shows three MNIST random samples from PDGfail
(i.e., examples where PGDattack failed to find an adversarial perturbation),
where SDPattack successfully finds adversarial perturbations for δ = 0.3. The
images in the first column represent the original images corresponding to three,
the second column represents the perturbed images produced by the failed
PGDattack, and perturbed images produced by the successful SDPattack.
Visual inspection of these examples suggest that our method often produces
sparse targeted perturbations.

We compare the effectiveness of our attack in finding adversarial examples when compared

to the the PGD based attack of Madry et al. Madry et al. [2017]. We consider two settings

of the parameter δ, the maximum amount by which each pixel can be perturbed to produce

a valid attack example. As in Madry et al. [2017] we first choose δ = 0.3 and train a robust

110

Figure 6.2. The figure shows three MNIST random samples from PDGpass
(i.e., examples where PGDattack succeeded to find an adversarial perturbation),
where SDPattack successfully finds adversarial perturbations for δ = 0.3. The
images in the first column represent the original images corresponding to three,
the second column represents the perturbed images produced by the successful
PGDattack, and perturbed images produced by the successful SDPattack.
Visual inspection of these examples suggest that our method often produces
sparse targeted perturbations.

2-layer network using the algorithm of Madry et al. Madry et al. [2017]. We then run the

PGD attack and divide the test set into examples where the PGD attack succeeds (PGDPass)

and examples where the PGD attack fails (PGDfail). We then run our attack on batches of

random subsets chosen from each set. In the algorithm we set δ′ = αδ for a hyperparameter

111

α ≤ 1. This is because we want to ensure that the rounded solutions have `∞ norm of at

most δ. In our experiment we set α = 0.07. The first row of Table 6.4 shows the precision

and recall of our method. We report the average and the standard deviation across the

chosen batches. As one can see, our method has very high recall, i.e., whenever the PGD

attack succeeds, our SDP based algorithm also finds adversarial examples. Furthermore, on

examples where the PGD attack fails, our method is still able to discover new adversarial

examples 30% of the time. Please see Figure 6.1 for the images corresponding to some of the

examples where the SDP based attack succeeds, but the PGDattack fails and Figure 6.2 for

the images of some examples where both the PGDattack and SDP based attack succeed. A

visual inspection of both the figures reveals that our attack often produces sparse targeted

attacks as opposed to PGDattack.

We repeat the same methodology with δ = 0.01, α = 0.2. Here we notice that PGD attack

succeeds on only 138 test examples and hence we can afford to run our attack on all of them.

As can be seen from the second row of Table 6.4 our attack succeeds on all of these examples.

Furthermore, we rank the examples in PGDfail according to the difference of the highest

and the second highest of the ten network outputs. The smaller the difference, the easier it

should be to find an adversarial example. Indeed as can be seen from the table, our method

finds 45 new adversarial examples out of the first 100 such ranked examples.

The experiments above suggest that our algorithms can lead to improved adversarial

attacks. We would like to note that the recent work of Raghunathan et al. [2018] also studied

semi-definite programming based methods for providing adversarial certificates for 2-layer

neural networks. However, our SDP as outlined is Figure 4.3 is strictly stronger. In particular,

the SDP of Raghunathan et al. [2018] is independent of the given example x and as a result

112

δ = 0.3 PGDpass (6 × 50 random samples) PGDfail (8 × 100 random samples)
SDP succeds 297 out of 300 total 244 out of 800 total

Mean : 49.5 of 50, Std : 0.76 Mean 30.6 of 100, Std : 2.87
δ = 0.01 PGDpass (138 samples) PGDfail (100 ranked)

SDP succeeds 138 45
Table 6.4. For δ = 0.3, we report mean and standard deviation of number of
adversarial examples found by running our SDPattack algorithm on 6 batches
of 50 random examples from PGDpass and 8 batches of 100 random samples
from PGDfail. For δ = 0.01, we run SDPattack on all 138 examples in PGDpass
and first 100 sorted examples from PGDfail.

we expect our method to produce better certificates. We leave as future work the task of

making our theoretical analysis practical for large scale applications.

113

CHAPTER 7

Open Problems

In this thesis we try to better understand the connection between resilience to adversarial

perturbations and how this property makes NP-hard problems tractable in both the supervised

and unsupervised setting. We study this in the context of clustering in the unsupervised

setting and adversarial learning of PTFs in the supervised setting. The resilience to adversarial

perturbations comes up in two different forms in the problems as do the margin conditions

they imply. There are two kinds of further work we propose in this thesis. The first is further

work on these specific two problems, while the second is exploring this perhaps surprising

connection further.

7.1. Lower Bounds for ε Additive Stable k-means Instances

In our clustering work, we gave algorithms for general Euclidean k-means as well as robust

k-means. Proving lower bounds on additive stable instances of euclidean k-means however

remains an open question.

Question 7.1.1. For some "non-trivial" ε is it NP hard to find the optimal clustering in

ε additive stable instances of euclidean k-means?

It might be easy to show hardness when ε is exponentially small. However, we believe the

answer to the question is yes for a non-trivial value of ε as well. We also think think that

reductions like [Vattani] where the author shows hardness of k-means clustering in the plane,

114

is key in proving hardness of ε stable instances. The main idea would be to use a similar

reduction to reduce to a final instance that is ε stable.

7.2. Further Directions in Adversarial Learning

Several questions still remain as theoretical study in this field is still in its infancy. A

straightforward follow up to our work is to investigate whether our framework can be used to

design robust algorithms for degree d PTFs.

Question 7.2.1. Can the framework discussed in Section 4.2 be used to design algorithms

for degree d PTFs that are robust to adversarial perturbations?

While there are algorithms that approximately maximize degree d polynomials, they only

work for the homogeneous case which do not suffice for our purpose. It is also an open

problem whether our adversarial attack for depth-2 neural networks can be converted into

a robust learning algorithm via the same framework. The most straightforward use of the

framework does not lead to a convex constraint set.

Currently, the bottleneck in our work is the speed of the SDP solution. If the SDP solving

step can be sped up significantly, then we can make our SDP attack work on a much larger

scale leading to improved adversarial attacks.

Question 7.2.2. Can the SDP attack be sped up to make it work on a larger scale?

If the answer to the above question is yes, then it will be possible to run our SDP based

adversarial attack on real world scenarios. This will produce better adversarial examples

which in turn will help train algorithms that are very robust to adversaries.

115

7.3. Adversarial Resilience and tractability of NP-hard problems

Finally, this thesis is an initial exploration into the connection between an instance being

tractable and adversarially robust. Further work that explores this connection should be very

interesting.

Question 7.3.1. What instances of NP-hard problems become easy if they have a solution

that is adversarially robust?

Recent work have already started to address this question. For instance [Montasser et al.,

2020] efficiently learns noisy halfspaces that are adversarially robust, while [Dan et al., 2020]

gives statistical guarantees for adversarially robust Gaussian classification. Another line of

very interesting work analyzes adversarially robust principal component analysis [Awasthi

et al., 2019a, 2020].

116

References

Margareta Ackerman and Shai Ben-David. Clusterability: A theoretical study. In David

van Dyk and Max Welling, editors, Proceedings of the Twelth International Conference on

Artificial Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research,

pages 1–8, Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, 16–18 Apr

2009. PMLR. URL http://proceedings.mlr.press/v5/ackerman09a.html.

Noga Alon, Konstantin Makarychev, Yury Makarychev, and Assaf Naor. Quadratic forms on

graphs. Inventiones mathematicae, 163(3):499–522, 2006.

Haris Angelidakis, Konstantin Makarychev, and Yury Makarychev. Algorithms for stable

and perturbation-resilient problems. In Proceedings of the 49th Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2017, page 438–451, New York, NY, USA, 2017.

Association for Computing Machinery. ISBN 9781450345286. doi: 10.1145/3055399.3055487.

URL https://doi.org/10.1145/3055399.3055487.

Sanjeev Arora, Eli Berger, Hazan Elad, Guy Kindler, and Muli Safra. On non-approximability

for quadratic programs. In Foundations of Computer Science, 2005. FOCS 2005. 46th

Annual IEEE Symposium on, pages 206–215. IEEE, 2005.

Idan Attias, Aryeh Kontorovich, and Yishay Mansour. Improved generalization bounds for

robust learning. arXiv preprint arXiv:1810.02180, 2018.

http://proceedings.mlr.press/v5/ackerman09a.html
https://doi.org/10.1145/3055399.3055487

117

Pranjal Awasthi and Or Sheffet. Improved spectral-norm bounds for clustering. In Approx-

imation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,

pages 37–49. Springer, 2012.

Pranjal Awasthi, Avrim Blum, and Or Sheffet. Improved guarantees for agnostic learning of

disjunctions. In Adam Tauman Kalai and Mehryar Mohri, editors, COLT, pages 359–367.

Omnipress, 2010. ISBN 978-0-9822529-2-5. URL http://dblp.uni-trier.de/db/conf/

colt/colt2010.html#AwasthiBS10.

Pranjal Awasthi, Avrim Blum, and Or Sheffet. Center-based clustering under perturbation

stability. Information Processing Letters, 112(1–2):49 – 54, 2012. ISSN 0020-0190. doi: http:

//dx.doi.org/10.1016/j.ipl.2011.10.006. URL http://www.sciencedirect.com/science/

article/pii/S0020019011002778.

Pranjal Awasthi, Afonso S. Bandeira, Moses Charikar, Ravishankar Krishnaswamy, Soledad

Villar, and Rachel Ward. Relax, no need to round: integrality of clustering formulations,

2014.

Pranjal Awasthi, Vaggos Chatziafratis, Xue Chen, and Aravindan Vijayaraghavan. Adversar-

ially robust low dimensional representations, 2019a.

Pranjal Awasthi, Abhratanu Dutta, and Aravindan Vijayaraghavan. On robustness to

adversarial examples and polynomial optimization, 2019b.

Pranjal Awasthi, Xue Chen, and Aravindan Vijayaraghavan. Estimating principal components

under adversarial perturbations, 2020.

Maria Florina Balcan and Yingyu Liang. Clustering under perturbation resilience, 2011.

Shai Ben-David. Computational feasibility of clustering under clusterability assumptions,

2015.

http://dblp.uni-trier.de/db/conf/colt/colt2010.html#AwasthiBS10
http://dblp.uni-trier.de/db/conf/colt/colt2010.html#AwasthiBS10
http://www.sciencedirect.com/science/article/pii/S0020019011002778
http://www.sciencedirect.com/science/article/pii/S0020019011002778

118

Aharon Ben-Tal and Arkadi Nemirovski. Robust solutions of uncertain linear programs.

Operations research letters, 25(1):1–13, 1999.

Dimitris Bertsimas and Melvyn Sim. The price of robustness. Operations research, 52(1):

35–53, 2004.

Chiranjib Bhattacharyya. Robust classification of noisy data using second order cone pro-

gramming approach. In Intelligent Sensing and Information Processing, 2004. Proceedings

of International Conference on, pages 433–438. IEEE, 2004.

Alberto Bietti, Grégoire Mialon, and Julien Mairal. On regularization and robustness of deep

neural networks. arXiv preprint arXiv:1810.00363, 2018.

Yonatan Bilu and Nathan Linial. Are stable instances easy? In ICS’10, pages 332–341, 2010.

Hans-Dieter Block. The perceptron: A model for brain functioning. Reviews of Modern

Physics, 34(1):123–135, 1962.

Avrim Blum and John Dunagan. Smoothed analysis of the perceptron algorithm for linear

programming. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA ’02, page 905–914, USA, 2002. Society for Industrial and Applied

Mathematics. ISBN 089871513X.

Sébastien Bubeck, Yin Tat Lee, Eric Price, and Ilya Razenshteyn. Adversarial examples from

cryptographic pseudo-random generators. arXiv preprint arXiv:1811.06418, 2018a.

Sébastien Bubeck, Eric Price, and Ilya Razenshteyn. Adversarial examples from computational

constraints. arXiv preprint arXiv:1805.10204, 2018b.

M Charikar and A Wirth. Maximizing quadratic programs: extending grothendieck’s inequal-

ity. In Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE Symposium

on, pages 54–60. IEEE, 2004.

119

Daniel Cullina, Arjun Nitin Bhagoji, and Prateek Mittal. Pac-learning in the presence of

evasion adversaries. arXiv preprint arXiv:1806.01471, 2018.

Chen Dan, Yuting Wei, and Pradeep Ravikumar. Sharp statistical guarantees for adversarially

robust gaussian classification, 2020.

Sanjoy Dasgupta. The hardness of k-means clustering. Department of Computer Science and

Engineering, University of California, San Diego, 2008.

Dimitrios Diochnos, Saeed Mahloujifar, and Mohammad Mahmoody. Adversarial risk and

robustness: General definitions and implications for the uniform distribution. In Advances

in Neural Information Processing Systems, pages 10380–10389, 2018.

Abhratanu Dutta, Aravindan Vijayaraghavan, and Alex Wang. Clustering stable instances of

euclidean k-means, 2017.

Laurent El Ghaoui and Hervé Lebret. Robust solutions to least-squares problems with

uncertain data. SIAM Journal on matrix analysis and applications, 18(4):1035–1064, 1997.

Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Robustness of

classifiers: from adversarial to random noise. In Advances in Neural Information Processing

Systems, pages 1632–1640, 2016.

Uriel Feige, Yishay Mansour, and Robert Schapire. Learning and inference in the presence of

corrupted inputs. In Conference on Learning Theory, pages 637–657, 2015.

Zachary Friggstad, Kamyar Khodamoradi, and Mohammad R. Salavatipour. Exact algorithms

and lower bounds for stable instances of euclidean k-means. 2018.

Michael R Garey and David S Johnson. Computers and intractability, volume 29. wh freeman

New York, 2002.

120

Justin Gilmer, Ryan P Adams, Ian Goodfellow, David Andersen, and George E Dahl. Motivat-

ing the rules of the game for adversarial example research. arXiv preprint arXiv:1807.06732,

2018a.

Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S Schoenholz, Maithra Raghu, Martin

Wattenberg, and Ian Goodfellow. Adversarial spheres. arXiv preprint arXiv:1801.02774,

2018b.

Amir Globerson and Sam Roweis. Nightmare at test time: robust learning by feature deletion.

In Proceedings of the 23rd international conference on Machine learning, pages 353–360.

ACM, 2006.

Pascale Gourdeau, Varun Kanade, Marta Kwiatkowska, and James Worrell. On the hardness

of robust classification. arXiv preprint arXiv:1909.05822, 2019.

Michael J Kearns, Umesh Virkumar Vazirani, and Umesh Vazirani. An introduction to

computational learning theory. MIT press, 1994.

Justin Khim and Po-Ling Loh. Adversarial risk bounds for binary classification via function

transformation. arXiv preprint arXiv:1810.09519, 2018.

Subhash Khot and Ryan O’Donnell. Sdp gaps and ugc-hardness for maxcutgain. In Foun-

dations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pages

217–226. IEEE, 2006.

Amit Kumar and Ravindran Kannan. Clustering with spectral norm and the k-means algo-

rithm. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium

on, pages 299–308. IEEE, 2010.

Hunter Lang, David Sontag, and Aravindan Vijayaraghavan. Block stability for map inference,

2018.

121

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian

Vladu. Towards deep learning models resistant to adversarial attacks. arXiv preprint

arXiv:1706.06083, 2017.

Saeed Mahloujifar and Mohammad Mahmoody. Can adversarially robust learning leverage

computational hardness? arXiv preprint arXiv:1810.01407, 2018.

Saeed Mahloujifar, Dimitrios I Diochnos, and Mohammad Mahmoody. The curse of concen-

tration in robust learning: Evasion and poisoning attacks from concentration of measure.

arXiv preprint arXiv:1809.03063, 2018.

Konstantin Makarychev and Yury Makarychev. Metric perturbation resilience, 2016.

Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Bilu-linial stable

instances of max cut and minimum multiway cut, 2013.

D. G. Mixon, S. Villar, and R. Ward. Clustering subgaussian mixtures with k-means.

In 2016 IEEE Information Theory Workshop (ITW), pages 211–215, Sept 2016. doi:

10.1109/ITW.2016.7606826.

Omar Montasser, Surbhi Goel, Ilias Diakonikolas, and Nathan Srebro. Efficiently learning

adversarially robust halfspaces with noise, 2020.

Yu Nesterov. Semidefinite relaxation and nonconvex quadratic optimization. Optimization

methods and software, 9(1-3):141–160, 1998.

Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, New York,

NY, USA, 2014. ISBN 1107038324, 9781107038325.

Orr Paradise. Smooth and Strong PCPs. In Thomas Vidick, editor, 11th Innovations in

Theoretical Computer Science Conference (ITCS 2020), volume 151 of Leibniz International

Proceedings in Informatics (LIPIcs), pages 2:1–2:41, Dagstuhl, Germany, 2020. Schloss

122

Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-134-4. doi: 10.4230/LIPIcs.

ITCS.2020.2. URL https://drops.dagstuhl.de/opus/volltexte/2020/11687.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial

examples. arXiv preprint arXiv:1801.09344, 2018.

Tim Roughgarden. Beyond worst-case analysis, 2018.

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry.

Adversarially robust generalization requires more data. arXiv preprint arXiv:1804.11285,

2018.

Pannagadatta K Shivaswamy, Chiranjib Bhattacharyya, and Alexander J Smola. Second

order cone programming approaches for handling missing and uncertain data. Journal of

Machine Learning Research, 7(Jul):1283–1314, 2006.

Aman Sinha, Hongseok Namkoong, Riccardo Volpi, and John Duchi. Certifying some

distributional robustness with principled adversarial training, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian

Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint

arXiv:1312.6199, 2013.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander

Madry. Robustness may be at odds with accuracy, 2018.

Andrea Vattani. The hardness of k-means clustering in the plane.

Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex

outer adversarial polytope. In International Conference on Machine Learning, pages

5283–5292, 2018.

https://drops.dagstuhl.de/opus/volltexte/2020/11687

123

Huan Xu and Shie Mannor. Robustness and generalization. Machine learning, 86(3):391–423,

2012.

Huan Xu, Constantine Caramanis, and Shie Mannor. Robustness and regularization of

support vector machines. Journal of Machine Learning Research, 10(Jul):1485–1510, 2009.

Dong Yin, Kannan Ramchandran, and Peter Bartlett. Rademacher complexity for adversari-

ally robust generalization. arXiv preprint arXiv:1810.11914, 2018.

	ABSTRACT
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	The Instance Stability Assumption
	1.1. Case Study : Stability and Clustering
	1.2. Our Contributions for Stable Clustering
	1.3. Case Study : Adversarial Learning
	1.4. Our contributions for Adversarial Learning
	1.5. Organization of the Thesis

	Chapter 2. Background
	2.1. Stable Clustering
	2.2. Adversarial Learning

	Chapter 3. Stable Clustering
	3.1. Stability definitions and geometric properties
	3.2. k-means clustering for k=2
	3.3. k-means clustering for general k
	3.4. Robust k-means

	Chapter 4. Adversarial Learning : Upper Bound
	4.1. Finding Adversarial Examples Using Polynomial Optimization
	4.2. From Adversarial Examples to Robust Learning Algorithms
	4.3. Finding Adversarial Examples for Two Layer Neural Networks

	Chapter 5. Adversarial Learning : Lower Bound
	5.1. Computational Intractability of Learning Robust Classifiers
	5.2. A Lower Bound for Weak Robust Learning

	Chapter 6. Experiments
	6.1. Stable Clustering
	6.2. Adversarial Learning

	Chapter 7. Open Problems
	7.1. Lower Bounds for Additive Stable k-means Instances
	7.2. Further Directions in Adversarial Learning
	7.3. Adversarial Resilience and tractability of NP-hard problems

	References

