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ABSTRACT 
 

Recent advancements in processing and manufacturing techniques have spurred an 

exponential increase in use of polymer nanocomposites in a variety of applications. A key 

challenge in using these nanocomposites effectively is the dispersion of nanoparticles in the 

polymer matrix. Matrix-free assemblies of polymer grafted nanoparticles, called hairy 

nanoparticles assemblies(aHNPs) have come into spotlight as they overcome the dispersion issues 

of traditional polymer nanocomposites. These aHNPs provide better structural order that allows 

functional and mechanical properties to be tailored more accurately. 

Traditional material development involves iterative experimentations to characterize and 

optimize the mechanical properties, which is a costly and time-consuming process. The timeframe, 

from material discovery to market deployment, can be significantly reduced with the help of high 

performance computational tools. In this work, we describe computational approaches that 

significantly accelerate the materials-by-design process. The first step towards achieving this goal 

is to develop an effective coarse-graining (CG) strategy, namely the energy renormalization 

approach, that enhances the spatiotemporal scales of molecular dynamics (MD) simulations while 

quantitatively capturing the thermomechanical behavior of materials. 

Next, we apply these CG techniques to model the aHNPs and explore the mechanics of 

these materials. While experimental studies have characterized the mechanical properties of 

aHNPs, effective strategies to improve both the mechanical stiffness and toughness of aHNPs are 

lacking given the general conflicting nature of these two properties and the large number of 

molecular parameters involved in the design of aHNPs. Thus, we develop a computational 

framework combining machine learning with CG-MD simulations, called metamodel based design 
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optimization, to establish design strategies for achieving optimal mechanical properties. We 

develop theoretical scaling laws that govern the polymer chain conformations in these aHNPs and 

show the universality of these laws by examining the conformations of grafted polymers with 

varying chemistry, persistence length and side-group size. 

Finally, we develop an effective interaction between nanoparticles in aHNPs with different 

design parameters, i.e., polymer chain length, grafting density and polymer chemistry using the 

potential of mean force approach. With the development of this interatomic potential between the 

nanoparticles, we propose a mesoscopic model for nanoparticle assemblies that circumvents the 

need to explicitly simulate polymer chains, significantly improving the computational efficiency 

by extending the spatiotemporal scales by 6-7 orders of magnitude. 

 All-together, these studies provide guidance and strategies to accelerate the materials-by 

design approach for hairy nanoparticle assemblies. The insights obtained from this work will lay 

the foundation in advancing mechanical performance of composites and other relevant structural 

materials. 
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Chapter 1: Introduction 

Rapid discovery and deployment of new advanced materials is crucial to sustain the 

development of mankind. At current state, the entire process of discovery to deployment of a new 

material takes about 10-20 years. The reason it takes so long is due to the time-consuming and 

repetitive experiment and characterization loops. Reducing this timeframe down to a few years is 

essential to drive economic growth in the society. In order to enable this acceleration, in 2011, the 

United States government started the Materials Genome Initiative (MGI), which aims to “discover, 

develop, manufacture, and deploy advanced materials at least twice as fast as possible today, at a 

fraction of the cost”1. MGI aims to accomplish this goal through a materials-by design approach 

which emphasizes establishing new databases, computational tools, and high-throughput 

experiments that speed up each step of the materials continuum. Using predictive simulations to 

accelerate the materials development process while also increasing the number of new advanced 

materials brought to market is a central element of the MGI framework. The idea is to create a new 

research paradigm which will reduce the reliance on physical experimentation by increasing the 

strength of computational analysis. These powerful computational tools will minimize or optimize 

traditional experimental testing (most time-consuming aspect of materials discovery). These tools 

will also help predict materials performance under various conditions, thus enabling faster and 

better design. While significant knowledge base as well innovative methods to accelerate design, 

such as machine learning assisted high throughput experiments, have already been developed for 

metal alloys2, such methods for nanostructured polymeric materials and nanocomposites are still 

in its infancy. This is due to the complexity of these materials, where the basic polymer physics 

and principles needs to be fully understood, as well as a lack of detailed knowledge of molecular 
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structure, which requires sufficient description of self-assembly phenomena, polymer-nanoparticle 

interactions and nanocomposite preparation processes.  

With this idea in mind, my PhD dissertation focuses on developing computational methods 

based on molecular dynamics framework that will help the acceleration of materials-by-design 

process for polymer nanocomposites. In conjunction with analytical theories, I will demonstrate 

the capabilities of these computational techniques using assembled hairy nanoparticles (aHNPs) 

as a model material. While the focus here is on one specific material system, it is important to 

emphasize the generality of these methods and that it can be extended to any number of material 

systems in the future to speed up the mechanical characterization process. In fact, I will showcase 

this by extending one of the computational method developed for polymers to a much more 

complicated system of crosslinked epoxy resins. 

In this chapter, I will first introduce the concept of assembled hairy nanoparticles, focusing 

on the advantages of aHNPs over traditional polymer nanocomposites. Next, I will summarize key 

knowledge gaps in the field of aHNPs. Finally, I will conclude the chapter with an outline of the 

thesis and how these new developed techniques accelerate the materials-by design process. 

1.1 Assembled Hairy Nanoparticles 

Research into polymer nanocomposites3-7 over the past few decades have resulted in 

numerous studies showing that introducing a small fraction of nanoparticles into polymers can 

significantly enhance the stiffness, toughness, and strength of the composite among other 

properties8-10. These nanocomposites have been extensively used in many applications since 20th 

century including aerospace11, electronics12, solar cells13, drug delivery14 and tissue engineering15. 
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However, there is a major problem hampering the efforts to develop these high-performance 

polymer nanocomposites. While addition of nanoparticles enhances the properties, adding too 

many nanoparticles leads to aggregation which degrades the mechanical properties16, 17. Various 

methods have been pursued to tackle the issue of nanoparticle aggregation including surface 

modification18 and polymer grafting19. Grafting polymers onto nanoparticles to generate so-called 

“hairy” nanoparticles (HNPs) has been a particularly promising direction of research, since stiff 

central core is surrounded by a soft polymeric corona that facilitates steric repulsion to prevent 

aggregation while also providing cohesion in the case of sufficiently long grafts. In this context, 

grafted nanoparticle dispersion in a polymer matrix and the emergent mechanical properties 

depend strongly on factors such as graft density, and the nature and degree of polymerization of 

the corona and matrix20. 

Superior mechanical properties can be attained by HNPs when they are very well dispersed 

in these nanocomposites. Achieving good dispersion requires tuning relative interfacial energies 

while not adversely affecting interphase properties, which is challenging17, 21, 22. Thus, instead of 

dispersing the HNPs in a polymeric matrix, one can create a nanocomposite with only HNPs, 

where the grafted chains themselves form the “matrix” phase and the nanoparticles serve as both 

a reinforcing phase as well as tethering points for the polymer chains as shown in Figure 1.1-123-

26. These matrix-free self-assembly of polymer grafted nanoparticles could overcome the 

dispersion issue, leading to composites with relatively regular spacing between particles. The 

emergent properties of so-called hairy nanoparticle assemblies (aHNPs)27 are promising because 

better structural order allows functional and mechanical properties to be tailored more accurately28, 

and higher volume fraction of the nanoparticles can be achieved29, 30.  
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Figure 1.1-1: Schematic of hairy nanoparticle assemblies: Matrix-free self assembly of polymer 

grafted nanoparticles leads to orderly strucutred aHNPs. 

 The wide design parameter space available for architectural choices for these aHNP 

systems provides a large application space. By using ionic groups on the periphery of the polymer 

chains, it is possible to synthesize layer-by-layer films that are used in switchable conducting 

membranes31, antifouling coatings32, multicolored quantum dot films33 and photovoltaics34. The 

choice of functional group of the polymer graft provides versatility to tailor aHNPs to have some 

reactivity towards external gases such as carbon dioxide. The entropic effects in the structural 

ordering of the polymer improves the uptake capacity as compared to ungrafted polymer, thus 

making it ideal to use in CO2 capture35. The concept can be extended to other gases such SO2, NO2 

and CO as well. 

1.2 Recent developments and shortcomings in the field of aHNPs 

Owing to its wide range of versatile applications, aHNPs have become a central focus for 

several experimental, computational and theoretical studies. In most of these studies, aHNPs are 

made out of spherical nanoparticles which are grafted to a homopolymer, which is usually 

polystyrene. A summary of these studies will be provided in this section while discussing the 

shortcomings.  

AssemblyNP
Polymer
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Mechanical properties have been characterized using nanoindentation techniques where it 

was found that the fracture toughness of aHNPs increases substantially beyond a certain degree of 

polymerization, specifically when the polymer conformations transition from a concentrated brush 

regime (CPB) to a semidilute brush regime (SDPB)29, 30. It has also been observed that the 

toughening effect due to the degree of polymerization decreases with larger particle sizes, which 

has been attributed to the increased dimensions of interstitial regions that reduce the entanglement 

density. Brillouin light spectroscopy has been used to evaluate the linear elastic properties of 

aHNPs and to understand the contribution of the core and polymer towards the elastic properties36. 

Thin film buckling method has been employed to obtain tensile stress-strain curve to understand 

properties such as strength and fracture toughness28. Viscoelastic measurements using mechanical 

rheometry have been carried out which revealed jamming mechanisms in the suspensions of 

aHNPs37. The relaxation dynamics of polymer chains have also been characterized38. While these 

experimental measurements provide a good understanding of macroscopic properties such as 

modulus and strength, the molecular mechanisms underpinning these properties are still not 

understood. 

Computational studies, specifically MD simulations, on aHNPs have focused on evaluating 

the polymer chain conformations and analyzing the self-assembly behavior. Most of these 

simulations have employed a generic bead-spring CG model which can capture the conformational 

behavior of a polymer chain, but lacks in chemical specificity. The self-assembly process in aHNPs 

leading to different morphologies have been extensively analyzed39, 40. The complex geometry and 

topology formed due to polymer grafted to nanoparticles of different shapes leads to morphologies 

that are potentially far richer than those known for conventional block copolymer, surfactant, and 
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liquid-crystal systems41, 42. Structural changes and adsorption in hairy nanoparticles have also been 

studied using generic bead-spring CG-MD simulations43, 44. There is a clear need for computational 

studies of aHNPs which includes a chemistry specific molecular modeling approach. Moreover, 

these studies have focused on aHNPs with a spherical nanoparticle and a modeling framework 

with high aspect ratio nanoparticle is needed to further advance the knowledge base.  

Scaling laws for star polymers developed by Daoud-Cotton help in making qualitative 

deductions on chain structure by extending the core of the star to a nanoparticle45, 46. This theory 

was further extended to study the polymer chain structure in aHNPs40, 47. However, a comparative 

analysis geared towards understanding the effect of different polymer chemistries on the confined 

conformations of anisotropic aHNPs, specifically on the CPB to SDPB transition, has not yet been 

carried out. Furthermore, there is a need to convert these theoretical scaling laws to models that 

can predict the macroscopic properties of aHNPs. 

Thus, in this thesis, we provide solutions to fill in these knowledge gaps in the field of 

aHNPs. Firstly, we develop a CG modeling approach that can be applied to any polymeric system. 

These models can later be used to model chemistry-specific aHNPs. Next, we combine CG-MD 

simulations with machine learning to develop a material-by-design framework for optimizing 

mechanical properties of aHNPs with high aspect ratio nanoparticles. Furthermore, we develop a 

universal scaling law that govern the chain conformations in aHNPs and has the ability to predict 

macroscopic properties such as nanoparticle spacing. Finally, we develop an effective interaction 

between nanoparticles in aHNPs that will eliminate the need to explicitly simulate the polymer 

chains which significantly enlarges the spatiotemporal scales of CG-MD simulations. All the 
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computational methods developed in this thesis aim towards accelerating the materials-by design 

process for aHNPs. 

1.3 Thesis outline 

Despite advancements in supercomputing methods, all-atomistic MD simulations are still 

prohibitively expensive to characterize material properties due limitations in time and length 

scales. A brief overview of MD simulations is provided in Chapter 2:. In order to overcome the 

spatiotemporal limitations, there is a need to develop meso-scale techniques such as coarse-

graining. Chapter 2: also gives a background of different kinds of CG approaches and their 

limitations.  

 In Chapter 3:, we propose a new approach towards coarse-graining, called the Energy 

Renormalization (ER) approach. In this approach, loss of entropy due to coarse-graining is 

compensated by increasing the enthalpy/cohesive energy of the system (known as entropy-

enthalpy compensation effect). We develop this approach for three different kinds of materials; a 

small molecule, a polymer and an epoxy resin; showing the versatility of the approach. This 

approach is temperature transferable and is two to three orders of magnitude faster than AA-MD 

simulations. 

 In the design of a polymer nanocomposite, there are several parameters that can affect 

mechanical properties such as length of polymer chains, dimensions of the nanoparticle etc. While 

CG simulations are definitely faster than AA, exploring the vast design space becomes 

exponentially expensive even for CG simulations. Thus, in Chapter 4:, we explore the use of 

machine learning to accelerate this process. Specifically, we develop a metamodel based on inputs 

and outputs of 100 CG simulations, which later allows us to carry out one million “pseudo-CG” 
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simulations. This technique offers a speed up of six to seven orders of magnitude as compared to 

AA simulations. 

 In Chapter 5:, we develop theoretical scaling laws that will predict the conformations of 

polymer chains in a polymer grafted nanocomposite. Specifically, we derive an equation for 

critical chain length, which governs the conformational transition, and show that for a 

nanocomposite to have optimum mechanical properties, chain length of the polymer needs to be 

higher than the critical chain length. We also develop a universal equation governing the 

conformations and show the conformational data of more than 100 different designs fall under the 

same curve. 

 Next, in Chapter 6:, we develop a technique to parametrize a meso-scale model that will 

determine interactions between nanoparticles in the nanocomposite. Developing this inter-

nanoparticle potential will allow us to simulate implicit polymer chains that will tremendously 

increase time and length scales accessible with these MD simulations. We find a universal 

functional form of the potential that fits different kinds of polymers and we correlate the empirical 

constants of the equation with physical design parameters. 

 Finally, the dissertation is wrapped up in Chapter 7: with conclusion and outlook. Key 

contributions in the development of CG model, combination of machine learning with MD 

simulations and the development of PMF based meso-scale model are summarized. Future work 

that can build up from the frameworks developed in this dissertation is also discussed. 
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Chapter 2: Computational Methods 

This chapter will give the reader a high level overview of the computational framework used 

for all the work in this thesis; molecular dynamics (MD) simulations. Next, we discuss a subset of 

MD simulations that will be used in Chapter 6: called steered MD. Furthermore, a brief background 

on coarse graining (CG) strategies and different types of CG techniques will be provided. Finally, 

we provide an overview of a new approach towards CG called the energy renormalizing approach.  

2.1 Overview of molecular dynamics simulations 

Molecular Dynamics (MD) simulation is a computational technique that simulates the 

movement of atoms by solving the Newton’s equation of motion: 𝐹 = 𝑚𝑎, where 𝐹 is the force 

acting on the atom, 𝑚 is the mass and 𝑎 = 𝑑3𝑟 𝑑𝑡3 is the acceleration of the atom, 𝑟 being the 

position of the atom and 𝑡 is time. One of the earliest MD simulation was carried out in 195948, 

where it was used to study a system of hard spheres and obtain the phase diagram of solid and 

liquid regions. Aneesur Rahman from Argonne National Laboratory published a famous paper in 

1964, studying a number of properties of liquid Argon which pioneered the use of this 

computational technique49. MD simulations became increasingly popular to study the physics of 

polymer chains in the 1970s50-52. Since then, MD simulations have been at the core of 

computational research. With the advent of high performance supercomputing technology, this 

computational technique is being increasingly used to investigate the properties and behavior of 

materials at the molecular level. Highly parallelizable MD packages and complex force fields for 

soft matter such as Chemistry at Harvard Macromolecular Mechanics (CHARMM)53 were 

developed. In fact, the Nobel Prize in Chemistry in 2013 was awarded to the developers of 

CHARMM.  
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The time evolution of the movement of atoms is done by integrating this equation of motion 

for all particles. While there are various methods to obtain the time evolution, an important 

breakthrough in the time integration of the equation of motion was achieved by Loup Verlet in 

196754. He used MD simulations to study phase diagrams of liquid Argon, but more importantly 

he developed the Verlet time integration algorithm which is used even today in commercial MD 

packages. In this algorithm, velocity and position of the atoms are updated at each time step based 

on the following equations: 

𝑟 𝑡 + 𝛿𝑡 = 𝑟 𝑡 + 	𝑣 𝑡 𝛿𝑡 + L
3
𝑎(𝑡) 𝛿𝑡 3 + 𝑂 𝛿𝑡 N; 𝑎(𝑡) = P(Q)

R
   (2.1-1) 

𝑣 𝑡 + 𝛿𝑡 = 𝑣 𝑡 +	L
3
[𝑎 𝑡 + 𝑎 𝑡 + 𝛿𝑡 ] 𝛿𝑡 3 + 𝑂 𝛿𝑡 N    (2.1-2) 

To put in words, we initialize the system by giving each atom a position and velocity. Next, 

positions of the atoms (𝑟 𝑡 + 𝛿𝑡 ) are updated using Eq. 2.1-1. Note that the higher orders terms 

in these equations (𝑂 𝛿𝑡 N) are omitted. Based on the new position, new forces acting on the atoms 

are calculated. This in turn provides the new acceleration (𝑎 𝑡 + 𝛿𝑡 ) which updates the velocity 

(𝑣 𝑡 + 𝛿𝑡 ). Now that the new position and velocity of the atoms are obtained, the process is 

repeated to obtain time evolution. The choice of the timestep, 𝛿𝑡, is very important and is decided 

based on the atom with the highest vibrational frequency. This is usually hydrogen in all-atom 

simulations and the timestep for AA simulations is usually around 0.5 to 1 fs. Coarse-grained 

simulations can have a slightly larger timestep, which will be discussed in the next section. 

The force acting on the atom is calculated from gradient of the force field (𝑈(𝑟)) where 

𝐹 = −∇𝑈 𝑟 . The force field can encompass various kinds of interactions between atoms such as 

bonded potentials (bonds, angles dihedrals, impropers), non-bonded potentials (van der Waals 
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(vdW)), charges etc. For example, covalent bonds between two atoms can be thought of as two 

masses attached with a harmonic spring. Thus, potential between two atoms is: 

𝑈XYZ[ =
L
3
𝑘(𝑟L − 𝑟3)3         (2.1-3) 

𝑘 being the spring constant and 𝑟L and 𝑟3 being the positions of the atoms. In general, 

covalent bonds between atoms are represented using harmonic potential, however, in complex 

systems, bonds are also represented by Morse, FENE or a tabulated potential. Other bonded 

interactions such as angles, dihedrals and impropers capture the realistic angle bending, bond 

torsion, and out-of-plane bending angles, respectively. 

Non-bonded interactions such as the van der Waals (vdW) is often represented using pair-

wise interatomic potentials, most common being the Lennard-Jones potential; 

𝑈(𝑟)]^ = 4𝜀 a
#

L3
− a

#

b
        (2.1-4) 

where 𝜀 represents the cohesive strength of the interaction, 𝜎 represents the effective size 

of the atom and 𝑟 is the distance between atoms. These pair potentials include both attractive and 

repulsive part of the interaction. 

Thus, in order to carry out a MD simulation, three key things need to be provided: initial 

position of the atoms, initial velocity and the force field. The forces calculated based on the force 

field is used to update the positions and velocities of the atoms using the Verlet algorithm and thus, 

the time evolution of system will be obtained. There are various force fields that have been 

developed and verified for certain systems. For example, Optimized Potentials for Liquid 

Simulations (OPLS)55, as the name suggests, are mainly used for liquid simulations. Assisted 

Model Building with Energy Refinement (AMBER)56 is widely used to simulate DNA, 

CHARMM53 is used to simulate proteins and Groningen Molecular Simulation (GROMOS)57 is 



25	
	

	

used to simulate biomolecules. While these are some of the common uses of these force fields, it 

should be noted that it is not restricted to only these systems and that they can be applied to study 

a wide range of systems. There are various coarse-grained force fields as well which will be 

discussed in the next section. 

MD simulations are typically run in a statistical ensemble, which describes all possible 

microstates of the system. Each ensemble has a specific constraint that dictates the simulation 

environment. Micro canonical ensemble constrains number of particles (N), volume (V) and 

energy (E) of the system. Hence, it’s also commonly known as NVE ensemble. Similarly, other 

ensembles include canonical (NVT, T being temperature), isothermal-isobaric (NPT, P being 

pressure) and grand canonical (𝜇VT, 𝜇 being chemical potential). Choice of the ensemble entirely 

depends on the type of simulation that one wants to carry out, for example, to evaluate equilibrium 

properties such as density, one might use an NPT ensemble with zero external pressure, or during 

ballistic simulations, where energy has to be conserved, NVE ensemble is used. 

There are various commercial MD packages available such as Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS)58, Nanoscale Molecular Dynamics 

(NAMD)59 and Groningen Machine for Chemical Simulation (GROMACS)60. One can also write 

their own MD code to carry out simulations. Each commercial package has its own advantage and 

disadvantage. NAMD is extensively used to simulate proteins whereas LAMMPS is widely used 

to carry out coarse-graining simulations (explained in the next section). We have used LAMMPS 

for all the work that is discussed in this thesis. 

This is MD simulation in a nutshell. From these MD simulations, one can obtain a lot of 

information regarding the system such as temperature, pressure, energy etc. The algorithms used 
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are also parallelizable, which means, one can simulate millions of atoms by using multiple 

processors in a supercomputer. The largest MD simulation done so far is a billion-atom AA 

simulation of the entire DNA gene sequence carried out by researchers at Los-Alamos National 

Laboratory61. Thus, MD simulation is a powerful computational tool that help with exploring 

molecular scale mechanisms in materials.  

2.2 Steered molecular dynamics (SMD) simulations 

Steered molecular dynamics (SMD)62 is simulation technique where time-dependent 

external forces are applied to the system to induce conformational changes in the time-scales 

accessible to MD simulations. This technique can be used to replicate experimental processes such 

as atomic force microscope and surface force apparatus tests that can measure the adhesion force 

between polymer and substrate63, 64. These experimental techniques focus on extracting the 

interfacial properties of nanoscale materials, however, it is difficult to control parameters such as 

applied force and pulling velocity and to make accurate measurements65. In SMD simulations, 

parameters can be controlled precisely, allowing us to make accurate measurements while also 

observing molecular details66. 

SMD simulations are a non-equilibrium technique where force is applied to a part of the 

system while keeping the other part fixed to a constraint. This allows for the sampling of the free 

energy landscape (potential of mean force (PMF)) as a function of reaction coordinate. The group 

of atoms is steered (pulled) through a spring tethered to a virtual atom. This virtual atom is moved 

with a constant force or velocity, which in turn steers the group of atoms attached to it. The force 

acting on each atom of the steered group is given by: 

𝐹eR[ = 𝐾 (ghgi)jk
j

         (2.2-1) 
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where 𝐾 is the spring constant, 𝑀 is the total mass of all atoms in the group, 𝑀m is the mass 

of the atom and 𝑅? is the distance between the virtual atom and the center of mass of the steered 

group of atoms. From this force, the non-equilibrium work done (𝑊) to move from state A to state 

B is calculated by integrating the force along the reaction coordinate (displacement): 

𝑊 =	 𝐹	𝑑𝑥q
r           (2.2-2) 

This work is obtained from an irreversible process and one might argue that the free-energy 

landscape (PMF) has to be obtained from reversible work. However, Jarzynski67 in 1997 

formulated an equality that connects the ensemble average of the exponential of irreversible work 

done (𝑊) to the free energy difference (∆𝐹) between the two states. 

𝑒
uv
wxy = 𝑒

∆z
wxy          (2.2-3) 

We make use of this equality to obtain the potential of the mean force between restrained 

and steered group of atoms. It should be noted that in MD simulations, this is an estimation as the 

whole sample would need to be sampled for the equality. This technique has been widely used to 

study polymer substrate interface properties68, 69 In this dissertation, we use this approach to 

develop an interparticle potential between nanoparticles in aHNPs. Specifically, we obtain the 

PMF between nanoparticles by steering one nanoparticle while keeping the other restrained, which 

can then be converted to an interatomic potential. The details of this approach is discussed in 

Chapter 6:. 

2.3 Background on CG simulations 

Assessing the complex dynamic and mechanical properties of polymers and polymer 

nanocomposites using all-atomistic (AA) MD simulations is computationally challenging due to 
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their spatiotemporal limitations70. With a reasonable supercomputer, the time scale for AA 

simulations can reach a few nanoseconds and the length scales of a few tenths of nanometers. This 

generates a time-scale and length-scale gap between computational and experimental methods 

which can reach upto a few microns and microseconds. This necessitates a multi-scale modeling 

technique that can bridge this gap and coarse-graining (CG) is one such approach. In CG 

simulations, a few atoms are grouped together to form a “superatom”. CG parameters that are 

derived from atomistic data can be used to carry out CG simulations to overcome the limitations 

imposed by AA-MD simulations.  In order to improve computational efficiency, the “unessential” 

atomistic features can be removed from the AA system thereby reducing the number of degrees of 

freedom71.  

One of the earliest attempts at coarse-graining of polymers was done by Flory72 which led 

to models including the freely joined chain and freely rotating chain. DeGennes73, Rubenstien74 

and Doi75 are pioneers in polymer physics and use the bead-spring representation of polymers to 

develop scaling laws. Coarse-graining techniques are also applied to biomolecules. One of the 

early concepts of coarse graining for proteins was introduced by Levitt and Warshel76 where they 

provided a simpler representation of proteins to study the conformational behavior and their 

folding. Anisotropic network model77, introduced in early 2000s is also a popular CG approach to 

model proteins. MARTINI78, a CG force field used to simulate lipids and peptides, uses a four to 

one representation. 

The CG models for polymers can be split into two categories: generic bead-spring model 

and chemistry-specific systematic CG model.  The generic models are very useful in understanding 

the physics of polymer chains under various conditions such as confinement. The most common 
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generic CG model is the finite-extensible non-linear elastic (FENE) model79. Kumar and Grest are 

pioneers in using this model to explore the dynamics of polymer chains under various kinds of 

confinements80-84. Various scaling laws characterizing the effect of molecular weight on dynamics 

or rheology have been obtained using this model46, 82, 85, 86. While large spatiotemporal scales are 

easily accessible with these generic models, the key drawback of this approach is a lack of 

chemical specificity which makes comparison of properties with specific polymers difficult. 

Chemistry-specific CG models can capture the physical and chemical features of a polymer 

such as glass transition, radius of gyration and diffusion coefficient. There are two kinds of 

systematic CG methods: parametrized and derived87. In parametrized CG method, target properties 

such as radial distribution function are obtained from AA simulations and CG potentials are 

constructed to reproduce those target properties. Some of the parametrized CG approaches include 

inverse Boltzmann method (IBM)88, force matching (also called the multiscale coarse-graining)89, 

90, relative entropy91 and inverse Monte Carlo (IMC) methods92. IBM, relative entropy and IMC 

are structure-based whereas multiscale coarse graining is a force-based CG approach. Of these, 

IBM is the most commonly used method and details will be explained in next section. 

Although the above mentioned methods preserve the static structure of the AA system (e.g. 

radial distribution function (RDF)), the diffusion of atoms measured using these models turn out 

to be higher than experimental values93, 94. Mechanistically, this is mainly attributed to the reduced 

configurational entropy 𝑠" of the system as the degrees of freedom are integrated out upon coarse-

graining95-97, which has a huge influence on the dynamics. The other kind of systematic CG 

methods, the derived CG methods, overcome this issue as these methods employ direct AA 

simulations between the defined superatoms to derive the corresponding coarse-grained 
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interactions. These derived potentials represent the PMF between the superatoms. We extend this 

concept from CG to meso-scale model in Chapter 6:. 

There are few other approaches to CG such as introducing time-scaling factors98 or non-

conservative forces such as frictional and dissipative forces99, 100. These approaches have been 

shown to capture the AA dynamics as well as thermodynamics. However, “temperature 

transferability” of CG modeling remains challenging because of a lack of understanding of effect 

of temperature on molecular friction parameters and relaxation properties of polymeric materials. 

For example, Muller-Plathe and co-workers obtained CG potential for polystyrene through IBM 

and studied the systematic transferability of the potentials with respect to temperature and found 

that the coarse-grained PS model was only transferable over a very narrow temperature range101. 

Jan Andzelm and co-workers also developed CG potential for polystyrene, where the bonded 

interactions were obtained through IBM, non-bonded interactions were obtained through force 

matching and constant temperature friction parameter was used to slow down the dynamics102. 

While earlier studies103-105 have introduced several strategies such as pressure-matching method to 

address the temperature transferability issue by focusing on preserving the structural and 

thermodynamic properties of CG models, our focus here is to develop a practical and efficient 

method for temperature-transferable coarse-graining that preserves correct AA dynamics to the 

greatest extent possible. 

2.4 Energy renormalization approach towards coarse-graining 

As discussed in the previous section, there is a need to develop a temperature-transferable 

CG method that captures the dynamics of polymer chains. To address this fundamental problem, 

we propose a CG strategy, called the energy-renormalization (ER) approach. This approach 
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borrows from essential ideas of the Adam-Gibbs (AG) theory106 and the more recent generalized 

entropy theory (GET) of glass formation107, which have emphasized the critical role of 

configurational entropy 𝑠" in glass formation. As the system’s 𝑠" decreases under coarse-graining, 

the effective enthalpy must correspondingly increase to preserve the overall properties of the fluid 

as evidenced in many experimental observations, namely the “entropy-enthalpy compensation 

effect”108-110, The GET further predicts that the strength of the monomeric cohesive interaction in 

glass forming systems, which is often described by the Lennard-Jones (LJ) parameter 𝜀 in 

nonbonded interactions, has a strong influence on dynamics and mechanical response of glass 

forming molecules through its influence on 𝑠"111, 112. By renormalizing 𝜀 as a function of 

temperature, we aim to “correct” for the decrease activation free-energy and thus preserve 

dynamics of the CG polymers during glass formation.  

To develop a CG model, the first step is to identify “superatoms”, i.e., the atoms that can 

be clustered to form a bead in the CG simulation. This is called CG mapping scheme. There are 

no strict guidelines as to how many atoms can be combined to make a super atom. Each CG model 

will be slightly different based the choice of the mapping scheme. One of the most commonly used 

methods for CG is the united atom method which allows savings in computational time by 

removing some high frequency vibrational modes which can limit the integration time step in MD 

simulations113, 114. A common example is the CH2 group in a polymeric chain that is represented 

by a single bead. The CG scheme employed in this dissertation is discussed in Chapter 3:. 

Once the bead centers have been identified, the next step is to obtain the distributions of 

the bonds, angles and dihedrals corresponding to these force centers. These distributions are then 

inverted through Boltzmann inversion (IBM), as depicted by Eq. 2.4-1-2.4-3, 
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𝑈XYZ[ 𝑙 = L
}

−𝑘q𝑇𝑙𝑛
�(�)
��

}
m�L        (2.4-1) 

𝑈�Z%�� 𝜃 = L
}

−𝑘q𝑇𝑙𝑛
�(�)
,��	(�)

}
m�L       (2.4-2) 

𝑈[m��[#�� 𝜙 = L
}

−𝑘q𝑇𝑙𝑛 𝑃(𝜙)}
m�L       (2.4-3) 

where 𝑘q is the Boltzmann constant, T is the temperature, P is the probability distribution 

functions for bond length 𝑙, angle 𝜃	 and dihedral angle 𝜙. Direct implementation of the 

atomistically derived Boltzmann potential estimate is typically not perfect, and thus CG potentials 

are optimized iteratively to create a good match with atomistic target distributions. The iterative 

process in described by Eq 2.4-4. 

𝑈m�L 𝑟 = 𝑈m 𝑟 + 𝑘q𝑇𝑙𝑛
�k(#)

�������(#)
      (2.4-4) 

 Once bonded potentials are obtained through IBM, the next step is to parametrize the 

vdW interactions. The non-bonded interactions between the CG beads are represented by the 

standard 12-6 LJ potential: 

𝑈 𝑟 = 	4𝜀 a
#

L3
− a

#

b
         (2.4-5) 

 where 𝜎 governs effective vdW radius and marks the distance where 𝑈 𝑟  is 0 and 𝜀 is 

the depth of the potential, a parameter associated with cohesive interaction strength of the material. 

In other words, 𝜎 governs the length scale of the system and 𝜀 governs the energy scale. In order 

to achieve temperature transferability, we introduce temperature-dependent renormalization 

factors, 𝛼 𝑇  and 𝛽 𝑇  to rescale 𝜀 and 𝜎 respectively. Thus the interatomic LJ potential is 

transformed to: 
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    𝑈 𝑟 = 	4𝜀(𝑇) a(�)
#

L3
− a(�)

#

b
    (2.4-6) 

 where 𝜀 𝑇 = 𝜀?×𝛼 𝑇  and	𝜎 𝑇 = 𝜎?×𝛽 𝑇 . 𝜀? and 𝜎? are constants that are to be 

taken as initial estimates of 𝜀 and 𝜎 from the RDF of the bead.  

 The next chapter focuses on applying the ER approach to three different kinds of 

materials: a small molecule, a polymer and an epoxy resin, thus showcasing the universality and 

versatility of this approach. 
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Chapter 3: Energy Renormalization approach for coarse-graining 

This chapter focuses on developing a new approach towards coarse-graining, called the 

energy renormalization approach, for different types of materials, viz., ortho-terphenyl (OTP), a 

small molecule; polycarbonate (PC), a polymer and an epoxy resin. We start out with CG model 

for OTP as it’s a simpler problem to solve prior to tacking polymers and much more complicated 

epoxy resins. These CG models extend the spatiotemporal scales of MD simulations and thus 

speeds up property evaluations. The CG model for epoxy was developed in collaboration with 

Prof. Wei Chen’s group at Northwestern University who helped us develop the machine learning 

algorithm. Portions of the text and figures within chapter are reprinted or adapted with permission 

from Xia et al. JPCB 2018115 and Xia et al. Science Advances 2019116.  

3.1 CG Model for OTP 

Terphenyls are a group of aromatic hydrocarbons that consists of three benzene rings. 

Ortho-terphenyl (OTP) is an isomer in which the two benzene rings are bonded to adjacent carbon 

atoms (in 1,2 positions Figure 3.1-1). OTP is a common glass forming molecule that has been 

widely studied in the literature for its glass forming properties117-120. Previous CG efforts have 

focused on capturing the structure where the potentials were derived through IBM121. Despite its 

glass formation ability and widespread usages in industrial and scientific applications, there hasn’t 

been any effective coarse-graining method focused on predicting the dynamic behaviors of OTP. 

Thus, we consider whether the energy renormalization (ER) approach (discussed in Chapter 2:) 

can be applied to coarse-graining small molecule glass forming liquid by taking OTP as a model 

system. 
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Figure 3.1-1: CG mapping scheme for OTP. The atomistic strucutre of OTP is shown in the 

leftmost figure. The bead centers are idenfied (middle figure) and the final coarse-grained model 

is shown in the rightmost figure. 

3.1.1 CG model description 

To coarse-grain OTP, each phenyl ring is grouped into one CG bead with the force center 

located at the center of mass of each ring, resulting in three consecutive CG beads per molecule 

(Figure 3.1-1). This mapping is consistent with other CG work121 and allows for preserving the 

essential degrees of freedom under coarse-graining but omits atomic details that are less relevant 

to large-scale dynamic behaviors. The bond and angle interactions of the CG model are derived 

from the probability distributions of the AA system using IBM, which can be captured by harmonic 

potential forms as shown in Figure 3.1.1-1. 
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Figure 3.1.1-1: Bond and angle distributions and resulting potential energy. Probability 

distribution functions 𝑃 of CG and AA models and resulted CG bonded potentials (i.e., 𝑈XYZ[ and 

𝑈�Z%��) derived from the inverse Boltzmann method (IBM) for the CG a) bonds and b) angles. The 

functional forms and parameters of 𝑈XYZ[ and 𝑈�Z%�� are summarized in Table 3.1.1-1. 

For the nonbonded interaction, we employ a commonly applied 12-6 LJ potential for our 

CG modeling: 𝑈 𝑟 = 4𝜀 a
#

L3
− a

#

b
, where 𝜎 is the distance (often known as the “size of the 

bead”) at which 𝑈 is zero and 𝜀 is the depth of the potential well associated with the cohesive 

interaction strength of the materials. To achieve temperature transferability, we generalize the 

parameters 𝜎 and 𝜀 to be temperature dependent (i.e., 𝜎(𝑇) and 𝜀(𝑇)). 𝜎(𝑇) can be derived by 

matching the AA density, yielding a linear dependence of temperature as shown in Figure 3.1.1-2. 

This matching of density to obtain	𝜎(𝑇) has been done in several studies115, 116, 122, 123. The 

functional forms and bonded parameters of the CG potentials are summarized in Table 3.1.1-1. 

 

Figure 3.1.1-2: Matching density of AA to obtain 𝝈(𝑻). a) The density 𝜌 vs. 𝑇 for the AA and 

CG models with varying CG bead size through the LJ potential parameters 𝜎. b) Comparison of 
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the density 𝜌 as a function of temperature for the AA and CG models by introducing 𝜎(𝑇). (Inset) 

The result of 𝜎(𝑇) against 𝑇 for the CG model by matching the 𝑇-dependent AA 𝜌. The line shows 

the linear fit to the 𝜎(𝑇).  

Next, we derive the temperature dependent 𝜀(𝑇) through consideration of a short-time 

scale dynamic property, the Debye-Waller Factor 𝑢3 , that has demonstrated the importance of 

cohesive interactions on the dynamics and strength of the materials112, 124, 125. 𝑢3  can be readily 

obtained from experimental measurements and short-time (on the order of picoseconds) 

simulations of the materials. We hypothesize that by preserving 𝑢3  of the AA system via 

renormalizing 𝜀, we might be able to recover the temperature dependent dynamics for the CG 

modeling. To test this idea, we begin our analysis by evaluating the influence of cohesive 

interaction 𝜀 on 𝑢3 . The 𝑢3  is calculated from the segmental mean-squared displacements 

(MSD) 𝑟3(𝑡)  at around 𝑡" ≈ 3 ps, which is estimated from the localized caging effect from our 

simulations. As shown in Figure 3.1.1-3, the 𝑢3  increases nonlinearly with 𝑇 for the AA and CG 

systems with varying 𝜀. The lower 𝑢3  of the CG model with higher 𝜀 over 𝑇 indicates a 

suppressed segmental mobility which arises due to stronger cohesive interactions. For each 𝜀, it is 

clear that the 𝑢3  of the CG model intersect with the AA 𝑢3  at different temperature, 

demonstrating the necessity of rescaling 𝜀 at different temperature to preserve the AA 𝑢3 . 

Accordingly, the 𝜀 𝑇  can be determined by preserving the AA 𝑢3  at each temperature state 

(inset in Figure 3.1.1-3), leading to a sigmoidal functional form  

   (3.1.1-1) 

where 𝜀% and 𝜀r refer to 𝜀 values at in the low 𝑇 glassy and high 𝑇 Arrhenius regimes, respectively; 

Φ is the two-state crossover function taking the form: Φ = 1/[1 + exp	(−𝑘 𝑇 − 𝑇� ], where 𝑘 is 

( ) ( )A g gTe e e e= - F +
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a parameter related to the temperature breadth of the transition, and 𝑇�	(≈ 475 K) describes the 

crossover point of this sigmoidal function from the Arrhenius to glassy regimes. These parameters 

of 𝜀(𝑇) are summarized in  Table 3.1.1-2. (Note that a slight change of 𝑡" at picosecond timescale 

yields nearly the same result for 𝜀(𝑇).)  

 

Figure 3.1.1-3: Matching DWF of AA to obtain 𝜺(𝑻). The Debye-Waller Factor 𝑢3  vs. 

temperature 𝑇 for the AA and CG models with varying cohesive interaction strength 𝜀. The 

renormalized 𝜀(𝑇) for the CG model is determined by matching 𝑇-dependent AA 𝑢3 . The 

cohesive interaction strength 𝜀(𝑇) (with a unit of kcal/mol) for the CG model determined from 

matching temperature dependent Debye-Waller Factor 𝑢3  of AA model. 

In the high-𝑇 Arrhenius and low-𝑇 glassy regimes, the 𝜀 𝑇  tends to be plateau with a 

larger magnitude at lower 𝑇. However, in the non-Arrhenius regime associated with glass 

formation, 𝜀 𝑇  is strongly varied with 𝑇, which is qualitatively similar to the picture of how the 

activation energy of relaxation ∆𝐺(𝑇) changes with 𝑇. The sigmoidal dependence of 𝜀 on 𝑇 can 

be understood from the GET and AG theory, which predict that the ∆𝐺(𝑇) of glass forming liquids 

increases with decreasing 𝑇 as 𝑠" decreases upon cooling but saturate at both high 𝑇 and low 𝑇 
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limits106, 107. Many of these features have been confirmed by the recent molecular simulations126, 

127. Therefore, the ∆𝐺(𝑇) of CG model (without 𝜀 renormalization) should follow a similar 𝑇 

dependence of the AA model but with different magnitudes due to their reduced number of degrees 

of freedom.  

Table 3.1.1-1: Potential forms and parameters of the force field for the CG model of OTP. 

Interaction Potential form Parameters 

Bond 𝑈XYZ[ 𝑙 = 𝑘X(𝑙 − 𝑙?)3 𝑘X = 146.37 kcal/mol∙Å2 

𝑙? = 4.22 Å 

Angle 𝑈�Z%�� 𝜃 = 𝑘�(𝜃 − 𝜃?)3 𝑘� = 218.40 kcal/rad2 

𝜃? = 67.29° 

Nonbonded 𝑈 𝑟 = 4𝜀(𝑇)
𝜎(𝑇)
𝑟

L3

−
𝜎(𝑇)
𝑟

b

 𝜀(𝑇) and 𝜎(𝑇), see Table 3.1.1-2 

 

Table 3.1.1-2: Functional forms and parameters of the temperature dependent nonbonded 

potentials of the CG model from the energy-renormalization method. 

 Functional form Parameters 

𝜀(𝑇) 𝜀 𝑇 =
𝜀r − 𝜀%

1 + exp −𝑘(𝑇 − 𝑇�)
+ 𝜀% 𝜀r = 0.74 kcal/mol, 𝜀% = 1.41 kcal/mol 

𝑘 = 0.0086 KhL, 𝑇� = 475 K 

𝜎(𝑇) 𝜎 𝑇 = 𝜎�𝑇 + 𝜎? 𝜎� = 3.8×10-4 Å/K, 𝜎? = 5.04 Å 

3.1.2 Simulation parameters 

All the molecular dynamics (MD) simulations including the all-atomistic (AA) and coarse- 

grained (CG) simulations are carried out using the Large-scale Atomic Massive Parallel Simulator 

(LAMMPS) package58. The AMBER force field128 is applied to the AA simulations. The AA and 
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CG simulations consist of 600 and 2876 ortho-terphenyl (OTP) molecules, respectively, 

corresponding to 19200 atoms and 8628 CG beads. Periodic boundary conditions in all three 

dimensions are applied to the simulation box to model the bulk materials. An energy minimization 

using the conjugate gradient algorithm is performed for all the simulations129, followed by two 

annealing cycles from 100 K to 700 K. Then, the systems are further equilibrated at 500 K for 4 

ns. These simulations are performed using the NPT (i.e., constant number of particles, pressure 

and temperature) ensemble with fixed 1 bar pressure (i.e., 1×105Pa). An integration time step ∆𝑡 

of 1 fs and 4 fs is applied to the AA and CG simulations, respectively. The dynamic properties 

(i.e., diffusivity, the Debye-Waller factor, mean-squared displacement and structural relaxation 

time) are calculated after equilibration run for 2 ns at each temperature.  

3.1.3 Performance of CG model 

In order to evaluate the performance of the CG model, we examine the segmental dynamics 

by evaluating time-dependent segmental 𝑟3(𝑡)  and the self-part of the intermediate scattering 

function 𝐹e(𝑞, 𝑡) of the AA and CG models at various temperatures. Figure 3.1.3-1a shows the 

comparison of 𝑟3(𝑡)  for the AA and CG models at varying 𝑇. Remarkably, by preserving AA 

𝑢3 , the CG model can reproduce nearly the entire MSD curves of the AA system in different 

temperature regimes spanning from glassy to melt regimes. To calculate 𝐹e(𝑞, 𝑡), the wave number 

𝑞 (=14 nm-1) is chosen from the first peak of the static structure factor 𝑆(𝑞), which is consistent 

with previous experimental measurement130. Figure 3.1.3-1b also shows an excellent agreement 

of 𝐹e(𝑞, 𝑡) between the AA and CG models over a wide temperature range.  
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Figure 3.1.3-1: Comparison of MSD and 𝑭𝒔(𝒒, 𝒕) between AA and CG models.  a) Segmental 

MSD 𝑟3  vs. time for the AA (lines) and CG (symbols) models. b) Comparison of 𝐹e(𝑞, 𝑡) for the 

AA (lines) and (symbols) CG models. (Inset) Temperature dependent structural relaxation time 𝜏 

for the AA (dashed line) and CG (symbol) models. 

From the 𝐹e(𝑞, 𝑡) calculation, we further evaluate the 𝜏 and characteristic temperatures 

associated with the glass formation for the OTP. The inset in Figure 3.1.3-1b shows the 

temperature dependent 𝜏 for both AA (dashed line) and CG (symbol) models, which can be well 

described by the Vogel-Fulcher-Tammann (VFT) relation131-133: 𝜏 𝑇 = 𝜏?exp
q

�h�i
, where 𝜏?, 

𝐵 and 𝑇? are parameters associated with relaxation process. 𝑇?, also called Vogel temperature, is 

determined to be about 234 K for the AA and CG systems, which dictates the end of glass-

formation where the structural relaxation time becomes astronomically large. The glass-transition 

temperature (𝑇%) is estimated by extrapolating the relaxation data to the empirical observation time 

scale, 𝜏(𝑇%) ≈100 s, in which we find 𝑇% to be about 250 K for the AA and CG models. The onset 

temperature 𝑇r, defined as temperature below which glassy dynamics becomes dominant, is 

estimated to be around 500 K from the 𝜏 data. We also calculate the crossover temperature 𝑇", 

defined as the temperature at which the behavior changes from liquid like to solid like, by fitting 
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the 𝜏 data with 𝜏~ 𝑇 − 𝑇" h® from the mode-coupling theory134, where 𝛾 is an adjustable 

parameter. The resulted 𝑇" is estimated to be around 291 K for our models. These characteristic 

temperatures from our model predictions agree well with literature values (within ~7% of the 

measured values)135-137, which are summarized in Table 3.1.3-1. We also note that the 𝑇�, which 

is the empirical transition point in our derived 𝜀 𝑇 , lies between 𝑇r and 𝑇%, which confirms that 

the degree of the temperature-dependent rescaling needed for the cohesive interaction is related to 

the glass forming processes of the CG model. 

Table 3.1.3-1: Summary of the characteristic temperatures predicted from the AA and CG models 

from the energy-renormalization method and their comparison with literature values.  

Predictions 𝑻𝒈 (K) 𝑻𝟎 (K) 𝑻𝑨 (K) 𝑻𝒄 (K) 

AA 251 234 490 289 

CG 249 231 490 291 

Exp. 243136 231136 455135 290137 

 

We proceed to test quantitative scaling relationship for the AA and CG models. Figure 

3.1.3-2a confirms that the quantitative relationship between 𝜏 and 𝑢3  determined from our 

simulations can be well captured by the localization model. Remarkably, our CG model through 

the ER approach is able to closely reproduce the scaling relationship of the 𝑢3  and 𝜏 for the AA 

model. The exponent 𝛼, which is related to the geometry of free volume, is determined to be about 

1.9 from the best fit of the data for both AA and CG models, which might be associated with the 

ring-like structure of the OTP. This result implies that the developed CG model cannot only predict 

the dynamics but also the anisotropic geometry of the segmental free volume.  
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Figure 3.1.3-2: Relation between 𝝉, 𝑫 and 𝒖𝟐 . a) Test of the localization model predictions of 

𝜏 for the AA and CG models. b) Quantitative relationship between 𝐷 and 𝑢3  predicted from the 

modified localization model in conjunction with the decoupling relation: 𝐷/𝑇~(1/𝜏)Lh¹  for the 

AA and CG models. The dashed lines in b) and c) show the predictions of data from the localization 

model. The fitting constants 𝛼 and 𝜁 for the OTP models are determined to be 1.9 and 0.1, 

respectively. 

Recent studies have shown that the temperature dependent diffusion coefficient 𝐷 of 

metallic alloys can be linked to 𝜏 via a fractional Stokes-Einstein (FSE) relation (i.e., an extension 

of the Stokes-Einstein relation) 138, 139: 𝐷/𝑇~	(1/𝜏)Lh¹ , where 𝜁 is a decoupling exponent that is 

usually nonzero for most glass forming liquids and T is the temperature. 𝜁 is zero for the original 

Stokes-Einstein relation. Employing the LM in conjunction with the FSE relation, the 𝐷 can be 

quantitatively predicted by the 𝑢3  via the form:  

   (3.1.3-1) ( ) 22 2ln ln (1 ) ( ) 1A
A

A

DD u u T
T T

a
z é ù= - - -ê úë û
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where 𝐷r is the 𝐷 at 𝑇r. Figure 3.1.3-2b shows the scaling relation of 𝐷 and 𝑢3  for the 

AA and CG models by normalizing its value at 𝑇r, which is well predicted from the LM. We 

estimated 𝜁 to be equal to 0.1 for our models, suggesting a relatively weak decoupling for the OTP 

comparing to metallic glasses138. This result directly demonstrates the success of using 𝑢3 , a 

short-time (i.e., picosecond) physical quantity, to resolve the large-scale long-time dynamics under 

coarse-graining spanning over a wide range of glass formation. Therefore, our ER approach in 

conjunction with the LM model appears to correct all the usual shortcomings of single state-point 

derived CG models of their dynamics (i.e., faster dynamics and a lack of temperature 

transferability). To showcase the accuracy of prediction by the ER approach, we also calculate the 

non-bonded interactions from the radial distribution function through IBM as shown in Figure 

3.1.3-3. From this non-bonded potential, we also calculate the diffusion coefficient D. 

 

Figure 3.1.3-3: Radial distribution function of CG bead sites. Comparison of 𝑔(𝑟) of CG bead 

sites in AA and CG models using the IBM. The red line shows the CG nonbonded potential 𝑈 

derived from the IBM.  
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 By implementing the 𝜀 𝑇 , the temperature-dependent self-diffusivity 𝐷 of AA model 

calculated using the Einstein relation is well captured by the CG model via the ER approach 

(Figure 3.1.3-4), which also agrees with the experimental measurement117. As a comparison, the 

𝐷 of the CG model derived from the IBM is greatly larger than the AA model (by 1 to 4 orders of 

magnitude depending on 𝑇), which necessitates ER to preserve AA dynamics over temperatures. 

 

Figure 3.1.3-4: Comparison of diffusion coefficient between experiements, AA and CG 

models. The self-diffusion coefficient 𝐷 between the AA and CG models using both ER and IBM 

at varying temperatures, and their comparison with experimental data from Ref117. 

3.1.4 Conclusion 

In summary, we have established a unified framework that builds upon the energy-

renormalization approach and glass formation theories to achieve temperature transferrable coarse-

graining of OTP. By exploiting the localization model (LM), the cohesive interaction parameter 

𝜀(𝑇) of the CG OTP model from the 𝑢3  analysis exhibits a sigmoidal temperature dependence 

with a higher magnitude upon cooling. The developed CG model using the ER approach and LM 
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can quantitatively predict the glass forming dynamics of the AA system over a wide temperature 

range from high 𝑇 Arrhenius melt to the low 𝑇 non-Arrhenius and glassy regimes. Our findings 

demonstrate the effectiveness of ER approach towards building temperature-transferable CG 

modeling for glass forming materials, and highlight the critical role of caging dynamics in 

predicting the glass forming properties. 

3.2 CG model for Polycarbonate 

Polycarbonate (PC) is one of most ubiquitously used polymers in today’s world owing to 

its excellent mechanical properties (e.g., high impact strength and ductility and light weight), 

electrical resistance, and optical transparency140. PC is widely used in automotive parts, airplane 

windows, and high-quality optical lenses. Several previous studies on the development of the CG 

models of PC (developed via the IBM) have focused more on the static and structural properties, 

and those models typically exhibit a marked speedup in dynamics compared to its AA 

counterpart101, 141, 142.  

In this study, we aim to develop a CG model using the ER method that can capture its 

temperature-dependent dynamic properties over a wide temperature range. Here, we show that 

preserving 𝑢3  of the AA model under coarse-graining through ER allows for predictions of 

dynamics over a wide temperature range. Our study reveals that the derived ER functions for the 

cohesive interaction of the CG polymer models exhibit a universal sigmoidal temperature 

dependence, which is strongly associated with their glass formation. 
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3.2.1 CG Model description 

We choose a 4:1 CG mapping scheme to coarse grain PC as shown in Figure 3.2.1-1. Each 

repeat unit is represented by four CG beads denoted as “A”, “B” and “C” type in the CG model, 

corresponding to two phenylene, one isopropylidene and one carbonate subunits, respectively. 

 

Figure 3.2.1-1: CG mapping scheme of PC. (a) PC chemical structure and the corresponding 

CG bead types and their force center locations. (b) CG-mapping scheme for PC. Each monomer 

consists of four CG beads with three bead types. The CG bead type “A,” “B,” and “C” represent 

the phenylene, isopropylidene, and carbonate groups, respectively. 

 The probability distributions of bonds, angles and dihedrals are obtained from AA 

simulations, which is then used to derive the CG bonded potentials. The AA bonded probability 

distributions of PC are obtained in the melt state (𝑇	 = 	450	𝐾), which are used to derive the CG 

potentials via the iterative Boltzmann Inversion (discussed in Chapter 2:). Direct implementation 

of the atomistically derived Boltzmann potential estimate is typically not perfect, and thus the CG 

potentials are optimized iteratively to create a good match with atomistic target distributions. 

Figure 3.2.1-2 show the probability distributions and corresponding CG potentials for the bonds, 

angles and dihedrals. The CG bond potentials are fitted analytically to a shifted harmonic function. 

(a)

(b)
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The CG potentials for the angles and dihedrals are derived by matching their atomistic probability 

distributions, which are implemented using tabulated potential forms within LAMMPS.  

 

Figure 3.2.1-2: Bonds, angles and dihedral distribution and potential energies. Probability 

distriburtion functions of CG (blue dots), AA (dashed lines) and the resulting inverted potential 

(red line) derived from the inverse Boltzmann method for (a) & (b) bonds, c) dihedrals and (d) to 

(f) angles. 

Table 3.2.1-1: Force field forms and parameters for the CG model of PC. 

Interaction Potential form Parameters 

AB-bond 𝑈 𝑙 = 𝑘X(𝑙 − 𝑙?)3 𝑘X = 40.4 kcal/mol∙Å2, 𝑙? = 2.897 Å 

AC-bond 𝑈 𝑙 = 𝑘X(𝑙 − 𝑙?)3 𝑘X = 112.3 kcal/mol∙Å2, 𝑙? = 3.425 Å 

(
a
)
(a) (b) (c)

(d) (e) (f)
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ABA-angle 
BAC-angle 
ACA-angle 

Tabulated potential, see Ref116  

ABAC-
dihedral 

Tabulated potential, see 
Ref116 

 

Non-

bonded 

𝑈 𝑟

= 4𝜀?𝛼(𝑇)
𝜎?𝛽(𝑇)
𝑟

L3

−
𝜎?𝛽(𝑇)
𝑟

b

 

𝜀?rr = 0.761, 𝜀?qq = 0.4599, 𝜀?¾¾  = 0.4016, units in 
kcal/mol, see 𝛼 𝑇  in Table 3.2.1-2	

𝜎?rr = 7.55, 𝜎?qq = 5.81, 𝜎?¾¾  = 4.21, units in Å, see 𝛽 𝑇  
in Table 3.2.1-2 

 

 

As demonstrated in the previous section, we aim to derive the ER factor 𝛼(𝑇) [i.e., 𝜀(𝑇)= 

𝛼(𝑇)	𝜀?, where 𝜀 is the cohesive interaction strength parameter in the commonly used LJ potential 

and 𝜀? is a constant estimated from the radial RDF using the IBM] by preserving 𝑢3  of the AA 

system to recover the T-dependent glass forming dynamics of the AA model over a wide range of 

T by its CG analog. In our simulations, the 𝑢3  is determined from the mean-squared displacement 

(MSD) 𝑟3(𝑡)  of the center of mass of monomers of the AA and CG models at around 𝑡 ≈ 3 ps, 

corresponding to a caging time scale estimated from our simulations. We first examine the 

influence of cohesive interaction strength by systematically varying 𝛼 on the Debye-Waller factor 

𝑢3  for the CG model systems. As shown in Figure 3.2.1-3, for each fixed 𝛼 value, 𝑢3  increases 

with temperature T in a nonlinear fashion for both the AA and the CG systems over a wide T range, 

which is typical for glass forming materials. As 𝛼 increases from 2.5 to 5.0, the 𝑢3  decreases at 

any given T, indicating a suppressed mobility when increasing the cohesive interaction strength of 

the CG system. For each a value, the measured 𝑢3  of the CG model intersects with the AA 𝑢3  

at a different T. This demonstrates the necessity of renormalizing the cohesive interaction strength 

at varying T to preserve the value of 𝑢3  of the AA model under coarse-graining. Accordingly, 
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𝛼(𝑇) of the CG model can be phenomenologically determined by preserving T-dependent 𝑢3   of 

the AA model, leading to a sigmoidal variation with T (inset in Figure 3.2.1-3) 

𝛼 𝑇 = ¿Àh¿�
L�Á:6 hÂ(�h�y)

+ 𝛼%                  (3.2.1-1) 

where 𝛼% and 𝛼r are the 𝛼 values in the low-T and high-T limits, respectively, 𝑘 is a 

parameter related to the temperature breadth of the transition and 𝑇�describes the crossover point 

of this sigmoidal function. These parameters related to 𝛼 𝑇  are summarized in the Table 3.2.1-2. 

 

Figure 3.2.1-3: Matching DWF to obtain 𝜶(T). The Debye-Waller Factor 〈u2〉 vs. temperature 

T for the AA and CG models with varying cohesive interaction strength ε. The vertical arrow 

indicates a dataset with increase in 𝛼. The result of 𝛼(T) for the CG model determined by matching 

T-dependent AA 〈u2〉 of the AA model of PC. 

Similarly, we perform the renormalization procedure for the length scale parameter 𝜎 

through the renormalization factor 𝛽(𝑇). As reported in the previous section, this 𝛽(𝑇) can be 

readily determined by demanding the T-dependent density 𝜌 of the CG model to be consistent with 

that of the AA model, which typically yields a decreasing trend of 𝛽(𝑇), with 𝑇 that can be 
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captured by a polynomial form (Table 3.2.1-2). With the implementation of 𝛽(𝑇), the CG model 

can well capture the AA 𝜌 over a wide T range (Figure 3.2.1-4). While β(T) is important to 

preserve certain static and structural properties of the polymer, such as the density and primary 

peak location in the RDF, the dynamics of polymer is more sensitive to 𝛼(𝑇). 

 

Figure 3.2.1-4: Comparison of density between AA and CG models. Density 𝜌	as a function of 

𝑇	 for the AA and CG PC models. The AA 𝜌	 is preserved by the CG model through the 

renormalization factor 𝛽(𝑇)	for the length-scale parameter 𝜎	in the cohesive interaction.  

Table 3.2.1-2: Functional forms and parameters of the temperature dependent nonbonded 

potentials of the CG model from the energy-renormalization method. 

 Functional form Parameters 

𝜀(𝑇) 𝛼 𝑇 =
𝛼r − 𝛼%

1 + exp −𝑘(𝑇 − 𝑇�)
+ 𝛼% 

𝛼r = 2.659 kcal/mol, 𝛼% = 5.304 kcal/mol 

𝑘 = 0.0075 KhL, 𝑇� = 419.6 K 
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𝜎(𝑇) 𝛽 𝑇 = 𝛽3𝑇3 + 𝛽L𝑇 + 𝛽? 
𝛽3 = 2.227×10-7 Å/𝐾3,	𝛽L = -1.087×10-4 

Å/𝐾, 𝛽? = 0.8245 Å 

 

3.2.2 Simulation parameters 

The coarse-grained (CG) and all-atomistic (AA) molecular dynamics simulations are 

carried out using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 

software58. AA PC with a chain length N=10 are generated using Materials Studio, and consist of 

16600 atoms, corresponding to 50 chains. N=10 is chosen for this work primarily due to 

computational efficiency – larger chain lengths will require exponentially longer simulation times 

to relax properly, which can cause accuracy issues on dynamics calculations. CG model of PC is 

generated with the same chain lengths and consists of 8000 CG beads. Periodic boundary 

conditions are applied in all the directions to simulate the bulk behavior of the system (i.e., without 

free surface effects). An integration time step of ∆t= 4 fs is applied for the CG PC and PS, while 

∆t= 10 fs is applied for CG PB simulations, and these time steps are chosen based on their bonded 

vibrational frequency as reported in our recent study122. A time step of ∆t= 1 fs is applied for the 

AA-MD. The systems are prepared by equilibrating the melt in the bulk state, which begins with 

an energy minimization step via the conjugate gradient algorithm. Following this, the systems 

undergo annealing cycles above and below the glass transition temperature 𝑇% (between about 150 

K and 1000 K for PC) and pressure cycles (between 1 bar and 1000 bar for both AA and CG 

systems) in the NPT (i.e., constant number of beads, pressure and temperature) ensemble, and then 

are equilibrated for 2 ns at high temperatures. The dynamic and thermodynamic properties (i.e., 
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density, diffusivity, Debye-Waller factor, mean-squared displacement and structural relaxation 

time) are calculated after equilibration run at each temperature. 

3.2.3 Performance of CG model 

After implementing the derived 𝛼 𝑇  and 𝛽 𝑇  for the cohesive interactions into the CG 

model of PC, we proceed to evaluate the dynamic properties of the CG model. We first look at the 

MSD 𝑟3(𝑡)  of the center of mass of monomers for the AA and CG models at various 𝑇 which is 

shown in Figure 3.2.3-1. By preserving the atomistic 𝑢3  (marked by the vertical dashed line) 

under coarse-graining through ER, the developed CG model can capture the entire 𝑟3(𝑡)  curves 

of the AA model to a good approximation over a wide T range spanning from the high-T Arrhenius 

regime to the low-T glassy regime.  

 

Figure 3.2.3-1: Comparison of MSD between AA and CG models. The MSD 𝑟3  of the center 

of mass of the monomer versus time for the AA (lines) and CG (symbols) models over a wide 𝑇 
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range. The vertical dashed line marks the time scale (around the “caging” time of 4 ps) when 𝑢3  

is obtained from the 𝑟3  measurement. 

We next evaluate the segmental relaxation time 𝜏 by calculating the second Legendre order 

parameter 𝑃3(𝑡) for both AA and CG models,  

𝑃3 𝑡 = N
3
𝑐𝑜𝑠3𝜃(𝑡) − L

3
                 (3.2.3-1) 

where 𝜃(𝑡) is the angle of a vector under consideration at time 𝑡 relative to its position at 𝑡 

= 0. We then fit 𝑃3 𝑡  with a stretched exponential function, 

𝑃3 𝑡 = 𝑒𝑥𝑝 − Q
ÈÉvv

ÊÉvv
                (3.2.3-2) 

 where 𝜏ËÌÌ is the Kohlrausch-Williams-Watts (KWW) relaxation, and 𝛽ËÌÌ is the 

stretch exponent, which describes the breadth of the relaxation times. 𝜏 can be determined as the 

integral of the KWW curves with the expression: 𝜏 = 	 ÈÉvv
ÊÉvv

Γ L
ÊÉvv

 , where Γ is the gamma 

function. Figure 3.2.3-2 shows the results of the 𝑇-dependent 𝜏 for the AA and CG model with 

ER, which yields a good consistency. As a comparison, we apply a fixed ER factor by setting 𝛼 =

𝛼r (by matching the high-𝑇 AA activation energy) and 𝛼 = 1 (a first estimate of the activation 

energy developed from IBM by matching the AA RDF) for the CG model. At temperatures outside 

the high-T Arrhenius regime (where polymer materials are not thermally stable), it is evident that 

a constant rescaling of the activation energy provides an inadequate description of the 𝜏 data, 

suggesting that the application of ER in a temperature-dependent fashion correctly captures the 

slowing down of relaxation dynamics upon approaching the glass-transition temperature (𝑇%).  
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Figure 3.2.3-2: Comparison of segmental relation time between AA and CG models. 𝑇-

dependent segmental relaxation time 𝜏 for the AA and CG models. As a comparison, the t estimates 

from the CG models with constant ER (i.e., 𝛼 = 𝑎r) and derived from the IBM exhibit a growing 

divergence as lowering T, while the 𝜏 estimates from the ER describe the AA 𝜏 to a much better 

approximation. The solid curves show the VFT fits of the 𝜏 data. The dashed curve for the CG 

model from the IBM shows a high-T regime where the onset of sample evaporation leads to an 

increase in 𝜏. Inset shows the activation energies of relaxation ∆𝐺 normalized by its value ∆𝜇 at 

high-T Arrhenius regime for the AA and CG models. 

Formally, we may determine the activation energy of relaxation ∆𝐺(𝑇) through the 

relationship: ∆𝐺 𝑇 = 𝑘q𝑇𝑙𝑛 𝜏 𝜏? , where 𝜏? is the vibrational relaxation time on the order of 

10−12 to 10−13 s. The inset of Figure 3.2.3-2 shows the results of ∆𝐺 normalized by its value ∆𝜇 at 

the high-𝑇 Arrhenius regime. The CG model with ER evidently describes ∆𝐺 of the AA model 

rather well, whereas ∆𝐺 without ER remains too small at low temperatures. This analysis indicates 

that CG models without ER simply fail to preserve the AA dynamics in the 𝑇 range of practical 
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application interest, an effect that we attribute to the loss of the configurational entropy 𝑠" under 

coarse-graining. This “error” in CG modeling can be largely “corrected” by renormalizing the 

cohesive interaction strength, i.e., varying 𝛼. 

The 𝑇 dependence of our simulation estimates of structural relaxation time 𝜏 can be 

described by the well-known Vogel-Fulcher-Tammann (VFT) relation143;  

𝜏 𝑇 = 𝜏?exp	
Î�i
�h�i

                  (3.2.3-3) 

where 𝜏?, 𝐷, and 𝑇? are fitting parameters that characterize the relaxation process of glass 

formation. Specifically, the VFT temperature 𝑇?, dictates the “end” of glass formation, where 𝜏 

formally extrapolates to an infinite value; 𝐷 is inversely related to the fragility parameter 𝐾, i.e., 

𝐾~1/𝐷144. Correspondingly, we estimate 𝑇? to be around 301 K and the fragility 𝐾 to be about 

0.32 for both the AA and the CG model with ER to preserve this property. On the basis of the VFT 

fit, the 𝑇% can be estimated by extrapolating the relaxation data to the empirical observation time 

scale 𝜏(𝑇%) ≈ 100 s, where we find the 𝑇% to be around 330 K for the simulated systems.  

At 𝑇 above the onset temperature 𝑇r (estimated from the 𝜏 data), the dynamics of polymer 

fluids is mainly governed by the large-scale chain motion rather than the segmental mobility. We 

next examine the self-diffusivity 𝐷e of polymer chains at the high-T melt states (above 𝑇r ≈ 700 

K) from around 700 to 1200 K. 𝐷e is obtained from the MSD measurement of the center of mass 

of chains 𝑟¾j3 in the diffusive regime, where 𝑟¾j3  ~	𝑡. At 𝑇 below this high-T regime, it is 

challenging to accurately quantify 𝐷e of polymers through MD, as it requires much greater time to 

fully get into the diffusive regime due to the dramatic slowdown of the chain mobility. Figure 

3.2.3-3 shows a good consistency of 𝐷e between the AA and the CG using the ER method, which 

exhibit a slowdown of diffusion as 𝑇 decreases. Their 𝑇 dependence follows an apparent Arrhenius 
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behavior: 𝐷e 𝑇 = 𝐷?exp	(−
∆Ï
ÂÐ�

), where 𝐷? is a prefactor and ∆𝐸 is the activation energy of 

diffusion. From the Arrhenius fit of the data, ∆𝐸 is estimated to be around 33.4 kJ/mol·K for both 

AA and CG models. 

 

Figure 3.2.3-3: Comparison of diffusion coefficient between AA and CG models. Self-

diffusion coefficient 𝐷e of chains at elevated 𝑇 for the AA and CG models, which is well described 

by an Arrhenius relation (dashed line). 

As a further test of our CG procedure with regard to preserving thermodynamic properties, 

Figure 3.2.3-4 also shows a good consistency of the 𝑇 dependence of the isothermal 

compressibility κ� between the AA and CG models, where we have reduced κ� by its value at the 

onset temperature 𝑇r. This normalization is required for scale-dependent properties whose absolute 

values cannot be preserved under coarse-graining. 
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Figure 3.2.3-4: Comparison of isothermal compressibility between AA and CG models. Test 

of isothermal compressibility 𝜅𝑇 normalized by its value at 𝑇𝐴 as a function of 𝑇/𝑇𝐴 for the AA 

and CG models, showing good consistency, while the absolute 𝜅𝑇 of the AA and CG models 

show divergence at higher 𝑇 (inset). This result suggests the necessity of making comparison to 

experiments and simulation models using appropriate reduced variables. 

Previous studies98, 145, 146 have shown that it is possible to capture the dynamics of the AA 

models under coarse-graining by rescaling the time such that the 𝐷e and the VFT behavior of 

relaxation can be recovered. This method works mostly at higher temperatures since the system 

can enter into the diffusive regime in a relatively short time. However, using a single time-rescaling 

factor fails to reproduce the entire 𝑟3(𝑡)  curve of the AA model at a lower temperature due to 

the noticeable existence of the ballistic regime and sub diffusive regime. Here, we have shown that 

the CG model developed using the ER approach can reproduce the atomistic dynamics and entire 

𝑟3(𝑡)  curves over a wide 𝑇 range, which is a significant feat in CG modeling of glass forming 
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polymers, whose relaxation processes are rather complex and involve different relaxation 

mechanisms occurring at different time scales depending on 𝑇.  

3.2.4 Conclusion 

In this study, we applied ER method to develop a temperature transferable CG model for 

polycarbonate. By exploiting the localization model and Adam-Gibbs theory of glass formation, 

we have shown that preserving the AA 𝑢3 , i.e., a fast dynamics physical property at a picosecond 

time scale, by renormalizing the cohesive interaction parameter 𝜀 through 𝛼(𝑇) under coarse-

graining, the CG model can well capture the glass forming dynamics of the underlying AA system 

over a wide T range, from the high-T Arrhenius regime to the intermediate non-Arrhenius regime 

of glass formation and low-T glassy regime. Our work illustrates the effectiveness and applicability 

of the ER approach toward building a multiscale temperature-transferable modeling framework 

for the polymers having different segmental structures, and particularly implies the critical roles 

of glass forming properties, such as fragility, and degree of coarse-graining in influencing the CG 

modeling. 

3.3 CG Modeling of Epoxy  

Epoxy resins are thermosets widely employed in our society from everyday life 

applications147 to high-tech, new generation composites148, 149. They are used as resistant anti-

corrosion coatings150, 151, high-performance adhesives152-154, structural composites in the aerospace 

industry155-157, electrical insulators158, 159, biomedical applications160, 161, impact-resistant 

materials162-165 and more. Their superior thermomechanical properties come from their design 

flexibility: the macroscopic properties of the neat epoxy resin are influenced by the choice of the 
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epoxy molecule (containing the epoxide group) and the curing agent, or hardener166-168 via their 

molecular weight169-171, flexibility172, 173 and chemistry174, 175. Epoxy resins are also relevant in the 

context of aHNPs as nanoparticles can be grafted with epoxies that are capable of crosslinking, 

where the stiffness of the nanocomposite can be enhanced by the nanoparticle, whereas the 

crosslinks can toughen the material.  

All-atom molecular dynamics (AA-MD) studies have investigated epoxy resins, showing 

the effect of degree of crosslinking on the glass transition temperature 𝑇% and thermomechanical 

properties176, 177, the effect of water absorption178 or the mechanical and fracture behavior for neat 

epoxies179 or epoxy composites180, 181. AA-MD simulations remain limited in the spatiotemporal 

scales they can explore182, 183. Complex MD tools such as the reactive force field ReaxxFF184 

makes fracture studies185, 186 computationally expensive, despite their accuracy. Coarse-grained 

(CG) models of epoxy resins are particularly useful for the molecular study of properties that 

depend more on the network structure and physical properties (crosslinking density, molecular 

weight of the components or entropic effects) rather than specific chemical interactions. Still, the 

development of CG models for epoxies that can capture the thermomechanical properties of the 

networks is a daunting task due to the high complexity and heterogeneity of their molecular 

structure. 

In this work we extend the ER protocol to a CG model for epoxy resins. In particular, we 

target a resin with Bisphenol A diglycidyl ether (DGEBA) as the epoxy, and either 4,4-

Diaminodicyclohexylmethane (PACM) or polyoxypropylene diamines (Jeffamines D-x, where x 

depends on the molecular weight of the Jeffamine, or the number of repeated monomer units 

between the two amine groups) as the curing agents. 
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3.3.1 CG Model description 

In our CG representation, shown in Figure 3.3.1-1, we use five beads to represent DGEBA 

(with only three different bead types due to the molecular symmetry), four beads to represent 

PACM (of two different types) and fifteen beads (of three different types) to represent D400. From 

here on we refer to the DGEBA beads as beads 1, 2, 3; PACM beads as beds 4,5; D400 beads as 

beads 5, 6, 7. Bead 5, present both in PACM and D400, corresponds to the amino group NH2 

involved in the crosslinking with the epoxy DGEBA (with bead 3 in particular in the CG 

representation). 

	

Figure 3.3.1-1: CG mapping scheme for DGEBA, PACM and D400. Atomistic (left) and 

Coarse Grained (right) representations of Bisphenol A diglycidyl (DGEBA), 4,4-

Diaminodicyclohexylmethane (PACM) and polyoxypropylenediamine (Jeffamine D-400). The 

colored circles overlapped to the atomistic structures show which atoms are included in each CG 

bead. The CG beads (numbered on the right) are centered in the center of mass of the atoms they 
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incorporate. In the CG model, crosslinking is performed creating new bonds between beads 3 and 

5.  

First we calibrate the bonded parameters of the CG model using a standard Iterative 

Boltzmann Inversion (IBI) protocol, where the potential is calibrated from the distribution of bonds 

and angles of the atomistic model. We exclude dihedral interactions, which would greatly increase 

the complexity of the CG model in the presence of varying degree of crosslinking. For our previous 

polymer models187 we found that dihedral interactions have little impact on the thermomechanical 

properties and dynamics of materials, and a slight adjustment of non-bonded interaction 

parameters can compensate for their effect. Figure 3.3.1-2 shows the representative case of the 

beads 4 and 5 for PACM with two bonds (4-4 and 5-5) one angle (4-4-5) and one dihedral (5-4-4-

5). The atomistic data are the distributions of the bond and angle between the centers of mass of 

the corresponding CG beads (calculated as the center of mass of the atoms included in the CG 

bead). We show that the CG model also has the same distributions with the potential obtained 

through IBI. The same is done for the DGEBA and D400, and Table 3.3.1-1 reports all the 

parameters used for the bonded interactions. 
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Figure 3.3.1-2: Bond, angle and radial distribution for PACM beads and corresponding 

potential energies. The probability distribution (blue) and the potential energy (red) for (a) 4-4 

bond, (b) 4-5 bond, and (c) 4-4-5 angle of the CG model are obtained through Iterative Boltzmann 

Inversion of their distributions in the atomistic representation. (d) RDF of the centers of mass 

corresponding to the CG beads 4 (black) and 5(magenta) in PACM, from which we can extract 

first estimates of ε4, ε5 σ4, and σ5 the non-bonded cohesive energies and sizes, via Iterative 

Boltzmann Inversion. 
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Table 3.3.1-1: Force field forms and parameters for the CG model of DGEBA-PACM-D400. 

Interaction Potential form Parameters 

Bond 𝑈mÕ 𝑙 = 𝑘mÕ(𝑙 − 𝑙mÕ)3, 
i,j are atom types 

𝑘L3 = 201, 𝑙L3 = 3.37,	𝑘3N = 22.18, 𝑙3N = 4.65, 𝑘ÖÖ = 
30.25, 𝑙ÖÖ = 4.60,	𝑘Ö× = 11.87, 𝑙Ö× = 3.32,	𝑘×b = 49.72, 𝑙×b 

= 1.88, 	𝑘bØ = 114.6, 𝑙bØ = 1.86, 𝑘N× = 21.48, 𝑙N× = 2.58 
unit of 𝑘 is kcal/mol∙Å2, unit of 𝑙 is Å 

Angle 
𝑈mÕÂ 𝜃 = 𝑘mÕÂ(𝜃 −

𝜃mÕÂ)3  
i,j,k are atom types 

𝑘L3N = 28.52, 𝜃L3N = 165,	𝑘3L3 = 45.60, 𝜃3L3 = 108, 𝑘ÖÖ× 
= 7.18, 𝜃ÖÖ× = 160,	𝑘ØbØ = 38.77, 𝜃ØbØ = 138,	𝑘bØb = 

43.62, 𝜃bØb = 161, 	𝑘×bØ = 38.01, 𝜃×bØ = 138, 𝑘3N× = 3.52, 
𝜃3N× = 120, 𝑘N×Ö = 7.49, 𝜃N×Ö = 124, 𝑘N×b = 9.15, 𝜃N×b = 

117, 𝑘N×N = 11.45, 𝜃N×N = 120 
unit of 𝑘 is kcal/mol, unit of 𝑙 is degrees 

 
We extract first-order estimates of the parameters for the non-bonded Lennard-Jones 

interactions: the cohesive energies and the effective bead sizes, from the radial distribution 

function between the centers of mass of the CG beads as shown in Figure 3.3.1-2d. We use an 

arithmetic rule of mixing for εm and geometric rule of mixing for 𝜎m. While these non-bonded 

parameters would be suited to reproduce the structure of the AA system in CG representation, the 

novelty of the ER method is to recalibrate the non-bonded interactions to match important markers 

of the system dynamics and mechanical properties. In particular, we calibrate the [εm, 𝜎m] 

parameters of the CG model to match the density, Debye-Waller factor 𝑢3  (the value of the mean 

square displacement measured at 3 ps, where we observe caging effects), elastic modulus and yield 

stress during tensile deformation of the AA systems. On the basis of theoretical results connecting 

the picosecond caging dynamics to the local softness of glass forming polymers188-190, previous 

ER papers on simpler, non-connected polymers, identified 𝑢3  as the only quantity to be matched 

from the AA model to be able to also predict the shear modulus of the system115, 116, 122, 123. We 

find that this is not the case in our system with the complex interactions of several beads of 

different size and interaction strength, especially in crosslinked networks, and we calibrate the 
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parameters to match the dynamics and mechanical properties simultaneously. Thus, we make use 

of machine learning to parametrize the non-bonded interactions which will be discussed in the 

upcoming section. 

3.3.2 Simulation parameters 

We simulate all-atomistic (AA) systems of either DGEBA-PACM or DGEBA-D400 in 

stoichiometric ratio for the formation of the cured epoxy resin. For the first system, we place 768 

DGEBA molecules and 384 PACM molecules randomly in a cubic box with periodic boundary 

conditions. For the second system, we use 944 DGEBA molecules and 472 D400 molecules. These 

systems are large enough to accurately yield the distributions and mechanical properties.179 We 

prepare crosslinked networks at intervals of 0.05 Degree of Crosslinking (DC), from 0 to 0.9 

(DGEBA+PACM) or from 0 to 0.95 (DGEBA+D400), DC=0 being the uncrosslinked systems and 

DC=1 being the fully cured network. The atomistic molecules are pre-built with no hydrogen 

atoms in the PACM/D400 amine group and an open-ring configuration for the DGEBA epoxide 

group, ready for the polymerization step. The presence or absence of hydrogen does not have an 

observable influence on the mechanical properties of the crosslinked resins179. For each of our 

system we run two independent replicas to enhance the statistics. We use harmonic style for bond 

and angles, charmm style for dihedrals, umbrella style for improper interactions and the 

buck/coul/long pair style for non-bonded interactions. For the CG models, we use systems of 2000 

DGEBA and 1000 PACM molecules, or 1000 DGEBA and 500 D400 molecules. We use harmonic 

style for bond and angles and the lj/gromacs pair style for non-bonded interactions with arithmetic 

rule of mixing for εm and geometric rule of mixing for 𝜎m.   
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We use the Polymatic package to create crosslinks in our systems in cycles of 

polymerization. In each cycle, the Polymatic algorithm creates a certain number of new bonds 

between target particles within a distance criterion, and for each new bond it updates the topology 

of the system and perform an energy minimization using LAMMPS. At the end of each cycle, a 

molecular dynamics step is performed to further relax the system. For the atomistic systems, we 

create bonds between the carbon atoms of the DGEBA epoxide group and the Nitrogen atoms of 

the PACM or D400 amine group within a cutoff distance of 6.0 Å, creating 16 bonds per cycle. 

The intermediate molecular dynamics step is performed with a timestep of 1 fs for 50 ps in total, 

in NPT ensemble at temperature T=600 K and pressure P=1 atm. In the coarse grained model, we 

create 10 bonds per cycle between bead 3 of DGEBA and bead 5 of PACM or D400 within a cutoff 

distance of 15 Å. The intermediate dynamics step has a timestep of 4 ps, runs for 200 ps in total 

and it is done in NPT ensemble at T=1000 K and P=0 atm. Each amine group can be connected to 

two DGEBA epoxide groups. In the formation of our networks, we first prioritize the crosslinking 

between an epoxide group and an amine group with no other crosslinks, creating networks with a 

DC up to 50%. After that, we create crosslinks between amine groups and epoxide groups of 

DGEBA molecules that are not already in the same network, to avoid the formation of closed loops 

involving only a fraction of the molecules of the system. This restriction allows up to 75% 

crosslinked networks, at which point all molecules of the system are connected to the same 

network. We apply no restriction after that, and stop the procedure when the formation of a new 

crosslink is not achieved within 30 MD cycles. This limit was at DC=90% for the atomistic 

DGEBA+PACM system, at DC=95% for the atomistic DGEBA+D400 and at DC>99% for the 

coarse grained systems.  
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For all our simulations we use the LAMMPS package58. After a short run with a non-

bonded soft potential at T=300 K and P=0 atm to remove overlapping atoms, we follow the 

protocol explained in the previous to reach an equilibrated state (signaled by zero residual stress 

in the system) at room temperature and pressure in NPT ensemble. For the AA systems we use a 

timestep of 1 fs. We first increase the temperature to T=600 K and the pressure to P=1000 atm in 

50 ps in NPT ensemble, then equilibrate the system for 100 ps at high T and P, then quench down 

to T=300 K and P=0 atm in 100 ps and finally equilibrate at T=300 K and P=0 atm for 200 ps. The 

mean square displacement of the systems is calculated after the equilibration, for the following 

100 ps, then a tensile deformation is performed in NPT ensemble at strain rate 𝜀 = 0.5×10Ú𝑠hL. 

The tensile deformation is performed separately in the three different directions x, y and z to obtain 

improved statistics of the mechanical properties of the systems. The CG systems use a timestep of 

4 fs. They are first equilibrated at T=800 K and P=100 atm, then quenched to 500 k and 0 atm to 

relax the pressure, then quenched in temperature to 300 K and 0 atm, and finally equilibrated at 

constant T=300 K and P=0 atm. Each of these steps is performed for 2 ns. The dynamics is then 

measured in the equilibrated state, and a tensile test with strain rate 𝜀 = 0.5×10Ú𝑠hL (same as the 

AA simulations) is performed in NPT ensemble. 

3.3.3 Non-bonded parametrization using machine learning 

Figure 3.3.3-1 reports the values of density, 𝑢3 , Young’s modulus and yield stress of the 

AA systems for DGEBA+PACM (black dots) and DGEBA+D400 (red dots). 𝑢3  is calculated 

from the mean square displacement at 𝑡∗ = 3	𝑝𝑠. The Young’s modulus is calculated from the 

stress-strain curve of the tensile test by fitting a line upto 2% strain. For both systems, the density 

and mechanical properties (modulus and yield stress) increases with increasing DC, while 𝑢3 , 



68	
	

	

marker of the mobility, decreases. This is expected, and more pronounced in the DGEBA+PACM 

system, which is stiffer and less mobile due to the rigidity of the curing agent PACM, while the 

more flexible D400 polymer causes higher mobility and lower density/mechanical properties. The 

elastic modulus in particular, changes at different rates with DC in the two systems, since the 

spatial density of crosslinks that dominates the elastic response of the network is higher in the 

DGEBA+PACM system because of the different length between PACM and D400. 

 

Figure 3.3.3-1: Target macroscopic properties of the atomistic simulations: (a) density, (b) 

Debye-Waller factor 𝑢3 , (c) Young’s modulus and (d) tensile yield stress as a function of degree 

of crosslinking (DC) for the DGEBA+PACM and DGEBA+D400 systems.  
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To the best of our ability, we found that any fixed parametrization of the CG model is not 

able to match the properties of the AA system at all degrees of crosslinking. This is caused by the 

different rate with which the configurational entropy 𝑠" of the AA and CG models changes with 

varying DC, similarly to what happens with varying T for any CG model. Thus, we introduce a 

DC-dependence for all non-bonded parameters [εm, 𝜎m]= [εm(𝐷𝐶), 𝜎m(𝐷𝐶)]. In previous models with 

highly homogeneous polymers and few CG beads, it was possible to study the dependence on 

temperature in a “traditional” way, with simple parameter sweeps and introducing only one 

additional parameter to rescale all cohesive energies (the εm) and one to rescale all the effective 

sizes of the CG beads (the 𝜎m). We find that this is not possible in our current epoxy model due to 

the high complexity of the system, including the effect of crosslinks and the large number of CG 

beads with very different cohesive energies and sizes. We introduce a generalization of previous 

protocols that relies on Machine Learning (ML) to explore the high-dimensional space of the 

model parameters. The idea is to select a range for each parameter and use the ML algorithm to 

find the set of input values that simultaneously optimizes the match between the AA and the CG 

model for all target responses at all degrees of crosslinking. Preserving the seminal ideas of the 

ER procedure, the protocol outlined here can be easily generalized to any CG model both with a 

top-down or bottom-up approach, and further developments will allow the creation of higher-

resolution computational models in an automated way.  

To select the range of the parameters, we run preliminary tests calibrating the cohesive 

energies either on the dynamics of the systems at DC=0% or on the elastic modulus at DC=90% 

(the highest DC we can achieve for the DGEBA+PACM AA network). This gives us extremes for 

the values of cohesive energies εm, and we further expand them by around 20%. We also select a 
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range of around +/-20% for the 𝜎m parameters from the initial estimate obtained from the IBI of 

the radial distribution functions. Our ranges are post-validated by our final calibration, as discussed 

in the following.  In our Design of Experiment, each set of parameters is represented by a point in 

a 15-dimensional hypercube (7 εm and 7 𝜎m parameters, plus the degree of crosslinking DC). In this 

space, we select more than a thousand points (700 for the DGEBA+PACM system and 500 for 

DGEBA+D400) and run the corresponding CG simulations, measuring for each the density, 𝑢3 , 

elastic modulus and yield stress like we did for the AA system. 

We now use the data obtained from the CG simulations to inform the ML model, which 

explores the parameter space of the CG model and predicts at each degree of crosslinking the set 

of [εm; 𝜎m] which maximizes the likelihood of the AA and CG target responses to coincide.  In 

addition to maximum likelihood, we use the insight we have on the systems to add some physics-

based constraints to our parametrization. In particular, we require that each parameter has a 

dependence on crosslinking density [εm(DC); 𝜎m(DC)] described analytically from DC=0% to 

DC=100%.  We first find the optimal parametrization for the extremes (the uncrosslinked and the 

fully crosslinked network) and then constrain the intermediate values on some chosen functional 

form. In general, if one fixes the DC=0% CG parametrization for all degrees of crosslinking, the 

mechanical properties of the AA system increases at a faster rate than in the CG system with 

increasing DC, and the mobility decreases faster. From these data, we expect a general increase of 

the cohesive energies εm(DC) with increasing degree of crosslinking, which will proportionally 

increase the mechanical properties and decrease the mobility of the CG model. 
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3.3.4 Performance of the CG model 

The agreement of the two models is higher for simpler quantities like density, where the 

precision of the measurements is also higher as seen from Figure 3.3.4-1. For complex properties 

like elastic modulus and yield stress, the discrepancies can be larger at certain values of DC, but 

always within the confidence intervals that our data could provide. Despite these occasional 

discrepancies, we feel that our parametrization has a high level of accuracy, given the complexity 

of the model, and in particular for fully cured networks (DC=100%) of interest for experimental 

applications. In general, this protocol is easily generalizable to any polymeric system, for any set 

of target properties.  

 

Figure 3.3.4-1: CG validation based on predictions by the ML algorithm. (a) to (c) shows the 

validation for DGEBA-PACM system for stress-strain curve, mean square displacement and 

density. (d) to (f) shows similar validation for DGEBA-D400 system. The dotted line in (b) and 

(e) mark the time at which 𝑢3  was calculated. 
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The CG curves validate the prediction of the ML model and show the expected values for 

𝑢3 , elastic modulus and yield stress of the systems. Additionally, the comparison with the AA 

curves of corresponding DC show that by matching elastic modulus and yield stress, we capture 

the overall stress under tensile deformation for the system. By matching the Debye-Waller factor 

𝑢3  of the AA system, the MSD of the DGEBA+D400 system is also matched  for longer 

timescales beyond the picosecond caging time. This was expected, given theoretical relationships 

linking the picosecond caging dynamics to the segmental dynamics of glass-forming systems and 

validated in previous ER models for simpler homopolymers. For the DGEBA+PACM system, we 

find that this property does not hold so well. Despite matching the picosecond caging dynamics of 

the AA and CG systems, the AA has faster dynamics at longer timescales for the uncrosslinked 

systems. This might be caused by the variety of CG beads with different sizes and cohesive energy, 

which might create a broader spectrum of caging scales and relaxation times. Despite this 

discrepancy, the effect is greatly reduced in the fully crosslinked network of interest for 

experimental applications, where the system is frozen in the network conformation and there is no 

diffusion. 

3.3.5 Conclusion 

Our CG model is able to match the dynamics and mechanical properties of a higher-

resolution AA model, which we showed in the past179 to be consistent with experimental measures. 

In particular, we match the density, Debye-Waller factor 𝑢3 , Young’s modulus and tensile yield 

stress at any degree of crosslinking of the network at fixed temperature T=300K. This is an 

extension of our ER-CG protocol187, 191, which was used to match the dynamics and mechanical 

properties of simpler glass-forming polymer systems by adjusting the non-bonded interactions of 
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the CG model in a T-dependent way. Here the external parameter considered is instead the degree 

of crosslinking, DC, of the epoxy network. Additionally, the chemical heterogeneity of our epoxy 

system requires the use of multiple different CG beads (7 in this model), leading to 14 adjustable 

parameters for the non-bonded interactions (σ and ε for each LJ potential, with an arithmetic rule 

of mixing for cross-interactions). We calibrate all our parameters in a DC-dependent way to 

simultaneously match the four target properties of the AA system (density, 𝑢3 , modulus and 

yield stress). To find the optimal set of parameters in this high-dimensional space, we developed 

machine learning (ML) tools that use a training set of CG simulations from a design of experiment 

to extrapolate the response of a CG simulation based in the force field parameters, and find the 

optimal set of parameters to obtain the target properties. For each parameter we obtain a continuum 

response [εm(DC); 𝜎m(DC)] which is back validated with AA simulations and shows excellent 

agreement. 

3.4 Conclusion 

In summary, we have established a new coarse-graining framework called the energy-

renormalization approach that builds upon glass formation theories to achieve a temperature 

transferrable coarse-graining for three different kinds of materials: a small molecule, a polymer 

and an epoxy resin. For OTP and PC, the cohesive interaction parameter ε(T) of the CG model 

from the 𝑢3  analysis exhibits a sigmoidal temperature dependence with a higher magnitude upon 

cooling. For epoxy, the parametrization is done with respect to the degree of crosslinking which 

shows a linear dependence. We find that our ER approach can quantitatively predict the dynamics 

of the AA system over a wide temperature range from a high-T Arrhenius melt to the non-

Arrhenius regime of incipient of glass formation and low-T non-equilibrium glassy regime. The 
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ER approach should also be applicable to more complex glass forming molecules, such as 

branched polymers and bottle brushes.  

We believe that this work will be of high relevance for multiple fields. Our findings 

demonstrate the effectiveness of the ER approach toward building a temperature-transferable CG 

modeling framework for the glass forming materials and highlight the critical role of caging 

dynamics in predicting the glass forming properties.	The epoxy CG model itself will be useful in 

epoxy community, with the ability to investigate molecular features, structural heterogeneities and 

mechanical behavior of a wide range of epoxy resins. The ML tools developed for this model are 

general, and easily extended to an arbitrarily complex case of multiple input parameters to be 

adjusted to match any number of target macroscopic properties for the creation of CG models for 

nanomaterials. The conceptual extension of the ER scheme to a crosslinked polymer network is of 

high theoretical relevance, being linked to the role of crosslinks in the change of configurational 

entropy of the system and useful for the creation of CG models for a broad range of elastomers 

and network systems. 
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Chapter 4: Materials by design for hairy nanoparticle assemblies 

Having developed the energy renormalization approach for these glassy polymers, the next 

step was to use them to study mechanical properties of polymer nanocomposites, especially 

aHNPs. However, as discussed in Chapter 1:, exploring the wide parametric space that affects the 

mechanical properties with only CG simulations is still daunting. Hence, in this chapter we focus 

on utilizing the power of machine learning in combination with molecular dynamics simulations 

to explore this vast design space of aHNPs. This approach reveals an optimal design strategy that 

maximizes the mechanical properties, specifically Young’s modulus and toughness, of these 

nanocomposites and provides six to seven orders of magnitude speed up over AA-MD simulations. 

In the first section of this chapter, a brief introduction to the material system and 

metamodeling is provided. Next, the metamodel based design framework is discussed which 

includes the details of CG-MD simulation protocols, design of experiments, a brief description of 

the multi-response Gaussian process metamodel, construction of Pareto frontier and statistical 

sensitivity analysis. The next section will describe the influence of design parameters on the 

mechanical properties and a design strategy is proposed to optimize the mechanical properties. 

This work is done in collaboration with Prof. Wei Chen’s group at Northwestern who helped me 

with developing the metamodel. Portions of the text and figures within chapter are reprinted or 

adapted with permission from Hansoge et al. ACS Nano 2018192. 

4.1 Introduction 

In mechanical design of a polymer nanocomposite, the objective often involves optimizing 

the material’s properties by efficiently searching for the best combination of design variables, such 

as choice of polymer, nanoparticle size, polymer chain length, etc193-195. Wide parametric studies 
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are required to search for the optimum design parameters in this vast space. Recent systematic 

experimental investigations of aHNPs have provided valuable insights into their mechanical 

properties. However, they involve some inferences of modulus and toughness from 

nanoindentation29, 30 or buckling methods28.  However, using experimental techniques to carry out 

such searches are very prohibitive, time-consuming and inefficient. While theoretical physics-

based scaling relations such as the Daoud-Cotton model46 can help with qualitative predictions of 

chain structure, these models often require empirical constants that require experimental studies. 

Computational modeling can provide the necessary answers required to optimally design a 

nanocomposite. Considering the nanoscale nature of these materials, molecular dynamics (MD) 

simulations have been employed to study structural196 and conformational82 properties and self-

assembly41, 42 of polymer grafted nanoparticles. However, correlating molecular design parameters 

with mechanical properties using CG-MD simulation is exacting in this case due to the 

computational cost. Hence, to overcome this issue, we take advantage of power of machine 

learning/metamodeling which will be discussed in upcoming sections.  

A metamodel is a surrogate model (a model of a model) that can be a mathematical 

algorithm that represents the input output relationships. Metamodels are usually computationally 

very cheap as compared to even CG-MD simulations. Metamodel-based design optimization 

(MBDO) is a useful framework that can be used in conjunction with computationally intensive 

(e.g. CG-MD) simulations197-199. The MBDO framework has been successfully applied to design 

of various engineering and material systems, such as fuel cells200, structural components of 

vehicles201, and nanocomposites202. 
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In this study, we aimed to combine this MBDO framework with our CG-MD simulations 

to rapidly explore the design space and optimize the mechanical properties for aHNPs. 

Specifically, we propose a multi-objective MBDO framework to uncover trade-offs offered by 

four key material design parameters [i.e., chain length (𝑁) of the polymer, grafting density (𝜎), 

polymer-nanoparticle interaction strength (𝜀ÞZÞ), and nanoparticle edge length (𝑙ZÞ)] with the 

ultimate goal of optimizing the transverse elastic modulus and toughness of the aHNPs. The chain 

length, grafting density and nanoparticle dimensions are well known to be the most influential 

parameters governing the mechanical properties. The interaction between polymer and 

nanoparticle is chosen as the fourth design parameter as it can represent the various surface 

functionalization on the nanoparticle surface. The various synthesis methods can lead to different 

surface interactions which we want to capture through this 𝜀ÞZÞ. The metamodel we use in the 

work is called the Multi-objective Gaussian Process (MGP) model. We describe why we choose 

this model in section 4.2.3.  

We chose cellulose nanocrystal (CNC) grafted to poly (methyl methacrylate) (PMMA) as 

our model aHNP system. There are a few reasons for the choice of this nanoparticle and polymer. 

Much of the earlier work on aHNPs focused on spherical nanoparticles such as silica29, 30, 40, 203, 

while higher mechanical properties can be expected from high-aspect ratio nanoparticles. Among 

possible filler candidates, cellulose nanocrystal (CNC) extracted from natural sources (e.g., wood, 

bacteria and tunicates) has come under the spotlight as transparent, eco-friendly, biocompatible, 

versatile building blocks for structural applications204-208. Specifically, CNCs have very high axial 

elastic modulus that is comparable to Kevlar209, high transparency, high aspect ratio (~ 10-100)206 

and relatively low density. Reactive groups (i.e., -OH) on CNC surfaces210 allow 



78	
	

	

functionalization68, 211, 212 and polymer grafting213, 214 to achieve tunable and multifunctional 

properties. Earlier studies have shown improvement in storage215 and elastic modulus216 of 

nanocomposites prepared using CNCs and poly (methyl methacrylate) (PMMA). PMMA is used 

in wide range of applications such as lenses for glasses, rear-lights in vehicles, LCD screens and 

shatter resistant windows. PMMA is one of the most commonly used polymers in nanocomposites 

owing to its low density and excellent mechanical and optical properties217.  

4.2 Metamodel based design optimization framework 

The metamodel-based design optimization (MBDO) framework for material design 

employed in this study includes a hybrid design of experiments (DOE) (optimal Latin hypercube 

sampling and manual selection in regions with highly nonlinear behavior), CG-MD simulations to 

gather the data points, Gaussian process modeling for building the metamodel, modified leave-

one-out cross validation, and metamodel runs for obtaining optimal solutions under multiple 

objectives. Statistical sensitivity analysis (SSA) is performed on the metamodel to understand the 

model behavior and to determine which input factors (i.e., material design parameters) most 

strongly influence the mechanical response. These material design parameters along with their 

ranges are summarized in Table 4.2-1. The bounds of design variables are chosen to be within an 

experimentally realistic range and such that CG-MD simulations can be completed in a reasonable 

timeframe. Parameters studied here are comparable to the range seen in experiments reported, 

except for chain length, where higher molecular weights above entanglement length have been 

previously investigated but are challenging due to high computational cost of properly relaxing the 

chains. 
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Table 4.2-1: Design bounds of the material parameters studied using CG-MD simulations. 

Input variable Lower 
bound 

Upper 
bound Units 

Chain length (𝑁) 10 100 repeat units 

Grafting density (𝜎) 5 50 % of surface beads 
grafted 

Polymer-NP interaction (𝜀ÞZÞ) 0.3 5 kcal/mol 

NP edge length (𝑙ZÞ) 5 30 Å 

4.2.1 Design of experiments 

The purpose of the design of experiments (DOE) is to carry out as few simulations as 

possible to capture the behavior of the nanocomposite system such that the comprehensive 

metamodels built from these simulations are accurate enough. Here, we apply a hybrid DOE, 

where 80 initial points are generated with the optimal Latin Hypercube sampling (OLHS) 

method218. This produces randomized yet uniformly distributed DOEs by minimizing the L2 

central discrepancy between the cumulative distribution function (CDF) of an initial LHS design 

and the CDF of a multivariate distribution. However, due to the nonlinearity of the input-output 

dependencies obtained, it was observed that these data points did not adequately cover the entire 

range of weight % of NPs especially in the low and high weight percentages. Hence, additional 20 

data points were generated in the low and high weight percentage regions, resulting in one hundred 

CG-MD simulations in total.  
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4.2.2 CG-MD system setup and simulation protocols 

We use CG-MD simulations to obtain the modulus and toughness of the model CNC-

PMMA nanocomposite in the transverse direction, which is orthogonal to the direction of particle 

alignment. Figure 4.2.2-1 a-b depict the coarse-graining mapping scheme used for modeling 

cellulose and PMMA. Two glucose monomers are represented by one CG bead, and the entire 

CNC is modeled as a face-centered cubic (FCC) crystal. Although the surface of CNCs can be 

quite irregular, the canopy of the grafted polymeric layer should shield these surface features from 

affecting the mechanical properties. Harmonic bonds with high spring constants (k = 100 

kcal/mol/Å2) are employed in the axial direction of the nanocrystals to ensure that it has much 

greater stiffness axially. The properties of interest here do not require an extensive parametrization 

of cellulose crystals other than their transverse elastic properties, given that the polymer is much 

more compliant and failure should localize in the matrix or the interface. The nonbonded cohesive 

interaction, represented by the standard 12-6 LJ potential, is parameterized to achieve a transverse 

modulus of around 38 GPa, which is in agreement with experimental values reported206. PMMA 

is represented with a two bead per monomer CG model, one for the backbone (A) and one for 

sidechain (B). The interaction parameters for the CG model of PMMA are derived from all-

atomistic simulations using the thermomechanicallly consistent coarse-graining approach, which 

accurately captures the mechanical behavior of PMMA219. The force field parameters are 

summarized for both PMMA and CNC in Table 4.2.2-1. 

Table 4.2.2-1: Force field forms and parameters for the CG model of PMMA and CNC. 

Interaction Potential form Parameters 

AA-bond 𝑈 𝑙 = 𝑘X(𝑙 − 𝑙?)3 𝑘X = 105.0 kcal/mol∙Å2, 𝑙? = 2.735 Å 
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AB-bond 𝑈 𝑙 = 𝑘X(𝑙 − 𝑙?)3 𝑘X = 39.86 kcal/mol∙Å2, 𝑙? = 3.658 Å 

CNC-bond 𝑈 𝑙 = 𝑘X(𝑙 − 𝑙?)3 𝑘X = 100 kcal/mol∙Å2, 𝑙? = 5 Å 

AAA-angle 
𝑈 𝜃 = −𝑘q𝑇𝑙𝑛 𝑎L𝑒

h(�h�ßXß
)�

+ 𝑎3𝑒
h(�h��X�

)�  

𝑎L = 2.294×10-2, 𝑏L = 9.4930, 𝜃L = 121.0°, 
𝑎3 = 4.367×10-3, 𝑏3 = 6.2100, 𝜃3 = 158.5° 

AAB-angle 𝑈 𝜃 = 𝑘L(𝜃 − 𝜃?)3 +
𝑘3(𝜃 − 𝜃?)N + 𝑘Ö(𝜃 − 𝜃?)Ö  

𝑘L = 9.881 kcal/mol∙rad2, 𝑘3 = -15.12 
kcal/mol∙rad3, 𝑘N = 6.589 kcal/mol∙rad4, 𝜃? 

= 1.690 rads 

AAAA-dihedral 𝑈 𝜙 = 𝐴Â𝑐𝑜𝑠ÂhL(𝜙)
×

Â�L

 
𝐴L = 4.380, 𝐴3 = -0.8739, 𝐴N = -0.3571, 𝐴Ö 
= -0.2774, 𝐴× = -0.09312, units in kcal/mol 

BAAB-dihedral 𝑈 𝜙 = 𝐴Â𝑐𝑜𝑠ÂhL(𝜙)
×

Â�L

 
𝐴L = 4.519, 𝐴3 = -0.8859, 𝐴N = -1.692, 𝐴Ö = 

-0.5625, 𝐴× = -0.9562, units in kcal/mol 

Non-bonded 𝑈 𝑟 = 4𝜀
𝜎
𝑟

L3
−

𝜎
𝑟

b
 

𝜀rr = 0.5, 𝜀qq = 1.5, 𝜀rq = 0.866, 𝜀¾}¾h¾}¾  
= 5, 𝜀¾}¾hr/q = 0.5, units in kcal/mol 

𝜎rr = 5.5, 𝜎qq = 4.42, 𝜎rq = 4.96, 𝜎¾}¾h¾}¾  
= 3.15, 𝜎¾}¾hr/q = 4.0, units in Å 

 

In order to mimic the high aspect ratio of CNCs (10-100) and avoid edge artifacts, we 

choose a representative volume element of the CNC where its length is five times the width/height, 

and employ periodic boundary conditions in the longitudinal direction which effectively creates 

infinitely long crystals. To simulate the CNC-PMMA nanocomposite, a single polymer-grafted 

CNC is first generated, where the location of graft sites is chosen arbitrarily, and the polymer chain 

is grown from the designated site using a random walk algorithm81, 220. The system is then 

replicated three times (resulting in 4 total aHNPs) and packed together to create a representative 

nanocomposite system as depicted in Figure 4.2.2-1c.  

The CG-MD simulations are carried out using Large-scale Atomic/Molecular Massively 

Parallel Simulator (LAMMPS) software58. Periodic boundary conditions are applied in all the 
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directions to simulate the bulk behavior of the system. Before running deformation simulations, 

first, a soft interatomic cosine potential is used to push the polymers apart in the NVT ensemble, 

so that any overlap created during packing is removed. The soft potential is then turned off and 

replaced by the actual interatomic Lennard-Jones potential. The system is annealed at 1000 K for 

2 ns to remove any residual stresses and is then equilibrated at 600 K at a high pressure of 1000 

atm for 2 ns to make sure the grafted CNCs are packed well. The system is then cooled down to 

300 K and equilibrated for another 2 ns under atmospheric pressure. We check that the polymers 

chains have relaxed by tracking the second Legendre order parameter (P2)123 and consider that a 

P2 value less than 0.1 indicates that the polymer is fully relaxed. Figure 4.2.2-1d shows the 

snapshot of the nanocomposite system after annealing and equilibration. An integration timestep 

of 4 fs is used for all the CG-MD simulations. The equilibration simulations are carried under the 

isothermal-isobaric ensemble (NPT). The tensile test is carried out at a strain rate of 108 s-1, which 

is typically used in MD simulations123, 124, 219. It should be noted that while the strain rate used here 

is high compared to experiments, the design strategy and the main conclusions drawn in our study 

should not be affected since the strain rate dependence is relatively low in the glassy regime of the 

polymer. For the metamodel validation, five CG-MD simulations are run where configurations at 

different timesteps are taken at the end of equilibration and these structures are used for the 

deformation simulation with different initial velocity. From the tensile tests, Young’s modulus is 

calculated from the slope of stress-strain curve up to 0.2% strain, and the toughness is 

approximated as the area under the stress-strain curve. We note that the stress-strain curve and this 

measure of toughness is expected to be size-dependent due to strain localization effects that depend 

on number of nanoparticles studied, in other words, the number of sites where localization can 
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occur. This effect should lead to smaller strains in experiments. Thus, toughness values reported 

should be taken as a qualitative measure that should correlate well with experiments in terms of 

the relative ranking of the systems studied, and the stress-strain curves can actually be used with 

further analysis to estimate fracture energies as done previously for glassy polymers179, 221. 

 

Figure 4.2.2-1: CG mapping scheme for CNC and PMMA and representative volume 

element for CG simulations. Schematic of AA structure and CG models for (a) cellulose and (b) 

PMMA. Two glucose monomers in the cellulose are modeled as one CG bead (green) with the 

force center at the center of mass. The backbone (blue) and sidechain (purple) in CG PMMA is 

represented by two different beads. (c) The snapshot of the initial system consisting of four PMMA 

grafted CNCs where the polymer is grown from the surface of the CNC using a random walk 

algorithm. (d) The snapshot of the system after carrying out annealing and equilibration steps. 

4.2.3 Gaussian Process Modeling 

Metamodeling provides a solution to replace the expensive CG-MD simulations to explore 

the entire design space. Now, there are various types of metamodels that could be employed for 

this purpose. In this work, we tried four different metamodels, viz., polynomial regression (PR), 

radial basis function (RBF), kriging (which is a Gaussian process (GP)) and multi response 
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Gaussian process model (MGP). Polynomial regression is one of the most commonly used 

regression technique to define input-output relationships. Radial basis functions are means to 

approximate multivariable functions by linear combinations of terms based on univariate functions 

(the radial basis functions). One of the greatest advantage of RBF is its versatility; it can be applied 

to a multi-dimensional problem. Gaussian process (GP) modeling is an ideal metamodeling 

approach to capture highly nonlinear and spatially or temporally correlated data198, 222, 223. An 

appealing aspect of GP modeling is the uncertainty due to lack of data can be estimated for the 

predictions, which means that confidence intervals could be obtained for the predicted material 

properties.  

We trained each of these models with the 100 data points that we obtained from the CG-

MD simulations. The models constructed in this work were validated using a modified leave-one-

out cross validation (LOOCV) approach. LOOCV error is assessed through averaging the 

prediction error on a left-out data point using the model built with the dataset excluding the left-

out data. Each of the data point in the dataset is chosen as the left-out data once. The error metric 

for the validation is chosen as the mean absolute percentage error (MAPE), which can be estimated 

by (  is the model prediction for ): 

	 	 	 	 	 	 	 														(4.2.3-1) 

Since the input-output relationships are quite complicated, simplified models such as PR 

and RBF were unable to capture the behavior accurately. The MAPE for the four different models 

are summarized in Table 4.2.3-1. The GP model gave a reasonable estimate for the modulus, but 

the error in toughness measurement was quite high. Hence, we decided to use the MGP model 
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which provided the least error and is also in the acceptable range. The MGP model is similar to 

GP, but the correlation of the outputs is also considered in the model. 

Table 4.2.3-1: Summary of MAPE for different metamodels for the two outputs, modulus and 

toughness. 

Model MAPE in 
modulus (%) 

MAPE in 
toughness (%) 

PR 12.1 30.78 

RBF 19.75 65.27 

GP 8.57 25.67 

MGP 10.46 15.26 

In this study, the multi-response GP model224 (with noise corrupted responses) is fitted 

using an enhanced Gaussian process modeling algorithm developed by Bostanabad et al225. A 

random process  is a collection of random variables (RVs) indexed by a set  where the 

indices are often interpreted as time or spatial locations. A Gaussian Process (GP) is a random 

process in which the marginal distribution of each of the RV, Yi, is Gaussian and any finite subset 

of the process  has a multivariate Gaussian distribution. Let the indices be natural 

numbers and Y be a column vector of the random variables Xi of size N, i.e., Y = (Y1, …, YN)T. A 

GP can be characterized with two mathematical objects: a mean function  and a covariance 

matrix  (Eq. 4.2.3-2). 
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The N×1 mean vector µY  gives the expected value of each Yi. For the covariance matrix 

S  ,the diagonal element 
2
iq  is the variance of Yi. The off-diagonal entries ijq  indicate the 

covariance between the two RVs iY  and jY . Given an indexed 4-dimensional input and single 

response dataset of size N=100 for this study: 

 ( ) [ ] [ ]{ }1 2 100 ,1 ,2 ,3 ,4 1 2 100, : , , , , , , , , ,
TT T

i i i i ix x x x y y yé ù= = =ë ûX y X x x x x y! ! ,where 

,1 ,2 ,3 ,4, , ,i i i ix x x x  are chain length (𝑁), grafting density (𝜎), polymer-NP interaction strength (𝜀ÞZÞ) 

and NP edge length (𝑙ZÞ) respectively (Table 4.2-1) and 𝑦m is the material property of interest, 

Young’s modulus and toughness. Assume y  is a realization of a GP Y and  is a function of X , 

then the mean vector µY  can be predicted from a function ( )m X  and the entries of the covariance 

matrix ijs  can be estimated from ix  and jx . GP modeling is process of constructing the mean 

function and estimating the covariance matrix. The complete details of formulation of the GP 

model is described in the Hansoge et al, 2018192. 

4.2.4 Constructing the Pareto Frontier 

In the context of multi-objective optimization (MOO), a Pareto solution is a point 

 in the multi-dimensional model output space such that any of the model responses 

 cannot be further optimized without sacrificing at least one of the remaining ones. 

MOO aims at finding the set of Pareto solutions of a model, which is identified as the Pareto 

frontier. The metamodel output space in the polymer-NP system is non-convex, which necessitates 

the use of non-weighted-sum based multi-objective optimization algorithms such as multi-

( )1,..., py y

,1iy i p£ £
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objective genetic algorithms (MOGA). However, since the surrogate model in this study is 

computationally inexpensive, it is possible to randomly sample a large number of points from 

design space and find the boundaries of the output space, which is by definition the Pareto frontier. 

In comparison to MOGA, this method provides a quick solution with a minimal loss of accuracy. 

We note that since the Gaussian process model is an interpolation-based method, we refrain from 

extrapolating the metamodel results to outside the design space (such as chain length above 100) 

as this may yield inaccurate predictions. 

 Figure 4.2.4-1 shows the Pareto frontier marked as a red curve, which is obtained by 

sampling the design space with one million sets of input parameters using the metamodel. For each 

point on the frontier, there is no other combination of input design parameters (within the bounds 

studied) that can achieve higher toughness without compromising the stiffness, or vice versa. To 

put our results into the classical framework of nanocomposites, we plot the Ashby plot using 

weight % of the NP (i.e., CNC). At a high NP weight % (above 80%), we observe that the modulus 

increases sharply at the expense of toughness, with nanocomposites exhibiting a brittle-like failure 

mode (illustrated in the inset in Figure 4.2.4-1). As the polymer content increases, we see a 

transition into a more ductile-like failure. In line with the transverse rule of mixtures for 

composites226, we observe that the modulus generally increases with weight % of NP. As expected, 

the rule of mixtures cannot explain the dramatic variations in mechanical properties at a fixed 

weight % of NP given the important role that microstructural factors such as chain length and graft 

density play in these systems. We would like to point out that at a high weight percentage of NPs, 

the mechanical properties of the nanocomposite are mainly governed by the NP properties. The 
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polymer chains help in formation of nanostructured assembles, but the chain conformations have 

a minimal effect on the mechanical properties. 

 
Figure 4.2.4-1: Young’s modulus vs toughness Ashby plot. Young’s modulus vs. toughness plot 

with points color coded with respect to the weight percentage of NP obtained from set of input 

parameters. The inset images show the range of failure observed, from a brittle fracture at high 

weight percent NP to a ductile fracture at relatively low weight percent NP. 

4.2.5 Metamodel Validation and Verification 

Although LOOCV is widely used for validating models built from small datasets,227 special 

care needs to be taken with the validation of GP models. Since GP models make predictions by 

interpolation, the prediction error for a point outside the input space (the space enclosed by the 

input points) can be extremely large and may not represent the prediction accuracy of the model 

properly. Hence, we choose to use a modified LOOCV method, with which corner points (4D 
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input space gives 24 = 16 points) in the Latin hypercube from the DOE are used solely for model 

building and not accounted in error estimation. 

We present an analysis of the accuracy of the metamodel by obtaining error estimates and 

validating points on the Pareto frontier which marks the upper-bound of the mechanical properties. 

We observe a good correlation between the modulus and toughness predicted by the metamodel 

and CG-MD simulations (Figure 4.2.5-1). We find that the LOOCV error percentage obtained 

from the metamodel (see Table 4.2.3-1) is 10.46% and 15.26% for Young’s modulus and 

toughness, respectively. These error percentages are reasonably small as they are generally within 

the standard deviations of property measurements from experiments or MD simulations116, 209, 219. 

This error analysis is necessary to validate the metamodel’s ability to capture the input-output 

relationships based on CG-MD data and also to assure that the prediction of nanocomposite 

properties within the design bounds are accurate. Relative to CG-MD, the metamodel greatly 

expedites evaluating outputs for given a set of input parameters, without substantial loss in 

accuracy. Based on benchmark calculations, we estimate that generating a data point via the 

metamodel as opposed to CG-MD is about 3 to 4 orders of magnitude faster computationally, and 

6 to 7 orders of magnitude faster than an all-atom MD simulation of an equivalent system. Using 

this metamodeling approach, systems with a higher number of design parameters can also be 

investigated. This would require a much larger design of experiments, i.e., more simulations to 

train the metamodel. However, for such systems, dimension reduction techniques such as statistical 

sensitivity analysis (see section 4.2.6) can be used to screen out unimportant factors and reduce 

the total number parameters. Bostanabad et al225, have shown that the Gaussian process metamodel 

can be efficiently used for problems with dimensionality of up to 15. Since the metamodel consists 
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mainly of mathematical equations with parameters estimated based on the simulations, the 

dramatic speedup for analyzing such systems will be similar to what is observed here. 

 
 
Figure 4.2.5-1: Comparison of metamodel and CG-MD simulations. a) Young’s Modulus and 

b) Toughness, showing good agreement between metamodel and CG simulations. 

Figure 4.2.5-2a shows the Pareto frontier marked as red curve and as a further validation 

of our metamodel, we check the accuracy of the predicted Pareto frontier at seven random points 

on the curve. Input parameters corresponding to these points are summarized in Table 4.2.5-1. 

These points are chosen such that they cover the wide range of the Pareto curve (purple squares in 

Figure 4.2.5-2b). We note that these new runs are not used in constructing the metamodel and can 

thus independently serve as validation points. Figure 4.2.5-2c and d compare the modulus and the 

toughness values obtained from the metamodel and CG-MD simulations on the Pareto frontier. 

The metamodel also gives a mean square error for each prediction, which is used to compute the 

confidence interval. The CG-MD results are largely consistent with the metamodel prediction. The 

trend of decreasing modulus and increasing toughness as we parse the curve left to right is well 

captured by the metamodel. Impressively, considering the error in both simulations and 
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metamodel, all of the points obtained seem to be in agreement and within the confidence intervals. 

We note that CG-MD has some variation in the results especially for predicting toughness in cases 

where large strains due to necking are observed. Incorporating data from multiple CG-MD 

simulations to build the metamodel will improve the confidence interval prediction. Despite having 

a highly nonlinear trend in the input-output relationship (Figure 4.2.5-3), the metamodel 

predictions are quite robust. Hence, it is computationally efficient to use the metamodel for further 

analysis. 

Table 4.2.5-1: Seven random input points chosen from the Pareto curve for validation of the 

metamodel prediction. 

Sample 
No 

Chain 
Length 

(repeat units) 

Grafting Density 
(% of surface beads 

grafted) 

Polymer-NP 
interaction 
(kcal/mol) 

NP edge 
length (Å) 

1 10 5 2.21 20 

2 42 5 0.40 10 

3 61 5 2.56 25 

4 89 11 3.38 30 

5 99 11 0.94 30 

6 100 8 3.90 30 

7 100 6 3.72 30 
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Figure 4.2.5-2: CG-MD Validation of Parteo  frontier. (a) Pareto frontier obtained by sampling 

one million input parameters over the entire design space, (b) 100 initial CG-MD designs (blue 

dots) are used to build the metamodel. Using the metamodel, a Pareto frontier (red curve) is 

obtained. Seven random points from the Pareto curve are chosen (purple squares) and tested by 

running CG-MD simulations (green diamonds). Comparison of (c) Young’s modulus and (d) 

toughness obtained from the metamodel and CG-MD simulations. The error bars represent a 95% 

confidence interval. 
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Figure 4.2.5-3: Response surface between output and most influential inputs. Response 

surface for (a) Young’s modulus and (b) toughness with respect to two most influential parameters, 

chain length and grafting density that depicts the non-linearity in the input-output relationship. 

Contour maps for (c) Young’s modulus and (d) toughness. 

4.2.6 Variance-based Statistical Sensitivity Analysis 

Statistical Sensitivity Analysis (SSA) refers here to the computation of Sobol indices, i.e., 

main sensitivity index (MSI), interaction sensitivity index (ISI), and total sensitivity index (TSI)) 

of a model, to help understand how the variation of the model responses are decomposed with 
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respect to the input variables and their interactions228. Note that for the metamodel, , the 

total variance of a model output can be decomposed as 

                 (4.2.6-1) 

where 𝑉m is the variance induced by varying the input factor 𝑥m, while 𝑉m,Õ..Â is the variance from 

the interaction among the factors 𝑥m, 𝑥Õ, .. 𝑥Â. Then the MSI (denoted by Si) of an input xi can be 

calculated with 

 		 	 	 	 	 	 	 	 	 	 														(4.2.6-2) 

Its TSI will be 

 			 	 	 														(4.2.6-3) 

where 𝑖 is the sign for “all but excluding variable 𝑖”. The variances are estimated via Monte 

Carlo integration.229 SSA can be used for different scenarios, such as factor ranking (identification 

of important factors), dimension reduction (identification of unimportant factors), and model 

behavior analysis (identification of nonlinear or interaction effects)228. In this study, the SSA 

results are used for interpreting the model and determine which input parameters govern the 

mechanical response or conversely have a negligible effect on the properties calculated. 

The statistical sensitivity analysis can be further utilized to corroborate these overall 

observations of the effects of input parameters on the mechanical properties. The sensitivity 

indices measure the relative importance of each input parameter on the mechanical properties of 
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the nanocomposite (summarized in Table 4.2.6-1). For both modulus and toughness, the total 

sensitivity index (TSI) for 𝑁 is 0.702 and 0.670, respectively and for 𝜎, it is 0.798 and 0.603, 

respectively. These values are much higher than 𝜀ÞZÞ (0.006 and 0.019) and 𝑙ZÞ (0.032 and 0.106). 

This implies that a small change in either 𝑁 or 𝜎 has a greater impact on the stiffness and toughness 

of the nanocomposite as compared to 𝜀ÞZÞ or 𝑙ZÞ. The choice of 𝑁 and 𝜎 can significantly limit 

the stiffness and toughness to a narrow range whereas the output space can be explored without 

any dependence on 𝜀ÞZÞ or 𝑙ZÞ (Figure 4.2.6-1 and Figure 4.2.6-2). Another important 

observation is that the interaction sensitivity indices (ISI) are higher than the main sensitivity 

indices (MSI), which suggests that varying just one input has a lesser influence on the output as 

compared to combined change in two or more inputs. 

Table 4.2.6-1: Summary of the main, interaction and total sensitivity indices obtained from the 

statistical sensitivity analysis of the metamodel. 

Modulus Chain 
length, 𝑵 

Grafting 
density, 𝝈 

Polymer-NP interaction 
strength, 𝜺𝒑𝒏𝒑 

NP edge 
length,	𝒍𝒏𝒑 

MSI 0.179 0.262 0.006 0.021 

ISI 0.523 0.537 0.000 0.011 
TSI 0.702 0.798 0.006 0.032 

 

Toughness Chain 
length, 𝑵 

Grafting 
density, 𝝈 

Polymer-NP interaction 
strength, 𝜺𝒑𝒏𝒑 

NP edge 
length,	𝒍𝒏𝒑 

MSI 0.293 0.214 0.011 0.097 

ISI 0.377 0.389 0.008 0.010 
TSI 0.670 0.603 0.019 0.106 
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Figure 4.2.6-1: Variation of Young’s modulus of the nanocomposite with respect input 

parameters. (a) chain length of polymer (𝑁), (b) grafting density (𝜎), (c) interaction parameter 

between NP and polymer, (𝜀ÞZÞ) and (d) NP edge length (𝑙ZÞ). 
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Figure 4.2.6-2: Variation of toughness of the nanocomposite with respect to inputs 

parameters. (a) chain length of polymer (𝑁), (b) grafting density (𝜎), (c) interaction parameter 

between NP and polymer, (𝜀ÞZÞ) and (d) NP edge length (𝑙ZÞ). 

4.3 Mechanical property optimization 

Having validated the robustness and predictive ability of the metamodel, we proceed to 

evaluate the effect of each of the input parameters on properties of the nanocomposite. Figure 

4.3-1a-d shows the Young’s modulus vs. toughness relationship generated from the metamodel, 

where in each panel the color indicates the value of the represented input parameter – chain length 

𝑁, grafting density 𝜎, polymer-NP interaction strength 𝜀ÞZÞ (with the unit of kcal/mol) and NP 
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edge length 𝑙ZÞ. We first evaluate the influence of 𝑁 on the mechanical properties of the 

nanocomposite. Since the chain lengths explored here are below the entanglement length29, 230, 231, 

the main toughening mechanism is the sliding and collective interactions between polymer chains 

arising from different nanoparticles. Figure 4.3-1a shows that the toughness of the nanocomposite 

increases with 𝑁 (as marked by the change from blue to yellow). The enhancement in toughness 

with 𝑁 can be mainly attributed to the increase in effective cohesive interactions between 

nanoparticles with longer grafted chains that enable better overlap across brushes. However, to 

obtain higher stiffness, the loading ratio of nanoparticle has to be high, which can be achieved at 

lower values of	𝑁. The inset in the Figure 4.3-1a shows the distribution of 𝑁 for points that lie on 

the Pareto curve. As expected, the peaks are dominated at relatively low and high chain lengths, 

corresponding to high modulus and high toughness, respectively. 
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Figure 4.3-1: Young’s modulus vs toughness Ashby plot with respect to input parameters. 

Young’s modulus vs. toughness for the NP-polymer nanocomposite colored by (a) chain length of 

polymer N, (b) grafting density σ, (c) polymer-NP interaction strength 𝜀ÞZÞ and (d) NP edge length 

𝑙ZÞ. The insets show the distribution of each parameter that lie on the Pareto curve. 

Next, we examine the effects of grafting density, 𝜎. The grafting density of the polymers 

on the NP strongly affects the polymer chain conformations and thus it has a major impact on the 

mechanical properties of the nanocomposite. Our analysis reveals that both the modulus and 

toughness of the nanocomposites degrade rapidly as 𝜎 is increased beyond ~ 10%. This is most 

evident near the elbow region of the curve in Figure 4.3-1b, where a shift from blue to yellow, 
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that is, towards higher 𝜎, yields points that are far from the Pareto frontier. When 𝜎 is increased, 

a critical transition occurs, where polymer chains undergo a conformational change from a semi-

dilute polymer brush regime (SDPB) to concentrated polymer brush regime (CPB)232. The 

monomers near the surface of the NP stretch radially outwards further due to high steric repulsion 

in this regime. In sections that are radially further away from the NP, the monomers become more 

coiled as they have more free volume available. 

As shown in Figure 4.3-1c, the choice 𝜀ÞZÞ at lower weight % of NP (i.e., correspondingly 

a high content of polymers) has a low influence on the mechanical properties as it is mainly 

dominated by the polymer-polymer interactions. However, at a higher weight % of NP, 𝑁 is 

relatively small and 𝜎 is also low, as evident from Figure 4.3-1a and b, respectively. Hence, it is 

more beneficial to have a weaker interfacial interaction between the polymer and NP as it reduces 

the attraction to NP and allowing the polymer chains to become more extended and interact with 

chains from nearby NPs effectively. This leads to a slight enhancement in toughness of the 

nanocomposite pushing it towards the Pareto frontier. Therefore, we see a larger proportion of 

relatively lower values of 𝜀ÞZÞ in the high modulus region the Pareto curve. In summary, the 

relatively flat distribution (inset in Figure 4.3-1c) suggests that 𝜀ÞZÞ is not an important parameter 

practically speaking, although it is preferential to have a lower interaction energy between the 

grafted polymer chains and the nanoparticle for higher loading of NP. 

Next, we summarize findings on the effect of NP cross-sectional dimension as determined 

by the edge length. At a given 𝑁, 𝜎 and weight % of NP, a larger 𝑙ZÞ yields a higher number of 

grafting sites as the NP will have more surface area. As illustrated above, the toughness is 

dependent on the cohesive interaction energy between polymer chains, which increases with the 
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number of grafts. Thus, as seen from Figure 4.3-1d, in the high toughness region, the optimal 

properties are achieved for larger NPs. Since 𝑁 and 𝜎 are small in the high modulus region (as 

discussed above), NPs with larger 𝑙ZÞ tend to have graft distances that are greater than radius of 

gyration of the polymer chain leading to mushroom like configuration. This in turn degrades the 

mechanical properties and hence, smaller 𝑙ZÞ (blue region in Figure 4.3-1d) are required to reach 

the Pareto curve. Similar to the effect of chain length, the peaks of the distribution of NP edge 

lengths on the Pareto curve are dominated at smaller and larger 𝑙ZÞ, corresponding to high modulus 

and high toughness regions, respectively. 

A more illustrative way to represent our findings is shown in Figure 4.3-2, where we break 

down the range of the mechanical properties that can be achieved at different weight percentages 

of the NP. We further color the cases by determining whether they are expected to be above or 

below the critical chain length,  that is, in SDPB vs. CPB regime. The concept of  is 

explained in the Chapter 5:. The weight % of NP in the system can be altered by varying 𝑁, 𝜎 and 

𝑙ZÞ simultaneously. For a low weight % (10-25%) (Figure 4.3-2a), the predicted properties are 

well below the Pareto curve, as there is not enough NPs to provide substantial stiffness. At least 

60% weight of NP (Figure 4.3-2d, e) is required to achieve enough reinforcement to reach the 

Pareto frontier. As the weight percentage is increased to be around 90% (Figure 4.3-2f), due to 

the low polymer content, the toughness of the system does not exceed 200 MPa. Hence, the ideal 

range to combine both stiffness and toughness appears to be around 60-90% NP by weight. The 

figure also reveals that the chain lengths must be above the , which is calculated from the 

scaling, to reach the Pareto frontier. Specifically, all the points on the Pareto frontier have to be 

above Ncr. As a comparison, the amount of nanofillers used in traditional polymer nanocomposites 

crN crN

crN
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usually lies in the range of 1-10%233, which is much lower than the ideal range identified from our 

modeling. However, since there are no ungrafted free chains in the simulated assemblies, the 

nanofiller content can be much higher than that of those commonly ungrafted polymer 

nanocomposites. Schmitt et al. have shown that up to ~ 85 weight % of grafted SiO2 nanoparticles 

can be achieved experimentally30. Given that high aspect ratio nanocellulose particles with varying 

dimensions and surface functionalities can be obtained sustainably from a variety of sources204, 207, 

achieving the high weight percentage of CNCs as proposed here should be viable for designing 

future CNC based aHNPs.	 
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Figure 4.3-2: Young’s modulus vs. stiffness of the nanocomposite for different weight 

percentages of NP. The blue shaded region in each figure shows the properties that can be 

achieved with a given weight %, while the red curve is the Pareto frontier for the overall material 

system 
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Experimentally, the mechanical properties of hairy nanoparticle assemblies have been 

studied using nanoindentation techniques where the toughness is quantified by the critical stress 

intensity factor29, 30, 234, 235. However, there are number of studies that have characterized the work 

to fracture (area under stress strain curve) of matrix dispersed CNC nanocomposites which would 

be useful to provide additional context with respect to our toughness values. Dong et al.236 found 

the toughness of PMMA/CNF nanocomposite films to be around 1-4 MPa. Coulibaly et al.237 

reported the toughness of nanocomposite based on CNC and a metallosupramolecular polymer to 

be around 40-70 MPa. CNC polyurethane nanocomposite has a toughness ranging from 33-80 

MPa238. A blend of polylactic acid and polyurethane reinforced with CNC gave a toughness of 

around 400 MPa239. Compared to these experimental values, the toughness range of 5-1000 MPa 

obtained from our simulations, although higher, are still reasonable considering the large strains 

attainable in small systems.	
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4.4 Conclusion 

In this study, we have established a CG-MD based modeling framework combined with 

metamodels for predicting the optimal design parameters for assembled hairy nanoparticle systems 

using the CNC−PMMA nanocomposite as a model system. Rather than conducting a 

computationally expensive parameter sweep through extensive MD simulations or solving an 

equally complex optimization problem, we utilize a design of experiments to develop 

comprehensive and robust metamodels to explore the mechanical properties of the nanocomposite. 

Specifically, we employ the metamodels to carry out a multiobjective optimization and obtain the 

Pareto frontier that marks the maximum performance achievable with this particular material 

system and the defined design space. This bottom-up materials-by-design approach allows us to 

efficiently evaluate the effects of various design parameters, i.e., chain length, grafting density, 

polymer−NP interaction strength, and the NP edge length, on the mechanical behavior of the 

system. Our results indicate that the chain length and grafting density are the primary factors that 

influence the modulus and toughness of the model nanocomposite. The complex dependence of 

these parameters on the polymer configurations leads to a vast range of mechanical properties at a 

given NP weight percent. Our metamodel prediction suggests that at least 60% NPs by weight is 

required to achieve the optimal nanocomposite designs defined by the Pareto frontier. 

Furthermore, the chain length and grafting density have to be fine-tuned to yield systems where 

the polymer chains are in the SDBP regime to achieve a combination of high stiffness and 

toughness. In fact, we find that it is not possible to reach the Pareto frontier without ensuring that 

the polymers attain molecular weights in this regime.  
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Our metamodeling approach, in conjunction with CG-MD simulation, provides important 

guidelines toward designing assembled polymer-grafted nanoparticle composites to achieve 

optimal mechanical properties. Looking forward, this metamodeling approach will help to 

accelerate the materials-by-design process and inspire future studies in advancing mechanical 

performance of composites and other relevant structural materials. We envision that CG-MD 

informed metamodeling could be highly useful in the future to assess the role of polymer chemistry 

such as pendant group effects of methacrylate or styrene124, 219 on the mechanical properties 

systematically and reveal key insights into the molecular design of the systems. We also believe 

that while being more computationally intensive, CG-MD and metamodel-based investigations of 

the axial properties of high-aspect-ratio CNC nanocomposites would be valuable, such as those 

obtained from tunicates. The higher axial modulus in CNCs and greater sliding resistance enabled 

by hairs may allow such systems to attain interesting strength−toughness relations that may make 

these materials appealing compared to conventionally engineered materials used in mechanical 

design.  
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Chapter 5: Scaling laws to predict polymer conformation 

In the previous chapter we looked at the mechanical property optimization of aHNPs. 

Interestingly, we observed that increasing grafting density degraded the properties. This 

necessitated further investigation which led to the study of polymer conformations in these aHNPs. 

This chapter focuses on developing theoretical scaling laws that govern the polymer conformations 

in aHNPs. Specifically, we derive an equation for critical chain length, the transition length where 

the conformation changes from a concentrated polymer brush (CPB) regime to semi dilute polymer 

brush (SDPB) regime. Furthermore, by simulating different chemistry, chain length and grafting 

density, we demonstrate the universality of these chain conformations. These laws can help to 

predict properties such as nanoparticle spacing in these nanocomposites. Portions of the text and 

figures within chapter are reprinted or adapted with permission from Hansoge et al. ACS Nano 

2018192 and Hansoge et al. ACS Macro Letters 2019240. 

5.1 Introduction 

The structure and conformation of polymer in a nanocomposite greatly affects the 

mechanical241, rheological242, 243, tribological244, optical245, 246, and electrical247 properties of the 

materials. The conformational change in polymer structure also leads to enhancement in 

mechanical properties. The fracture toughness of aHNPs increases substantially beyond a certain 

degree of polymerization, specifically when the polymer conformations transition from a CPB to 

SDPB29, 30. Theoretical solutions regarding the polymer chain structure in aHNPs have also been 

developed to identify the transition from CPB to SDPB40, 248. Although these prior studies provide 

an understanding of the molecular mechanisms underpinning the chain conformations on 

nanoparticle surfaces, they have mainly focused on a few specific homopolymers, typically 
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polystyrene, and spherical nanoparticles such as gold or silica. A comparative analysis geared 

towards understanding the effect of different polymer chemistries on the confined conformations 

of anisotropic hairy nanoparticle assemblies, specifically on the CPB to SDPB transition, has not 

yet been carried out. It is anticipated that since polymer rigidity, side-group size, cohesive 

interactions and free volume all influence the properties of glass-forming polymers, understanding 

the role of these distinguishing features on polymer conformations in aHNPs is crucial. 

5.2 Simulation setup 

To analyze the conformational behavior of polymers in aHNPs, we take cellulose 

nanocrystal (CNC), an anisotropic nanoparticle grafted to four common polymers with distinct 

chemical groups and segmental structures, i.e., poly (methyl methacrylate) (PMMA), polystyrene 

(PS), polycarbonate (PC) and polybutadiene (PB). These polymers are chosen such that a wide 

range of properties can be examined in a single study, spanning large ranges in fragility, glass 

transition temperature and chemistry. Furthermore, we investigate the role of backbone rigidity 

and side-group size on the conformational behavior of these different polymers when grafted to a 

nanoparticle. The coarse-graining strategy for the CNC is identical to the one used in Chapter 4:. 

The CG models for the polymers are derived based on the all-atomistic model using the 

thermomechanicallly consistent energy renormalization coarse-graining approach116, 123. The 

system setup and the equilibration protocol is similar to what was described in Chapter 4:. The CG 

scheme and a schematic of the system is shown in Figure 5.2-1. Five different grafting densities 

are chosen for each system, 10% to 30% with an increment of 5%, where the grafting density is 

defined as the percentage of surface beads that are grafted to the polymer. The volume fraction of 

nanocrystals in these systems ranges around 1-10% as our central focus in this study is polymer 
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chain conformations and specifically the CPB-SDPB transition, which requires relatively high 

molecular weight systems and consequently low volume fraction of nanocrystals. 

 

Figure 5.2-1: CG mapping scheme for PMMA, PS, PC and PB. Four different grafted polymers 

are considered in this study, i.e., poly(methyl methacrylate) (PMMA), polystyrene (PS), 

polycarbonate (PC) and polybutadiene (PB). The coarse-graining schemes are one bead per 

monomer for PB, two bead per monomer for PS and PMMA (one each for backbone and side-

group) and four bead per monomer for PC (two for phenylene, one each for isopropylidene and 

carbonate groups). 

5.3 Critical chain length, Ncr 

In a typical polymer melt, the radius of gyration scales as 0.5~gR N , where N is the number 

of monomers, which can be described by a random walk model15. However, when the polymer 

chain is grafted to a nanoparticle, its conformational behavior changes. In our study, the polymer 

Poly(methyl methacrylate)
(PMMA)

Polystyrene
(PS)

Polycarbonate
(PC)

Polybutadiene
(PB)
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chains are grafted to an anisotropic cylindrical nanoparticle and we looked at the conformational 

behavior of one of the systems, CNC grafted PMMA system. We note that the length of polymer 

chains is much longer than the cross-sectional dimensions of nanoparticle, and that the aspect ratio 

of the CNC NPs are high due to the periodic boundary conditions. In this scenario, the NP can be 

approximated as a cylinder. The scaling analysis shown in Figure 5.3-1a reveals that the polymer 

chains adopt a slightly extended conformation in the radial direction (^ to NP surface) as 

0.6~gR N^  due to the excluded volume, which is different from the melt-like conformation in the 

axial direction (|| to surface) where 0.5~gR N! . 
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Figure 5.3-1: Scaling relationships between monomer position and distance from 

nanoparticle. (a) Scaling of radius of gyration in radial ( gR
^ ) and axial ( gR

! ) directions with chain 

length. (b) Scaling relationship in CPB ( ~R N ) and SDPB ( 0.5~R N ) regimes.  is distance of 

ith monomer from the nanoparticle surface and iN  is the monomer position index in the polymer 

chain. The dotted line shows the transition point from CPB to SDPB. (c) Snapshots of 

configurations of the hairy nanoparticle showing the onset of SDPB regime (red) from CPB regime 

(blue) with grafting density. All grafting densities are in the units of chains/nm2. 

Examining average conformations of polymer chains in all CG-MD simulations, we look 

at how local properties of the chains vary near and away from the NPs. In the vicinity of the NP 

surface, it is observed that the polymer chains are in the CPB regime and gradually relax into the 

SDPB regime at larger radial distances from the surface. We find that in the CPB regime, the radial 

distance of polymer chains scales as ~R N  and there is a continuous transition to 0.5~R N  in the 

SDPB regime, which is close to that of the melt state15 as shown by the three representative systems 

in Figure 5.3-1b. These findings can be corroborated by theoretical scaling arguments that could 

be used to determine the dependence of the transition on features such as NP radius and grafting 

density. An extension of theoretical Daoud-Cotton (DC) model37 was proposed by Ohno et. al.,63 

where they treated a star polymer as a system consisting of chains grafted onto a spherical 

nanoparticle. Considering a case where f  polymer chains are grafted to unit surface area of a 

cylindrical NP with a radius , the analytical scaling relation between the critical number of 

segments ( ) marking the onset of SDPB regime, and nanoparticle size and the grafting density 

can be derived37. Based on this model, crossover radius cr  is given by 

iR

0r

crN
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1/2 *1/2
0 0cr br s=               (5.3-1) 

where b is a constant which includes the proportionality term to convert the scaling relationship to 

an empirical relation and the excluded volume parameter defined in the DC model37.  is the 

dimensionless grafting density given by , where ml 	 is the contour length of the 

monomer (about 2.75 Å estimated for our CG model). We obtain the crossover radius from each 

of our simulations by plotting the average radial distance of each monomer in the chain against its 

position index in the chain (representation in Figure 5.3-1b). The constant 𝑏 is evaluated from the 

slope of  vs. 1/2 *1/2
0 0r s . The b value of 31.64 Å1/2 fits our data well (Figure 5.3-2). 

 

Figure 5.3-2: Plots to obtain a and b parameters. (a) Straight line plot of cr  vs. 0
1/2 *

0r s
1/2

. (b) 

Straight line plot of 
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r
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When the monomer segments are in the CPB regime, the brush layer height (h) is obtained 

from the following equation63, 

*
0s

*
0 0/ 2mfl rs p=

cr
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                    (5.3-2) 

where  is the proportionality constant obtained by fitting the above equation to CG-MD data 

(Figure 5.3-2), and *c cr mL N l=  is the length of the graft chain in CPB regime, i.e., the contour 

length. The  value of 2.92 is obtained from the best fits of our data. Combining Eq. 5.3-1 and 

5.3-2 and given the condition that 0 cr h r+ = ,  

0

2/3
*

1/2 *0
0 0 0

0

3 1 1
2
cr maN lr r br
r
s s

1/2
1/2

ì üé ùï ï+ + - =ê úí ý
ê úï ïë ûî þ

        (5.3-3) 

Simplifying Eq. 5.3-3, we obtain an expression for crN , 

                    (5.3-4) 

This analytical expression for , with empirical parameters (a, b) estimated from CG-

MD can be used to determine, for a given nanoparticle radius and grafting density, the minimum 

molecular weight of the grafted polymer that ensures that chain segments crossover to the SDPB 

regime. Figure 5.3-1c illustrates molecular configurations that show the increase in  as 𝜎 

increases. Since the chain segments in the SDPB regime are relaxed and can intermingle with chain 

segments arising from other nanoparticles, the mechanical properties of the assembly, especially 

the toughness, can be enhanced by having a greater number of polymer segments in the SDPB 

regime. Having a lower 𝜎 leads to an early onset of the SDPB regime, which is preferred for the 

chains to self-interact and thus achieve the optimal properties. Equating Ncr to zero will ensure all 

the polymer segments are in the SDPB regime. This yields a critical value of the grafting density, 
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i.e., 𝜎?∗ =
#i
X�

, below which all the polymer segments can effectively contribute to the enhancement 

of toughness. While it is plausible that having very low σ and N may lead to mushroom 

configuration of polymer chains, these systems correspond to high weight % of NP. For such 

systems, the polymer chains help in formation of these nanostructured assembles rather than 

influencing the mechanical properties. Thus, we believe having extremely low grafting density 

may not necessarily be undesirable to achieve high stiffness comparing to pure CNC systems. 

A similar behavior has also been experimentally observed by Bockstaller et al.14, where 

toughness increased at lower 𝜎. This observation was attributed to the chain conformational 

change from CPB to SDPB, for which the critical transition was determined from a simplified 

application of DC model where the grafting density dependence on the brush height was not 

considered. Since, it is challenging to observe molecular level details from experiments, the critical 

radius and chain length obtained from experimental studies are approximate. However, from our 

simulations, we can precisely obtain the transition point as illustrated in in Figure 5.3-1b by 

evaluating each monomer’s radial position along the length of the polymer chain to determine 

where the linear scaling of CPB ends. Thus, the empirical constants obtained from the simulations 

are expected to be more precise relative to the experiments. Our analysis extends the experimental 

observations on spherical NPs to the cylindrical case and provides the first molecular level 

simulation evidence that connects polymer configurations to mechanical properties in aHNPs.  

We further quantify the conformational behavior associated with the toughness of the 

nanocomposite by calculating the inter-NP cohesive energy. This is measured by computing the 

pairwise interaction energy  between the polymer chains arising from different NPs, 

normalized by the number of polymer beads arising from a single NP. The value of  gives an 

ppg

ppg
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estimate of the normalized cohesive interactions between the polymer chains connecting two NPs, 

which is directly related to the work that must be carried out to fully separate the NPs, and thus 

the toughness of the system. At very high grafting density, it is evident that the lack of free volume 

makes it difficult for polymers grafted from different nanoparticles to interact with each other. 

This reduces the  and thus the toughness of the system (Figure 5.3-3). This concept can be 

visualized directly from the molecular structure, as depicted in Figure 5.3-4. 

 

Figure 5.3-3: Relation between 𝜸𝒑𝒑 and toughness. Relation between toughness and inter-NP 

cohesive energy, which is computed from the pairwise interaction energy per atom 𝛾ÞÞ .. 

 

ppg
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Figure 5.3-4: Schematic of intermingling of polymer chains at various grafting densities. The 

schematic shows the pairwise interaction energy  between polymer chains as the grafting density 

is increased from 0.38 to 2.25 (a-d). Each color represents the polymer chains tether to a different 

nanoparticle. All grafting densities are in the units of chains/nm2. 

In order to ensure that choosing a representative volume element (RVE) of four particles 

does not bias our results, we validated our findings by simulating an RVE consisting of 4 and 64 

particles. Figure 5.3-5 shows that there virtually no difference in the average chain conformations 

in the two systems. The inset in Figure 5.3-5 shows the schematic of the setup for each system. 

 
Figure 5.3-5: Size effect on chain conformations. Plot of 𝑅m vs 𝑁m showing virtually no difference 

in chain conformations in the two systems consisting of 4 and 64 particles. The insets show the 

equilibrated data structures of the two systems. 

5.4 Ncr for other polymers 

Ncr is an important design parameter for aHNPs as we have showed that the degree of 

polymerization needs to be greater than the Ncr to obtain optimal mechanical properties240. In the 

previous section we derived the equation for Ncr using CNC grafted PMMA system. We extend 

this analysis to three other polymers as well (PS, PC and PB). The system setup and equilibration 

protocols are same as mentioned above. A comparison of Ncr values for the highest grafting case 
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(30%) is shown in Figure 5.4-1, which reveals that PS has the largest value of Ncr among all the 

polymers studied. It also indicates that semi flexible polymers with more prominent side groups, 

such as PS and PMMA, have a higher Ncr in linear polymers. On the other hand, flexible rubbery 

polymers such as PB have a low Ncr. 

 

Figure 5.4-1: Scaling of monomer position index with respect to distance from nanoparticle 

for various polymers. a) Plot of distance of monomer from the nanoparticle surface versus 

monomer position index. 𝑅m is distance of ith monomer (𝑁m) from the nanoparticle surface. The 

linear solid line shows the scaling relationship in CPB ( ~R N ) regime and the dotted line shows 

the transition point from CPB to SDPB 0.5~R N , identified as critical chain length, Ncr. The inset 

shows the equation of Ncr. b) Bar plot showing the comparison of Ncr for the different polymers at 

30% grafting density. 

Eq. 5.3-4 has two polymer specific constants, i.e., a and b, which can be obtained by 

making a linear fit to Eq. 5.3-2 & 5.3-3 which are shown in Figure 5.4-2a and b. aHNPs with five 

different grafting densities are simulated to extract the brush height, h, and crossover radius, rc. 

The a and b values for PS and PMMA are very close with PS having slightly higher values. PC 

(a) (b)
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has the smallest a value whereas PB has the smallest b value. The constant a affects the height of 

the polymer brush which is expected to be larger for polymer with a stiffer backbone or larger 

monomer length, lm, for a given grafting density. Since Eq. 5.3-4 already includes lm, it indicates 

that the backbone stiffness is the key factor governing this constant. Persistence length is used as 

the metric to quantify the backbone stiffness, which is obtained from the decay of cosine of angle 

between a vector that is tangent to the polymer at position 0 and a tangent vector at a distance l 

away from position zero. By fitting the equation, < 𝑐𝑜𝑠𝜃 >	= 	 𝑒
h( ééê

)
,249 we can obtain the 

persistence length of the polymer chain, 𝑙Þ. It is expected that the value of a will correlate with the 

𝑙Þ of the polymer. Based on the DC theory,46 b incorporates the excluded volume parameter, which 

can be obtained from the peak of radial distribution function (RDF) of monomer units, 𝜎"YR. Thus, 

it is expected that the b value will scale with the 𝜎"YR, or equivalently the bulkiness of the 

monomer. In order to obtain 𝑙Þ and 𝜎"YR, we generated bulk polymer systems with no 

nanoparticles. Figure 5.4-2c shows the decay of 𝑐𝑜𝑠𝜃 along the length for these pure polymer 

melts from which we evaluated 𝑙Þ. We then analyzed the RDF of monomer units which is shown 

in Figure 5.4-2d to obtain 𝜎"YR. Table 5.4-1 summarizes the material parameters a and b, 𝑙R, 𝑙Þ 

and 𝜎"YR for different polymer grafted aHNPs. The measurement uncertainty shows the 95% 

confidence interval of the values obtained by fitting. The 𝑙R values have very low uncertainty (less 

than 0.01%) and hence their error is not reported.  
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Figure 5.4-2: Obtaining parameters a and b for various polymers. (a) The slope of 

3#i
N

1 + �
#i

ë
� − 1  vs 𝐿"𝜎?∗

L/3 gives the value of a for the polymer.  (b) The slope of 𝑟" vs 

𝑟?
L/3𝜎?∗

L/3 gives the value of b for the polymer. (c) Decay of angle between consecutive bonds 

along the backbone of the polymer chain. d) RDF plots of monomer units for different polymers. 

Table 5.4-1: Material parameters and polymer characteristics for different aHNPs. 

Polymer 𝒍𝒎 a b 𝒍𝒑 (Å) 𝝈𝒄𝒐𝒎 (Å) 

PS 2.57 1.99 ± 0.34  35.34 ± 11.11 9.19 ± 1.51 7.12 ± 0.30 

PMMA 2.71 1.74 ± 0.17 32.66 ± 8.58 11.40 ± 2.13 6.98 ± 0.06 

PC 12.92 0.30 ± 0.04 17.15 ± 2.72 15.63 ± 5.12 6.52 ± 0.21 

PB 4.48 0.49 ± 0.07 11.98 ± 2.58 14.21 ± 2.61 5.02 ± 0.17 

(a) (b)

(c) (d)
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Having related the physical design parameters to a and b, the next step is to get in-depth 

insight into the effect of these material parameters on Ncr. We carried out a systematic study of the 

effect of 𝑙Þ and 𝜎"YRon 𝑁"#. It is convenient to use our CG models for this work because we can 

vary 𝑙Þ or 𝜎"YRby changing only a single force field parameter. To understand the influence of 𝑙Þ, 

the backbone rigidity of a modified PB model is varied by changing the strength of angle 

coefficient, which results in model polymers with 𝑙Þ	ranging from 10 Å to 70 Å. PB is chosen as 

the model polymer for the systematic analysis of effect of persistence length, 𝑙Þ, as the CG scheme 

of 1 bead per monomer allows us to vary only one angle between the beads to obtain the desired 

range of 𝑙Þ. One caveat in this analysis is that the original PB model has an equilibrium angle of 

1200, where stiffening the angle term would give rise to strongly coiled polymeric chains. 

Therefore, in order to effectively change 𝑙Þ, we modified the equilibrium angle of the PB model 

to be 1800. The rest of the parameters are the same as the original PB model122. Figure 5.4-4a 

shows the polymer conformations for the extreme cases of 𝑙Þ. As seen from Figure 5.4-4b, 𝑁"# 

changes dramatically by varying 𝑙Þ, with stiffer polymers having a higher 𝑁"# for the same grafting 

density. A greater number of monomer segments is required for a polymer with a stiffer backbone 

to transition to SDPB regime, despite the lack of steric hindrance away from the nanoparticle 

surface. This causes the transition point between CPB to SDPB to shift further away from the 

nanoparticle surface, thus increasing 𝑁"#. 

Next, we look at the effect of 𝜎"YR on Ncr. In order to change 𝜎"YR, we varied the side-

group van der Waals radius in the PMMA CG model by varying the LJ 𝜎 value for the side-group 

interactions only, 𝜎sg, from 2 Å to 6 Å. The CG scheme of two bead per monomer for PMMA 

allows us to conveniently vary 𝜎"YR. The parameter b represents the excluded volume of the 
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monomer. If we consider 𝜎"YR as the radius of the monomer, then we would expect b to scale with 

σcom
3. Figure 5.4-3a show this scaling. The density of the polymer will decrease as the side group 

size increases. This is due to the increases in excluded volume generated as a result of larger side 

group. There is linear relationship between the polymer density and the side group size as shown 

in Figure 5.4-3b. 

	 	

Figure 5.4-3: Relation between length scale parameters. (a) Plot of b vs σcom
3. (b) Plot of density 

vs 𝜎sg 

Figure 5.4-4c shows the extreme cases of different 𝜎sg that we studied. It is observed that 

𝑁"# does not vary substantially over the range of 𝜎sg analyzed (Figure 5.4-4d). However, the initial 

slope of 𝑅m vs. 𝑁m , (𝑑𝑅m/𝑑𝑁m) is strongly affected by 𝜎sg for segments in the CPB regime. The slope 

quantifies the extension state of the chain, which increases with the 𝜎sg. The observation that as 

𝜎sg increases, chain segments in the CPB regime become more extended can be argued on the basis 

of steric hindrance due to bulky side groups, which cause confinement and consequently extension 

of the chains. The increase in local chain extension due to bulky side-groups have been observed 

in previous studies of grafted systems40.  However, the number of monomers in the CPB regime 

a b
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remains the same. This is a crucial observation as it illustrates that having bulky side groups does 

not alter Ncr appreciably. 

 

Figure 5.4-4: Scaling of monomer position index with respect to distance from nanoparticle 

as a fucntion of persistence length and side-group size. 𝑅m is distance of the ith monomer from 

the nanoparticle surface and 𝑁m is the monomer position index in the polymer chain. The dotted 

line shows the linear relationship in the CPB regime and the solid line shows the transition point 

from the CPB to the SDPB regime. a) 𝑅m vs 𝑁m plot for the lowest and highest backbone rigidities 

with the inset showing a snapshot of the polymer chain conformations. b) Bar plot showing the 

variation in 𝑁"# with varying 𝑙Þ for 30% grafting density. c) 𝑅m vs 𝑁m plot for the smallest and 
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largest side group sizes with the inset showing a snapshot of the polymer chain conformations. d) 

Bar plot showing the variation in Ncr with changing 𝜎sg for 30% grafting density. 

The distance of each monomer from the nanoparticle surface (Ri) can be used to measure 

the local extension state of the chain, and depends on material parameters a, b, r0, lm and 𝜎∗. We 

evaluated the dependencies of these parameters and normalized the Ri vs Ni plots for 110 distinct 

aHNP models (five grafting densities for each of the four actual polymers, nine different 𝜎sg and 

𝑙Þ). The consistent collapse of the data onto a single curve suggests a universal relation governing 

the polymer chain conformations in these hairy nanoparticle assemblies (shown in Figure 5.4-5). 

When 𝑁m<𝑁"#, the polymer chains are extended in the CPB regime and the distance scales linearly 

with the number of monomers (𝑅~𝑁m). When 𝑁m>𝑁"#, the scaling becomes 𝑅~𝑁m?.× which is same 

as the melt state. In our simulations, we haven’t varied the radius of the nanoparticle, however, in 

order to make the value dimensionless, we multiply the numerator with 𝑟?
L/3. The proportionality 

constant for both the curves is empirically found to be 0.1. Hence, the position of a monomer can 

be obtained by the following equations: 

𝑅m =
?.L�Xa∗�ï

#i
ß/� 	 }k

}ð�
												𝑓𝑜𝑟	𝑁m < 	𝑁"#        (5.4-1) 

𝑅m =
?.L�Xa∗�ï

#i
ß/� 	( }k

}ð�
)?.×								𝑓𝑜𝑟	𝑁m > 	𝑁"#        (5.4-2) 

From this universal equation, we can obtain the position of any monomer along the backbone of 

the polymer chain in aHNPs.    
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Figure 5.4-5: Universal scaling law governing chain conformations. The monomer index Ni is 

normalized with Ncr and the radial distance (Ri) is normalized with material design parameters a, 

b, r0, lm and σ∗, shown for 110 different aHNP systems.  

5.5 Conclusion 

In summary, we have taken advantage of chemistry specific CG models to analyze the role 

of polymer chemistries on the chain conformations in anisotropic hairy nanoparticle assemblies. 

Specifically, we utilized CG-MD simulations to reveal the correlation between the material 

parameters a and b derived based on DC model to physical design parameters, persistence length 

and monomer excluded volume respectively. The analysis of the effect of side group size and 

backbone rigidity on the chain conformations indicates that polymers with stiffer backbones tend 

to have a higher Ncr, whereas the bulkiness of side group does not significantly affect Ncr. Building 

upon these findings, it can be said that aHNPs based on semi flexible glassy polymers (PS and 

PMMA) will require a much higher molecular weight to overcome the Ncr barrier compared to 

𝑵𝒊 = 𝑵𝒄𝒓
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flexible rubbery polymers (PB) in order to have optimal mechanical properties. Moreover, we 

obtained a universal equation predicting the monomer position along the chain of the polymer 

backbone in these aHNPs. This crucial information is useful for determining the equilibrium 

spacing between the nanoparticles in aHNPs, which can be used to evaluate the volume fractions 

and carry out further predictions of mechanical properties based on theoretical relations such as 

rule of mixtures. It can also help us identify systems that have high cohesive interactions and yet 

low Ncr, for instance due to low conjugation density or low confinement effects, thereby improving 

total nanoparticle interaction energies and overall mechanical behavior. High-throughput 

calculation of these influential parameters for a broader library of polymer/nanoparticle 

combinations will be instrumental for accelerating the design of these systems. This study sets the 

stage for it by establishing key molecular details governing the conformational behavior of 

polymers in grafted systems, demonstrating path forward for more rapidly designing aHNPs. 

	  



126	
	

	

Chapter 6: Mesoscale modeling based on potential of mean force 

In Chapter 2:, we briefly discussed about parameterized and derived CG methods. The ER 

approach discussed in Chapter 3: falls under the parametrized CG method. This chapter focuses 

on developing a derived CG method; a mesoscale modeling technique using potential of mean 

force approach. This approach aims at developing an interatomic potential between nanoparticles 

in aHNPs which will eliminate the need to explicitly simulate polymer chains, thus increasing the 

spatiotemporal scale and will help to link interfacial effects of grafting on structure and mobility 

directly to macroscale constitutive relations for nanocomposites. Portions of the text and figures 

within chapter are reprinted or adapted with permission from Hansoge et al. ACS Macromolecules 

2021250. 

6.1 Introduction 

Multiscale modeling techniques such as coarse-grained molecular dynamics (CG-MD) 

simulations have been used to evaluate the self-assembly, mechanical properties and chain 

conformations in aHNPs20, 39, 42, 192, 240, 251, 252. The length and time scales accessible through these 

CG-MD simulations are several tens of nanometers and nanoseconds. While these models are 

adequate to evaluate the dynamics and structural conformation of the polymer chains, the 

movement and structure of the nanoparticles themselves and macroscopic properties, such as 

fracture energy or ballistic penetration energy of thin films, remain out of reach. This necessitates 

the development of a much coarser model that can access micron-size scales without loss of 

chemical specificity. One way to achieve this is to develop an effective pair-wise mesoscopic 

interatomic potential between nanoparticles, eliminating the explicit simulation of the grafted 

polymer chains.  



127	
	

	

There are several studies in literature that have developed effective potentials using integral 

equation theories253-259, umbrella sampling approach203, 260, 261, and self-consistent field theory 

(SCFT)262-264. Polymer Reference Interaction Site Model (PRISM) theory has been used to 

calculate the potential of mean force (PMF) between polymer grafted nanoparticles in a polymeric 

matrix253-255, 265. These studies reveal that at lower grafting densities, the PMF becomes more 

attractive due to decrease in wettability of grafted chains. A similar approach has also been adopted 

by several other researchers to evaluate the PMF between nanoparticles in a polymeric matrix256-

259. Monte-Carlo simulations has been used to formulate a logarithmic repulsive force and an 

exponentially decaying attractive force between star polymers266, 267. Other methods such as the 

umbrella sampling approach203, 260, 261, which is a free energy calculation method that reliably 

computes the PMF, has been used to come up with derivations of effective interactions between 

nanoparticles. These studies have provided timely and significant insights into the nature of these 

effective interactions, but have commonly utilized generic interatomic potentials, such as Lennard-

Jones or FENE, to describe the polymer chains. Since the confined behavior of polymers in grafted 

systems strongly depends on molecular chemical features such as side-group size or polarity, there 

is a critical need to develop a numerical framework for linking the effective interactions between 

nanoparticles to these molecular design parameters. 

 In this work, we address this shortcoming by developing a relation that describes the 

interaction between polymer grafted nanoparticles with respect to the chemistry of the polymer 

chains, the chain length and the grafting density. We simplify the model by investigating polymers 

grafted between two infinite slabs, which is representative of systems where nanoparticles have a 

lamellar ordering, or of spherical nanoparticles large enough that the local curvature is negligible. 
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While most computational studies on polymer grafted nanoparticles involve a spherical 

nanoparticle253, 254, 256, 260, 268, the advent of high aspect ratio nanoparticles such as cellulose 

nanocrystals206, 208, 2D nanomaterials or platelets269, 270, and other lamellar systems renders the 

understanding of effective interactions between two planar brush surfaces critical. We note that 

the general framework developed here can be applied to particles of any arbitrary curvature with 

an appropriate setup of the simulated representative volume. Here, we carry out tensile and 

compressive simulations of nanoparticles grafted with four common polymers with distinct 

chemical groups and segmental structures, i.e., poly (methyl methacrylate) (PMMA), polystyrene 

(PS), polycarbonate (PC) and polybutadiene (PB). This choice allows for a wide range of 

properties to be examined in a single study, spanning large ranges of fragility, glass transition 

temperature and chemistry. Figure 6.2-1a shows a schematic of a high aspect ratio polymer grafted 

nanoparticle assembly along with the coarse graining strategy used for each polymer. We take a 

subsection of the assembly to evaluate the transverse properties at the interface between the 

nanoparticles. The approach taken here is similar to the use of a surface force apparatus that can 

measure the adhesion force between polymer and substrate63, 64. We extract the potential of mean 

force (PMF), which is the work required to move the plates, and describe it analytically. The 

empirical constants of our analytical expression are related to the design parameters; chain length, 

grafting density and chemistry. Moreover, we also evaluate the dependence of the PMF on strain 

rate and extrapolate the zero-rate limit to our data. These results provide a new interparticle 

potential for the study of nanoparticle assemblies at the mesoscale for the design parameters 

investigated without loss of chemistry specificity, and the numerical framework developed can 

easily be extended to a broader class of systems. 
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6.2 Simulation methods 

Our group previously developed CG models of the above mentioned polymers using an 

energy renormalization approach that accurately captures the mechanical properties while 

preserving the dynamics of the full atomistic system. We use harmonic potential for the bonds, 

tabulated potentials for angles and dihedrals and the non-bonded interactions are described by LJ 

potential, the parameters are in our previous papers115, 116, 123.  The CG-mapping of these polymers 

is shown in Figure 6.2-1a. We use atactic structures for polymers with side-groups (PS and 

PMMA) and idealize nanoparticle cores as two planar surfaces from which polymers emerge and 

interdigitate, a model that could be broadly applicable to large, stiff 1D-2D nanoparticles or 

strongly cohesive assemblies of these particles in a lamellar configuration.  The nanoparticle is 

modeled as a rigid plate with dimensions of 5 nm × 10 nm with each bead placed at a distance of 

5 Å. The mass of the bead can be chosen based on the density of nanoparticle to be modeled; in 

this case, we chose 324 g/mol, which is consistent with the mass of a coarse-grained bead of a 

cellulose nanocrystal192. In order to evaluate the influence of chain length and grafting density, we 

first created a design of experiments where we systematically vary the polymer chain length from 

20 to 100 monomer units while keeping the grafting density constant at 0.5 chains/nm2. We then 

vary the grafting density from 0.08 to 1.14 chains/nm2 while keeping the chain length constant at 

50 monomer units. The grafting density here is defined as the number of polymer chains grafted 

per unit area of the nanoparticle surface. We note that the chain lengths used in this study are below 

the physical entanglement length for the polymers as the relaxation of an entangled polymer 

network is computationally expensive.  
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All the CG-MD simulations are carried out using Large-scale Atomic/Molecular Massively 

Parallel Simulator (LAMMPS) software58. We use periodic boundary conditions along the edges 

of the slabs (𝑥 − 𝑦 plane) to mimic infinite plates, whereas the box is non-periodic in the normal 

(z) direction where the force is applied (Figure 6.2-1b). To generate the structure, a flat plate is 

created and random beads are chosen to be grafted based on each grafting density. The polymer 

chain is then grown from the grafted point using a random walk algorithm.81 The grafted plate is 

subsequently replicated and inverted to create two parallel grafted plates as shown in Figure 

6.2-1a. We use the equilibration protocol reported in our previous works192, 240. In order to remove 

any overlap between polymer beads, a soft interatomic cosine potential is initially applied to push 

the polymer beads apart. Afterward, the actual potential is switched on and a brief equilibration is 

carried out under NVT ensemble for 2 ns. Next, he system is subjected to a high pressure and 

temperature to anneal and remove any residual stresses, and then cooled down to the room 

temperature and equilibrated for 2 ns. The second Legendre order parameter (P2)116 value is 

checked to be below 0.1 to ensure the chains are well relaxed. The equilibrated system is then 

subjected to tensile force using steered molecular dynamics (SMD) simulations where the bottom 

plate is fixed and the top plate is pulled with a constant velocity of 5 m/s, which is equivalent to a 

strain rate of around 109 s-1. The strain rate used here is much higher than typical experiments, but 

for a subset of our systems we show how we can easily extrapolate our results to the limit of zero 

pulling velocity, fitting our PMF results with a Cowper-Symonds model271. A schematic of the 

tensile test is shown in Figure 6.2-1b. The sum of forces in the pulling direction is calculated, 

multiplied with the displacement and divided by the volume (which is the area of the plate 

multiplied by the equilibrium distance between the plates) to provide the potential of mean force 
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per volume (ψ). Each setup is run for five different trials to obtain statistically significant data. 

Figure 6.2-1c shows a representative PMF curve for different polymer grafted systems. 

 

Figure 6.2-1: Schematic of system setup and representative PMF curves. (a) Schematic of the 

layered polymer grafted to a high aspect ratio nanoparticle assembly. A representative volume 

element (RVE) is used to analyze the transverse properties of these assemblies. The various 
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polymers and their atomistic and coarse-grained representations are shown on the right. The RVE 

shown is of PMMA grafted nanoparticle system with chain length of 100 and grafting density of 

0.5 chains/nm2. (b) CG-MD simulations are carried out by fixing the bottom plate and 

pulling/pushing on the top plate with a constant velocity. The schematic is of the same system as 

in panel a. (c) Representative plots of potential of mean force (𝜓) with respect to center of mass 

(COM) distance between the nanoparticles normalized by their equilibrium distance. Here 

normalized means that the distance between the plates has been subtracted by the equilibrium 

distance. The three plots show the variation with (i) chain length of PMMA grafted nanoparticle 

at constant grafting density of 0.5 chains/nm2, (ii) grafting density of PMMA grafted nanoparticle 

at constant chain length of 50 and (iii) polymer chemistry at chain length of 50 and grafting density 

of 0.5 chains/nm2. 

6.3 Cohesive energy and entanglement analysis 

We first look at the individual effect of chain length, N, and grafting density, 𝜎, on the peak 

of the potential of mean force, 𝜓R�ó. The grafting density, 𝜎, is defined as 𝜎 = 	 P	
ô∗�

 where f is the 

number of grafts, and w and l are width and length of the plate respectively. The total work required 

to completely separate the plates starting from their equilibrium position is defined as 𝜓R�ó, which 

is the plateau of the PMF curve or depth of the energy well. The trends of 𝜓R�ó with respect to 

the design parameters, N and 𝜎, are shown in Figure 6.3-1. From Figure 6.3-1a, we can see that 

there is a linear increase in 𝜓R�ó  with increase in chain length. 𝜓R�ó gives an indication of the 

toughness (area under stress-strain curve) of the system and it is well known that longer chains 

enhance toughness in pure polymers272 and polymer grafted nanoparticle systems29, 30. Our 
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simulation results support this theory for all different polymer grafted systems. Therefore, it is 

possible that trends may change and there may be saturation at sufficiently high chain lengths; 

brittle fracture due to chain scission may also occur for strongly interacting chains. Regardless, the 

range we study is perhaps of greater interest for aHNPs since the physical behavior begins to 

converge to that of neat polymers as N becomes large.  

 

Figure 6.3-1: Relation of peak PMF and equilibrium distance with respect to chain length 

and grafting density. (a) The peak of potential of mean force (𝜓R�ó) increases linearly with chain 

length, N. (b) 𝜓R�ó first increases with grafting density, σ, up to about 0.2-0.4 chains/nm2, beyond 

which the value starts to decrease. The lines in the figure are the best fits obtained from the data, 
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a linear fit for variation with N and a quadratic fit for variation σ. The equilibrium distance between 

the plates increases linearly with (c) chain length, N and (d) grafting density, σ. The error bars 

indicate the variance in values from five different trials. 

When the grafting density increases, 𝜓R�ó first increases and then starts to decrease 

(Figure 6.3-1b). At lower grafting density, the cohesive interactions between the polymer chains 

arising from the two nanoparticles are minimal, leading to a low 𝜓R�ó. These interactions increase 

as 𝜎 is increased due to increase in number of polymer chains. However, they start decreasing 

again beyond a certain threshold (around 0.2-0.4 chains/nm2) due to a reduction in interdigitation 

of polymer chains caused by steric hindrance. As the grafting density increases, the close spacing 

leads to entropically unfavorable conformations of the grafted polymer chains. Experiments have 

shown that even at high pressures, the concentrated polymer brushes (highly grafted nanoparticles) 

hardly interpenetrate each other47, 248. Similar observations were made in our previous study,192 

where we saw a decrease in cohesive interactions with increasing grafting density, which we 

attributed to fewer monomer segments being in the semi dilute polymer brush (SDPB) regime. The 

grafted polymer chains need to be in SDPB regime to effectively interact with other polymer 

chains192. Figure 6.2-1c shows the PMF curves for the different polymer chemistries. It can be 

seen that PB, which is rubbery as compared to other polymers at room temperature, has the lowest 

value of 𝜓R�ó, whereas tough glassy polymers, PMMA and PC have high values of 𝜓R�ó. The 

initial curvature of the attractive part of the PMF curve is related to the modulus of the system. 

PMMA, which has the highest modulus among the four polymers, has the highest curvature, 

whereas PB has the lowest curvature and thus the modulus. Figure 6.3-1c and d shows that the 

equilibrium distance is linearly dependent on the chain length and grafting density respectively. In 
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general, as the polymer content increases (with either grafting density or chain length) in the 

system, the equilibrium distance increases. One can also extract the PMF on per unit area (𝛾) basis 

by multiplying the PMF per volume (𝜓R�ó) with the equilibrium distance (𝑥?) (Figure 6.3-2). 

𝛾 = 𝜓R�ó×𝑥?          (6.3-1) 

 

Figure 6.3-2: Peak PMF in per unit area. Variation of peak PMF (𝜓R�ó) per unit area with 

respect to (a) chain length, N, and (b) grafting density,	σ. 

The cohesive interaction energy between the polymer chains (𝛾ÞÞ) is a key factor that 

governs the tensile properties (𝜓R�ó) of the composite. Here, we quantify 𝛾ÞÞby calculating the 

pairwise energy between polymer beads arising from the top and bottom nanoparticle normalized 

by the total number of polymer beads (Np) as described in Eq. 6.3-2. 

𝛾ÞÞ =
L
}�

4𝜀(( õ
#kö
)L3 − ( õ

#kö
)b)}ê

m,Õ�L,m÷Õ     𝑟mÕ < 	 𝑟"      (6.3-2) 

where δ is the size of the bead, ε is the cohesive energy between the beads, and 𝑟mÕ is the 

distance between the beads. Varying σ showed a proportional increase in 𝜓R�ó with 𝛾ÞÞ (Figure 
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6.3-3a). However, when N was varied at a fixed σ, we observed no apparent relation between 𝜓R�ó 

and 𝛾ÞÞ, as shown in Figure 6.3-3 (b).  

 

Figure 6.3-3: Relation between 𝜸𝒑𝒑 and 𝝍𝒎𝒂𝒙. Relationship between the cohesive interaction 

energy (𝛾ÞÞ) between chains grafted to different nanoparticles and 𝜓R�ó for designs with (a) 

varying grafting densities at fixed chain length of 50 and (b) varying chain lengths at a fixed 

grafting density of 0.5 chains/nm2. The line in panel (a) is a guide for the eye, showing a linear 

relation between 𝛾ÞÞand 𝜓R�ó, whereas panel (b) shows that there is no evident  correlation 

between 𝛾ÞÞand 𝜓R�ó. 

This warranted further investigation into these systems and we evaluated the geometric 

entanglement in the system using the Z1 code developed by Martin Kroger273, 274. The Z1 code 

returns the primitive path (PP) and the related number and positions of entanglements (kinks) for 

all chains in the simulation box. From that, we obtain the average value of entanglements per chain, 

<Z>. This value gives a sense of how intertwined the chains are in the system. <Z> is not 

necessarily the same as physical entanglement in polymer chains, where the movement of chains 
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changes from sliding to entanglement. Figure 6.3-4 shows the relation between <Z> and 𝜓R�ó. 

We observe that as the entanglement per chain increases with chain length, 𝜓R�ó  also increases. 

This indicates that even though the interaction energies between polymer chains are similar, 𝜓R�ó 

depends on the entanglement in the system. It also ties with the increase in entropic elasticity as 

the molecular weight of the polymer increases275. We also observe the same behavior at low (0.18 

chains/nm2) and high (0.96 chains/nm2) grafting densities (Figure 6.3-5). Thus, as the chain length 

increases, the enthalpic contribution (𝛾ÞÞ) remains the same, but due to increase in entropic 

contributions, the 𝜓R�ó increases. However, when the grafting density changes, <Z> remains 

similar in value as seen from Figure 6.3-4. This indicates that changing grafting density affects 

the enthalpic contribution (𝛾ÞÞ) whereas the entropic contribution remains the same. 

 

Figure 6.3-4: Relation between < 𝒁 > and 𝝍𝒎𝒂𝒙. Relation between entanglement per chain 

(<Z>) and 𝜓R�ó for (a) varying chain lengths and (b) varying grafting densities. <Z> correlates 

with 𝜓R�ó with increasing chain length; however, there is no evident  correlation between <Z> 

and 𝜓R�ó when varying grafting density 

(a)

(b)
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Figure 6.3-5: Relation between < 𝒁 > and 𝝍𝒎𝒂𝒙 for varioud grafting densities. Relation 

between entanglement per chain (<Z>) and peak PMF (𝜓R�ó) at grafting density of (a) 0.18 

chains/nm2, (b) 0.5 chains/nm2, and (c) 0.96 chains/nm2. 

The polymer grafted surfaces here should be analogous to semi crystalline polymers where 

polymer chains emerge from adjacent crystal surfaces. There have been several studies that looked 

at stress-strain curves and  stress-transfer mechanisms between crystals with both atomistic and 

coarse-grained force fields for semi-crystalline polymers such as polyethylene276. They have 

evaluated the strain rate effect and carried out analysis on entanglements using Z1 code, where 

they show that the bridging entanglements leads to dramatic increase in stress values at a given 

strain277, 278. This observation is similar to what we see in our systems, which strengthens our 

argument on the importance of entanglements.  

In summary, it is evident that increasing the chain length of the polymer increases the 

entanglements per chain, which in turn increases 𝜓R�ó. On the other hand, changing the grafting 

density affects the cohesive interactions between the polymer chains which in turn affects 𝜓R�ó. 

As 𝜓R�ó is directly correlated to the toughness, it is desirable to have longer chains (closer to 

chain length of 100 in this case which is the maximum of the range we studied) and grafting 

densities in between 0.2-0.4 chains/nm2 to maximize the toughness of the nanocomposite. The 
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peak PMF gives an indication of toughness of the system and we observe that the peak PMF 

increases with chain length. This has been experimentally and computationally observed before192, 

279, 280. Even with respect to the grafting density, the decrease in toughness at higher grafting 

densities has also been observed192. Regarding the entanglements, increase in entanglements with 

higher chain length is also expected from these systems281. In summary, we can safely say that the 

computed trends and conclusions are in line with expected behavior at macroscale, but so far 

experiments have not focused on direct measurements of the PMFs in these cohesive systems 

without matrices, making a direct quantitative comparison difficult. 

6.4 Functional form of the potential 

After understanding the role of chain length and grafting density on 𝜓, we proceed to find 

an analytical equation that can fit all PMF curves and seek to determine a relationship between the 

physical parameters, N and 𝜎∗ , and the  empirical parameters of the equation. Here 𝜎∗ = 	 P	�ï
�

ô∗�
	 is 

the reduced grafting density used as the non-dimensional quantity to describe the equation. 

Standard interactions such as Lennard-Jones and Mie potentials fail to capture the behavior of the 

PMF curves as seen from Figure 6.4-1. The Lennard Jones potential does not fit our data at all. 

While the Morse potential has a parameter to control the width of the energy well, it cannot capture 

the repulsive and the attractive portion simultaneously. Finally, the 4-2 form of the Mie potential, 

which provides the best fit, still fails to capture the curvature of the attractive portion. The 

functional forms are shown below. The parameters for the LJ, Morse and Mie are obtained by 

carrying out regression to fit the data. All the potentials were fit to match the equilibrium distance 

and peak PMF value. 
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Figure 6.4-1: Comparison of fitting of the data with different potential forms. The figure 

clearly shows that LJ, Morse and Mie potential cannot fit our data accurately. 

While a rigorous machine learning approach may provide a perfect fit to the data, an 

empirical relation that can capture the behavior can accurately provide more information. Our goal 

in this work is to build an empirical model with reasonable accuracy with constants that can be 

linked to design parameters, providing insight into the mechanical properties of the system. Hence, 

we decided to understand the behavior of the attractive and repulsive portion of the PMF separately 

to develop an empirical function. The repulsive portion of the curve we chose an exponential form 

shown in Eq 6.4-1. The exponential repulsion term is widely used in molecular simulations, which 

goes back to the idea of Pauli exclusion principle282. When we picked this model, we drew an 

analogy that can be made between electron clouds and polymer grafts. 
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𝜓#(𝑥) = 𝑎#×𝑒hX�ó + 𝑐#          (6.4-1) 

where 𝑎#, 𝑏# and 𝑐# are the empirical constants and x is the center of mass distance between the 

plates. The parameters 𝑎#and 𝑏# depend on N and 𝜎∗ , and the parameter 𝑐#, which is a very small 

number compared to first term, shifts the potential to zero at equilibrium distance. The attractive 

functional form was chosen on the basis of having to use a general sigmoidal form that goes from 

the zero energy state to the detached state smoothly and in a tunable fashion as given by Eq. 6.4-

2. 

𝜓�(𝑥) =
��

X���uð�$
− ��

X���uð�$i
         (6.4-2) 

The constants 𝑎�	and 𝑏� control the plateau of the PMF curve (𝜓R�ó), whereas ca controls the 

curvature of the curve. The constant ��
X���uð�$i

 is added to shift the curves to zero at equilibrium 

distance (𝑥 = 𝑥?).  We obtain these empirical constants by fitting our data with the above equation. 

For each polymer chemistry, chain length and grafting density, we run five separate trials to get 

better statistics. Adding the attractive and repulsive forms gives us the final expression for the 

effective potential: 

𝜓(𝑥) = 𝑎#×𝑒hX�ó +
��

X���uð�$
− ��

X���uð�$i
              (6.4-3) 

 We note that ��
X���uð�$i

− 𝑐#	~	
��

X���uð�$i
 as 𝑐# is negligible. This five-parameter equation 

describes the interaction between nanoparticles in all different designs of aHNPs. Figure 6.4-2 

shows a representative fit of the function to the data obtained from the simulations along with the 

residual, which is calculated as the difference between the actual and the fitted value. 
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Figure 6.4-2: Functional form of the potential with residual values. (a) Fitting the functional 

form to the PMF data obtained from the CG-MD simulations. The figure shows a representative 

curve for chain length N=50 and grafting density 𝜎 =0.5 chains/nm2 of the PMMA grafted 

nanoparticle system. The circle indicates the point where the analytical function shows the highest 

discrepancy. (b) The distribution of the residual percentage between the data and the fit at the 

highest discrepancy point for all the curves (5 trials for 9 different chain lengths and 8 different 

grafting densities for a total of 85 simulations for each chemistry), indicating that on average the 

error is around 6-10%. The distributions are obtained from a binning of the data points using the 

ksdensity function in MATLAB with 100 bins. 

 The point where the derivative of the potential (given by Eq. 6.4-4) becomes zero is the 

equilibrium distance between the nanoparticles, x0. 

𝜓% = −𝑏#×𝑎# ∗ 𝑒hX�ó +
��×"�×�uð�$

(X���uð�$)�
             (6.4-4) 

 The solution for 𝜓% = 0 cannot be determined analytically as a general expression for all 

possible values of the empirical constants. However, since the potential consists of two continuous 

smooth curves, the derivative can be found numerically for each curve once the empirical constants 
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are determined from fitting 𝜓. The equilibrium distance obtained from the derivative is compared 

to the equilibrium distance from the simulations and it is observed that the two values are within 

2% of each other. This, along with the goodness of fit measures, ensures that the fitting parameters 

accurately capture the equilibrium position and the shape of the curves.  

The functional form of the equation fits the data for all the cases with a total mean square 

error (MSE) <1%. In Figure 6.4-2a, we also show the residual of the fitted values for an example 

case. The residual is calculated as the difference between the actual value from the simulation and 

the fitted value. The highest residual is observed at the tail end of the attractive part of the 

interaction (circled in Figure 6.4-2a) for 100% of the 340 cases studied herein. This is due to the 

sharp transition to zero interaction observed in the simulation when all the chains from the two 

plates are separated, a feature not captured by the continuous potential employed. Nevertheless, 

the residual at the highest discrepancy point is below 15% for most of our simulations (as shown 

in Figure 6.4-2b for all 5 trials, 9 different chain lengths, 8 different grafting densities and 4 

chemistries), and much lower for any other point of the PMF curve.  

6.5 Relations between constants and design parameters 

Next we evaluate the dependencies of the empirical constants 𝑎# and 𝑏# on the design 

parameters. The repulsive parameters 𝑎# and 𝑏# show a negative correlation with N as seen from 

the first two panels of Figure 6.5-1a. At high enough grafting density, the grafted polymers form 

a dense corona around the nanoparticle, in the so-called CPB regime  (as originally identified for 

star polymers in the Daoud-Cotton model46 and discussed recently for polymer grafted 

nanoparticles in several papers19, 232, 283 including our previous work192, 240). The extent of the CPB 

regime is identified by the grafting density and nanoparticle radius, and long enough chains will 
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extend beyond this regime, into the SDPB regime with higher NP-NP interpenetration. As such, 

the hard-core repulsion observed between NPs for short chains is softened in the case of longer 

chains (extended in the semi-dilute regime of the NP), leading to the negative correlation between 

𝑎# and 𝑏#  and N. With respect to 𝜎∗, the value of 𝑎# increases exponentially due to the increase in 

steric hindrance induced by closely grafted chains. The polymer chains tethered to different 

nanoparticles do not have adequate free space to interdigitate, thus increasing the repulsion. The 

equilibrium distance, x0, increases linearly with 𝜎∗, which means the repulsion part of the curve 

spreads over a greater distance, thus reducing the parameter br. The first two panels of Figure 

6.5-1b summarize this observation. Considering these dependencies, we can form an equation 

relating 𝑎# and 𝑏# with N and 𝜎∗: 

𝑎# = 	𝑘L�#×𝑒(hÂ���∗}) +	𝑘N�#×𝑒(Â&��∗a
∗)        (6.5-1) 

𝑏# =
Âßx�
}
+ Â�x�

a∗
+ 𝑘NX#          (6.5-2) 

 The constants of the above equations are summarized in Table 6.5-1. 

Table 6.5-1: Constants of relation between repulsive parameters and N and 𝜎∗. 

Polymer 𝑘L�# 𝑘3�# 𝑘N�# 𝑘Ö�# 𝑘LX# 𝑘3X# 𝑘NX# 

PMMA 2.40E8 1.99E-2 2.34E7 1.56E1 1.06E1 5.64E-3 7.97E-2 

PS 3.66E7 5.72E-3 6.52E6 2.29E1 8.62E0 4.86E-3 8.08E-2 

PC 6.64E2 1.53E-2 4.22E2 2.15E0 9.65E-1 1.963E-2 1.29E-2 

PB 1.38E7 1.30E-1 1.72E3 5.36E0 1.39E1 8.76E-3 1.12E-1 

The attractive parameters have a different dependence on the design parameters. In the 

sigmoidal curve, the plateau of the curve (𝜓R�ó) is mainly dependent on the ratio ��
X�

 and the 

curvature of the sigmoid is mainly dependent on 𝑐�. A higher value of 𝑐� implies a more gradual 
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increase in PMF with distance; in other words, the response is softer. We observe that ��
X�

 vs. N is 

linear, as longer chains require a larger amount of work to be separated. However, ��
X�

 vs. 𝜎∗ is 

quadratic in nature (as a first order approximation), which can be explained with the help of the 

cohesive interaction energy 𝛾ÞÞ ,,. The main correlation between the fit parameters and the cohesive 

energy is between the ratio ��
X�

 and 𝛾ÞÞ. As both these quantities relate to the toughness or ψ89: of 

the systems, there is a direct linear correlation between these two values. For sparsely tethered 

designs (𝜎 < 0.4 chains/nm2), 𝛾ÞÞ , increases with the number of chains; however, in the high 

grafting density regime (𝜎 > 0.4 chains/nm2), the polymer chains are grafted close to each other 

such that they start repelling the other chains due to steric hindrance. Due to this, the interdigitation 

of the chains decreases, which reduces 𝛾ÞÞ. The parameter 𝑐� is inversely proportional to N, 

implying that longer chains provide higher stiffness, thus reducing 𝑐�. The trend of 𝑐� vs. 𝜎∗ is 

similar to that of ��
X�

 vs. 𝜎∗. The last two panels of Figure 6.5-1a and b show the dependencies of 

the attractive parameters on N and 𝜎∗ respectively. Based on these trends, we can get the following 

equations: 

��
X�
= 	𝑘L��×𝑁 +	𝑘3��𝜎∗3 + 𝑘N��𝜎∗ + 𝑘Ö��        (6.5-3) 

𝑐� =
Âßð�
}
+	𝑘3"�𝜎∗3 + 𝑘N"�𝜎∗ +	𝑘Ö"�        (6.5-4) 

The constants of the above equations are summarized in Table 6.5-2. The constant 𝑏�  is equal to 

0.025, 0.012, 0.036 and 0.31 for PMMA, PS, PC and PB respectively. 
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Table 6.5-2: Constants of relation between attractive parameters and N and 𝜎∗ 

Polymer 𝑘L�� 𝑘3�� 𝑘N�� 𝑘Ö�� 𝑘L"� 𝑘3"� 𝑘N"� 𝑘Ö"� 

PMMA 1.91E0 -5.71E4 3.93E3 1.36E2 1.51E0 9.09E0 -2.76E-1 2.17E-2 

PS 2.81E-1 -1.69E4 5.84E2 7.08E1 1.74E0 7.56E0 -6.84E-1 1.48E-2 

PC 1.92E0 -3.94E1 5.61E1 1.28E2 4.47E-1 5.09E-5 -3.76E-3 3.73E-3 

PB 4.95E-1 -1.32E3 3.86E2 2.13E1 8.85E-1 2.01E-1 -9.11E-3 1.29E-2 

 

Figure 6.5-1: Dependencies of the empirical parameters on (a) chain length and (b) grafting 

density. The points are the actual values obtained from the fitting the PMF curve to Eq. 6.4-3 and 

the lines are the fits based on Eq. 6.5-1 to 6.5-4. 

In summary, we first fit the PMF curve for each set of the design parameter to obtain the 

empirical constants. We then relate these empirical constants to the design parameters, N and σ∗. 

After developing the relations between the design parameters (N and 𝜎∗) and the empirical 

constants, we now check the estimation of the PMF curve based on the above equations. Figure 

6.5-2 shows the data, the fit, and the estimation based on Eq. 6.5-1 to 6.5-4 along with the residual 

obtained from the difference between the data and the estimation. As seen from the figure, the 
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estimation from the equation is very close to the actual PMF curve. We also show the comparison 

between the actual and estimated values of the equilibrium distance, x0, and the peak PMF,	𝜓R�ó 

(Figure 6.5-2b and c). The equilibrium distance and the peak PMF are the two key factors that a 

potential should capture and our functional form can accurately estimate these values within 

reasonable range. Representative fits for different chemistries, couple different chain lengths and 

grafting densities are shown in Figure 6.5-3 and Figure 6.5-4. 

 

Figure 6.5-2: Estimated potential from empirical constants along with predicted 𝒙𝟎 and 

𝝍𝒎𝒂𝒙. (a) The figure shows the data, the fit from Eq. 6.4-3, the estimation based on Eq. 6.5-1 to 

6.5-4, and the residual for a representative PMMA grafted nanoparticle system with chain length 

50 grafting density=0.5 chains/nm2.  Comparison between the actual and estimated values of (b) 

equilibrium distance 𝑥? and (c) peak PMF 𝜓R�ó. These figures clearly indicate that the proposed 

functional form captures these two key metrics describing the interparticle interaction. 
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Figure 6.5-3: Representative PMF curves for each polymer chemistry at different chain 

lengths. Representative curve fits along with the estimation from the equation for the constants 

k’s (Eq. 6.5-1 to 6.5-4), are shown for (a) PMMA, (b) PS (c) PC and (d) PB grafted nanoparticle 

system. For each panel, the left curve represents the system with chain length=20 and the right one 

represents chain length=100. The grafting density in all cases are constant at 0.5 chains/nm2. 
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Figure 6.5-4: Representative PMF curves for each polymer chemistry at different grafting 

densities. Representative curve fits along with the estimation from the equation for the constants 

k’s (Eq. 6.5-1 to 6.5-4) are shown for (a) PMMA, (b) PS (c) PC and (d) PB grafted nanoparticle 

system. For each panel, the left curve represents the system with grafting density=0.4 chains/nm2 

and the right one represents grafting density=0.96 chains/nm2. The chain length in all cases is 

constant at 50. 

As discussed above, 𝜓R�ó can be related to the toughness as it is the total work required to 

pull the plates apart. On the other hand, using the concept Cauchy-Born approximation284, we can 

convert the PMF curve to a strain energy density function 𝜓(𝜀), where 𝜀 = Δ𝑥 𝑥? is the strain. 

The double derivative of 𝜓(𝜀) is shown in Eq 6.5-5, 

𝜓(𝜀)%% = 𝑎#𝑏#3𝑒hX�( + 𝑎�
3"��u�ð�)

X���uð�) ë − "���uð�)

X���uð�) �     (6.5-5) 
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Evaluating 𝜓(𝜀)%% at 𝜀 = 0 will provide the modulus of the polymer (E): 

𝐸 = 𝑎#𝑏#3 + 𝑎�
3"�
X�ë

− "��

X��
        (6.5-6) 

Assuming uniaxial deformations of a network of these particles, we can generate an 

Ashby285 plot of modulus vs toughness for different polymers as shown in Figure 6.5-5. As 

expected, PMMA and PS have a high modulus, PC has a high toughness, and PB (being a rubbery 

material as compared to the other polymers) has low toughness and modulus. The few outliers 

lying on the bottom right (low modulus and toughness for PMMA and PS) correspond to the lowest 

grafting density, where the number of chains are too low to contribute towards modulus and 

toughness. The range of modulus and toughness are comparable to experimental and 

computational values192, 280, 286, 287. We note that the modulus of PC is slightly on the lower end, 

which we attribute to the confined conformations of the polymer chains. The slightly higher 

toughness values (compared to experiments) are reasonable considering the large strains attainable 

in small systems and we observed similar toughness values in our previous work192. We also note 

that the actual value of modulus and toughness of the nanocomposite will depend on 

microstructure and other factors. However, the constants determined herein effectively capture the 

trend of material properties with the molecular-scale design variables. Alternatively, running 

mechanical tests on mesoscopic particle networks will have the additional benefit of illustrating 

non-affine fracture and failure mechanisms.   
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Figure 6.5-5: Ashby plot of Young’s modulus vs toughness for different polymers. 

The trends observed in this work are in line with the macroscale behavior. The peak PMF 

gives an indication of toughness of the system, and we observe that the peak PMF increases with 

chain length. This has been experimentally and computationally observed before192, 279, 280. Even 

with respect to the grafting density, a decrease in toughness at higher grafting densities has also 

been observed.192 Regarding the entanglements, an increase in entanglements with higher chain 

length is also expected from these systems281. The modulus and toughness measurements are in 

line with experimental values280, 286, 287. Based on this, we can safely say that the computed trends 

and conclusions are in line with expected behavior at macroscale, but so far experiments have not 

focused on direct measurements of the PMFs in these cohesive systems without matrices, making 

a direct quantitative comparison difficult. 
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6.6 Rate dependence 

The simulations presented so far are performed at finite pulling velocity, v. One might 

argue that proper implementation of this model in mesoscale simulations requires consideration of 

the rate dependence of PMF (𝜓) (where the strain rate 𝜀 ̇ is related to the pulling velocity via 𝑣 =

𝜀𝑥?). To address this, we show the effects of pulling velocity on our results as well as the extraction 

of the zero-rate limit to be used at equilibrium. Due to the large computational cost of low pulling 

velocity simulations, we restrict this discussion to a subset of our systems. The approach proposed, 

however, can readily be applied to any of the systems studied.  

 

Figure 6.6-1: Rate dependence of PMF. PMF as a function of pulling velocity for the system 

with N=50 and 𝜎∗=0.05. As expected, the amount of work required to separate or compress the 

plates is higher at increasing pulling velocities. The inset shows that normalization by the PMF 

plateau in 𝜓R�ó produces a reasonable collapse of the curves (especially for lower pulling 
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velocities, where the concavity around the equilibrium is constant within a few percent, see Figure 

6.6-2), indicating that capturing the rate-dependent behavior of 𝜓R�ó is sufficient to describe the 

entire PMF curve. 

In Figure 6.6-1 we show the PMF function for PMMA with 𝜎∗=0.05 and N=50 as a 

function of pulling velocity. Aside from small deviations at very high pulling velocities, the 

curvature of the PMF is unaffected by the pulling velocity and all the curves collapse once 

normalized by the peak PMF value, 𝜓R�ó (Figure 6.6-1inset). The dependence of peak PMF on 

strain rate can by described by the zero-rate limit provided that the local shapes of the PMF curves 

are generally the same. A quadratic equation 𝜓R�ó 𝜀 ̇𝑣 = 0. 𝑣5𝑘𝜀 ̇3 was fit to the concavity around 

the equilibrium values of the PMF (displacement ±12 Å) to evaluate the similarity of their 

curvatures, represented by the parameter k in the aforementioned equation. Each PMF curve was 

normalized by its peak value for ease of comparison. While the fit of the equation does not align 

perfectly with the data (see Figure 6.6-2a), it is sufficient to be used in comparison of the 

equilibrium PMF curvatures for different simulation parameters. As seen in Figure 6.6-2b, it is 

evident from this analysis that the value of k tends to slightly increase with faster strain rates, 

mildly increasing the concavity of the PMF curvature around equilibrium PMF. However, for the 

pulling velocity lower than what is used to carry out all the analysis (0.00005 Å/fs), the value of k 

does not change by more than 4% and the shape of the PMF curves around equilibrium is 

minimally variant. Thus we use a higher pulling velocity of 0.00005 Å/fs to speed up our 

simulation while maintaining realistic physics of deformation.  



154	
	

	

 
Figure 6.6-2: Harmonic approximation of PMF around equilibrium position. Fit of quadratic 

equation 𝜓R�ó 𝑣𝜀̇ = 0. 𝑣5𝑘𝜀 ̇3 around minimum x0 for chain length N = 50 monomers, grafting 

density σ = 0.5 chains/nm2, and strain rate v = 0.00005 Å/fs (panel a), as well as comparisons of 

fits for varying strain rates of chain length N = 50 monomers, grafting density σ = 0.5 chains/nm2 

(panel b).  

The change in 𝜓R�ó is then enough to capture the rate dependence of the effective 

interaction. In Figure 6.6-3 we plot 𝜓R�ó for PMMA systems at 𝜎∗=0.05 and varying N (panel a), 

as well as for systems at N=50 and varying 𝜎∗ (panel b) as a function of 𝑣, the pulling velocity. 

From dimensional analysis, 𝜓R�ó is related to the stress of the system multiplied by a volume. In 

our case, the length scale of the system 𝑥? is unaffected by the pulling velocity, so we can explain 

the rate dependence of the 𝜓R�ó in analogy with flow stress models for viscoelastic materials. We 

apply here the Cowper-Symonds model271, developed to characterize flow stress, but also  

applicable to other deformation-related pulling velocity effects (like yield stress,  elastic modulus, 

or cumulative strain energy) for a large variety of materials288-293. We then arrive at the equation 

for 𝜓R�ó: 

𝜓R�ó 𝑣 = 𝜓? 1 +	 𝑣 𝑣" Z          (6.6-1) 
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where the critical pulling velocity 𝑣c signals the onset of non-Newtonian behavior, before 

which (for 𝑣 𝑣" ≪ 1) the dependence on the pulling velocity is negligible. The power-law 

exponent n describes the deviation from the Newtonian behavior in the high pulling velocity  

regime, where 𝑣 𝑣" ≫ 1 , and 𝜓0 is the zero-rate limit of the peak PMF. 𝑣c and n are typically 

material dependent constants. The curves in Figure 6.6-3 are fits of Eq. 6.6-1 to our data. To 

validate the use of 𝜓0 to describe the rate dependence of peak PMF, we fit the quadratic equation 

𝜓R�ó 𝑣 = 0.5𝑘𝑣3 around the minimum 𝑥? (within 3Å) and evaluated the difference in the 

parameter k among the values of 𝑣. k showed little variation between the pulling velocities, 

indicating that it is reasonable to use the zero-rate limit of the peak PMF to describe its rate 

dependence. 

 

Figure 6.6-3: Rate dependence of 𝝍max. Rate dependence of the PMF plateau 𝜓max for systems 

with varying N (panel a) or 𝜎∗ (panel b).  The Cowper-Symonds model271 correctly fits our data 

(see Eq. 6.6-1) and we can extract the zero-rate limit 𝜓0. The insets show the corresponding values 
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of 𝜓0, with a linear dependence on N and a bell-shaped dependence on 𝜎∗, similarly to what 

observed at finite strain-rate in Figure 6.5-1b. 

We find that 𝑣" does not have a strong dependence on N and 𝜎∗ in our systems, and we can 

fix it to 𝑣"	= 1e-5, removing one free parameter. This value we find empirically corresponds to 

strain rates 𝜀 = 𝑣/𝑥? on the order of 108 s-1, in line with the inverse of the segmental relaxation 

times we expect for our PMMA model at T=300K294.  n appears to be independent of 𝜎∗, so it can 

be fixed to an average value of n=0.2 (in Figure 6.6-3b) which is consistently within the range of 

n between 0.1 and 0.3 reported in simulation and experimental studies of many different 

materials288-293. We observe a slight decrease of n with increasing chain length N, from around 

0.25 for N=20 to 0.18 for N=100.  Our chains are always below the entanglement regime, where 

the rate dependence is dominated by the segmental dynamics relaxation295, which is not strongly 

affected by molecular weight. As such, we would not expect this effect in free polymer chains of 

varying length, and attribute it here to the fact that dynamics of shorter chains are more strongly 

affected by their grafted extremities. Regardless, the explanation of the dependence of n on N is 

beyond the scope of this work, and we allow n to vary (Figure 6.6-3a). Following this procedure, 

we can extract the values of 𝜓0 for each system (see Figure 6.6-3 insets), which can then be used 

in our analytical formulation for the equilibrium potentials. We also note that 𝜓0 has a linear 

dependence on N and a bell-shaped dependence on σ*, similar to what is observed at finite pulling 

velocity (Figure 6.5-1). The method outlined here to extrapolate the zero-rate limit of the PMF 

curve will allow us to use our model in the future for larger, mesoscale simulations both in 

equilibrium and under deformation. 
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Figure 6.6-4: Validation of extrapolation to zero rate. An additional data point at pulling 

velocity 5e-7 Å/fs (which needed 200h to simulate) is placed on top of Figure 6.6-3a, which shows 

the predictive ability of the fit when extrapolating at lower velocities.   

While the fit we obtained in Figure 6.6-3 is able to capture the rate-dependence of all our 

measured PMFs, extrapolating to the equilibrium, zero-rate case might suffer from errors 

introduced by extending the fit across several orders of magnitude. While it is impossible to 

validate our extrapolation for our system at equilibrium since we are below the 𝑇% of the system, 

we show in Figure 6.6-4 that an additional simulation performed for the system with sigma=0.5, 

N=50 at pulling velocity of 5e-7 (one order of magnitude lower than the rest of the simulations) 

has a measured peak PMF consistent with what predicted by our fit. An extrapolation several 

orders of magnitude beyond our measured data points should be taken with caution. 
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6.7 Conclusion 

In conclusion, we used our chemistry specific CG polymeric models to carry out 

tensile/compressive CG-MD simulations of polymer grafted nanoparticles. We show that 

increasing the chain length increases the entanglement per chain, which in turn increases  𝜓R�ó. 

The grafting density affects the interaction energy between the polymer chains grafted to different 

nanoparticles. We evaluate the potential of mean force by pulling/pushing the plates from their 

equilibrium position and find that the repulsive part of the potential can be described by an 

exponential equation and the attractive part can be described by a sigmoid function. Finally, the 

PMF curves of all polymer chemistries, chain lengths and grafting densities follow a universal 

expression that can be used to describe the interaction between polymer grafted nanoparticles. The 

residual analysis revealed that our model can capture most of the PMF curve accurately, barring 

the tail end of the attractive portion (still less than 15%), which is due to the sudden transition 

arising from chains separating out completely. In addition, we show how to extrapolate the quasi-

static limit of our results from the rate dependence of the PMF curves. The results presented in this 

paper are obtained in the limit of two interacting particles with size much larger than the scales of 

the polymer chains, having in mind large high-aspect ratio particles like CNC grafted 

nanoparticles.206 Future investigations should examine the validity of the functional form under 

different loading conditions such as shear, while also ascertaining its applicability to other 

nanoparticle shapes such as spheres where many-body effects may become significant.. This 

effective potential can be used to simulate large scale aHNP films without having to explicitly 

model the grafted polymer chains, while still preserving structural design variables and polymer 

chemistry. Despite limiting our study to homopolymers here, the same protocol can be applied to 
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more complex architectures with branched polymers, block copolymers and polydisperse systems, 

all of which are of interest in novel functional composites. The spatiotemporal extent of the 

simulations can be increased multifold with the help of this potential. Eliminating the need to 

explicitly simulate the polymer beads reduces the number of particles in the simulation by more 

than five orders of magnitude as compared to all atomistic models. With a conservative scaling of 

O(𝑛	𝑙𝑜𝑔	(𝑛)) for MD simulations, a speedup of 6-7 orders of magnitude can be obtained from 

these mesoscale models. This study sets the stage to accelerate the design of aHNP thin films by 

enabling the prediction of macroscale size dependent properties. 
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Chapter 7: Conclusion 

Throughout this dissertation, I have presented computational techniques that accelerate the 

material by design process. We started out with the development of the energy renormalization 

approach to develop coarse-grain models, which is explained in Chapter 3:. These CG models 

provide a speedup of 2-3 orders of magnitude as compared to all-atomistic (AA) simulations. This 

method can capture the dynamics accurately over a wide range of temperature and it requires only 

a picosecond time scale measure, Debye-Waller factor, for calibration. We show the versatility of 

this approach by developing CG models for different kinds of materials: a small molecule, a 

polymer and an epoxy resin. 

Next, in Chapter 4:, we developed a computational materials-by-design framework 

combining MD simulations with machine learning to optimize the design of aHNPs. Leveraging 

the computationally inexpensive metamodel, we explore the entire design space by sampling with 

a million “pseudo-CG” simulations to reveal the Pareto frontier. Our prediction suggests that at 

least 60% nanoparticle by weight is required and that the polymer chain length has to be above the 

critical chain length to achieve the optimal nanocomposite designs. This metamodel based design 

approach provides a speedup of 6-7 orders of magnitude as compared to AA simulations. 

 Chapter 5: focuses on analysis of the polymer chain conformations in these aHNPs, 

deriving an equation for critical chain length that governs the conformational transition from 

concentrated polymer brush regime to semi dilute polymer brush regime. We verify these scaling 

laws for polymers with different chemistries, persistence lengths and side-group sizes. We 

developed a universal scaling law that governs the positions of the monomers along the chain.  
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Finally, in Chapter 6:, we developed a mesoscopic model framework to model effective 

interaction between nanoparticles based on potential of mean force (PMF). We obtain an analytical 

functional form for the interaction which proves to be universal for different polymers. This meso-

scale approach eliminates the need to model the polymer chain explicitly, thus improving the 

computational efficiency and extending the spatiotemporal scales of MD simulations to 

experimental level. 

7.1 Future outlook 

This thesis sets a foundation to further extend the computational approaches developed to 

much more complicated material systems. The energy renormalization approach towards 

developing coarse-grained (CG) models can be further extended to complicated polymeric systems 

such as branched polymers, copolymers, bottle brushes etc. Our group has already extended this 

ER approach to a biomimetic copolymer296. Current CG approaches for bottle brushes involves 

use of generic bead-spring models297, 298. Chemistry specific ER based CG models for bottle 

brushes will definitely help in exploring the intricate molecular mechanisms in complex bottle-

brush structures. Moreover, we have demonstrated an effective use of machine learning (ML) 

algorithms to facilitate the CG parameterization for crosslinked epoxy resins. Recently published 

papers show that the current trend is to use ML algorithms to develop CG models for highly 

complicated polymeric systems299-301. 

While we chose aHNPs as a model material to demonstrate metamodel based design 

optimization, the computational frameworks developed in this dissertation can be applied to any 

material. The combination of machine learning with molecular dynamics has led to quick 

optimization of the mechanical properties. This concept can be further extended to study other 
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properties such as glass transition (𝑇%), ballistic properties and fracture energies. The inputs for the 

metamodel can be extended to include parameters such as temperature, polydispersity etc. 

Efficient metamodels can be trained to capture the complex input output relationships which will 

enhance the characterization of material properties. The scaling laws governing chain 

conformations can be extended to complex polymer architectures. 

Currently, the PMF based approach towards developing a meso-scale model is applicable 

for plate like nanoparticle such graphene platelets. However, this concept can be further extended 

to incorporate the effect of nanoparticle curvature. Specifically, the PMFs arising from spherical 

nanoparticles is of particular interest as there are range of studies that have focused on aHNPs 

based on spherical nanoparticles29, 30, 36, 40. Developing meso-scale models with spherical 

nanoparticles will allow us to simulate experimental size thin films of these hairy nanoparticle 

assemblies which can then be used to study macroscale properties such as fracture and ballistic 

properties.  

The computational tools developed in this dissertation complements the traditional 

experiments, reducing the iterative characterization loops required to optimize the properties and 

thus accelerating the materials design process. 
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